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Distributed Cognition and Insight Problem Solving 

Frédéric Vallée-Tourangeau, Anna Weller, and Gaëlle Villejoubert 
Department of Psychology, Kingston University 

Kingston-upon-Thames UNITED KINGDOM    KT1 2EE 
f.vallee-tourangeau/a.weller/g.villejoubert@kingston.ac.uk 

 

Abstract 
Problem solving from a distributed cognitive system 
perspective is an emergent product of the strategic and 
opportunistic manipulation of artefacts populating a 
physical space. In the present study, insight problem 
solving was investigated with matchstick algebra 
problems. These problems are false equations expressed 
with Roman numerals transformed into true equations 
by moving one matchstick. Participants were split in two 
groups. In the first, the paper group, they examined a 
static two-dimensional representation of the false 
algebraic expression and told the experimenter which 
matchstick should be moved. The non-interactive 
procedure was similar to the one employed in Knoblich, 
Ohlsson, Haider, and Rhenius (1999). In the second 
group, the interactive group, participants manipulated a 
concrete three-dimensional representation of the false 
equation. Success rates in the paper group for different 
problem types closely replicated the pattern of data 
reported in Knoblich et al. In turn, participants in the 
interactive group were significantly more likely to 
achieve insight. Problem solving success in the paper 
group was best predicted by performance on a numeracy 
test, whereas in the interactive group, it was best 
predicted by performance on a visuo-spatial reasoning 
test. Different types of resources and skills were 
involved in the different versions of the task. 
Implications for process models of problem solving are 
discussed.  
 
Keywords: Problem solving, interactivity, individual 
differences, distributed cognition, education. 

 

Introduction 
Transformation problems such as the Tower of Hanoi or 
river crossing problems are structured in terms of a well 
defined space of intermediate states linked by simple 
discrete moves, with the goal state clearly visible or 
imaginable. Their solution rarely involves ‘aha’ moments. 
Insight problems on the other hand are different in that 
the goal state, or resolution, is initially not visible or 
imaginable. With insight problems most participants 
initially experience an impasse from which they may or 
may not emerge. The impasse is experienced as a result of 
a problem representation that is driven by ‘organizing 
assumptions’ (Segal, 2004, p. 142) that mislead the 
reasoner and prevent him or her from anticipating the 
solution. Overcoming an impasse is understood to be 
driven by a representational change that re-cast the 
relationship among the elements of the representation or 

that redefine the role of these elements. This 
representational perspective on insight has roots in Gestalt 
psychology (e.g., Wertheimer, 1959) and has been 
formulated in information processing terms by Ohlsson 
(1984, 1992).  

The initial representation of the problem is based on the 
manner with which the reasoner configures perceptual 
elements that compose the problem (how these elements 
are ‘chunked’) and reflects the reasoner’s comprehension 
based on his or her knowledge and expertise. Thus this 
initial representation, structured by perceptual chunks and 
conceptual assumptions, guides how the reasoner will 
attempt to solve the problem. However that guidance may 
also constrain and impede successful problem resolution. 
Certain assumptions of the problem representation need to 
be relaxed in order for the reasoner to solve the problem. 
A classic example of the importance of constraint 
relaxation in problem solving is offered by Maier’s 
(1930) 9-dot problem. The task is to link all 9 dots with 
four continuous lines without lifting the pen from the 
paper. The perceptual configuration of the dots imposes 
an implicit constraint that the lines can only be drawn 
within the projected perimeter delineated by the dots. 
Insight for this problem involves relaxing that constraint. 

In turn, a well-known Max Wertheimer problem 
illustrates how the segmentation of visual information 
into chunks is an important determinant of the ensuing 
problem representation and the ease with which a 
reasoner can solve the problem (see Ohlsson, 1984; Segal, 
2004; Fig. 1). In this problem, the reasoner must calculate 
the area of the composite figure involving a square and a 
parallelogram. This initial problem representation 
specifies certain operators that must be retrieved from 
long term memory (such as the formula to calculate the 
area for parallelograms). It may be that given this initial 
representation the reasoner is unable to retrieve the 
appropriate operators and hence may experience an 
impasse. The reasoner may seek to restructure the 
problem representation by decomposing the perceptual 
chunks at the heart of it. Some people may realize that the 
square -parallelogram configuration can be decomposed 
in terms of two overlapping triangles. This new chunking 
arrangement may encourage a more fruitful representation 
in terms of a rectangle (once the triangles no longer 
overlap) that would cue much simpler operators to solve 
the problem.  
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Figure 1: Max Wertheimer's square and parallelogram 
problem. The goal is to find the surface area of the 
composite figure. A decomposition of the perceptual chunks 
that configured the initial problem representation (involving 
a parallelogram on top of a square) leads to a representation 
involving overlapping triangles which in turn leads to a 
representation of a much simple perceptual chunk: a 
rectangle. 

Matchstick Algebra 
Constraint relaxation and chunk decomposition are 
important drivers of representational restructuring. The 
reconstruction of a problem representation is deemed 
necessary to overcome an impasse and achieve insight. 
Constraint relaxation and chunk decomposition were 
explored in a series of elegant experiments with matchstick 
algebra problems developed by Knoblich, Ohlsson, Haider, 
and Rhenius (1999). A matchstick algebra problem is a 
false statement expressed with Roman numerals. 
Participants are required to move, but not remove, one 
stick to make the equation true, with the ‘V’ and ‘X’ 
numerals each consisting of 2 slanted sticks. For example, 
‘VI = VII + I’ is a false statement that can be transformed 
into a true one by moving a single stick from the ‘7’ on the 
right of the equal sign to the ‘6’ on the left of it such as to 
yield ‘VII = VI + I’. To achieve insight, participants must 
relax constraints that reflect knowledge and assumptions 
concerning algebraic transformations, and decompose 
familiar perceptual chunks in the form of numerals and 
symbols (operators). 

 

Table 1: The four matchstick algebra problem types 
developed by Knoblich, Ohlsson, Haider, and Rhenius 
(1999). Solutions for problems for Type A through C require 
relaxing constraints of increasing scope, while solving 
problems of Type D requires decomposing a tight perceptual 
chunk. 

Using matchstick algebra Knoblich et al. explored the 
importance of constraint relaxation and chunk 
decomposition in achieving insight. To test the importance 
of constraint relaxation, they developed three types of false 
statements the solution for which required relaxing 
constraints of different scopes (see Table 1). Solving Type 
A problems involved relaxing a relatively narrow 

constraint that numerals cannot be decomposed (value 
constraint). Relaxing that constraint enables participants to 
transform a numeral to make the statement true. Solving 
Type B problems involved relaxing a constraint with a 
broader scope, that is one including the constraint on 
manipulating operators (operator constraint). Solving Type 
C problems involved relaxing a constraint with an even 
broader scope, namely the constraint that people rarely 
communicate in tautological terms (tautology constraint). 
Hence to solve these problems, participants must realize 
that tautologies are acceptable. Knoblich et al. predicted 
that the solution rate for these three types of matchstick 
algebra problems would be a function of the scope of the 
constraint to be relaxed, with the narrow constraint of Type 
A problems the easiest to relax and hence to solve, and the 
broad constraint of Type C problems the hardest to relax 
and solve. Knoblich et al. observed the highest rates of 
problem solving success for Type A problems, followed by 
Type B problems, and the hardest problems were Type C. 
Problems of Type D involved relaxing the value constraint 
(like problems of Type A) but the solution necessitated 
decomposing a numeral that formed a much tighter 
perceptual chunk. Knoblich et al. predicted that Type D 
problems would be much harder to solve than problems of 
Type A, which is what they observed.  

Interactive Problem Solving 

We pause here to note with interest a key feature of the 
Knoblich et al. experimental procedure: Participants were 
never invited to manipulate matchsticks as such in solving 
these algebra problems. The so-called matchstick algebra 
problems did not involve actual matchsticks. Rather the 
false arithmetic statements were presented on a computer 
screen and participants announced their proposed solution, 
which was then noted by the experimenter. Yet, from a 
distributed cognitive system perspective (Giere, 2006; 
Cowley & Vallée-Tourangeau, 2010), thinking is the 
product of an interactive assemblage of resources internal 
and external to the agent. The environment and its content 
can be exploited to facilitate reasoning and problem 
solving in a variety of ways. To this end, a diverse range of 
actions are performed, including reorganisation of the 
environment, muttering to oneself, pointing and making 
notes (Kirsh, 2009).  

Kirsh suggests that it is through these actions and 
interactions that thought is externalised, with external 
artefacts and representations employed as vehicles for 
ideas and hypotheses, lightening cognitive load. But these 
externalisations do not merely function as a means to 
offload memories and reduce cognitive demands. Rather 
the generation and, importantly, manipulation of these 
representations facilitate understanding by reordering the 
original representation into one that may be more 
cognitively congenial (Kirsh, 1996). The transformed 
representation may potentially reveal affordances and new 

Type Equation Solution 

A VI = VII + I VII = VI + I

B I = II + II I = III - II

C III = III + III III = III = III

D XI = III + III VI = III + III
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opportunities to guide behaviour. Spatial rearrangement 
may modify the problem so that it becomes more visually 
compelling, allowing the perception of task elements that 
were hitherto invisible to the reasoner. Spatial 
rearrangement may also conserve internal computing 
resources, as executing tasks externally (such as an object 
rotation) may be quicker and require less effort than if 
performed mentally, thereby increasing task efficiency 
(Kirsh, 1995b).  

The Present Study 

We sought to investigate problem solving in a context 
where matchstick algebra problems were expressed in a 
physical representation that could be manipulated by 
participants. We sought to determine the degree to which 
constraints of different scopes and the tightness of 
perceptual chunks remained important obstacles to insight 
in an interactive version of this problem solving task. 
Interactivity inevitably engages a broader range of 
cognitive, perceptual and motor processes and hence 
problem solving success may well implicate different skills 
in interactive and non-interactive contexts. In an attempt to 
gauge the importance of different cognitive skills in these 
two versions of the task, we profiled participants’ 
numeracy, knowledge of Roman numerals, traditional 
verbal intelligence (as measured with the National Adult 
Reading Test; Nelson, 1991 which correlates positively 
with the Wechsler Adult Intelligence Scale full scale IQ) 
along with the Beta III test (Kellog & Morton, 1999). 
Separate elements of the test assess aspects of non-verbal 
intelligence including spatial reasoning, visual information 
processing and the speed and accuracy of processing. We 
were then in a position to identify the better predictor(s) of 
performance in interactive and non-interactive versions of 
insight problem solving using matchstick algebra.  

Method 

Participants 

Fifty participants were recruited among students and 
administrative staff on the campus of Kingston University. 
Mean age was 27.84 (SD= 12.11) and the majority of 
participants were female (N= 30).  

Procedure 

Participants were allocated on a random basis to one of 
two experimental groups, the paper group or the interactive 
group. In the paper group participants were presented 
matchstick algebra problems on a sheet of paper and 
informed the researcher which ‘matchstick’ could be 
moved to transform the expression into a true equation. 
Participants in the interactive group manipulated artefacts 
to create and modify the false expressions into true ones. 
All participants were presented with the four types of 

problems (A though D) and hence the experimental design 
was a 2 (group) by 4 (problem type) mixed design. The 
dependent measure was the percentage of problems of 
different types solved by the participants.  

Participants were tested individually in a quiet room. 
Participants first completed a numeracy test during a one 
minute period. This test consisted of simple arithmetic 
questions. They then completed the NART which involved 
reading aloud a series of 50 words, the pronunciation for 
each categorised as correct or incorrect by the 
experimenter. Participants were then asked to complete the 
Roman numerals test, in which they were required to 
translate a series of simple Arabic numbers into their 
Roman numeral equivalent within a one minute period. No 
feedback on performance was given on any of these tests. 

Participants from both groups were shown 12 incorrect 
matchstick algebra equations; these equations were the 
same as those developed by Knoblich et al. (1999; 
Experiment 1).These 12 problems were composed of four 
of each of Types A and B, and two of each of Types C and 
D. The order of presentation was randomised for each 
participant. Each equation was printed in the centre of a 
sheet of white A4 paper in large, bold, black font held in a 
ring binder with the following instruction at the head of 
each page, “Move ONE stick to make the equation 
TRUE”. Participants in the paper group were asked to 
solve the equations using these sheets of paper only. For 
the interactive group, we designed a magnetic board (27cm 
x 21cm) on which participants created and modified 
Roman numerals and algebraic statements using 
magnetized matchsticks (.5cm x 4.5cm). Participants in the 
interactive group were first asked to recreate the incorrect 
form of the equation as presented to them on paper and 
then to solve the equation by moving one stick to make the 
equation read true. They were encouraged to touch and 
manipulate the matchsticks in reasoning about the 
problems. Participants in both groups were given a 
maximum of 3 minutes to solve each equation, after which 
they were presented the next problem.  

The experimental session concluded with the five 
components of the Beta III test: (i) The Coding test 
required participants to match a series of symbols to 
numerals (test duration: 120 seconds); (ii) the Picture 
Completion section consisted of a series of pictures with 
aspects/items missing that participants must complete 
(180s); (iii) the Clerical Checking test displayed pairs of 
symbols or numbers and participants were required to 
judge whether the pairs were identical or not (120s); (iv) 
the Picture Absurdities test consisted of a series of 
panelled pictures and required participants to identify 
which of a set of pictures showe something absurd or 
illogical (180s); (v) finally, the Matrix Reasoning test 
asked participants to choose a picture from a selection of 
five pictures to fill in a gap in a sequence (300s). 

Measures. Both the Maths and Roman numerals tests 
were expressed in terms of percent correct answers. The 
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NART score was reported as the number of correctly 
pronounced words. Matchstick algebra performance for 
each participant was scored in terms of the percentage of 
equations correctly solved for each of the four types of 
problems. Each element of the Beta III test was first scored 
individually, by summing the correct answers. These 
scores were then converted to age corrected scaled scores 
(ACSS; Kellog & Morton, 1999). 

Results 

Cognitive Profiles 
Numeracy skills did not differ significantly between the 
paper group (M = 49.5, SD = 25.9) and the interactive 
group (M = 51.9, SD = 22.0), t(48) =0.35, p = .73. 
Knowledge of Roman numerals was equivalent in both the 
paper group (M = 48.7, SD = 23.2) and the interactive 
group (M = 43.6, SD = 20.8), t(48) =0.83, p = .41. 
Performance on the NART did not differ between 
participants in the paper group (M = 26.40, SD= 6.11) and 
those in the interactive group (M= 24.32, SD= 6.59), t(48) 
= 1.16, p = .25. Finally, participants did not differ 
significantly on any of the Beta III component tests; largest 
non-significant t(48) = 1.19, p = .24 for clerical checking. 

Matchstick Algebra Performance 
The percentage of correct solutions for each problem type 
for each participant was calculated. The percent correct 
solution averages in both groups are displayed in Figure 2. 
Solution rates appeared marginally greater in the paper 
group compared to the interactive group for Type A 
problems, but the interactive participants solved more of 
types B, C and D problems than their paper counterparts. A 
4 (problem type: A, B, C, D) by 2 (group: paper, 
interactive) mixed analysis of variance (ANOVA) revealed 
a significant main effect of problem type, F(3, 144) = 24.6, 
p < .001, a significant main effect of group, F(1, 48) = 
5.06, p = .029, and a significant interaction between 
problem type and group on problem solving performance, 
F(3, 144) = 5.03, p = .002.  

Separate ANOVAs were conducted for the paper and 
interactive groups. In the paper group, the problem type 
main effect was significant, F(3, 72) = 29.2, p < .001. Post 
hoc tests using the Bonferroni correction revealed that the 
solution rates for Type A problems were higher than for 
Types B (p < .001), C (p < .001), and D (p < .001), while 
the solution rates for Type B problems were greater than 
for Type C problems (p = .002). In the interactive group, 
the problem type main effect was also significant, F(3, 72) 
= 5.39, p = .002. Bonferroni corrected post hoc tests 
revealed that the only significant differences in the solution 
rates were observed between Types A and C (p = .02), and 
Types B and C (p = .03): Thus, in the interactive group, the 
solution rates for Type A, B, and D did not differ 
statistically 

Figure 2: Average solution rates for Types A, B, C and D in 
the paper group (open bars) and the interactive group (dark 
bars). Error bars are standard errors of the mean. 

Predictors of Performance 
Performance on some of the cognitive abilities tests was 
correlated with overall performance on the matchstick 
algebra task. For the paper group participants’ numeracy 
was most strongly correlated with matchstick algebra 
performance, r(23) = .51, p = .009, and performance on the 
NART, r(23) = .45, p = .025. A stepwise regression 
analysis produced a significant model, F(1, 23) = 8.13, p = 
.009, with numeracy the sole variable entered in the model 
explaining 26% of the variance in matchstick algebra 
performance in the paper group. For the interactive group, 
performance on two Beta component tests, picture 
absurdities, r(23) = .46, p = .021, and matrix reasoning, 
r(23) = .47, p = .019, were most strongly correlated with 
matchstick algebra performance. A stepwise regression 
analysis produced a significant model, F(1, 23) = 6.34, p = 
.019, with matrix reasoning the sole variable retained in 
the model, explaining 22% of the variance.  

 

Discussion 
The average solution rate for each of the four types of 
problems in the paper group closely replicated the solution 
rates reported in Knoblich et al. (1999). That is, Type A 
problems were the easiest problems, producing 
significantly higher rates of success than Types B and C 
problems; Type C problems were the hardest. While 
Knoblich et al. did not formulate a prediction concerning 
the level of difficulty of Type D problems relative to Types 
B and C, they did predict that Type D problems, involving 
tighter perceptual chunks, would be harder to solve than 
Type A problems, involving the same type of value 
constraints but with looser perceptual chunks. Note that 
this is exactly the pattern of solution rates observed in the 
paper group. However, in the interactive group, the 
patterns in the solution rates departed substantially from 
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those in the paper group and from those reported in 
Knoblich et al. (1999). For one, solution rates for Type A 
problems were identical to the solution rates for Type B 
problems. Remarkably, the solution rates for Types A and 
D did not differ significantly in the interactive group. The 
tautology constraint in Type C problems was the hardest to 
relax in both groups.  

Interactivity Matters  
Interactivity encouraged a much higher rate of insight 
problem solving for all types of problems, with the 
exception of the easiest type of problems, problem A 
involving loose perceptual chunks and a low level 
constraint. Interactivity encourages the rearrangement of 
the matchsticks which generates configurations revealing 
novel affordances for action. For example, picking up the 
top horizontal stick of the equal sign creates a minus sign 
that may frame the action of where to place the stick in 
hand. Manipulation thus leads to opportunities that would 
otherwise require cognitive effort to identify. Key abilities 
for the purpose of this task may therefore involve the 
strategic manipulation of the sticks, and the ability to 
perceive and act upon affordances in that space. In turn, 
participants in the static paper condition are confronted 
with a permanent and perceptually immutable incorrect 
form of the equation, continually re-focusing attention and 
forcing the problem solver to attend to unhelpful 
information. The incorrect representation acts like a 
“rubber band” (Maglio, Matlock, Raphaely, Chernicky, & 
Kirsh, 1999): no matter how far participants can mentally 
morph the visual representation, the physical information 
exerts a form of conceptual gravity that pulls these mental 
efforts back to their starting point.  

Physically moving a matchstick helps deconstruct chunks 
by creating opportunities to perceive the elements that 
make up the numerals. It also facilitates constraint 
relaxation by revealing opportunities for action that the 
new physical representation may afford. This in turn may 
encourage additional manipulation of the physical 
representation. Inevitably the physical representation of the 
problem will be modified from its original form. Changes 
in the problem representation initiate different activation 
patterns in long-term memory, cue different knowledge, 
and better position the reasoner to overcome an impasse.  

Predictors of Performance 
The insight problem solving success for participants in the 
paper group was best predicted by their level of numeracy 
assessed under timed conditions. The non-interactive 
nature of the task meant that participants in the paper 
group had to rely on their internal/mental computational 
abilities to simulate certain matchstick movements. The 
timed numeracy test likely used executive function 
capacity and, of course, arithmetic abilities, key mental 
resources to simulate algebraic transformations mentally. 

In turn, performance in the interactive group was best 
predicted by the Matrix Reasoning component of the Beta 
III. This suggest that non-verbal, spatial and inductive 
reasoning aspects of fluid intelligence are important in 
determining matchstick performance in interactive insight 
problem solving; verbal and mathematical skills are no-
longer the dominant predictors of success. Thus different 
contexts of reasoning engage different skills. These results 
invite a careful examination of the manner with which 
problem solving is investigated. The development of 
process models of problem solving for insight as well as 
for non-insight problems is inevitably predicated on a 
certain experimental procedure, which engages different 
cognitive abilities and strategies. The question becomes, 
which experimental procedure offers the more 
representative window onto problem solving occurring 
outside the laboratory? We believe one that fosters 
interactivity. 

Complementary Strategies 
Participants from both groups naturally employed 
complementary strategies to reduce cognitive demands and 
achieve insight. Interaction with both printed and physical 
numerals of the matchstick equations in both groups was 
rife. A large number of participants in the interactive group 
would be in constant contact with the sticks even when 
they were not being moved. Participants would rest their 
fingers on the magnetic sticks and run them across the 
sticks maintaining continuous contact. Tapping and 
touching of the sticks are examples of complementary 
strategies, focusing attention to the stick in question, like 
pointing a pen at an item on a written list (Kirsh, 1995a). 
Touching the sticks may also form a type of symbolic 
marking in which the contact is a concrete cue that there is 
something to remember about that stick (Kirsh, 1995a). 
Participants were also seen to pick a matchstick from the 
board and hold it in their hand for extended periods of 
time, potentially allowing them to predict the 
consequences of action from moving the stick, creating a 
new short term structure to the task (Kirsh, 1995b). 
Participants in the interactive group would also frequently 
move the matchsticks into novel positions, physically 
testing ideas before placing them back to their original 
position. Spatial re-configuration of the equations allowed 
participants to encode strategy, simplify the form of the 
equation, unveiling new affordances and opportunities to 
guide subsequent action.  

Participants in the paper group also engaged in 
complementary strategies during problem solving. 
Participants would frequently be in contact with the printed 
Roman numerals: They would move their finger across the 
printed equation as if to guide or focus thought, often using 
their finger to represent a matchstick, mimicking rotations 
and movements to aid visualisation and test spatial 
configurations. Some would frequently hover over the 
numerals, as though a close proximity to the numerals was 
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necessary. Others would tap the printed numerals. The use 
of hands in the paper group may reflect an attempt to 
materialise mental projections.  

How People Think 
The experimental procedure developed in the study 
reported here coupled people with artefacts in the process 
of thinking. And while the problem solving task remained 
constrained and artificial, we would argue that the 
interactive methodology employed here offers a much 
closer approximation of real-world problem solving 
behaviour than the non-interactive procedure initially 
employed in Knoblich et al. (1999). Improved performance 
in the interactive group should not be interpreted to call 
into question Ohlsson’s (1992) representational change 
theory of insight: It remains a productive characterization 
of the processes involved in overcoming an impasse and 
achieving insight.  

However, what the data presented here strongly suggest 
is that such theories must be examined with experimental 
procedures that encourage the construction and 
modification of distributed problem representations. These 
distributed representations recruit resources that are 
internal and external to the thinking agent; the control over 
behavior is also distributed among internal and external 
factors. The patterns in the correlations between test of 
cognitive abilities and performance with the matchstick 
algebra problems converge on the notion that designing 
interactive versions of these tasks is not simply an exercise 
in making things more concrete to facilitate reasoning. 
Rather, making the task concrete to foster interactivity 
inevitably engages a different set of cognitive, perceptual 
and motor skills. The data reported here encourage the 
design of experimental environments that capture problem 
solving as situated, embedded, and embodied activities, 
which are likely more representative of the manner people 
think and behave. To be sure, interactivity introduces a 
large number of degrees of freedom which reduce 
experimental control. But it also offers much richer data 
from which to infer the reasoning mechanisms at play 
when solving problems, data that inform how reasoning 
outside the laboratory proceeds. 
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