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Abstract

A Hebbian-inspired, competitive network is pre-
sented which learns to predict the typical semantic fea-
tures of denoting terms in simple and moderately com-
plex sentences. In addition, the network learns to pre-
dict the appearance of syntactically key words, such as
prepositions and relative pronouns. Importantly, as a
by-product of the network’s semantic training, a strong
form of syntactic systematicity emerges. Mareover, the
network can integrate novel nouns and verbs into its
training process. This is achieved by assigning predicted
semantic features as a default meaning when a novel
word is encountered. All network training is unsuper-
vised with respect to error feedback. Issues addressed
here have been the subject of debate by notable psy-
chologists, philosophers, and linguists within the last
decade.

Introduction.

Between 1990 and 1995, substantial research was di-
rected at demonstrating the capacity of simple recur-
sive networks (SRNs) to predict the syntactic category
of the next word in a sentence, given some current word
of input (cf. Elman, 1990, 1993; Christiansen & Chater,
1994). In addition, since about 1990, a number of publi-
cations have described networks which achieve some de-
gree of syntactic or semantic systematicity (cf. Chalmers,
1990; Christiansen and Chater, 1994; Hadley, 1994a,
1994b; Hadley & Hayward, 1997; Niklasson and van
Gelder, 1994, Phillips, 1994). Overwhelmingly, this re-
search on systematicity has focused on the capacity of
connectionist networks to generalize the use or inter-
pretation of terms to novel syntactic positions within
sentences. However, as explained in (Hadley, 1994b and
Hadley & Hayward, 1997), the forms of systematicity
achieved thus far by SRNs lack robustness — they display
systematicity in very limited contexts, and only for a
small fraction of the words, or symbols, involved. More-
over, we know of no connectionist network which has
achieved systematicity in a strong or robust form except
networks which employ classical (explicitly combinato-
rial) semantic representations within the output layer.
(See Hadley & Hayward, 1997, for one such example).
This paper presents a connectionist system which sat-
isfies a definition of strong systematicity first offered in
(Hadley, 1994b). Briefly stated, that definition requires
that an agent learn to generalize the use of a significant
fraction of its vocabulary to novel syntactic positions. In
this context, a word or symbol is considered to occupy
a novel position (e.g., grammatical subject) only if the
agent has not encountered that word in that syntactic
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position at any level of sentential embedding. Signifi-
cantly, the present system achieves this property without
presupposing the existence of previously acquired, clas-
sical semantic representations.

By contrast with the SRN based architectures cited
above, a major task of our network is to predict the se-
mantic category of the next word in a sentence, rather
than its syntactic category. Our working assumption
here is that, to a large degree, systematicity at the
syntactic level derives from predictability at a seman-
tic level. Now, although we recognize that certain of our
strategies could just as well be implemented in some ver-
sion of SRN, trained by the standard backpropagation
algorithm, we have sought to avoid all forms of error
feedback. Several researchers have remarked upon the
desirability of replacing backpropagation-based networks
with architectures which are (at least) closer to biolog-
ically grounded systems. For this reason, we have em-
ployed only Hebbian and self-organizing forms of connec-
tionist learning (see Hebb, 1949; Rumelhart and Zipser,
1986).

In addition, we have taken other steps in the direction
of cognitive plausibility (though we are well aware that
much remains to be done in this regard). For example,
we have employed comparatively sparse sets of training
data. During training, the network is exposed to less
than 4000 distinct sentences, while the set of potential
test sentences numbers over 300 million. Also, during
training, two-thirds of all nouns are restricted to a sin-
gle syntactic position and clausal embedding is restricted
to a depth of one. During testing, these restrictions are
dropped. Moreover, once training is underway, the net-
work is presented with novel nouns and verbs. The net-
work’s learning is not derailed by exposure to these novel
items; rather default semantic features are assigned to
these words and learning progresses unhindered.

Task and System Overview.

The connectionist network presented here is designed to
process words, taken in sequence, from a variety of sen-
tences generated according to the syntax displayed in
Figure 1.

All nouns and verbs shown in Fig. 1 have previously
been assigned semantic feature vectors. The totality of
possible semantic features for nouns and verbs are dis-
played in appendix A. Less than half of the possible “can-
didate” features are assigned to any given noun or verb,
since many pairs of candidates are semantically incon-
sistent. In addition to the basic vocabulary shown in
Fig. 1, three of four distinct training sets (corpora) con-
tain dozens of sentences in which novel nouns and verbs
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S — NP VNP

NP — N|NRC|NPP

N — women | girls | birds | bats | men | boys | chairs
| balls | dogs | tables | cats | mice

V — chase | sees | swing | love | avoid | follow | bump
| hit | consume | dislike

RC — that V NP

PP — Prep NP

Prep — from | with

Figure 1: The grammar for generating training and test
sentences.

appear. Similar to other training data, these sentences
follow the syntax given in Fig. 1. The novel words in
question have no previously assigned semantic features.

Now, although there are similarities with Elman’s well
known models (1990), the primary task of our network
(shown in Figure 2) 1s not to predict words or syntactic
categories. Rather, its main task is to predict typical
semantic features for the next word (nezt) in a sentence,
when given semantic features for the current word (cur-
rent). However, if features are not available for nezt at
the time currentis presented, an attempt is soon made to
assign reasonable semantic features to nezt. In certain
cases, where sensible semantic features cannot be dis-
covered, the network can learn to predict the probable
occurrence of certain words. For this reason, the net-
work’s output layer contains not only a semantic region,
but a lexical region.
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Figure 2: Overall
Competitive network.

Architecture of the Hebbian-

In order to challenge the generalization capacity of our
network, the various training corpora are designed to en-
sure that 2/3 of all nouns are limited to a single syntactic
position during training. Each sentence selected from a
given training corpus is presented, one word at a time,
to the input layer of the network. As a word is provided
as input, its lexical encoding is activated within the lex-
ical region of the input layer (see Fig. 2). In addition,
if the word’s semantic features are already known, they
are activated within the input layer’s semantic region.

To enable the system to learn to predict typical seman-
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tic features, any available semantic information for the
nert word is presented to the output layer’s semantic re-
gion. This requires that we assume that a learning agent
has access not only to the current input word, but to
the next word to appear. This assumption is shared by
Elman’s prediction models (1990, 1993) and by several
other systems inspired by Elman’s work. One rationale
for this approach is that the learning agent could wait to
hear the next word before attempting to learn anything
from the current word.

Training Corpora.

There are four separate training corpora; each containing
1000 sentences. Each sentence in each corpus employs
the syntax displayed in Fig. 1. Corpus 1 contains only
the vocabulary presented in the original grammar. The
remaining three corpora each include some sentences in-
volving novel nouns and verbs whose semantic features
are initially unknown. Corpus 2 contains just one novel
noun and a novel verb in addition to all previously em-
ployed vocabulary. An additional two nouns and two
verbs are added when corpus 3 is generated; similarly
for corpus 4. Thus, a total of ten novel nouns and verbs
are introduced.

In all four corpora, about 50% of sentences are of
the simplest form (noun verb noun). The remaining
sentences all contain either one relative clause or one
prepositional phrase. For purposes of testing syntactic
systematicity, four of the initial nouns were permitted
to appear only as grammatical subject, and another four
could appear only in object position. The remaining four
initial nouns were not restricted. However, of the initial
set, only these ‘free’ nouns were permitted to appear
immediately before ‘that’, which introduces the relative
clauses.

In addition to the above, some semantic constraints
were employed. Only one of the initial ‘inanimate nouns’
is ever employed as grammatical subject during train-
ing, and this occurs only in conjunction with the verbs
‘bump’ and ‘hit’. Every training sentence is generated in
a fashion which maximizes randomness. That is, subject
to all constraints mentioned above, whenever a decision
is made about which word to pick, or whether to em-
ploy a simple or complex sentence, a random selection is
made.

Algorithms and Architectural Details.

As indicated in Fig. 2, there are lexical and semantic
regions within both the input and output layers. For
convenience, we refer to these as ‘lexical-in’, ‘semantic-
in’, ‘lexical-out’ and ‘semantic-out’. Both lexical-in and
lexical-out employ local encodings, where a single unit
(one of 36) is assigned to represent a single word. The
end of sentence marker (a period) is also assigned a sin-
gle unit within the lexical layers. Likewise, the repre-
sentation of a single semantic feature is local, but the
representation of an entire feature vector, corresponding
to a word’s meaning, is distributed across several units
within both semantic-in and semantic-out. Since there
are a total of 35 semantic features, both semantic-in and
semantic-out contain 35 units.

The only hidden layer present (middle of Fig. 2)
should be regarded as a single competitive cluster. It
contains 20 units which compete with one another to
represent patterns of semantic input values. All input



units and competitive units produce only binary (1,0)
output. By contrast, units within the top output layer
can produce real values as output.

As indicated in Fig. 2, three sets of links (a, 3, and
) connect various regions/layers. Each of the three sets
comprises a fully connected link configuration (all pair-
wise combinations of nodes selected from the adjoining
layers are linked). Weights on the a, 8, and 7y sets are
initialized as follows: a-links, which connect semantic-in
with the competitive layer, are initialized with random
values from the interval [0, 1] and are then normalized
such that for each unit j in the competitive layer, the
sum of weights of all links feeding into the unit equals 1.
All other weights are initialized to 0.

Training Algorithms.
The a links, which connect semantic-in with the compet-
itive layer, are trained by means of a familiar Hebbian-
inspired, competitive learning algorithm, developed by
von der Malsburg (1973). (See Rumelhart & Zipser, p.
164, for a concise explanation). The network’s learning
rate is set to .01. However, we do employ one variation
on the typical use of this algorithm. In most applica-
tions (though not all) a single winner is selected on a
given iteration from a competitive cluster. By contrast,
we select, on each training iteration, the five most active
nodes as winners and update weights on links feeding
into each of these nodes. Once a given winner is se-
lected, it fires and sends an output of +1 towards the
output layer. Competitive “losers” transmit no output.
By contrast with « links, # and 7 links do not en-
ter a hidden layer, and are trained according to a simple
Hebbian-based formula. On each iteration, an increment
is applied to 8 and v links, provided some positive ac-
tivation has just passed through that link to an output
node that was already active. Thus, inecrements are ap-
plied only in cases where both the sending and receiving
nodes begin with positive activation levels. Each incre-
ment is computed thus:

increment = 1.25-107°

The Training Cycle.

As previously mentioned, there are four distinct corpora.
Sentences from a given corpus are randomly selected for
training. On average, each sentence from each corpus
is presented to the network 12 times. For each selected
sentence, the following cycle is applied:

Let current be the first word in the sentence.
REPEAT until current = *.’

Let nezt = the item following current.
Activate current’s lexical encoding within lexical-in.
If current has an available semantic feature
vector, activate that within semantic-in;
Else, semantic-in remains inactive and
transmits no activation
on this iteration.
If nezt has an available semantic encoding,
activate that within semantic-out;
Else, if nezt has previously been
flagged as “meaning unknown”
(it still lacks a semantic encoding),
Then activate the lexical encoding
of nert within lexical-out.
Else, place nezt on Hold and place
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zero activation in semantic-out.
Spread activation upwards from all
active input units.
Apply competitive and Hebbian training
to a and v links
(respectively) wherever possible.
If activation did spread from semantic-in
to the competitive layer then some
winners emerged. Let those winners fire
along 3 links. Apply Hebbian training,
wherever appropriate, to § links.
If nezt was put on Hold, then examine
current activations reaching
units in semantic-out.
If the activation level of any such unit
is at least 20% of the maximum activation
thus far received by that unit,
then a reasonable semantic feature was
predicted for the word in nert.
So, assign each such semantic feature as
a default feature for that word.
Default semantic features for a given
word are recorded for later use.
Else, no reasonable semantic prediction
was made for the word in nezt.
So, flag that word as “meaning unknown”.
Let current be assigned the contents of nezi.
END OF CYCLE.

As a careful reading of the above outline reveals, the
process governing precisely how default semantic fea-
tures are assigned to words is implemented, in some as-
pects, by a procedure external to the network itself. (The
same can be said of many other connectionist systems;
consider, for example, the “probing” process used in St.
John’s and McClelland’s (1990) approach to language
learning.) However, the default semantic features which
are actually assigned to novel words are those which the
network actually predicts. Moreover, we see no reason
why the “external processes” could not arise through the
activity of external connectionist modules.

On a separate theme, it is noteworthy that novel words
can be assigned default semantic content if training has
progressed sufficiently. However, in our training corpora,
the words ‘with’, ‘from’ and ‘that’ are encountered too
early for reasonable semantic content to be assigned. In
such cases, the algorithm treats the words merely as lex-
ical items. This decision is not reversed unless the words
are later assigned semantic features by external means.
Such external means might correspond to ostensive def-
inition or verbal explanations.

Although such “early occurring” words are never as-
signed default semantic content by the network, they still
play a predictive role. For example, as our test results re-
veal, ‘that’ consistently predicts the occurrence of verbs,
and prepositions overwhelmingly predict the occurrence
of nouns. Moreover, because the lexical encodings of
such words are frequently activated within lexical-out,
the network learns to predict their occurrence in a reli-
able fashion. So, although the network’s primary task
is to predict semantic content, it also learns to predict
the occurrence of particular words whose function seems
more syntactic than semantic.

The Test Corpus.

A single 3000 sentence test corpus was generated using
the grammar previously discussed. In addition to the ba-



sic vocabulary (Fig. 1), all novel nouns and verbs were
permitted to appear within sentences. Apart from se-
mantic sensibility constraints, previous restrictions were
relaxed. Every noun could freely serve as subject or ob-
ject, and as head of a relative clause. Within the test
corpus, ten percent of all sentences involved deep c¢nibed-
ding of relative clauses, to 2 maximum depth of three lev-
els. An additional fifteen percent of test sentences con-
tained either a relative clause or a prepositional phrase.
As with the training corpora, random selections were
made wherever possible.

Test Phase and Analysis of Results.

The testing procedure involved feeding each of the 3000
test sentences, word by word, through the network. As
each word was processed, its lexical encoding was ac-
tivated within lexical-in and, if available, its semantic
features were activated within semantic-in. Once acti-
vation had propagated to the output regions, activation
vectors appearing in lexical-out and semantic-out were
accumulated for later averaging. Various cosine compar-
i1sons were made both between particular average vec-
tors and also between average vectors and the semantic
vectors of particular words. These comparisons are dis-
cussed below and are displayed in Figures 3, 4, 5, 6, and
7.

As anticipated, our analyses revealed that the network
does learn to predict typical semantic features of words
that immediately follow a given word of input. In addi-
tion, activations for the words ‘with’, ‘from’, and ‘that’
are accurately predicted within lexical-out. Semantic
features for these words are not predicted because the
network never assigns features to these words.

Significantly, abundant evidence for syntactic system-
aticity did emerge in terms of the network’s capacity to
process nouns (construed grammatically) in novel posi-
tions both within simple sentences and at novel levels of
embedding. For example, during the test phase, we com-
pared the average of semantic vectors predicted by the
“restricted nouns” (those whose position was restricted
during training) to the average of semantic vectors that
actually belonged to words immediately following those
given nouns. The cosine of the angle between the two
average vectors was above .99, indicating that the vec-
tors were very close to each other. The same kind of
comparison was performed for those nouns whose posi-
tions were unrestricted during training; the result was
virtually identical. In this case, the cosine was above
.993. Precisely similar analyses were performed for out-
put vectors in lexical-out. The results here were even
better. The cosine for restricted nouns was nearly .9986
and for unrestricted nouns, the result was above .999.
Clearly, the predictive power of both restricted and un-
restricted nouns is very good and nearly equal. Included
in all these analyses are those “novel” nouns whose se-
mantic vectors were assigned by the network itself during
training.

Our remaining analyses were intended to confirm that
words belonging to each syntactic category (noun, verb,
preposition, and relative pronoun) made strong predic-
tions for semantic features, or lexical representations,
belonging to words which could legally follow the word
making the prediction. For example, Figure 3 indicates
which words possess semantic features that are strongly
predicted when the input word belongs to the category
‘noun’. In detail, the height of each bar in the graph
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Figure 3: Semantic predictions when the input is a noun.

displays, in terms of cosines, how closely the seman-
tic feature vector of each vocabulary word matches the
average vector produced within semantic-out when the
input word is a noun. As can be seen, only the class
of verbs possesses semantic features close to those pre-
dicted by the class of nouns. Interestingly, the five verbs
at the right side of the graph, whose vectors are clos-
est to the average predicted vector, are ‘novel’ verbs,
which were assigned default features during the training
phase. The strength of these predictions is explained by
the fact that default features are the very features that
are predicted by an input word on a given occasion. In
the present case, all the assigned default features were
predicted when the input was a noun. Note also that
certain very weak predictions for specific nouns can be
discerned. We believe these weak predictions are due to
randomness that arises in the early stages of the learning
process.

Although verbs are the only words whose semantic fea-
tures are strongly predicted by nouns, other words can,
of course, grammatically follow a nouns. Within our
restricted language, either of two prepositions Ywit.h’
and ‘from’) or one relative pronoun (‘that’) can legally
fill this position. However, these words were assumed
nol to have known semantic features at the onset of
training, and they never acquired features during the
course of training (due to the fact that they are each
first encountered before any semantic predictions of suf-
ficient strength are made by the network). The upshot is
that semantic features for these words are not predicted
within semantic-out. Nevertheless, as revealed in Fig-
ure 4, the network does learn to predict the appearance
of each of these three words following the occurrence of
a noun. Figure 4 displays activation levels predicted for
units within lexical-out when the input item is a noun.
(Cosine measures would have been inappropriate in this
analysis because each word’s lexical encoding contains
only a single “on” bit.) The displayed activation lev-
els reflect the raw frequency of occurrence of particular
words. The very strong prediction for the period arises
from the fact that, within our corpora, nouns are fol-
lowed by a period much more often than by any of the
three words in question.

Figure 5 illustrates the strength of semantic predic-
tions for semantically known words when the input be-
longs to the category, ‘verb’. As with Fig. 3, the height
of each bar reflects the cosine between each word’s known
feature vector and the average semantic vector predicted
when the input word is a verb. Clearly, all and only the
semantic features of nouns are predicted with any signif-
icant strength.

Figures 6 and 7 are precisely analogous to the preced-
ing graph. In Figure 6 we see that only semantic features



2

oy ———— — —

o4
B2

L |

EEaE |
tmm

Figure 4: Lexical predictions when the input is a noun.

Figure 5: Semantic predictions when the input is a verb.

Figure 6: Semantic predictions when the input is ‘that’.
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Figure 7: Semantic predictions when the input is a
preposition.

for verbs are strongly predicted when the input is a rela-
tive pronoun (‘that’). This is just what we would hope,
given the grammar in Fig. 1. Likewise, Figure 7 reveals
that only noun features are strongly activated when the
input word is either ‘with’ or ‘from’.

Summary and Future Directions.

As the preceding analysis implies, the stated goals for
our working model have been attained. Clearly, the net-
work does learn to make accurate semantic predictions,
when provided with words taken from any of the syn-
tactic categories listed in the target grammar. In addi-
tion, the level of accuracy was virtually identical both
for nouns whose position was restricted during training,
and for unrestricted nouns. Thus, strong systematicity
in a syntactic dimension was achieved. This is despite
the fact that two-thirds of all nouns were presented in a
single syntactic role during training. Moreover, the net-
work successfully integrated novel nouns and verbs into
its training process. Indeed, 10 of 32 nouns/verbs used
in the final test corpus were not present in the first train-
ing corpus. Significant also is the fact that all network
training was unsupervised with respect to error feedback.

Finally, it is clear that the presence of deeply embed-
ded relative clauses within the test corpus did not de-
grade the network’s predictive accuracy. This was to be
expected, of course, since the network’s predictions are
a function only of the current input state — no mem-
ory or context layers are contained in the network. The
absence of context layers does present a limitation, how-
ever. Unlike Elman’s SRN, the present incarnation of
our network cannot detect long range dependencies be-
tween predicted categories. Nevertheless, by the time
this paper appears, we will have implemented an ex-
tended version of the current model, which we expect
to overcome this limitation. Indeed, prior, closely re-
lated research (by Cardei and Hadley, 1996) strongly
suggests that context-sensitive behavior of the required
kind can be achieved through the inclusion of (a) addi-
tional “memory layers”, which retain prior contents of
the competitive layer, and (b) the addition of a higher-
level self-organizing layer which receives input from the
first competitive layer and all memory layers. We wish to
stress, moreover, that our present results have been at-
tained via training algorithms which are widely believed
to be closer to biological reality than the commonly used
backpropagation method.

Appendix A.

Features assigned to words in our implementation are
admittedly incomplete and approximate. However, they
serve to convey the general approach we have adopted.

Features assigned to nouns are taken to be subsets of
the following:

animale, inanimate, two-legs, four-legs, talks, barks,
meows, squeaks, has-weight, has-size, has-shape,
has-location, furry, large, small, heavy, light,
laughs, bites, long-snout, flal-face, small-nose,
rigid, flezible, tubular, round.

Note that all nouns would have certain features in com-
mon, e.g., has-weight, has-size, has-shape, has-location.
Features assigned to verbs are taken to be subsets of the
following:



rapid, slow, emotive, feeling-nice, physical-motion,
involves-contact, involves-animale, feeling-bad,
involves-perceiving.
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