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ABSTRACT OF THE DISSERTATION

Silent Data Corruption Resilient Matrix Factorizations
on Distributed Memory System

by

Panruo Wu

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2016

Dr. Zizhong Chen, Chairperson

The lack of efficient resilience solutions is expected to be a major problem for

the coming exascale supercomputers, as the chance that a long running large scale

computation can finish without faults is diminishing quickly. In this dissertation I

try to develop algorithmic techniques to provide fault tolerance for the commonly

used matrix factorization algorithms and its high performance implementation in

distributed memory massively parallel systems, with very low overhead and high

scalability.

Specifically, I design numerical error correcting encoding of matrix and the corre-

sponding algorithms to tolerate hardware faults during matrix factorizations. It is in

common with error correcting codes (ECC) used widely in communication and storage

systems that use codes to detect and correct errors occured during communication or

at rest in storage cells. The salient difference is that while ECC protects invariable

data, I need an ECC for variable matrix that is under factorization. My previous
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and current work covers the design of such algorithmic fault tolerance techniques for

the six most widely used matrix factorizations LU, QR, Cholesky, SVD, Hessenberg

reduction, and tridiagonal reduction which comprise the core functionality of the de

facto dense linear algebra package ScaLAPACK (Scalable Linear Algebra PACKage).

The novel approach I used extensively is the on-line ABFT which not only designs the

numerical codes but also modifies the algorithm to maintain the checksum in flight.

For LU/QR/Cholesky factorizations, the on-line transformation results in vastly im-

proved fault tolerance at a small extra cost. For SVD/Hessenberg/tridiagonal factor-

izations where no ABFT exist, the on-line ABFT fills this void and produces similarly

highly scalable, resilient, and efficient algorithms and implementations.
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Chapter 1

Introduction

The extreme scale high performance computing (HPC) systems that are expected

by the end of this decade poses several challenges including performance, power

efficiency, and reliability. Due to the large amount of components in these sys-

tems,shrinking feature size, and the severe constrains in power, the probability that

an extreme scale application experiences faults during its execution is projected to be

non negligible. Resilience to faults have been widely accepted as critical for exascale

HPC applications[94, 23, 13].

Faults are malfunctions of the hardware or software, and are the underlying causes

for observable errors. When the fault does not interrupt the execution of a process

the program can continue execution normally, but the results may be corrupted. Such

silent data corruptions cannot be tolerated by checkpoint/restart (C/R) alone unless

they can be frequently detected. Silent data corruptions may be the consequence of
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soft faults caused by cosmic rays and radiation from packaging materials, and are

usually one time events that corrupt the state of the machine but not its overall

functionality. We restrict our scope to silent data corruptions (SDC) in this work.

Note that since soft errors which are caused by single event upset frequently corrupt

data silently, SDC handling is also often discussed in context of soft errors.

Faults in storage and communication systems are often effectively tolerated by er-

ror correction codes (ECC) because the data stored or communicated are not chang-

ing. However, faults in logic units that transform the data are harder to detect and

tolerate. Typically some kind of double modular redundancy (DMR) is needed to

detect soft faults in logic units and triple modular redundancy (TMR) is needed to

tolerate SDCs. Although modular redundancy requires at least 100% resource over-

head and often incurs significant execution time overhead, it is sometimes the only

general system level solution to tolerate SDCs [39, 96].

System level SDC solutions can be prohibitively expensive for HPC systems. An

alternative solution is to implement fault tolerance in applications, which can take

advantage of the semantics and structure of a specific application resulting in much

lower cost. Algorithm based fault tolerance (ABFT) represents a middle ground be-

tween application specific fault tolerance and architecture fault tolerance. At one end

application specific fault tolerance is highly diverse that often require ad-hoc solu-

tions, at the other end system fault tolerance is general but too costly and unscalable.
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Algorithms thus presents just enough semantics to take advantage and structure to

be generally useful.

ABFT has first been proposed in a seminal work by Huang and Abraham [58]

for matrix-matrix multiplication on systolic arrays. The idea of ABFT can be seen

as an adaption of ECC to numeric structures like matrices or vectors. The signifi-

cant difference is that for ECC the data is static but for ABFT the data is under

transformation. In ABFT the central problem is that the codes must maintain after

transformation in order to be able to detect errors using the codes. We will focus on

the most important operations in numerical linear algebra: the LU factorization, QR

factorization, Cholesky factorization, and unitary bidiagonal/tridiagonal/Hessenberg

reduction. The (partial pivoted) LU factorization is the algorithm to solve general

linear system which has applications in all science and engineering problems. QR

factorization is often used to solve least square problem which is important in statis-

tics. Cholesky factorization is used to solve the symmetric linear system. Unitary

bidiagonal reduction is the prerequisite to Singular Value Decomposition (SVD) that

is used in rank-deficient linear square problems and linear systems and certain data

analytics problems such as Principal Component Analysis (PCA) and Linear Discrim-

inant Analysis (LDA). The Hessenberg and tridiagonal reductions are prerequisites

for eigenvalue decomposition that have many applications in structural engineering

(vibration modes), quantum mechanics (Shrodinger’s equation), and in data analyt-

ics (PageRank from Google search). In summary, these matrix factorizations are the

3



core computational tools in linear algebra that provide the basic building blocks for

computational science and engineering, and more recently the big data analytics.

1.1 Problem Statement

The core problem in this proposal is to design efficient and scalable distributed

memory one-sided and two-sided factorizations that are resilient to silent data cor-

ruptions. To make the statement more concrete some definition and clarification is

in order. Efficient and scalable means that in general: 1) fault-free execution time

should incur overhead less than 10%; 2) memory overhead should be less than 10%;

3) the resilient algorithm should be at least as scalable as the original counterparts.

The algorithms and implementations are for large scale distributed memory comput-

ers that communicate by message passing. One-sided matrix factorizations include

LU, QR, and Cholesky factorizations; two-sided matrix factorizations include bidi-

agonal, tridiagonal, and Hessenberg reductions, as they are the main computational

subroutines in the ScaLAPACK (Scalable Linear Algebra PACKage). Silent data cor-

ruptions include bit flips in memory systems or in communications and computation

faults in arithmetic logic unit, in particular the FPU.
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1.2 Thesis Statement

Linear matrix encoding and appropriate modification to the matrix factorizations

can enable timely detection and correction of silent data corruptions with minor

overheads.

1.3 Contributions

1.3.1 For one-sided matrix factorizations

In this paper, we present the design and implementation of FT-ScaLAPACK,

a fault tolerant version ScaLAPACK that is able to detect, locate, and correct soft

errors in Cholesky, QR, and LU factorizations on-line in the middle of the computation

in a timely manner before the errors propagate and accumulate. FT-ScaLAPACK

has been validated with thousands of cores on Stampede at the Texas Advanced

Computing Center. Experimental results demonstrate that FT-ScaLAPACK is able

to achieve comparable performance and scalability with the original ScaLAPACK

library. More specifically, our contributions include:

• Cholesky Factorization: We designed an on-line scheme to correct soft errors

in Cholesky factorization before the errors propagate and accumulate, where the

existing best schemes [56, 3] cannot correct errors. Existing schemes need to
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restart the whole computation if any error occurs, therefore, introduces much

higher overhead than our on-line scheme.

• QR Factorization: We designed an on-line scheme to correct soft errors in

QR factorization before the errors propagate and accumulate, where the existing

best schemes [35, 26] can only correct errors off-line at the end the computation

after the errors propagated and accumulated. While the overhead of the existing

off-line schemes increases at least quadratically as the number of errors increases,

the overhead of our on-line scheme is much lower and increases only linearly.

• LU Factorization: We designed a new on-line scheme to correct soft errors

in LU factorization without global communications or synchronizations, where

the existing best schemes [19] are on-line, but involve expensive global commu-

nications and synchronizations.

• Software Implementation: We made the widely used ScaLAPACK library

core routines (Cholesky, QR, LU) fault tolerant without modifying the library

interfaces. Existing HPC applications that use ScaLAPACK library can now

make use of our new FT-ScaLAPACK library to tolerate soft errors by just

linking to the new library without any modification on source codes.
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1.3.2 For two-sided matrix factorizations

• We propose the first comprehensive online ABFT schemes against soft errors

for three two-sided factorizations.

• We analytically and empirically evaluate the fault coverage and efficiency of the

proposed scheme and demonstrate the superiority to the current state of the

art.

• We implemented the proposed technique in the Scalable Linear Algebra Package

(ScaLAPACK) for easy adoption without changes to the interfaces.

1.3.3 For fault tolerant high performance linpack

New fault model We use a fault model that allows logic faults and memory sys-

tem faults that are comprehensive temporally and spatially and design ABFT

schemes that can effectively detect and correct errors caused by these faults.

New checksum scheme We propose a novel process local checksum scheme, mul-

tiple checksums for error detection and correction by studying the syndrome

(error patterns) caused by the faults.

Validation and software implementation We test and validate the resilience us-

ing an architectural fault injector. We implement the new ABFT schemes in

the latest Netlib HPL-2.1.
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1.4 Limitations

The main limitation of this dissertation work is the fault model, which we generally

assumed to be transient floating point arithmetic error, and expanded to include

memory bit flips errors in chapter 6. It is currently unclear to what extent our

fault model captures the actual faults. However this dissertation should provide

foundations for the design space to accomondate different fault models that may

proved to be more fidel.

1.5 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 gives a brief review

of the background as well as the related work. Chapter 3 discusses the design of online

ABFT for matrix multiplications. Chapter 4 develops on-line checksum schemes for

one-sided factorizations. Chapter 5 further develops on-line checksum schemes for

two-sided factorizations based on Householder transformations. Chapter 6 presents

variants of checksum schemes for High Performance Linpack (HPL), a highly scalable

and performant implementation of LU factorization routinely used to rank the largest

supercomputers in the world (TOP500.org), which works for a more comprehensive

fault model. Chapter 7 concludes the dissertation and discusses future work.
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Chapter 2

Related Work

In this section we put our work in context by surveying the field, especially the

work closest to this dissertation. Due to the complexity and high performance demand

of high performance computing, there is no single solution to the reliability problem.

There are techniques at differetn layers of the computer system stacks that mitigate

this problem, ranging from the lowest circuit layer to the application specific layer.

This dissertation work on the algorithm layer, which is right beneath the application

layer that is at a advantageous position to have just enough semantics for efficient

fault tolerance and also generality to service a range of applications.

2.1 Faults

Soft errors: The first report on soft errors due to alpha particles in computer

chips was from Intel in 1978 [70]. The first report on soft errors due to cosmic
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radiations in computer chips was in 1984 [108]. In 1996, Norman [79] studied error logs

of several large computer systems and reported a number of incidents of cosmic ray

strikes. In 2005, Hewlett-Packard admitted that the ASC Q supercomputer located

in Los Alamos National Laboratory experienced frequent crashes because of cosmic

ray strikes to its parity protected cache tag arrays. The machine is particularly

susceptible because of the 7000ft altitude of the installation location [72]. The book by

Mukherjee [77] surveys extensively the architectural techniques to design architectures

for soft errors.

Memory System: The most commonly used and effective protection for mem-

ory system is the error detecting and/or error correcting codes used in storage system

and communication system. Such codes range from simple parity code to Ham-

ming codes [50] or Hsiao codes [55] that provide single bit correction and double bit

detection (SEC-DED) capability. To correct multi-bit errors more complex and ex-

pensive codes such as double-bit-error-correcting and triple-bit-error-detecting (DEC-

TED) [88], and Reed-Solomon (RS) codes [85]. The main problem of multi-bit cor-

recting codes are the cost in increased circuit, storage, and computing overhead [89].

To handle memory chip failures chipkill-correct codes are adopted [64]. ECC alone

cannot ensure that correct execution of applications as the application execution uti-

lizes not only memory system but also computation logics.

Computational Logic: As the chip technology goes into ever smaller feature

size, logic errors will be major problem [73, 74]. At the circuit level latches redundancy
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based techniques are proposed but suffer from large area time overhead [68, 75, 84].

At the architectural level modular or execution redundancy is used to provide fault

tolerance [77]. Coding approach is also devised for some arithmetic operations, such as

AN code [69] usually for integer addition. Although residue code is not directly appli-

cable to floating point arithmetic it can be used in different stages independently [61].

Integer arithmetic can be used to detect errors in floating point arithmetics concur-

rently such as demonstrated in [105]. Code-based methods are cost effective but

inflexible to apply to a wide range of hardware structures. More flexible methods

include replicating the execution of some logic units and verifying the result such as

in IBM systems [71].

2.2 Checksum based algorithmic fault tolerance

The term algorithm based fault tolerance (ABFT) was proposed by Abraham and

Huang [58] for matrix-matrix multiplication on systolic arrays to detect and correct

transient errors that have occurred during the computation. The technique was sub-

sequently extended to cover one-sided matrix factorizations (LU, Cholesky, and QR)

by [65, 67, 2]. Later developments extend the idea to handle fail-stop errors [27, 9],

to tolerate multiple fail-continue errors (soft errors) for LU [31] and QR [34]. For

soft errors these developments share the common characteristics that they are offline

problem specific. Offline means the error detection and correction happen after the
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computation is done; problem specific means the technique works regardless of which

specific algorithm is used to solve the matrix factorization problems.

Online, algorithm specific ABFT: To handle multiple soft errors more effi-

ciently, recent research proposed online variant of the ABFT idea on matrix-matrix

multiplication [100, 101] one-sided matrix factorizations [20, 99, 103]. The charac-

teristics of these recent developments are that the techniques are online algorithm

specific, as opposed to the offline problem specific discussed in the previous para-

graph. Online means that the error detection and correction is continuously working

during the computation instead of only at the end; algorithm specific means the

ABFT scheme has to be designed with a particular matrix factorization algorithm in

mind instead of algorithm agnostic.

Previous ABFT work in two sided factorizations: As for two sided matrix

factorizations (Hessenberg, tridiagonalization, bidiagonalization), two recent stud-

ies [59, 60] discussed ABFT scheme for Hessenberg factorization against fail-stop

errors and bidiagonalization against fail-continue errors. These two works are based

on matrix-matrix multiplication and ignore other operations in the factorizations thus

only provide partial fault coverage. To provide comprehensive protection for the two

sided matrix factorizations, the challenge is that there is no obvious problem specific

checksum scheme to base on. It is therefore not obvious to design offline ABFT for

two-sided matrix factorizations; algorithm specific online ABFT is necessary. This
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further entails that substantial algorithm modification must be incorporated together

with the checksum scheme, which will be shown in the following sections.

ABFT and fault model: Algorithm based fault tolerance was first proposed by

Abraham and Huang [58]. The original ABFT was proposed for matrix multiplication

and LU on systolic arrays for real time signal processing. The fault model used is

logic faults that produces erroneous results. Storage cell faults such as in memory,

latch, and registers are assumed to be handled by traditional error correction codes.

In matrix multiplication, as a single arithmetic fault causes only a single error in

the result matrix, this ABFT scheme can effectively detect and correct it. In LU

decomposition, because of error propagation, a single fault will cause an overwhelm-

ingly large amount of errors in the results, thus making this ABFT scheme unable

to tolerate a single fault algorithmically. The limited correction capability is due

to three factors: 1) inability to tolerate multiple errors in the checksum scheme, 2)

massive error propagation in matrix triangularization, and 3) offline error correction.

These three factors conspire to make algorithmic error correction difficult in matrix

triangularization. Later Luk and Park [67] described an elegant analytical model for

ABFT in matrix triangularization. The analytical model assumes an abstract fault

model that a transient error occurs at some intermediate iteration in the triangu-

larization. Even though the single error will propagate in later stages and become

uncorrectable at the end, it can be shown that the error can be cast back as a single

rank perturbation to the original input matrix, much like the widely used backward
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error analysis [98]. Then assuming two row checksums the correct result can be de-

rived based on the backward fault model. This is a powerful technique that avoids

the error propagation problem but it has three limitations: 1) the fault model as-

sumes single error not necessarily single fault, as we have seen that single fault may

cause multiple errors; 2) this checksum scheme has no column checksums thus may

fail to even detect certain faults as pointed out by a recent work by Yao [104]; and

3) the method can only tolerate at most one fault during the decomposition. As the

scale of supercomputing marches towards exascale, fault tolerance is becoming a key

aspect in achieving the required performance at reasonable cost [93, 24, 13]. And

assuming only one fault during the application run seems not appropriate in future

large scale systems any more. To address more than one error in matrix triangu-

larization, Du [33, 29] proposed a technique to tolerate two errors in solving linear

system using partial pivoting LU decomposition. In this case, the decomposition

cannot be corrected, but the result to the linear system can be recovered using the

Sherman-Morrison-Woodbury formula. Handling beyond two errors would be more

expensive than the LU decomposition itself. The fault model used is the same as

in Luk and Park [67] thus suffers from the same problem. Some researchers went in

another direction in order to tolerate more faults effectively. Realizing that the offline

approach taken by the traditional ABFT techniques have to face catastrophic error

propagation at the end, researchers attempted to adapt checksum schemes for online

error detection and correction [21, 100, 99]. The idea is that online ABFT catches
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errors early on when they are not propagated far away, therefore making it easier to

correct. Online ABFT also can tolerate more errors that spread in time by avoid-

ing errors compounding each other. The fault model used however is still arithmetic

faults, and there still is no column checksums due to the difficulty in row pivoting. A

recent study [104] discovers that the fault models used in the previous ABFT works

are not adequate even in detecting faults (Section 3 in [104]). This work proposes a

global row and column checksums that can effectively detect errors and it is also an

online approach. However error correction is not considered.

In chapter 6 we do not use an abstract fault model; rather we assume an archi-

tectural fault model and aim to detect and correct multiple errors. The architectural

fault model is closer to what happens in real world and not only include all the fault

models discussed above but also more improvements.

The pioneering works of on-line ABFT on matrix-matrix multiplication [15, 102]

and LU factorization in HPL [19] are the main inspiration of our work. While those

works went at length to design, validate, and analyze the checksum schemes for the

specific algorithms they aimed at, we used a unified approach guided by a high level

framework that we show can make the design, validation, and analysis of on-line

ABFT checksum schemes with block linear algebra algorithms almost mechanical.

We think this higher level viewpoint helps mitigating the disadvantage of ABFT that

major efforts have to be made to design on-line ABFT for each algorithm. By making

on-line ABFT design systematic and easier, we hope to see more and more commonly
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used algorithms and other fault tolerance techniques such as checkpoint/rollback,

ECC [63], and hybrid memory systems using non-volatile memories enjoying the ben-

efits of on-line ABFT.

Offline ABFT methods usually can detect errors and correct up to a certain num-

ber of errors using some formulas after the operation [66]. Although offline ABFT

techniques usually have very small runtime overheads [30], they cannot stop errors

from propagation. Instead, they try to recover from the mess after the errors spread,

which limits the number and type of SDCs that can be tolerated. Our approach on

the other hand, tries to contain the errors from propagating thus is more powerful in

tolerating more errors at the cost of slightly larger runtime overhead.

The state-of-the-art algorithmic technique for tolerating soft/hard errors are ex-

tensively studied in the recent PhD thesis by P. Du [26] ABFT based approach to

survive hard errors (fail-stop) for LU, QR, and Cholesky factorizations was well stud-

ied in [28]. But to survive soft errors in the matrix factorization subroutines, the

jobs are arguably more difficult. Some study on LU [30] and QR [35] exist to deal

with soft errors. The technical report by Du [30] proposes a technique to tolerate soft

errors in LU, which is based on a mathematical model of treating soft error during

LU factorization as rank-one perturbation to the original matrix and recovering the

solution of Ax = b with the Sherman-Morrison [43] formula. Although our one-sided

factorizations we are dealing with here and the LU factorization discussed in pa-

per [30] have the same goal, our approach is different in many fundamental aspects.
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Firstly while their work guarantees the solution x to the linear system Ax = b is

correct, we aim at ensuring that the factorization of A = LLT , A = LU,A = QR is

correct. Secondly, their work casts soft errors occur during the factorization process

to the original matrix thus avoiding consideration of timing of errors, our work deals

directly with errors as they occur, as the factorization proceeds. Thirdly, after making

some tradeoffs their works can effectively tolerate two soft errors in each block with

minimum overhead, our approach has the potential to tolerate significantly more soft

errors at the expense of a little bit more overhead. Lastly, unlike LU decomposition,

Cholesky factorization can easily break down if soft errors happen to invalidate the

positive definiteness of the matrix, in which case all off-line approaches would fail

since the Cholesky factorization would simply not finish.

2.3 System level fault tolerance

There are other fault tolerant techniques that can deal with SDCs in parallel fac-

torizations that have various characteristics in terms of error detection and correction

capability, runtime overhead and resources overhead. Among them, we compare our

approach to node (MPI task) level TMR (RedMPI [40]). So far the RedMPI approach

is the most general and powerful method to detect and tolerate silent (soft) errors.

RedMPI uses multiple “replicas” for each MPI task, and check the MPI messages

from the “replicas” to try to detect and recover silent errors. The idea is that, a SDC

in one replica will eventually produce a corrupted MPI message, and that message
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will be detected by comparing the messages from all the replicas for the same MPI

task. Therefore, by checking the MPI message we can detect and tolerate SDCs.

According the the paper [40], RedMPI introduces overhead between 20% to 60% for

triple redundancy, and 13% to 45% for double redundancy, depending on applications.

To detect error at least double redundancy is required, which means 2x nodes are re-

quired while to correct errors by voting at least triple redundancy or 3x nodes are

required. Our approach is not as general and requires adaptions for each algorithm

considered, but has much less overhead both in run time and node numbers.

Besides the redundancy based fault tolerance, another popular fault tolerance

technique is the checkpointing and rollback (C/R). A very comprehensive survey of

C/R can be found in [36]. The intuition of the C/R idea is to periodically save the

execution state into stable storage and rollback to the saved state should a failure

occurred. Checkpointing can be either initiated by the system transparently to the

application such as in BLCR [52], or initiated by the application with the latter

being more popular due to its simplicity, flexibility, and better performance. The

bottleneck of a disk-based C/R scheme is usually the I/O system. It also severely

limits the scalability of the C/R system. One particular competitive C/R variant is

diskless checkpointing [82] such as SCR [76] that uses another node’s memory as the

checkpointing destination. Diskless checkpointing usually is much faster and scalable

than disk checkpointing at the expensive of massive memory space overheads.
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2.4 Energy efficiency and resilience

Architectural works: These works [87, 86] attempts to break the contract be-

tween hardware and software for the sake of energy efficiency: the software can no

longer expect all operations in hardware are correct. The solutions to the loss of

reliability promise is to redesign applications to use stochastic and self-stabilizing

algorithms [90, 87] that are resilient to hardware faults.

System fault tolerance: The most commonly used (fail-stop) fault tolerant

techniques, checkpoint/rollback has been studied very extensively in the literature.

The most popular approach is application driven checkpointing, where the program-

mer defines the state to checkpoint and when to checkpoint. System level checkpoint

Representative works include the Berkeley Lab Checkpoint/Restart (BLCR) [52],

diskless checkpointing [82, 81], hierachical checkpointing (SCR [76], FTI [4]). Popu-

lar distributed memory parallel computing middleware such as MPI and Charm++

all support checkpointing. Note that checkpointing by itself can only tolerate fail-stop

errors. From the perspective of energy efficiency, diskless checkpointing clearly wins

for its much lower performance overhead and better scalability.

Another general approach that can tolerate both fail-stop and fail-continue failures

is modular redundancy, or called replication. The idea is to use redundant resources

for data and computation. Representative works include rMPI [38] and RedMPI [41]

which replicates MPI ranks. From the perspective of energy efficiency replication

19



seems hardly justified for its large resource thus energy overhead (100% for detection,

200% for correction).

Algorithmic fault tolerance: In recent years tremendous progress has been

made in the area of algorithmic fault tolerance mainly for its clever use of algorithmic

structure to achieve very low overhead and very good scalability. Here we only sample

some of the works. For dense linear algebra, encoding matrices with checksums has

been studied in matrix-matrix multiplication [58] and matrix factorizations [2, 67, 65]

mainly on systolic arrays. Recently, fueled by the looming reliability issues in large

scale supercomputers, those checksum-based algorithmic fault tolerance has attracted

extensive research in the context of HPC for both fail-continue failures [99, 103, 20, 31]

and fail-stop failures [22, 27]. For sparse iterative methods, some algorithms exhibit

inherent fault tolerance [11, 14, 87], and some algorithms can be efficiently augmented

using algorithmic detection and/or correction [16, 91, 92]

Energy/power and reliability: Extensive research has been performed to save

energy and preserve system reliability for real-time embedded processors and systems-

on-chip. Zhu et al. [107] discussed the effects of energy management via frequency

and voltage scaling on system failure rates. This work is later extended to reliability-

aware energy saving scheduling that allocates slack for multiple real-time tasks [106],

and a generalized Standby-Sparing technique for multiprocessor real-time systems,

considering both transient and permanent faults [48]. These studies made some as-

sumptions suitable for real-time embedded systems, but not applicable to large-scale
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HPC systems with complex hardware and various types of faults. Pop et al. [83]

explored heterogeneity in distributed embedded systems and developed a logic pro-

gramming solution to identify a reliable scheduling scheme that saves energy. This

work ignored runtime process communication, which is an important factor of per-

formance and energy efficiency for HPC systems and applications. The Razor work

[37] implemented a prototype 64-bit Alpha processor design that combines circuit

and architectural techniques for low-cost speed path error detection/correction from

operating at a lower supply voltage. With minor error recovery overhead, substantial

energy savings can be achieved while guaranteeing correct operations of the proces-

sor. Similar power-saving and resilient-against-error hardware techniques have been

proposed such as Intel’s Near-Threshold Voltage (NTV) design [62] on a full x86

microprocessor.

For processors traditionally they are designed for the worst-case which are expen-

sive in terms of area and power. Better than worst case (BTWC) design approaches

based on timing speculation (TS) [37], are for average case and also have high yields.

Such TS based methods generally allow timing violations to occur and try to detect

and correct timing errors. The basic idea behind [37] is to supplement critical flip-

flops with a shadow latch that strobes the output of a logic stage at a fixed delay

after the main flip-flop. If a timing violation occurs, the main flip-flop and the shadow

flip-flop will have different values and the timing error is detected. The correction

involves recovering the correct value stored in the shadow flip-flop. The limitations of
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Razor method is the requirement on the circuit delay behaviors. The Razor method

thus uses circuit level fault tolerance to compensate the unreliability.

2.5 Numerical issues

As the floating point arithmetic is inexact, there is necessarily a threshold prob-

lem when verifying the checksum, as the checksum and the data would not agree

exactly. How much deviation is accepted as a pass? There are two strategies in gen-

eral: 1) conservative strategy that derives a priori error bounds for the algorithm;

2) optimistic strategy that takes into account the probablistic distribution of floating

point numbers and arithmetic. The conservative strategy as discussed in section 3.2

where the maximum possible rounding error is derived. Any discrepancy larger than

the bound necessarily indicate an error but the error bound can be too pessimistic

in practice. The optimistic strategy such as shown in [10] is a more optimistic error

bound that bounds the rounding error in high probability. This results in a much

tighter bound that mandates more strict error checking. The optimistic bound de-

pends on an interesting property of floating point arithmetic that tends to generate

numbers following the inverse logrithm distribution [51].
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Chapter 3

Matrix-matrix Multiplication

Matrix matrix multiplication is a widely used operation in science and engineering.

ABFT has been extended to correct soft errors in the solution of system of linear

equations . using Sherman-Morrison formula. While the proposed approach can be

treated as an extension of ABFT, The most prominent difference of the proposed

approach is that it tolerates soft errors on-line, which means soft errors are detected,

located, and corrected in the middle of the computation during the program execution.

The on-line property of our approach introduces lower fault tolerance overhead

and allows better reliability and flexibility. In our on-line approach, soft errors can be

detected and located before they propagate. Corrupted computations can be stopped

or corrected in the middle of the program execution in a timely manner. Therefore,

computation efficiency can be improved significantly. Furthermore, the frequency
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of the error detection can be flexibly adjusted according to the failure rate of the

computing platform.

The idea of our online fault tolerance is not limited to matrix matrix multipli-

cation. It can also be applied to other commonly used linear algebra subroutines.

Matrix matrix multiplication is of special interest because it is the simplest case and

it is widely used in other matrix operations. Linear algebra packages such as LAPACK

and ScaLAPACK rely heavily on matrix matrix multiplication to achieve high perfor-

mance. Many scientific applications spend majority of their execution times on such

common linear algebra operations. Therefore protecting such most frequently used

subroutines from soft errors can provide significant degree of fault tolerance for the

whole application.

Experimental results demonstrate that the proposed technique can correct one

error every minute with negligible (i.e., less than 1%) performance penalty over the

ATLAS dgemm().

3.1 Failure Classification

When a failure occurs during an application execution, if the failed process con-

tinues working, we define the failure as fail-continue failure. Fail-continue failures

include computation errors by logic circuit and bit-flips in memory. They may be

caused by many reasons including alpha particles from package decay, cosmic rays,
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thermal neutrons, and random noises. Fail-continue failures do not interrupt the

program execution. But the computation results can not be trusted any more.

Soft errors are one-time events that corrupt the state of a computing system but

not its overall functionality. When a soft error occurs, it may or may not cause the

crash of the system. Therefore a soft error may or may not be a fail-continue failure.

In this paper, we restrict our scope to fail-continue soft errors.

3.2 Error Detection, Location, and Correction

Data redundancy can be exploited to tolerate faults against memory errors and

CPU logic errors. In this paper we implement the data redundancy through checksum

matrices. For description we introduce some notions and terms of checksum matrices.

A column checksum matrix of matrix A, denoted by Ac, is defined by Ac :=

 A

vTA

.

The checksum vector v is typically set as a all-one column vector. Similarly, A

row checksum matrix of matrix B is defined as Br :=

(
B Bw

)
, where w is a

column checksum vector. Finally the full checksum matrix of matrix C is Cf := C Cw

vTC vTCw

.
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Instead of multiplying matricesA byB we use their checksum versions, and instead

of obtaining C := AB we get its full checksum version Cf := (AB)f .

Ac ×Br =

 A

vTA

× ( B Bw

)

=

 AB ABw

vTAB vTABw

 =: (AB)f = Cf

This extra information of the multiplication result can be used to detect, locate and

possibly recover faults occurred during computation. If a soft error occurred, either

because of memory fault or CPU computation fault, the faulty part will violate the

checksum relationship of the result. If only one error occurred, exactly one row

and one column of the result will not satisfy the checksum matrix definition. This

relationship can be used to detect and locate the error. Furthermore, by solving a

linear equation(s) it is possible to recover the faulty entry in C.

Our improvement over the traditional ABFT matrix multiplication is, by using

the outer product version of matrix multiplication algorithm, we revealed that there’s

enormous opportunities during the operation to do the above checking and recovering.

Instead of checking only at the end of whole matrix computation we can do the

checking many times as the computation progresses, which greatly improve the ability

to detect and correct errors. Moreover, the frequency of checking during computations
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is flexible; it’s possible to adjust it in accordance to the expected error rates of a

computer.

The detailed method will be discussed in the following subsections.

3.2.1 Fault tolerance for single error

To tolerate single error we assume checksum vectors v, w to be all-one vector.

Thus in a full checksum matrix Cf the sum of the each rows of C are stored in the

extra column, and the sum of each columns of C are stored in the extra row of Cf .

For brevity we assume A,B are n by n square matrix. The checksum relationship

can be mathematically expressed as:

ci,n+1 =
n∑
j=1

ci,j

cn+1,j =
n∑
i=1

ci,j

cn+1,n+1 =
n∑

i,j=1

ci,j

If one entry of matrix C, say ci,j, is corrupted, it’s easy to locate the fault by examining

the above checksum relationship, in which case exactly one row i and one column j

will fail the examination above. Once the fault is detected we may use either the row
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sum or column sum to correct the faulty entry ci,j by:

ccorrecti,j = ci,n+1 −
n∑

j=1,j 6=i

ci,j

ccorrecti,j = cn+1,j −
n∑

i=1,i 6=j

ci,j

To tolerate multiple errors in C more sophisticated checksum vectors should be

used. Readers are referred to paper [57] for details. However in our approach we are

able to tolerate errors during computation so we don’t need tolerating multiple errors

in a single phase. We thus stick to the simple scheme outlined above.

This scheme of encoding A,B,C into checksum matrix Ac, Br, Cf can only tolerate

faults in C. If all A,B,C are to be protected we may encode both A,B into its full

checksum matrix, and only use their partial checksum matrix(row checksum matrix

for B and column checksum matrix for A) in multiplication. Then all Af , Bf , Cf

should go through the checksum relationship examination.

3.2.2 Checksum relationship maintained during block outer

product matrix multiplication algorithm

Traditional ABFT matrix multiplication algorithms only check the checksum re-

lationship (detecting, locating and correcting faults) at the end of the whole multi-

plication process. By employing block outer product matrix multiplication algorithm

we could do as much as n times fault tolerance during the multiplication process. The
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point of our scheme is that the checksum relationship is maintained during block outer

product matrix multiplication, or more exactly at the end of each outer iteration of

the block outer product algorithm.

We first define outer product version of matrix multiplication algorithm.

Algorithm 1 Outer product matrix multiplication

Require: A,B
Ensure: C ← A×B
C ← 0
for s = 1→ n do

C ← C + A(1 : n, s)×B(s, 1 : n)
end for
output C

The validity of this matrix multiplication algorithm can be easily verified by de-

composing A,B into column and row blocks.

AB = [A1, . . . , An]× [B1, . . . , Bn]T

= A1B1 + . . .+ AnBn

In the above outer product algorithm if we input checksum matrices Ac, Br, we

prove that at the end of every iteration(after each rank 1 update) the partial result

C which we denote by Cs(s = 1, 2, . . . , n) is a full checksum matrix. Let As := A(1 :

n, 1 : s) and Bs := B(1 : s, 1 : n), then
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Cs = Acs ×Br
s

=

 As

vTAs

× [ Bs Bsw ]

= (AsBs)
f

The equation above shows that the partial product Cs is a full checksum matrix,

which makes it possible to do fault tolerating at the end of every iteration s.

In practice implementations of matrix multiplication using outer product multi-

plication are unlikely to be efficient. In order to make better use of cache system of

a computer we need to use blocking algorithms. The modified version of outer prod-

uct multiplication(the block outer product algorithm) is to do a rank k update each

iteration instead of a rank 1 update. For interface compatibility we use the same con-

vention as in BLAS in which op(A) means A or AT depending on parameters passed

onto the subroutine.
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Algorithm 2 Blocked outer product matrix multiplication

Require: A,B,C, α, β
Ensure: C ← βC + αop(A)× op(B)
for s = 1; s ≤ bn

k
ck; s← s+ k do

C ← βC
C ← C + αop(A)(1 : n, s : s+ k − 1)× op(B)(s : s+ k − 1, 1 : n)

end for
if s ≤ n then

C ← C + αop(A)(1 : n, s : n)× op(B)(s : n, 1 : n)
end if
output C

Recalling that checksum relationship is closed under addition, similar to the outer

product algorithm the partial result after each iteration in the corresponding block

version above is also a full checksum matrix. Therefore we have opportunities to

insert checking procedures into the algorithm, and checks the checksum relationship

regularly at the frequency as we see fit. This results in the online version of ABFT

matrix multiplication algorithm:
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Algorithm 3 On-line ABFT matrix multiplication

Require: A,B,C, α, β
Ensure: C ← βC + αop(A)× op(B)
encode op(A), op(B), C as op(A)c, op(B)r, Cf

for s = 1; s ≤ bn+1
k
ck; s← s+ k do

if s reaches the point we need a check then
verify the checksum relationship of Cf

if checksum relation does not hold then
if only one line(i) and one column(j) fails the checksum verification

then
recover the faulty entry Cf

ij ← Cf
i,n+1 −

∑n
k 6=iC

f
i,k

else
recompute Cf = βCf + αop(A)c ∗ op(B)r

end if
end if

end if
Cf ← Cf + αop(A)c(1 : n+ 1, s : s+ k − 1)× op(B)r(s : s+ k − 1, 1 : n+ 1)

end for
if s ≤ n+ 1 then

Cf ← Cf + αop(A)c(1 : n+ 1, s : n+ 1)× op(B)r(s : n+ 1, 1 : n+ 1)
end if
output C as Cf (1 : n, 1 : n)

While the Our algorithm introduces much better reliability and flexibility than

the original ABFT matrix multiplication algorithms.

3.2.3 Threshold to distinguish roundoff error and soft error

In our algorithms we need to verify the checksum relationship, which requires

adding a row or a column of entries and comparing their sums against the entries

in the last row or column in Cf . Because of roundoff errors in floating point com-

putations we cannot expect the checksum relationship to hold exactly. Then how to

distinguish roundoff errors from soft errors becomes an issue. Apparently manually
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enforcing a threshold and assuming computation correct if differences are less than

that threshold is unreliable. Too large a threshold may hide soft errors while a too

small one may interrupt correct computations. Therefore it’s helpful to develop a

reasonable threshold based on concrete analysis.

A well known bound of matrix product roundoff error [45] is

||fl(AB)− AB||∞ ≤ γn||A||∞||B||∞ (3.1)

where γn = nu
1−nu , and u is the unit roundoff error of the target machine, and

n is the common dimension of the matrix A and B. We begin by assuming the

computations are correct, i.e. Cf = AcBr. As a convention the floating point version

of a variable has a hat over the corresponding name. Then we have

∣∣∣∣∣
n∑
j=1

ĉij − ĉi,n+1

∣∣∣∣∣ =

∣∣∣∣∣
n∑
j=1

(ĉij − cij)− (ĉi,n+1 − ci,n+1)

∣∣∣∣∣
≤

∣∣∣∣∣
n∑
j=1

(ĉij − cij)

∣∣∣∣∣+ |(ĉi,n+1 − ci,n+1)|

≤ ||fl(Cf )− Cf ||∞

≤ γn||Ac||∞||Br||∞ =: λ

Therefore if the difference of the computed result satisfies |
∑n

j=1 ĉij − ĉi,n+1| ≤ λ

it’s reasonable to claim that no errors other than roundoff errors have occurred.
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Otherwise we should regard it as a failure of checksum relationship examination and

do the fault tolerating procedure.

Similarly for the column sum there is a corresponding constant that serves as the

threshold which is µ := γn||A||1||B||1.

3.3 Performance Analysis

To quantify the efficiency of our approach, in this section, we analyze the overhead

introduced by our fault tolerance approach theoretically. Let 1
γ

denote the number

of floating-point arithmetic operation per second (FLOPS) and N denote size of the

matrix (i.e., the matrix is of size N × N). We assume 1
γ

as average FLOPS. Let

Toverall denote the time for matrix matrix multiplication, then it is well known that

Toverall = O(N3).

3.3.1 Overhead for encoding

The time complexity of generating row or column checksum for input matrices

can be expressed as follow

Tencode = N2γ (3.2)

34



The overhead can be calculated by

Tencode
Toverall

= O(
1

N
)

The time and overhead to construct a full checksum matrix are

Tencode fullchecksum = 2N2γ (3.3)

Tencode fullchecksum
Toverall

= O(
1

N
)

3.3.2 Overhead for computation

Encoded information which helps detect and recover errors will introduce overhead

to compute Ac × Br instead of just computing A × B. The additional computation

time due to the increase of the matrix size is

Tcomp = 2(N + 1)×N × (N + 1)− 2N3

= (4N2 + 2N)γ

≈ 4N2γ (3.4)

The overhead, which has nothing to do with the number of errors, is
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Tcomp
Toverall

= O(
1

N
)

3.3.3 Overhead for detecting errors

The process which scans a whole (N + 1) × (N + 1) matrix with full checksum

once needs 2×N2 addition operations and 2×N branch operations. If the program

is to tolerate m errors, the time and overhead to detect a matrix is:

Tdetect = 2mN2γ (3.5)

Tdetect
Toverall

= O(
1

N
)

3.3.4 Overhead for Recovery

For the simple case that matrix C has only one encoded column and row, cor-

rupted data can be recovered from the checksum relationship by just solving a linear

equation. The overhead recovering data depends on the number N and how many er-

rors the fault tolerant matrix multiplication recovers as well. Assuming the program

is designed to tolerate at most m errors, the time complexity of recovery is

Trecovery = mNγ (3.6)
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The recovery overhead is

Trecovery
Toverall

= O(
1

N2
)

The formula derived above shows the complexity of matrix multiplication domi-

nates the complexity of the recovery overhead as the matrix size N approaches infinity.

3.4 Experimental Evaluation

In this section, we experimentally evaluate the performance of our fault tolerance

approach. Three sets of experiments are performed to quantify the

• Performance and overhead of our on-line FT-DGEMM (Fault Tolerant General

Matrix Matrix Multiplication).

• Performance comparison between our on-line FT-DGEMM and ABFT as well as

TMR.

• Performance comparison between our on-line FT-DGEMM and ATLAS DGEMM.

All tests are performed on Alamode and Mio provided by CCIT and GECO in the

Colorado School of Mines. The CPU on Alamode is Intel(R) Core(TM) i7-2600 CPU

with 3.40GHz. The CPU on Mio is Intel(R) Xeon(R) CPU E5530 with 2.40GHz.
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Figure 3.1: Overall Overhead in percentage.

The number of failures in the x-axis of all figures and texts in this section refers to

the number of soft errors we can tolerate during one execution of our matrix matrix

multiplication.

3.4.1 The overhead of our on-line FT-DGEMM

Overall Overhead

The first set of experimental results report the overall overhead over the ATLAS

DGEMM for our on-line fault tolerant matrix matrix multiplication with different number

of failures (i.e., different failure rates) but fixed matrix size(i.e., 10000). Figure 3.1

shows the percentage of overhead our approach introduces when different number of

failures are injected into the program execution. Two failures during the program

execution equal to 0.8 failures per minute and twenty failures during the program

execution equal to 7.5 failures per minute. Figure 3.1 demonstrates that the proposed
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Figure 3.2: Overhead of online FTGEMM (matrix size: 10000) on ALAMODE.

technique can correct one error every ten seconds (i.e., six errors during the whole

program execution) with negligible (i.e., less than 1%) performance penalty over the

ATLAS dgemm().

Overhead in detail

In the experiments, overhead of each part is timed to verify the derivations in

section 3.3. Result matches the analysis in the section 3.3. Overhead is shown in a

stack in each independent run. Runtime of overhead of each part is clearly displayed

to show the portion they take in the overall overhead. Figure 3.2 to figure 3.5 show

the execution time of overhead in stack bar figure. The runtime increases linearly

as the failure rate grows. As we observe that the main growth is the overhead of

detection whose frequency is determined by the failure rate.
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Figure 3.3: Overhead of on-line FTGEMM (matrix size: 15000) on ALAMODE.
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Figure 3.4: Overhead of on-line FTGEMM (matrix size: 10000) on MIO.
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Figure 3.5: Overhead of on-line FT-DGEMM (matrix size: 15000) on MIO.

According to figures 3.2 - 3.5, the execution time for generating column checksum

for matrix A and row checksum for matrix B is unchanged for fixed matrix size which

is a 4N2 operation.

Detecting errors is a process to calculate summation of each row and column of

matrix C to test whether they match the value on row and column checksum. It’s a

O(mN2) FLOPs computation. From figures 3.2 - 3.5, we can see that this portion of

overhead increases linearly with the number of failures per execution, or failure rate

the parameter of our implementation.

Recovery routines are implemented to try to recover corrupted entry in partial

result C. If faults are found in detection phase, the row and column index would be

flagged and errors in the intersection of problem row and problem column would be

corrected by our mechanism, which is a O(N) operation that is negligible.

41



The overhead of computation is introduced due to the increase of the matrix size

from N ×N to (N + 1)× (N + 1). As shown in the equation 3.4, it’s O(N2) FLOP

computation, which should be unchanged with fixed matrix size.

3.4.2 Performance comparison: TMR vs ABFT vs on-line

ABFT

The set of data in Figures 3.6 to 3.9 demonstrate performance comparison

between on-line FT-DGEMM, ABFT and TMR with the same matrix size 10000 and

under three different actual failure rates. ABFT is a very famous technique to check

the correctness of most matrix operation and recover the corrupted data which can

tolerate fail-continue failures. TMR is a fault-tolerant mechanism in which three

systems perform an identical process and the result is processed by a voting system

to produce a single correct output. In our emulated TMR, we run the same program

three times to tolerate faults during computation which results in incorrect data

instead of fail of the device.

To tolerate two errors the on-line FT-DGEMM simply examines the checksum rela-

tionship twice during the calculation. However traditional ABFT can only detect one

error (in the worst case) at the end of computation given the same checksum matrices.

If two errors occur, traditional ABFT has to re-run the program in order to get the

correct result. If there are two errors occur again in the re-run of the program, then

a third run has to performed. So the execution time of traditional ABFT is at least
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Figure 3.6: Performance of different strategies (matrix size: 10000) on ALAMODE.

twice as much as the execution time of our approach, in case two failures occurred

during one matrix multiplication execution. In TMR, the same program has to be

executed three times to produce three computation results for voting. Therefore, the

total computation time to obtain correct result is at least three times the execution

of the ATLAS DGEMM.

Figure 3.6 to 3.9 indicate that our on-line FT-DGEMM has much higher efficiency

than ABFT and TMR.
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Figure 3.7: Performance of different strategies (matrix size: 15000) on ALAMODE.
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Figure 3.8: Performance of different strategies (matrix size: 10000) on MIO.
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Figure 3.9: Performance of different strategies (matrix size: 15000) on MIO.
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Figure 3.10: Performance for different failure rate (matrix size: 10000).
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Figure 3.11: Performance for different failure rate (matrix size: 15000).
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Figure 3.12: Performance for different failure rate (matrix size: 10000).
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Figure 3.13: Performance for different failure rate (matrix size: 15000).

3.4.3 Performance comparison: ATLAS DGEMM vs our on-line

FT-DGEMM

In this section, we show the comparison of performance between non fault tolerant

ATLAS DGEMM and our on-line FT-DGEMM. Two sets of tests are performed on both

Alamode and Mio.

Figures 3.10 - 3.13 indicate that our online FT-DGEMM increases the reliability

dramatically by only introducing a very low overhead. As we can see on the figures,

the performance drops by no more than 5% when tolerating up to twenty soft errors

during the program execution if errors come one after another. The flexibility and

high reliability of our approach make it possible to adopt it to various situations with

acceptable overhead.
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Chapter 4

One-sided Matrix Factorizations

It is well known that soft errors in linear algebra operations can be detected

efficiently at the end of the computation (i.e., off-line) using algorithm-based fault

tolerance (ABFT) [56, 3]. However, the ABFT technique in [56, 3] usually cannot

correct even one soft error [26, 19, 95] in Cholesky, QR, and LU factorizations because

one error in one matrix element will be propagated to many other matrix elements

and hence cause too many errors to correct.

Recently, tremendous progresses have been made to correct soft errors in LU

and QR factorizations. In [32], Sherman-Morrison-Woodbury formula was success-

fully used to correct one soft error in the solutions of linear systems obtained via

LU factorization. In [30], Sherman-Morrison-Woodbury formula was extended to

correct multiple soft errors. In [35], Spike-Eliminating and QR-Update techniques

were used to correct one soft error in QR factorization. In [19], an online technique
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was designed to correct soft errors in LU factorization of the high-performance Lin-

pack(HPL) benchmark.

In this chapter, we present the design and implementation of FT-ScaLAPACK,

a fault tolerant version ScaLAPACK that is able to detect, locate, and correct soft

errors in Cholesky, QR, and LU factorizations on-line in the middle of the computation

in a timely manner before the errors propagate and accumulate. FT-ScaLAPACK

has been validated with thousands of cores on Stampede at the Texas Advanced

Computing Center. Experimental results demonstrate that FT-ScaLAPACK is able

to achieve comparable performance and scalability with the original ScaLAPACK

library. More specifically, our contributions include:

• Cholesky Factorization: We designed an on-line scheme to correct soft errors

in Cholesky factorization before the errors propagate and accumulate, where the

existing best schemes [56, 3] cannot correct errors. Existing schemes need to

restart the whole computation if any error occurs, therefore, introduces much

higher overhead than our on-line scheme.

• QR Factorization: We designed an on-line scheme to correct soft errors in

QR factorization before the errors propagate and accumulate, where the existing

best schemes [35, 26] can only correct errors off-line at the end the computation

after the errors propagated and accumulated. While the overhead of the existing

off-line schemes increases at least quadratically as the number of errors increases,

the overhead of our on-line scheme is much lower and increases only linearly.
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• LU Factorization: We designed a new on-line scheme to correct soft errors

in LU factorization without global communications or synchronizations, where

the existing best schemes [19] are on-line, but involve expensive global commu-

nications and synchronizations.

• Software Implementation: We made the widely used ScaLAPACK library

core routines (Cholesky, QR, LU) fault tolerant without modifying the library

interfaces. Existing HPC applications that use ScaLAPACK library can now

make use of our new FT-ScaLAPACK library to tolerate soft errors by just

linking to the new library without any modification on source codes.

4.1 Background

This section provides the necessary background required to understand the idea

of this paper. At first we give a brief introduction to traditional ABFT (we refer

to as off-line ABFT); then in order to describe on-line ABFT we need to have a big

picture of the so-called block version of algorithms for dense linear algebra algorithms,

which are essential for high performance on modern hierarchical memory systems and

distributed memory systems.
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4.1.1 ABFT

ABFT was first introduced by Abraham and Huang [56]. The idea is that, for

some matrix (or matrices) operation P (A, . . .) = (X, . . .), we first encode the operands

into their checksum form, for example A
encode−−−→ Af :=

 A Ae

eTA eTAe

 where e is a pre-

defined (column) vector; then apply the operation on the encoded matrix (matrices)

and the results are automatically “encoded”:

P (Aenc, . . .) = (Xenc, . . .)

An example is the ABFT enabled matrix-matrix multiplication (matmul), in which

case the operator P is P (A,B) = A×B = X. The classic way to encode the operands

A,B is as follows:

A
encode−−−→ Ac =

 A

eTA

 , B
encode−−−→ Br =

[
B Be

]

And it can be shown that the result is also in some checksum form:

P (Ac, Br) = Xf ,whereX = AB

The superscripts c, r, f of the encoded matrices Ac, Br, Xf stand for “column,

row, full” checksum matrices respectively. By definition, column checksums are the
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(weighted) sums of every columns of matrix A, or mathematically eTA. Row check-

sums are (weighted) sums of every row in A or mathematically Ae.

Another example is the LU factorization A = LU where L is a unit lower triangular

matrix and U is an upper triangular matrix. We may define the LU factorization

operation as P (A) = (L,U). To make LU factorization ABFT enabled, we encode

the operand A into its full checksum form:

A
encode−−−→ Af =

 A Ae

eTA eTAe



then we apply P on Af and the results are two automatically checksum encoded

matrices:

P (Af ) = (Lc, U r)

After the operation on the encoded matrix, we end up with the encoded result

that includes our desired output and its checksums. We can verify the result by

checking the matrix against its checksums: a match means the operation is carried

out correctly and a mismatch indicates a problem. Of course, “match” here means

within roundoff error bounds since floating point arithmetics are not exact.
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4.1.2 Block algorithms

Modern dense linear algebra algorithms are arranged in such a way that level 3

BLAS operations (basically matrix-matrix multiplication) are used as much as possi-

ble for high performance. This results in block versions of the algorithms that “defer”

many lower level BLAS operations and aggregate them together into a single level

3 operation later. It’s called “block” because matrices are divided into rectangular

blocks which, instead of scalars, are the basic units for the description of block algo-

rithms. For example, the block version of the Cholesky factorization (as implemented

in ScaLAPACK [18]) is given as follows.

Cholesky factorization turns a symmetric, positive definite square matrix into the

product of a lower triangular matrix and its transpose: A = LLT . The factorization

happens in-place: the result L overwrites the original A. At each iteration, we write

the n× n matrix A as four blocks:

A11 AT21

A21 A22

 =

L11 0

L21 L22


LT11 LT21

0 LT22



=

L11L
T
11 L11L

T
21

L21L
T
11 L21L

T
21 + L22L

T
22


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The northwest block A11 is a nb × nb block; A21 is (n − nb) × nb block; A22 is (n −

nb)× (n− nb) block. It follows that

A11 = L11L
T
11 (4.1)

A21 = L21L
T
11 (4.2)

A22 = L21L
T
21 + L22L

T
22 (4.3)

If we solve the first Cholesky factorization of a block A11 from the first equation

using unblocked algorithm we get L11; then from the second equation we can solve

L21 and from the third we have a new Cholesky factorization problem on a smaller

(n− nb)× (n− nb) matrix A′:

A′ := A22 − L21L
T
21 = L22L

T
22

Note that this step involves a matrix-matrix multiplication. It also turns out that this

step accounts for the majority of computations. Repeat the above 3-step procedures,

until the the whole matrix is factorized. In summary, each iteration in the block

right-looking Cholesky factorization algorithm is a 3-step procedure:

1. xPOTF2: Cholesky factorize the diagonal block A11 from (4.1) and L11 over-

writes A11.

2. xTRSM: Solve the column panel L21 from (4.2) and L21 overwrites A21.
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3. xSYRK: Update the trailing matrix from (4.3) by A22 ← A22 − L21L
T
21

4.2 On-line ABFT design framework

Off-line ABFT works regardless of the actual algorithms used to carry out a par-

ticular matrix operation. For example, there are quite some different algorithms

for matrix-matrix multiplication; off-line ABFT works with any one of them. No

matter which algorithm is chosen to do matrix matrix multiplication, the checksums

will maintain at the end of the operation. However, the checksums do not necessarily

maintain in the middle of the multiplication; in fact, Chen etc [15] showed that among

the algorithms to do matrix matrix multiplication, only one of them (outer product

algorithm) can maintain the checksums during the multiplication. This seems to im-

ply that designing on-line ABFT is harder than off-line ABFT since we have to choose

a specific algorithm that has the special property to maintain checksums during the

operation.

However, in this paper we’ll show that it is possible to design on-line ABFT for

any block algorithms, not only for one particular algorithm. For this we deploy two

strategies: 1) we attach checksums to each block instead of to the whole matrix; 2)

the checksums are only loosely related to their corresponding blocks but not part of

the blocks. We found that these strategies allow us to easily design on-line ABFT

checksum schemes for all one-sided factorizations and potentially for any other block

algorithms that exhibit similar structures of one-sided factorization.
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4.2.1 A Separation: checksum and matrix

Inspired by this work [47], we develop a different view on ABFT that separates

checksums from the matrix. Let us see an example on matrix matrix multiplication.

Originally, the idea of ABFT is that the product of two checksum encoded matrices

is also a checksum encoded matrix, which is illustrated in Fig 4.1 (a). In (a), the

checksums of A,B,C are parts of the encoded matrices. A different point of view

is to separate the checksums from their corresponding matrices, as shown in (b). It

follows that the row and column checksums of C can be obtained by multiplying

A with the row checksums of B and the column checksums of A with B, shown

in (c) and (d). Using this point of view on ABFT, we are no longer relying on

the “automatic” update of the checksums as part of the matrix operation on the

encoded matrix. Instead, we can manipulate the checksums freely, so long as the

checksums are updated to remain consistent with their corresponding matrices at

certain points. It then became possible to maintain the consistency of checksums

with their corresponding matrix blocks in the middle of the matrix operation instead

of only at the end, at the expense of having to manually update the checksums rather

than relying on the automatic update by the matrix operation.
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Figure 4.1: Traditional ABFT matrix matrix multiplication and the separation of

checksums with the matrices
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4.2.2 Double checksums

As shown in Figure 4.1 (a), there are two checksums for C—a row checksum

and column checksum. Actually, to detect errors in C, one checksum is sufficient.

However, to locate and correct errors, multiple checksums are required. In fact, to be

able to correct m errors, at least m + 1 checksums have to be used. In the simplest

setting, two checksums can detect errors and correct up to 1 error. And it does not

have to a row and column checksum; two row checksums or two column checksums

also work for up to 1 error. Fig 4.1 (e) shows two row checksums for matrix matrix

multiplication. We found that two row checksums or two column checksums work

best, for reasons that should be clear when the on-line ABFT Cholesky is presented

later.

Let us see a simple example on how two checksums can detect and correct up

to 1 error in a matrix row or column. In this example we use two checksums with

different weights: e1 = [1, 1, . . . , 1]T , e2 = [1, 2, . . . , n]T . Assume that a matrix row is

a = [a1, a2, . . . , an] and it is supposed to have two checksums r1, r2 available

r1 = ae1 =
n∑
i=1

ai

r2 = ae2 =
n∑
i=1

iai
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Now we have a computed a′ = [a′1, a
′
2, . . . , a

′
n] with up to 1 erroneous element a′j 6= aj

where the error position j is unknown to us. We know the error exists if

δ1 =
n∑
i=1

a′i − r1 = a′j − aj 6= 0

δ2 =
n∑
i=1

ia′i − r2 = j(a′j − aj) 6= 0

And a simple division δ2/δ1 = j would give us the error position j; further δ1 = a′j−aj

gives us the magnitude of the error from which the correct aj can be recovered from

erroneous computed value a′j using δ1 and position j.

Note that this example only shows a single row and its two checksums; the same

procedure can be applied to each row of a matrix and its column checksums; therefore

with double row checksums we can tolerate up to 1 error per matrix row at a time.

After the current error is corrected, the same scheme can be used to correct the next

potential error. Therefore, this scheme can correct multiple errors if errors

arrive one after another.

4.2.3 An example: on-line ABFT Cholesky factorization

The objective of designing on-line ABFT is to maintain checksum consistency

during the matrix operation. Specifically, as shown in Fig 4.2, we want the checksums

of every involved blocks after each step. For example, after the first step that factorizes

the block A11 into lower triangular block L11, we want to update the checksums of A11
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(denoted by R(A11)) to R(L11). Similarly, we want to update the checksums involved

in the second step and the third step R(A21), R(A22) to the checksums of the outputs

R(L21), R(A′22). Fig 4.2 illustrates the idea of updating the checksums of the involved

blocks at the end of every step in every iteration.

In Fig 4.2, (a) illustrates the 2nd iteration of the block right looking Cholesky

factorization algorithm. Every iteration consists of 3 steps: the first step factorizes

the diagonal block A11; the second step updates the panel matrix blocks A21; the third

step updates the trailing matrix A22. Subfigures (b), (c), (d) illustrate the three steps

that update A11, A21, A22 to L11, L21, L22 respectively. Note that after updating the

blocks, we also need to update their corresponding checksums, as shown in subfigures

(b), (c), (d) lower parts. For example, in subfigure (b), we need to somehow update

R(A11) to R(L11) in such a way that if R(L11) remains the checksums of L11 if and

only if the xPOTF2 procedure is carried out correctly.

The method to update of R(A11) can be derived by examine the partial unblocked

Cholesky factorization (xPOTF2) on matrix

 A11

R(A11)

. However, the result is in-

dependent of the specific algorithm used in xPOTF2. See the first part of subsec-

tion 4.3.3 for details.

After the update R(A11)→ R(L11), the updated checksum will be consistent with

the updated block unless the Cholesky factorization on A11 is faulty. This is the

basis on which we can use the checksum to check whether the xPOTF2 is carried out

without faults.
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We further need to do the same thing on the second and third steps. Fortunately,

it is easier than the first step.

The second step is to update the panel matrix A21 using the result of the first

step L11. The triangular solve can be described mathematically:

A21 × (LT11)
−1 → L21

The obvious way to update the checksums of the panel matrix A21 is

R(A21)× (LT11)
−1 → R(L21)

Similarly, the third step is mathematically:

A22 − L21 × (L21)
T → L22

The checksums of the trailing matrix A22 can be updated by

R(A22)−R(L21)× (L21)
T → R(L22)

The validity of the updates to the second and third steps can be easily seen and

understood, once we note that the checksums of a matrix is just a product of a matrix
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and checksum vector:

R(A) = eT × A

where e is a predefined (column) vector or a predefined matrix consisting of several

(column) vectors.

4.2.4 A framework to design on-line ABFT for block algo-

rithms

Now that we can update the checksums after each step and we can use the check-

sums to verify every step in every iteration of the Cholesky factorization, we in effect

achieved “on-line” ABFT on this particular Cholesky factorization algorithm. Be-

cause the correctness of each step is verified, no error can escape and propagate. In

the meantime, simple errors (single error per column) can be effectively corrected

by checksums. These two properties of “on-line” ABFT significantly improves the

resilience of ABFT approaches. Furthermore, the ability to verify the correctness

continuously also provides otherwise missing information for other layers of fault tol-

erance such as checkpoint/rollback etc.

After examining the right-looking block Cholesky factorization algorithm and the

method to maintain checksums, we can summarize a systematic way to derive check-

sum schemes for potentially many block linear algebra algorithms. First, we look at

the description of the block algorithm at the block level; it usually consists of several
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Figure 4.2: On-line ABFT Cholesky (a) the snapshot of the second iteration

in a right-looking block Cholesky factorization algorithm. (b) the first step in this

iteration is unblocked Cholesky factorization on A11. (c) the second step in this

iteration is a triangular solve to update the panel matrix; the checksums can be

updated accordingly. (d) the third step is matrix multiplication to update trailing

matrix; the checksums can be updated accordingly.
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steps in every iteration. The first step is usually updating the diagonal block (A11)

using unblocked factorization. The following steps update the panel matrix (A21)

and trailing matrix (A22) using some kind of matrix multiplication. To update the

checksums for the first step, we just need to attach the checksums to the block and

do a “partial” factorization on them (see subsection 4.3.3). To update the checksums

for the following matrix multiplication steps, we just need to multiply the checksums

with proper matrix, as shown in Fig 4.2 (c) (d).

Using this framework, we can derive “on-line” ABFT for all one-sided factoriza-

tions LU, QR, and Cholesky; the details vary but the principles apply. LU usually

comes with partial pivoting which involves swapping rows; QR has a more complicated

matrix multiplication update step. See section 4.3 for details on how to customize

the checksum scheme for all one-sided factorization.

4.3 On-line ABFT enabled one-sided factorizations

In this section, additional one-sided factorization LU and QR and their customized

“on-line” ABFT checksum schemes are discussed in detail. The missing part on how

to update the checksums after the unblocked factorization step will be discussed

thoroughly. Note in this section, in order to save space we may also use [A;B] to

denote a vertically stacked matrix

A
B

, while [A,B] denotes a horizontally stacked

matrix

[
A B

]
.
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4.3.1 LU

The LU factorization is essentially Gaussian elimination that factorizes a M ×N

matrix into A = PLU , where A and L is M × N matrices and U is N × N matrix.

L is unit lower triangular and U is upper triangular; P is permutation matrix, which

is stored in a vector IPIV.

The block right-looking LU factorization algorithm follows very similar structure

of the Cholesky factorization algorithm described in the previous section. It is a

series of iterations, with each iteration processing the trailing matrix of the previous

iteration. The second iteration is illustrated in fig 6.4 (a). Every iteration is a 4-step

process which can be described mathematically as follows.

1. xGETF2: Apply the (unblocked) LU factorization on the panel matrix

[
A11;A21

]
.

This results in the upper triangular matrix U11 and lower triangular matrix L11

and the updated panel matrix blocks L21, as shown in fig 6.4 (a).

2. xLASWP: Apply row interchanges to the left and right of the panel.

3. xTRSM: Solve the row panel U12 by U12 ← (L11)
−1A12.

4. xGEMM: Update the trailing matrix A22 by A′22 ← A22 − L21U12.

Applying the framework described in section 4.2, we can derive the scheme to

update checksums after each step.
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Figure 4.3: On-line ABFT LU (a) a snapshot of one iteration in a right looking

block LU factorization algorithm: before and after. (b) the first step in this iteration

is to update the column panel matrix by unblocked LU; the checksums are updated to

checksums of right factor U11, U21. (c) second step is to update the row panel matrix by

triangular solve; the checksums of the panel matrix can be updated accordingly. (d)

the third step is matrix multiplication to update the trailing matrix; the checksums

of the trailing matrix can be updated accordingly.
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The update to the checksums of the first steps can be derived from partial LU

factorization on

A11 R(A11)

A21 R(A21)

, which will be discussed in subsection 4.3.3. This

results in the checksums of upper triangular block U11 and the lower part U21 which

is zero.

The second step, not shown in fig 6.4 is applying row interchanges to the left and

right of the panel. If the checksums rows are interchanged according to the matrix

rows the checksums will stay consistent after the update.

The third and fourth steps are essentially matrix multiplications. Again, we up-

date the checksums by multiplying appropriate checksums with matrices, as shown

in fig 6.4 (c) and (d).

4.3.2 QR

The QR factorization takes a M ×N matrix A and factorizes it into the product

A = QR where Q is a M ×M orthogonal matrix and R is upper triangular matrix.

The computation of block QR algorithm can be summarized as three steps in

every iteration:

1. xGEQR2: Apply the (unblocked) QR factorization on the panel matrix

[
A11;A21

]
.

This results in the upper triangular matrix R11 and the Householder vectors

stored in V , as shown in Figure 4.4 (a).
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Figure 4.4: On-line ABFT QR (a) a snapshot of one iteration in right-looking block

QR algorithm: before and after. (b) first step is updating column panel matrix by

unblocked QR; checksums are updated to the checksums of right factor R11, R21. (c)

the second step is to derive factor matrix T (d) the third step is to update the trailing

matrix by matrix multiplication; the checksums can be updated accordingly.
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2. xLARFT: From the Householder vectors a factor matrix T is computed, such

that the Householder matrix factor is Q = V T × T × V

3. xLARFB: Update the trailing matrix A22 by A′22 ← (I − V T TV T )A22.

Applying the “on-line” ABFT block algorithm framework, we want to update the

checksums of the involved blocks for every step. Like in the case in LU, the update

to the checksums for the first step can be derived by doing partial QR factorization

on

A11 R(A11)

A21 R(A21)

 which will result in the checksums of the upper triangular block

R11 and the lower part R21 which is 0.

The second step is computing Householder factor T from Householder vectors in V .

This step cannot be protected by checksums; however we could test the orthogonality

of K = I−V T TV T by verifying the property that orthogonal transformations preserve

2-norm. In other words, for any vector x, we should have ||Kx||2 = ||x||2. To

efficiently evaluate Kx we can use the associativity of matrix multiplication to reduce

the computation cost by Kx = (I − V T TV T )x = x − V (T T (V Tx)). The runtime

overhead for the verification can be shown to be insignificant, and upon failure of the

test, we can regenerate T from V .

The third step is essentially matrix multiplication. We update the checksums by

multiplying the left factor to the checksums of A22 to obtain the checksums of A′22.
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4.3.3 Partial factorization

This subsection will discuss the missing part of the whole scheme—how to do

partial factorization and derive the method to update checksums after the first step

in LU, QR, and Cholesky factorizations.

First let us take the Cholesky factorization for an example. The (unblocked)

Cholesky procedure that factorizes the block A11—xPOTF2—is the outer-product

version of Cholesky factorization. It can be described as Algorithm 4:

Algorithm 4 (out product unblocked Cholesky) Given a symmetric positive definite
A ∈ Rn×n, the following algorithm computes the L such that A = LLT and L
overwrites the lower triangular part of A.

1: for j = 1 : n do
2: A(j, j)←

√
A(j, j)

3: if j < n then
4: A(j + 1 : n, j)← A(j + 1 : n, j)/A(j, j)
5: A(j+1 : n, j+1 : n)← A(j+1 : n, j+1 : n)−A(j+1 : n, j)·A(j+1 : n, j)T

6: end if
7: end for

Suppose before the factorization we have the column checksum of A which we

denote as r := eTA. After the above factorization, A is factorized and overwritten

by the factor L. We want to update r so that r equals to eTL and r can be used to

check L (apparently we cannot sum L up to get r, in which case r cannot be used

to check L). The method to derive such update is to do the above factorization over

[A; r] partially instead of over A fully. If we plug in [A; r] into the above algorithm,

the last row which is our checksum r will be updated as in algorithm 5.
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Algorithm 5 Given a positive definite matrix A ∈ Rn×n and its column checksum
r = eTA, after Cholesky factorization A = LLT , this algorithm updates the checksum
r such that r will be the row checksum of L, i.e r = eTL.

1: for j = 1 : n do
2: r(j)← r(j)/A(j, j) . line 4 in Alg 4
3: r(j + 1 : n)← r(j + 1 : n)− r(j) · A(j + 1 : n, j)T . line 5 in Alg 4
4: end for

Because the checksum r is updated as a part in [A; r] and the line 4 and 5 in

algorithm 4 are all linear operations, the resulting r will still be checksum of A

(which has been overwritten by L) at the end; i.e. r = eTL.

Now let us look at the LU case. As usual, we first write down the outer product

unblocked LU factorization as algorithm 6.

Algorithm 6 (outer product unblocked LU) Given a matrix A ∈ Rm×n (m ≥ n),
the following algorithm factorizes A into A = PLU where L ∈ Rm×n is a unit lower
triangular matrix that overwrites the lower triangular part of A, and U ∈ Rn×n

is a upper triangular matrix that overwrites the upper triangular part of A. P is
permutation matrix stored in a vector IPIV

1: for j = 1 : n− 1 do
2: Find the pivot row index i = arg maxj≤k≤m |A(k, j)|
3: IPIV (j)← i
4: Swap row i with row j: A(i, :)↔ A(j, :)
5: if A(j, j) 6= 0 then
6: A(j + 1 : m, j) = A(j + 1 : m, j)/A(j, j)
7: A(j+1 : m, j+1 : n) = A(j+1 : m, j+1 : n)−A(j+1 : m, j)A(j, j+1 : n)
8: end if
9: end for

Since algorithm 6 involves row swapping, column checksums are hard to maintain.

We therefore choose to use a row checksum r = Ae. If we swap the rows of checksums

in accordance with the swapping of matrix A in this algorithm, the row checksum
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will remain consistent. Similar to the Cholesky case, we apply this algorithm 6 on

[A; r] instead of on A; the resulting update procedure is described in algorithm 7.

Algorithm 7 Given a matrix A ∈ Rm×n (m ≥ n) and its column checksum r = Ae,
after LU factorization A = PLU , this algorithm updates the checksum r such that r
will become the column checksum of [U ; 0] ∈ Rm×n, i.e. r = [Ue; 0] ∈ Rm

1: for j = 1 : n− 1 do
2: Swap row j with row IPIV (j): r(j)↔ r(IPIV (j)) . line 4 in Alg 6
3: if A(j, j) 6= 0 then
4: r(j + 1 : m) = r(j + 1 : m)− A(j + 1 : m, j)r(j) . line 7 in Alg 6
5: end if
6: end for

Again, because the operations in line 4 and 7 in algorithm 6 are all linear, after

LU on A and the algorithm 7 on r, the updated A and r will still be consistent in the

sense that r = [U ; 0]e holds.

The last case of the one-sided factorizations is QR. As usual, we first write down

the outer product unblock QR factorization. It will be more complicated than the

previous two factorizations, but still the structures are the same the same design can

be applied.

We also choose to use row checksum r = Ae. Applying algorithm 8 on [A, r]

instead of on A we derive the algorithm 9 that updates the checksum r so that

r = [R; 0]e

After performing algorithm 9 on r, the updated r will become the row checksum

of [R; 0] (r = [R; 0]e). This concludes our description on how to derive the method to
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Algorithm 8 (outer product unblocked QR) Given a matrix A ∈ Rm×n (m ≥ n), this
algorithm finds Householder matrices H1, . . . , Hn such that if Q = H1 · · ·Hn, then
A = QR where Q ∈ Rm×m is an orthogonal matrix and R ∈ Rn×n is upper triangular
matrix. Householder vectors H1, . . . , Hn overwrite the lower triangular part of A and
R overwrites the upper triangular part of A.

1: for j = 1 : n do
2: [v, β]← householder(A(j : m, j))
3: A(j : m, j : n)← (I − βvvT )A(j : m, j : n)
4: if j < m then
5: A(j + 1 : m, j)← v(2 : m− j + 1)
6: end if
7: end for

Algorithm 9 Given a matrix A ∈ Rm×n (m ≥ n) and its column checksum r = Ae,
after the QR factorization A = QR this algorithm updates the checksum r such that
r becomes column checksum of [R; 0], i.e. r = [R; 0]e.

1: for j = 1 : n do

2: v ←
[

1
A(j + 1 : m, j)

]
. line 5 in Alg 8.

3: r(j : m)← (I − βvvT )Ar(j : m) . line 3 in Alg 8.
4: end for
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update checksums for the first steps in LU, QR, and Cholesky factorization. Note that

this subsection only derives the update methods (algorithms 5, 7, 9) based on but not

relied on outer product unblocked LU, QR, and Cholesky algorithms (algorithms 4,

6, 8); actually, the update algorithms 5, 7, 9 work with any LU, QR, Cholesky

factorization algorithms, not only with the out product versions.

4.3.4 Duplicate to protect panel blocks

Note in the LU and QR case, after the first step that factorizes the panel matrix

[A11;A21] and its row checksums, the checksums will become the checksums of the

right factor (U in LU and R in QR) as shown in fig 6.4 (b) and fig 4.4 (b); the

left factors L and Q will have no checksums to protect them. This means that even

though errors in L and Q will be detected as erroneous left factor leads to erroneous

right factor, the left factors have no redundant information to correct errors. To be

able to tolerate errors in left factors we can duplicate the panel matrix in memory

before the first step factorization so that if the first step proves to be faulty, we can

rollback using that duplicate to repeat the first step factorization. This procedure

only duplicate the current panel matrix A11, A21 thus inducing little run time and

memory overhead.
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4.4 Performance analysis and experimental evalu-

ation

In this section we first introduce a model to analyze the overhead of incorporating

the proposed on-line ABFT to ScaLAPACK factorizations. We then show the per-

formance of our implementation of “on-line” ABFT enabled LU,QR, and Cholesky

on up to 1600 processes.

4.4.1 Performance and scalability analysis

According to ScaLAPACK user manual [6], ScaLAPACK is “scalable” in the sense

that, maintaining constant memory use per process (n2/P ), the overall efficiency

should be maintained no matter how many processes are used. We argue that, adding

“on-line” fault tolerance as described in this paper into the one-sided factorization

subroutines in ScaLAPACK the scalability should remain the same. The overhead

should be bounded by a small constant.

A simple model of run time of one-sided factorizations in ScaLAPACK [6] is

decomposing the time into computation, message bandwidth, and message latencies.

It is not a very accurate model but a good enough first order approximate for the run

time ScaLAPACK one-sided factorization subroutines. For our purpose to show the
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Table 4.1: The meaning of the variables in equation 4.4, according to [6]

Variable Description

Cfn
3 Total number of floating-point operations

Cvn
2 Total number of data items communicated

Cmn/NB Total number of messages
tf Time per floating-point operation
tv Time per data item communicated
tm Time per message
n Matrix size
P Number of processes
NB Data distribution block size

Table 4.2: The value of the factor Cf , Cv, Cm for LU, QR, and Cholesky factorizations

in ScaLAPACK according to [6]

Cf Cv Cm

LU 2/3 3 + 1/4 log2 P NB(6 + log2 P )
Cholesky 1/3 2 + 1/2 log2 P 4 + log2 P

QR 4/3 3 + log2 P 2(NB log2 P + 1)

performance and scalability impact of “on-line” ABFT, we list the model here:

T (n, P ) =
Cfn

3

P
tf +

Cvn
2

√
P
tv +

Cmn

NB
tm (4.4)

where n is the matrix size (assuming the matrix is n × n square matrix), P the

number of processes, Cf , Cv, Cm the computation, message size and message number

factors respectively (see table 4.2), and tf , tv, tm the time per FLOP, interconnection

bandwidth and its latency; see table 4.1.
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The parallel efficiency [6] of a one-sided factorization is

E(n, P ) = (1 +
1

NB

Cmtm
Cf tf

P

n2
+
Cvtv
Cf tf

√
P

n
)−1 (4.5)

Overhead for maintaining checksums

In order to correct errors in every row of every block at every iteration, two

checksums for each row in each block are needed. After introducing checksums we

are actually factorizing a matrix of size (1 + 2
NB

)n. Our algorithms behave similar

to the original ScaLAPACK subroutines. Therefore, similar to 4.4, our computation

time can be modeled by

T ′(n, P ) =
C ′fn

3

P
tf +

C ′vn
2

√
P
tv +

C ′mn

NB
tm (4.6)

where

C ′f = (1 +
4

NB
)Cf , C

′
v = (1 +

4

NB
)Cv, C

′
m = Cm (4.7)

Plugging in new C ′s into equation 4.5 gives us the efficiency of “on-line” ABFT

factorizations:

E ′(n, P ) = (1 +
1

NB + 4

Cmtm
Cf tf

P

n2
+
Cvtv
Cf tf

√
P

n
)−1 (4.8)
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From the two running time equations 4.4 and 4.6, the performance overhead intro-

duced by adding on-line fault tolerance is bounded by a constant factor 4
NB

, which is

independent of P and often small because NB is usually in hundreds in today’s opti-

mzied library codes. Notice that, the only difference between equations 4.5 and 4.8 is

the factor before the second term in parentheses. ScaLAPACK is scalable in the sense

that, maintaining the local memory usage n2

P
on each process will lead to maintained

efficiency; and the larger the local memory usage per process the better efficiency will

be. Equation 4.8 shows that our online ABFT factorizations are also scalable in the

same sense as in ScaLAPACK.

Overhead for error detection

In order to detect errors, all elements in the same row of a block need to be added

together and then compared to existing checksums maintained in the factorizations.

The total number of FLOPs (floating point operations) to verify all checksums for all

blocks in any processor is n2

P
. Therefore, the overhead for error detection is approxi-

mately 1
n
. Even if we verify correctness at every iteration (i.e., approximately every

second in our experiments in Section 5.2) of the factorization, the performance over-

head is still only 1
NB

, which is independent of P and negligible since NB is usually

in hundreds in today’s library codes. Hence, the scalability will be the same as the

orginal ScaLAPACK
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Overhead for error location

After an error is detected, in order to locate the error, the weighted checksum of

the faulty row (or column) needs to be calculated. The total number of extra FLOPs

to locate an error is NB. Therefore, the performance overhead for error location is

approximately NB
n3/P

. Even if there is an error on every processor at every iteration

of the factorization, the total overhead is only P
n2 , which is again negligible because

the problem size n is often much larger than the number of processors P in today’s

supercomputing applications. Furthermore, the total overhead will not incease as the

processor P increases if the size of the local matrix n√
P

on each processor does not

decrease. Therefore, the scalability is not affected.

Overhead for error correction

After an error is located, the error correction is just simply adding the error back

to the corrupted matrix element (see Section 3.1 for details), which needs only one

FLOPs. Correcting k errors needs only k FLOPs.

4.4.2 Experimental evaluation

Our FT-ScaLAPACK implementation is based on ScaLAPACK 2.0.2. ScaLAPACK

uses the so-called 2D block cyclic matrix distribution [7] to spread matrix and com-

putation onto multiple processes to achieve load balance. The natural strategy to

implement the “on-line” checksum scheme is placing the checksum on the same pro-
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cess where its corresponding matrix block resides. In this way checksums are always

local to their corresponding blocks and all checking and correcting error procedures

can be performed locally without inter process communication. Also, it is convenient

to treat the checksums of the matrix blocks as a normal ScaLAPACK distributed

matrix so that common operations involving the checksums can be performed using

ScaLAPACK infrastructure. However, in order to eliminate extra communications to

update checksums, we must aggregate the communication of matrix blocks and their

checksums to avoid communicating checksums separately. In this way we can keep

the number of messages unchanged but increase the message size a little bit which is

reflected in Equation 4.7.

We implemented the double precision “on-line” ABFT enabled PDGETRF (LU),

PDGEQRF (QR), and PDPOTRF (Cholesky) subroutines, indicated with prefix

“FT-”. We use double checksums for each block which means we can correct an

error in every row/column of every bolck at every iterations in every processor. As

we can see from section 4.3, except for Cholesky which has symmetry, checksums for

the other two factorizations can only protect one factor of the factorization result:

in A = PLU checksums only protect U but not L and in A = QR checksums only

protect R. We used duplicates described in subsection 4.3.4 to tolerate errors in L or

Q.

We run both FT-ScaLAPACK and ScaLAPACK subroutines on the Stampede

supercomputer at the Texas Advanced Computing Center, which is a 10 PFLOPS
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Dell Linux cluster ranking #7 at the current TOP500 Supercomputers List. Each

node has 2x 8-core Xeon E5 processors, with each core peaking 21.6GFLOPS. The

interconnect is FDR 56 Gb/s mellanox switches organized in a fat-tree topology. We

use all 16 cores in every node and 1 MPI task per core.

Software side, ScaLAPACK 2.0.2 from netlib is compiled against MKL 13.0.2.146

using Intel compiler 13.1.0 and Intel MPI 4.1.0.030. We only use MKL for its BLAS

and LAPACK functions. For each factorization subroutine, we perform weak scaling

tests; i.e. we scale the problem size with the number of processes and maintain the

memory usage per process. For simplicity, we use square process grids 8 × 8, 16 ×

16, 24 × 24, 32 × 32, 40 × 40. Since matrix A is distributed almost evenly on P × P

processes, if we keep the memory use per process fixed at F × F double precision

floats (for QR is 2F × F ) then the size of matrix A is (FP ) × (FP ) (for QR is

(2FP ) × (FP )). The parameters F,NB,M,N are indicated in the figure headers,

where M ×N is the shape of matrix A.

Figure 4.5 indicates: (1). The fault tolerance overhead fluctuates around 5%,

which does not increase with the number of processes P and is not far from the

theoretical estimation in section 5.5; (2). The total program execution times for both

FT-ScaLAPACK and ScaLAPACK routines increase linearly as
√
P increases, which

implies both versions have constant efficiency and hence the same scalability. These

experimental results confirmed our theoretical performance and scalability analysis

in section 5.5.
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Figure 4.5: Run time for fault tolerant versions of LU, QR, and Cholesky in FT-

ScaLAPACK and their original versions in ScaLAPACK. The fault tolerant versions

can detect, locate, and correct one error in every row of every bolck on every processor

at every iteration. On average, one iteration takes roughly one seconds in these

experiments.
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Chapter 5

Two-sided Matrix Factorizations

Algorithm based fault tolerance (ABFT) provides an appealing alternative to

modular redundancy for soft error detection and correction. ABFT essentially pro-

vides ECC functionality for higher level data that is under transformation. Both

techniques can detect errors in the encoded data and provide forward error recovery

at low cost. The salient difference between ECC and ABFT is that ECC protects

static data while ABFT must cope with dynamic data. For ECC, once the data word

is written its codeword is calculated and stored. When the data is read the codeword

is checked for integrity. The data are supposed to remain unchanged. Thus ECC

protects against bit flips in storage system and communication. However ABFT pro-

tects data that are under certain transformations (linear algebra operations). Before

computation the target data objects (usually matrix and vector) are encoded and

after the computation the encoded data object is checked for integrity. This requires
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the encoding to remain valid under the computation, and often modification to the

algorithms used.

Direct eigen solvers including the computation of eigenvalue decomposition and

singular value decomposition are prevalent in science, engineering, and more recently

in data analytics. In science and engineering, common problems such as vibration

mode in mechanical engineering and Schrodinger’s equation in quantum mechanics.

In data analytics, eigen solvers are used in principal component analysis (PCA),

Linear Discriminant Analysis (LDA), spectral graph theory, and in particular Google’s

PageRank [12]. To solve such eigenproblems the matrix is usually first unitarily

reduced to the simplest form possible (Hessenberg for asymmetric matrix, tridiagonal

for symmetric matrix, and bidiagonal for SVD decomposition for any matrix) and then

is solved iteratively. The first step, the reduction to simple forms, usually dominates

in execution time and computing resources. Once reduced, the eigenproblems can be

solved quickly in a single machine. Therefore we focus on the first phase reduction in

this paper.

Two recent publications [59, 60] discussed algorithm based fault tolerance for

Hessenberg factorization against fail-stop errors, and bidiagonalization against fail-

continue errors, respectively. The algorithmic protection technique used is based on

matrix-matrix multiplication similar to [58, 17, 49, 99, 100]. For two sided factor-

izations that are of interest here, matrix-matrix multiplication only constitutes half
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of the work in terms of floating point operations (flop) and less than 20%1 of the

execution time. Furthermore, the checksums of the matrices cannot be automatically

maintained during the factorizations thus have to be regenerated in every iteration.

The checksum regeneration adds overhead and compromises fault coverage, as regen-

erated checksum cannot be used to verify correctness for prior operations. In contrast,

this paper proposes an algorithm based fault tolerance scheme against soft errors that

covers all BLAS2 and BLAS3 operations and with automatically maintained check-

sums. The results are substantially improved fault coverage (almost all floating point

operations) with lower overhead. Additionally we consider the complete set of three

two-sided factorizations for eigenproblems and analyze them in a unified framework.

The contribution of this chapter is as follows:

• We propose the first comprehensive online ABFT schemes against soft errors

for three two-sided factorizations.

• We analytically and empirically evaluate the fault coverage and efficiency of the

proposed scheme and demonstrate the superiority to the current state of the

art.

• We implemented the proposed technique in the Scalable Linear Algebra Package

(ScaLAPACK) for easy adoption without changes to the interfaces.

1Assuming BLAS2 speed is 20% of speed of BLAS3, the coverage in time is 16%. For example on
Intel Sandy Bridge and AMD Piledriver BLAS2 speed is around 1/5 and 1/7 that of of BLAS3[97].
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5.1 Background

This section introduces necessary backgrounds on checksum based fault tolerance

and the two sided matrix factorization algorithms.

5.1.1 Checksums encoded matrix and its operations

Checksum encoded matrix are the basis of algorithm based fault tolerance in

linear algebra. Generally speaking checksums are linear combinations of the rows or

columns of the matrix. The column checksum of a matrix is a row vector that is

the (weighted) sum of all the rows in the matrix; The row checksum of a matrix is

a column vector that is the (weighted) sum of all the columns in the matrix. The

weights are usually predefined and independent of the matrix. Mathematically, the

column checksum of a matrix (denoted with superscript c) can be represented as:

Ac =

 A

eTA


The row checksum can be written as:

Ar =

[
A Ae

]

The e is a (column) vector with all elements being 1. It is usually used as the

default weights; when we want to emphasize a non-uniform weight w is commonly
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used. The full checksum encoded matrix is a matrix with both row and column

checksum:

Af =

 A Ae

eTA eTAe


A basic result of checksum based ABFT is as follows: if AB = C.

 A

eTA

[ B Ae

]
=

 C Ce

eTC eTCe


or using the notation of checksum encoded matrix:

AcBr = Cf (5.1)

This equation shows the maintenance of checksum in matrix multiplication: col-

umn checksum encoded matrix multiply row checksum encoded matrix gives us a full

checksum encoded matrix. This property can be used to detect errors in the matrix

multiplication.

5.1.2 Error correction with multiple checksums

The checksums can be used for error detection and it can also be used for error cor-

rection if we use multiple checksums with different weights. All the discussions in this

paper can be extended to multiple checksums with arbitrary weights. Here is a simple
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double checksum scheme to locate and correct up to 1 errors per vector. Suppose we

encode a vector using two different weights e1 = [1, 1, . . . , 1]T , e2 = [1, 2, . . . , n]T . The

vector is a = [a1, . . . , an] and we have two correct encoded checksums of a:

r1 = ae1 =
n∑
i=1

ai, r2 = ae2 =
n∑
i=1

iai

Now suppose the computed a′ = [a′1, . . . , a
′
n] has up to one erroneous element a′j 6= aj,

where the location j is unknown to us. However when we verify the checksums:

δ1 =
n∑
i=1

a′i − r1 = a′j − aj 6= 0

δ2 =
n∑
i=1

iai − r2 = j(a′j − aj) 6= 0

Then a simple division δ2/δ1 gives us the location j. The correct value of aj can

then be recovered using the correct checksum and the other correct elements of a:

aj = a′j−
∑n

i=1,i 6=j a
′
i. Therefore, if we have two checksums for a vector we can correct

up to 1 erroneous element in it. If we have full double checksums for a matrix we can

correct up to 1 erroneous element in each column/row. In the following text we only

assume single checksum for brevity of notations; extending to multiple checksums

with different weights is a easy to do.
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5.1.3 Maintaining checksum for matrix factorizations

There are three common one sided factorizations: LU, Cholesky, and QR. The LU

factorization factorizes a matrix A into a lower triangular matrix L and an upper tri-

angular matrix U . It can be shown that (almost) unmodified LU algorithm operating

on the full checksum encoded matrix Af would result in column checksum encoded

Lc and row checksum encoded U r.

A = LU,Af =

 L

eTL

[ U Ue

]

The same works for Cholesky factorization:

A = LLT , Af =

 L

eTL

[ LT LT e

]

For QR factorization A = QR because the left factor Q is supposed to be orthog-

onal, unmodified QR algorithm operating on Af would not result in the desired QcRr

as QR produces the orthogonal left factor while Qc cannot be orthogonal as Qc is

singular. However if we only perform QR on the row checksum encoded Ar then we

have:

A = QR,Ar = QRr
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We see that the the QR factorization preserves the row checksum. This is possible

because the right factor R is supposed to be upper triangular and Rr can conform to

this requirement.

For two sided factorizations however the left factor and right factor are both

orthogonal thus we cannot hope to use unmodified algorithm to do the factorization

that preserves the checksum. For example bidiagonalization factors a matrix into:

A = QBP T , Af = Q′B′P ′T

There is no possibility that Q′ = Qc or P ′ = P c as Q′, Q, P, P ′ are all supposed to

be orthogonal. Nor can we expect unmodified two sided factorization algorithms to

preserve row/column checksums for Ar or Ac. For the other two two-sided factoriza-

tions the checksums cannot be automatically maintained without modification to the

factorization algorithm, as in both cases the left and right factors are orthogonal.

5.1.4 Householder reflector for unitary diagonalization

Householder reflector is an orthogonal matrix that maps a target vector to the

first axis. The effect is shown as in figure 5.1.

The Householder matrix F is constructed based on vector x as follows:

v = x+ sign(x1)||x||2e1, F = I − 2

vTv
vvT (5.2)
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x =


×
×
×
...
×

 F−→ Fx =


||x||

0
0
...
0

 = ||x||e1

Figure 5.1: The effect of (left) Householder reflector to a column vector.

in which e1 is the vector (1, 0, 0, . . . , 0)T . It can be shown that applying the left

Householder matrix to a column vector x will reflect x to the first axis, eliminating

all other components except the first one. Note that since the Householder reflector

is symmetric and orthogonal, it serves as the primary tool to unitarily triangularize

(zero out lower triangular part) a matrix. Likewise, applying a Householder matrix

on the right to a row vector will have similar effect and can be used to zero out the

upper triangular part.

To simplify notation we normalize the Householder vector v: v = v/||v||2. The

Householder matrix thus becomes F = I− 2vvT . Regarding the checksum preserving

property of Householder reflection we have the following important lemma that is the

basis of all the automatic maintenance of checksums in two-sided factorizations:

Lemma 1 Suppose (I − 2vvT )A = A′, then we have the corresponding checksum

result:

Af − 2vcvTAr = (A′)f
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Proof.

LHS =

 A Ae

eTA eTAe

− 2

 v

eTv

 vT [ A Ae

]

=

 A′ A′e

eTA′ eTA′e

 = RHS

There is a symmetric case that applies F to the right of A. The significance of this

lemma is that, if we have the checksum of Householder vector v and the matrix A, we

can operate on the checksum augmented vector/matrix to obtain the desired output,

and its associated checksums. In other words, we have defined a certain application of

Householder matrix in such a way that the checksum is preserved. The Householder

transformation will be modified in this way in the two sided matrix factorizations in

order to maintain the checksum encoding, thus serving as the foundation for checksum

based ABFT for them.

5.2 Unblocked version

In this section we describe the checksum based ABFT for unblocked bidiagonal

reduction and Hessenberg/tridiagonal reduction. Unblocked algorithms are easy to

understand but not practical in practice due to its inefficiency in using modern hi-
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erarchical memory system. It will however illustrate the basic technique for further

more complex blocked algorithms and distributed algorithms.

5.2.1 Bidiagonal reduction

Bidiagonal reduction (or bidiagonalization) is the first step in computing singular

value decomposition. It is the process of alternating left and right orthogonal trans-

formations to reduce a general m× n matrix into a upper diagonal form (if m ≥ n),

in which all but the diagonal and first superdiagonal entries are zeros:

A = QBP T ,Q and P are orthogonal, B is bidiagonal. (5.3)

Householder reflectors are usually used to introduce zeros into the subdiagonal.

Note that in general no direct methods can reduce A to bidiagonal form. The key

method in the factorization is through Householder transformation; applying House-

holder reflector on the left of the matrix reduces eliminates the entries below diagonal

in the current column; applying it on the right eliminate the entries that are right of

the first superdiagonal in the current row. The process is shown in figure 5.2.

Let us first consider the unblocked version of the bidiagonalization algorithm used

in LAPACK DGEBD2 subroutine. Suppose we are given a thin matrix A of size m×n

and m ≥ n. The (upper) bidiagonalization algorithm is described in algorithm 10
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Figure 5.2: Householder Reduction to Bidiagonal Form

Let us walk through the bidiagonalization procedure in algorithm 10. Line 2-4

computes the left Householder vector and matrix; line 5 applies the resulting House-

holder matrix to the left of the matrix to eliminate the column (see the first and

third transformation in figure 5.2). Note that Similarly, line 6-8 computes the right

Householder vector and matrix; line 9 applies the resulting Householder matrix to the

right of the matrix to eliminate the row (see the second and fourth transformation in

figure 5.2).

Now it is time to design a checksum scheme and modification to the algorithm 10

in such a way that the checksum encoding will remain valid at certain point during

the factorization. In fact we will aim at maintaining checksum encoding at the end
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Algorithm 10 Householder Reduction to (Upper) Bidiagonal Form

1: Require: matrix A ∈ Rm×n,m ≥ n
2: Ensure: A→ QBP T where B is (upper) bidiagonal, Q,P are orthogonal
3: for k = 1 : m− 1 do
4: x = Ak:m,k
5: q = x+ sign(x1)||x||2e1
6: q = q/||q||2
7: Ak:m,k:n = Ak:m,k:n − 2q(qTAk:m,k:n)
8: x = Ak,k+1:n

9: p = x+ sign(x1)||x||2e1
10: p = p/||p||2
11: Ak:m,k+1:n = Ak:m,k+1:n − 2(Ak:m,k+1:np)p

T

12: Store q, p
13: end for

of each Householder application (line 5 and 9) in each loop iteration. We summarize

the design problem we are facing now:

Problem: Given a fully checksum encoded original matrix Af , how do we

modify the algorithm 10 such that at the end of line 5 and 9 the matrix Af or its

submatrix is properly encoded?

The basis is the lemma 1. Our design is present in the algorithm 11.

Theorem 2 In the modified algorithm 11 at the end of line 5 or line 9 in each

iteration, the matrix A remains full checksum encoded. At the end of the algorithm,

the result will be the full checksum encoded result of that of algorithm 10 performed

on the matrix without encoding.
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Algorithm 11 Modified Householder Reduction to (Upper) Bidiagonal Form

1: Require: A full checksum encoded matrix A ∈ R(m+1)×(n+1),m ≥ n
2: Ensure: A→ QcB(P r)T where B is (upper) bidiagonal, Q,P are orthogonal
3: for k = 1 : m− 1 do
4: x = Ak:m+1,k

5: q = x+ sign(x1)||x1:last−1||2ec1
6: q = q/||q1:last−1||2
7: Ak:m+1,k:n+1 = Ak:m+1,k:n+1 − 2qqT1:last-1Ak:m,k:n+1

8: x = Ak,k+1:n

9: p = x+ sign(x1)||x1:last11||2ec1
10: p = p/||p1:last11||2
11: Ak:m+1,k+1:n+1 = Ak:m+1,k+1:n+1 − 2Ak:m+1,k+1:np1:last+1p

T

12: Store q, p
13: end for

To see why theorem 2 holds intuitively, it is instructive to compare algorithm 11

to algorithm 10 line by line. For example, by induction before line 5 the pre-condition

that the matrix A is full checksum encoded. Applying lemma 1 to line 5 leads to the

post-condition that the after line 5 the matrix A remains full checksum encoded. Also

note that by construction q and p in algorithm 11 is the column checksum encoded q

and p in algorithm 10. This leads to the conclusion that after line 5 the matrix A in

algorithm 11 is the full checksum encoded A in algorithm 10. These two conclusions

combined to prove theorem 2. We thus illustrated that algorithm 11 provides a

solution to our stated problem.

5.2.2 Hessenberg reduction and tridiagonal reduction

Hessenberg reduction is the first step in computing eigenvalue decomposition. It

is the process of applying the same orthogonal transformation to both left and right
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Figure 5.3: Householder reduction to Hessenberg form

of the matrix to reduce the a square matrix into upper Hessenberg form in which all

but the upper triangular part and the subdiagonal are zero:

A = QHQT ,Q is orthogonal, H is Hessenberg matrix. (5.4)

Note the difference from bidiagonal reduction: the left factor and right factor

are both Q. The reduction is also carried out through Householder reflectors. The

additional constraint that the left factor and right factor must be the same in general

prevents direct reduction to bidiagonal as in the case of bidiagonal reduction case;

the best we can do is the Hessenberg form. If the matrix A is symmetric then the H

is both Hessenberg and symmetric therefore tridiagonal. In our discussion tridiagonal

reduction can be treated as a special case of Hessenberg reduction thus will not be

discusses separately unless necessary.
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To modify the Householder Hessenberg reduction algorithm, again the basis is

lemma 1. The result is very similar to the bidiagonal reduction case so we only give

the modified algorithm 12.

Algorithm 12 Modified Householder Reduction to Hessenberg Form

1: Require: A full checksum encoded matrix Af ∈ R(m+1)×(m+1)

2: Ensure: Af → Qc, Hf , (QT )r where A = QHQT , B is (upper) bidiagonal, Q,P
are orthogonal

3: for k = 1 : m− 2 do
4: x = Ak+1:m+1,k

5: q = x+ sign(x1)||x1:last−1||2ec1
6: q = q/||q1:last−1||2
7: Ak+1:m+1,k:m+1 = Ak+1:m+1,k:m+1 − 2qqT1:last-1Ak+1:m+1,k:m+1

8: A1:m+1,k+1:m+1 = A1:m+1,k+1:m+1 − 2A1:m+1,k+1:m+1q1:last-1q
T

9: Store q, p
10: end for

We then have a theorem similar to theorem 2 asserting similar checksum mainte-

nance.

5.3 Blocked version

In contrast to the previous unblocked algorithms for two sided factorizations,

in this section we move on to the blocked algorithms which are substantially more

efficient and complex. The unblocked algorithms are rich in level 1 and 2 BLAS

operations (vector-vector and matrix-vector) which have low computation intensity.

The blocked version aggregates some of the BLAS 2 into single BLAS 3 (matrix-

matrix multiplication) operations. BLAS 3 operations have much better computation
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Algorithm 13 Modified Householder reduction to bidiagonal form, Blocked Version
in matlab notation. Red color marks the modifications.
Input: Full checksum encoded A1:m+1,1:n+1

WHILE m > 0:

1. DLABRD: REduce the kth panel of the matrix and compute X, Y . [Repeat B
times for i = 1, . . . , B .]

(a) Update the jth column of A: Ai:m+1,i = Ai:m+1,i − Aj:m+1,1:i−1 ∗ Y ′i,1:i−1 −
Xj:m+1,1:i−1 ∗ A1:i−1,i.

(b) Verify Ai:m+1,i = Aci:m,i

(c) Compute the ith column Householder vector of A, Ai:m+1,i

(d) Compute Yi+1:n+1,i = τv(A
′
i:m,i+1:n+1 ∗ Ai:m,i − Yi+1:n+1,1:i−1 ∗ A′i:m,1:i−1 ∗

Ai:m,i − A′1:i−1,i+1:n+1 ∗X ′i:m,1:i−1 ∗ Ai:m,i)
(e) Update the jth row of A: Ai,i+1:n+1 = Ai,i+1:n+1 − Ai,1:iY

T
i+1:n+1,1:i −

X1:i−1,iA1:i−1,i+1:n+1.

(f) Verify Ai,i+1:n+1 = Ari,i+1:n

(g) Compute the ith row Householder vector of A, Ai,i+1:n+1.

(h) Compute Xi+1:m+1,i = τu(Ai+1:m+1,i+1:n∗A′i,i+1:n−Ai+1:m+1,i+1:n∗Y ′i+1:n,1:i∗
A′i,i+1:n −Xi+1:m+1,1:i−1 ∗ A1:i−1,i+1:n ∗ A′i,i+1:n).

2. DGEMM: Update A with V and Y , AB+1:m+1,B+1:n+1 = AB+1:m+1,B+1:n+1 −
AB+1:m+1,1 ∗ Y ′B+1m+1,1:B.

3. DGEMM: Update A with X and U , AB+1:m+1,B+1:n+1 = AB+1:m+1,B+1:n+1 −
XB+1:m+1,1 ∗ A1:B,B+1:n+1.

4. Verify AB+1:m+1,B+1:n+1 = AfB+1:m,B+1:n

A = AB+1:m+1,B+1:n+1,m = m−B, n = n−B
END WHILE
Process the remaining A with unblocked algorithm.
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intensity therefore better performance on modern computers. The method to modify

the blocked algorithms to maintain checksums is similar but not quite the same as

the unblocked algorithms. The details are presented in this section.

5.3.1 Bidiagonal Reduction

Algorithm 14 Modified Blocked Householder Reduction to Bidiagonal Form,
Blocked Version in matrix notation.. Red colored marks the modifications.

1. DLABRD: Reduce the kth panel of the matrix and compute V, U,X, Y . [Repeat
B times for i = 1, . . . , B (let j = (k − 1)B + i).]

(a) Update the jth column of A: Ac:,j = Ac:,j − V c
i−1y

T
i −Xc

i−1u
T
i

(b) Compute the ith column Householder vector of A, vci .

(c) Compute (yi)
c = τv((A

r)Tvi − (Yi−1)
cV T
i−1vi − U c

i−1X
T
i−1vi)

(d) Update the jth row of A: (Arj,:)
T = (Arj,:)

T − Y c
i (vTI )− U c

i−1x
T
i−1

(e) Compute the ith row Householder vector of A, uci

(f) Compute xci = τu(A
cui −Xc

i−1U
T
i−1ui − V c

i Y
T
i ui).

2. DGEMM: Update A with V and Y , Af = Af − V c(Y c)T .

3. DGEMM: Update A with X and U , Af = Af −Xc(U c)T .

The blocked bidiagonal reduction (xGEBRD in LAPACK) solves the same fac-

torization problem in equation 5.3 by delaying the application of line 5 and 9 in

algorithm 10 for a few iterations and apply the aggregated effect in a single matrix

multiplication. The detailed process is illustrated in algorithm 14. The algorithm is

summarized from [25] which is used in LAPACK.
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The blocked algorithm 14 looks quite a bit more elaborate compared to algo-

rithm 10. The algorithm 14 describes an iteration in a loop. The main complexity is

in calculating the temporary matrices X, Y that represent the effect of rank-2 trailing

matrix update (line 5 and 9 in algorithm 10). The X, Y “store” the update to the

trailing matrix and are used to apply the update in bulk of B rank-2 updates into

matrix multiplications, or rank-2B update (step 2, 3 in algorithm 14).

To modify the blocked algorithm 14 such that it maintains checksum encoding

when operating on fully checksum encoded matrix A, lemma 1 cannot be directly

used since the rank-1 Householder transformation is delayed and applied in bulk. An

apparent idea is to relate the matrix multiplications in step 2 and 3 in algorithm 14

to equation 5.1. If we can have a column checksum encoded U, V,X, Y and full

checksum encoded A, the trailing matrix update (step 2,3) that subtract V Y T +

XUT from A leaves a fully checksum encoded A as we desired. This approach is

used by [60]. The problem with this approach is that the checksums of matrices

U, V,X, Y must be recalculated every time before step 2 and 3. The inability to

maintain the checksums of U, V,X, Y not only adds additional overheads but also

compromises fault coverage: the faulty calculation of U, V,X, Y cannot be detected

as they are not encoded. We would like to avoid the recalculation of checksums and

develop a automatically maintained checksum throughout the blocked algorithm. The

U, V,X, Y should all be encoded throughout the algorithm, and any faulty calculation

in the algorithm 14 would lead to inconsistently encoded matrix.
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To do that we follow an intuitive guideline similar to the modification we made in

algorithm 11: we include the checksums in vector, matrix-vector, and matrix-matrix

operations when it makes sense. If the result is supposed to be a full checksum encoded

matrix, the left factor should be column checksum encoded and the right factor should

be row checksum encoded; if the result is supposed to be column checksum encoded,

the left factor should be column checksum encoded and the rest checksum is not

included. The resulting modified algorithm is presented in algorithm 13.

We claim that after step 2,3 in algorithm 13, the matrix A is full checksum en-

coded, and after step 1.(a) or 1.(e) the updated vector in A is row checksum encoded.

To see why this is so we need to go into the derivation of blocked algorithm and the

equivalence between unblocked and blocked versions. Carefully applying the basic

maintenance of checksums in matrix-matrix/vector multiplication proves this claim.

The details are omitted here due to limited space.

5.3.2 Hessenberg and Tridiagonal Reduction

The Hessenberg and tridiagonal reduction is similar in spirit to the bidiagonal

case. We list only the Hessenberg reduction algorithm here in algorithm 15; The

tridiagonal reduction is Hessenberg reduction on symmetric matrix.
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Algorithm 15 Modified orthogonal reduction to Hessenberg form, blocked version
in matrix notation.. Red colored marks the modifications.

1. DLAHRD: Reduce the kth panel of the matrix and compute V, Y, T . [Repeat B
times for i = 1, . . . , B (let j = (k − 1)B + i).]

(a) Computer the Householder vector vci .

(b) Compute yci = τ(Acvi − Y c
i−1V

T
i−1vi).

(c) Compute ti = −τTi−1V T
i−1vi

(d) Update the (j + 1)th column of A if necessary:

i. Apply the block Householder vector from the right: Ac:,j+1 = Ac:,j+1 −
Y c
i [Vi]j,:

ii. Apply the block Householder vector from the left: Ac:,j+1 = Ac:,j+1 −
V c
i T

T
i V

T
i A:,j

2. DGEMM: Update A with V and Y , Af = Af − Y c(V c)T .

3. DLARFB: Apply the block Householder vector from the left, Af = Af −
V cT TV TAr.

5.4 Distributed Blocked Version

In this section we discuss how to adapt the ABFT scheme for the distributed two

sided factorizations in the ScaLAPACK package. First we will briefly introduce the 2D

cyclic data distribution and how ScaLAPACK implements the blocked factorizations

discussed previously on a distributed memory cluster system. Then we discuss the

adaption of the ABFT scheme to distributed memory system and the modification

to the corresponding distributed algorithm.
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5.4.1 Data distribution

The ScaLAPACK uses the two dimensional cyclic block data distribution [8] for

the matrix on distributed memory system because of its efficient support for high

performance matrix-matrix multiplication and load balance for parallel speed up and

scalability. In many linear algebra algorithms such as the matrix factorizations, the

algorithm works on ever smaller submatrix as the algorithm progresses thus posing a

load balance problem. To mitigate this problem 2D block cyclic distribution assigns

matrix blocks to processes in a round-robin fashion. Therefore each process will pos-

sess blocks with a constant stride. Two dimensional means the matrix is partitioned

into a 2D array of blocks and the processes are arranged into a 2D grid. The blocks

is assigned according to its row and column index, as shown in figure

In the previous section we attach checksums to the global matrix and modify

the algorithms to maintain the checksum during factorization. Because ScaLAPACK

mostly reuses the LAPACK algorithm and implementation for the two sided factor-

izations, the same design can be used in ScaLAPACK. However because the matrix

is distributed onto multiple computing nodes, the checksum verification procedure

would require communication that involves all the processes. To avoid the commu-

nication in checksum verification, we would like to attach checksums to the matrix

local to each process instead of to the global matrix. In addition, local checksums

are desirable in numerical accuracy and scalability in correcting errors. The question

104



is then how to modify the ScaLAPACK two-sided factorizations in such a way that

local checksums are maintained in similar way that global checksums are maintained.

The guideline to modify the ScaLAPACK software follows the same principle of

LAPACK; the difference is that in LAPACK the matrix-vector and matrix-matrix

operations are on global matrix but in ScaLAPACK they are on local matrix. Pre-

viously we modify the matrix-vector and matrix-matrix multiplications by including

the appropriate checksums global to the matrix/vector, now on the distributed matrix

we modify the corresponding operations by including the appropriate checksum local

to the matrix/vector. Take matrix-vector multiplication for example as illustrated

in figure 5.4. Suppose we would like to perform a global matrix-vector multiplica-

tion y = Ax and the matrices and vectors are distributed as illustrated in 5.4. First

each process owning a part of matrix A would do the matrix-vector multiplication

on its local data yL = ALxL, and then all processes that contribute to the same part

of y would sum up their contribution to form the part of global y. To modify this

distributed matrix-vector multiplication to include the local checksums, we simply

include the local checksums in the local matrix-vector multiplication, and then sum

up the checksum encoded result vector ycL. Modifying distributed matrix-matrix mul-

tiplication is similar; the difference is that in matrix-matrix multiplication both row

checksums and column checksums are involved.

We now claim that during the modified distributed blocked two-sided factoriza-

tions, the process local matrix will be properly checksum encoded just like the global
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Figure 5.4: Modification to distributed matrix-vector multiplication to include local

checksums

matrix is encoded in the non-distributed case. To see why this is true, we note that 1)

the checksum is a weighted sum of the participating elements, and all of our discussion

will work with any weights; and 2) the following insight:

Key insight: Each process owns a portion of the global matrix. Checksum

of the local matrix is equivalent to checksum of the global matrix with selective

weights; see figure 5.5. This is possible because all the distributions of all the

matrices (A, X, Y) are compatible.

106



Figure 5.5: Local checksum equivalent to global checksum with specific weights.
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This leads to the interesting view that each process in the distributed factoriza-

tions use its own selective weights. The global matrix thus have multiple distributed

checksums with different weights.

5.5 Analysis

In this section we analyze three aspects of the algorithms we described in these

aspects: 1) the fault coverage; 2) the overhead and scalability.

5.5.1 Fault coverage

In this section we first attempt to quantify the (detection) fault coverage of differ-

ent error detection techniques. There are various kinds of error detection techniques;

they might have different strength in detecting errors. Intuitively if we only design

checksum scheme for part of the data structure and only for some operations, the

fault coverage is low because corruption to data or operation outside of the protec-

tion will not be detected. On the algorithm abstraction layer we can define a metric

of (algorithmic) fault coverage as portion of data structures and portion of time for

which the data structures are not vulnerable. A data structure is vulnerable for a

period of time during which a corruption to it cannot in general be detected. The

corruption can be in the form of logic error (miscalculation) or bit flips. If all data

structures are protected for the whole duration of the algorithm, the fault coverage is
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100%. If half the data structures are protected for half of the time in the algorithm,

the fault coverage is 50%× 50% = 25%. The fault coverage conceptually reflects the

probability of error detection if fault happens randomly and uniformly in space and

time.

We compare the three checksum schemes for the fault coverage analysis. The first

is our proposed checksum scheme without checksum regeneration. The second is the

previous checksum scheme from [59, 60] that covers only the matrix-matrix multi-

plications with checksum regeneration. The third builds upon the second such that

covers the matrix-matrix and matrix-vector multiplication with checksum regenera-

tion. We denote the three checksum schemes by FT1, FT2, and FT3 respectively.

The checksum regenerations in FT2 and FT3 are necessary because checksums are

not automatically maintained across the matrix-vector/matrix operations thus have

to be regenerated before the operation begins. The checksums also have to be checked

before the result is overwritten and the checksum regenerated, otherwise the fault will

elude detection. We will analyze the fault coverage of FT1, FT2, and FT3 based on

the LAPACK dgebrd subroutine shown as algorithm 14.

For FT1 shown in algorithm 13 all operations except for the four matrix-vector

operations in 1.(c) and 1.(f) are covered. The unprotected matrix-vector operations

are the four intermediate calculation V T
i−1vi, X

T
i−1vi, U

T
i−1ui, Y

T
i ui. At each iteration

they affect at most 2M ×B elements, and takes
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B∑
k=1

(m+ n− k + 1)(k − 1) ≤ mB2

2

Summing the above for all iterations (m = M − N,M − N + B,M − N +

2B, . . . ,M)yields:

(M−N)/B∑
j=1

(M −N + jB)B2 ≤ 1

2
BMN

Noting that the whole matrix takes space M ×N and the whole algorithm takes

FLOPs 4
3
N2(2M −N), we can estimate the fault coverage ratio of FT1:

Cov(FT1) ≥ 1−
1
2
BMN × 2MB

4
3
N2(2M −N)×MN

≥ 1− 3

4

M

N

(
B

N

)2

We see that the fault coverage of FT1 scheme is in general very high as the blocking

size is usually within [32, 128] and the problem matrix can be M,N can be at least

100x that of B. The ratio tends to be larger than 99.9% for reasonably large and

square matrix.

For the FT2 scheme that only protects the matrix-matrix factorization, suppose

the matrix is a square (M = N). In each iteration, the two matrix-matrix multipli-

cation (step 2, 3 in algorithm 14) protects data size n2 for duration of 4Bn2. The

whole matrix has size N2 and duration 8
3
N3. Taking consideration of all iterations

(n = B, 2B, . . . , N) we get:
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Cov(FT2) =

∑N/B
j=1 4B(jB)2 × (jB)2

N2 × 8
3
N2

= 30%

For the FT3 scheme the fault coverage is almost 100% as the only unprotected

parts is the generation of Householder vector (step 1.(b)(e) in algorithm 14) which

affect very few elements for very brief time. The problem of this approach is the high

overhead due to checksum regeneration and frequent verification to achieve high fault

coverage which FT1 does not have. The overhead will analyzed in the next subsection

and also empirically shown in the next section.

What about the error correction coverage? Detailed analysis is difficult as the

whether the error is correctable depends on specific the timing and location of the

error. However we note that detection fault coverage is the upper bound for correction

fault coverage: errors cannot be corrected unless they are detected. We will explore

the correction coverage empirically in the next section.

As a side note, the algorithmic fault coverage discussed here is based on the

algorithm abstraction layer; the objects and operations are rather high level and need

to be mapped to a program, and subsequently mapped to a computer instructions, and

eventually to electrical circuits for execution. Some of the lower abstraction constructs

such as the indices, loops, pointers in the programming language layer that are needed

to carry out the algorithm are not discussed here; their misbehavior may or may not

be covered by higher abstraction layer. The fault tolerance mechanisms for other

abstraction layers are important in determining the resilience of the final application

111



execution, but they are out of the scope of this paper. Fault tolerance at different

layers have their peculiar tradeoffs between complexity, cost, and effectiveness and it

is desirable to integrate them to combine their individual advantages.

5.5.2 Overhead

In this subsection we analyze the overhead in introducing checksum in checksum

scheme FT1, FT2, and FT3. The execution time overhead comes from three parts:

1) checksum (re)generation; 2) extra computation/communications that involves the

checksums; 3) checksum verification. The memory space overhead comes from the

extra space to store checksums. Suppose BLAS2 operation execution rate is α2 and

BLAS3 operation execution rate is α3. On a typical modern CPU such as Intel Xeon

α3 is about 5x that of α2.

For FT1, the overhead is

OFT1 =
α2N

2 + (α2 + α3)/2× 8N2 + α2
N3

3B
4
3
(α2 + α3)N3

(5.5)

OFT2 =
α2

N3

3B
4
3
(α2 + α3)N3

(5.6)

OFT3 =
4
3
α2N

3 + α2
N3

3B
4
3
(α2 + α3)N3

(5.7)

Under reasonable assumption of B = 32, N ≈ 1000s, the OFT1 and OFT2 should be

at around a few percent, and OFT3 can approach 100% primarily due to the frequent

checksum regeneration.

112



5.6 Experiments

In this section we empirically study the proposed fault tolerance two sided factor-

izations for the aspects discussed in the previous section.

5.6.1 Fault injections

In this subsection we empirically examine the fault coverage of the three checksum

schemes FT1(proposed in this paper), FT2, and FT3. We use a fault injector to inject

faults into the program and repeat this test to see if the fault can be detected. The

fault injection is aimed to assess the algorithmic fault coverage therefore only floating

point data and operations are targeted; the indices, pointers, and other control data

and operations are not. Corruptions to the matrices and vectors seldom lead to crash

of the process thus is almost always a silent data corruption; corruption to control

data and operation quite likely will lead to process crash.

The fault injector we use is based on debugger GDB. It works as follows. First the

target program is run under the debugger and profiled for its execution time. Then

we randomly generate a timer event during the execution to stop the program. The

debugger then either randomly decide to corrupt a random element in the numerical

data, or modify the current floating point arithmetic instructions. If the current

instruction is not a floating point instruction the debugger executes one instruction

at a time until it finds a floating point instruction. The debugger then corrupt the

destination register to simulate an FPU fault. We compiled the program using specific
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compiler flags to only generate x87 FPU code which is easy to target, as there are

fewer instruction types and x87 uses floating point registers as a stack. The result of

the current x87 instruction is usually placed on the top of the stack. We also disables

optimization flags to gain more information of the injection site, and as a result the

matrix-matrix multiplication runs at the same speed as matrix-vector multiplication.

The experimental results should be close to the analysis in the previous section that

assumes the same speed for all operations. With optimized BLAS library BLAS3 is

much faster than BLAS2 the fault coverage of FT2 would have been reduced.

We have implemented the three checksums schemes into the blocked serial bidi-

agonal reduction subroutine DGEBRD() in LAPACK 3.6.0. The matrix size is set to

500x500. Each program will be subject to 1000 error injections; each time a single

fault is injected and the program will report whether it has detected the fault. All

injections will affect the result if untreated. The results are summarized in the fig-

ure 5.6. We can see that FT1 can detect almost all errors and correct a fairly large

fraction of them. FT2 can only detect less than 50% errors and correct most of the

detected errors. FT3 on the other hand does not perform too well primarily due

to the significant added computations of checksum regenerations that are themselves

vulnerable, and the non-persistent checksums that cannot detect memory corruptions

to already computed data.
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Figure 5.6: The fault coverage for the three checksum schemes

5.6.2 Execution time overheads

Here we empirically evaluate the execution time overhead of the checksum schemes.

We use the same implementation as the previous subsection but here we enable aggres-

sive optimization flags of compiler and highly optimized BLAS library [97] available

on the AMD Opteron system. The problem size is set at 1000x1000 and the block

size B = 32 as the LAPACK 3.6.0 defaults to. The execution time for the three

checksum scheme implementation based on LAPACK DGEBRD subroutine is shown in

figure 5.7. From the figure we can see that FT1 as predicted only incurs less than

5% overhead; FT2 has more overhead due to frequent checksum regeneration; and
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Figure 5.7: The execution time overhead for various checksum schemes compared to

original DGEBRD

FT3 has almost 200% overhead due to the very frequent checksum regeneration that

is BLAS2 operation.

5.6.3 Overheads and scalability

Now we turn to the distributed memory bidiagonal reduction subroutine PDGEBRD

in ScaLAPACK 2.0.2 and see how the hardened version scale to more computing cores

and nodes. We have two scaling tests. In the first test, we fix the memory usage per

processor and scale the number of processors from 4 to 4096. In the second test, we

fix the processor grid at 1024 (32x32) and scale the problem size from 500x500 to

1500x1500. This works fills the last major missing parts of dense matrix factorization

algorithms in ScaLAPACK. This set of experiments are performed on the TACC
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Stampede supercomputer, currently ranked at #12 on top500.org list. The Stampede

machine consists of Xeon E5-2680 8C 2.7GHz processors and Infiniband FDR fat-

tree network. Xeon Phi is not utilized. The compiler is intel/14.0.1.106 and MPI

implementation is impi/4.1.0.030. The optimized BLAS library is MKL that comes

with the Intel compilers. Each time measurement is repeated several times until the

95% confidence interval of the average (indicated as error bar) is within 5% of the

average measurements [53], except for the 4096 cores case in figure 5.8 in which case

the variance of the measurements are too high and repeating measurements do not

seem to reduce it. The reason might be that allocating 4096 processors has a higher

chance of including unhealthy nodes that are slower and drag down the performance.

The high overhead 10.6% is therefore of low statistical significance. We see that in

figure 5.8 and 5.9 in general the hardened FT-PDGEBRD maintains low overhead

and the scalability of the original PDGEBRD subroutine in the scaling tests.
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Figure 5.8: Fault free execution time for fault tolerant FT-PDGEBRD and non-

fault-tolerant PDGEBRD from ScaLAPACK. Local matrix is fixed at 1000 × 1000;

the global matrix size scales as the number of processors scales.
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Chapter 6

Towards Practical Algorithm

Based Fault Tolerance

ABFT has first been proposed in a seminal work by Huang and Abraham [58] for

matrix-matrix multiplication on systolic arrays. The idea of ABFT can be seen as an

adaption of ECC to numeric structures like matrices or vectors. The significant differ-

ence is that for ECC the data is static but for ABFT the data is under transformation.

In ABFT the central problem is that the codes must maintain after transformation in

order to be able to detect errors using the codes. The fault model is a deciding factor

in the design of ABFT codes and adaption to the associated algorithm. However

the fault models used in existing ABFT research are either too abstract [33, 67, 44]

or too simplistic [21, 99, 100] limiting their use where the architectural fault models

do not fit. In this work we rethink the fault model and explore the challenges if
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we use a comprehensive architectural fault model that allows both logic/arithmetic

faults and storage faults in main memory, on-chip memory, and other datapaths. We

demonstrate that with this fault model we still can design highly efficient and resilient

ABFT techniques for dense linear algebra and use high performance linpack (HPL)

to show that the new techniques can be implemented efficiently in complex real world

high performance and highly scalable applications. The design is validated empiri-

cally by a QEMU [5] based architectural fault injector, F-SEFI [1], which implements

the comprehensive fault model. We incorporate the new ABFT techniques into the

latest Netlib HPL-2.1 and empirically show that the resulting FT-HPL incurs low

overhead and maintains high scalability of the original HPL.

The contributions of this chapter are:

New fault model We use a fault model that allows logic faults and memory sys-

tem faults that are comprehensive temporally and spatially and design ABFT

schemes that can effectively detect and correct errors caused by these faults.

New checksum scheme We propose a novel process local checksum scheme, mul-

tiple checksums for error detection and correction by studying the syndrome

(error patterns) caused by the faults.

Validation and software implementation We test and validate the resilience us-

ing an architectural fault injector. We implement the new ABFT schemes in

the latest Netlib HPL-2.1.
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6.1 Fault Model

The fault model for silent soft errors includes arithmetic faults that result in a

wrong answer, for example 1+1=3. The other important fault is the memory system

fault, manifesting as corrupted bits in storage cells. Memory faults could happen in

main memory, in caches, registers, and other datapaths. We suppose one memory

fault only affects one memory word; it can be multiple bits or single bit corruption.

It is useful to see how the architectural level faults manifest themselves in the

algorithm level. Typically numerical algorithms deal with scalar numbers, vectors,

and matrices. A variable may be mapped to multiple memory devices. For example

the variable may be mapped to main memory, and cached in on-chip cache. It may

also live in a register temporarily. The fault that affects the variable may be caused

by corruptions in one of the mapped physical devices, and manifest themselves differ-

ently. For example if the main memory is corrupted, the mapped variable may read

the corrupted value continuously until the memory is overwritten. If the corruption

happens in cache, the variable may read incorrect value until the cache line is flushed.

Therefore, a corrupted data element in program may sometimes read correct value

but at other times read corrupted value.
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6.2 The Checksum Scheme

It is important to make a distinction between fault and error. For our purpose,

a fault is a malfunction in the architecture, such as a bit flip in memory, cache, or

registers. An error is the symptom due to the fault. Thus faults are the cause and

errors are what we observe that are not correct. In designing numerical algorithms,

errors are erroneous floating point variables. A single bit fault may lead to multiple

errors, depending on how the faulty value is used. For algorithm designers and imple-

menters, the problem to design fault tolerant algorithms is to find ways to detect and

tolerate errors. In online ABFT framework, the problem can be further specified as

to detect and tolerate errors resulting from one for every error handling interval. In

this section, we will first study the error patterns of a single fault and how to tolerate

them; then we will discuss how to design checksum schemes in LU decomposition;

we will discuss how to put this technique in use in the very high performance LU

decomposition package HPL; last we drop the assumption of precise arithmetic and

deal with finite precision floating point arithmetic.

6.2.1 Error patterns and correction

We begin by studying the error patterns caused by a single fault in matrix multi-

plication, as matrix multiplication is the simplest dense matrix operation and it is an

important part of the LU decomposition. We will see that memory faults may lead
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(a)  One  arithmetic  fault  corrupts  at  most  
one  element  in  result  matrix  C.

(b)  One  SDC  in  matrix  A  will  cause  a  row  
corruption  in  result  matrix  C.

(c)  One  SDC  in  matrix  A  causes  a    partial  
row  corruption  in  result  matrix  C.

(d)  One  SDC  in  matrix  B  causes  a    
partial  column  corruption  in  result  matrix  
C.

x =

x = =

=

x

x

Figure 6.1: Error patterns for a single fault in matrix multiplication

to multiple errors, while in contrast one arithmetic fault will only lead to one error

in matrix multiplication.

Figure 6.1 shows four cases when one fault strikes. The fault could be an arithmetic

fault or a silent data corruption (SDC). The red elements indicate errors. In subfigure

(a), a single arithmetic error can only corrupt one element in the result, because

the intermediate value produced by the faulty arithmetic operation is only used to

calculate one element. In subfigure (b), a SDC in matrix A corrupts the whole row in

the result C, because the corrupted element in A is used to calculate the whole row.

In subfigure (c), the SDC occurs not in memory but in for example cache, or occurs

later during the matrix multiplication. In this case a single SDC in matrix A causes

partial row corruptions in C. In subfigure (d) a single SDC in matrix B causes partial

column corruption in C. The important observation here is that a single fault cannot
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cause errors in more than one row or column. This observation enables us to design

checksums that can correct all the error patterns caused by a single fault.

x =

(a)  Row  +  column  checksum  locates  and  
corrects  single  error.

x =

(b)  Double  checksums  locates  and  corrects  single  
error.

x =

(d)  Double  row  checksums  cannot  detect  whole  
row  corruption  caused  by  single  error  in  A.

x =

(c)  Row  +  column  checksum  detects  error  
but  cannot  correct  the  error.

Figure 6.2: Checksums for matrix multiplication

Next we discuss how to design checksum schemes to detect and correct up to

one fault based on the fault patterns in figure 6.1. A matrix can have two types of

checkums along its two dimensions: the checksum at the bottom of a matrix is called

column checksum and the checksum to the right of a matrix is called row checksum.

The column checksum encoded matrix is often denoted by a superscript Ac and the

row checksum encoded matrix by superscript Ar. If a matrix has both then it is called

fully checksummed and denoted by Af . Mathematically, let e be the weight vector

(or matrix in the case of multiple checksums) then:

Ac =

 A

eTA

 , Br =

[
B Be

]
, Cf =

 C Ce

eTC


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As shown in figure 6.2, we have multiple configurations of checksums. The yellow

blocks are row or column checksums associated with the matrix. The red block

indicates an incorrect element, and a black cross on a row/column checksum indicates

that the row/column checksum is inconsistent with the respective row/column in

matrix. We need at least two checksums to correct up to one error because the

location and the magnitude of the error are two unknowns. For a single error in a

matrix, either two row checksum, two column checksum, or one row plus one column

checksums can detect and correct one error in matrix C. In subfigure (a), the error

can be located at the intersection of the inconsistent row and column. The error can

be recovered using either the row or column checksum [58], because the checksums

are correct. In subfigure (b), a single error in matrix C can be detected and corrected

using two row (weighted) checksums with different weights [99]. The location of the

error and the magnitude of the error can be solved from the two checksums. In

subfigure (c), a single SDC in matrix A causes a whole row corruption that result

in an incorrect but consistent row. Because the row checksum is corrupted, it leaves

us with only one column checksum which is inadequate to correct the errors. In

subfigure (d), a single SDC in matrix A causes a whole row corruption with incorrect

but consistent checksums. In this case the checksum scheme cannot detect the errors.

It is now clear that we need both row and column checksums to avoid the error

detection failure. And to correct row/column corruptions we need two row checksums

and column checksums, as shown in figure 6.3. In figure 6.3, a SDC in matrix A causes
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a whole row corruption in C detectable by the column checksums. The errors can be

located and corrected on per column basis using the two correct column checksums.

The row checksums are neither able to locate the errors nor correct them.

x =

Figure 6.3: The checksum scheme that can tolerate single arithmetic fault or memory

fault

Specifically, how do we locate and correct one erroneous element using two check-

sums? There is an easy to use encoding method. Suppose we encode a vector

using two different weights e1 = [1, 1, . . . , 1]T , e2 = [1, 2, . . . , n]T . The vector is

a = [a1, . . . , an] and we have two correct encoded checksums of a:

r1 = ae1 =
n∑
i=1

ai, r2 = ae2 =
n∑
i=1

iai

Now suppose the computed a′ = [a′1, . . . , a
′
n] has up to one erroneous element a′j 6= aj,

where the location j is unknown to us. However when we verify the checksums:

δ1 =
n∑
i=1

a′i − r1 = a′j − aj 6= 0

δ2 =
n∑
i=1

iai − r2 = j(a′j − aj) 6= 0

126



Then a simple division δ2/δ1 gives us the location j. The correct value of aj can

then be recovered using the correct checksum and the other correct elements of a:

aj = a′j −
∑n

i=1,i 6=j a
′
i.

In this subsection the error patterns in matrix multiplication are discussed and

checksums are devised to detect and correct errors, given that we have the desired

checksums available. In the following subsection, how to maintain the checksums

online is discussed in LU decomposition. Note that in LU decomposition the matrix

multiplication is actually C ← C−A×B instead of C ← A×B so correction through

re-computation cannot be used because the original C is overwritten.

6.2.2 Checksum scheme in LU decomposition

In this subsection the right-looking LU decomposition is briefly introduced. We

first show that LU decomposition maintains global row and column checksums. Then

we discuss the two adaptions to the LU decomposition that are essential in achieving

good performance on modern cache based system and parallel computing.

LU decomposition factors a matrix A into the product of two triangular matrices

(lower) L and (upper) U : A → L × U . The tiled right-looking variant of the LU

algorithm works as shown in figure 6.4.

Figure 6.4 shows the state before and after an iteration in the algorithms. The

algorithm is a series of iterations that keeps shrinking the trailing matrix until done.

The yellow parts of the matrix indicate areas that have been factored and not active.
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𝑨𝟏𝟏 𝑨𝟏𝟐

𝑨𝟐𝟏 𝑨𝟐𝟐

𝑼𝟏𝟐

𝑳𝟐𝟏 𝑨𝟐𝟐&

𝑳𝟏𝟏
𝑼𝟏𝟏

Figure 6.4: Tiled right-looking LU algorithm, one iteration

For a certain iteration, the algorithms follows three steps: left panel factorization,

top panel update, and trailing matrix update, described by the following equations:

A11

A21

→
L11

L21

× U11 (6.1)

A12 → L11 × U12 (6.2)

A′22 ← A22 − L21 × U12 (6.3)

The maintenance of checksums offline: In the original Huang and Abraham

ABFT paper [58] it has been shown that if we LU decompose a full checksummed

matrix Af , we will end up with column checksummed Lc and row checksummed U r:

 A Ae

eTA

→
 L

eTL

× [U Ue

]
(6.4)
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where vector e is the checksum weights vector. This relationship can only be used

to detect errors but not correct errors because in LU the errors will propagate to

checksums too.

The maintenance of checksums online: If LU decompose a full checksum

matrix, we will end up with a column checksummed L and row checksummed U .

However multiple errors compound each other resulting in algorithmically uncor-

rectable errors. It would be desirable to detect and correct errors frequently during

the factorizations to handle errors in a timely manner. In fact, we will show that

at the end (or beginning) of each iteration, the factored left panel and top panel

will be column checksummed and row checksummed, and the trailing matrix will be

fully checksummed. We will show this claim inductively by first assuming the condi-

tion holds at the beginning of a certain iteration and prove that the condition holds

at the end of the iteration. The initial condition clearly holds as we have a fully

checksummed initial matrix.

𝑨𝟏𝟏 𝑨𝟏𝟐 𝑨𝟏$𝒆

𝑨𝟐𝟏 𝑨𝟐𝟐 𝑨𝟐$𝒆

𝒆𝑻𝑨$𝟏 𝒆𝑻𝑨$𝟐

𝑼𝟏𝟐 𝑼𝟏$𝒆

𝑳𝟐𝟏 𝑨𝟐𝟐) 𝑨𝟐𝟐) 𝒆

𝒆𝑻𝑳$𝟏 𝒆𝟐𝑻𝑨𝟐𝟐)

𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏	
  𝟏

𝑳𝟏𝟏
𝑼𝟏𝟏

Figure 6.5: Tiled right-looking LU algorithm with checksums, one iteration
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For simplicity we only examine the first iteration. As shown in figure 6.5, before

the iteration we have the full checksums. After the left panel has been factorized ac-

cording to equation (6.1), the column checksum associated with the left panel turns

into the checksum of the factorized panel: eTA·1 → eTL·1. To see why this is true one

only has to observe: 1) the factorized left panel will not be updated again therefore

will stay unchanged through the end; 2) from equation (6.4) we know that at the

end the left panel will be column checksummed. Thus we proved that the left panel

factorization maintains column checksum. Similarly, the second step according to

equation (6.2) maintains the row checksum of the top panel. Next we need to prove

that after the trailing matrix update according to equation (6.5), the trailing matrix

will be fully checksummed. To see that we only have to apply the matrix multiplica-

tion to the checksums. Take the column checksums for example. The transformation

done to the column checksums is depicted by:

= eT

A12

A22

− eT
L11

L21

× U12

= eT1 (A12 − L11U12) + eT2 (A22 − L21U12)

= eT2 (A′22)

(6.5)

which proves that the trailing matrix is fully checksummed by the second part of the

checksum weights vector e2.
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6.2.3 The complete picture as in HPL

The previous subsection discusses the algorithmic structure of tiled right-looking

LU decomposition, and the maintenance of checksums at each iteration in fault free

execution. In this subsection we discuss what happens when faults strikes, namely

the error patterns. Once we know the error patterns we can describe correction

procedures. We will also deal with two more complications in HPL: partial row

pivoting for numerical stability and 2d cyclic block distributions of matrix for load

balance in distributed computing.

Error patterns: We examine the error patterns in the three steps during one

iteration, and discuss detection and correction procedures. First, we look at the first

step and the second step according to equations (6.1) and (6.2), namely the left and

top panel factorization. Our first claim is that any single fault that occur during the

left and top panel factorization will lead to inconsistent checksums, provided that the

arithmetic are precise, i.e. no round-off errors. In other words, the error detection

by checksums is precise. The reason that the error detection is precise is because we

have both row and column checksums. If for example only row checksums are used, as

pointed out by figure 5 in [104], certain faults strike in lower triangular L will not be

detected. In our case the fault will be detected by the inconsistent column checksums.

Depending on the location and timing of the fault, the error pattern could be very

complex and both the row and column checksums will be contaminated and there is

no easy algorithmic corrections, as shown in figure 6.6 (a). For this case we can use
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in-memory checkpointing and rollback specifically for the left and top panels. Once

the checksum inconsistency is detected the computation can be rolled back to the

beginning of the iteration. In HPL the in-memory checkpoint can be stored in the

communication buffer for broadcasting L thus do not consume extra memory space.

The overhead of memory copy of two panels is not significant.

√  √  √  √    X  X X

√
√
√

X
√

X  X X X  X X X X

X●

(a) (b)

Figure 6.6: Tiled right-looking LU algorithm with checksums, one iteration. Shaded

area are incorrect due to error propagation. Note that the affected checksums are also

incorrect but the checksums are inconsistent therefore can be used to detect errors.

For the trailing matrix update, as discussed earlier a single arithmetic fault only

affects one element in the result thus easily correctable. More interesting cases are

memory faults within L21 or U12. For a single SDC in L21 or U12, the errors can-

not be in more than one row or one column. Assuming precise arithmetic, a single

fault will trigger at least one row checksum inconsistency and one column checksum

inconsistency. Therefore the error detection in trailing matrix update is precise, and

furthermore the error patterns are within our capability to correct. For example in the
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case shown in figure 6.6 (b) a memory fault associated with an element in L21 causes

partial row corruptions. In this case the errors are easily located by the intersection

of the inconsistent row and column checksums and corrected by the correct column

checksums. It seems that one row checksum and one column checksum is sufficient

to locate and correct any single fault in the trailing matrix update. However this is

not true and will be explained next.

Parallel LU decomposition and 2d cyclic block distribution: On a mul-

tiprocessor machine a matrix is usually distributed onto a PxQ grid of processes

according to 2d block cyclic scheme for load balance and scalability. As shown in

figure 6.7, a 4x4 block matrix is distributed onto four processes. In the previous

discussion we only look at the logical (global) view of the matrix and the checksum

scheme is applied to the whole matrix. This view has some drawbacks. First, the

fault tolerance capability is not scalable with the size of the matrix. Second, as

the checksums are associated with the global matrix that are distributed, the error

detection and correction requires inter process communication. To avoid these two

drawbacks, we instead apply checksums to the process local matrix rather than the

global matrix. In this way, the fault tolerance capability is fixed per process, and

increases proportionally with the number of processes or the size of the matrix. Error

detection and correction only involve local information.

The online maintenance of the process local checksums are very similar to the

global checksums. The error patterns can exhibit more patterns than that of global
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Logical  view  of  the  
matrix

Process  0 Process  1

Process  2 Process  3

Process  view  of  the  matrix

Figure 6.7: 2D block cyclic matrix distribution.

checksums. For example, consider the first iteration and the matrix distribution in

figure 6.7. In the trailing matrix update, for process 0 and 2, a memory fault in left

panel will always produce one inconsistent row checksum but that is not the case for

process 1 and 3. For process 1 and 3, a persistent memory corruption in L causes the

trailing matrix update to exhibit the error pattern shown in figure 6.2 (d) where all

row checksums are incorrect but consistent. In this case a single column checksum can

only detect error; two column checksums are required to correct the errors. For process

0 and 2 we show that even a persistent memory fault in L can produce one inconsistent

incorrect checksums. Similar to equation (6.5) and figure 6.5, suppose after the left

panel is factorized it is corrupted in one element L21 → L̂21 := L21 + αeie
T
j . Then

the trailing matrix A22 and its row checksums will be updated by the corrupted L̂21

in the following way (the symbol with a hat indicates a corruption):
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Â′22 ← A22 − L̂21U12

̂CS(A′22)←
[
A21 A22

]e1
e2


= (A21 − L̂21U11)e1 + (A22 − L̂21U12)e2

CS(Â′22) = Â′22e2 = (A22 − L̂21U12)e2

CS(Â′22)− ̂CS(A′22) = (A21 − L̂21U11)e1

= αeie
T
j U11e1

(6.6)

with the last equation indicating one inconsistent row checksum. Note that the

equations confirm that only one row in the trailing matrix will be affected; the whole

row is corrupted and so is the associated row checksum, but they are corrupted in a

way that makes them inconsistent. The single row corruption can be handled by the

double column checksum effectively. The above analysis also shows that the Example

3 in [104] is incorrect.

Partial row pivoting in LU: In practice unpivoted LU can easily break down

due to numerical instability. To reduce the instability while not incur prohibitively

high overhead, partial row pivoting is commonly used. However the row swapping

in the pivoting disrupts the maintenance of the checksums. If the row checksums

are swapped together with their respective rows the row checksums still maintain.
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Column checksums need to be fixed and not swapped. In process local checksums

however, maintaining column checksums require more care. One row may be swapped

with a row from another process, thus invalidating both checksums. Therefore the

checksums must be updated when inter process swapping happens.

Putting them together The pseudo code algorithm 16 summarizes the error

detection and correction logic. For brevity it is in the point of view of global matrix.

Algorithm 16 The fault tolerant HPL algorithm, global view.

Require: Fully checksummed matrix Af and right hand side b
Ensure x = A−1b in the presence of floating point soft errors, or signal errors, n is
the size of A, B the blocking factor
for i = 0 to n step B do

A(i : n, i : n) =:

[
A11 A12

A21 A22

]
Factorize left panel

 A11

A21

CS(A·1)

→
L11\U11

L21

CS(L·1)


Factorize top panel

[
A12 CS(A12)

]
→
[
U12 CS(U12)

]
Check column checksums for L and row checksums U
if Errors not algorithmically correctable then

Rollback to the start of this iteration
end if
Update the trailing matrix Af22 ← Af22 − Lc21U r

12

Check and correct full checksum matrix Af22
end for

6.2.4 Round-off error bounds

In the last section we have shown that if we limit the faults to one per error

handling interval and assume precise arithmetic, the error detection is both sound

and precise. In practice the floating point arithmetic are not precise, soundness and
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precision cannot be attained simultaneously. As lack of soundness is not acceptable

in fault tolerance, we thus strive to maintain soundness at some expense of precision.

To do that, we derive a priori norm based error bounds for the round-off error, and

use the upper bound as the threshold to distinguish architectural faults from floating

point round-off errors. If the architectural faults alters the less significant bits in a

floating point number and the result is still within round-off error bounds, no errors

will be detected and the fault is deemed indistinguishable from round-off errors.

Specifically, when we are verifying the checksums we need to compare the calcu-

lated sums to the checksums. Because floating point arithmetic has finite precision,

those two may differ even in fault free execution. Our problem is now to bound the

difference that round-off errors such that round-off errors alone would not violate the

bound. Consider the matrix multiplication C = AB. A well known norm bound of

the round-off errors in matrix multiplication is as follows [46].

||fl(AB)− AB||∞ ≤ γn||A||∞||B||∞ (6.7)

Assuming that the encoded matrix multiplication Cf = AcBr is carried correctly,

and the variable with a hat represents its floating point representation, we have the
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following result:

∣∣∣∣∣
n∑
j=1

ĉij − ĉi,n+1

∣∣∣∣∣ =

∣∣∣∣∣
n∑
j=1

(ĉij − cij)− (ĉi,n+1 − ci,n+1)

∣∣∣∣∣
≤

∣∣∣∣∣
n∑
j=1

(ĉij − cij)

∣∣∣∣∣+ |(ĉi,n+1 − ci,n+1)|

≤ ||fl(Cf )− Cf ||∞

≤ γn||Ac||∞||Br||∞

(6.8)

where γn = nu/(1− nu) and u is the unit round-off error of the machine. For IEEE

754 64bit floating point number u = 10−16. We thus obtained a bound of round-off

errors that can be used as a threshold to distinguish architectural faults from floating

point round-off errors. There is a similar bound to verify the row checksums.

6.3 Overhead, Performance, Scalability, and fault

tolerance capability

In this section we model the fault tolerance capability, the execution time over-

head, the scalability, and optimization of the proposed fault tolerant HPL.

6.3.1 Fault tolerance capability

For the error correction capability provided that errors can be detected, a natural

question is how many errors or faults can be corrected? For each process in each error
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handling interval, any number of errors during the left and top panel factorization can

be tolerated by the rollback. Multiple errors or one fault can be tolerated during the

trailing matrix update, provided that the errors are within one row or one column.

Note that the number of faults that can be tolerated is scalable with the number of

processes and problem size, so at large scale enormous number of errors or faults can

be tolerated as long as the faults do not burst into one error handling interval.

Compared to online ABFT (FT-ScaLAPACK) [21, 99]: Online ABFT may fail to

detect memory error in the trailing matrix update where the process is not engaging

in the left panel factorization. FT-ScaLAPACK cannot correct the errors caused by

faults in the left panel during the matrix multiplication.

Compared to offline ABFT (Du, Luk) [29, 33, 67] : Our FT-HPL is resilient to

much more faults. For non permanently sticky memory fault, for example faults in

cache or registers, offline ABFT correction based on casting the fault back to low

rank perturbations to the initial matrix no longer work. In fact, any fault that do

not corrupt a variable for its entire lifespan will fail in offline ABFT fault tolerance

scheme, as the fault do not fit in the abstract fault model. Thus the tolerable faults

in offline ABFT schemes is a small subset of the more comprehensive fault models

considered in this paper.
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6.3.2 Execution time overhead

The fault tolerant LU decomposition introduces overheads in maintaining check-

sums, checking checksums periodically, and correcting errors if detected. As the anal-

ysis here only serves as a first order approximation of the performance, we use a widely

used simple machine model. The communication time is modeled as T = α+βL where

α is network latency and β is the reciprocal of network bandwidth. The computation

of matrices and vectors can be modeled by the product of compute rate γ and number

of floating point operations (FLOPs). The compute rate of BLAS3 operation such as

matrix multiplication is γ3 and the compute rate of BLAS2 operation such as matrix

vector multiplication is γ2. On modern architectures γ2 is much lower than γ3 so it

is important to make the distinction. Let N be the size of the matrix A, B be the

blocking factor, P × Q be the dimension of the process grid, then the run time of

HPL LU decomposition is as follows [80]:

Thpl =2γ3
N3

3PQ
+ βN23P +Q

2PQ
+

αN
(B + 1) logP + P

B

(6.9)

Checksum maintenance overhead: The overhead of checksum maintenance

can be considered as the effectively increased matrix size. Adding two row checksums

and two column checksums to the process local matrix, the global checksum matrix is

bounded by max(N(1+2P/N), N(1+2Q/N)). In a reasonable configuration of HPL,

140



N/P and N/Q are the local dimensions of process local matrix that are around 10,000

therefore the enlargement of the global matrix size is around 0.02%. The resulting

relative increase run time in equation 6.9 will be less than 0.1%, thus not a significant

contribution to the run time overheads.

Checksum verification overhead: The periodical verification of the checksums

is one major contribution to the run time overhead. The verification of checksums is

a BLAS2 operation. The overhead of the verifications are:

Tcheck =
4γ2
PQ

(N2 + (N −B)2 + (N − 2B)2 + · · ·+B2)

= 4γ2
N3

3BPQ

(6.10)

Compared to equation 6.9 the relative overhead is

Tcheck
Thpl

<
2γ2
Bγ3

(6.11)

Assuming a blocking factor B around 200 and BLAS2 operation is 5x slower than

BLAS3 operations, the overhead is less than 5%. Different machines will have different

ratio and different relative overhead.

6.3.3 Error correction overhead

This overhead is only present when errors are detected and correctable. The

algorithmic error correction using checksums are non-significant. For the errors that
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are not algorithmically correctable by the checksums, the overhead is the lost work

and rollback and recompute of the left panel factorization, which is empirically a

small relative to the whole factorization.

6.3.4 Memory overhead

The fault tolerance needs extra memory space to store the checksums and the left

panels. The extra space to store the checksums are less than 0.1% so not a significant

overhead. The memory overhead of storing the left panel is more significant at B
N/Q

.

Again assuming a typical HPL configuration B = 200, N/Q = 10, 000 the overhead

is at 2%.

6.3.5 Impact on scalability

If we measure scalability by the parallel efficiency
Tser

PQThpl
which indicates how

close it is to ideal parallel speedup, because the execution time overhead is bounded

if memory usage per process is fixed and regardless of P,Q, the scalability of the fault

tolerant HPL will remain the same as the original HPL which is excellent.

6.3.6 Tradeoffs between resilience and overhead

According to the overhead analysis and the detailed timing result from the exper-

iments we found that the verification of the trailing matrix is one major overhead to

the execution time. In fact when the trailing matrix verification is disabled the fault

142



free execution time overhead dropped by half. In this section we discuss the trade-

off between fault tolerance and overhead, and the insights to allow such tradeoffs to

happen.

Let us take the point of view of one particular process. Suppose there is a grid

of P × P processes and the matrix is distributed in 2d cyclic blocked manner. Since

the LU decomposition works factorizes left and top panel sequentially from left to

right and from top to bottom, the particular process engages into panel factorization

every P iterations (in figure 6.8 P = 4). As we have discussed in the error patterns in

matrix-matrix multiplication (TU), the errors propagate in a controlled way. In fact,

if we skip the trailing matrix verification procedure at the end of iteration 1 and 2,

we still can correct up to 1 fault happening during iteration 1,2, and 3 at the end of

iteration 3. In this way we trade fault tolerance for reduced error checking overhead.

The observation that allows us to make this tradeoff is that faults during iteration 1

will not propagate during iteration 2 and 3. However this is not true for PF as one

fault in PF will propagate and cause massive errors in subsequent TU making the

single fault uncorrectable. Thus the error handling procedure after each PF cannot

be skipped to reduce fault tolerance.

The overhead analysis in the last section takes a global workload approach and

assumes perfect load balance between the processes. But in parallel LU there is load

imbalance during the panel factorizations where only a column of processes engage and

other processes are waiting for the factorization result. It can be seen that PF is likely
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to be on the critical path. As PF depends on the TU immediately before, that TU is

also likely to be on the critical path. The TU verification before PF thus is likely to

be on the critical path. In fact from the experiments we found that by disabling only

the TU verification immediately before a PF (shown in figure 6.8 OPT) the overall

execution time drops almost as much as by disabling all TU verifications altogether.

This significant reduction in overhead is therefore highly desirable, however it seems

to break the promise that single fault during one error handling interval is tolerable.

To remedy this problem, we only need to observe that, one fault in the last TU

will cause the immediate subsequent PF verification to fail. The PF can be made

non-destructive and once the PF fails the checksum verification, the error handling

procedure for the previous TU is automatically invoked and the PF will restart.

Therefore, the best tradeoff between fault tolerance and overhead is to disable only

Iteration

PF+TU TU TU TU PF+TU TU TU TU PF+TU

0 1 2 3 54 76 8

PF+TU TU TU TU PF+TU TU TU TU PF+TU

PF+TU TU TU TU PF+TU TU TU TU PF+TU

ORIG

FULL

OPT

Figure 6.8: One process view in a 4x4 process grid: PF stands for (left and top)

panel factorization and TU for trailing matrix update. The red diamond represents

checksum verification point.

the TU verification immediately before a PF for every process. In this way the error
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handling interval remains short and the critical TU verification overhead is reduced

significantly.

6.4 Experimental Study

In this section we empirically evaluate: 1) the fault coverage of the proposed

FT-HPL in comparison to the state-of-the-art ABFT techniques by targeted fault

injection; 2) the resilience of the FT-HPL scheme and implementation by randomly

injecting various faults; 3) the cost of introducing such fault tolerance by measuring

large scale executions.

6.4.1 Fault injection for fault coverage

In this subsection we experimentally compare the fault coverage of the state-of-

the-art ABFT techniques that can apply to LU decomposition and HPL. We inject

both arithmetic faults and memory faults to various locations in code and data at

various times during the execution. We select several representative stages in one

iteration to inject faults. Specifically, during the first iteration of LU algorithm, we

inject faults right before the iteration and in the middle of the iteration (at iteration 2

of trailing matrix update). The arithmetic fault is simulated by modifying the output

of a floating point multiplication. The memory fault is injected to matrix element

(2,1) by modifying the data value. To precisely control where and how to inject a
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fault, we use the debugger GDB to stop the program and modify the program and

data. During each run, we only inject one fault.

The fault coverage are summarized in table 6.1. As can be seen in table 6.1, no

previous ABFT techniques provide as complete coverage to both arithmetic faults

and memory faults happening at any time.

Table 6.1: Fault coverage for different ABFT techniques. “Before” means the fault

affects data that is produced but not yet used. “Middle” means the fault affects data

that is undergoing repeated use.

Fault category Arithmetic Memory
Fault timing Before Middle
FT-HPL (this paper) 3 3 3

FT-ScaLAPACK[99]
/FTLU[21]

3 7 7

FT-DGESV[33, 29] 7 3 7

6.4.2 Fault injection experiments

We use a architectural fault injector F-SEFI [1] to implement the fault model and

reveal the resilience of the FT-HPL implementation. Faults are injected at random

time to a random instruction or memory locations that is to be used. Note that we

inject faults into active memory to avoid masked faults that are never used. We model

both floating point arithmetic faults and memory system faults. F-SEFI is based on

QEMU, an architecture emulator. It works by intercepting the instructions of the

application and alter the effect of the instructions to simulate arithmetic faults and
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Table 6.2: Fault tolerant for dense linear algebra: costs and fault tolerance capability. “Yes” means the

faults can be tolerated; “No” means otherwise. The percentage indicates the execution time overhead

against non fault tolerant LU implementation (PDGESV/PDGESV in ScaLAPACK, HPL pdgesv in

HPL).

Fault category No Error Arithmetic Faults Memory Faults
Number of faults 0 ≤ 2 many ≤ 2 many
FT-HPL 5% Yes, 5% Yes, 5-35%a,b Yes, 5% Yes, 5-35%a,b

FT-ScaLAPACK[99]/FTLU[21] 8% Yes, 8% Yes, ¿8%b No No
FT-DGESV[33, 29] 1% Partialc, 1% No Partialc, 1% No
RedMPI[42]d ≥ 20% Yes, ≥ 20% Yes, ≥ 20% Yes ≥ 20% Yes,≥ 20%
a Overhead depends on the impacted phase in HPL.
b To tolerate multiple faults they must be spaced out in time thus not overwhelming one error

handling interval.
c The fault must happen in specific time and location to fit the algebraic model in [33, 29]. See

table 6.1.
d To tolerate faults RedMPI need 200% more processors to form TMR at MPI rank level.

memory faults. The application runs unmodified in the virtual machine and F-SEFI

effectively simulate architecture correct execution (ACE) faults [78]. Memory system

faults are modeled in detail: different level of stickiness associated with a memory

address is used. In a cache based architecture, a variable in the program is mapped

to multiple physical spaces in the memory hierarchy. When the image of the variable

in different physical spaces is corrupted, the program perceives a certain stickiness of

the error. For example, a corrupted main memory word is very sticky as it will read

corrupted value until overwritten. On contrast, a corrupted cache word may only

read corrupted value temporarily until it is flushed out, and subsequent read to the

variable will read from main memory or lower level cache which has the correct value.

The configurations of the fault injection experiments are as follows. Four virtual

machines are used with one MPI rank in each virtual machine. The problem size

is 200x200 with blocking factor B = 5, which means that there are 40 intervals.
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During each run of the experiment, 5 faults are injected at random times to a random

memory locations that are active. We take care not to inject two faults into one error

handling interval which our FT-HPL cannot handle. Note that this setting injects a

considerable amount of faults into a small problem size to stress the fault tolerance

mechanism.

In total 300 repetitions of the experiment are performed. Among them, 252 cases

(84%) successfully tolerated the injected faults and passed the residual check of the

HPL application. In all passed cases, the injected faults are detected and corrected

by our algorithms. Another 21 cases (7%) run to completion but failed to pass the

residual check because in HPL application not all data structures and operations can

be protected by our algorithm. The remaining 27 (9%) cases crashed or hung. In

contrast, when subject to 5 random memory faults both FT-ScaLAPACK/FTLU and

FT-DGESV would have success rate of 0%.

6.4.3 Overheads of fault free execution and error correction

In this section we evaluate how much execution time overhead is during fault free

execution, and the cost of error correction in the presence of faults. The experiments

are conducted on two clusters: 1) a small cluster TARDIS (up to 512 cores) for

detailed overhead reduction experiments, and 2) TACC Stampede for large scale (up

to 4096 cores) scalability and overhead experiments. The TARDIS is a 16 node cluster;

each node is equipped with two sockets AMD 6272 processors (32 cores) clocked
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at 2.1GHz. Each node has 64 GB memory. The interconnect is Mellanox QDR

InfiniBand. The TACC Stampede is currently the #10 on Top500.org November

2015 list. Each node has two Intel E5 8-core (Sandy Bridge) processors with core

frequency 2.7GHz and 32 GB memory. Each core is capable to deliver 21.6GFLOP/s

at maximum. The interconnect is FDR 56Gbps InfiniBand Mellanox switches using

the 2-level Clos fat tree topology. Table 6.2 provides summarized comparison to

state-of-the-art ABFT techniques in terms of overhead and fault coverage.

Overhead reduction and correction overhead

This set of experiments are done on TARDIS to investigate the overhead reduction

effect discussed in subsection 6.3.6. In the fault free execution mode, four variants of

implementations are measured: ORIG is the original unmodified Netlib HPL-2.1[80];

FULL implements the fault tolerance described in the last section; OPT implements

an optimization technique that partially removes the trailing matrix checksum verifi-

cation from the critical path; and FAULT is essentially FULL plus injected error that

triggers all error correction procedures. In the non fault free execution, faults are

injected via source code instrumentation to trigger all error checking and correction,

thus demonstrating the maximum overhead of error correction. The process local

matrix size is fixed at around 3000x3000, lower than a typical 10000x10000 configu-

ration which will take much longer to complete. We use process grids N × 32, with
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Figure 6.9: The execution time of FAULT, FULL, OPT, and ORIG HPL with varying

number of nodes as X-axis. Each node comes with 32 computing cores.

the number of nodes N being from 2 to 10, and the matrix size N being from 24000

to 51000 The block size is fixed at B = 200.

Figure 6.9 thus shows the execution time in weak scaling experiments. It can be

seen that with fault free execution, the execution time overhead can be as low as

6% compared to the non fault tolerant original HPL implementation. This is the

cost paid to be able to tolerate faults that can occur during the execution. Also the
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error correction procedures are very cheap and cost between 25% to 35% execution

overhead at the maximum of its fault tolerance capability. Note that this is the time

it takes to handle hundreds of faults or thousands of errors caused by the faults.

It is also worth noting that the OPT configuration has almost 50% overhead

reduction over the FULL configuration which confirms the analysis that the trailing

matrix verification immediately before panel factorization is on the critical path.

Scalability experiments

In the following texts we adopt the OPT strategy and look at the fault free

overhead at large scale on TACC Stampede using up to 4096 cores (256 nodes, the

maximum allowed scale without special request). For HPL the efficiency in terms of

floating point operations per second (FLOP/s) per core increases when memory usage

per process increases. In the first set of experiments we use only a small fraction of

memory available to avoid exceedingly long experiment execution time (a single HPL

run at its maximum problem size could take hours for 4096 cores). In the second set

of experiments we fix the number of computing elements at 1024 cores and increase

the problem size to observe the trend of overhead. From these two sets of experiments

we can get an empirical idea of the overhead in introducing the resilience into HPL.

The results are shown in figure 6.10

Reproducing large scale parallel experiments is difficult; so we strive to improve

the interpretability [54] by providing more contexts and data. Since the execution
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time of HPL on a typical computing cluster is slightly indeterministic on Stampede,

we collected enough measurements until the 99% confidence interval is around 5% of

the reported mean measurements, following the recommendations from [54]. Also for

this particular experiments on TACC Stampede we strongly suspect that there was

an abnormal node with significantly slower network interface. If such node is included

in the resource allocation the job will be significantly delayed by at least 20%. We

base this conclusion on the following two reasons: 1) the measurements strongly

exhibit two clusters around two modes. Any one measurement belonging to one

cluster will appear as outlier for the other cluster using Tukey’s outlier classification

method. 2) jobs involving more nodes have a higher portion of such abnormally slow

measurements: for 1024 cores we got 1 every 20 measurements; for 2048 cores we

got 1 every 10 measurements; for 4096 cores 1 every 2 measurements. To eliminate

the interference of such slow node we remove the measurements that are abnormally

slow.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In the matrix-matrix case (Chapter 3), I extended the traditional ABFT tech-

nique for fault tolerant matrix-matrix multiplication from off-line to on-line. The

most prominent difference of the proposed approach is that it tolerates soft errors

on-line. In our on-line fault tolerance approach, soft errors are detected, located,

and corrected in the middle of the computation during the program execution. Be-

cause soft errors can be detected and located before they propagate and corrupted

computations can be stopped and corrected in the middle of the program execution

in a timely manner, computation efficiency can be improved significantly. Experi-

mental results demonstrate that the proposed technique can correct one error every
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ten seconds with negligible (i.e., less than 1%) performance penalty over the ATLAS

dgemm().

In the one-sided matrix factorization case (Chapter 4) I proposed a systematic

way to design and reason about on-line ABFT that is resilient to soft errors for all

three one-sided factorizations LU, QR, and Cholesky. By following a few principles,

it is not hard to obtain correct and efficient on-line checksum schemes for LU, QR,

and Cholesky subroutines used in ScaLAPACK and potentially many other block

algorithms that share similar structure with them. We also showed that this approach

can lead to efficient and easy to use implementations.

In Chapter 5, it is shown the current state-of-the-art algorithm based algorithm

fault tolerance for two-sided matrix factorizations are not efficient. Since no obvious

top-down checksum scheme exist such as those for one-sided factorization, bottom-up

checksum schemes are either low in fault coverage or unnecessarily expensive due to

the lack of automatic maintenance of checksums across lower level operations. In

this work we explore a systematic way to modify three two-sided factorizations used

in production codes LAPACK 3.6.0 and ScaLAPACK 2.0.2 to maintain checksums

resulting in very low overhead and high fault coverage. Based on a modified House-

holder transformation, the two-sided matrix factorizations can be turned into coherent

checksum preserving. Adaptions to blocked algorithms and distributed memory cases

are also possible following guidelines obtained from the unblocked one.
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Fault model is the deciding factor on design of ABFT algorithms (Chapter 6).

To make ABFT towards practically useful we seek to close the gap between what

occurs at the architecture level and what the algorithm expects. We explore the

challenges in designing ABFT algorithms under a general architectural fault model

that allows both arithmetic and memory system faults comprehensive both temporally

and spatially. By dividing the execution into many error handling intervals and aim

at tolerating single fault in each error handling interval, we build a process local

checksum scheme that achieves scalable fault tolerance (one fault per iteration per

process) at around 5% fault free execution time overhead and less than 35% execution

time overhead when facing maximum number of faults. Targeted fault injection shows

that the comprehensive fault model cannot be handled by existing state-of-the-art

ABFT techniques but will be effectively tolerated by FT-HPL scheme. Random

fault injection shows that our FT-HPL implementation can tolerate 84% of the cases

where 5 faults occur within less than 1 second. Such low overhead and high fault

tolerance under comprehensive fault model makes the new ABFT in dense linear

algebra practical and attractive in extreme scale systems, on unreliable commodity

hardwares, or in hostile environments.

7.2 Future Work

This line of research can be continued in several directions. The first one is that

the ideas present here is for silent data corruptions; however the online checksum
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maintainance means that it is possible to also recover from fail-stop errors (such as

process kill). The second direction is that more algorithms or variants of algorithms

can be covered using the same basic ideas explored here. There are many algorithmic

progress in this area that rearranges the algorithm in some ways to increase execution

speed; these algorithms need to be covered. The third direction is the combination

with orthogonal techniques to provide protection for non-numerical data and control,

as only numerical data structures are protected in this dissertation.
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