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We report results of an analysis of embolism formation and subsequent refilling observed
in stems of Acer rubrum L. using magnetic resonance imaging (MRI). MRI is one of the
very few techniques that can provide direct non-destructive observations of the water
content within opaque biological materials at a micrometer resolution. Thus, it has been
used to determine temporal dynamics and water distributions within xylem tissue. In this
study, we found good agreement between MRI measures of pixel brightness to assess
xylem liquid water content and the percent loss in hydraulic conductivity (PLC) in response
to water stress (P50 values of 2.51 and 2.70 for MRI and PLC, respectively). These data
provide strong support that pixel brightness is well correlated to PLC and can be used as a
proxy of PLC even when single vessels cannot be resolved on the image. Pressure induced
embolism in moderately stressed plants resulted in initial drop of pixel brightness.This drop
was followed by brightness gain over 100 min following pressure application suggesting
that plants can restore water content in stem after induced embolism. This recovery was
limited only to current-year wood ring; older wood did not show signs of recovery within the
length of experiment (16 h). In vivo MRI observations of the xylem of moderately stressed
(∼−0.5 MPa) A. rubrum stems revealed evidence of a spontaneous embolism formation
followed by rapid refilling (∼30 min). Spontaneous (not induced) embolism formation was
observed only once, despite over 60 h of continuous MRI observations made on several
plants. Thus this observation provide evidence for the presence of naturally occurring
embolism-refilling cycle in A. rubrum, but it is impossible to infer any conclusions in relation
to its frequency in nature.
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INTRODUCTION
There is widespread agreement that negative hydrostatic pressures
make water transport in the xylem intrinsically vulnerable to cavi-
tation (Pickard, 1981; Tyree and Zimmermann, 2002). In order to
maintain hydraulic capacity, plants must either minimize cavita-
tion or restore conductivity in embolized conduits. The idea that
embolized vessels might be returned to their functional state is not
new, but it has generally been thought to be limited to situations
in which the entire vascular system could be pressurized due to
active solute transport by the roots (Fisher et al., 1997). However,
more recent studies indicated that embolism removal may be pos-
sible even when the majority of the water in the xylem remains
under low, or moderate tensions (Salleo et al., 1996; Canny, 1997;
McCully et al., 1998; Zwieniecki and Holbrook, 1998; McCully,
1999). This triggered a substantial effort to provide a conceptual
framework and descriptions of important prerequisites that could
explain how xylem refilling could occur in actively transpiring
plants (Holbrook et al., 1999; Tyree et al., 1999; Salleo et al., 2009;
Zwieniecki and Holbrook, 2009; Nardini et al., 2011; Secchi and
Zwieniecki, 2011).

Our current understanding of the spatial and temporal pat-
terns of embolism formation and refilling relies heavily on

measurements from destructive sampling techniques, such as mea-
suring changes in stem hydraulic conductivity. However, there are
several less invasive methods such as the use of a cryo-scanning
electron microscope (cryo-SEM) that allows one to view the liq-
uid (ice) content within the xylem of stems that were rapidly
frozen in liquid nitrogen (Canny, 1997, 2001; McCully et al., 1998,
2000; Pate and Canny, 1999; Melcher et al., 2001). This cryo-
SEM technique has helped to resolve some questions regarding
the spatial distributions of embolism formation (Canny, 1997,
2001; McCully et al., 1998, 2000; Pate and Canny, 1999; Melcher
et al., 2001). For example, they show that vessels tend to embolize
in clusters, and that many embolized vessels had droplets of
frozen water on their vessel walls. However, results from cryo-
SEM studies were called into question because potential artifacts
may arise during the freezing procedure (Cochard et al., 2000).
A more recent study used high-resolution computed tomogra-
phy to view in vivo water content in the stems on Vitis vinifera
L. plants (Brodersen et al., 2010). Collected images showed not
only the presence of water droplets on the walls of embolized
vessels but also the dynamic changes in droplet size during
refilling. These data provide strong support for the presence of
refilling.
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Studies that have investigated the temporal dynamics of the
refilling process using artificially induced embolism show that
refilling was more or less completed within an hour after embolism
induction (Salleo et al., 1996; Zwieniecki et al., 2004; Secchi and
Zwieniecki, 2011). Similar findings come from observations of
natural embolism in petioles of red maple (Acer rubrum L.) and
tulip trees (Liriodendron tulipifera L.) using a double staining
method (Zwieniecki et al., 2000). However, reversal of embolism
in vines (Vitis spp.) was observed to only occur when tran-
spiration had been stopped (Zwieniecki et al., 2000; Holbrook
et al., 2001). In addition, the temporal pattern of recovery from
embolism seems to be related to the level of plant water stress.
For example, Laurus nobilis L. and A. negundo L. only refilled
embolisms over prolonged recovery times of 24 h and only
when water stress levels were significantly reduced (Hacke and
Sperry, 2003). Secchi and Zwieniecki (2011) showed that the
rate of embolism recovery in poplar trees (Populus trichocarpa
L.) was dependent on the level of water stress. Their study
showed faster recovery (less than 2 h) in moderately stressed
trees compared to much longer recovery times (more than 20 h)
in trees exposed to severe stress. The difference in recovery
rates was observed despite the fact that stem water potentials
increased in both cases within 1 h (Secchi and Zwieniecki,
2011).

Most of the evidence that demonstrates rapid refilling in plants
relies on destructive sampling methods that could be prone to
methodological problems. The few in vivo observations using
magnetic resonance imaging (MRI) and x-ray tomography show
only very slow recovery in species with large vessels: Vitis spp.
(Holbrook et al., 2001; Brodersen et al., 2010) and Cucumis sativus
(Scheenen et al., 2007). Thus, there is still a lack of in vivo evi-
dence that would provide supporting evidence of the rapid rates
of the embolism-refilling cycles observed in species with small
vessels obtained using destructive sampling techniques. The goal
of this short contribution is aimed specifically at addressing this
issue. We present results of direct observations of naturally occur-
ring embolism/refilling cycle in stems of A. rubrum observed using
MRI.

MATERIALS AND METHODS
Study was conducted on A. rubrum plants either 2-year-old plants
with minimum 1 m long stem and branches collected from 20-
year-old A. rubrum trees. For all of the MRI experiments, prior
to placing a plant or a sample into the MRI magnet, a 15-mm
diameter surface coil radio frequency resonator was placed on the
stem. Each plant was positioned in an 11.7 T, 89 mm vertical-bore,
Bruker AVANCE micro-imaging system. The sample temperature
was regulated at ∼25◦C by pumping air through the magnet bore.
For image data collection, we used a T2/spin-density-weighted
3D Fourier transform spin-echo sequence (T2W-3DFT) with a
repetition time/echo time (TR/TE) = 980/45 ms. The T2W-3DFT
data provided good free water versus air contrast. Images were
acquired with a 256 × 128 × 128 matrix and then zero-filled to
512 × 256 × 256 before Fourier transformation, yielding a final
isotropic resolution of approximately 50 μm. The imaging time
was approximately 90 s per image with 90 s resting time between
images.

To compare MRI analysis of xylem water content to stem
hydraulic conductivity, we used ∼2-m-long leafy branches that
were collected from seven trees (15–20 years old) growing in the
field at Harvard Forest. Several leaves on each branch were placed
into sealed plastic bags and covered in aluminum foil the evening
before collecting branches at predawn the next day. After excising
branches in the air, they were allowed to continue to transpire (in
the shade) until the loss of water from the uncovered leaves reduced
covered leaf water potentials to values that were needed to gener-
ate a vulnerability to embolism response curve. Covered, branch
equilibrated leaf water potentials were measured using a pressure
chamber system. The balancing pressure required to squeeze water
to the excised petiole surface was determined and used to estimate
stem water potentials. Following dehydration, each branch was
labeled and was double bagged in large black plastic bags. Wet
paper towels lined the two-bag layers to reduce evaporation and
to allow the branch water potentials to equilibrate within each
sample. These branches were then shipped from Harvard Forest,
Petersham, MA to the MRI facility in Carnegie Mellon University
in Pittsburgh, PA.

Prior to MRI measurements, leaf water potentials were re-
measured using the same pressure chamber system to determine
equilibrated water potentials of the branch samples. For each
sample, a long portion of the stem was excised under water first
and then two 5-cm-long stem segments were subsequently excised
underwater from the current extension growth (number of sample
tested 25). One of the excised stem samples was used to deter-
mine the PLC using classical hydraulic pressure-flow methods.
The other excised sample was used for the determination of the
water content using MRI. The MRI sample was tightly wrapped in
parafilm to further reduce desiccation during the measurement.
After MRI imaging was complete, a post-processing image regis-
tration algorithm was applied to the data to correct for physical
translations of the stem in the image field of view over the measure-
ment time (total successful measurements 20). Image brightness
was adjusted for all images using two control glass tubes filled with
DI H2O and 1:1 mixture of DI H2O and D2O (volumetric). Pixel
brightness ranged in images from black (0 value) to white (65525
value), and these values corresponded to increasing concentration
of unbound water that was present in the voxel (volumetric picture
element 50 μm × 50 μm × 1000 μm) and were used for anal-
ysis of xylem water content (Matlab12, MathWorks, Inc., Natick,
MA, USA).

To determine the potential for spontaneous embolism forma-
tion in moderately stressed stems, undisturbed 3-year-old plants
were fitted through the magnet bore using the same strategy
as described above. Each plant was left in the magnet for 10–
15 h and images were taken every 3min (90 s signal collection
time). Images were acquired using a multi-slice gradient-echo
sequence with TR/TE = 75/5 ms and a 512 × 256 × 256
matrix size, in-plane resolution of 50 μm × 50 μm and 1 mm
thick slices. Images were simultaneously collected from five
slices separated by 2 mm distance and thus covering a total
of 15 mm of stem length. Data were analyzed using Matlab
12 (MathWorks). During the 10- to 15-h observation period,
plants were not subjected to any experimental treatments or
any disturbance. They were maintained at an average leaf water
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potential of about −0.5 MPa. Total time of observation equaled
60 h.

Long-term MRI observations were followed by an air-injection
experiment to determine the temporal dynamics of artificially
induced embolism in intact plants. Prior to attaching a pressure
collar near the base of the main stem of each plant a small inci-
sion was made to allow pressurized gas to penetrate the xylem
of the plants during air-injection (Crombie et al., 1985). Each
of three plants was pressurized so that the pressure gradient
across the bordered pit membranes equaled 5.0 MPa (sum cov-
ered leaf water potential and injection pressure). The pressure
was held for 2 min. while the plant was still in the MRI mag-
net. MRI measurements were made during and after air-injection
to determine if A. rubrum could recover from artificially induced
embolism.

RESULTS
Comparative analysis of xylem water content from MRI images
and stem hydraulic measurements were made on current-year
extension growth. Analysis was made on branches exposed to
varying levels of water stress to assess the relationship of pixel
brightness measured with MRI to changes in stem hydraulics. Pixel
brightness measured with MRI is related to the amount of free
water in the sample. In plant tissues, this would be the water that
can freely move and is not bound within cellular walls. The gen-
erated MRI-based “vulnerability” curve was found to be similar
to the PLC curve measured using hydraulic methods (Figure 1).
We found that stress of −2.51 MPa was required to reduce the
xylem hydraulic conductance of the xylem of current-year exten-
sion growth of A. rubrum plants by 50% (P50), determined from
hydraulic methods. The equivalent 50% loss of average pixel
brightness in MRI images was determined to be −2.70 MPa.
We also observed similarities in the shape of the vulnerability
to embolism curves obtained from both hydraulic methods and
MRI image analysis and no statistical difference between estimates
of EC50 (Table 1). These results provided assurance that pixel
brightness was a good proxy for analysis of stem water content
and for estimating changes in stem hydraulic conductance due to
embolism formation (Figure 1).

The temporal and spatial dynamics of embolism were mea-
sured using MRI on intact, well hydrated A. rubrum plants that
were exposed to air-pressurization treatments that created a 5.0-
MPa pressure gradient across the xylem bordered pit membranes.
Changes in the average pixel brightness of analyzed tissues were
used to assess changes in stem water content in two regions of
the stems during these pressurization treatments: (1) current-
year extension growth (one xylem ring) and (2) 1-year-old stems
(two xylem rings). As expected, air injection treatments, that
created a 5.0-MPa gas/water interface pressure differential at the
bordered pit level, resulted in the loss of pixel brightness and
was interpreted as a drop in the water content in the stem and
formation of embolism. In 1-year-old stems, embolism formed
in both the older (internal ring) and in the current-year xylem
(outer ring). The loss of water content determined from decreased
pixel brightness in the older ring was found to be much more
pronounced (Figure 2). We did not observe any signs of bright-
ness recovery over a 10-h measurement period in the older ring.

FIGURE 1 | Leaf water potential, measured on equilibrated branches,

are plotted to PLC (A), and average pixel brightness (black = 0 to

white = 65525) determined from MRI analysis (B), is shown. Both data
sets were fitted with a dose–response curve (solid line) in the form of
PLC = minPLC + (maxPLC − minPLC)/[1 + (C/EC50)slope], where minPLC is
minimum PLC in non-stressed plants, maxPLC is 100%, EC50 represents
50% loss of initial functionality [minPLC + (maxPLC − minPLC)/2], and slope
is the rateof PLC increase at EC50. There was no statistical difference
between EC50 from two methods (PLC and MRI). The same function was
used for pixel brightness curve fitting except that minPLC and maxPLC were
substituted with average pixel brightness at low and high ends of stem
water stress. The four MRI images shown are representative images that
were used to create the MRI-vulnerability curve. Only pixel brightness data
from the xylem conducting area was used to produce the curve. All
measurements were made on current-year extension growth.

However, the initial loss of water content in current-year xylem
recovered within 2 h from induction of embolism (Figure 2).
In two other instances, only sections of the current extension
growth of the stem were observed with the MRI, and we found
that the initial drop of water content due to air-injection induced
embolism was followed by recovery within a 1- to 2-h period
(Figure 2). The spike in brightness during the air injection process
reflects the movement of water in the xylem caused by the water
being replaced with the air that is being forced into the xylem
(Figure 2).

The long-term MRI monitoring experiment was conducted on
intact potted plants that were undisturbed for 10–15 h each. This
experiment was designed to determine if A. rubrum plants undergo
“natural” spontaneous embolism formation within their xylem on
plants exposed to moderate levels of water stress (xylem water
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Table 1 | Statistical analysis of the fit of dose–response curve (Figure 1) (A) PLC = minPLC + (maxPLC − minPLC)/[1 + (C/EC50)slope)] to PLC and

(B) pixel brightness (pb) from MRI {pb = minpb + (maxpb − minpb)/[1 + (C/EC50)slope]}.

A. PLC method

R = 0.96802847 R2 = 0.93707912 Adjusted R2 = 0.92849900

Parameter estimates

Coefficient SE t P

min 8.3246 3.3956 2.4516 0.0226

max 100.0000 13.9177 7.1851 <0.0001

EC50 2.5167 0.3125 8.0525 <0.0001

Hillslope −2.9890 1.0380 −2.8795 0.0087

Analysis of variance:

DF SS MS F P

Regression 3 25308.9213 8436.3071 109.2152 <0.0001

Residual 22 1699.3865 77.2448

Total 25 27008.3078 1080.3323

B. MRI - Pixel brightness

R = 0.90873197 R2 = 0.82579380 Adjusted R2 = 0.79505153

Parameter estimates

Coefficient SE t P

Minimum 1262.0805 945.4022 1.3350 0.1995

Maximum 10171.8589 908.9276 11.1911 <0.0001

EC50 2.7009 0.2490 10.8459 <0.0001

Hillslope 6.2416 2.8575 2.1843 0.0432

Analysis of variance:

DF SS MS F P

Regression 3 270109225.7591 90036408.5864 26.8618 <0.0001

Residual 17 56981175.6885 3351833.8640

Total 20 327090401.4476 16354520.0724

potentials of about −0.5 MPa). In four out of the five plants, we
observed no dramatic changes in pixel brightness. We observed
small levels of brightness flickering in some pixels that appeared
across the xylem tissue. These brightness changes were considered
to be potential artifacts or possibly changes in water content of the
xylem fibers. Apart from these small flickering, we observedone
large a spontaneous occurrence of a drop in pixel brightness in
one plant. This event had a similar change in pixel brightness as
observed in stems that were injected with air, suggesting that it
was a large embolism event. The event started in the current-year
xylem and it spread along the perimeter of the last year xylem
annual growth ring. At its maximum, the embolized areacovered
1/3 of the stem perimeter. The change in pixel brightness along

the stem length (15 mm) occurred simultaneously, i.e., faster than
the 180 s time interval between consecutive images. The radial
spread of the embolism was slower and took several minutes
to move along the stem perimeter. The drop in pixel brightens
(or embolism event) was followed by a rapid increase in bright-
ness, implying that unbound “free water” was moving back to the
embolized section. It took 20 min for the pixel brightness to return
to near initial level. It should also be noted that the reappearance
of water was not instantaneous along the stems length and that
the stem cross sections being monitored with the MRI returned
to their initial pixel brightness at different times (Figure 3; Video
S1 in Supplementary Material). There was no noticeable direc-
tionality in the observed refilling process, in that it seemed to be
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FIGURE 2 | Representative MRI images of three consecutive

observations of the state of water status of xylem from current-year

extension growth (A) before air injection, (B) during air injection, and

(C) 10 min after air injection are shown. The images (A,C) reflect the
changes in pixel brightness after the successful induction of embolism
from air injection. The temporal increase of brightness observed in image
(B) compared to (A,C) reflects the movement of water during the injection
of air into the stem. The three figures below (a–c) are an analysis of
changes in the average pixel brightness measured on the xylem conducting
area from three experimental plants. Panel (a) displays analysis of two
xylem growth rings simultaneously, and shows a lack of refilling in the
1-year-old ring as seen by the drop in average brightness to a new lower
constant level while refilling was observed in the current-year growth ring
as shown by the initial decrease in pixel brightness followed by a period of
brightness increase. Panels (b,c) are measurements on current extension
growth only and both show refilling following air injectionasthe initial
decrease in pixel brightness is followed by an increase in pixel brightness.
Dashed lines reflect the initial (prior to embolism induction) and the
maximum final (recovered) levels of pixel brightness.

occurring randomly across the stem segment (Figure 3B; Video
S2 in Supplementary Material).

DISCUSSION
Magnetic resonance imaging provides a means of viewing the
xylem sap directly within intact plants. However, only a few stud-
ies have used this method to investigate plant embolism/refilling
cycle because of technical limitations related to its spatial and tem-
poral resolution (Köckenberger et al., 1997; Holbrook et al., 2001;
Clearwater and Clark, 2003; Utsuzawa et al., 2005; Scheenen et al.,
2007; Kaufmann et al., 2009; Van As et al., 2009). The limits on
spatial resolution (>50 mm) resulted in all previous studies being
focused on vine species with large vessels (Holbrook et al., 2001;
Clearwater and Clark, 2003; Kaufmann et al., 2009). More over
this vessel level resolution could only be achieved with long acqui-
sition times thus limiting temporal resolution to tens of minutes
between consecutive images. Use of very high magnetic strength
magnet (e.g., >11 T) can help to overcome some of these limits but
the trade-off between resolution and frequency of image collection
would remain a valid problem for observations of embolism at the
level of single vessel in trees characterized by vessels diameter less
than 50 μm. Here we have shown that in diffused porous species
with small vessels one can use average pixel brightness of xylem as
a measure of water content in stem and that pattern of brightness
change in response to water stress is well correlated with pattern
of percent loss of stem conductivity (PLC; Figure 1). Thus we
suggest that low resolution MRI analysis can be successfully used
to determine dynamic changes of stem hydraulic properties even
when one cannot resolve single vessels. This opens venue to in vivo
analysis of hydraulic dynamics of trees with small vessels that were
shown to undergo embolism-refilling cycles (Salleo et al., 1996).

We applied this low spatial – high temporal resolution approach
to make observations on stem samples that were subjected to
air-pressurization treatments – induced embolism (Figure 2). The
application of pressurized air into the stem resulted in water loss
from the xylem in both the current and in the older growth
ring (as seen by loss of average pixel brightness). Following
depressurization, we observed refilling (within 1 h), but only
in the current-year xylem. The older, inner wood ring remained
embolized despite monitoring the stem in the MRI for more than
12 h post air-injection treatment. These data provides insight into
the functional differences between current (new) and older wood.
The current-year xylem in maple has been shown to be the least
vulnerable part of the xylem to embolism formation (Melcher
et al., 2003; Choat et al., 2005), and the MRI data presented here,
suggest that it is also protected from failure by the ability to refill.
It is possible that the older wood refills when the entire plant is
relieved from water stress conditions (following rain event). If this
is true, then the plant may use the older xylem as a water capacitor
(Meinzer et al., 2003). Since the older xylem is more susceptible to
embolism formation, it would provide plants with a mechanism to
release water from the old xylem to the current-year xylem during
times of water stress.

In this report, we also describe continuous observations of the
water status of the xylem of A. rubrum stems exposed to low levels
of water stress (∼−0.5 MPa). During the 60 h of MRI obser-
vations, we were only able to observe one embolism formation
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FIGURE 3 | Images of real-time MRI observations of a section of stem

from an intact A. rubrum plant exposed to moderate levels of water

stress. (A) Images show the development of a spontaneously occurring
embolism (at 6 min) and its spread across the current growth ring (at 18 min)
followed by an almost full water content recovery (at 30 min). (B) Three

dimensional analyses of embolism formation, its spatial spread, and recovery.
The blue color denotes volumes with 90% loss of pixel brightness. Please
note that to improve embolus visibility, images were reoriented in respect to
the MRI images. Please consult the Supplementary Material online (Video S1
and S2).

event. However, we feel confident that this one observation placed
in the context of other available data (see Brodersen and McElrone,
2013) provides strong support for in situ formation of embolism in
stems of moderately stressed plants. In addition, our data provide
evidence of rapid xylem refilling as the loss of pixel brightness
(formation of embolism) was followed by the restoration of pixel
brightness (refilling) to pre-embolism conditions in the affected
area with 30 min. The spread of this naturally occurring embolism
event was limited only to current-year xylem. The circumferen-
tial progress (several millimeters) occurred over several minutes
(i.e., over several consecutive images) while vertical occurrence
(3 cm distance) was instantaneous (i.e., within time needed to
collect signal for a single image). Analysis of refilling showed no
directionality and water seemed to occur in many separated image
voxels across entire embolized volume.

The unique in vivo time-lapse observation of embolism/refilling
cycles using MRI highlights important considerations for our cur-
rent understanding of xylem function, i.e., that cavitation might be

an everyday event in the stems of transpiring plants at a frequency
that is related to tension of sap in the xylem. As our data show,
the restoration of water content in the affected stem occurred
relatively quickly, but one can expect that the effectiveness of
refilling would decrease with increasing levels of water stress. This
would eventually lead to a situation when embolisms may not be
removed by refilling, and that embolisms may accumulate faster
than they can be refilled, resulting in an increase of non-functional
conduits (Secchi and Zwieniecki, 2012). Thus, we can expect that
the current level of embolisms in a stem is a product of the prob-
ability of embolism occurrence (positively related to tension) and
embolism-refilling rate which is inversely related to tension and
the ability of the plant to supply energy (Zwieniecki and Holbrook,
2009; Nardini et al., 2011; Secchi and Zwieniecki, 2012). If this view
is correct, then it would be predicted that plants continuously go
through embolism/refilling cycles in different parts of the stem
and that the percent of measured embolisms reflects the current
balance between these two processes.
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It is interesting to note that the rate of refilling in A. rubrum,
from both spontaneous cavitation, and from the air-injection
method was fast (less than an hour). This stands in contrast to the
observation of refilling of embolized vessels in Vitis spp.(Brodersen
et al., 2010) where refilling extended for several hours and in C.
sativus which took 17–47 h (Scheenen et al., 2007). The discrep-
ancy may be the result of the vessel volume differences between
the studied species. Maple vessels (this study) are general less than
50 μm in diameter, while the grapevine vessels are often more
than 200 μm in diameter (Brodersen et al., 2010). This difference
results in roughly 16 times larger volume of the grapevine ves-
sels compared to maplevessels per length. Thus, if the living cell
refilling activity is not enhanced, then we might expect that the
time required to refill grapevine vessels will be 16 times longer
(i.e., ∼8 h), which is very similar to the time reported by Broder-
sen et al. (2010). The same might be true for the time discrepancy
from this and the Scheenen et al. (2007) study as they were focus-
ing only on the largest vessels in the cucumber stem (∼200 μm in
diameter). It is also possible that difference in temporal dynam-
ics of refilling reflect intrinsic physiological differences between
herbaceous annual plants and woody perennials, where perennials
may need mechanim for fast refilling to ensure long-term xylem
functionality.

In conclusion, comparative analysis of the hydraulic
determination of PLC and pixel brightness from MRI images in
relation to stem water potential showed a functional paralelism
allowing for interpretation of MRI data in the context of PLC
without need resolve single vessels. Further, this work provides

visual evidence that the embolism formation/refilling cycle exists
in intact A. rubrum stems experiencing moderate levels of water
stress. The long-term observations using MRI of undisturbed
stems of A. rubrum showed one such unambiguous event that in
combination with other reports (Brodersen and McElrone, 2013)
provide support for the existence of rapid refilling in moder-
ately stressed plants. However, the functionality (restoration of
water transport) of vessels refilled under tension still remains
unanswered.
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Video 1 | A time lapse video of A. rubrum stem from an MRI observation.

The video shows a natural occurrence of embolism in an intact stem of a potted
tree. The embolism occurs in the current-year vascular ring, spreads and then
disappears as refilling takes place.

Video 2 | A 3D reconstruction of embolism dynamics in a stem of

A. rubrum from images collected during MRI observations. Five vertical
observation planes (1.5 mm thick) separated by 1.5 mm distances are shown.
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