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Larvae of intertidal species develop at sea and must return to adult habitats to

replenish populations. Similarly, nutrients, detritus and plankton provide

important subsidies spurring growth and reproduction of macroalgae and

filter-feeding invertebrates that form the foundation of intertidal communities.

Together, these factors determine the density and intensity of interactions

among community members. We hypothesized that spatial variation in

surfzone hydrodynamics affects the delivery of plankton subsidies. We com-

pared entire zooplankton communities inside and outside the surf zone daily

while monitoring physical conditions for one month each at two shores with

different surfzone characteristics. Opposite cross-shore distributions of larvae

and other zooplankters occurred at the two sites: zooplankton was much

more abundant inside the mildly sloping dissipative surf zone (DSZ) with

rip currents and was more abundant outside the steep reflective surf zone

(RSZ). Biophysical numerical simulations demonstrated that zooplankters

were concentrated in rip channels of the DSZ and were mostly unable to

enter the RSZ, indicating the hydrodynamic processes behind the observed

spatial variation of zooplankters in the surf zone. Differences in the concen-

tration of larvae and other zooplankters between the inner shelf and surf

zone may be an underappreciated, key determinant of spatial variation in

inshore communities.

1. Introduction
Alongshore variation in ocean conditions affects the delivery of nutrients, plank-

tonic food and larvae to shore with profound consequences for the dynamics and

structure of rocky intertidal communities where many concepts in marine ecology

have been developed [1–4]. These subsidies ultimately must be transported into

surf zones to reach intertidal communities. Spatial variation in surfzone hydro-

dynamics has long been recognized to affect transport of plankton and

sediments to beaches [5,6], but has received little attention for rocky shores.

Recently, alongshore variation in surfzone hydrodynamics was proposed to

affect the recruitment of larvae to rocky intertidal populations in time and

space, thereby affecting the intensity of postsettlement interactions among

members of intertidal communities [7,8]. If so, spatial variation in surfzone hydro-

dynamics also may affect the concentration of entire plankton communities

that provide food subsidies for suspension-feeding invertebrates, including

foundation species that form habitat for many other species [3,4].
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Figure 1. (a) The locations of study sites at Sand City beach and Carmel River State Beach (CRSB) from Google maps. Photos of the (b) more DSZ at Sand City and
(c) the more RSZ at Carmel River State Beach.
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We previously demonstrated that the densities of barnacle

and limpet recruits were greater onshore of dissipative than

reflective surf zones [8]. Wave energy dissipates gradually as

waves break on gently shoaling shores resulting in progressive

waves and wide surf zones [5], whereas it is reflected back on

steep shores resulting in standing waves and narrow energetic

surf zones [6] that may limit the delivery of larvae into the surf

zone. Densities of new recruits on rocks were orders of magni-

tude higher at five reflective than five dissipative surf zones

along the west coast of the USA, potentially affecting the

intensity of postsettlement interactions among members of

intertidal communities [8]. Investigations of surfzone hydro-

dynamics have focused on sandy beaches, because they are

far more tractable than at rocky shores. However, the observed

hydrodynamics should generally apply to rocky shores with

similar slopes, which are widespread along this coast, includ-

ing long stretches of rocky shore, cobble fields and rocks

within beaches.

The goal of the present investigation was to conduct inten-

sive interdisciplinary studies to determine whether spatial

variation in surfzone hydrodynamics affects the entry of

zooplankton assemblages into the surf zones with differing

hydrodynamics. We hypothesized that zooplankters would

be more abundant outside than inside reflective surf zones rela-

tive to dissipative and intermediate surf zones, thereby

regulating larval recruitment and food subsidies to inshore

communities. Further, holoplankton (permanent members of

the plankton) and meroplankton (larvae of benthic adults)

may respond differently to surfzone hydrodynamics. Holo-

plankters may avoid entering the surfzone where they would

be exposed to benthic predators in shallow water and stranding

on the shore, whereas larvae recruiting to intertidal and shal-

low water communities need to enter the surf zone to reach

benthic settlement sites.
We tested these hypotheses by comparing entire zooplank-

ton assemblages inside and outside of a gently sloping, wide,

more-dissipative surf zone (DSZ) and a steep, narrow, more

reflective surf zone (RSZ) daily for one month each near

Monterey, CA, USA (figure 1). Because it is exceedingly chal-

lenging to track the transport pathways of zooplankton

entering the surf zone directly, we conducted numerical simu-

lations for both surf zones using the measured bathymetry and

monthly averaged wave and wind forcing to calculate the fluid

flow and wave velocities. Transport pathways were revealed

by seeding the models with particles offshore and sub-

sequently computing the Lagrangian particle trajectories [9].

The particles simulated larvae that were competent to settle,

swimming downward [10,11] and sinking in response to

turbulence from breaking waves [12,13].
2. Material and methods
The DSZ at Sand City (3683605700 N, 12185101500) is mildly sloping

with alternating rip currents and shoals along a wide surf zone.

Large waves break on an offshore bar that is located approximately

100 m offshore, resulting in an increased exchange of water. By

contrast, the RSZ at Carmel River State Park (3683201800 N,

12185504300) is narrow and steep without rip currents or offshore

bars. The surf zone is narrow (approx. 10 m) and water exchange

between the surf zone and offshore is reduced.

Zooplankton in the DSZ was collected from 15 June through

15 July 2010, and it was collected at the RSZ from 19 June to

15 July 2011. Three replicate samples were collected outside the

surf zone from a small boat by vertically hauling a plankton net

(200 mm mesh) that was equipped with a flowmeter from the

bottom to the surface of the water column three times, filtering

about 2 m3 of water per sample. These offshore samples were

collected at the 5–10 m isobath during light winds in the morning.

http://rspb.royalsocietypublishing.org/
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Figure 2. Concentrations of zooplankters (m23+ s.e.) inside and outside the surf zone at the more DSZ, at Sand City, CA, USA. Asterisks indicate significant
differences of t-tests: *p , 0.05. Significance levels were adjusted with a Bonferroni correction.
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Samples inside the surf zone at RSZ were collected using a

pump system during high tides while the intake was submerged.

The intake of the hose (6 cm diameter) was attached to pipes that

were embedded in the sand, and a gas powered pump sampled

about 240 l of water per min filtering 1.2 m3 of water per sample

(three replicate samples) through a 200 mm mesh plankton net.

Large waves at Sand City precluded installing a pump system

during the first half of the study, and instead, a plankton net was

deployed in rip currents during low tides using the flow of the

rip current to provide the volumetric sample. A tethered swimmer

released the net, which was held taught by a rope in the rip current.

Plankton nets were 200mm mesh and 0.25 m2 mouth diameter.

Pervasive differences in zooplankton were not owing to different

sampling techniques inside the surf zone at the two study sites,

because the same patterns were obtained using a pump during

the second half of the study at the DSZ (data not shown).

Meroplankters were identified to species and developmental

stage when possible, and holoplankters were identified to broad

taxonomic levels. Detritus also was counted. To test the hypoth-

esis that spatial variation in surfzone hydrodynamics affects the

entry of zooplankton assemblages into the surf zones with differ-

ent hydrodynamics, concentrations of each taxon of zooplankter

collected inside and outside the surf zone at each study site were

analysed by t-tests following a log-transformation to meet

assumptions of the test.

Surfzone bathymetry was surveyed by walking with a GPS

and personal watercraft equipped with a GPS-echosounder.

In situ velocities and heights, periods and directions of waves

were obtained from an array of acoustic Doppler current pro-

filers, which were deployed inside and outside of the RSZ

(3–7 m depth) and DSZ (13–20 m depth) sites.

Measured physical data were incorporated into a biophysical

model validation that was based on work by Fujimura [9]. The
numerical simulation software package Delft3D provided three-

dimensional hydrodynamic flow simulations of the near shore.

Modelled physical parameters were incorporated into an

individual-based model, including swimming by competent

larvae. Virtual larvae were released hourly for 48 h and were

initially distributed 410 m offshore at the DSZ site (602 larvae

released) and 350 m offshore of the RSZ site (637 larvae released).

Simulated larvae swam downward at 21023 m s21 until they

encountered high turbulence (energy dissipation rate more than

1025 m2 s23) in the surf zone, where their downward swimming

increased to 21022 m s21, based on the responses of larvae to tur-

bulence in the laboratory [12,13]. We did not include rollers from

breaking waves, which could increase onshore larval transport

and wave reflection, which could limit onshore transport.
3. Results
All members of the zooplankton assemblage were more abun-

dant inside the more DSZ (figure 2), whereas they were more

abundant outside the more RSZ (figure 3). At the DSZ, 15 of

18 zooplankton taxa counted were significantly more abun-

dant inside the surf zone and the remaining three taxa

tended to be more abundant there. Taxa included holoplank-

ters, meroplankters and demersal zooplankters (adults of

small benthic species that temporarily swim into the water

column; figure 2). Furthermore, half of the 18 types of zoo-

plankters were one to two orders of magnitude more

concentrated inside than outside the surf zone at the DSZ

(figure 2). A similar zooplankton assemblage occurred at the

RSZ, but in stark contrast to the DSZ, all holoplankton and

http://rspb.royalsocietypublishing.org/
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meroplankton taxa were more abundant outside the surf

zone (figure 3). However, only early stage larvae of barnacles

were more abundant outside the surf zone, whereas the post-

larval stage (cyprid) was more abundant inside the surf zone

on about half the days, reflecting an ontogenetic shift in the

delivery of barnacles to the surf zone. Furthermore, two of the

four taxa of demersal zooplankters (mysid, amphipod) were

more abundant outside the surf zone, and the other two demer-

sal taxa (harpacticoid, parasitic isopod) were more abundant

inside the surf zone. Hence, the few taxa that were more abun-

dant in the surf zone (cyprids, harpacticoid, parasitic isopod)

frequented bottom waters together with passively sinking det-

ritus (figure 3), indicating that they might enter the surf zone

near the bottom while the rest of the assemblage occurring

higher in the water column might not.

The numerical simulations revealed that competent larvae

at the DSZ entered the surf zone over shoals and were concen-

trated in rip channels in a system of alternating shoals and rip

channels (figure 4). These onshore flows compensated for

water that was transported seaward from the surf zone by

the rip currents creating a strong recirculation. Once inside

the surf zone, simulated larvae and other bottom dwellers

exited the surf zone in rip currents and were transported

shoreward again within these recirculation cells, thereby

concentrating larvae in the surf zone.

Far fewer simulated competent larvae entered the surf

zone at the RSZ in the absence of recirculation cells generated

by rip currents owing to strong return flow from waves

breaking on the beach called undertow (figure 4). Instead,

simulated zooplankters mostly were transported alongshore

outside the surf zone in prevailing equatorward flow,
where they were concentrated in eddies formed by the

complex beach morphology.
4. Discussion
We found a strikingly pervasive pattern in the densities of

zooplankton assemblages inside and outside the two surf

zones, with zooplankters being much more concentrated

inside the DSZ than the RSZ. These community-wide

patterns were consistent with hydrodynamically driven numeri-

cal model simulations of larval concentrations, suggesting that

surfzone hydrodynamics are the mechanism underlying the

observed patterns.

Circulation in the surf zone is driven by breaking waves

and bathymetry. At the DSZ, simulated zooplankters were

concentrated in the surf zone by recirculation in an alongshore

system of alternating shoals and rip currents [14–16]. Simu-

lated zooplankters were transported into the surf zone over

shoals, and they were concentrated in deeper rip channels

before some returned seaward in offshore flow episodically

with the arrival of wave groups. Prior to our study, diatoms

that were specifically adapted to remaining in surf zones

throughout their life cycles were known to be concentrated in

surf zones [17], but it is now apparent that all zooplankters

as well as passive particles may accumulate by recirculation

in surf zones of rip-channelled shores [18,19].

Water exchange at the RSZ was about half that of the mild

sloping DSZ owing to the absence of rip currents, which

together with strong undertow, limited entry of zooplankton

into the surf zone [20]. The RSZ resembled a large swash

http://rspb.royalsocietypublishing.org/
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zone with water oscillating back and forth with each wave, and

flow was offshore above the wave boundary layer with the

bottom, resulting in little onshore transport of zooplankton

into the surf zone. Zooplankters outside the surf zone were

transported alongshore by the prevailing current, while

onshore transport varied with the complex configuration of

the shoreline.

When winds are light at both types of shores, currents stream

landward near the bottom owing to wave stress, with benthic

streaming increasing closer to shore as shoaling waves peak

while currents are seaward throughout the rest of the water

column [20–24]. Benthic streaming may increase entry of zoo-

plankton into the surf zone at the RSZ, where only demersal

taxa, including harpacticoid copepods, juvenile parasitic iso-

pods seeking host shrimp and cyprids were more abundant

inside than outside the surf zone. Streaming is suppressed by

breaking waves at the seaward edge of the surf zone, but zoo-

plankton, detritus and sediments near the bottom enter the

surf zone by entrainment into breaking waves [25–27].

Although some species of cyprids have been reported to be

more abundant near the sea surface [28–30], we previously

demonstrated that cyprids of all species recruited almost entirely

to the bottom of moorings just outside the surf zone over 5 years

on this coast [31]. Hence, cyprids may descend near the bottom

as they enter the surf zone regardless of their depth preferences,

before they reach the surf zone in response to increased

turbulence from shoaling waves, as do other zooplankters in
response to turbulence [12,13]. Benthic streaming also may deli-

ver heavy zooplankters that passively sink to the bottom

following mixing by large waves [27], whereas lighter zooplank-

ton that do not swim downward would take longer to reach the

bottom following mixing by small waves. The greater abun-

dance of passively sinking detritus inside than outside the surf

zone further indicates that streaming may transport zooplank-

ton occupying the benthic boundary layer onshore [6,24]. Two

other demersal taxa (mysids, amphipods) were not more con-

centrated in the surf zone, probably because they are stronger

swimmers and spend more time above the benthic boundary

layer than the other demersal taxa, especially at night [32].

Although zooplankters accumulated in the DSZ, they

would not be expected to accumulate in the DSZ in the

absence of rip currents owing to undertow limiting the

onshore transport of zooplankton into the surf zone [33].

Thus, the abundance of zooplankton in the surf zone is

expected to differ in the three types of surf zones. The abun-

dance of zooplankton may be greatest in dissipative surf

zones with rip currents, followed by dissipative surf zones

without rip currents and least in reflective surf zones.

Although numerical simulations were based on light winds,

our companion study demonstrated that simulated larvae also

enter surf zones during windy conditions [34]. Simulated

larvae near the surface were transported towards the surf zone

by surface flow generated by wind stress and wave transport

(Stokes drift). In the model, simulated larvae moved downward

http://rspb.royalsocietypublishing.org/
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in response to turbulence from breaking waves upon reaching

the DSZ and were transported into the surf zone.

Our study demonstrates that the extent of subsidies of

larvae and zooplankton to near-shore communities may be

predictable depending on the bathymetry of the surf zone.

The supply of larvae establishes the densities of communities,

while the supply of zooplankton determines the food supply

for growth and reproduction of filter-feeding foundation

species of rocky shore communities [3,35,36]. In turn, these

subsidies determine the intensity of top–down processes in

communities [4,37]. Hence, surfzone hydrodynamics as well

as near-shore productivity may determine the initial abun-

dance of communities that are later modified by top–down

processes, physiological stress and disturbance [1]. Our inter-

disciplinary comparative approach has demonstrated that

spatial variation in surfzone hydrodynamics regulates the

delivery of larvae and other zooplankters to shore, and our
companion study found similar patterns for phytoplankton

[19], which has implications for the ecology, conservation

and management of marine communities.
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