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Abstract

End-to-end deep learning models are increasingly applied to safety-critical human activity 

recognition (HAR) applications, e.g., healthcare monitoring and smart home control, to reduce 

developer burden and increase the performance and robustness of prediction models. However, 

integrating HAR models in safety-critical applications requires trust, and recent approaches have 

aimed to balance the performance of deep learning models with explainable decision-making for 

complex activity recognition. Prior works have exploited the compositionality of complex HAR 

(i.e., higher-level activities composed of lower-level activities) to form models with symbolic 

interfaces, such as concept-bottleneck architectures, that facilitate inherently interpretable models. 

However, feature engineering for symbolic concepts–as well as the relationship between the 

concepts–requires precise annotation of lower-level activities by domain experts, usually with 

fixed time windows, all of which induce a heavy and error-prone workload on the domain expert. 

In this paper, we introduce X-CHAR , an eXplainable Complex Human Activity Recognition 

model that doesn’t require precise annotation of low-level activities, offers explanations in the 

form of human-understandable, high-level concepts, while maintaining the robust performance of 

end-to-end deep learning models for time series data. X-CHAR learns to model complex activity 

recognition in the form of a sequence of concepts. For each classification, X-CHAR outputs a 

sequence of concepts and a counterfactual example as the explanation. We show that the sequence 

information of the concepts can be modeled using Connectionist Temporal Classification (CTC) 

loss without having accurate start and end times of low-level annotations in the training dataset–

significantly reducing developer burden. We evaluate our model on several complex activity 

datasets and demonstrate that our model offers explanations without compromising the prediction 

accuracy in comparison to baseline models. Finally, we conducted a mechanical Turk study to 

show that the explanations provided by our model are more understandable than the explanations 

from existing methods for complex activity recognition.
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1 INTRODUCTION

Ubiquitous sensors such as those found in smartphones and wearables enable emergent 

sensing applications across all facets of society. In particular, Human Activity Recognition 

(HAR) has gained significant importance over the past few years in a variety of applications 

such as health and fitness monitoring [37, 51], remote patient care [42], and smart homes 

[20]. Modern HAR applications opportunistically combine multiple sensing streams to boost 

performance and exceed the potential when using each sensor in isolation. Traditionally, 

researchers used to handcraft a compositional set of features from the sensory data and 

used classical Machine Learning techniques such as support vector machine (SVM) and 

linear models for HAR [14, 23, 24, 39, 62]. On the other hand, recent research has shown 

that extracting specific features from the raw sensor values is an unnecessary burden 

on the developer as deep neural networks (DNNs) can automatically learn intermediate 

representations for decision-making. Furthermore, several works have shown that DNNs 

achieve better performance in activity recognition tasks when compared to traditional 

methods [47, 60]. However, DNNs provide performance and ease of use at the expense 

of explainable decision-making.

DNNs, by design, are black-box in nature. The superhuman ability to identify patterns 

purposefully exceed human reasoning capabilities. However, understanding the model’s 

decision by the end-user is critical in several domains – particularly those involving high-

stake decisions. Moreover, several governmental agencies are slowly proceeding to regulate 

AI to be more transparent. The first to move in this direction is that the countries of the 

European Union have set several guidelines that state that any AI-based system should be 

completely explainable [2, 3].

In an attempt to provide insight into a DNN model’s inference after training, previous 

works have introduced various techniques called post-hoc explanation methods. For a given 

test input and a trained DNN model, these methods generate useful approximations of 

the model’s inner working and decision logic by producing understandable representations 

in the form of feature importance scores, rule sets, heatmaps, or natural language. But, 

unlike images or text, sensory data such as motion sensors are multivariate time series 

and are inherently non-readable by an average end-user. Moreover, most of the post-hoc 

explanations are not trustworthy [49], and they provide incomplete explanations that are 

not faithful to what the original model computes. For example, saliency-based post-hoc 

methods [52, 53] give an incomplete view of the decision-making process as they only 

highlight where the model is looking at while making a decision without explaining the 

full reasoning. Therefore, highlighting specific segments on the input sample will not help 

understand the model’s decision. Finally, even if one could effectively visualize activations 

over opaque sensor data, the problem is further exacerbated when considering multiple 

heterogeneous streams of unreadable sensor data. Thus, we strive to compose explanations 

JEYAKUMAR et al. Page 2

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for complex activity recognition models analogous to how domain experts would engineer 

robust and interpretable features across sensor streams to explain to a layperson without 

domain expertise.

In this paper, we exploit the compositionality of complex events to develop inherently 

interpretable deep learning models that can learn human-understandable representations in 

the latent space. In particular, we take inspiration from concept-bottleneck models [31] 

that provide explanations in the form of human-understandable, high-level “concepts." 

For instance, instead of end-to-end bird species classification, the model first learns to 

identify intermediate concepts such as beak color and wing length. However, these models 

primarily focused on image classification models. For complex activity recognition tasks, 

several challenges need to be addressed to generate meaningful explanations in the form of 

concepts.

1.1 Challenges for Concept-based Explainable Human Activity Recognition

We formalize a complex activity (e.g., hygienic restroom usage) as a composition of 

lower-level concepts (e.g., washing hands). Thus, the first challenge in explaining complex 

activity detection requires identifying the correct sequence of concepts. The existing concept 

bottleneck model architecture [31] currently provides only the presence or absence of 

concepts as an explanation for image classification. However, complex activity models 

observe time series data and the sequence and frequency in which concepts are present or 

absent matter to make the final complex activity inference. For example, as shown in Figure 

1, for a person to use the restroom hygienically, they must perform the following sequence 

of concepts: enter restroom-> use toilet -> flush toilet -> wash hands -> exit restroom. If 

the person does not wash their hands after using the restroom, it should be flagged as an 

unhygienic use of the restroom. Second, the concept extraction process from the raw signals 

is not trivial. The concepts for a complex activity can vary in length. They can range from 

less than a second to a few seconds long. Some parts of the input time series also carry 

random signal values which do not have any semantic meaning for a particular task and 

hence should not be detected for that particular task. Third, it is usually difficult to have 

an accurate alignment (i.e., correspondence of the elements) of the input sequence and the 

concepts. That is, while collecting data for complex activities, it is easy to annotate the 

sequence of concepts that occurred rather than accurately annotating the start and end times 

of every concept. In fact, several existing works [25, 32] have shown that the start and 

end-times in public HAR datasets are not accurate as there are always some time jitters in 

between annotating and performing the activity.

1.2 Contributions

To this end, we propose X-CHAR (eXplainable Complex Human Activity Recognition), an 

end-to-end inherently interpretable deep learning model that not only infers the complex 

activity given an input sensor stream but also provides an explanation based a sequence 

of concepts that is responsible for the particular classification. In particular, the model 

first identifies simple activities relevant to the particular task as concepts whose sequential 

ordering will compose a complex activity. Figure 2 shows the different components of 

the proposed end-to-end interpretable deep learning model. X-CHAR consists of a sensor 
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fusion model that combines information from multiple sensors, an intermediate Temporal 
Bottleneck layer to identify the concepts and a final classifier to predict the complex activity. 

Since the input sensor data and the concepts are unaligned, not annotated with timestamps 

and can be of variable length, we use the Connectionist Temporal Classification (CTC) 

loss to train the bottleneck layer and solve the challenges mentioned. Finally, X-CHAR 

recognizes the complex activity and provides an explanation by generating counterfactual 

explanations based on the decoded concepts and the given complex activity classification. 

The counterfactual explanation provides a faithful explanation of the model’s decision using 

human-understandable concepts while highlighting the importance of the temporal ordering 

of the concepts.

To demonstrate the efficacy of our approach, we use three complex activity datasets 

(i.e., Nurse Activity, Opportunity, and Complex Restaurant Activities datasets) where the 

classification tasks require an inference explanation. We first compare our model against 

the existing standard end-to-end deep-learning methods for activity classification and show 

that our architecture provides additional benefits of an inherently interpretable model 

without impacting performance (i.e., accuracy). We then conduct a user study to show that 

humans perceive the explanations (in the form of concepts) as good explanations for the 

classification.

To summarize, the major contributions of this paper are as follows:

• We propose X-CHAR, an end-to-end inherently interpretable DNN model 

architecture for complex activity recognition.

• We show that the sequence information of the concepts can be modeled using 

CTC Loss without having accurate start and end times in the training dataset.

• We show that having a temporal bottleneck layer does not decrease the task 

accuracy compared to baseline models and has the additional benefit of being 

interpretable.

• We provide faithful explanations of complex activity model predictions based 

on human-understandable concepts while highlighting the importance of the 

sequential ordering of the concepts.

• We evaluate our approach on multiple time series datasets. We conducted 

extensive experiments to show that adding this bottleneck layer provides 

explainability with no loss in performance. We also conducted a human study 

to show that these explanations are preferred over other baseline explanation 

methods.

The rest of this paper is organized as follows. We discuss related literature in Section 2. In 

Section 3, we define the concepts, complex activities and the problem statement. In Section 

4, we first provide an overview of X-CHAR framework and explain its building blocks in 

detail. Then in Section 5 we discuss the datasets and baselines that will be used in evaluating 

X-CHAR . We evaluate and compare X-CHAR ’s performance and explainability with other 

baselines in Section 6. In Section 7, we discuss the results, limitations of X-CHAR and 
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draw some future research directions. Finally, we provide a summary of the benefits and 

applications of our work in Section 8.

2 RELATED WORKS

2.1 Human Activity Recognition

Human Activity Recognition (HAR) using sensory data has gained significant importance 

over the past few years. It is being used in a variety of applications like health and fitness 

monitoring [37, 51], remote patient care [42], smart homes [20] etc. Research has shown 

that data from motion sensors, microphones, and ambient sensors can be used effectively 

to classify various day-to-day activities of humans [4, 47, 56] using temporal convolutional 

neural network and recurrent neural network architectures. Several existing works [27, 28, 

60] show that the combinations of convolutional and Long-Short Term Memory (LSTM) 

layers achieve better performance in complex activity recognition tasks when compared to 

the traditional statistical-based methods [14, 24, 39, 62].

2.2 Complex Human Activity Recognition

These methods mainly fall under two broad categories. Given the data from different 

sensors, i) They predict only the complex activities or ii) They predict simple activities 

and then hierarchically infer complex activities.

2.2.1 Complex Activity Recognition—Cho et al. [13] showed the use of 

convolutional neural networks to fuse different modalities and to detect complex activities. 

Qin et al. [46] used a residual neural network architecture to extract the features from 

sensory data. Similarly, Chen et al. [12] utilized Long-Short Term Memory (LSTM) models 

to capture the temporal information from the sensors to predict complex activities. Francisco 

et al. [41] used a hybrid model consisting of both convolutional layers and recurrent layers 

that can capture the Spatio-temporal relationships in the data to infer the activities.

2.2.2 Hierarchical Complex Activity Recognition—Peng et al. [44] proposed a 

hybrid activity recognition model, AROMA, utilizing a CNN along with LSTM models. 

The authors used CNN to extract task-specific features from sensor data and then utilized 

an LSTM network to learn the temporal context of activity data. Xia et al. [57] proposed 

complex activity recognition models by utilizing sensor data motifs, which discretize sensor 

signals into symbols that can be fed into sequencing models. However, these works on 

complex activity recognition require accurate labeling of sensory time series data, which 

is tedious. Also, they do not explain or interpret the recognition outcomes. Additionally, 

the motifs-based models are not designed with interpretability in mind, as they represent 

low-level pre-processing features of sensor signals independent of the target domain.

2.3 Explainable Deep Learning

Since neural networks are black boxes, many different approaches have been developed in 

recent years to explain the working of the models. These methods broadly fall under two 

categories: i) Post-hoc methods ii) Inherently interpretable methods.
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2.3.1 Post-hoc Explanations—These methods generate explanations in the form of 

simple linear models, shallow decision trees, or even visualizations that assist stakeholders 

in comprehending how the model works. They extract correlations between feature values 

and predictions and approximate the behavior of a black box model. LIME [48] provides 

explanations by approximating the local decision boundary by a simple, sparse linear model 

to simulate the prediction. SHAP [36] uses a game-theoretic approach to identify the 

importance of different features for a prediction to provide necessary explanations. There 

are several works [40, 52-54, 63] that provide explanations in the form of saliency maps over 

the input sample, highlighting the important input regions. The saliency map is obtained 

using the gradient information of output with respect to the input features. GradCAM 

[52] is a method designed particularly for convolutional neural networks. It produces a 

coarse localization map by utilizing the activation maps of different convolutional filters and 

highlighting the image’s important regions. Explanation by prototypes [29, 30, 34] methods 

project explanations across the underlying training data. They provide the nearest matching 

data samples from the training dataset as representative examples to explain the model’s 

prediction, and they mostly use different distance metrics (i.e., Cosine, Euclidean, and 

Manhattan) to get the similarity scores. Another interesting post-hoc explanation method is 

the Counterfactual explanation [55]. Counterfactual explanation describes a minimal change 

to the input that would result in the opposite prediction. While there have been multiple 

ways to generate counterfactual explanations proposed in the literature, they are mainly 

designed for images [9], text [59], and tabular data [43] as they are easy to modify and are 

human-understandable. However, for time series data like inertial sensors, just perturbing 

the input would not be helpful as the data is non-readable and hence the counterfactual 

would be non-interpretable. Ates et al. [6] and Carvalho et al. [8] did propose methods 

for generating counterfactuals for time series but did not do a human study to evaluate 

the comprehensibility of the explanations. In general, The explanations from the post-hoc 

methods are incomplete and require human supervision to generate the final explanations 

with proper domain expertise. Also, research has shown that most post-hoc explanations are 

not faithful to the model or the predictions.

2.3.2 Inherently Interpretable Models—Traditional machine learning models like 

Decision trees and Linear models fall under this category. In recent years, researchers 

have been aiming to design interpretable neural networks by imposing interpretability 

restrictions during the network training process. For example, Zhang et al. [64] proposed 

an interpretable CNN with a novel loss term that encourages each high-layer convolutional 

filter to represent a specific part of the object. Another common approach is integrating 

attention into neural networks [21, 65]. These models aim to expose the parts of an input the 

model focuses on for the final decision-making tasks. Concept bottleneck models [18, 31, 

61] (CBM) are recently being used for image classification, retinal disease prediction, and 

visual question-answering tasks. These are end-to-end models that first predict the concepts 

in the latent spaces, then use only those predicted concepts to make a final prediction. 

The main limitation of the existing CBM is that it only provides the presence or absence 

of a concept without any proper sequencing of these concepts, which is vital for activity 

recognition in critical domains (e.g., hospital patient caring).
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2.4 Explanations for Activity Recognition

Unlike images or text, the data for HAR is a multivariate time series obtained from multiple 

sensors, including inertial motion sensors that are not human-readable. So, the methods to 

explain Activity recognition broadly fall under two categories: 1) Methods that explain the 

activity recognition on the raw input space and 2) Methods that explain activity recognition 

in a human-understandable concept space. Most of the existing works for explainable 

HAR fall in the first category. Das et al. [16] compared the different post-hoc explanation 

methods for simple activity recognition where certain regions in the input sensory data 

are highlighted. Schlegel et al. [50] showed how to apply saliency-based post-hoc methods 

to time series data, but the methods were not evaluated on their understandability to end-

users. However, more recent works are exploring methods that fall in the second category. 

Arrotta et al. [5] proposed DeXAR, which converts sensory data into human-readable 

images and then applies post-hoc explanation methods. However, since they use post-hoc 

methods to explain the CNN classifier, the explanations obtained are heatmaps, which 

have to be processed in an application-specific way to generate human-understandable text 

explanations. Also, identifying the suitable threshold for selecting the important segments 

for each test input is challenging. Neuroplex [58] combines the neural network with 

reasoning layers for detecting complex events from simple activities. However, their method 

requires human knowledge to be provided during training and cannot handle data from 

multiple sensors, and is limited to a single sensor. Also, it assumes that we have accurate 

time information for all the simple activities, which is not practical in a real-world scenario.

Therefore, unlike prior works, our X-CHAR model is an end-to-end, inherently interpretable 

DNN model that captures the concept sequence for complex human activity recognition. 

It also provides counterfactual explanations in the human-understandable concept space, 

thereby making the explanations easy to comprehend. While training, our approach does not 

require accurate time information for simple activities or concepts, unlike the other methods. 

X-CHAR model learns the alignment of the concepts from the training data automatically.

3 BACKGROUND AND PROBLEM STATEMENT

In this section, we first define the concepts and their relationship to complex human 

activities. Then, we present the problem statement of our work.

3.1 Definitions

3.1.1 Simple Activity—A simple activity is defined as a unit-level activity that can be 

captured by the given sensors within a short time window and cannot be broken down 

further, given application semantics. For example, the body-worn accelerometer sensor can 

capture ‘standing,’ ‘sitting,’ or ‘washing hands’ activities, which can not be further broken 

down. The level of granularity depends on the sampling frequency of the sensor. For 

instance, activities like ‘picking up an item’ require a high sampling frequency. In contrast, 

a low sampling frequency can capture activities like ‘sitting.’ Also, simple activities such as 

‘standing,’ ‘sitting,’ ‘washing hands,’ and ‘oral care’ can occur sequentially or concurrently. 

The existing deep learning algorithms have shown remarkable performance in detecting 

simple activities.
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3.1.2 Concepts—In explainable AI literature, the definition of concepts with regard to 

images is; a group of pixels that represent a higher-level and human-understandable feature 

that is relevant to a particular application/task. For instance, in the bird species classification 

task, the wing and beak colors are considered the concepts, whereas the sky color or 

background is completely ignored for that application. In this paper, we define the concepts 

of a complex activity recognition task as follows. A concept is a section/portion of the 

input sequence that corresponds to a human-understandable simple activity and is relevant 

to the particular task. For example, in the nurse activity detection task, we consider blood 

collection and measuring vital signals as the concepts, whereas we completely ignore sitting 

or standing for that detection task. Also, a group of concepts has temporal dependencies: 

sequence/order of the concepts and the frequency of each concept in the sequence matter. 

Therefore, we can say that all concepts are simple activities, but not all simple activities 

are concepts. For instance, we care about the sequence of measuring vital signals, blood 

collections, and drips for safe drip procedure detection; however, we ignore any sitting or 

standing activity for the particular task.

3.1.3 Complex Activity—In this paper, a complex event is strictly defined as a pattern 

or sequence of ≥ 2 instances of concepts with temporal dependencies. Under this definition, 

a complex event must be composed of multiple simple events that may evolve over long 

periods of time in different orders and frequencies. For example, as shown in Figure 1, the 

"Hygienic use of Restroom" activity is considered a complex activity that consists of five 

concepts: "opening door", "using toilet", "flushing", "washing hands", and "closing door". 

If the person does not wash their hands after using the restroom, then the complex activity 

is ’Unhygienic use of Restroom’. This shows that the sequence of the concepts matters for 

a particular complex activity. Another example is a sanitary protocol violation event in a 

hospital scenario: a nurse could violate the sanitary protocol if they process one patient and 

then processes another patient without proper sanitation.

3.2 Problem Formulation

We consider the problem of predicting a complex activity label y ∈ Y , where Y  is the set 

of complex activity labels of size L, from a multivariate time-series data input x ∈ ℝS × T , 

where S is the number sensors and T is the time sample window. We observe training 

dataset, Φ = {(x(i), y(i), c(i))} i = 1
N

 , where each c(i) is a sequence of concepts such that 

c(i) = [ci, 1 ci, 2 … ci, ki] and ki is a scalar, variable number of concepts for each input, 

and where ki < < T  and ci, k ∈ C, where C is a set of unique concepts in the dataset of size M. 

Similar to prior bottleneck models, our goal is to learn a function f(g(x)), where g(x) maps 

an input x into a concept space. In our case, g :ℝS × T ℝM × T , and f :ℝM × T ℝ1 × L. 

Intuitively, at every sample window of size T , g(x) maps the sensor input to a matrix of 

concept scores of size M × T , which is then mapped by f to an output complex activity 

label. However, the output of g(x) only provides a matrix of concept scores, where as our 

goal is to output the complex activity label and the sequence of concepts that compose the 

complex activity decision. Thus, we also use an explanation generator function e(g(x, Φ)) that 

decodes the output of g(x) to the concept sequence and obtains a counterfactual instance, 

JEYAKUMAR et al. Page 8

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which is then presented as the explanation for the complex activity decision. Figure 2 shows 

the overview of our proposed solution, X-CHAR , for this problem statement.

4 SYSTEM DESIGN

In this section, we provide an overview of X-CHAR (Section 4.1) architecture. We then 

present the detailed descriptions of the different building blocks of the proposed system with 

appropriate figures, descriptions, and algorithms (as in Sections 4.1.1, 4.1.2, 4.1.3).

4.1 X-CHAR Model Overview

This work introduces X-CHAR , an interpretable DNN architecture for the concept-based 

complex activity classification that provides both the complex activity classification 

label and its corresponding explanation in the form of a concept sequence for a given 

input sensory data. Figure 3 depicts the overall model design that shows how both the 

classification label and the corresponding explanation are generated, X-CHAR . There are 

three integral parts: Sensor fusion module, temporal bottleneck module, and classification 

module in X-CHAR . First, the Sensor fusion module extracts features from different 

sensors and maps them to shared latent space. Second, the temporal bottleneck module 

extracts the temporal relationship between the obtained features and predicts the concept 

associated with each timestep. Third, the classification module predicts the final complex 

activity label from the concepts. Each of these modules is described below in detail.

4.1.1 Sensor Fusion Module—This module consists of two steps: the first step 

extracts intra-sensor features, and the second step extracts the inter-sensor features. In 

the first step, each sensor stream is considered separately and passed through a series of 

one-dimensional convolutional layers (1-D Conv). The 1-D convolutional layer is used to 

extract local features from 1D patches in every sensor sequence to identify local patterns 

within the convolution window. Since the same transformation is applied on every patch 

identified by the window, a pattern learned at one position can also be recognized at another 

position, making 1D convolution layers translation invariant. The input to the first stage is 

input Xi which has the shape of [S × t]. Here S is the number of sensory channels in the 

input stream. The output of the first stage is a collection of feature maps corresponding 

to each filter for every sequence, which is of the shape [S × t × f1]. Here f1 is the number 

of 1-D kernels. Next, the sensor fusion model concatenates the feature maps to the shape 

of [t × (S × f1)] and feeds it to the second set of convolutional layers. This layer captures 

the inter-sensory features between the different sensor streams. Therefore, the output of the 

second convolutional layer is of the shape [t × f2]. Here f2 is the number of convolution 

kernels in the second convolutional layer.

4.1.2 Temporal Concept Bottleneck Module—Let us recall the key challenges 

discussed in Section 1.1; the model has to capture the temporal relationship of the concepts, 

the length of the concepts is not fixed, and the exact accurate alignment (i.e., correspondence 

of the elements) of the input sequence and the concepts is also unknown. To solve 

these challenges, we design the Temporal Concept Bottleneck module and train it with 
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Connectionist Temporal Classification [22] (CTC) loss to facilitate the proper alignment 

between the input sequence and output concepts.

This module is designed to identify the sequence of concepts Ci from the given input Xi. This 

module has three main components: a set of bi-directional LSTM layers, a time-distributed 

dense layer, and a softmax activation layer. First, this module uses a set of bi-directional 

LSTM layers to capture the temporal information from the preceding sensor fusion module. 

Next, the time-distributed dense layer maps the temporal features from the proceeding 

module to different concepts to aid the softmax activation layer. The total number of neurons 

M in the dense layer equals the number of unique concepts m present in the dataset. Finally, 

the softmax layer outputs the probability distribution over the possible concepts at each 

timestep t.

Concept Loss:  We use Connectionist Temporal Classification [22] or CTC Loss to train 

the temporal bottleneck module. CTC loss is designed for tasks where we need to predict 

the alignment (correspondence of the elements) between the input sequence and target 

sequence, but that alignment information is not present while training the model. In a 

complex activity recognition task, since we do not have an accurate alignment of input 

sample X and the concept sequence C in the training dataset, we use CTC loss to model 

the concepts. It calculates a loss between a continuous (unsegmented) time series and a 

target concept sequence by summing over the probability of possible alignments of input 

to concepts, producing a differentiable loss value with respect to each input node. Thus, 

the CTC alignments provide a natural way to go from probabilities at each time step to the 

probability of an output sequence. We get the probability for any Ci given an Xi as shown in 

Equation (1).

p(Ci ∣ Xi) = ∑
a ∈ AXi, Ci

∏
t = 1

T
pt(at ∣ Xi)

(1)

where (Xi, Ci) is the ’i’th pair of input and concept sequence, AXi, Ci is set of the alignment 

between (Xi, Ci) and pt(at ∣ Xi) is the probability of alignment of at given the input instance 

Xi. We convert the probability of the concept sequence into a loss function by taking the 

negative logarithm as shown in Equation (2)

Also, as discussed in the challenges in Section 1.1, it does not make sense to force every 

input time-step to align to some concept as there might be some random motion between 

activities. CTC Loss addresses this issue by introducing a new token to the set of allowed 

concepts. This new token is called the blank ’ϵ’ token. The ϵ token does not correspond to 

anything and is simply removed from the inference phase as discussed in Section 4.3.

ℒC = ∑
Ci, Xi

− log p(Ci ∣ Xi)
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(2)

4.1.3 Classifier Module—This module predicts the final complex activity given the 

concepts from the temporal bottleneck module. This module uses a Temporal Convolutional 

(TCN) layer followed by a dense layer with softmax activation. The TCN performs dilated 

causal convolutions and captures the relationship between the concepts from the temporal 

bottleneck module, and the dense layer predicts the complex activity. The dense layer has ’

L’ neurons corresponding to the number of output classes. And since this is a classification 

problem, we use softmax (σ) as the activation of the final dense layer, which is given in 

Equation (4). The softmax function imparts probabilities to the logits ’s’ when we have 

multiple classes, and we get the probability distribution of output classes. We consider the 

most probable occurrence with respect to other outputs as the predicted class.

Classification Loss:  Since it is a multi-class classification problem, we use categorical 

cross-entropy as our complex activity loss function. The loss is calculated as per Equation 

(3)

ℒY = − ∑
j = 1

n
yj log σ(sj)

(3)

where, σ(si) = esi

∑j = 1
n esj

(4)

4.2 Training Phase

The entire X-CHAR classification model is trained in an end-to-end manner. Therefore, the 

overall loss of the model (L) is a weighted sum of concepts loss (Lc) and classification loss 

(Ly) as written in Equations (5) as

ℒ = βℒY + (1 − β)ℒC

(5)

where β is a hyper-parameter. Therefore, the model is trained by jointly reducing both the 

loss functions. In our experiments, we found that β = 0.5 that gives equal importance to both 

concept and classification loss achieved the best performance.

4.3 Generating Explanations

4.3.1 Complex Activity Classification—After we have trained the X-CHAR model, 

we use it to predict the complex activity and find the likely concept sequence to explain 

a given input sensory data. The predicted activity is obtained by taking the argmax of the 

probabilities from the final dense layer of the classifier module.
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4.3.2 Generating Concept Sequence: The corresponding concepts sequence is 

obtained by decoding the output of the temporal bottleneck module with the beam search 

algorithm [35]. The concept decoder steps are shown in Figure 4. The temporal bottleneck 

module gives the concept matrix, which is a probability distribution of concepts at every 

timestep, t. Next, we find the probability of various concept alignments from the per-

time-step probabilities. But this can be very expensive to compute as there will be a 

massive number of alignments. Hence, we use the beam search algorithm to calculate 

the sequence probabilities, significantly reducing the time complexity. Then, the decoder 

removes duplicate concepts (occurring one after another) and then removes all blanks 

from the path resulting in concept sequences for each alignment. Since it is possible for 

multiple alignments to have the same resulting concept sequence, the decoder generates the 

probability of different concept sequences by marginalizing over alignments. Finally, the 

concept sequence with the highest probability is obtained.

4.3.3 Generating Counterfactual Explanation: We generate counterfactual 

explanations using a method similar to the Nearest Instance Counterfactual Explanations 

method [7] but modified for temporal sequences. We propose using Damerau–Levenshtein 
distance [15] as the proximity metric to measure the distance between the concept 

sequences. The Damerau–Levenshtein distance between two concept sequences is the 

minimum number of operations (consisting of insertions, deletions or substitutions of a 

single concept, or transposition of two adjacent concepts) required to change one concept 

sequence into the other. This method provides explanations by using instances from 

the underlying training data in contrast to the methods that alter the inputs to generate 

counterfactuals.

The main reasons for adopting this method of counterfactuals are: (i) Plausibility: The input 

data can be modified if infinite ways, but not all modifications are plausible in real-life 

scenarios, especially with regard to activity sequences. Hence, making use of training 

instances ensures that the generated counterfactuals are plausible (ii) Proximity metric: 

Existing methods use Euclidean or Manhattan distance to measure proximity, whereas, for 

sequences, the distance is the number of operations required to change from one sequence to 

another. Hence, we use the proposed Damerau–Levenshtein distance .

Method:  The counterfactual explanations are generated by the following steps:

• Step 1: Initialization - Given Training dataset Φ, pass it through the X-CHAR ’s 

complex activity recognition model. Then obtain and store the concept sequence 

for all the samples in the training dataset, CΦ.

• Step 2: Given a test input xtest, obtain the concept sequence cxtest.

• Step 3: Find the nearest neighbor cex in CΦ which has the minimum Damerau–

Levenshtein distance from cxtest and is classified as a different class. cex is the 

generated counterfactual explanation.
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Step 1 has to be done only once as CΦ is constant and will be stored. So for the new test 

samples, we can skip step 1. Explanation from X-CHAR for an input instance is shown in 

Figure 8.

5 IMPLEMENTATIONS

This section introduces the three complex activity datasets to test our X-CHAR model. 

Then, we discuss the comparison of baseline models and baseline explanation methods. 

Finally, we also mention the metrics used in comparing X-CHAR with the baseline methods.

5.1 Datasets

In this paper, we used three different complex activity datasets as described in the following 

paragraphs:

5.1.1 Complex Nursing Activity Dataset—The complex nursing event dataset is 

based on a public dataset from Nursing Activity Recognition. Challenge [33]. The dataset 

contains nurse activity information from an accelerometer sensor, and it includes six 

different simple activities performed by eight individuals (i.e., nurses). The simple activities 

are: (i) Vital signs measurements, (ii) Blood collection, (iii) Blood glucose measurement, 

(iv) Indwelling drip retention and connection, (v) Oral care, and (vi) Diaper exchange and 

cleaning of the area. The duration of each data segment ranges from 30 to 60 seconds. These 

simple activities are considered as the concepts in our experiments. The sampling frequency 

of the accelerometer is 4Hz. The dataset is split into two parts: the first part contains data 

from six nurses, and the second part contains data from the remaining two nurses. We then 

generate five complex nursing activities data by randomly selecting segments corresponding 

to the different concepts and concatenating them together in a predefined order for each 

complex activity, as mentioned in Table 1. We generated a training dataset of 3000 complex 

activity samples (i.e., 600 for each complex activity) from the first part and a validation 

dataset of 1000 complex activity samples (i.e., 200 for each complex activity) from the 

second part. The evaluations reported in Section 6 are based on the comparison methods’ 

performance on the validation dataset.

5.1.2 Opportunity Dataset—This dataset was compiled from five separate subjects, 

with data taken at four different periods for each. Body motion sensors, object sensors, and 

environmental sensors are among the sensors in the dataset. We consider the inertial body-

worn sensors worn in five different positions on an individual: left lower arm, left upper 

arm, right lower arm, right upper arm, and back of the torso because we focus on activity 

detection. These inertial units record the accelerometer, gyroscope, and magnetometer data. 

All activities are divided into two categories: high-level activities (early morning routine, 

preparing a sandwich, making tea, and cleaning) and low-level activities (which include 17 

different micro-tasks such as opening and closing doors, shelves, and so on). We considered 

data from four users in training and the fifth user in testing. A brief description of the dataset 

is shown in Table 2

5.1.3 CRAA: Complex Restaurant Activities from Audio Dataset—This complex 

activity dataset is generated by using a subset of the audio samples from ESC-50 [45] and 
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Kitchen-20 [38] audio datasets. The ESC-50 dataset is a labeled collection of environmental 

audio recordings that consists of 5-second-long recordings organized into 50 semantical 

classes. The kitchen20 dataset contains 5 to 10 seconds audio recordings from kitchen 

activities for 20 different classes. From these two datasets, we considered the audio clips 

from 11 different simple activities as the concepts in the paper. We then constructed an 

audio-based complex human activity recognition dataset by concatenating the concepts in 

different sequences to obtain the various complex events. In particular, we generated the 

following five complex activities performed by a person working in a restaurant: making 

a juice, making a puree/sauce, having a drink, and hygienic and in-hygienic uses of the 

restroom. In total, we synthesized a training dataset of 1000 complex activity audio samples 

(i.e., 200 for each complex activity) and a test dataset of 250 complex activity audio samples 

(i.e., 50 for each complex activity). Table 3 gives a description of the complex activities and 

their corresponding concept sequences in the CRAA dataset.

5.2 X-CHAR Model Architecture

Table 4 shows the model architecture of X-CHAR and the hyper-parameters, including the 

number of filters, neurons, and LSTM units in each layer. The best hyper-parameters were 

chosen through grid-search. We used the Adam optimizer to train the model.

5.3 Baseline Complex Activity Classification Models

We compared the performance of X-CHAR to four existing state-of-the-art complex activity 

prediction DNN models as follows:

• ConvLSTM + TCN. This is the non-end-to-end, single task version of the 

X-CHAR model. The ConvLSTM model is trained to predict the concepts. The 

TCN model is trained to predict the complex activity from the concepts. These 

models are trained independently and then operate in sequence during inference.

• DEBONAIR [11]. This is an end-to-end model for multimodal complex activity 

recognition. It uses convolutional layers to extract features from different 

modalities and LSTM layers to predict complex activities. This model only 

predicts the final complex activities and does not predict the concepts. Hence, it 

does not have a notion of interpretability.

• AROMA [44]. This is a multitask learning model that predicts both simple and 

complex activities. The input data is split into predefined smaller segments of 

equal size. We used the window size of 20 seconds as described in their work. 

Then each segment is predicted as a simple activity, and then a classifier predicts 

the complex activities from simple activities. This model requires the data to be 

labeled for every segment and does not consider that there will be segments that 

cannot be labeled or simple activities can be of different durations. Therefore, it 

does not predict simple activities correctly.

• Concept-Bottleneck Models (CBM) [31]. The CBM is a CNN-based model 

that predicts an intermediate set of human-specified concepts first, and then uses 

these concepts to predict the final label. This model is mainly designed for 

image classification tasks and only indicates the presence or absence of concepts 
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and does not capture the temporal relations between them. For complex activity 

recognition, the sequence of simple activities matters.

5.4 Baseline Explanation Methods

The explanation methods for sensor-based Complex Human Activity Recognition can 

be categorized into two types: (1) Explanations projected on raw input space and (2) 

Explanations based on concepts.

5.4.1 Explanations over Raw Input space—In this category, we considered the 

existing Gradient-weighted Class Activation Mapping (GradCAM) method and explanation 

by examples as our baselines as they have shown to be successfully applied to time-series 

classification applications with good understandability.

• GradCAM [52]. GradCAM is a saliency-based post-hoc explanation method. It 

uses the gradients of the predicted class propagating into the final convolutional 

layer to produce a coarse localization map in the form of a heatmap. This 

heatmap highlights the important regions in the input for predicting that class. 

But since sensory data is inherently non-readable for humans, just highlighting 

the important segments is not sufficient as an explanation.

• ExMatchina [29]. ExMatchina is an Explanation by Examples method that 

selects a particular set of ’k’ examples from the training dataset to explain 

the behavior of machine learning models. The ’k’ nearest examples were 

chosen from the training dataset by comparing feature activations at the last 

convolutional layer. These examples have the highest cosine similarity of their 

activation maps with the given text input. This method depends on the human 

reasoning ability to identify the commonalities between the examples and the 

text input. But since the sensory data is non-readable in nature, it is difficult to 

determine the similarities.

5.4.2 Explanations over Concept space—In this second category, we considered 

explanations from CBM, AROMA, and DeXAR as baselines.

• Concept-Bottleneck model [31]. As discussed in 5.3, CBM is an interpretable 

DNN model that provides explanations in the form of high-level human-

understandable concepts that accompany a prediction. They only indicate the 

presence and absence of concepts and do not provide the sequence or frequency 

information of the concepts.

• DeXAR [5]. DeXAR is an explanation method that transforms a sequence of 

simple activities into semantic images and obtains a heatmap of the simple 

activities to predict a complex activity. Then, it generates a natural language 

explanation based on the information from the heatmap.

• AROMA [44]. As discussed in 5.3, Aroma predicts a simple activity for every 

time step, which in turn predicts the complex activity. We provide the simple 

activities predicted by AROMA to explain the complex activity.
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5.5 Metrics

5.5.1 Normalized Confusion Matrix: A confusion matrix is a tabular way of 

visualizing the performance of the prediction model. Each entry in a confusion matrix 

denotes the number of predictions made by the model where it classified the classes 

correctly or incorrectly. The “normalized” term means that each of these groupings is 

represented as having 1.00 samples. Thus, the sum of each row in a balanced and normalized 

confusion matrix is 1.00 because each row sum represents 100% of the elements in a class.

5.5.2 Task Mean F1-score: In our applications, the errors caused by false positives and 

false negatives are equally undesirable. Also, the distribution of classes in our datasets is not 

uniform. Therefore, we use the mean F1-score as our metric to compare the performance of 

the models. F1-score is the harmonic mean of precision and recall. The F1-scores for each 

class can be calculated using Equation 6.

F1 − score = 2 ∗ precision ∗ recall
precision + recall

(6)

To obtain the mean F1-score, we take the unweighted mean of the Fl-scores of all the 

classes.

5.5.3 Concept Levenshtein distance (Edit Distance): The Levenshtein distance or 

Edit distance is a metric for measuring the difference between two sequences. It counts 

the minimum number of operations (i.e., insertions, deletions, or substitutions) required to 

transform one sequence into the other. Since we predict the sequence of concepts, we use 

this metric to evaluate the concept prediction performance.

5.5.4 Concept Accuracy: Since not all the baseline models predict the sequence of 

concepts, we also use concept accuracy to compare the performance. Accuracy is the 

number of correct predictions made as a ratio of all predictions made.

6 RESULTS

6.1 X-CHAR Model Performance

We first evaluate the performance of X-CHAR in complex activity detection on the three 

datasets. X-CHAR achieved a mean F-1 score of 0.97, 0.836, and 0.988 on Nurse Activities, 

Opportunity, and CRAA datasets, respectively. We observe from the normalized confusion 

matrix on Nurse and CRAA datasets shown in Figure 5 and Figure 7 that X-CHAR achieved 

a near-perfect prediction performance across all the classes. The normalized confusion 

matrix for the Opportunity dataset shown in Figure 6 conveys that X-CHAR makes some 

errors in recognizing the ’making coffee’ activity while the rest of the complex activities are 

predicted with good accuracy.
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6.2 Comparison of Complex Activity and Concepts Recognition Performance with 
Baselines

We compared the performance of X-CHAR with other complex activity recognition models 

discussed in Section 5.4 and X-CHAR without the temporal bottleneck module on the three 

datasets. Table 5 shows the task (CHAR) F1-score, concept accuracy, and concept edit 

distance of all six comparison methods on the three different datasets. We observe that, 

despite having the temporal bottleneck constraint, X-CHAR achieves similar or better task 

performance to the black-box models that don’t have any bottlenecks (DEBONAIR and 

X-CHAR without bottleneck) on all three datasets.

First, we can see that X-CHAR achieves the highest F1-score among all comparison 

methods for Nurse Activities and CRAA datasets, which are 0.9698 and 0.9886, 

respectively. The F1-score of X-CHAR is almost equal to the F1-score of models without 

bottleneck for the opportunity dataset. Overall it shows that the F1-score of X-CHAR is 

better or similar to all other comparison methods.

Second, X-CHAR achieves the best concept prediction accuracy among all the baseline 

models on all three datasets (89%, 67%, and 97%, respectively). DEBONAIR and X-CHAR 

without bottleneck models do not predict concepts; hence, they have no concept accuracy 

reported. CBM cannot capture the multiple occurrences of a concept, and therefore its 

accuracy is lower than X-CHAR . On the other hand, AROMA, as discussed in 5.4, 

predicts a concept for every small segment independently, which results in it predicting 

lots of incorrect concepts for a given input. Hence its concept prediction accuracy is poor 

compared to X-CHAR and CBM. The non-end-to-end model (ConvLSTM +TCN) has a 

decent concept prediction accuracy but a poor complex activity prediction performance. This 

is a result of training the concept and complex activity models independently.

Third, among the baselines, X-CHAR , AROMA and ConvLSTM+TCN predict a sequence 

of concepts. We observe that X-CHAR has a much lower mean edit distance when compared 

to the other two. AROMA’s poor concept performance is because it predicts a concept for 

each segment independently, which results in incorrect concept predictions, especially in 

segments that can have multiple concepts (i.e., transitions from one concept to another) or 

when there is a random motion while performing the complex activity. Therefore concept 

sequences provided by X-CHAR are more precise and hence offer a better explanation of the 

complex activity.

In summary, we do not observe a trade-off between task prediction performance and high 

concept accuracy (i.e.) X-CHAR does not compromise the classification accuracy (with 

respect to accuracy and edit distance) while providing explainability for all three datasets.

6.3 Qualitative Analysis of Explanations

Here, we discuss the qualitative analysis of the explanations of X-CHAR and the other 

three baseline explanation methods one by one for an instance of the nurse activity dataset. 

GradCAM and Exmatchina are post-hoc methods, and they will explain the decisions 

made by the pretrained black-box DNN model without the temporal bottleneck module for 
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complex activity recognition. CBM and X-CHAR are inherently interpretable DNN models 

that provide both complex activity classification and corresponding explanations.

6.3.1 Explanation from X-CHAR—Figure 8 shows the explanation from X-CHAR for 

a test sample from the nurse activity dataset. Here x-axis and y-axis represent the time (in 

seconds) and acceleration (in m/s−2), respectively. Three lines show x,y, and z-axis values 

from the accelerator sensor from the smartwatch. As the figure shows, X-CHAR first detects 

three concepts (i.e., oral care, cleaning genital area, and measuring blood glucose) from the 

raw input signals, as shown using the dashed rectangles. Then, X-CHAR classifies the given 

input instance as unsanitary care due to the fact that the nurse performs the measuring blood 
glucose activity before the cleaning genital area activity. In addition to the high performance 

in complex activity recognition, the temporal bottleneck module improves the explainability 

of X-CHAR by providing the concepts and the sequence in which they occur for the given 

test sample. From the figure, we can also say that X-CHAR provides the time duration 

information for the predicted concepts.

6.3.2 Explanation from GradCAM—Figure 9 shows the explanation from GradCAM 

to test the same sample from the nurse activity dataset (as used in Figure 8). As in the 

previous figure, the x-axis and y-axis represent the time (in seconds) and acceleration (in 

m/s−2), respectively. Here, the left figure shows the original input, and the right figure shows 

a heatmap or saliency map highlighting the important region on the input sample for the 

complex activity classification. More specifically, the right figure shows the significance 

of different input segments to classify the given input as unsanitary care activity by the 

black-box model (We considered X-CHAR without the temporal bottleneck as the black-box 

model). However, unlike concept-based explanations, the explanations offered by GradCAM 

do not provide human-understandable reasoning behind the classified outcome to a non-

technical end-user as it only highlights certain regions in the input.

6.3.3 Explanation from ExMatchina—Figure 10 shows the explanation from 

ExMatchina for the same sample from the nurse activity dataset. As before, the x-axis and 

y-axis represent the time (in seconds) and acceleration (in m/s−2), respectively. Exmatchina 

is an explanation-by-example-based method and shows ’k’ most similar samples from the 

training dataset that were also classified as the same class as the test input. In Figure 10, 

the input test sample to the model is shown on the left side of the plot and is classified as 

unsanitary care by the black-box model (We considered X-CHAR without the temporal 

bottleneck as the black-box model). The explanation, which is the three most similar 

examples, is shown on the right of the dashed line. From the figure, we observe that the 

explanations from ExMatchina expect the users to recognize the common patterns between 

the input and the explanation samples. Though this approach might be helpful for tasks 

on simple datasets, as shown in the study [29] for complex activity recognition tasks that 

involve non-readable motion sensor data from multiple sensory channels, this method of 

explaining by expecting users to pattern match seems counter-intuitive.

6.3.4 Explanation from CBM—Figure 11 shows the explanation from CBM model to 

test the performance of CBM on the same sample from the nurse activity dataset (as used 
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in previous figures). Similarly, the x-axis and y-axis represent the time (in seconds) and 

acceleration (in m/s−2), respectively. As we see in the figure, CBM offers an explanation 

in the form of concepts present in that complex activity time duration. Still, it does not 

provide any information on the sequence or the time in which those concepts occurred. 

But for complex activity recognition tasks, different complex activities can have the same 

concepts but a different sequence or the order in which the concepts occur. Therefore, the 

explanations offered by CBM are not complete as it doesn’t have sufficient information (like 

the order or time of the concepts) that can fully explain the complex activity.

6.3.5 Explanation from AROMA—Figure 12 shows the explanation from the AROMA 

model on the same sample from the nurse activity dataset (as used in previous figures). 

AROMA predicts a concept for every 10-second segment and a complex activity for the 

given input. In our study, we consider the sequence of concepts provided by AROMA as the 

explanation for the complex activity. The concepts are represented by different background 

colors, as shown in the figure. The x-axis and y-axis represent the time (in seconds) and 

acceleration (in m/s−2), respectively. From the figure, we observe that the explanation 

offered by AROMA is not robust. It mainly suffers because AROMA predicts incorrect 

concepts in segments where there is a transition of concepts or when there is no activity for 

most of the segment. This results in a noisy explanation and is not easily understandable to 

the end user.

6.3.6 Explanation from DeXAR—Figure 13 shows the explanation provided by the 

DeXAR method on two different samples from the nurse activity dataset. This method 

converts the sequence of concepts into semantic images, and a CNN classifier is trained on 

these images to predict the complex activity. Then using post-hoc methods, DeXAR obtains 

the heatmap of the important concepts responsible for the complex activity classification, as 

shown in the figure. It also provides a text-based explanation mentioning concepts with an 

importance score greater than a specific threshold t. However, there are some key limitations 

that we observed in DeXAR. The threshold ’t’ is chosen empirically; hence, there are cases 

where the important concepts are missed as they fall below the threshold. In Figure 13, 

for both samples (a) and (b), we used the same threshold and normalized the importance 

scores. In (a), we find that the important regions are wider and overlap in the time-axis. 

This indicates that the order and absence of concepts also matter for the complex activity 

classification but is not captured in the text-based explanation. In (b), we find that one of the 

key concepts is not considered important as it falls below the threshold. These limitations 

make the explanations from DeXAR challenging to comprehend for the end user.

6.4 Comprehensibility of X-CHAR Explanations

6.4.1 Study Methodology—We conducted three separate Amazon Turk studies, one 

for each dataset. The goal of the study was to determine which explanation method 

was the most understandable and preferred by an average end-user for complex activity 

recognition tasks. Each study was divided into two parts. In the first part, we compared 

X-CHAR with the methods that provide explanations in the raw input space. In the 

second part, we compared X-CHAR with explanation methods that operate in the concepts 

space, as discussed in the previous section. The study survey questions were formed in 
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the following manner: First, the participants were provided information on what complex 

activity recognition task is being done by the machine learning system. Then, a random test 

input was selected for each survey question, and the model-predicted class was presented 

along with explanations from two randomly selected explanation methods. Participants were 

asked to select which of the two provided explanations was easy to understand and offered 

a better explanation for the corresponding model’s prediction. Each participant answered a 

survey containing 12 questions. Since we had 75 participants in total, we had 900 validated 

responses comparing the explanations for each dataset.

Participant Information:  There were 75 participants in our Mechanical Turk studies. 

Among them, 40 participants did not share the optional demographic information. From 

those who provided the demographic information, there were 22 participants in the age 

group 20-30, 9 participants in the age group 30-40, and 4 participants in the age group > 

40. We also requested their education levels: no college degree, undergraduate, or graduate 

degree. 28 participants had an undergraduate degree, 3 had a graduate degree, and four were 

without a college degree.

6.4.2 Study Results—Figure 14 and Figure 15 present the aggregated results of the 

Mechanical Turk study when comparing X-CHAR with (a) explanation methods operating 

on the raw input space and (b) explanation methods operating on the concept space. The 

results show that explanations provided by the X-CHAR were largely considered as the 

preferred explanation on all three datasets in both scenarios. In scenario (a), when X-CHAR 
explanation was an available option, the participants selected it 76.9%, 88.4% and 71.8% 

of the time in Nurse complex activity, Opportunity, and CRAA datasets, respectively. 

The second preferred method is the explanation by examples, and GradCAM is the least 

preferred method for complex activity recognition tasks. And in scenario (b), when X-
CHAR explanation was an available option, the participants selected it 84.8%, 75.6% and 

82.5% of the time in Nurse complex activity, Opportunity, and CRAA datasets, respectively. 

DeXAR was the second preferred method, while explanations from the Concept bottleneck 

model and AROMA were preferred significantly less. The presented confidence intervals are 

calculated using the bootstrap method as described in [19] for 95% confidence. Therefore, 

the results indicate that explanations in the form of concepts are preferred over explanations 

projected on input space. Also, the explanation from X-CHAR is the most preferred method 

among the other concept-level explanation methods to average end-users who may not 

possess knowledge of machine learning, i.e., the "non-expert" layperson.

6.5 Faithfulness of X-CHAR Explanations

As proposed in [17, 26], for an explanation to be faithful, it should satisfy the following 

property: 1. Two test inputs x, x, that get the same explanation should also have the 

same prediction, which implies that two test inputs x, x, with different predictions should 

have different explanations and 2. On similar test inputs where the model made identical 

predictions, its explanations must be similar.

To verify the first property, we analyzed the explanations and predictions produced by 

X-CHAR on our test dataset and found that no two test inputs had the same explanations 
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with different predictions. In addition, we created a perturbed dataset where each sample in 

the test dataset was split into smaller segments and shuffled. Then, we passed this perturbed 

dataset through X-CHAR and noticed that the predictions and explanations of the perturbed 

dataset were different when compared to the predictions and explanations of the original test 

dataset.

To verify the second property, we added a small amount of gaussian noise (5%) to the test 

samples and compared their predictions and explanations with the unperturbed test samples. 

We observed that the explanations from X-CHAR remained the same for samples where 

the predictions remained the same after adding noise. However, for certain samples, the 

predicted complex activity did change and their corresponding explanations also changed 

compared to the explanations from the unperturbed test input.

7 DISCUSSION

In this section, we first discuss our key observations from our experiments regarding 

complex human activity recognition tasks. Then, we discuss the current limitations of 

X-CHAR and provide some interesting future research directions to expand on our work.

7.1 Key Observations

• The Myth of Accuracy vs. Interpretability Trade-off. A common assumption 

in the literature is that the performance of the machine learning models drops 

when the models become explainable [1]. This is because they usually consider 

traditional methods, such as decision trees or linear models while making those 

comparisons. However, it is not necessarily true. Our work shows that the model 

developers can design complex deep learning architectures but constrain the 

latent space to capture human-understandable concepts relevant to the particular 

task. This way, we can imbue interpretability directly into the models without 

losing accuracy.

• Human Preferred Explanations for Sensory Data. It is already well-known 

that Sensory data like motion sensors, unlike images or text, is inherently 

difficult to understand for humans. Also, the data becomes more complex as 

sensors and sensory channels increase. Only users who are domain experts in 

the field of that sensor modality can comprehend the values, and it is difficult 

for a layperson. So the explanation methods that highlight specific portions of 

the input space expect the users to have the domain knowledge to understand 

the sensor readings. They tell where the model is looking but leave out all 

information about how relevant information is being used. Therefore, they are 

not preferred when explaining to a non-technical end-user. Our results have 

confirmed the same and have shown that humans prefer explanations in the form 

of concepts, especially when the input data is not intuitive. We also observed that 

more study participants preferred concept-based explanations over explanations 

on input space when the number of sensory channels increased.

• The Easiness of the Sensory Data Annotation Process. One of the main 

drawbacks in collecting data for complex activities is that it is difficult to 
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accurately label the start and end times of the simple activities (concepts) that 

occur while performing the complex activity. Since X-CHAR learns the timing 

information of the concepts automatically using CTC Loss, we only have to label 

the sequence of concepts that occurred while performing the complex activity. 

Therefore, it helps us to discard the laborious efforts of labeling each time step 

manually.

7.2 Limitations

Despite our best efforts, there are a few limitations of our current work as follows:

• When the number of concepts is large, there might be a large number of 

permutations and combinations of these concepts corresponding to the complex 

activities. Though, in theory, it is possible to identify all the sequences, in 

practice, it is difficult to collect data for all the possible permutations.

• In our work, our counterfactual explanations depend on the valid concept 

sequences from the training dataset. Therefore, we need to store the training 

data’s concept sequences to generate counterfactuals. This might occupy 

significant memory for large datasets.

• While X-CHAR provides explanations in the form of concept sequences and 

counterfactual instances, it does not provide us with any importance scores 

corresponding to the concepts.

• X-CHAR mainly applies to interpreting the CHAR at the concept level for a 

given test input. It does not try to explain the parameters of the DNN-based 

“black-box" models and hence does not offer information on the internal 

reasoning of the model.

7.3 Future Scope

Based on the above discussions, we list the following future research directions:

• Concept-based Attention Layer. Though X-CHAR accurately predicts the 

concepts, it does not particularly highlight the part of the sequence that is 

important. Therefore, a possible future direction to explore would be to replace 

the classifier module after the temporal bottleneck module with a concept 

attention-based layer. This might help the model learn rules from the concepts, 

resulting in better explanations.

• Neurosymbolic Architecture. It is shown that neuro-symbolic programming 

can be used to identify the valid sequences of concepts (i.e., behaviors) from 

different environments [10]. Usually, symbolic methods are less complex to 

aggregate the concepts to realize specific learning tasks. Therefore, a possibility 

is to replace the final classifier module with a symbolic architecture to search 

for the desired sequence of concepts when needed. This might also provide some 

global understanding of the internal workings of the model.

• Robustness of CHAR Models. Based on the variable accuracies of our method 

in different datasets, we assume that there exists a domain shift due to the lack of 
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adequate datasets to cover all possible edge cases. A future research opportunity 

would be to generate a synthetic activity recognition dataset for all possible 

scenarios and use it to train a robust CHAR model.

8 CONCLUSION

In this paper, we presented X-CHAR , an end-to-end, interpretable deep learning model for 

complex activity recognition. For any given test input, X-CHAR provides the sequence 

of simple activities relevant to the task called concepts and a counterfactual concept 

sequence as human-understandable explanations. X-CHAR consists of three modules: 

sensor fusion, temporal bottleneck, temporal classifier, and an explanation generator. The 

temporal bottleneck layer captures the concepts for complex CHAR classification that 

helps generate explanations in the form of a sequence of concepts alongside counterfactual 

explanations that are faithful to the model’s decision-making process. As the name suggests, 

the explanation generator decodes the concept sequence and identifies the counterfactual 

explanations. We thoroughly evaluated our model on three complex activity datasets and 

showed that our model achieves state-of-the-art performance (i.e., F1-score and accuracy) 

in complex activity recognition while providing human-understandable explanations. We 

also surveyed 75 participants to study the understandability of the explanations offered 

by X-CHAR with respect to the existing methods for complex activity recognition and 

found that the participants preferred explanations from X-CHAR by a statistically significant 

margin on all three datasets.
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CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing 
systems and tools; • Computing methodologies → Supervised learning; Neural 
networks.
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Fig. 1. 
Examples of complex activities.
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Fig. 2. 
An overview of the proposed end-to-end X-CHAR model during the training and inference 

phases.
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Fig. 3. 
The overall X-CHAR model design showing the various layers in each module.
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Fig. 4. 
The concepts decoder: Converts the probability distribution of the concepts at every timestep 

to the most probable concept sequence for a given input.
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Fig. 5. 
Confusion Matrix of X-CHAR on Nurse Dataset.
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Fig. 6. 
Confusion Matrix of X-CHAR on Opportunity Dataset.
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Fig. 7. 
Confusion Matrix of X-CHAR on CRAA Dataset.
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Fig. 8. 
Explanation provided by X-CHAR for a test input from Complex Nurse Activities dataset
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Fig. 9. 
Explanation provided by GradCAM on a trained black-box model for a test input from 

Complex Nurse Activities dataset.
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Fig. 10. 
Explanation provided by ExMatchina on a trained black-box model for a test input from 

Complex Nurse Activities dataset.
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Fig. 11. 
Explanation provided by Concept Bottleneck Model for a test input from Complex Nurse 

Activities dataset.
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Fig. 12. 
Classification and Explanation provided by AROMA for a test input from Complex Nurse 

Activities dataset.
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Fig. 13. 
Explanation provided by DeXAR for two test inputs from Complex Nurse Activities dataset.
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Fig. 14. 
The preferred explainabilities of different models (i.e., GradCAM, ExMatchina, and X-

CHAR) operating in raw input space from the Turk study.
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Fig. 15. 
The preferred explainabilities of different models (i.e., AROMA, Concept Bottleneck, 

DeXAR, and X-CHAR) operating in concept space from the Turk study.
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Table 1.

The complex activities, the sequence of concepts corresponding to each complex activity and the list of all 

concepts present in the Nurse Activities Dataset.

Complex Nurse Activity Concept Sequence Concepts

Physiological 
Measurement

Vitals → Blood collection → Blood 
Glucose

check vitals, collect blood, check blood glucose, oral care, clean 
patient, drips

Blood collection → Vitals → Blood 
glucose

Patient cleaning

Vitals → Oral care → Clean

Oral care → Vitals → Clean

Oral care → Blood glucose → Clean

Blood glucose → Oral care → Clean

Unsanitary Operations

Clean → Blood glucose → Vitals

Clean → Oral care → Vitals

Vitals → Clean → Oral care

Oral care → Clean → Blood glucose

Safe IV/Drips Procedure

Vitals → Blood collection → Drips → 
Vitals

Vitals → Drips → Vitals

Vitals → Drips → Blood collection → 
Vitals

Unsafe IV/Drips Procedure

Vitals → Blood collection → Drips

Blood collection → Drips → Vitals

Drips → Blood collection → Vitals
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Table 2.

The complex activities and concepts for the Opportunity dataset.

Complex Activities Concepts

Making coffee, Early morning routine, 
Cleaning up, Making a sandwich

move item, reach item, release item, use item, open door, close door, open fridge, close fridge, 
open dishwasher, close dishwasher, open drawer, close drawer, switch on, switch off, drink, bite, 

clean
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Table 3.

The complex activities, the sequence of concepts corresponding to each complex activity and the list of all 

concepts present in the CRAA: Complex Restaurant Activities from Audio dataset.

Restaurant Activity Concept Sequence Concepts

Using Restroom 
(Hygienic)

Footsteps → Using toilet → Toilet 
flush → Wash Hands

footsteps, using toilet, flush toilet, wash hands, open shelf, chopping 
vegetables, peeling, using blender, take glass, pour water, drinking

Wash Hands → Using toilet → Toilet 
flush → Wash Hands

Using Restroom 
(Unhygienic)

Footsteps → Using toilet → Toilet 
flush

Footsteps → Wash Hands → Using 
toilet → Toilet flush

Wash Hands → Using toilet → Toilet 
flush → Footsteps

Making a fruit juice

Opening shelf → Chopping → Using 
blender

Peeling → Chopping → Using 
blender

Opening shelf → Peeling → Using 
blender

Making a puree/sauce

Peeling → Using blender → 
Chopping → Using blender

Chopping → Using blender → 
Peeling → Using blender

Open Shelf → Using blender → 
Chopping → Using blender

Having a drink Take glass → Pour water → Drink

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2024 March 25.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

JEYAKUMAR et al. Page 47

Table 4.

The X-CHAR architecture.

Module Layers

Sensor Fusion

No. of Sensors x 1-D Convolutional layers
Filters: 64, Kernel size: 16, Stride: 2, Activation: ReLu

1-D Convolutional layer
Filters: 128, Kernel size: 16, Stride: 2, Activation: ReLu

Temporal Bottleneck

Bi-Directional LSTM layer
LSTM units: 128

Time Distributed Dense Layer
Neurons: No. of concepts, Activation: Softmax

Classifier

Temporal Convolution Layer
Filters: 64, Kernel size:8, Stride:1, Activation: ReLu

Dense Layer
Neurons: No. of Classes, Activation: Softmax
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Table 5.

Performance comparison of X-HAR with other baseline models on the three datasets.

Dataset Model Task F1-score
Concept

Accuracy Edit Distance

Nurse Activities

DEBONAIR 0.9681 - -

ConvLSTM + TCN 0.9274 76.38 2.01

AROMA 0.9477 72.25 2.26

CBM 0.9244 87.40 -

X-CHAR 0.9698 89.35 0.15

X-CHAR (no-bottleneck) 0.9695 - -

Opportunity

DEBONAIR 0.8362 - -

ConvLSTM + TCN 0.7956 60.24 1.98

AROMA 0.8218 53.97 2.87

CBM 0.7726 65.52 -

X-CHAR 0.8357 67.36 1.54

X-CHAR (no-bottleneck) 0.8382 - -

CRAA

DEBONAIR 0.9880 - -

ConvLSTM + TCN 0.9272 90.08 1.20

AROMA 0.9576 86.40 1.94

CBM 0.9032 94.58 -

X-CHAR 0.9886 97.70 0.10

X-CHAR (no-bottleneck) 0.9886 - -
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