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ARTICLE

Specific hippocampal representations are linked to
generalized cortical representations in memory
Jai Y. Yu1, Daniel F. Liu1,2, Adrianna Loback3, Irene Grossrubatscher2 & Loren M. Frank1,4,5

Memories link information about specific experiences to more general knowledge that is

abstracted from and contextualizes those experiences. Hippocampal-cortical activity patterns

representing features of past experience are reinstated during awake memory reactivation

events, but whether representations of both specific and general features of experience are

simultaneously reinstated remains unknown. We examined hippocampal and prefrontal

cortical firing patterns during memory reactivation in rats performing a well-learned foraging

task with multiple spatial paths. We found that specific hippocampal place representations

are preferentially reactivated with the subset of prefrontal cortical task representations that

generalize across different paths. Our results suggest that hippocampal-cortical networks

maintain links between stored representations for specific and general features of experience,

which could support abstraction and task guidance in mammals.
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How does the brain represent the content of individual
experiences with respect to their more general sig-
nificance? Take, for example, memories of using staircases

in your apartment building, home, or workplace. You can most
likely recall unique memories of walking up a specific staircase
connecting two particular floors. These individual memories do
not exist in isolation but are connected to more general knowl-
edge, such as staircases are used for traveling between floors. It is
not known how activity patterns in the brain support the link
between specific and general features of experience, which is
necessary to correctly embed individual memories in broader
knowledge structures.

The hippocampus and prefrontal cortex (PFC) are thought to
play complementary roles in maintaining these types of

knowledge1–6. The hippocampus is important for memories
of specific experiences7–9, while the PFC supports memories that
generalize across experiences10–12. In the context of rodent
spatial exploration, individual experiences engage hippocampal
place cell ensembles that represent specific locations13–15 and
spatial trajectories16. In contrast, PFC firing patterns seen during
behavior are highly heterogeneous and are more often related to
different behavioral stages or the structure of an ongoing
task17–29 than locations in space18–20.

Stored associations between hippocampal and PFC repre-
sentations are transiently reinstated at the time of hippocampal
sharp-wave ripple (SWR) events30–33. It remains unknown
whether these associations can link specific hippocampal repre-
sentations of locations to more general PFC representations
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Fig. 1 Example CA1 and PFC task activity patterns. a Occupancy normalized spatial firing maps for 2 CA1 and 4 PFC cells that were simultaneously
recorded. The maximum firing rate for each cell is indicated below each panel. b Time normalized trial firing rate maps for the cells in a. The vertical dotted
line separates well and path trial phases. Horizontal solid lines separate trials on each trajectory. Five example trials are shown for each trajectory. The
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path. The firing rate color scale is the same as in a–c. Median firing rate for each trajectory. Line color corresponds to arrow color scheme in b–d.
Distribution of pairwise Pearson’s correlation for trial firing profile across all trials. All-trial similarity (Rmedian) is the median of the distribution and is
indicated by the arrowhead. e Distribution of pairwise Pearson’s correlation for firing profile of trials on the trajectory with the highest median pairwise
correlation. Maximum within-trajectory similarity (Rmax) is the median of the distribution and is indicated by the arrowhead
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related to task structure. Previous findings established that early
during learning, the degree of hippocampal-PFC co-firing during
ongoing experience predicts their coactivity during SWRs30,32. As
a result, activity during SWRs reflects spatial associations related
to where in the environment a particular set of hippocampal and
PFC cells are co-active. However, once the environment and task
are familiar, hippocampal-PFC coactivity during ongoing
experience is no longer predictive of SWR coactivity32. None-
theless, many PFC cells continue to show modulation during
SWRs32–34, which suggests that hippocampal-PFC reactivation
patterns in familiar settings could reflect associations between
spatially specific hippocampal representations and other, poten-
tially more general task-related, PFC representations.

To determine the structure of stored associations between
hippocampal and PFC representations, we asked which PFC
representations are concurrently reactivated with hippocampal
representations in a familiar task. A null-hypothesis predicts that
an unbiased selection from the pool of heterogeneous PFC
representations remains linked with hippocampal representa-
tions. However, we found a select subset of PFC representations
for general features shared across individual experience are
enriched, which provides a potential mechanism for general-
ization across individual experiences.

Results
Contrasting CA1 and PFC representations during ongoing
experience. We examined hippocampal-cortical representations
by recording activity simultaneously in the hippocampus and
PFC of well-trained rats performing a spatial foraging task in
which they are required to travel across multiple paths to obtain
food reward. We make the distinction between paths, which
physically connect reward locations, and trajectories, which are
the combinations of paths used by the rat to travel between
reward locations. Given the contrasting representations in the
hippocampus and PFC, which potentially encode different fea-
tures of experience, we designed the task to examine repre-
sentations for “specific” and “general” features of experience in a
spatial context. We refer to “specific” representations as those
expressed on individual trajectories and “general” as representa-
tions expressed across multiple trajectories that capture their
common features. The task had four potential reward locations
(wells) interconnected by paths. At any given time, only two wells
could dispense reward. To receive reward the animal needed to
find these two wells and visit them in alternation (Supplementary
Fig. 1). By switching the rewarded wells within and/or between
sessions or days, we encouraged the animal to travel between

wells via different trajectories that could consist of any combi-
nation of paths. We defined a trial as the time between con-
secutive well location visits. To compare hippocampal (CA1) and
PFC activity on different trajectories, we normalized CA1 and
PFC activity by dividing each trial into 36 time bins (see Meth-
ods). We also confirmed the animal displayed similar movement
patterns on different trials and trajectories (Supplementary
Fig. 2).

As expected, CA1 cells (N= 234) showed location specific
activity (Fig. 1a–c, CA1 cells 1–2). PFC cells (N= 578) showed
diverse activity patterns including those that varied across
different trajectories (Fig. 1a–c, PFC cells 1–2) and those that
were active at similar trial phases across different trajectories,
consistent with representations of task structure (Fig. 1a–c, PFC
cells 3–4). We described the firing pattern of each cell using two
parameters: all-trial similarity and maximum within-trajectory
similarity. All-trial similarity captures the consistency of firing
profiles between all pairs of trials and is thus a measure of
generalization. All-trial similarity was quantified as the median of
pairwise Pearson’s correlations between firing profiles across all
pairs of trials (Rmedian, Fig. 1d). We found all-trial similarity also
captured firing similarity across different trajectories as shown by
its strong correlation with intertrajectory-trial similarity
(Intertraj. Rmedian), which is calculated from pairs of trials on
different trajectories (Supplementary Fig. 3). In contrast, max-
imum within-trajectory similarity captures the reliability of the
cell’s activity in representing aspects of a specific spatial
trajectory. We quantified maximum within-trajectory similarity
by calculating a similarity score separately for trials on each
trajectory and then taking the maximum of those scores across
trajectories (Rmax, Fig. 1e).

Across the population, CA1 cells typically had low Rmedian but
high Rmax values (Fig. 2a–c, cyan), reflecting their spatially
specific and reliable location representations. The low Rmedian

values also suggest that in our task, the representation of specific
spatial location dominates other forms of task representations
found in the hippocampus, including context35 and time36. In
contrast, PFC cells had a wide range of Rmedian and Rmax values
(Fig. 2a–c, orange), reflecting the heterogeneity of representations
that is typical for this brain region. Nonetheless, a subset of these
PFC cells had similar (high Rmedian) and reliable (high Rmax)
activity patterns even between trials on trajectories with different
lengths (e.g., Fig. 1 PFC cell 4 and Supplementary Fig. 4).

We next asked how PFC activity relates to the task, and
whether the population as a whole provided a representation of
the various trial phases. As a population, PFC cells were active
across the entire range of trial phases (Fig. 3a–d) and individual
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cells showed peak firing that was restricted to certain trial phases
(Fig. 3e–f). We also found a significant overrepresentation in the
population for trial phases around well location entry (Fig. 3a–b),
which could correspond to salient task elements such as the
choice point before the reward location and receiving reward. We

also note that these representations were unlikely to be solely
explained by an animal’s movement speed (Supplementary Fig. 5).
Instead, firing properties of these cells are consistent with
representations for stages of a trial, and cells with similar firing
patterns across trajectories could therefore encode general task
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stage information shared between trials with different spatial
locations and geometries.

Generalized PFC representations are reactivated preferentially.
We next asked whether a specific subset of these heterogeneous
task-related PFC representations remains linked with hippo-
campal spatial representations during awake SWR memory
reactivation. Since hippocampal trajectory representations are
frequently reactivated during SWRs37–39, our goal was to
understand how the reactivation of different trajectory-associated
representations are coordinated between CA1 and PFC once the
task became familiar. We restricted our analyses to SWRs that
occurred at the reward wells (see Methods section) and focused
on hippocampal-cortical reactivation in well-trained animals with
at least 5 days of exposure to the task.

We first selected CA1 and PFC cells that were preferentially
active on paths33. We then examined SWR events that reactivated
these path-active CA1 cells and asked whether during these
SWRs, concurrently reactivated PFC cells (i.e., cells with firing

rate increases) (N= 35 cells) had task activity patterns that
differed from the selected PFC cells that were not reactivated (i.e.,
cells without firing rate change) (N= 161 cells) (Supplementary
Fig. 6). We restricted our analyses to PFC and CA1 path-
preferring cells and their respective SWRs to ensure we can
adequately sample specific-to-general mapping between multiple
hippocampal and PFC representations, since we rarely had days
with more than one CA1 well place cell recorded simultaneously
with PFC cells.

We found that the population of reactivated PFC cells were
substantially enriched for cells with high all-trial similarity
(Rmedian), which by definition also had high maximum within-
trajectory similarity (Rmax) (Fig. 4a–e PFC cells a–b and Fig. 5a-c
orange). By contrast, PFC cells that did not participate in SWR
reactivations tended to show activity that varied from trial to trial
or between trajectories. The activity pattern of this population
was mostly dissimilar across trajectories (Rmedian distribution
dominated by low values) and varied in within-trajectory
similarity (Rmax values distributed uniformly) (Fig. 4a–e PFC
cells c–f and Fig. 5a–c gray).
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The differences between reactivated and non-reactivated PFC
cells were clear when we examined the distribution of Rmedian and
Rmax relative to that of the entire path-preferring PFC population.
If reactivated PFC cells were an unbiased subsample from the
population of path-preferring PFC cells, we would have expected
to find comparable Rmedian and Rmax distributions in both the
reactivated and non-reactivated populations. Instead, we found a
significantly larger fraction of PFC cells with high Rmax and
Rmedian in the SWR reactivated population than expected given
the baseline population distribution (Fig. 5d–e). We further
reproduced these findings using intertrajectory-trial similarity,
which confirms reactivated cells show higher similarity in firing
across different trajectories (Supplementary Fig. 7). The differ-
ence in SWR engagement could not be explained by differences in
peri-SWR firing rate that might have influenced our ability to
detect positive SWR modulation in PFC cells (Supplementary
Fig. 8). We verified that our results are not biased by potentially
including cells that were recorded across multiple days (Supple-
mentary Figs. 9 and 10). Our results also remained consistent
when all SWRs were included (Supplementary Fig. 11), likely
because the majority of SWRs contain path location
reactivations33.

Importantly, we found that trial similarity measures can better
account for the participation of PFC cells in SWR reactivation
than other firing correlates, including co-activity with CA1 cells
during behavior. We constructed Generalized Linear Models
(GLMs) to assess the contribution of different firing properties
to predicting whether a PFC cell is modulated during SWRs.
These included trial similarly as well as mean trial firing
rate, activity coverage on a trial, speed-firing rateresidual correlations
and proximity of peak firing to wells, defined as follows: activity
coverage on a trial is the proportion of consecutive trial phase

bins with firing rate exceeding 2/3 of the peak rate; speed-firing
rateresidual correlation captures the correlation between firing rate
and speed while controlling for effect of trial phase (see
Methods section); peak firing proximity to wells is the minimum
number of trial bins from the peak firing rate bin to a well bin.
This final measure was designed to control for any effects of
proximity of PFC spiking activity during behavior to activity
during SWRs. We found that a model including all of these firing
rate related variables explained only 3.8% of the prediction
variance of PFC SWR participation. In contrast, models with the
addition of only one of the trial similarity measures, Intratraj.
Rmedian, Rmax or Intertraj. Rmedian, captured between 7.4 and 10.8%
of the variance (Supplementary Fig. 12 red versus orange bars),
which represent a 1.95–2.84 fold improvement. The results
of the GLMs demonstrate trial similarity measures were better
predictors than the other variables (Table 1 and Supplementary
Fig. 12).

Similarly, we confirmed that in a familiar task setting,
pairwise CA1-PFC coactivity during ongoing experience was a
poor predictor of their reactivation32. Peak coactivity during
ongoing experience within an 100 ms window was only weakly
related to their coactivity during reactivation (Supplementary
Fig. 13A). We also found coactivity within the duration of a
typical trial (~5 s) showed a weak negative correlation with
coactivity during reactivation (Supplementary Fig. 13B). This
reflects the existence of many cell pairs that were strongly
coactive during ongoing experience but were nevertheless not
reactivated together. In contrast, all-trial similarity of individual
PFC cells was a much stronger predictor of reactivation
(Supplementary Fig. 13C–E). Thus, while it remains possible
that there are other aspects of PFC activity that also predict
SWR reactivation, our findings point to firing similarly across
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different trajectories as a key predictor of subsequent reactiva-
tion during SWRs.

Reactivated hippocampal-cortical patterns remain coherent.
Our results demonstrate that, in a familiar environment and task,
SWR reactivation of hippocampal path location representations
engages a subset of PFC cells expressing path-related repre-
sentations that generalize across trajectories (i.e., cells with high
all-trial similarity). These findings suggest a many-to-one map-
ping between hippocampal and PFC representations that is
maintained in hippocampal-cortical networks, where many
location representations in the hippocampus can be linked to a
single generalized representation related to path traversal in the
PFC. We tested this prediction by creating groups of SWRs that
reactivated different hippocampal location representations,
defining each group as the set of SWRs where only one place cell
was reactivated. We then compared, across pairs of groups, the
firing rate of concurrently reactivated PFC cells, focusing on PFC
cells that expressed generalized representations (Rmedian > 0.5). As
predicted, we found SWRs reactivating hippocampal place cells
that represented locations on different trajectories could engage
the same PFC cell (Fig. 6a).

Importantly, this many-to-one mapping reflected task relevant
associations, and was not a result of non-specific activation of PFC
cells across all SWRs. Here we took advantage of our recent
demonstration that the reactivation of hippocampal representa-
tions for locations associated with movement (i.e., paths) is largely
distinct from those for locations of immobility (i.e., wells)33. Based
on that observation, we reasoned that generalized PFC path
representations should be reactivated together with hippocampal
path location representations but not with hippocampal well
location representations.

Consistent with this prediction, we found PFC activity during
SWRs was often different between SWRs defined by the
reactivation of either a path or a well location active CA1 cell
(Fig. 6b). Comparisons of PFC firing rates during these groups of

SWRs showed more significant differences than for comparisons
between groups of path versus path place cell SWRs (see Methods
section) (Fig. 6c). The PFC firing differences cannot be attributed
to PFC modulation in response to differences in SWR power
between path and well location reactivations (Supplementary
Fig. 14). This indicates that PFC reactivation patterns distin-
guished between path versus well location reactivations, whereas
different hippocampal path location reactivations were often
associated with similar PFC reactivation patterns. These results
confirm that the many-to-one mapping between hippocampal
and cortical activity patterns reflected task information.

Discussion
Our results identify a novel form of association between hippo-
campal and cortical representations that is reinstated during
memory reactivation. In our well-trained animals, we found
coordinated hippocampal and PFC activity during memory
reactivation only weakly recapitulate their associations observed
during ongoing experience, consistent with previous findings32.
Nonetheless, a subset of PFC cells remains modulated during
memory reactivation, and we found that these reactivated PFC
cells preferentially represented general task features that were
repeated across different trajectories rather than spatially specific
elements of experience restricted to one or a few trajectories.

Our current results, together with recent findings30,32 provide
important insights on the transformation of memory repre-
sentations with learning. We suggest the enrichment of many-to-
one associations between hippocampal-cortical representations
reflects the network’s to ability to form representations that link
frequently repeating features of ongoing experience (i.e., the
repeating structure of each trial across multiple trajectories)
simultaneously with features specific to an experience (i.e., tra-
versal of one particular trajectory). During initial learning, stored
hippocampal-cortical associations are likely to capture relation-
ships specific to individual experiences, such as specific features of
experience on each trajectory. At this stage, representations of

Table 1 Firing similarity measures predict participation in SWR reactivation

GLM X1 β1 standard errors p X2 β2 standard errors p

1 All-trial Rmedian 3.61 0.0003 Firing rate trial mean −0.17 0.86
2 All-trial Rmedian 2.80 0.0052 Firing rate trial max −0.04 0.97
3 Intertraj. Rmedian 3.36 0.0008 Firing rate trial mean −0.04 0.97
4 Intertraj. Rmedian 2.52 0.0118 Firing rate trial max 0.19 0.85
5 Rmax 3.19 0.0014 Firing rate trial mean 0.55 0.58
6 Rmax 2.52 0.0117 Firing rate trial max 1.00 0.32
7 All-trial Rmedian 4.09 0.00004 Trial coverage Most active

trajectory
0.59 0.55

8 All-trial Rmedian 3.86 0.0001 Trial coverage All trials 0.55 0.58
9 Intertraj. Rmedian 3.57 0.0004 Trial coverage Most active

trajectory
0.70 0.48

10 Intertraj. Rmedian 4.15 0.00003 Trial coverage All trials 0.92 0.36
11 Rmax 3.93 0.0001 Trial coverage Most active

trajectory
0.89 0.38

12 Rmax 3.59 0.0003 Trial coverage All trials 0.93 0.35
13 All-trial Rmedian 3.48 0.0005 Speed-Firing rate residual

correlation
−0.68 0.50

14 Intertraj. Rmedian 3.20 0.0014 Speed-Firing rate residual
correlation

−0.62 0.53

15 Rmax 2.99 0.0028 Speed-Firing rate residual
correlation

0.33 0.74

A Generalized Linear Model (GLM) with two predictors and a logistic link function was used to predict SWR reactivation based on firing similarity and firing measures. Firing similarity measures (X1) but
no other firing measures (X2) significantly predicted SWR reactivation as indicated by the significance of the β values. SWR reactivation was modeled as a binomial distribution (0 for non-reactivated and
1 for reactivated). β values are expressed as standard errors to allow comparison between predictors. Firing rate measures are mean and peak rates of mean trial firing across all trajectories. Trial
coverage is defined as the number of consecutive trial phase bins around the peak trial phase with firing rate exceeding 2/3 of maximum rate. Trial coverage was calculated for the mean trial firing rate
for trials on the most active firing trajectory or for all trajectories. Speed-firing rate correlation is the correlation for speed and firing rate residuals for each trial phase for trials on the same trajectory
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individual experiences are likely to remain unique since there are
insufficient exposures for the network to recognize similarities
between individual experiences. Through learning, links that map
common features shared across experiences with specific features
of single experiences become enriched whereas links between
representations for specific features in the hippocampus and
cortex diminishes. This would explain previous findings of weak
correlations between ongoing and reactivated activity patterns
after learning32.

Learning-related transformations in memory representations
parallel changes to representations observed during ongoing
experience in the hippocampus and PFC. The hippocampus is
likely to maintain enduring representations of specific spatial
features of experience. In our task, hippocampal place cell
representations showed highly place specific firing even after
learning. In PFC, it was found that ensemble patterns for com-
mon task phases in two different contexts become more similar
with experience, which suggests the encoding of general features
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of experience develop with learning29. While the mechanisms that
drive changes in hippocampal-cortical associations across learn-
ing remain unknown, coordinated hippocampal-cortical com-
munication during sleep may play a role31,40–46. The content of
hippocampal-cortical memory reactivation during sleep SWRs is
less similar to awake experience than reactivation during awake
SWRs32,47. This raises the possibility that memory reactivation
during sleep could reflect the reinstatement of representations for
recent experiences that are interwoven with reinstated repre-
sentations of existing knowledge. These “noisy” reactivation
events could be involved in establishing more generalized cortical
representations and in driving changes in hippocampal-cortical
associations48.

Enriching general-to-specific links in hippocampal-cortical
networks could provide a basis for creating abstractions based
on similar experiences as an animal learns4–6, which requires the
function of hippocampal-cortical networks1–4,7,8,10,35,49–56. This
process could facilitate the creation of “schemas” or generalizable
knowledge of a task57–59. The link between representations for
general and specific representations of experience could serve to
embed memories of experiences in a general knowledge structure
while preserving the integrity of individual experiences. This in
turn could enhance the brain's ability to use memories to guide
future decisions11,12.

Methods
Animal and behavior. All experiments were conducted in accordance with Uni-
versity of California San Francisco Institutional Animal Care and Use Committee
and US National Institutes of Health guidelines. No statistical methods were used
to determine sample size. Experimenters were not blinded and no randomization
was used. We trained 6 Long-Evans rats (male, 500–700 g, 4–9 months old) initially
to traverse a 1 m long linear track for reward (evaporated milk plus 5% sucrose,
Carnation). We then introduced the animals to the foraging task ~21 days after
surgery. In the task, only two of the four possible reward well locations were chosen
to deliver reward. The rat had to find those two well locations and visit them in
alternation to receive reward. We changed the rewarded well locations within or
between sessions, or between days33. These changes in spatial reward contingencies
were not explicitly signaled and the rat needed to find the new rewarded well
locations by trial and error. Data from 11, 9, 10, 12, 13 and 4 days were analyzed
for each of the 6 animals respectively. Each day consisted of between 2–3 task
sessions of 15–45 min each. The task sessions were interleaved with rest sessions of
20-60 minutes in a sleep box located away from the track. We used a custom built
automated system for reward delivery, which was triggered by an infrared beam
break at the well location. Reward was delivered immediately (two animals) or after
a 1 s delay (four animals) after the beam break. A syringe pump (NE-500 OEM,
New Era Pump Systems Inc.) delivered the reward (100–300 μl at 20 ml/min).

Implant. Custom designed and 3D printed (PolyJetHD Blue, Stratasys Ltd.)
recording drives housed a maximum of 28 individually movable tetrodes. Tetrodes
(Ni-Cr, California Fine Wire Company) were gold plated to reach an impedance of
250 kΩ at 1 kHz.

Implanted recording drives targeted both dorsal CA1 (7 tetrodes) and dorsal
PFC (14–21 tetrodes, housed in one cannula angled at 20 degrees toward the
midline). CA1 AP: −3.8 mm and ML: 2.2 mm. PFC (anterior cingulate cortex and
dorsal prelimbic cortex): AP:+ 2.2 mm, ML+ 1.5 mm and DV between 1.88 mm
to 2.72 mm depending on the AP and ML coordinates of each tetrode.

Tetrodes were adjusted every 2 days post-surgery to reach the target DV
coordinate (PFC) or guided by LFP and spiking patterns (CA1). After the start of
data acquisition, tetrodes were adjusted at the end of the day in small increments
(typically ~30 μm) to improve cell isolation.

Histology. At the end of the experiment, we marked the location of recording sites
by passing current through each tetrode (30 µA, 3 s) to create electrolytic lesions.
After 12–24 h, we perfused the animals with paraformaldehyde (4% in PBS), fixed
(24 h at room temperature) and cryoprotected the brain (30% sucrose in PBS at 4 °
C). We identified the sites of electrolytic lesions with Cresyl Violet stained coronal
sections (50 μm).

Recording. The NSpike data acquisition system (LMF and J. MacArthur, Harvard
Instrumentation Design Laboratory) was used for data collection. Experiments
were conducted in dim lighting. To track the animal’s position, an infrared LED
array was mounted on the headstage amplifier and video was recorded at 30 Hz.
We recorded LFP from each tetrode (0.5–400 Hz sampled at 1.5 kHz). We recoded
spiking activity from each tetrode channel (600–6000 or 300–6000 Hz sampled at
30 kHz). For hippocampal tetrodes, the reference for LFP and spike detection was a
tetrode located in corpus callosum. For PFC, the reference was a tetrode located
locally but did not detect spikes.

Data preprocessing. We identified putative neurons by manual clustering of
spiking data from channels of each tetrode based on peak amplitude, spike width
and wave-form principal components (MatClust, M.P.K.). Only stable and well-
isolated cells were used for further analysis.

The animal’s position was determined as the centroid of the front and back
diodes from the LED array using a semiautomated analysis of the video.

Cell selection. CA1: We recorded from 391 CA1 neurons from which we excluded
from our analysis putative fast spiking interneurons (spike peak to trough width
<0.4 ms and mean firing rate >10 Hz, N= 22) and cells with < 200 spikes across all
sessions on a given day (N= 135).

PFC: We recorded from 844 PFC from which we excluded from our analysis
putative fast spiking interneurons (spike peak to trough width <0.3 ms and mean
firing rate >7 Hz, N= 42) and cells that had <200 spikes across all sessions of a day
(N= 224). We defined path active PFC cells as those with peak firing during the
path phases of the trial.

SWR detection. The raw CA1 LFP was referenced to an electrode in corpus
callosum and then filtered (150–250 Hz) to isolate the SWR band. The SWR
envelope was then obtained using the Hilbert transform and convolved with a
Gaussian kernel (σ= 4 ms). A consensus SWR envelope was calculated by taking
the median of the envelopes across all available tetrodes. Only days where at least
three tetrodes were in or near the CA1 cell layer were used for the analysis.

To avoid the problem of arbitrary thresholds and differences in noise
distributions across days, we developed a SWR identification approach that defines
a threshold based on the distribution of the consensus envelope power for a given
day33. Only SWR events occurring at speed <4 cm/s and at reward well locations
were included in our analyses. We chose these SWRs to separate in time, measures
of trajectory-related PFC activity, which were measured during periods of
movement between wells, and reactivation, which was measured during SWRs at
the wells.

Occupancy normalized firing maps. The environment was first divided into 2 cm
square bins. The occupancy-normalized rate was calculated by dividing the number
of spikes by the occupancy of the animal per bin and smoothing with a two-
dimensional symmetric Gaussian kernel (σ= 2 cm and 12 cm spatial extent).

Trial normalization. Each trial was defined as the time between entry to a well
location and entry to the next well location. For each trial, the time the rat spent at

Fig. 6 Similar PFC modulation accompanies distinct hippocampal path location reactivations. a–b Spatial firing rate map, SWR aligned spiking raster and
firing rate for a pair of CA1 cells and a PFC cell that were recorded simultaneously. Each group of SWRs was defined as events containing only spikes from
one of the two CA1 cells (columns 1 and 2). The corresponding spiking and firing rate of the PFC cell during these two groups of SWRs are shown in column
3. The mean duration of SWRs is indicated with a red bar. The difference in PFC firing rates between the two groups of SWRs is quantified using a
permutation test. Two such sets are shown (CA1 cells 1–3 and PFC cell 1, and CA1 cells 4–6 and PFC cell 2). In the top set, CA1 cells 1 and 2, and PFC cell 1
corresponds to the CA1 cells and the PFC cell 4 in Fig. 1 respectively. PFC cell 2 in the bottom set corresponds to PFC cell a in Fig. 2. a Comparison of PFC
spiking between SWRs containing different path place cell reactivations. b Comparison of PFC spiking between SWRs containing path or well place cell
reactivations. c Boxplot of permutation test p values for comparisons of PFC firing rates during SWRs between groups of SWRs. PFC cells with similar firing
patterns across trajectories (Rmedian > 0.5) were included. PFC activity during SWRs reactivating different CA1 path location representations was similar
(green, higher p values, N= 127 SWR group pairs, examples in a) compared with activity during SWRs reactivating CA1 path or well location
representations was dissimilar (magenta, lower p values, N= 87 pairs, examples in b). Wilcoxon rank-sum test: ***p < 10−3
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the well location was divided into 18 equally spaced time bins. The same was done
to time when the rat was traveling between well locations. Thus, each trial com-
prises of 36 bins (Fig. 1b and Fig. 3a–b). Firing rate for each bin was calculated by
dividing the number of spikes that occurred during each time bin by the duration
of each time bin. The firing rate was smoothed using a Gaussian kernel (σ= 1 trial
bin). Time and spiking during SWRs and within ±50 ms were excluded and does
not contribute toward the calculation of firing properties (e.g., Rmedian and Rmax).
The speed for each bin is the mean speed of time points in each bin. The speed
profile for each trial was smoothed using a Gaussian kernel (σ= 1 trial bin).

Trial firing and speed profile similarity. All-trial firing similarity for each cell is
the median of Pearson’s correlation of firing profile between all trials (Rmedian,
Fig. 1d). The same procedure was used to calculate trial speed profile similarity. To
calculate maximum within-trajectory similarity, we first computed the median of
pairwise Pearson’s correlation between pairs of trials on a trajectory and repeated
this for all trajectories. We then selected the maximum out of these values
(Rmax, Fig. 1e).

To ensure the animal’s movement pattern was stereotyped across trials, both
during times when the rat was at the reward location and on the path, we only
included rewarded trials where the animal’s overall probability of
correct alternation was >0.75, which was estimated using a state-space model60. In
addition, to ensure the reliability of the firing pattern of a cell on each trajectory
was adequately sampled, only trajectories on which the animal made five or more
traversals were included in the analyses. All-trial similarity and maximum within-
trajectory reliability were only reported for cells with spiking during trials that
fulfilled these selection criteria.

Trial firing activity coverage. Trial coverage was computed by first identifying the
trial phase bin with the maximum firing rate. The number of consecutive bins
surrounding the peak bin that exceeds 2/3 of maximum firing rate was then
expressed as a proportion of the total number of trial phase bins.

Speed-firing rateresidual correlation. We first collected firing rate and speed values
belonging to a task phase bin from all trials on the same trajectory, and then
subtracted their means respectively. This process eliminated the baseline associated
with each task phase, which allowed us to compute the correlation between firing
rate and speed (speed-firing rateresidual correlation) for all data points independent of
task phase. Real correlations between movement speed and firing rate will result in
high residual correlation values, as trial phase bins with higher speed will have
higher rates. This analysis controls for apparent correlations between firing rate
and speed due to stereotyped movement patterns on each trial.

PFC SWR modulation index. The significance of modulation was calculated as
describe previously30,33,61. We first generated a perievent time histogram (PETH)
for all events aligned to the start of SWRs for the observed data. We then generated
a control dataset by circularly permuting the spike times for each SWR event, such
that all spikes around one SWR event were circularly shifted by the same amount
but this amount varied between SWR events. From this control dataset, we then
generated a PETH. This was repeated 1000 times. Next, we calculated the squared
deviation of the observed PETH from the mean of the 1000 control PETHs for the
average duration of SWRs for the given type of SWR. We then compared the
squared deviation of each of the 1000 control PETHs to the mean of all 1000
control PETHs. The significance value was the fraction of 1000 control PETH
deviations that are larger than the observed PETH deviation. We defined SWR
reactivated path active PFC cells as those with a significant excitation during SWRs
containing CA1 path place cells.

Permutation test for distribution comparisons. To normalize the observed dif-
ferences in the Rmedian (Fig. 5d) and Rmax (Fig. 5e) distributions between SWR
reactivated and non-reactivated PFC populations, we used a permutation test to
generate expected distributions of differences. First, we permuted the identities of
SWR reactivated and non-reactivated PFC cells and generated their corresponding
probability density functions (PDFs). We then calculated the difference between
the PDFs of the two groups of the permuted dataset. We calculated the mean and
standard deviation for each bin of the PDF using 10,000 permuted datasets with
which we used to convert the observed data into z-scores.

Resampling method for matching peri-SWR firing rates. We controlled for the
possibility that differences in peri-SWR firing rate could influence our ability to
detect SWR modulation and give rise to the observed differences in all-trial
similarity (Rmedian) between reactivated versus non-reactivated groups. This was
achieved by resampling SWR reactivated and non-reactivated PFC cells to match
their peri-SWR firing rates (Wilcoxon rank-sum test p values > 0.05) (Supple-
mentary Fig. 8A). The peri-SWR firing rate is the mean firing rate in a 1 s window
centered on the start of SWRs. For each resampled dataset, we then obtained the p
value of the Wilcoxon rank-sum test for the corresponding all-trial similarity
comparison (Supplementary Fig. 8B). This was repeated 1000 times. The propor-
tion of the 1000 resamples with Rmedian p < 0.05 was tested against the expected

proportion of resamples with p < 0.05 (5%) using a Binomial test (Supplementary
Fig. 8C–D).

PFC modulation between different SWR groups. We compared the mean firing
rate of two groups of unique SWRs, each containing a different hippocampal place
cell. The place cells were active on paths (peak rate > 3 Hz) or active at a reward
well location33 (mean rate > 3 Hz). We extended this to all available pairs of place
cells. The mean rate of a PFC cell during each group of SWRs was calculated by
dividing the number of spikes observed in each SWR by the mean duration of all
SWRs in both groups of a pairwise comparison. A permutation test (5000 per-
mutations) was used to determine if the mean rate of the PFC cell is significantly
different between the two groups of SWRs.

Data availability. Publicly available at the Collaborative Research in Computa-
tional Neuroscience data sharing website (http://crcns.org/; https://doi.org/10.6080/
K0H41PK8
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