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Abstract

This paper develops robust testing procedures for nonparametric kernel methods in the
presence of temporal dependence of unknown forms. Based on the �xed-bandwidth asymptotic
variance and the pre-asymptotic variance, we propose a heteroskedasticity and autocorrela-
tion robust (HAR) variance estimator that achieves double robustness � it is asymptotically
valid regardless of whether the temporal dependence is present or not, and whether the kernel
smoothing bandwidth is held constant or allowed to decay with the sample size. Using the
HAR variance estimator, we construct the studentized test statistic and examine its asymp-
totic properties under both the �xed-smoothing and increasing-smoothing asymptotics. The
�xed-smoothing approximation and the associated convenient t-approximation achieve extra
robustness � it is asymptotically valid regardless of whether the truncation lag parameter
governing the covariance weighting grows at the same rate as or a slower rate than the sample
size. Finally, we suggest a simulation-based calibration approach to choose smoothing para-
meters that optimize testing oriented criteria. Simulation shows that the proposed procedures
work very well in �nite samples.
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1 Introduction

This paper proposes new robust testing procedures for nonparametric kernel methods in the
presence of temporal dependence of unknown forms. An important issue in hypothesis testing
with time series data is how to take nonparametric dependence into account in calculating the
standard error. Dependence is typical in time series, and an estimator with positively dependent
data tends to have larger variation than that with iid data. Therefore, if temporal dependence
is not properly considered, we may have an over-rejection problem. For parametric models this
has been a well-researched problem since Newey and West (1987) and Andrews (1991). It is now
standard practice to use the heteroskedasticity and autocorrelation robust (HAR) standard error
in empirical studies.

No such procedure for nonparametric kernel methods has been proposed in the literature. The
fact that the distribution of a kernel estimator with dependent data is asymptotically equivalent
to the distribution with iid data may have masked the need for more robust nonparametric kernel
methods in �nite samples. See Robinson (1983) for detail on the asymptotic equivalence. This
is in sharp contrast to the parametric case. The asymptotic equivalence implies that the usual
standard error formula with iid data is still valid for time series data in an asymptotic sense.
However, in �nite samples, temporal dependence does a¤ect the sampling distribution of a kernel
estimator. In particular, when a process is highly persistent and/or the sample size is not large
enough, the asymptotic variance tends to understate the true �nite sample variation of a kernel
estimator, and this understated variation causes the usual asymptotic test to over-reject in �nite
samples. See, for example, Conley, Hansen and Liu (1997) and Pritsker (1998), who discuss this
problem in kernel density estimation based on short term interest rates.

In developing new and more accurate testing procedures, the paper makes several contri-
butions. Firstly, based on the �xed-bandwidth asymptotic variance and the �pre-asymptotic�
variance of a kernel estimator, we construct a kernel based HAR variance estimator that cap-
tures temporal dependence. The �pre-asymptotic� approach has also been used in Chen, Liao
and Sun (2014) in sieve inference on time series models. Here the �pre-asymptotic�variance is
further justi�ed using the new �xed-bandwidth asymptotics where the kernel-smoothing band-
width h is held �xed. The proposed HAR variance estimator achieves double robustness � it
is asymptotically valid regardless of whether the temporal dependence is present or not, and
whether the kernel smoothing bandwidth is held constant or allowed to decay with the sample
size.

Secondly, we consider the asymptotic properties of the HAR variance estimator and the
associated test statistics under various speci�cations of the smoothing parameters. There are two
smoothing parameters in our testing procedures. The �rst is the kernel smoothing bandwidth
parameter h, and the second is the truncation lag parameter b for covariance weighting; which is
parametrized as the ratio of the truncation lag ST to the sample size T: Both h and b can be �xed
or small in our asymptotic speci�cations. Under the small-h speci�cation, h ! 0 but hT ! 1:
Similarly, under the small-b speci�cation, b! 0 but bT !1:

Under the �xed-h and small-b speci�cation, the asymptotic properties of the HAR variance
estimator and the associated test statistic resemble what one would obtain in a parametric setting.
Under the small-h and small-b speci�cation, the asymptotic bias and variance of the HAR variance
estimator are determined jointly by h and b: This is in contrast with the parametric setting where
the bias and variance trade-o¤ is dictated by b only.

Regardless of whether h is �xed or small, the �xed-b asymptotics delivers new limiting dis-
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tributions of the HAR estimator and the associated t-statistic. Under the �xed-b asymptotics,
the degree of (periodogram) smoothing is �xed, and the HAR variance estimator converges in
distribution to a random variable which is proportional to the true variance. As a result, the
t-statistic is asymptotically equivalent to a ratio of a standard normal variable to the square root
of an independent random weighting variable. The randomness of the HAR variance estimator
is embedded in this random weighting variable. The asymptotically equivalent distribution is
nonstandard but easy to simulate because it is a function of T iid standard normal variables.
We also extend Sun (2014a) to approximate the �xed-b asymptotic distribution by a Student�s
t-distribution.

Since Kiefer, Vogelsang and Bunzel (2000) and Kiefer and Vogelsang (2002a, 2002b, 2005), the
�xed-smoothing asymptotics, which includes the �xed-b asymptotics as an example, has gained
quite some attention in the econometrics literature. Jansson (2004) and Sun, Phillips and Jin
(2008) show the higher order accuracy of the �xed-b asymptotic approximation as compared to
the normal approximation. The �xed-smoothing asymptotics has also been employed in di¤erent
settings, for example, Bester, Conley, Hansen and Vogelsang (2015) and Sun and Kim (2015) in
the spatial setting, and Gonçalves (2012), Kim and Sun (2013) and Vogelsang (2012) in the panel
data setting. Sun (2014b) proposes a �xed-smoothing asymptotic test in the two-step GMM
setting. In a nonparametric setting, Chen, Liao and Sun (2014) propose the �xed-smoothing
asymptotic tests for the sieve method with time series data. No such procedure is considered for
the kernel method, though it is one of most popular estimation methods for nonparametric and
semiparametric models. From this point of view, our paper makes an important contribution,
providing autocorrelation robust tests based on nonparametric kernel estimators.

Finally, we suggest a smoothing-parameter choice procedure to select h and b jointly based on
some testing oriented criteria. In the parametric setting, Andrews (1991) and Newey and West
(1994) choose the smoothing parameter to minimize the asymptotic MSE and propose parametric
and nonparametric plug-in implementations. Sun and Phillips (2009) and Sun (2014a) consider
testing oriented criteria and parametric plug-in methods. For the choice of h, undersmoothing
is suggested for inference. However, no explicit formula or data driven procedure is available
in the literature. Our methods are testing oriented in that we minimize the type II error after
controlling the type I error or the size distortion. As h and b are chosen jointly, it is very di¢ cult
to express the type I and II errors as functions of these two smoothing parameters. To solve this
problem, we suggest a simulation-based calibration procedure. For example, in the case of kernel
density estimation and inference, we �rst use an AR model to calibrate the temporal dependence
in the data, and then simulate the type I and type II errors based on this model. While Gao and
Gijbels (2008) suggest a testing-optimal bandwidth parameter for nonparametric kernel testing,
they assume that the error term is iid:

The remainder of the paper is as follows. Section 2 gives an overview of the problem in kernel
density estimation. Sections 3-5 focus on kernel density estimation and inference. We present
the main ideas with greater details in those sections. In particular, Section 3 motivates the
HAR variance estimator from two di¤erent perspectives: the �xed-bandwidth perspective and
the pre-asymptotic perspective. In the conventional small-b asymptotic framework, this section
also establishes the consistency, rate of convergence and approximate MSE of the HAR variance
estimator. In this small-b framework, we accommodate both the new �xed-bandwidth speci�-
cation where h is held �xed and the conventional small-bandwidth speci�cation where h decays
to zero with the sample size T but hT still diverges. Section 4 develops the asymptotic theory
of the HAR variance estimator and the associated test statistics under the �xed-b asymptotics.
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Section 5 introduces testing oriented criteria for the choice of the smoothing parameters and pro-
poses a simulation-based calibration approach for implementation. Section 6 extends our testing
procedures to the local polynomial estimator. The Monte Carlo simulation results are reported
in Section 7. The last section concludes. Proofs of the results are given in the Appendix.

2 Kernel Density Inference: Overview of the Problem

Given a strictly stationary time series fXtgTt=1, we are interested in estimating its marginal
probability density function f (x) for a point x 2 X , the support of X: The kernel estimator f̂(x)
of f (x) is

f̂ (x) =
1

hT

TX
t=1

K

�
Xt � x
h

�
=
1

T

TX
t=1

Kh (Xt � x) ;

where K(�) is a real-valued kernel function, Kh (u) = 1=hK (u=h) ; and h is the smoothing
parameter.

De�ne the �-mixing coe¢ cient:

� (`) = sup
A2Ft�1; B2F1t+`

jP (A \B)� P (A)P (B)j with ` > 0;

where Fba is the �-�eld generated by fXtgbt=a:
To establish the asymptotic properties of f̂ (x) ; we maintain the following assumptions, which

are typical in the literature.

Assumption 1 f (�) is continuously di¤erentiable up to order (r + 1) in a neighborhood around
x:

Assumption 2 (i) K (u) is continuous with compact support. (ii)
R
K (u) du = 1;

R
ujK (u) du =

0 for j = 1; : : : ; q � 1 and
R
uqK (u) du 6= 0 where q = r + 1:

Assumption 3 (i) fXtgTt=1 is a strictly stationary and mixing process with �-mixing coe¢ cient
satisfying j� (`)j � C`�� for some � > 2: (ii) The probability density gr�s (u; v) of Xr and Xs for
r 6= s is uniformly bounded in the sense that sup` supu2X ;v2X g` (u; v) � C for some C 2 (0;1):

The compact support assumption in Assumption 2 is made for convenience. Our asymptotic
results remain valid if this assumption is replaced by an assumption that regulates the tail
behaviors of K (�), but the proofs will be longer and more tedious.

De�ne
Zt;h (x) :=

p
hKh (Xt � x)� E

p
hKh (Xt � x) :

Theorem 1 Let Assumptions 1-3 hold. If h! 0; Th!1 and Th1+2q ! 0 as T !1, then

V ar
hp
Thf̂ (x)

i
= V ar

 
1p
T

TX
t=1

Zt;h (x)

!
= V ar [Zt;h (x)] (1 + o (1))

! f (x)

�Z
K2 (u) du

�
:= V (x) ; (1)
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and
p
Th
�
f̂ (x)� f (x)

�
=

1p
T

TX
t=1

p
h [Kh (Xt � x)� f(x)]!d N (0; V (x)) (2)

for any interior point x in the support of f (�) :

A proof can be found in many papers, for example, Robinson (1983).
The asymptotic distribution in (2) is exactly the same as what we would obtain with iid

data. It says that temporal dependence does not a¤ect the �rst order asymptotic distribution of
f̂(x). This �dependence irrelevant�result is due to the localization property of kernel smoothing.
f̂(x) can be regarded as the relative and weighted frequency of fXtgTt=1 in the neighborhood
[x� h=2; x+ h=2] of x, where the weight is adjusted by the kernel function. For consistency, we
require h ! 0 as T ! 1 so that smoothing is taken in a small and shrinking neighborhood.
More importantly, smoothing is taken in the domain of x with no regard for time. Observations
that are close in time and hence correlated may receive very di¤erent weights with consequential
smaller correlation after kernel transformation. For these reasons,

1

T

X
t6=�

Cov [Zt;h (x) ; Z�;h (x)]! 0 as h! 0 and T !1:

As a result, the variance term becomes dominant.
Conventional testing procedures are designed on the basis of the asymptotic result in (2). By

having a sequence of h such that h! 0; Th!1 and Th1+2q ! 0 as T !1, the standardized
statistic t0T (x) converges in distribution to the standard normal as follows:

t0T (x) :=

p
Th
�
f̂ (x)� f (x)

�
q
V̂ (x)

!d N (0; 1) ; where V̂ (x) = f̂ (x)
�Z

K2 (u) du

�
: (3)

In �nite samples, however, h is a positive number, and the e¤ect of temporal dependence on
the distribution of f̂(x) does not vanish completely. In particular, if the time series is highly
persistent and/or the sample size is not large enough, inference based on the asymptotic result
in (3) may su¤er from serious size distortion. Robinson (1983) also points out that the accuracy
of the asymptotic approximation in �nite samples depends critically on the choice of h.

Figure 1 presents some simulation evidence. It plots the empirical type I error of the conven-
tional 5% test under di¤erent degrees of temporal dependence. The data is generated from

Xt = �Xt�1 + "t (4)

withX0 � N (0; 1) and "t �iid N (0; 1). To minimize the e¤ect of initialization, we generate a time
series of length 2T and drop the �rst T observations, and so our observations are fXtg2Tt=T+1. The
coe¢ cient in the AR(1) process � represents the strength of dependence. The marginal density
function f (x) of Xt s N

�
0; 1=

�
1� �2

��
is nonparametrically estimated using the Gaussian

kernel. Undersmoothing is taken by choosing h = 1:06�̂xT�1=3, where �̂2x is the sample variance
of Xt: The vertical axis denotes the empirical type I errors, and the horizontal axis denotes the
values of x at which f (x) is estimated. The number of simulation replications is 5000. The �gure
clearly shows a signi�cant discrepancy between the empirical type I error and the nominal level
when the process is highly persistent. For example, when � = 0:95 and T = 200, the empirical
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Figure 1: Empirical type I error for the 5% asymptotic normal test based on the asymptotic
variance estimator

type I error at x = 0 is about 0:35; and it gets even higher when x is near the tails. Increasing the
sample size to a high but empirically relevant value is not enough to eliminate this problem. We
see some improvement with T = 2000; but the size distortion is still apparent. The results are
consistent with the �ndings in Pritsker (1998) and motivate us to develop new testing procedures
that take temporal dependence into account.

3 HAR Inference: Motivation and Small-b Asymptotics

In this section, we provide two di¤erent motivations for the HAR variance estimator that ac-
commodates temporal dependence. We examine its asymptotic properties under the small-b
asymptotics.

3.1 Fixed-h Asymptotic HAR Variance Estimator

A key condition behind the �dependence irrelevant�result is that h! 0 as T !1: The decaying
rate of h ensures that f̂ (x) is consistent. Mathematically, the decaying rate of h also makes
Kh (�) behave like the Dirac delta function so that the transformed time series fKh (Xt � x)g has
weaker dependence as h decreases. Had we held h �xed as T ! 1; the temporal dependence
would remain in the asymptotic approximation. We call the asymptotics under which h is held
�xed as T !1 the �xed-h asymptotics or the �xed-bandwidth asymptotics.

Theorem 2 Let Assumptions 2(i) and 3(i) hold. Assume that

Vh (x) = lim
T!1

V ar

 
1p
T

TX
t=1

Zt;h (x)

!
> 0 for each �xed h > 0:
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Then for any point x in the support of f (�) ;
p
Th
�
f̂ (x)� Ef̂ (x)

�
!d N (0; Vh (x)) (5)

as T !1 for a �xed h:

For each h; Vh (x) is the long run variance of fZt;h (x)g :

Vh (x) = V ar [Zt;h (x)] + 2 lim
T!1

T�1X
`=1

�
1� `

T

�
Cov [Z1;h (x) ; Z`+1;h (x)]

= V ar [Zt;h (x)] + 2

1X
`=1

Cov [Z1;h (x) ; Z`+1;h (x)] :

For a given h, there is no reason to expect the second term, which involves the autocovariances
of all lags, to be of smaller order than the �rst term, which is the variance term. So, in general,
the long run variance Vh (x) will not become degenerate. For a general nonparametric estimation
problem like this, hT is often regarded as the e¤ective sample size. The nonparametric nature
of the problem as h ! 0 is re�ected in the slower rate of divergence of the e¤ective sample
size compared to the actual sample size T . However, if h is �xed, then the e¤ective sample size
diverges at the same rate as the actual sample size. To some extent, holding h �xed reduces the
nonparametric problem locally to a parametric one. It is well-known that temporal dependence
usually a¤ects the asymptotic variance in a parametric setting. In view of this likening of our
problem to a parametric one, Theorem 2 is quite intuitive.

Compared with Theorem 1, Theorem 2 centers f̂ (x) at its expected value instead of the true
density function f (x) : In essence, we have ignored the bias of the kernel density estimator. The
extra conditions that are needed for Theorem 1 ensure that the bias is asymptotically negligible
and the �dependence irrelevant�result holds. The change of centering releases us from worrying
about the bias e¤ect.

An alternative view of our strategy may be helpful here. After we decompose the estimation
error into a sampling error and a nonsampling error (i.e., the bias), we can free ourselves by
allowing potentially di¤erent asymptotic speci�cations when developing approximations to these
two types of errors. Conventionally, we insist on using a single asymptotic speci�cation dictated
by the asymptotically unbiased requirement. As a result, we obtain the �dependence irrelevant�
result that is too optimistic in many economic applications where the underlying time series has
high positive autocorrelation. Here we look at the sampling error separately from the nonsampling
error and choose an asymptotic speci�cation that may deliver a more accurate approximation.

In principle, we should use f (x) as the center so that we can make inferences on the true
density function. However, using f (x) as the center, coupled with the MSE optimal bandwidth,
leads to a con�dence interval (CI) for f (x) that is asymptotically invalid in that the asymptotic
coverage probability di¤ers from the intended coverage probability. To construct an asymp-
totically valid CI, we often employ undersmoothing with an ad hoc choice of the bandwidth.
Another approach is to estimate the bias and make inferences based on the bias-reduced kernel
density estimator. However, it is often very di¢ cult to estimate the bias, as it involves high order
derivatives of the density function. So no satisfactory solution exists. For this reason, empirical
researchers often ignore the bias in constructing the CI�s. But this e¤ectively means that the
CI�s are based on Theorem 2 above.
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While Theorem 2 requires that h be �xed, we do not have to �x h at a given value for all
sample sizes and data generating processes. We think of the �xed-h asymptotic speci�cation as an
asymptotic device to establish a more accurate asymptotic approximation. In fact, in empirical
applications, the sample size T is usually given beforehand and the bandwidth parameter needs to
be determined using a priori information and/or information obtained from the data. Very often,
the selected h is smaller for a larger sample size but the e¤ective sample size is still large. So the
empirical situations appear to be more compatible with the requirement that h! 0 and Th!1:
However, once h is chosen, it takes a particular value for the sample under consideration. We can
use this value as the �xed value and plug it into the �xed-h asymptotics to conduct inferences.
As the �xed value h becomes smaller, we can show that Vh (x) becomes closer to V (x) : So Vh (x)
is a more robust measure of the sampling variation than V (x) :

Following the standard practice in the HAR literature, we can estimate Vh (x) by

V̂h(x) =
1

T

TX
t=1

TX
�=1

W

�
t� �
ST

�
Ẑt;h (x) Ẑ�;h (x) ; (6)

where

Ẑt;h (x) =
p
h

"
Kh (Xt � x)�

1

T

TX
s=1

Kh (Xs � x)
#
=
p
h
h
Kh (Xt � x)� f̂ (x)

i
;

W (�) is a covariance weighting function, and ST = ST (x) is the truncation (lag) parameter. To
avoid possible confusion, we restrain from referring to W (�) as a kernel function and ST as the
bandwidth parameter, as these two terms have been used for K (�) and h; respectively. If we
reparametrize ST in terms of the ratio b = ST =T; then we have

V̂h(x) =
1

T

TX
t=1

TX
�=1

W

�
t� �
bT

�
Ẑt;h (x) Ẑ�;h (x) ; (7)

where b is now the smoothing parameter for covariance weighting.

3.2 Pre-asymptotic HAR Variance Estimator

In the conventional asymptotic framework where h! 0 and hT !1 as T !1; the estimator
in (6) can be motivated by a �pre-asymptotic�argument. We compute the exact �nite sample
variance of

p
Thf̂ (x) as follows:

VT;h (x) = V ar
�p
Thf̂ (x)

�
=
1

T

TX
t=1

TX
�=1

E [Zt;h (x)Z�;h (x)]

= V ar [Zt;h (x)] + 2

T�1X
`=1

�
1� `

T

�
Cov [Z1;h (x) ; Z`+1;h (x)] : (8)

The above calculation involves no asymptotics and thus holds for any value of h and T: It is the
variance expression that we can get our hands on before developing any asymptotic approxima-
tion. For this reason, we call VT;h (x) the �pre-asymptotic�variance.

Compared to Vh(x); VT;h (x) is equal to Vh (x) except that it involves only the autocovariances
up to order T � 1. So it can be regarded as a �nite sample version of Vh (x) : Compared to
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V (x), VT;h (x) involves further autocovariance terms. Though the second term in (8) vanishes
asymptotically under weak dependence as h ! 0, it can be nontrivial when T is not large and
h is not small. While VT;h (x) is the exact variance of

p
Thf̂ (x) ; V (x) is an approximation to

VT;h (x) : In �nite samples, it is reasonable to estimate VT;h (x) directly instead of its large sample
approximation V (x) :

In view of the de�nition of VT;h (x) ; a natural estimator is then given by V̂h (x) in (6).
This gives an alternative motivation for V̂h (x). Regardless of the asymptotic devices we are
comfortable working with, the use of a HAR variance can be justi�ed.

3.3 Fixed-h Asymptotic Properties

To examine the asymptotic properties of V̂h (x) ; we de�ne its infeasible version as

~Vh(x) =
1

T

TX
t=1

TX
�=1

W

�
t� �
ST

�
Zt;h (x)Z�;h (x) =

1

T

TX
t=1

TX
�=1

W

�
t� �
bT

�
Zt;h (x)Z�;h (x) : (9)

Under some conditions, we will show that the di¤erence between V̂h(x) and ~Vh(x) is of smaller
order than the squared root of the variance of ~Vh(x): Hence, we can obtain an approximate
measure of the mean squared error (MSE) of V̂h(x) using the asymptotic MSE of ~Vh(x):

De�ne

W (p0) = lim
�!0

1�W (�)

j�jp0 for p0 2 [0;1);

and let p = max
�
p0 :W

(p0) <1
	
be the Parzen characteristic exponent of W (�). The magni-

tude of p re�ects the smoothness of W (�) at � = 0.
We make some mild conditions on the covariance weighting function.

Assumption 4 (i) The covariance weighting function W (�) satis�es W (0) = 1; jW (�)j � 1;
W (�) = W (��) ; and W (�) = 0 for j�j � 1; (ii) For all �1; �2 2 R there is a constant, cL < 1;
such that

jW (�1)�W (�2)j � cL j�1 � �2j :

(iii) The Parzen characteristic exponent p of W (�) is greater than or equal to 1:

Most commonly used covariance weighting functions satisfy this condition. Some examples
are the Bartlett, Tukey-Hanning and Parzen kernels. The quadratic spectral (QS) kernel does
not satisfy this assumption because it does not truncate. We can generalize the results to include
the QS kernel, but this requires much more complicated proofs.

To characterize the asymptotic bias of V̂h(x); we de�ne, for each �xed h :

B
(p)
h (x) = 2 lim

T!1

T�1X
`=1

Cov [Z1;h (x) ; Z1+`;h (x)] `
p; (10)

which in general depends on h: By the mixing inequality in Section 1.2.2 of Doukhan (1994), we
have

Cov [Z1;h (x) ; Z1+`;h (x)] � 4 kKk1 � (`) =h;

where kKk1 = supu2R jK(u)j : It then follows that
PT�1
`=1 Cov [Z1;h (x) ; Z1+`;h (x)] `

p converges
absolutely if

P1
`=1 `

p� (`) <1. The latter condition holds if the value of � in Assumptions 3(i)
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is greater than p+1: Hence the condition � > p+1 guarantees the existence of B(p)h (x) for each
h:

Theorem 3 Let Assumptions 2(i), 3(i) and 4 hold with � > max fp+ 1; 3g : Suppose that h is
�xed, ST !1, and ST =T ! 0 as T !1: Then

(a) limT!1 (T=ST )V ar( ~Vh(x)) = 2
�R 1
�1W (�)2 d�

�
[Vh(x)]

2 ;

(b) limT!1 S
p
T

�
E ~Vh(x)� Vh (x)

�
= �W (p)B

(p)
h (x) ;

(c)
p
T=ST

�
V̂h (x)� ~Vh (x)

�
= op (1) :

The rate conditions �ST ! 1 and ST =T ! 0�are equivalent to �b ! 0 and bT ! 1�. For
easy reference, we call the asymptotics under b! 0 and bT !1 the small-b asymptotics. This
is to be compared with the �xed-b asymptotics when b is held �xed as T !1 in the next section.

Using Theorem 3 and a Nagar-type (Nagar, 1959) moment approximation, we obtain the
approximate MSE (AMSE) of V̂h (x) as

AMSE
�
V̂h (x)

�
=
2ST
T

�Z 1

�1
W (�)2 d�

�
[Vh(x)]

2 +
1

S2pT

h
W (p)

i2 �
B
(p)
h (x)

�2
:

This can be also justi�ed based on the asymptotic truncated MSE criterion proposed and studied
by Andrews (1991). Here we are content with the Nagar approximation, as we will not gain much
additional insight from the asymptotic truncated MSE calculation.

It follows that the AMSE optimal ST is given by

S�T =

0B@ p
h
W (p)B

(p)
h (x)

i2�R 1
�1W (�)2 d�

�
[Vh(x)]

2

1CA
1

2p+1

T
1

2p+1 : (11)

A plug-in implementation such as Andrews (1991) can be employed to obtain a data-driven choice
of ST :

Combining Theorems 2 and 3, we obtain the following corollary.

Corollary 1 Let Assumptions in Theorems 2 and 3 hold. Suppose that h is �xed, ST ! 0, and
ST =T !1 as T !1: Then

t1T (x) :=

p
Th
�
f̂ (x)� Ef̂ (x)

�
q
V̂h (x)

!d N (0; 1) :

The corollary provides the usual basis for making inferences on Ef̂ (x) : If we ignore the bias
in practical situations, the corollary also provides the basis for making inferences on f (x) :

3.4 Small-h Asymptotic Properties

In this subsection, we consider the asymptotic properties of the HAR variance estimator and the
studentized t-statistic using the small-h asymptotics under which h! 0 and hT !1 as T !1:

10



While the asymptotic properties of V̂h (x) for a �xed h follow from the standard arguments
such as those in Andrews (1991), the asymptotic properties under the small-h speci�cation require
new arguments. The reason is that the standard arguments require a �nite � -th moment of Zt;h (x)
for some � > 2: However, when h ! 0; any moment of Zt;h (x) of order higher than 2 diverges
with h: For this reason, we have to control the higher order dependence using a stronger mixing
condition.

De�ne the fourth order cumulant function of (Zt;h (x) ; Zt+`1;h (x) ; Zt+`2;h (x) ; Zt+`3;h (x)) as

QT (`1; `2; `3)

= E [Z1;h (x)Z1+`1;h (x)Z1+`2;h (x)Z1+`3;h (x)]� E
h
~Z1;h (x) ~Z1+`1;h (x)

~Z1+`2;h (x)
~Z1+`3;h (x)

i
;

where f ~Zt;h (x)g is a Gaussian sequence with the same mean and covariance structure as fZt;h (x)g :

Lemma 1 Let Assumptions 2(i) and 3 hold with � > max f2 (p+ 1) ; 5g. Assume that the prob-
ability densities of (Xr1 ; Xr2 ; Xr3) and (Xr1 ; Xr2 ; Xr3 ; Xr4) are bounded uniformly over mutually
di¤erent values of r1; r2; r3; r4: Suppose h! 0 as T !1: Then

(a)
PT�1
`1=0

PT�1
`2=0

PT�1
`3=1

jQT (`1; `2; `3)j = O
�
h�2=�

�
;

(b) there exists B(p) (x) < 1 such that 2h��
PT�1
`=1 Cov [Z1;h (x) ; Z1+`;h (x)] `

p ! B(p) (x)
where � = 1� 2(p+ 1)=�:

Lemma 1(a) helps control the error when we replace fZt;h (x)g by the Gaussian sequence
f ~Zt;h (x)g in computing the asymptotic variance of ~Vh (x). For parametric models such as those
considered in Andrews (1991), it is typical that

PT�1
`1=0

PT�1
`2=0

PT�1
`3=0

jQT (`1; `2; `3)j <1: Due to
the lack of moment conditions, Lemma 1(a) is weaker on two fronts. First, QT (0; 0; 0) is excluded
from the sum, as E[Z4t;h (x)] diverges under the small-h asymptotics. Second, the sum is not
bounded even after excluding QT (0; 0; 0) : Instead, it diverges as h ! 0 albeit at a manageable
rate. Nevertheless, the weaker result with the upper bound given in Lemma 1(a) is su¢ cient for
our asymptotic variance calculation.

Lemma 1(b) facilitates the asymptotic bias calculation. Here B(p) (x) is similar to that of
B
(p)
h (x) de�ned in (10). While B(p)h (x) depends on h; B(p) (x) does not. The di¤erence arises

because we normalize 2
PT�1
`=1 Cov [Z1;h (x) ; Z1+`;h (x)] `

p by h� to ensure its convergence as h!
0: In the parametric setting, we often assume that 2

PT�1
`=1 Cov [Z1;h (x) ; Z1+`;h (x)] `

p is �nite.
In our setting, this sum converges to zero when the temporal dependence is weak enough. So our
HAR variance estimator is expected to have a smaller bias, re�ecting the whitening e¤ect of the
kernel transformation.

Using Lemma 1, we can prove Theorem 4, which summarizes the asymptotic properties of
V̂h (x) under the small-h asymptotics.

Theorem 4 Let Assumptions 2-4 and the extra assumptions in Lemma 1 hold. Suppose h !
0; ST !1 but ST =T ! 0 and Th!1 as T !1.

(a) For �T = min fTh; T=ST g ;

lim
T!1

�TV ar
�
~Vh (x)

�
=

8>><>>:
f (x)

R
K (u)4 du; if hST ! 0;

f (x)
�R
K (u)4 du

�
=
 + 2

�R 1
�1W (�)2 d�

�
V (x)2 ; if hST ! 
;

2
�R 1
�1W (�)2 d�

�
V (x)2 ; if hST !1;

11



where 
 2 (0;1):
(b) limT!1 SpT =h

�
h
E ~Vh(x)� Vh (x)

i
= �W (p)B(p) (x) :

(c)
p
�T

�
V̂h (x)� ~Vh (x)

�
= op (1) :

(d) Vh (x) = V (x) + o (1) :

From Theorem 4(a) and (b), we can see that the variance and bias of ~Vh (x) depend not only
on the truncation parameter ST but also on the bandwidth parameter h. This is in contrast to
the case of parametric models in which the trade-o¤ is based on the choice of ST . Theorem 4(a)
shows that the variance of ~Vh (x) has two sources. The �rst is the fourth moment of the kernel
process. As h shrinks to zero as T ! 1, E[Zt;h (x)4], which is of order 1=h and is unbounded,
contributes to the variance in�ation of ~Vh (x) : In the parametric setting, the fourth moment is
assumed to be �nite in general, and its contribution to the variance is asymptotically negligible.
The second source is the usual variance term of the kernel LRV estimator. As usual, this term
increases with ST : Depending on the relative rate of the two smoothing parameters, one of them
may dominate the other.

Theorem 4(b) shows that the bias of ~Vh (x) decreases as we reduce the degree of smoothing
in estimating f (x) or the degree of smoothing in estimating Vh (x) : For the former, the degree
of smoothing is indicated by h: For the latter, the degree of smoothing is indicated by 1=ST : The
bias decreases as h decreases because the strength of autocorrelation attenuates as h ! 0. The
bias decreases as ST increases because the downweighing and truncating become less severe as
ST !1:

It follows from Theorem 4(c) thatp
�T

�
V̂h (x)� Vh (x)

�
=
p
�T

�
~Vh (x)� Vh (x)

�
+ op (1) :

Assuming that �Th2�=S
2p
T ! C 2 (0;1); we can invoke Nagar�s argument to obtain the approx-

imate MSE of V̂h (x) :

AMSE
�
V̂h (x)

�
=

1

Th
f (x)

Z
K (u)4 du+ 2

ST
T

�Z 1

�1
W (�)2 d�

�
V (x)2 +

h2�

S2pT

�
W (p)B(p) (x)

�2
;

which is actually equal to the asymptotic MSE of ~Vh (x). Note that the �rst term does not depend
on ST : For each given h; we can �nd the AMSE optimal ST to be

~S�T = argmin
ST

ST
T
2

�Z 1

�1
W (�)2 d�

�
V (x)2 +

h2�

S2pT

�
W (p)B(p) (x)

�2

=

0@ p
�
W (p)h�B(p) (x)

�2�R 1
�1W (�)2 d�

�
[V (x)]2

1A 1
2p+1

T
1

2p+1 : (12)

Obviously, ~S�T decreases with h: As h becomes smaller, the kernel transformed time series
fZt;h (x)g becomes less correlated, and so a smaller truncation lag parameter is desired.

The formula in (12) is the same as that in (11) except that B(p)h (x) and Vh (x) are replaced

by h�B(p) (x) and V (x) respectively. Note that both B(p)h (x) and h�B(p) (x) are approximately
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equal to

2

T�1X
`=1

Cov [Z1;h (x) ; Z1+`;h (x)] `
p:

We can employ a plug-in parametric model to estimate this quantity and use it as the estimate
for both B(p)h (x) and h�B(p) (x) : Similarly, we can use the same plug-in value, i.e., the implied
long run variance from the parametric model, for Vh (x) and V (x). In this case, the data driven
ŜT will be the same regardless of which formula we use. While the two formulae are obtained
under di¤erent asymptotic speci�cations and have di¤erent justi�cations, they lead to the same
practice in empirical applications.

Under the AMSE optimal ~S�T given above and the assumption that B
(p) (x) 2 (0;1); we have

AMSE
�
V̂h (x)

�
� 1

Th
+

�
Th2�

� 1
2p+1

T
=

1

Th
+ T

� 2p
2p+1h

2�
2p+1 ;

where ���signi�es that the two sides are of the same order. To balance the two terms, we choose
h such that h � T�

1
2p+2�+1 under which

AMSE
�
V̂h (x)

�
� T�

2(p+�)
2p+2�+1 :

The rate of convergence of V̂h (x) to Vh (x) is then T
� p+�
2p+2�+1 : If � > 0, this rate is faster than

T�p=(2p+1), which is the convergence rate of the HAR variance estimator in the parametric setting.
For commonly used kernel and weighting functions, we have p = q = 2: In this case, it is well-
known that the MSE optimal h for the point estimation of f (x) satis�es h � T�1=(2q+1) = T�1=5.
Undersmoothing, which is often suggested for inference, requires that h = o

�
T�1=5

�
. Neither rate

is compatible with the AMSE optimal rate for the point estimation of Vh (x) : Thus, the optimal
convergence rate of V̂h (x) is not achieved. This provides a motivation for alternative rules for
smoothing-parameter choice considered in Section 5.

It follows from Theorem 4(d) that V̂h (x) is consistent for V (x) under the small-h and small-b
asymptotics. In the previous subsection, we have shown that V̂h (x) is consistent for Vh (x) under
the �xed-h and small b asymptotics. So no matter whether h is �xed or small, V̂h (x) converges
to the target we want. We may conclude that V̂h (x) achieves the robustness with respect to
the asymptotic speci�cation of h: By design, V̂h (x) is also robust to the presence of temporal
dependence or its absence. Therefore, V̂h (x) enjoys double robustness.

The corollary below follows from Theorems 1 and 4.

Corollary 2 Let Assumptions 1-4 and the extra assumptions in Lemma 1 hold. Then, we have

t2T (x) :=

p
Th
�
f̂ (x)� f (x)

�
q
V̂h (x)

!d N (0; 1)

if h! 0; ST !1; T=ST !1; Th!1 and Th1+2q ! 0 as T !1:

Corollary 2 is the same as Corollary 1 except for the centering di¤erence. This centering
di¤erence is derived from that between Theorems 1 and 2. So the discussions on the centering
issue after Theorem 2 apply here as well.

13



4 HAR Inference: Fixed-b Asymptotics

In this section, we hold b = ST =T �xed while letting T ! 1 and develop the so-called �xed-b
asymptotic approximations to t1T (x) and t2T (x) : To emphasize their dependence on b; we now
write V̂h(x; b) = V̂h(x); t1T (x; b) = t1T (x) ; and t2T (x; b) = t2T (x) :

Letting Wb (s) =W (s=b) ; we can write

V̂h(x; b) =
1

T

TX
t=1

TX
�=1

~Wb;T

�
t

T
;
�

T

�
Zt;h (x)Z�;h (x) ;

where

~WT;b

�
t

T
;
�

T

�
=Wb

�
t� �
T

�
� 1
T

TX
s1=1

Wb

�
t� s1
T

�
� 1
T

TX
s2=1

Wb

�
s2 � �
T

�
+
1

T 2

TX
s1=1

TX
s2=1

Wb

�
s1 � s2
T

�
is the demeaned version of Wb ((t� �) =T ) : As T ! 1; we obtain the �continuous�version of
~WT;b (t=T; �=T ) below:

W �
b (t; �) =Wb (t� �)�

Z 1

0
Wb (t� s1) ds1 �

Z 1

0
Wb (s2 � �) ds2 +

Z 1

0

Z 1

0
Wb (s1 � s2) ds1ds2:

By construction,
R 1
0 W

�
b (s; �) ds =

R 1
0 W

�
b (t; s) ds = 0 for any t and �:

Assumption 5 For b 2 (0; 1]; Wb (�) is symmetric, continuous, piecewise monotonic, and piece-
wise continuously di¤erentiable on [�1; 1].

Assumption 5 strengthens Assumption 4 by requiring Wb (�) to be piecewise monotonic and
piecewise continuously di¤erentiable. Assumption 5 is still mild and satis�ed by commonly used
covariance weighting functions such as the Bartlett and Parzen kernels.

Under Assumption 5, W �
b (t; �) has the following representation:

W �
b (t; �) =

1X
n=1

�n	bn(t)	bn(�); (13)

where f	bn (�)g is a sequence of continuously di¤erentiable functions satisfying
R 1
0 	bn (r) dr = 0.

The right hand side of (13) converges absolutely and uniformly over (t; �) 2 [0; 1]� [0; 1]: See Sun
(2014a) for further discussion.

De�ne 	b0(�) � 1: We introduce the following high level assumption.

Assumption 6 Under both the small-h asymptotic sequence where h ! 0 and Th ! 1 as
T !1 and the �xed-h asymptotic sequence where h is held �xed as T !1; the following holds:

P

 
1p
T

TX
t=1

	bn

�
t

T

�
Zt;h (x) � � for n = 0; 1; : : : ;L

!

= P

 p
Vh (x)p
T

TX
t=1

	bn

�
t

T

�
et � � for n = 0; 1; : : : ;L

!
+ o (1) as T !1

for every �xed L where et �iid N (0; 1) ; b 2 (0; 1] and � 2 R:
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Assumption 6 is satis�ed if a CLT holds jointly over n = 0; 1; 2; : : : ;L for

1p
T

TX
t=1

	bn

�
t

T

�
Zt;h (x)

under the two asymptotic sequences given in the assumption.
When Assumption 6 holds, we say T�1=2

PT
t=1	bn (t=T )Zt;h (x) is asymptotically equivalent

in distribution to (Vh (x) =T )
1=2PT

t=1	bn (t=T ) et; and write

1p
T

TX
t=1

	bn

�
t

T

�
Zt;h (x) �a

p
Vh (x)p
T

TX
t=1

	bn

�
t

T

�
et: (14)

Some primitive su¢ cient conditions for Assumption 6 are provided in the web appendix of Sun
and Kim (2014).

Proposition 1 Let Assumptions 2(i), 3, 5 and 6 hold. Then under both the small-h asymptotic
sequence and the �xed-h asymptotic sequence, we have, for b 2 (0; 1] :

V̂h(x; b) �a V aT;h(x; b) :=
Vh (x)

T

TX
t=1

TX
�=1

Wb

�
t� �
T

�
(et � �e) (e� � �e)

where �e = T�1
PT
s=1 es and the asymptotic equivalence holds jointly with (14).

Proposition 1 shows that V aT;h(x; b) is a random variable proportional to Vh (x) : Based on
this result, we can derive the asymptotically equivalent distribution of the studentized statistic.
Under the �xed-b and �xed-h asymptotics, we have

t1T (x; b) =
T�1=2

PT
t=1 Zt;h (x)q

V̂h (x; b)
�a T

�1=2PT
t=1 Zt;h (x) =

p
Vh (x)q

V̂h (x; b) =Vh (x)

�a T�1=2
PT
t=1 etq

T�1
PT
t=1

PT
�=1Wb ((t� �)=T ) (et � �e) (e� � �e)

:= taT (x; b) : (15)

Under the �xed-b and the small-h asymptotics such that Th1+2q ! 0; we have

t2T (x; b) = t1T (x; b) + op (1) �a taT (x; b) : (16)

The asymptotically equivalent distribution taT (x; b) is a function of T iid standard normal
random variables. The numerator and denominator of taT (x; b) in (16) are independent, since
Cov(

PT
t=1 et; e� � �e) = 0 for all � = 1; : : : ; T: taT (x; b) is pivotal but not a standard normal

variable due to the random denominator. The randomness of V̂h(x; b) is captured by this random
denominator. By subtracting �e, taT (x; b) also captures the demeaning bias of V̂h (x; b), which is
due to the use of Ẑt;h (x) instead of Zt;h (x) in constructing V̂h (x; b) :

Theorem 5 summarizes the result above.
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Theorem 5 Let Assumptions 2(i), 3, 5 and 6 hold.
(a) For a �xed b 2 (0; 1] and a �xed h,

P (t1T (x; b) < �) = P (t
a
T (x; b) < �) + o (1) ; where � 2 R

as T !1:
(b) If in addition Assumptions 1 and 2(ii) hold, then for a �xed b 2 (0; 1] :

P (t2T (x; b) < �) = P (t
a
T (x; b) < �) + o (1) where � 2 R

when h! 0; Th!1 and Th1+2q ! 0 as T !1:

As b ! 0; taT (x; b) converges to the standard normal distribution. So regardless of whether
b is held �xed or allowed to decay to zero, critical values from the distribution of taT (x; b) are
asymptotically valid. Our �xed-b asymptotic test has thus achieved triple robustness � it is
asymptotically valid regardless of whether the temporal dependence is present or not, whether
the kernel smoothing bandwidth is held constant or allowed to decay with the sample size, and
whether the truncation lag, ST ; governing the covariance weighting, grows at the same rate as or
at a slower rate than the sample size.

We can conduct the �xed-b asymptotic test by simulating taT (x; b) : The simulation is not
computationally expensive, because we can obtain a realization of taT (x; b) by drawing T iid
standard normal variables and by plugging them into the simple representation in (15).

If we want to avoid simulating the nonstandard critical values, we can extend Sun (2014a,
Theorems 1 and 4) to establish a t-approximation, which approximates taT (x; b) by a Student�s
t-distribution. Let

c1 =

Z 1

�1
W (�)d� and c2 =

Z 1

�1
W 2 (�) d�:

Theorem 6 formalizes the t-approximation.

Theorem 6 Let Assumption 5 hold. As b! 0; we have

P (taT (x; b) � a) = P
�
1p
�
t (v�) � a

�
+ o (b) ;

for � = 1 � bc1 and v� = d1=bc2e ; where d�e is the ceiling function and t (v�) follows the t-
distribution with degree of freedom v�:

Based on Theorem 6, we can perform the test that uses

t�T (x; b) =
p
�t2T (x; b)

as the test statistic and t (v�) as the reference distribution. The proposed test is as easy to use
as the asymptotic normal test and is able to capture the e¤ect of b to the �rst order.

5 Choice of Smoothing Parameters

An important issue in conducting the proposed test is to choose the two smoothing parameters.
While the MSE optimal b based on (11) or (12) may provide some guidance on the selection of
b; there is no reason to expect that such a choice is the most appropriate in hypothesis testing.

16



In addition, the performance of our test depends not only on the choice of b but also on the
choice of h: It is desirable to select them jointly using a testing oriented criterion. In this section,
we consider selecting (h; b) to minimize the type II error while controlling for the type I error
or the size distortion. For empirical implementation, we suggest a simulation-based calibration
approach.

5.1 Basic Idea

Let t�(v�) denote the (1� �)th quantile of the t(v�) distribution. Suppose that we are interested
in the following two-sided test:

H0 : f(x) = f0 vs. H1 : f(x) 6= f0:

The level � test rejects H0 if jt�T (x; b)j > t�=2(v�), and the type I error of the test is

eI(h; b) = P (jt�T (x; b)j > t�=2(v�)jH0):

To calculate the power of the test, we consider the local alternative hypothesis

H1 (�o) : f(x) = f0 + c=
p
Th;

where c = c(�o) for some noncentrality parameter �o: Then, the type II error is

eII(h; b) = P (jt�T (x; b)j � t�=2(v�)jH1(�o)):

Here we have explicitly written eI and eII as functions of (h; b): For a one-sided test, depending on
the direction of the local alternative, the de�nitions of eI(h; b) and eII(h; b) need to be modi�ed
accordingly.

We choose the pair of smoothing parameters (h; b) to minimize the type II error while con-
trolling for the type I error. More speci�cally, the optimal (h; b) solves

(h�; b�) = argmin
(h;b)

P (jt�T (x; b)j � t�=2(v�)jH1(�o)) (17)

s:t: P (jt�T (x; b)j > t�=2(v�)jH0) � ��;

where � > 1 is the tolerance parameter. We allow the type I error to be di¤erent from the
nominal type I error � but it cannot be larger than ��: For example, when � = 1:2 and � = 5%,
the upper bound is 6% rather than 5%:

The above approach, which is also used in Sun (2014a), has a decision theoretic basis, as it
amounts to selecting the smoothing parameters to minimize a loss function that is a weighted
average of type I and type II errors with the weight given by the implied Lagrangian multiplier for
the constraint. Sun, Phillips and Jin (2008) consider the loss-function-based approach explicitly.

Another approach to smoothing-parameter choice involves selecting the smoothing parameters
to minimize the absolute error in coverage probability of the con�dence intervals or the absolute
error in rejection probability (ERP) under the null. See for example, Hall (1992) and Sun
and Phillips (2009). For a given �; the absolute ERP is jeI(h; b)� �j : The ERP minimization
approach involves selecting the smoothing parameters to minimize jeI(h; b)� �j while ignoring
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the type II error. To allow for some �exibility in the ERP control and take the type II error into
consideration, we propose to solve the following problem:

(h�; b�) = argmin
(h;b)

P (jt�T (x; b)j � t�=2(v�)jH1(�o)) (18)

s:t:
���P (jt�T (x; b)j > t�=2(v�)jH0)� ���� � (� � 1)�

where as before � > 1 is the tolerance parameter. This problem is the same as (17) except that
we now constrain the type I error to be close to the nominal signi�cance level �. This is in
contrast to (17) where the type I error can not be too large compared to � but is allowed to be
smaller than � to the maximum extent.

Our choice of smoothing parameters involves the noncentrality parameter �o: This parameter
cannot be consistently estimated from the data. We may choose �o to re�ect a value of scienti�c
interest if such a value is available. In the absence of such a value, we recommend choosing �o
such that the �rst order power of the test, as measured by 1�G1;�2o (�

�
1 ) ; is 75%; where G1;�2o (�)

is the cdf of the noncentral chi-squared distribution with the degree of freedom 1 and ��1 is the
(1� �)th quantile of the �21 distribution. That is, we obtain �o by solving 1�G1;�2o (�

�
1 ) = 0:75

for the signi�cance level �:
The constrained minimization problems in (17) and (18) are not operational, as we do not

know how type I and II errors depend on (h; b): In the next subsection, we propose a simulation-
based calibration method to implement the testing-optimal smoothing parameters.

5.2 Implementation: Simulation-based Calibration

Our simulation-based calibration approach involves the following steps. LetHT = fh(1); : : : ; h(L)g
and BT = fb(1); : : : ; b(M)g be the sets of reasonable h and b values given T .

1. Fit an AR(d) model to Xt

Xt = �0 + �1Xt�1 + :::+ �dXt�d + �t; t = d+ 1; :::; T:

We suggest using either Akaike�s Information Criterion (AIC) or Schwarz�s Bayesian In-
formation Criterion (BIC) to select the AR order d�. We may also use the parsimonious
AR(1) model.

2. Generate J pseudo samples fXj
t g according to the �tted AR(d�) process. We draw the

error f�jtg independently either from the normal distribution N (0; �̂2� ) or from the empirical
distribution of f�̂tg with �̂t = Xt � (�̂0 + �̂1Xt�1 + :::+ �̂dXt�d�) :

3. For each pseudo sample fXj
t g; pick h(1) and b(1) to construct the kernel density estimator

f̂ j(x; h(1)) and variance estimator V̂ jh (x; h
(1); b(1)); where

V̂ jh (x; h
(1); b(1)) =

1

T

TX
t=1

TX
�=1

Wb(1)

�
t� �
T

�
Ẑj
t;h(1)

(x) Ẑj
�;h(1)

(x) :

4. Compute the test statistic t�T;j(h
(1); b(1); c)

t�T;j(h
(1); b(1); c) =

p
�

p
Th
�
f̂ j(x; h(1))� ~Ef̂ j(x; h(1))

�
+ cq

V̂ jh (x; h
(1); b(1))

;
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where

~Ef̂ j(x; h(1)) =
1

J

JX
j=1

f̂ j(x; h(1)):

We choose c = 0 to simulate the type I error and c =
q
V̂ (x)~c with

~c =

�
j�oj ; with probability 0:5

� j�oj ; with probability 0:5

to simulate the type II error.

5. Compute

êI(h
(1); b(1)) =

1

J

JX
j=1

1
����t�T;j(h(1); b(1); 0)��� > t�=2(v�)� ;

and

êII(h
(1); b(1)) =

1

J

JX
j=1

1
����t�T;j(h(1); b(1); c))��� � t�=2(v�)� ;

where 1(�) is the indicator function.

6. Repeat steps 3 � 5 for each (h; b) 2 HT 
 BT :

7. Find the value of (h; b) that solves

min
h2HT ; b2BT

êII(h; b); s.t. êI(h; b) � ��

or
min

h2HT ; b2BT
êII(h; b); s.t. jêI(h; b)� �j � (� � 1)�:

The calibration approach via simulation is related to the conventional plug-in procedure
based on the MSE criterion in Andrews (1991) or the more recent plug-in approach based on a
testing-oriented criterion in Sun, Phillips and Jin (2008). Both procedures involve �rst deriving an
optimal formula, followed by a plug-in implementation using an approximating parametric model.
In contrast, for our simulation-based calibration approach, we �t an approximating parametric
model �rst and then simulate the type I and II errors from it. The essential di¤erence is whether
the approximating model is used to implement the optimal formula or to simulate the optimal
smoothing parameters.

6 Extension to the Kernel Regression

In this section, we extend the proposed robust testing procedures to kernel regression estimators.
For notational economy we use some of the same notations as before, but they may stand for
di¤erent objects in this section. This should not cause any confusion.
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6.1 Overview of the Problem

Given the observations f(Yt; Xt)gTt=1, we are interested in estimating the regression function or
conditional mean function m (x) = E(YtjXt = x): Putting this in a regression form, we have

Yt = m (Xt) + "t;

where the error term "t satis�es

E ("tjXt = x) = 0, V ar ("tjXt = x) = �2 (x) .

For the simplicity of exposition, we assume that Xt is a scalar process. It is straightforward to
generalize our results to a vector process.

When m(�) is smooth enough in a local neighborhood of x; we can approximate m (�x) for �x
near x by a polynomial in �x :

m (�x) � m(x) +m(1) (x) (�x� x) + :::+ m
(r) (x)

r!
(�x� x)r

� �0 + �1
�
�x� x
h

�
+ :::+ �r

�
�x� x
h

�r
where

� = (�0; :::; �r)
0 =

 
m(x);m(1) (x)h; :::;

m(r) (x)hr

r!

!0
is the vector of local parameters, and h is the bandwidth parameter. Fitting this polynomial
locally around x leads to the weighted LS problem:

�̂ = argmin
~�

TX
t=1

Kh (Xt � x)
n
Yt � Pt(x;h)0~�

o2
; (19)

where
Pt (x) := Pt(x;h) =

�
1; (Xt � x) =h; ::: ((Xt � x) =h)r

�0
;

and, as before, K (�) is the kernel function. The local polynomial estimator of m(x) is then given
by m̂ (x) � �̂0: We can also back out the derivative m(j) of m (x) from �̂jh

�j for j = 1; :::; r;
but our focus here is on the function m (x) itself. In the special case that r = 0; we obtain the
Nadaraya-Watson estimator, i.e.,

m̂ (x) =

PT
t=1Kh (Xt � x)YtPT
t=1Kh (Xt � x)

:

Let

Px =

0@ P 01(x;h)
:::

P 0T (x;h)

1A ; Y =
0B@ Y1

...
YT

1CA , �̂ =
0B@ �̂0

...
�̂r

1CA ; and 
x = diag(Kh (Xt � x));
then �̂ = (P 0x
xPx)

�1 P 0x
xY , and

m̂ (x) = �̂0 = e
0
1

�
P 0x
xPx

��1
P 0x
xY =

1

Th

TX
t=1

!T

�
Xt � x
h

�
Yt;

20



where e1 = (1; 0; :::; 0)
0 2 Rr+1 and

!T (u) = e
0
1

�
P 0x
xPx
T

��1
[1; u; :::; ur]0K (u) :

!T (u) is often referred to as the e¤ective kernel underlying the local polynomial regression. The
e¤ective kernel enjoys the �nite sample high order property, as by construction we have

TX
t=1

1

h
!T

�
Xt � x
h

��
Xt � x
h

��
= 1 f� = 0g for � = 0; :::; r:

Let J be the q�q matrix whose (i; j)-th element is given by
R
K(u)ui+j�2du. Under the small-

h asymptotics, P 0x
xPx=T converges to Jf (x). As a result, !T (u) converges to K� (u) =f (x)
where

K�(u) = e01J
�1 [1; u; :::; ur]0K (u) � (a0 + a1u+ :::+ arur)K (u)

for some constants a0; :::; ar: K�(u) is the equivalent kernel underlying the local polynomial re-
gression.

To study the asymptotic properties of m̂ (x), we maintain the following assumption.

Assumption 7 (i) K (u) is continuous with a compact support [�1; 1].
(ii) The conditional densities fX1jY1 (x1jy1) ; fX1;X`+1jY1;Y`+1 (x1; x`+1jy1; y`+1) are bounded

uniformly over ` � 1 and x1; y1; x1+`; y1+`:
(iii) (Xt; Yt) is strictly stationary and �-mixing with the �-mixing coe¢ cients satisfying

1X
`=1

`a� (`)(��1)=� <1 and E j"1j4� <1

for some a � 2 and � > 1.
(iv) There exists dT !1 and dT = o(

p
Th) such that

p
n=h� (dT )! 0:

(v) �2 (x) and f (x) are continuous at the point x and f (x) > 0:
(vi) m (�) is continuously di¤erentiable up to order q = (r + 1) in a neighborhood around x:

Theorem 7 Let Assumption 7 hold. Under the small-h asymptotics where h! 0; Th!1 and
Th1+2q ! 0 as T !1, we have

p
Th (m̂ (x)�m (x))!d N (0; V (x))

where

V (x) =
�2 (x)

f (x)

Z
[K�(u)]2 du:

For a proof of the theorem, see Masry and Fan (1997) or Section 6.6.2 of Fan and Yao (2003).
The compact support of K (u) is taken to be [�1; 1] without loss of generality. Assumption 7 is
the same as what is given in Section 6.6.2 of Fan and Yao (2003) except that Assumption 7(iii)
is stronger. The stronger version is needed for the theorems in the next subsection.

21



As in the case of kernel density estimation, the asymptotic variance is identical to what we
would obtain for iid data. Under the small-h asymptotics, temporal dependence has no e¤ect on
the asymptotic variance. Using the standard sandwich formula, we can estimate V (x) by

V̂ (x) = e01

�
P 0x
xPx
T

��1� h
T
P 0x
x�̂x
xPx

��
P 0x
xPx
T

��1
e1

where �̂x = diag("̂2tx) and "̂tx = Yt�Pt(x;h)0�̂: Statistical inferences can then be made based on
the following asymptotic normality result:

t0T (x) =

p
Th (m̂ (x)�m (x))q

V̂ (x)
!d N (0; 1):

While the small-h asymptotic theory is neat and elegant, the asymptotic approximation may
not be accurate in �nite samples. In practical situations when the sample size is not very large,
temporal dependence may have a large e¤ect on the sampling variation of the local polynomial
estimator. Ignoring the temporal dependence will lead to misleading inferences. As discussed in
Robinson (1983), the �dependence irrelevant�result is not to be taken too seriously. To alleviate
this problem, we can take either the �xed-h approach or the pre-asymptotic approach. This is
entirely analogous to the approaches employed for kernel density estimation and inference. In
the next subsection, we consider the �xed-h approach as an example.

6.2 The Fixed-bandwidth Solution

For each h; we de�ne the �xed-h probability limit �h of �̂ as

�h � (�0h; �1h; :::; �rh)0 = plim
T!1

�̂:

In general, �h 6= �; re�ecting the asymptotic bias of �̂ under the �xed-h asymptotics. Let Jh (x)
be the �xed-h probability limit of (P 0x
xPx) =T: Then

p
Th [m̂ (x)� �0;h]

= e01

�
P 0x
xPx
T

��1 1p
T

TX
t=1

Pt(x;h)
p
hKh (Xt � x)

�
Yt � Pt(x;h)0�h

�
:=

1p
T

TX
t=1

Zt;h (x) (1 + op (1))

where
Zt;h (x) = e

0
1J
�1
h (x)Pt(x;h)

p
hKh (Xt � x) "tx and "tx = Yt � Pt(x;h)0�h:

Using this representation, we can prove the theorem below.

Theorem 8 Let Assumption 7(i) and (iii) hold. Assume that (i) Jh (x) is nonsingular, (ii)
E jm(Xt)j4� 1 fjXt � xj � hg <1 for some � > 1; and (iii)

Vh (x) = lim
T!1

V ar

 
1p
T

TX
t=1

Zt;h

!
> 0 for each �xed h > 0:
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Then for a �xed h as T !1;
p
Th [m̂ (x)� �0;h]!d N (0; Vh (x)):

Barring the di¤erence in the de�nition of Zt;h; the asymptotic variance Vh (x) is de�ned in the
same manner as in Theorem 2. In general, the e¤ect of the temporal dependence in fZt;h (x)g will
not vanish in Vh (x) : As before, Vh (x) can also be motivated from the pre-asymptotic perspective.

To estimate Vh (x) ; we use the formulae given in (6) and (9) to obtain the estimator V̂h(x)
and its infeasible version ~Vh(x) :

V̂h(x) =
1

T

TX
t=1

TX
�=1

W

�
t� �
ST

�
Ẑt;h (x) Ẑ�;h (x) (20)

~Vh(x) =
1

T

TX
t=1

TX
�=1

W

�
t� �
ST

�
Zt;h (x)Z�;h (x) (21)

where

Ẑt;h (x) =

"
e01

�
P 0x
xPx
T

��1
Pt(x;h)

#
Kh (Xt � x) "̂tx and "̂tx = Yt � Pt(x;h)0�̂:

The results in subsection 3.3 continue to hold with modi�ed conditions. The theorem below
gives results analogous to Theorem 3.

Theorem 9 Let Assumptions 4, 7(i) and (iii) hold with a � p: Suppose that h is �xed, ST !1,
and ST =T ! 0 as T !1: Then

(a) limT!1 (T=ST )V ar( ~Vh(x)) = 2
�R 1
�1W (�)2 d�

�
[Vh(x)]

2 ;

(b) limT!1 S
p
T

�
E ~Vh(x)� Vh (x)

�
= �W (p)B

(p)
h (x) ;

(c)
p
T=ST

�
V̂h (x)� ~Vh (x)

�
= op (1) :

It follows from Theorems 8 and 9 that
p
Th [m̂ (x)� �0;h]q

V̂h (x)
!d N (0; 1):

While �0;h 6= m(x) for a �xed h; we have �0;h ! m(x) as h! 0; and so the above result can be
used to make inferences on m (x) with the same quali�cation as discussed in the case of kernel
density estimation.

Distributional approximations that are more accurate than the normal approximation can be
obtained under the �xed-b asymptotics. Operationally, we can estimate the parameter �h and
conduct inferences as if we are in a locally parametric world with

Yt = Pt(x;h)
0�h + "tx:

For each given h; the �xed-b inference procedures in the literature, such as Kiefer and Vogelsang
(2005) and Sun (2014a), can be directly applied. In particular, if the uniform kernel is used, then
we can proceed as if we have a linear regression model and a subsample of observations whose Xt
belongs to [x�h; x+h]: Standard software packages can then be used for estimation and inference.
For brevity, we do not present the rigorous conditions underlying the �xed-b asymptotics here.
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6.3 Choice of Smoothing Parameters

We employ the same idea as in the kernel density case to select the smoothing parameters. The
only remaining issue here is that we have to come up with a parametric approximating model.
We propose to �t a model of the form

Yt = 
0 +

MpilotX
j=1


j�j (Xt) + et (22)

to the data by OLS, where �j (�) are some basis functions such as Fourier bases and spline bases:
We selectMpilot by AIC or BIC. After the model �tting, we obtain the residual êt: We then �t
a univariate AR model to each of the time series Xt and êt in order to capture their dynamics.
Again, the order of the AR lags can be chosen by AIC or BIC. Essentially, we assume that
the nonparametric function m (�) is given by the series regression �tting, and Xt and et follow
univariate AR(d) processes with the innovation covariance chosen to be the empirical covariance.
This completely pins down the approximating data generating process. On the basis of this, we
can calibrate the type I and type II errors by simulation. The rest of the smoothing-parameter
choice is entirely the same as in the case of kernel density estimation and inference.

7 Monte Carlo Simulation

This section presents some simulation evidence on the �nite sample properties of our testing
procedures. Both kernel density and regression are considered.

7.1 Kernel Density

We conduct inference on the marginal density function f (x) using the following data generating
process:

Xt = �Xt�1 +

s
1� �2

1� 2�� + �2 ("t � � � "t�1); t = 2; : : : ; T (23)

with T = 200; X1 � N (0; 1) and "t �iid N (0; 1) : By design, the marginal density is the pdf
of the standard normal distribution for all � and � such that j�j < 1: To compare the size and
power properties, we take � = 0;�0:4; 0:4, � = 0:0; 0:6; 0:9 and evaluate f (x) at x = Q0:5; Q0:7
and Q0:9; where Qa denotes the ath quantile of N (0; 1). We use the Gaussian kernel to construct
f̂ (x) : Results for other kernels are qualitatively similar. The number of simulation replications
is 2000.

We compare �ve di¤erent tests. The �rst one denoted by �asymptotic normal�uses

V̂ (x) = 1

T

TX
t=1

Ẑt;h (x)
2

to construct the t-statistic and N (0; 1) to obtain the critical values. Since V̂ (x) is based on
V ar [Zt;h (x)] ; it does not allow for the e¤ect of temporal dependence as V̂h (x) :We employ V̂ (x)
instead of V̂h (x) in order to examine the bene�t of accommodating the autocovariance terms
in V̂h(x). Note that V̂ (x) is di¤erent from V̂ (x) given in (3) which relies on deep asymptotics.
Our preliminary simulation shows that V̂ (x) delivers a more accurate test than V̂ (x) : The
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second procedure denoted by �pre-asymptotic normal�employs V̂h(x) and the standard normal
approximation. We use the Parzen kernel for the covariance weighting function in V̂h(x): The
third method denoted by �pre-asymptotic hybrid� is based on V̂h(x) and t-approximation. For
these three tests, we estimate f (x) with the bandwidth ~h = 1:06�̂xT�1=3; where �̂2x is the sample
variance of fXtg : Since �x = 1, ~h is around 0:18. Hall (1992, p. 223) shows that h � cT�1=(1+q)
minimizes the coverage error for two-sided tests, but no explicit formula is available for the
constant c. Our choice of ~h seems to be reasonable in that the empirical sizes of the asymptotic
normal test are close to the nominal level � = 0:05 when (�; �) = (0; 0) : See Table 1 below. To
implement the pre-asymptotic normal and pre-asymptotic hybrid tests, we choose ST based on
the MSE criterion in (12). We use the parametric plug-in method with the AR(1) model.

The last two tests are the tests proposed in this paper. They are based on V̂h(x) and the
t-approximation and use the calibrated smoothing parameters. The test with the type I error
constraint is denoted �calibrated tI�, and the test with the absolute ERP constraint is denoted
�calibrated tERP�. We let HT = f~h; ~h � 0:03�̂x; ~h � 0:06�̂xg and BT = f0:01; 0:02; : : : ; 0:3g: We
also require h � 0:05 to avoid h being too small. For each testing-oriented criterion considered,
if the constraint is violated for all (h; b) 2 HT 
 BT , we choose the combination of (h; b) that
has the smallest type I error or ERP. We consider two tolerance parameters � = 1:1 and 1:2 but
report only the representative case with � = 1:2:

In order to simulate the type II error, we consider the local alternative with �o = 1:1503;
which solves 1 � G1;�2o (�

�
1 ) = 0:75. The AIC is used to select d in the AR(d) model used to

calibrate the dependence structure. The number of simulation replications J used in calibration
is 1000.

Table 1 reports the empirical sizes of di¤erent 5% tests. From the table, we �rst observe
that temporal dependence does a¤ect the sampling distribution of f̂(x). The asymptotic normal
test, which does not account for temporal dependence, tends to su¤er from size distortion in the
presence of temporal dependence. The size distortion can be severe when the process is highly
persistent. For example, when (�; �) = (0:9; 0) and f (x) is estimated at x = Q0:5, the empirical
type I error of the asymptotic normal test is 0:279: The empirical type I error is even higher
for higher quantile points of interest. Second, we can improve the test accuracy by employing
the kernel HAR variance estimator that includes the autocovariance terms. The pre-asymptotic
normal test is shown to alleviate the degree of size distortion. Third, comparison between the
pre-asymptotic normal test and pre-asymptotic hybrid test shows that the �xed-b asymptotic
approximation improves the size accuracy of the test, but the improvement is limited when ST
is chosen based on the MSE criterion. Fourth, the �xed-b asymptotic approximation combined
with the proposed smoothing-parameter choice achieves remarkable size accuracy. Except for the
extreme cases when � = 0:9 and f (x) is estimated at Q0:9, the empirical type I errors are very
close to the nominal level. Finally, the �xed-b asymptotic test performs as well as the asymptotic
normal test when (�; �) = (0; 0), which implies that there is virtually no cost of using the proposed
test in terms of size accuracy.

Figure 2 compares the size adjusted power of the three types of tests: the pre-asymptotic
normal test, the calibrated tI test, and the calibrated tERP test. While the pre-asymptotic
normal test employs a rule of thumb to select h and the MSE criterion to select ST ; the tI
and tERP tests use calibrated smoothing parameters. We use the DGP in (23) but consider the
following local alternative hypothesis:

H1 (�) : f(x) = f0 + c=
p
Th

25



where c = (V (x))1=2 ~c and

~c =

�
�; with probability 0:5

��; with probability 0:5:

We compute the power using the 5% empirical critical values from the null distributions. For
brevity, Figure 2 reports only a subset of the cases in Table 1. The horizontal and vertical axes
represent � and the size adjusted power respectively. It is clear that the size adjusted powers of
the calibrated tI and tERP tests are comparable to that of the pre-asymptotic normal test. For
some cases the former two tests are more powerful, but for other cases the latter test is more
powerful. Regardless of the scenarios, the power di¤erence is not large. We may conclude that
our proposed tests improve the size accuracy without sacri�cing power.

7.2 Kernel Regression

We consider the following DGP

Yt = ~m0( ~Xt) + "t; t = 1; 2; :::; T;

where
~Xt = � ~Xt�1 +

p
1� �2ext and "t = �"t�1 +

p
1� �2e"t;

are scaler AR(1) processes with the same AR parameter �; and (ext; e"t)0 are iid N (0; I2). We
set ~m0( ~Xt) = sin( ~Xt) or cos( ~Xt): The DGP is similar to those of Chen, Liao and Sun (2014,
CLS hereafter). The only di¤erence is that we consider a purely nonparametric model here while
CLS consider a partially linear model. We focus on ~h0( ~Xt) = cos( ~Xt) below as it is harder to be
approximated by a linear function around the center of the distribution of ~Xt, but the qualitative
results are the same for the case that ~m0( ~Xt) = sin( ~Xt):

In order to use sine and cosine basis functions to approximate the unknown function, we �rst
transform ~Xt into [0; 1] using the transformation:

Xt =
1

1 + exp(� ~Xt)

or equivalently ~Xt = ln [Xt=(1�Xt)] : Then

~m0( ~Xt) = cos

�
ln

�
Xt

1�Xt

��
� m0 (Xt) :

The new function m0 (�) ; which is a highly nonlinear function, is our estimand.
We approximate m0 (�) using the sine and cosine functions as follows:

m0 (x) = 
0 +

MpilotX
j=1


j�j (x) ;

where Mpilot is even, �2j�1(x) =
p
2 cos(2j�x); and�2j =

p
2 sin(2j�x) for j = 1; :::;Mpilot=2:

Setting the upper bound forMpilot to be 20 for T = 200, we use the AIC to select the best M̂pilot.
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Conditional on M̂pilot; we estimate
n

j ; j = 0; :::;M̂pilot

o
by the OLS and the error variance �2"

by

�̂2" =
1

T � M̂pilot � 1

TX
t=1

"̂2t where "̂t = Yt � 
̂0 �
M̂pilotX
j=1


̂j�j (Xt) :

For the bandwidth choice, we �rst use Mallows�Cp method, which entails selecting h to
minimize Cp(h) :

Cp(h) =
1

T

TX
t=1

[Yt � m̂h(Xt)]
2 +

2�̂2"
T
tr(Lh):

Here m̂h(�) is the kernel estimator under the bandwidth h and Lh is the T � T linear smoothing
matrix such that (m̂h (X1) ; :::; m̂h (XT ))

0 = Lh(Y1; :::; YT )
0: We use the uniform kernel as a rep-

resentative example. Based on the selected h; we construct the �asymptotic normal�test which
ignores the temporal dependence and the �pre-asymptotic normal�test which takes the temporal
dependence into consideration and uses the HAR variance estimator. The truncation lag para-
meter is chosen by the AR(1) plug-in implementation of the MSE-optimal truncation lag as given
in Andrews (1991). The Parzen kernel is used as the covariance weighting function. Both tests
employ the normal approximations. For the pre-asymptotic test, we also use the t-approximation,
leading to the �pre-asymptotic hybrid�test.

The above three tests serve as the benchmark for our proposed tests. To save space, we

present only the �calibrated tI�test results. For this test, we use 
̂0 +
PM̂pilot

j=1 
̂j�j (x) as the
plug-in model for the nonparametric function, and we use two univariate AR(d) processes �tted
to fXtg and f"̂tg respectively to gauge the dynamics in Xt and "t, and the AR parameters are
allowed to be di¤erent for the two �tted AR processes. Each AR lag order is selected to minimize
the AIC criterion over 1; 2; :::; 20:

Given the nonparametric function and the speci�cations of temporal dependence in Xt and
"t; we can simulate the type I and type II errors of our proposed HAR t test and select h and
ST to optimize our testing oriented criterion. The mechanics is the same as in the case of kernel
density estimation and inference. Considering the computation cost, we choose the grid HT 
BT
with HT = [0:10 : 0:01 : 0:8] and BT = f0:01; 0:02; : : : ; 0:3g:

Tables 2 and 3 report the empirical null rejection probabilities of the four tests under consid-
eration when the tolerance parameter � = 1:2: It is clear from the tables that the �asymptotic
normal�test can have serious size distortion in the presence of strong autocorrelation. The �pre-
asymptotic normal�test reduces the size distortion and the �pre-asymptotic hybrid�test reduces
the size distortion further. Our proposed �calibrated tI�test is the least size distorted. In terms
of size accuracy, the ranking of the four tests is the same as in the kernel density case. We note
that our preferred �calibrated tI�test can still have considerable size distortion when the tem-
poral dependence is extremely strong. This phenomenon is not unique to the kernel method in
the nonparametric setting. The same phenomenon happens to the nonparametric sieve method
(e.g., CLS) and parametric methods. In a parametric setting, Sun (2014c) has developed the
�xed-smoothing asymptotics in the presence of strong autocorrelation and has shown that the
near-unity �xed-smoothing asymptotic approximation can help reduce the size distortion. It will
be interesting to extend Sun (2014c) to nonparametric settings. We leave this to future research
as it is beyond the scope of the current paper.

We have also examined the power properties of the four tests. We omit the power �gures,
but we comment on them brie�y. We �nd that the powers for the �pre-asymptotic normal�test
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and the �calibrated tI�test are comparable. There is no clear advantage of either method. This
is encouraging, as there is often some cost involved in achieving higher size accuracy.

8 Conclusion

Kernel smoothing is one of the most popular nonparametric methods and has been widely studied
in both statistics and econometrics. An interesting feature of this nonparametric method is that
the distribution of a kernel estimator with weakly dependent data is asymptotically equivalent
to that with iid data under the conventional asymptotics. Many empirical papers, particularly
in �nance, have conducted kernel based nonparametric tests with time series data using this
asymptotic result. However, the conventional nonparametric tests tend to su¤er from serious size
distortion and lead to wrong conclusions because temporal dependence does a¤ect the sampling
distribution of a kernel estimator in �nite samples.

In this paper, we develop new testing procedures for the kernel methods which are robust to
the temporal dependence of unknown forms. Both kernel density estimation and local polyno-
mial regression are considered. The proposed tests are based on a kernel HAR variance estimator
and the �xed-b asymptotics. We motivate the kernel HAR variance estimator from two di¤erent
perspectives: the �xed-bandwidth asymptotics and the pre-asymptotic argument. For easy im-
plementation, we establish the validity of a t-approximation to the �xed-b asymptotics. For the
choice of the smoothing parameters, we propose the simulation-based calibration approach that
optimizes some testing-oriented criterion. A simulation study shows that the proposed tests are
much more accurate in size than the conventional tests and have comparable power.

The ideas of the paper, including the kernel HAR variance estimator and the calibration
approach to smoothing-parameter choice, are more widely applicable. The �xed-bandwidth as-
ymptotics and the pre-asymptotic argument can be used to justify the use of the HAR variance
in any nonparametric model that involves temporal dependence of unknown forms. For example,
in a partially linear model, our procedures can be adopted to make more accurate inferences on
the nonparametric part of this model. From an operational point of view, we may proceed as if
we are in a parametric world, albeit only locally, and use a well-researched parametric analogue
to conduct inferences.
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Table 1: Empirical type I error of di¤erent tests of kernel density with sample size T = 200,
signi�cance level � = 0:05, and ARMA(1,1) errors

Q0:5 Q0:7 Q0:9 Q0:5 Q0:7 Q0:9 Q0:5 Q0:7 Q0:9
(�; �) = (0; 0) (�; �) = (0; 0:4) (�; �) = (0;�0:4)

Asymp Normal 0:057 0:060 0:060 0:072 0:040 0:045 0:064 0:070 0:077
Pre-asymp Normal 0:056 0:061 0:063 0:066 0:045 0:057 0:062 0:066 0:071
Pre-asymp Hybrid 0:052 0:059 0:058 0:061 0:042 0:053 0:059 0:062 0:066
Calibrated tERP 0:068 0:061 0:054 0:068 0:052 0:056 0:062 0:048 0:054
Calibrated tI 0:062 0:065 0:061 0:058 0:044 0:046 0:053 0:050 0:053

(�; �) = (0:6; 0) (�; �) = (0:6; 0:4) (�; �) = (0:6;�0:4)
Asymp Normal 0:096 0:102 0:152 0:072 0:078 0:091 0:118 0:136 0:171
Pre-asymp Normal 0:082 0:081 0:115 0:074 0:077 0:079 0:081 0:092 0:103
Pre-asymp Hybrid 0:078 0:076 0:103 0:069 0:074 0:077 0:073 0:083 0:093
Calibrated tERP 0:046 0:064 0:055 0:042 0:046 0:058 0:064 0:060 0:076
Calibrated tI 0:087 0:069 0:065 0:063 0:064 0:052 0:056 0:056 0:052

(�; �) = (0:9; 0) (�; �) = (0:9; 0:4) (�; �) = (0:9;�0:4)
Asymp Normal 0:279 0:327 0:426 0:213 0:246 0:347 0:298 0:351 0:445
Pre-asymp Normal 0:137 0:166 0:228 0:158 0:181 0:253 0:128 0:142 0:201
Pre-asymp Hybrid 0:137 0:145 0:203 0:151 0:172 0:237 0:107 0:123 0:184
Calibrated tERP 0:063 0:074 0:087 0:054 0:054 0:060 0:056 0:062 0:092
Calibrated tI 0:076 0:072 0:114 0:069 0:064 0:087 0:058 0:065 0:096
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Figure 2: Size-adjusted power of di¤erent testing procedures with T = 200, ARMA(1,1) errors
for � = 0; 0:4 and � = 0; 0:6; 0:9; and x = Q0:5
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Table 2: Empirical type I error of di¤erent tests of the nonparametric function with sample size
T = 200 and signi�cance level � = 0:05

~x = �1 ~x = �0:5 ~x = 0 ~x = 0:5 ~x = 1

� = 0:0
Asymptotic Normal 0:078 0:052 0:064 0:058 0:072
Pre-asymptotic Normal 0:076 0:062 0:066 0:054 0:076
Pre-asymptotic Hybrid 0:076 0:061 0:064 0:054 0:075
Calibrated tI 0:052 0:040 0:042 0:037 0:051

� = 0:25
Asymptotic Normal 0:080 0:072 0:092 0:088 0:100
Pre-asymptotic Normal 0:052 0:060 0:068 0:068 0:088
Pre-asymptotic Hybrid 0:053 0:059 0:063 0:064 0:081
Calibrated tI 0:031 0:042 0:041 0:044 0:055

� = 0:3
Asymptotic Normal 0:118 0:096 0:106 0:130 0:112
Pre-asymptotic Normal 0:104 0:066 0:070 0:116 0:090
Pre-asymptotic Hybrid 0:093 0:063 0:068 0:101 0:074
Calibrated tI 0:069 0:042 0:044 0:073 0:059

� = 0:5
Asymptotic Normal 0:156 0:164 0:182 0:190 0:176
Pre-asymptotic Normal 0:112 0:078 0:098 0:122 0:118
Pre-asymptotic Hybrid 0:096 0:071 0:082 0:107 0:099
Calibrated tI 0:075 0:053 0:065 0:068 0:074
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Table 3: Empirical type I error of di¤erent tests of the nonparametric function with sample size
T = 200 and signi�cance level � = 0:05

~x = �1 ~x = �0:5 ~x = 0 ~x = 0:5 ~x = 1

� = 0:6
Asymptotic Normal 0:212 0:216 0:208 0:190 0:208
Pre-asymptotic Normal 0:122 0:106 0:080 0:106 0:126
Pre-asymptotic Hybrid 0:086 0:079 0:069 0:078 0:083
Calibrated tI 0:073 0:068 0:045 0:064 0:082

� = 0:7
Asymptotic Normal 0:254 0:264 0:268 0:278 0:240
Pre-asymptotic Normal 0:132 0:112 0:100 0:108 0:132
Pre-asymptotic Hybrid 0:097 0:088 0:084 0:086 0:096
Calibrated tI 0:076 0:071 0:062 0:065 0:088

� = 0:75
Asymptotic Normal 0:300 0:352 0:344 0:302 0:330
Pre-asymptotic Normal 0:144 0:150 0:166 0:128 0:178
Pre-asymptotic Hybrid 0:101 0:114 0:129 0:108 0:139
Calibrated tI 0:085 0:097 0:101 0:082 0:113

� = 0:9
Asymptotic Normal 0:522 0:526 0:596 0:538 0:500
Pre-asymptotic Normal 0:286 0:226 0:270 0:246 0:286
Pre-asymptotic Hybrid 0:254 0:186 0:210 0:205 0:233
Calibrated tI 0:173 0:124 0:163 0:138 0:181
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9 Appendix

In the appendix, we write Zt = Zt;h (x) and Ẑt = Ẑt;h (x) to simplify the notation. We let C be
a generic constant.
Proof of Theorem 2. In view of the de�nition of Zt; we have

p
nh
h
f̂ (x)� Ef̂ (x)

i
=

1p
T

TX
t=1

Zt:

We invoke Theorem 0 in Bradley (1985) to complete the proof. The theorem combines two
classic theorems in Ibraigomov (1962). Assumption 2(i) implies that K(�) is bounded on its
support. So jZtj � CK=

p
h = C for some constant CK > 0 almost surely: Since any measurable

transformation of a strictly stationary process is also strictly stationary, fZtg is strictly stationary
with the same �-mixing coe¢ cients as fXtg. Assumption 3(i) implies that

P1
`=1 � (`) < 1: So

condition (ii) of Bradley (1985, Theorem 0) holds. As a result,

p
Th
�
f̂ (x)� Ef̂ (x)

�
=

1p
T

TX
t=1

Zt !d N (0; Vh(x)) :

Proof of Theorem 3. Parts (a) and (b) follow from Proposition 1 of Andrews (1991). The only
condition that we need to verify is the mixing condition in his Lemma 1, viz.

P1
`=1 `

2� (`)(��1)=� <
1 for some � > 1: In our setting, we can choose � as large as possible, as Zt is bounded
for each �xed h: Given that j� (`)j � C`�� and � > 3; there is a large enough � such thatP1
`=1 `

2� (`)(��1)=� <1: To prove part (c), we note that
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The �rst term in the above equation is"
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 r
h

T

1p
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For the second term, we observe that
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and so the second term is of order Op
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h=T

q
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: Therefore
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Proof of Lemma 1. (i) We have

T�1X
`1=0

T�1X
`2=0

T�1X
`3=1

jQ (`1; `2; `3)j =
T�1X
`1=1

T�1X
`2=1

T�1X
`3=1
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T�1X
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T�1X
`1=1

T�1X
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T�1X
`3=1

jQ (0; 0; `3)j : (24)

As shown in Andrews (1991, Proof of Lemma 1),
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� 6
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First,
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where we have used the boundedness of the density of (X1; X1+`1 ; X1+`1+`3) ; and��E �Z1Z21+`1Z1+`1+`3��� � 4�(`1)kKk41=h2;
we have
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For A(4)1 ; using the boundedness of the density of (X1; X1+`1 ; X1+`1+`2 ; X1+`1+`2+`3) ; we have
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Letting dT = Ch�4=� for C > 0; we have A(4)1 = O
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Combining the results for A(1)1 � A(4)1 ; we have

A1 = O
�
h�2=�

�
+O

�
h1�6=�

�
+O

�
h2�12=�

�
= O

�
h�2=�

�
where the second equality uses the assumption that � > 5:

Using the similar arguments, we can show that
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Next we consider the terms that involve the Gaussian sequence f ~Ztg: We haveX
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=

X
0�`2;`3�`1

j(EZ1Z1+`1) (EZ1+`1+`2Z1+`1+`2+`3)j

=
T�1X
`1=1

X
0<`3�`1

X
0�`2�`1

j(EZ1Z1+`1) (EZ1+`1+`2Z1+`1+`2+`3)j

+
T�1X
`1=1

X
0�`2�`1

j(EZ1Z1+`1) (EZ1+`1+`2Z1+`1+`2)j

=

0@ d1TX
`1=1

`21O(h
2) +

1

h2

T�1X
`1=d1T+1

`1X
`3=0

`1� (`1)� (`3)

1A+
0@ d2TX
`1=1

`1O(h) +
1

h2

T�1X
`1=d2T+1

`1� (`1)

1A
= O

0@d31Th2 + 1

h2

T�1X
`1=d1T+1

`1� (`1)

1A+O
0@d22Th+ 1

h2

T�1X
`1=d2T+1

`1� (`1)

1A
= O

 
d31Th

2 +
1

h2
1

d��21T

!
+O

 
d22Th+

1

h2
1

d��22T

!
= O(h�2=�)

upon choosing d1T and d2T appropriately. Similarly, we can show thatX
0�`2;`3�`1

����E ~Z1 ~Z1+`1+`2��E ~Z1+`1 ~Z1+`1+`2+`3���� = O(h�2=�);X
0�`2;`3�`1

����E ~Z1 ~Z1+`1+`2+`3��E ~Z1+`1 ~Z1+`1+`2���� = O(h�2=�):
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As a result,
P
0�`2;`3�`1

���E h ~Z1 � ~Z1+`1 ~Z1+`1+`2 ~Z1+`1+`2+`3�i��� = O(h�2=�):
Using the same argument, we can show thatX
0�`1;`3�`2

�
E
h
~Z1 ~Z1+`1

�
~Z1+`1+`2

~Z1+`1+`2+`3

�i
� E

h
~Z1 ~Z1+`1

i
E
h
~Z1+`1+`2

~Z1+`1+`2+`3

i�
= O(h�2=�);

and X
0�`1;`2�`3

���E h� ~Z1 ~Z1+`1 ~Z1+`1+`2� ~Z1+`1+`2+`3i��� = O(h�2=�):
Combining the above results, we have

T�1X
`1=1

T�1X
`2=1

T�1X
`3=1

jQ (`1; `2; `3)j = O
�
h�2=�

�
:

Similarly, we can show that the rest of the three terms in (24) are all of the order O
�
h�2=�

�
.

Therefore,
T�1X
`1=0

T�1X
`2=0

T�1X
`3=1

jQ (`1; `2; `3)j = O
�
h�2=�

�
:

(ii) Let g` (u; v) be the pdf of (x1; x`+1) ; then

jCov(Z1; Z`+1)j �
����h Z Z Kh (u� x)Kh (v � x) g` (u; v) dudv

����
+

����h�Z Kh (u� x) f (u) du
��Z

Kh (v � x) f (v) dv
�����

= h kg`k1 + hC = O(h):

By a result in Section 1.2.2 of Doukhan (1994), we also have

Cov(Z1; Z`+1) � 4� (`)max (jZ1j)max (jZ`+1j) = 4� (`) kKk21 =h: (27)

Using the above two results, we obtain, for some dT ;

T�1X
`=1

h�� jCov(Z1; Z`+1)j `p =
dTX
`=1

h�� jCov(Z1; Z`+1)j `p +
T�1X

`=dT+1

h�� jCov(Z1; Z`+1)j `p

= O
�
dp+1T h1��

�
+O

0@ 1

h1+�

1X
`=dT+1

`p��

1A
= O

�
dp+1T h1��

�
+O

 
1

h1+�
1

d��p�1T

!
:

Let us take a dT such that

dp+1T h1�� � 1

h1+�
1

d��p�1T

;
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that is, dT = h�2=� : Then

T�1X
`=1

h�� jCov(Z1; Z`+1)j `p = O
�
h1�2(p+1)=���

�
;

So if � � 2(p+1); then
PT�1
`=1 h

�� jCov(Z1; Z`+1)j `p = O(1) for � = 1�2(p+1)=�. This ensures
the existence of B(p) (x) such that

B(p) (x) = 2 lim
T!1

T�1X
`=1

h��Cov(Z1; Z`+1)`
p:

Proof of Theorem 4.
(a) Asymptotic variance
Let I =

n
(t; �; r; s) 2

n
(1; : : : ; T )4

o
n ft = � = r = sg

o
: Then

V ar
�
~Vh (x)

�
= V ar

 
1

T

TX
t=1
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�=1

W

�
t� �
ST

�
ZtZ�

!

=
1
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TX
t=1

TX
�=1

TX
r=1

TX
s=1

W

�
t� �
ST

�
W

�
r � s
ST

�
fE [ZtZ�ZrZs]� E [ZtZ� ]E [ZrZs]g

= A+B; (28)

where

A =
1

T

n
E
�
Z4t
�
�
�
EZ2t

�2o
;

B =
1

T 2

X
(t;�;r;s)2I

W

�
t� �
ST

�
W

�
r � s
ST

�
fE [ZtZ�ZrZs]� E [ZtZ� ]E [ZrZs]g :

For A; we have

A1 =
1

T
E
�
Z4t
�
=

1

Th

Z
h3 fKh (v � x)� EKh (Xt � x)g4 f (v) dv

=
h2

T

Z n
Kh (v � x)4 f (v)� 4Kh (v � x)3EKh (Xt � x)

o
f (v) dv

+
h2

T

Z n
6Kh (v � x)2 [EKh (Xt � x)]2 � 4Kh (v � x) [EKh (Xt � x)]3

o
f (v) dv

+
h2

T
[EKh (Xt � x)]4 =

1

Th
f (x)

Z
K (u)4 du+O

�
1

T

�
(29)
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and

A2 =
1

T

�
EZ2t

�2
=
1

T

�Z
h fKh (v � x)� E [Kh (Xt � x)]g2 f (v) dv

�2
=
1

T

�Z
h
n
Kh (v � x)2 � 2Kh (v � x)E [Kh (Xt � x)] + [EKh (Xt � x)]2

o
f (v) dv

�2
= O

�
1

T

�
; (30)

and so A = 1
Thf (x)

R
K (u)4 du+O

�
1
T

�
:

For B; we �rst use Lemma 1(a) to obtain������ 1T 2
X

(t;�;r;s)2I
W

�
t� �
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�
W

�
r � s
ST

��
E [ZtZ�ZrZs]� E

h
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=
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X
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W

�
t� �
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�
W

�
r � s
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E [Z1Z1+��tZ1+r�tZ1+s�t]� E

h
~Z1 ~Z1+��t ~Z1+r�t ~Z1+s�t

i�������
� 1

T

T�1X
`=�T+1

T�1X
m=�T+1

T�1X
n=�T+1

���E [Z1Z1+`Z1+mZ1+n]� E h ~Z1 ~Z1+` ~Z1+m ~Z1+ni��� 1 f(`;m; n) 6= (0; 0; 0)g
=
1

T

T�1X
`=�T+1

T�1X
m=�T+1

T�1X
n=�T+1

QT (`;m; n) 1 f(`;m; n) 6= (0; 0; 0)g

= O

�
1

Th2=�

�
: (31)

Combining (31) with

E
h
~Zt ~Z� ~Zr ~Zs

i
= E [ZtZ� ]E [ZrZs] + E [ZtZr]E [Z�Zs] + E [ZtZs]E [Z�Zr] ;

we have

B =
1

T 2

X
(t;�;r;s) 2I

W

�
t� �
ST

�
W

�
r � s
ST

�
fE [ZtZ�ZrZs]� E [ZtZ� ]E [ZrZs]g

=
1
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X
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W

�
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�
W

�
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�
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�
1
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�

:= B1 +B2 +O

�
1
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�
: (32)
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For B1;

B1 =
1

T 2

X
(t;�;r;s) 2I

W

�
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�
W

�
r � s
ST

�
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W

�
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�
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�
r � s
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�
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�
1

T

�

=
1
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W

�
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E
�
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�
E
�
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�

+
1
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X
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X
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W

�
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�
W

�
r � s
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�
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+
2
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X
r 6=t
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W

�
t� �
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�
W

�
r � �
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�
E [ZtZr]E

�
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�
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�
1

T

�

:= B11 +B12 +B13 +O

�
1

T

�
:

For B11; we have

B11 =
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T

1
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STX
`=�ST

�
1� j`j

T

�
W

�
`
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�2 �
E
�
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��2

=
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T

1
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STX
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W

�
`
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E
�
Z21
��2 � ST

T

1
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STX
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T
W

�
`

ST

�2 �
E
�
Z21
��2

=

�
ST
T

��Z 1

�1
W (�)2 d�

�
V (x)2 + o

�
ST
T

�
+O

�
S2T
T 2

�
(33)

because ������STT 1

ST

STX
`=�ST

j`j
T
W

�
`

ST

�2 �
E
�
Z21
��2������

� ST
T

1

ST

STX
`=�ST

j`j
T

�
EZ21

�2 � ST
T

1

ST

ST (2ST + 1)

T

�
EZ21

�2
= O

�
S2T
T 2

�
:
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For B12; we have

jB12j =

������ 1T 2
TX
t=1

X
r 6=t

TX
�=1

X
s 6=�

W

�
t� �
ST

�
W

�
r � s
ST

�
E [ZtZr]E [Z�Zs]

������
=
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TX
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X
r 6=t

minfST ;t�1gX
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W

�
`
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�
W

�
k
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�
�E [ZtZr]E [Zt�`Zr�k] 1 ft� ` 6= r � kg

���
� ST
T

1

T
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X
r 6=t

jE [ZtZr]j
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minfST ;t�1gX
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k=maxf�ST ;r�Tg
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� ST
T

1

T
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X
r 6=t

jE [ZtZr]j
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� ST
T
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T
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t=1

X
r 6=t

jE [ZtZr]j

1A0@ 1

ST

STX
`=�ST

T�1X
k=�T+1

j�Z;k�`j 1 fk 6= `g

1A
� 2ST

T

0@ 1
T

TX
t=1

X
r 6=t

jE [ZtZr]j

1A 1

ST

STX
`=�ST

T�1X
k=0

j�z;k�`j 1 fk 6= `g ; (34)

where �Z;s is de�ned to the jsj-th order autocovariance of fZtg : But with dT = h�2=� we have
T�1X
k=0

j�Z;k�`j 1 fk 6= `g �
1X
k=1

jCov(Z1; Zk+1)j =
dTX
k=1

O(h) +

1X
k=dT+1

1

h
�(k)
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dTh+

1

d��1T h

!
= O

�
h1�2=�

�
= o (1)

uniformly over `: Similarly,
P
r 6=t jE [ZtZr]j = o(1) uniformly over t: Combining these with (34)

yields B12 = o(ST =T ):
For B13; we have

jB13j =
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X
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�
� � t
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�
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�
� � r
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�
E [ZtZr]E

�
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=
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W

�
`
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�
W

�
k
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�
E [Z��`Z��k]E

�
Z2�
������� 1 fk 6= `g

� ST
T

2

T
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�=1

E
�
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�0@ 1

ST

STX
`=�ST

T�1X
k=�T+1

j�Z;k�`j 1 fk 6= `g

1A = o

�
ST
T

�
: (35)

In view of (33), (34) and (35), we have

B1 =

�
ST
T

��Z 1

�1
W (�)2 d�

�
V (x)2 + o

�
ST
T

�
+O

�
S2T
T 2

�
:
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Using W (�) =W (��) in Assumption 4(i), it is easy to show that B1 = B2: Thus, we have

B =

�
ST
T

�
2

�Z 1

�1
W (�)2 d�

�
[V (x)]2 + o

�
ST
T

�
+O

�
1

Th2=�

�
: (36)

To sum up, we have proved that

V ar
�
~Vh (x)

�
=

1

Th
f (x)

Z
K (u)4 du+

�
ST
T

�
2

�Z 1

�1
W (�)2 d�

�
[V (x)]2 + o

�
ST
T

�
+ o

�
1

Th

�
:

So under the asymptotic sequence: ST ! 1; h ! 0 but Th ! 1 and T=ST ! 1; as T ! 1;
we have the following:

(i) if hST ! 0;

lim
T!1

ThV ar
�
~Vh (x)

�
= f (x)

Z
K (u)4 du;

(ii) if hST ! 
;

lim
T!1

T

ST
V ar

�
~Vh (x)

�
= f (x)

Z
K (u)4 du=
 + 2

�Z 1

�1
W (�)2 d�

�
V (x)2 ;

(iii) if hST !1;

lim
T!1

T

ST
V ar

�
~Vh (x)

�
= 2

�Z 1

�1
W (�)2 d�

�
V (x)2 :

(b) Asymptotic bias
Using Lemma 1(b) and the dominated convergence theorem, we have

SpT
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�
E ~Vh(x)� Vh (x)

�
=
SpT
h�
1

T

TX
t=1

TX
�=1

�
W

�
t� �
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�
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�
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=
2
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�
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(`=ST )

p

��
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T

�
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p

= �W (p)B(p) (x) + o(1);

as desired.
(c) Approximation error:

p
�T

�
V̂h (x)� ~Vh (x)

�
= op (1) :

We use the same decomposition as in the proof of Theorem 3 to get

h
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i
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�
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�
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T
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"
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�
t� �
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but we will establish a tighter bound for the second term. We have
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Noting that �T � T=ST and �T � Th; we havep
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(d) Note that

jcov(Z1; Zj+1)j = O(h) and jcov(Z1; Zj+1)j � 4� (j) kK1k2 =h:

we have, for some dT > 1 :
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Taking dT = h�2=� yields

Vh (x) = V (x) + o(1) +O
�
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�
= V (x) + o(1):

Proof of Proposition 1. Let
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hdT +

1

hd��1T

#
= O(
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T 2
) = O

�
1

T 2

�
: (37)
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upon taking dT � h�2=� , and so

V̂h(x; b) =
1

T

TX
t=1

TX
�=1

W �
b

�
t

T
;
�

T

�
ZtZ� +Op

�
1

T

�
;

where the Op (�) term holds under both the �xed h and small h asymptotics. Using the same
proof as that for Lemma 1 in Sun (2014b), we can show that
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and so
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Similarly,
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Combining the above two results leads to
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under both the �xed h and small h asymptotics.

Proof of Theorem 8. Note that�����Kh (Xt � x)
�
Xt � x
h

�i+j�2�����
=

�����1hK
�
Xt � x
h

��
Xt � x
h

�i+j�2����� 1 fjXt � xj � hg � kKk1 =h:
By the mixing inequality of Doukhan (1994) for almost surely bounded variables, we have
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Given that
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:
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This implies that P 0x
xPx=T !p Jh (x) :
As a consequence,

p
Th [m̂ (x)� �0;h] = e01
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xPx
T

��1 1p
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:

In view of
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T!1
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we obtain

1p
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~K�(u) = e01J
�1
h (x) [1; u; :::; ur]0K (u) = (a0;hx + a1;hxu+ :::+ ar;hxu

r)K (u)

where (a0;hx; a1;hx; :::; ar;hx) = e01J
�1
h (x) depends on x and h but not on T: Given that K(u) is

continuous with a compact support [�1; 1], ~K�(u) is also continuous and hence bounded with the
same compact support. In terms of ~K�(�); we can write Zt as

Zt =
p
h
n
~K�
h (Xt � x) "t + ~K�

h (Xt � x)m(Xt)� E
h
~K�
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So E jZtj2� <1 and

Cov [Z1; Z1+`] � 8 [� (`)](��1)=�
n
E [Z1]

2�
o1=�

= O [� (`)](��1)=� : (38)

These moment and mixing conditions are su¢ cient for the CLT:

1p
T

TX
t=1

Zt !d N (0; Vh (x));
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where we have used Theorem 2.21 in Fan and Yao (2003).

Proof of Theorem 9. We �rst show that B(p)h (x) is well-de�ned. Combining (38) with As-
sumption 7(i) and (iii) with a � p; we have

1X
`=1

jCov [Z1; Z1+`]j `p <1

and hence B(p)h (x) = 2 limT!1
PT�1
`=1 Cov [Z1; Z1+`] `

p is indeed well-de�ned.
Next we prove the theorem. Parts (a) and (b) follow from Proposition 1 of Andrews (1991).

It remains to show Part (c). Let "tx(~�) = Yt � Pt(x)0~� and

�(Xt; ~�) = e
0
1J
�1
h (x)Pt(x)Kh (Xt � x) "tx(~�):

Then

V̂h (x) =
1
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TX
t=1

TX
�=1
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�
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�
�(Xt; �̂)�(X� ; �̂) +Op

�
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;
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1
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�=1
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�
t� �
ST

�
� (Xt; �h) � (X� ; �h) +Op

�
1p
T

�
:

The above representation casts our problem into the same problem considered in the second part
of Theorem 1(b) of Andrews (1991). To see this, we only need to replace the notation V (Zt; ~�)
in Andrews (1991) by our �(Xt; ~�): To complete the proof, we verify Andrews�Assumptions B
and C in our context. Note that

@�(Xt; ~�)

@�
=
�
e01J

�1
h (x)Pt(x)

�
Kh (Xt � x)Pt(x)

which does not depend on ~�: Under the assumptions given in the theorem, it is straightforward
to show that Andrews�Assumptions B and C are satis�ed.
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