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This document was prepared as an account of work sponsored by the United States
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'EQUILIBRIUM PROPERTIES OF BOSON SYSTEMS AT LOQ TEMPERATURES
Victor Kerneth Wong
Lawrence Radiation Laboratory
University of California
Berkeley, California

- September 28, 1966

ABSTRACT

A study of th§ equilibrium pr@pertieé of bosbn systemg at l§w
températures Q}th particulér.emphasis on the Bose;Efnsteln fransléioh
- and réstriéted geometry ﬁg undertaken both from the.micrdscopic.and
the macroScbpic viewpoiﬂts.

ﬁsé of the Green's function formulation énableS‘the sysfematlé
;tudy of essentially all microscopic models in the iitetature.? In
bpé:ticular the Zefothforder apﬁroxim;fion iS'thev;deal Bdse gas,vﬁhichu ;
is applied to the'problem of restricted geo@etry; ’Ihe_first-ordef
approximations include the Bogoliubov/ldeal; Har;ree; Bogdliubov/
Hartree, Haffree-?ock;_and Bogpliubov/Hartree-Fock approximations,
Vit# the sole exception of the Hartree, the first-order approximétions
| display a'double-valued’béhavior in the_numberudensity'ahd othér_
thermodynémic func;ions.' Application to restricted .geometry results
.1n the same préblem as q!th‘the Ideal Bose gas, namely that the
macrq#cbplc o§cupatlon, i.e. the Bose~-Einstein condensatioﬁ,Vdoe; not

strictly éppear in restricted geometry. The secondobrder approximations
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include the Beliaev/Hartree-Fock, Born-Collisioﬁ, Bogoliubév/Born-
'Collision, Bellaev/Borﬂ-Collision approximatioﬁs. ‘We‘céncentraté on the
Born-Collision approximation and shbw that it g{vés a logarithmic
singularity to the speciflc heat in the Very Dense State limit. The
Boxn~Collision approximation is applied to restri¢ted geometries by a
variéfional technique. |

-From the macroscopic viewpéint, we show that the Ginzburg-
Pitaevskii theory can yield only second-order transitions in film
geometries as weil as in bﬁlk systems, Based on symmetry éonsidera-
tions, we propose a new, ﬁodified theory in which the order function
is identified with the "anomaloﬁs" self-energy, which we motivate by
& microscopic argument. TheAnew theory is shown t§ agree with the
experimental behavior of the superfiuid méss density and the jump
in the speclficvﬁeét, to satisfy the exponent scaling‘laws, to give'
a third-order transitipn in fil@ while giving a second;order in bulk,

and to yield shifts in the transition temperature in agreement with

experimental observations,

o
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1. INTRODUCTIQN |
It ¥s well-known that the ideal Bose‘gas'at rest uﬁdergoes a
Bgse-Eiﬁste{n_condensation lnté the zer6 momentum statevat a tempefature
,.which.is depéndeht on the mass gnd densi ty 6f the gas. In 1938,

Londohl’2

advanced thé hypotheslé-ﬁhat'the Bose-Einstein condensation
'{s the cause of the 7t—transitlon3 of liquid helium;a,'ﬁith due
allowance.for the presénée of Interaction and the liquid state,

The Loﬁdon hypothesis is made plausible by the experimenfal fact
that heliuﬁ-& displays.the 7¥—traﬁsitibn wﬁile helium-B'does not,
Apart from a difference in mass, the difference between these two
substances 1s that helfum-& atoms are bosons, wﬁereas héllum-3‘atoms,
are fermions, Furthermore, estimatesé show chaf'there 1s a Bose-Einstein
‘condensation in liquid helium;h. Finally the ldeal Boée.gas with the
same mass and density of liquid helium-4 undergoés alBose-Einstein
condensation at ' 7o =‘- 3-_/4-"/<, .whlich is the same order of magnitude
- as the A —transition, 73 = 2.17%%. | |

To includé the interactions of liquid helium-4 inté a suitable
modei, there are two general approaches. One approach is to treat liquid
heliuﬁ-& as a broken-éown solid in whi:hAthe bindinguforceQVare too
weak to qualize'the;atbms near the latticé poiqts.s It is important
that thé solid is br@ken-down; for otherwise the_yayevfunctions of the
‘individual_a;pms would.not overlap, the symmetry of tﬁe total wave
'function.ﬁoﬁld not have any impértant consequénces, and the Bose-

Einstein condensation would be completely irrelevant. ;
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‘The other approach islto treat liquid heiium-é as a very
nonideal Bosé‘gas in wﬁich the interétﬁmic fdrces'playvan iﬁpoftant_
role, The justification for treatiﬁg liquid heljum like a gas'ié‘
that the zérb point motion2 has an unusually large effeét on the‘
sttucture; inflating tﬁe Qolume,of.the liquid to a value almost thfee
times aé largé as would correspond to the "classjical® van der Waals
volume, . In tﬁisAdissertétion, we follow this latter #pproach° |

.v After a short introduction to some properties oflliquid héiium-h.
and the macros?opic thermodynaﬁics, we coﬁsider the microscopic théét&
in the équilibrium.creeﬁesvfunction_formulation (Chap, iI). Abovev
the A-transition (no Bose-Einstein condensation), ve diséﬁsé the

cohserving'self-energy approximations expanded in terms-of.the

'intérpérticle potential 'V, and a variational technique for ca1cu1ating '

the self-energy. Below the-?t»transltion (with Bose-Einstein conden-
_sation), we consider only uniformlcondénsates, resulting in the
Bogoliubov replacement of annihilation and creathn'Operatérs for the
.zefo momentum state by 'C;-numbers. The stfucture'éf cohserving and
g&pless seif-enetéy approximations is reQigwed, and a siﬁple manner to
classify approximations above ahd below the : 7;-tran;it16n is proposed,
The general formulation is followed by three sucéessive .
.approximations of the self-énergy in terﬁs of the interparticle
potential: the zeroth-order (Chap. III), first-order (Cﬁap. iv),
and second-order (Chap. V) approximations., 1In tﬁese appfoximgtions,
we find the formulatibn'qulte amenable to a compact discussion of

@

other works and approximations. In particular, we find that all
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appfoximatioﬁs used thus far in the 1iterature are esseneielly
contained in the first fwo orders of the self-enefgy approximation.
He'coneider'these approﬁimations aﬁd restricted geOmetry in'an attempt
to underetend the behavior of the equilibrium propertles of‘the
| Helium film, | |
_ Finally we cons!der the macroscopic theory of Glnzburg Pitaevskii
»(Chap. VI) and a sultably modified theory. These are applied to

several cases of rostricted geometries.

A, Liquid Helium-4

The discovery of the anomaly’whlch gave the JL-traneition its

" name ﬁas by Keesom and Cluelus7’8 in 1932, who measured a singularity
of the specific heat curvevat saturated pfessure whose profile
resembled the shaperof the letter /. . Recent measurements by
Fairbank, Buckingham, and Kellers9 of fhevspecific heat at saturated

| pressure cgat has shown that as the temperature _72*’ n (T

:.ls.tﬁe temperature;of the transitlon), Jﬁt-a'oa as the iogarithm
of the temperature interval I.ATIE | 7= to within - /0"6 é/< of Ta.
From /107 ¢°K < |aT| < /d-2'°/<, the specific heat satisfies the

empirical equation

_Joute (1.1)

Csat = 4.55- a.oa(oj,o 47| - 5.20 & S

:where J\-—O for T<'7‘7\ ,and J‘-—/ for T>T,\ o We.-'

note that there is a. jump in- the Speclflc hea: ;,-f'”f}a’;“w l

Acm-— Zrat (7‘>7‘a)-— ot (7'>7-,\) = —52012__ - an
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The saturated pressufe specific heat is related to. the speclfié heat
_at constant 'press'ure Cp by

Co = C » 2P |

" where V is the volume-,’v op 1is the isobaric coefficient. of
expansion, and (GP/QT‘)”* is the slope of the saturat'ed‘ vapor
.pressure curve, Below. 2.‘5°K,“the difference between Csat and VcP

is less thén one per centj; therefore within expeﬂmental error, the two

quantities, Csat and Cp s can be used interchangeably. Other

measurements along the saturated' pressure curve include a measurement
of ®po by vAtkin‘s and Edwardslo who show that a(p—'r'oé logarifhmically o
~ for : 103% LlaT| 2 107, vRecéntly the superfluid density 4 L
has been muaast;lred“v’12 near‘ the A_ -transition and within
'e‘xperiméntal error was found to be S~  (... 4‘7‘)‘/3 .. We note in
passing that the temperature,_vof the onset of superfluidity coiﬁcldeé
with the specific heat anomaly 7 s

Before measuring the specific heat, Keesom and Clusiusl3 also ' .
determined the way in which the tran_sitlvon temperature éhanges wlti'\
1ncreésing hz‘essure and found an almvovst vertical ?\,-; cu'rv_ej connecting
the melting curve with the saturated vapor curve. The p-'l' diagram is
Quali’tatively shoqn in Fig. 1. Recently Louna.smaa,la worklné at - o S
elevated pressure near the " A_— curve in the vicinity of fﬁe fd!hf
p~13.04 atm, v vé&.ZO cﬁﬁ/mole, ’T-2.023°K,'measured'the {sochoric
pressure coefficient /3. = (QP/éT)V and the isotheﬁél

compresslbility K+ o He found that ﬂv.'——voo' logarithmically for
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‘/O‘J’K < [ATI < 2“52 °k. with a jump and /<,-~ ap with‘
no si'néularity for | 10 atm Id,ol</o atm with a small jump.v O‘t:h'er
thermodynamic behavior of llquid Helium-4 near the ;\ ;curve,has been
discussed‘by Lounasmaa._lS | |
The abdve'experimente were done with rather lerge.samples.of
helium at bressures equal or greater than.the satprated pressure, ﬁe
noﬁ turn to sﬁali or thin samples'qf‘helium at pressures Iese than
the saturared pressure.16 -
: Frederikse17 measured the Specific heat aldng.a glven unsaturated
pressure curve for ae:unsaturared film adsorbed ohte a jeweler'e rouge.
He found that the spectflc'heat singulariry at saturated pressure has
been smeothed over ‘and !tsvmaximum shifted to lpwer teﬁperéturés
‘ from‘-7;.'as tﬁe preeegre is decreased, Mastrangelo end Aston18
re-examined the problem using .7?:6%1 and fouﬁd similar'behavior in
the speclfic heat, Recently Brewer, Symonds, and Thomson19 reported
that the spec!fic heat maximum for helium ln partially- filled vycor
pores agrees with those of Frederikse,
Other works concern the measurement of the onset of
20-24 '

superfluldity,_ which indicate that the superflﬁid temperature

decreases from 77  as the pressure is decreased below saturated

pressure. However there is a systematic difference between the superfluid_

temperatures~for an vnsaturated film19 -22 and the superfluid

temperatures for an unsaturated pore.23’26
In both film and pores, the.superflbid temperature is generelly

lower than the temperature of the specific heat maximum. It has been
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suggestéd that additiox;lal surface exc!.t:.atlionsl9 may be the cause of
this 'disparit&. To further complicate the Situétion, A phase N
transition which covincldes‘witvh the ?\. -trahsition at saturated
'.pressuré has been foﬁnd25 4in a’h unéaturate‘d film at temperatures. above

A » .i-ncreasing as the preésure is decreased below saturated pressure.

B.__Thermodynami cs26

The thermodynamic potential which arisés ‘naturally in; using _tﬁé
grand canonical ensemble of statistical mechanics is what we call the
Massieu poténtia126 W3, s ) , vhere B= (4, T)-I, A= -fpe
with 7 cienoting the temperature, 7}' the volume, ¢ the chemical
.pot_:entvlal, and 7%3 Boltzmann's constént. The Massieu potential
.W(p) v, o) 1is the double Legendre trans_form26 in (U, B] and [Ny ]

of the (dimensionless) enthpy S(ULVN), 1.,
Wlp ) = S-pu-«N = vaplpe) L
where we have used the Euler equation in the entropy representation
S= pU+BpY + N |

The entrbp_ic fundamental relation is

&S = pal + ppdl” + AN

Therefore

AW = —UdB + fpali— Nds | (18
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 Equation (1.4) leads to the following relations

_;.(314/ j o o
( . ‘ (1.5b)
V= |
= - (_____) S O (1.50)
. R T
" and the entropy is calculated from eq. (1.3) ' '
v : :
S=w +p(9/3 » + oc(?o( b . (1.6)

We can consider W as a function of (2, LC,A¢) instead of
(%, V5 & ). Then N

AW(B Vi) = = (U-puN) B + ol + BN (1.7)
and : v _
S w ﬁ(a/ﬁ U : _ (1.8)
It is customary, howéver, to work in the enefgy representation;

and the thermodynamic potentlal relevant is the grand potential
L2207, ¥, p+), which is the double Legendre transform of the

energy, i.e.

¢

TV = U= #TS —puN = =Up(ripm) | (1.9

Hence the cbonnectién between the Massieu potential and the grand

‘potential is

~

w3, v;/;) = _ﬁ_rz(r,—u:/,‘) _' ] h (1.10)_‘



esa

The Ehrenfest classification of phase trahsitions is based on

the Gibbs potential.
G(T; P) = U-#TS ~+ pl = Na(Tp) . = (1.11)

' namely that a phase transition shall be called nEE_order {f the ns'l“1
partial derivative of 65(73F’) is discontinuous at the transition, -
whereas all lower derivatives are equal, The first derivatives of

G‘(T).P) yleld the volume and the entropy:

Rl - ' '
U = (,a__-_P . | | (1.12a)
26 - o
7%55 = bt --————?7. V- . » | ‘ - (lclzb)

The second derivatives are the isobaric coefficient of thermal

expansion
o = L (92!’ - 2 G
P v 27/ v B70p s (1.132)

the isobaric heat capacity

= £ T ' 2 o
Co = AT %P = -7 2T - (1.13b)

and the isothermal compressibility

5 E___,_j_(?__?{“_' = .l PG (1.13¢).
T VUl\ep/y v pz .
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I1. MICROSCOPIC THEORIES «- GREEN'S FUNCTION FORMULATION

The Green's function formulation?’=30 of quantum statistical

physics has enabled the unification of several diverse-approaches31
and épproxi@ations to the mény-body problem. In the case of
‘interacting bosons, this formulation can be adapted to include the

32,33 and used to discuss the

macrosc0picv0ccupa§ioﬁ of a single éiate
varioﬁs aéproximations36 and 1liquid heligm;s belbw-fhe'
‘;ky -transition, - -

Ue'liﬁit ouréelveé to equilibrium systems and, below the‘
‘,7\ -ttansltioﬁ,'to‘sygte@s with a uniqum condensate. We begin ;ith
vsomevbésic_definitiohs for the nofmaltsystem aboye,tﬁe 7\ -transition,
and we review the formai'procédufes bf conserving approkimafions .
and'vgrlatidnal caicula;ions of the self-energy;’ We next‘cbnsider
the:anomalﬁus systém beldw'the }\'étransition, and we'reQiew thé
formal stfuctute'of the gaéless'appfoxim%tions and the COnserVing.
apﬁroximations. We end this section with some te;minology for

approximations above and below the j\ ~transition, and a treatment

of the Bose-Einstein condensation and the Very Dense State limit. -

A, Above The A\ -Transition (Normal Systems)

1, Basic Definitions
'.We wish to examine the low-temperature equilibrium properties of a -
many=-particle system'df spinless bosons of mass m with a two~bodyv

interaction, whose Hamiltonian in second quantized form is given by
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(setting H =71 ) : »
: - _
H(t) = —E’i;.y{;d3,;- Wi V,z W) -
- S ~ip » (2.1)
\ =% [e? [ a2 ¢0) ¢ 2 viiz) fl2) P(1)
. . 4 v
where (1) = Y(r,¢), Wy = Yln, t,) are
réspeétivély the annihilation and éteatiori operators in _the
Helselnbez'g picture for a boson at poéition r; and time tl obeying

the usual commutdation relations, and

V(12) = V(hi-r) §(¢-¢) o (2.2)

s the two-body potential such that ‘8({:) satisfies

®

along the lmaginary time axis, and the notation

—B | ~4/3 | |
_{dZX(Z) """.{-dsf;ldégx{’i,f;) (2.5)

with 2/ being the volume of the system.

As the Hamiltonian does not change the number of particles,

N('é) B io._e-
[Hee), N(#)] =0
yhére

N(¢) = fd’n W) win) i - (2.5)

_}7‘2& &) =+ o (2.3)



T=1le

it is converiient to work with a'modified Hamiltonian
ﬂ(t) 1 () -/AN(é) : 2.6

where /bu s & c-number, is to be identified as the chemical potential,
The'cprresponding Heisenberg picture is modified so that for any

operator Y(t)

r Cten | |
¢szvee) = [Yee, He) ) | (2.7)

vee) = e HE yoy &

For a systém in thérmodynamic equilibrium at temperature T,
the expectation value for any operator may be computed using the
- grand canonical ensemble of statistical mechanics, viz. for any

~operator Y(t), the expectation value <: Y(t) >

Sp [eﬁ Y(t-)]
SpLeP]

<Ye) (2.8)
where ,6 & (7@37)-I ﬁe denotes thé Boltzmann constant

| 'and Sp denotes the spur Operation which is to sum the diagonal
:elements of the operators in the bracket, summing over all possible
states of the system with a given number. of particles and over all

poéslble number of particles,
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The thermodynamic, causal, imaginary time n-particle Green's

function can be defined as

»

Gn (/Z-..pr) = (—»c:)ﬂ<7; {Ryb(’) q,(z) ces (P(n) ® ( )
o 2.9

x %%(m‘) e YHnes2) &F}(n?/)} >

where -Tt denotes the Wick timeoordevring owera"t:ion9 which is to
atraﬁge the ensuing operators in chronological order along the

imaginary time axis from 0 ¢t~ -£ﬁ with the earlier (closer to

the origin) time on the right and the later (farther from the origin)

time on the left,

These Green®'s functions ob2y the time boundary condition .

Gn(‘?j“é}@) = Gy ('tj=°) | ' f(2°1°):

with the other times fixed in the time interval EO, -c'ﬁ} .
This quasi-periodic boundary condition permits the introdu_ction of
& Fourier series expansion for Gn“ Por the one-particle Green®s

function, the Fourier serles is

s

- G(t) = 3 §A¢~2y‘ﬁ' G(3v) | (2.11a)

52, = :EE” y V=0,:¢:l) tz,-.. A (2-11b)

The momentum Fourier series is Introduced in the usual way

G.(r) = 3 e e p 2.12)

H
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so that the complete Fourier series is
G(’;‘é’)"_}‘ﬁ%:#;ue e 4 )G(,D,}v) » (2,13a)

with the invervsion

) . -Jﬂ | : - '.r-‘ o
G(Fa}'v),"“ fo d"id'% e (F- *)6'_("2 ¢) (2.13b)

The spectral function A(p,w) may be introduced for imaginary

3. by the Cauchy integral

'j”dw Alpw)

. G(ﬁ}v) -_f' 2T Jo-eo (2.14)

g
which implies that the analytic contlnued36 G(p.} ) is analytic
in the whole k2 -plane minus the support, i.e. nonzero values, of
A(p,w ) for a given momentum, and that A(p,w) {s given by the

d.iscontrinuity across the real axiss? { J‘——vko‘:-)
A(pw) = i [Glpg=w+i®) = G(p 3=w=-i8)) (2.15)

Because of the analyticity of G(p, ¥ ), it is sometimes called the
. analytic propagator.3_8 For bosons, the spectral function must in

‘general satisfy

- \v

vA(p,vu)) | (2.16)

/A
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for a given momentum, Therefore G(p,},) must be continuous across

the 2} real axis at the origin, and .G(p,O) may be represented by

G(p,0) = ﬁjrciéo Aﬁ(?aau)

(2.17)

‘ where the Cauchy principal value operation is undergtood.39

The Green?s function are determined by thelr equation of motion

together with the aforementioned boundary conditions. The equation

of motion for G] can be written as
_[: K2 G, (72)G(21’) = (1) +

B3 | (2.18)
-[, a2v(12) G (121°2+)

-+ ¢
where the operator G;l(IZ) is defined as
- ‘°“ - 2 .
G, (12) = (9% +* 35 -";u/) d'(r2) . (€2.19)

If we define an inverse Green®s function by

=

e = fo ’iz G (1) &(2/)

d\~\l

dZ G(12) G Sl 1”) | (2.20)
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and the total éélfAenefgy'as
tot '_ _ _ ‘ ‘-/‘ o ‘
2_ (1) = G'(11°) ~ G (e1) (2.21)

then the equation of motion (2.18) reads

| oa;L @, G-.@)- ‘od,- A’Z,Gz(/-’-fz) . (222
Hence we have formaily reduced the prdblem of calculating G] to
that of éalculatlhg”the totai_seif~éhergy :E!t°t thfough the
equation of motion (2.22)., | o |

The total self-energy can be separated into two parts:

&) = 2:°’(/"/")'+ S (117) @y
whefe jE:?tt,t) is défined as the sum of all self-énérgy |
'vcontributions which are‘propoftional to . &(v), wﬁich gives a

cénstant éerm in the conjﬁééte-varlabie. Therefore =° ié'the
subtractionvterm,.and- :Z:rfsafisfies the same boundary conditions
ag for the Green's funétions, eq. (Z.iO).‘ Henée we may introduce the
analogousvfouriér ée;ies; eq. (2.13). Also a Spébtfa1 funétion_ ”

[ (pyw ) can be Introduced such that for '{maginarg' ;) |

- I .[;7?544!5 . o
P -._f” 2 Ty -eo O (2.20)

and

21?"*@}:1)&2_?(?) + X piv) @
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Hence Z: ié’.some:tin’!es’called rt‘:'he analytic selfoenergy.38 The
same c'omments wh_iéh apply :to' : G and A apply‘..to b énd co.
[ (pow ) 1is also called the imaginary part of the"seif-ehergy v
since 2 (p» b-‘ﬁwiié') = Ao(pw) + i‘f.f{?,’ w) where_
the real ‘p_art D (p,w) is relétgd to the i.maginary part by

po
aw’ L(pw))

27 Lo— o’ ' (2.26)
-—” 4 B ’

a(pw) =

N.ow_we express € in terms of 3= . If we Fourler analyze

eqs. (2.19)(2.21) and use (2.25), we can write

G(h}u) = e R iR S22

where € (.p)v is the single-particle energy

€p) = e; -+ 2"’()7) ‘ e (2.28a)
'éj:'i —z%, . | o (2.28b)

Hence when the analytic self-energy vanishes, ,,_G(p,} ) is analytic
in the whole 3 -plane except for a pole at - . 2 = G(p)-/bc- ,
 which follows from the fact that A(p,« ) is a delta function with

point support at ‘ } - € (p)-/.«.v. In general, A(p,« )  is

. glven by, using eqs. - (2.15)(2.24)(2.25)(2.26)(2.27),

-
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A(Pw) — Lpe) 2,25
/4 2029
[w-ﬁff)-fd(/’,w) +/4] -+ .,..[f‘(p,w):]z )

Hence a suitable approximation for z;té# or A(p, ) will
' determine the Green's function,
The 'che_mical potential /v i1s determined by the equation for

the particle density"
=éG(r1t) - (2.30a)

which reduces to', using ecjs. (‘2.‘13a)(2.1&),

o

=3 I:Z;G(p;,,) = _--Z:_L%;r A(ﬁw)vc(w) ~ (2.30b)

where we use the convenient rule for any function g( 3;/ )

"f/is%: 2 (37) ‘"‘ﬁzm 5G) o
-F(;)f-‘ eﬁ;;/ SR | | (2.31b)

‘where C 1is the contour that encircles the poles of g(Z' ) in the
positive ‘dir:ection, which holds only if the poles of g(; ) do not
coincide with those of f£( } ) and 3 f(})g(} )—> O - as ’3, O

.~
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2, Conserving Self-Energy Approximations

We now consider the problem of éscertaining a suitable approxi-
mation for ;:Z§t°t . Wé use as our guldeline to a sujtable -
: approximationﬁ;he fact that thg approximation must be conéervingho
sovgs to xieid consistent fhermodynamicS;AI'

It fs convenient to intréduce an external scalar disturbance4

-coupled to the "density", so as to add to the Hamiltoniah (2.1) the

term

. o |
HE %) = _-I{d’/? _{dz. W) U02) $(z) 2.32)

where UeXt(l2) is the arbitrary external disturbance nonlocal in

time and spaée; Wé can defiheAa_fuhctional, W, of yext by
7 w [Ueﬂt.] = e’,. SP {e /G 7; (S) } ) : (2,33a)

where S 1s the lmaglhary time S-matrix in the interaction picture

for a potential UeXt,

S = exp '{ —¢'_°f az/fdz 0, U r2) Yo(z) } (2.33b)

{

’Thé one~particle Green's function can be defined as the functional

ext

derfvative of W with respect to U-"-, i.,e,"

= e

SU¢(i) <7 i$;7

G Uexé) =

Swlve] Cmf{sem i)} (2.38)

-



The n-particle Creen'é'funétion is defined by n functional
derivatives, or

.. - ¢ (.‘-)ﬂ : ! o ‘ ' : - ,
Gy {1220 v - e S AL ORIIOR

€2,35)

‘a t,b (m) tﬁ"(n»z) Wne)§

ext -

_The introduction of U is a formal devlce, and we set ° Xt 0 at

ext

the end of all calculations. If we set LU 0 ‘above, we recover

the Greeq’s'functions defihedApreviously. Howe&er, note the necessity
of ué;ng.an externalvpotentiai nonlocal in space and timé;' The cyclic -
:!ﬁvariance of thé;trace fhaﬁ defines the expectatipn vaiuég in
"Ch(Ue*t) 'implies that the ;amé quasi-periodic‘béundary.conditiéns,
ext)

eq; (2.10) holdsﬂfor G (U .: Henéé the Fourier series, eq. (2,13),

also apply to G, (UGXt)

The equation of motion for G (UeXt)_ is different from eq. (2.18),
viz. B

J@g.g & (12)@(21) = fda U&t{IZ.) G(a/) vy

-4-5‘(/:’} -M_[dz v(iz) G&(/a/’z.sﬁ) (2.36)
° .

where the Green's functions are all understood to be functionals of

UeXt, If we insert the functional derivative,

é“U“w‘(zz) = G (1212') - G(1n)e(z2') e
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into the equation of motion, ‘ahd define the total self-enérgy as:

=% = G:_(/") -G (1Y) ~J '), (2.38)
then eq. (2.36) becomes

s o
xtat'(ul) = ‘of'dz V(/‘a) G'(?Z"') _.,d‘(u’_) 7

B d6(13) - (2.39)
+Jatzatz viiz) ——— G (21)
Yo JUKt(zt2)
- Using o 3¢ - v(;"l +6+ 8ctlao » We f;ix.xd the identity -
B e -, , [P gXTE (1)
[ foereqn S (30 = L 23602 ot *

+ G dla’)

~ ‘Hence the equation of moti'on takes the form

EOL, 1) = ¢ "fﬁ?.V(/Z)G(""’ Svi11’) G(1') +~

ZF) = edu)J ez vz 227) + V) G( )+

JEtOt(B/,) .v.(.2.41) .
JUexE(2+2) .

s
tifazd3viiz)cs)
o

o Thus far, we have considered "W and >;“.. as functionals of
.

ix""’.‘t. However, the natural variable is not Uex but its conjugate
Gl . We may then change to G1 as our independent functional variable,

which 1s equivalent to mvaking‘a Legendre transformation from
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W [UextJ to W [GI] « The functional derivative in eq. (2,41) becomes

ntGr) j-‘ﬁ -, a‘z‘*“*&?/’) 4*6(4-'4-)
unéﬂﬂ'(zfa) ctécdd’ J‘G'Cﬁ') ' d\Ué’Xf(&-fZ)

=73 - (2.42)
=.jd4d4-, ,_’3’(34/'4) L (¢2427) '
o St |
ﬁhere ;e.define the'two-pattfcle_effeétive interaction -
. - : tot o
Soae = TG,
_ IFG(+2) ’ :
. and ‘ -
. dG(3)
L (1234) = T2y | 2tt)

~ which is the density correlation function when we take 3=1* and

4=2*, By functional differentiating eq., (2.38) with respect to pext

we find that L satisfies the eduatioﬁ

L(r21’2’) = G(127) G(21) +

—if - (2.452)
+fq/3d4az.s'd6 G(/3)G(4I')“ ' >

(3546) L(e 232’)

or

-8
: fd?dl’ [G(/Z)G (zl’) - (12/'.2')] L (.2323’) = (2.45))

d‘(/.B’) d‘(:-}/’_)
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For later reference, we define the inverse function -l by

g8 o , o o
{daaz’ Larz Lc2's'23) = $0 &) - (2.462)
so that _
[(2rz2?) = G )G 2r) -~ Zlrarz?) (2.46b)

Substituting eq. (2,42) into eq, (2,41), we finally have the

eduation of motion in the desired form:

| g | |
2”&(//9 = e‘d‘(//’)fdz V(12) G(z2t) + eV (1) G(11?)+
@
. - (2.47)

- |
+ ¢ {dzasd«%dé‘ _V{/é) G(13) = (3¢1%5) L (s242%) i

We note that Ezlt°£ in eq. (2.47) is a functional of (] .By
fterating eq. (2.47) with eqs. (2.43)(2.45a), we obtain an expansion
S of 3\tet 1n: successive powers of V as a functional of. Gy.
This is done by taking the lowest order in V in eq. (2565a) for L,

so that

| - |
D) = can’) [, az Wiz)6(22%) + iv (1) 61l +
4 | (2.48)

i ‘{ d2eldddas VIrz)G(13) [ (3¢1'5) G(24)G(52) |

i
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and treat E as the small term. This iterative procedure leads

vto the Haftréé'-Fock a.pproximation to f-irsvt-order in V:
2 (“)- cd"(u')fa!z V(/Z)G(?"*) * & V(u’)@(n') (2.49)

The second-order term {n V comes from approximating
S (1213) = =, (121°3)
& 66‘(/{’)&‘(?3) virz) + .c‘d‘()ﬁ) 5‘(2/9 V(/.z)
ﬁﬁich y?,el?!s fh_e Bo;p-qulision approximation:

IR B
Ziac (1) = e2fded3 viz) v(zr) »

e - (2.50)
[ 6(1) 6(32) 6 (23) + G(13)G(32)G (21)]
The third-order term is obtained by i:aking HOA ".:‘._ EBC ~ which
has six terms; and so on, The ng.‘ order term is
Z(m(u') = ¢ j d2a3déds V(I2) G(13)G(24)G(52) x (2.51)

r= (1=
® L—-A (34/’5)
These terms correspond to the irreducible diagrams for Ee“t and are

“shown in Fig. 2. From the topological nature of these diagrams, we

‘note that the Hartree-Fock terms are the entire subtraction term ne.
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:He now show that each order approximation in the expansion of

40

2:0& [ Gl] in powers of V 1is a cbnserving approximation, so

41

that we are guaranteed consistent thermody_namics. All that needs to

be demonstrated is the existence of a functional é [ Gy ] such that

the self-energy is given by

§B[G,]
dG(1'1)

' (2.52)

Eéeﬂ'(ul) =

We prove the existence of é Ecll by explicitly exhibiting it.

42

Consider the obvious candidate™™ for the nth order approximation

. ' "".
) .
@m [G) = 5% £ dtd2d3ctd aSatl)’ V(r2) »
| | o bd , ' (2.53)
nGUIG (2¢) 5 (341°5) G(52) G (1)

We need to show that

: | {r) ‘ - '
2‘”’(:-?5) - §87 6, | S @58
for. an arbitrary G/(sr) in @(h) KGIJ o This is obviously true,
{f we assume that the (n-1)&R ordef is conserving so that
=y {n-1) 1G] : ‘
o (1) = o (quse?) (2.55)

40,41

However, it is well-known that the first-order approximation, the

Hartree-Fock, is conserving. Hence by induction, we have proven
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eq. (2.54) for all n*s and the proposition that each order approximation
is conserving. The t':-t--tl order self-energy dlagram and éé ~diagram

are shown in Fig. 3.

3., Variational Calculations of the Self-Energy

A useful calculational proéedure is to utilize the stationary
- property of the grand partition function of the System under
variations of somé one-body function31 as the'dénsity. This

43

variational property was first established by Lee and.Yéng, who

constructed'a.stationary functional of the avefage occupétion number
multiblied by tﬁe fugacity, Stationary functional forms of the same
geﬁefal character have been established 1h other cases, as a functional
Qf the a#eragevoccupation number in a form which tends to the virial

44

expansion in the classical 1limit, " and as a functional of

distribution functions for "quasioﬁarticles".45 Luttinger and Ward46
_established a stétionary functional fofm of the self-énergy in the
Green's function formulation;ax

Qe shall follow the Green's fuhction formulation of the
variationél functional in terms;of the self-energy, whlch,:ﬁn the
1ight of a more general variational formulation in tefms of one-body'
and two-body functions, can be viewed as a singly stationary47 or a
partially r:eciprocanl‘°8 formulation, |

For formai manigulationsy; it is convenient to introducé the

‘notation

+,..X = -f-;.x(/l’) = J:I:) X(//’) |  (2.56a)
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#r XY = 4 [X002) Y(21)) = £ ﬁ/az X(r2) 'Y(zﬁ), (2.56b)

where X and' Y are arbitrary one-particle functions. In this

notation, we can express the variation of the functional W [UeXtJ as
J\W[’Ug’%] = o (@, J\UJQK‘?) ' } (2.57)

and the variation of the functional é[cl} as

$8[6)]) = #r (n%¢s) . @

ext

Now we want to change from U to its conjugate G; as the

independent functional variable of W. This is accomplished by the

Legelndre transformation
wlG) = wlvet] - 4 (Gu¥¢) | (2.59)

Using eqs. (2.57)(2.58) and the definition of S3E0¢[yext]

eq.‘ (2.38), we obtain the variation of W IGl] as
WG] = $P[6] - &+ (n*%G,) +
+& Frlrl-G) = St (GU™Y (260

‘Apart from a term independent of Gl’ we see that H.[GI] is given by,

in the limit of USXt—s. 0,
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W[G,] = é[G;] + 'f‘r' (2.“"[6;] G:) + -&'1651)-. v(.2;61)‘

It is straightforward to show Ehet eq. (2.61)'for'IW'£C1] is fhe
logarithm of the grand partition funct:imn,“l"“6 te. W[c) 1s
equal to the Massleu potential W( LU, X)) |
‘Because of the identity of V. [Gl ] with a thermodynamic
bpoeential, we expect that W [GI] will display variational proPerties.
Honever,_in.thnt we would like to vary W [Gll with respect to
the s.el'feenergy E-\t°t which {s neither a thermodynamic quantity or
even real, the‘varlationéi properties are not sq/obvious. Inbfact, ve
will show-tnet in general we cannot say anythlng-aboutvthe sign of the
second‘Varlation to defermine a maximal or minimal nroperty.
o Because ‘ E‘."°e is defined by eq. (2.38), we can consider the
change in W [GI] due to a small change in }E;th.‘ wlc ] depends
on E.t‘t in two ways. ‘first‘:, through its explicit dependence on
2'&9“" . and second through its dene.nde_nce‘ througﬁ ¢1' Therelfo.re. |

thev first variaf_idn may be written
| swie])=&$[G6] - # (=t%[63 G ) o (2.62)

. The vanishing of the first variati‘on‘yields the Euler functional

A equntlon‘ ‘ - ‘
T
2_ _‘ [G,:] -G - (2.63)

which 1s just the condition for a conserving approximation. Since the
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approximation is. c‘onservlng,‘eq. (2,58), we may ca.lculiate W [Gl]

in any method.desirablee But eq. (2,63)' tells us that not only must
the approximation be cénserving’, but also the var_iations in

must preéserve the consexving condition in order that W {s stationary
under vartations in mi’oﬂ’

The second variation of W {GJ is

@aWE@J"’ 7‘7-( Tos J@_Jz\mg-)aq »

‘ (2,64)
JdP Cot) g2,
which when evaluated at the point ‘Ef".? ‘= (8’@ /JG,) is
J‘*W[G;] = fr Ené,“,) Gy
(2.65)

= fd/dl’dZdZ' J‘G(ﬂ/) &‘G(z z) x

22 [6] ,
«( s S fzu)

From eqs. (2 &3)(2 46b)(2 52), we note that 8‘& can be written as

FEwia] = {wdi’dzda’m(ﬂ/) L (212 §G(22) = (2.66)

~Eq. (2.66) gives the general connection/linear response to disturbances

and thermodynamic stability .49

In general, we cannot say anything about
the sign of &2, Hence W LGIJ, is staﬁionéry with respect to
variations in 53"&9* . We also note that the indeterminacy of the

sign of S W follows from our use of a nonlocal in time extemal
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potential UGXt, which‘is neédgd to define timg-dependent Gfeen's
- functions. Thus other fq;mulatibns, namely tlme-independént on;#,az'as,
‘will not share thi; featuré, and W would have a maximal property. -
'He'ncg for "time-independent® app’roxixﬁations, i.e. G-'. ~ §'¢)

Aor A(W) ~~ él‘-fn.,'br G(p,}) .is analytic evvérywhére. in 3 b-pblane

except for a simple pole on the real axis (no cuts), we might expect

o t't‘;e"maximal_ prope_rt‘y of W to hold,

‘ B, Below‘ the A -transit:ioh (Anomalous System)

1. Basic Definitions

Below the A\ '-translvtion, the condensate must be taken into
account, To do so, it is convenlent to use a matrix ;epresentétionso
for the quantized fields \P and S‘_’* + We define the spinor
P, 4) =P(1) = + (2.67)
S (1) |

P’

end its adjoint o
+ + L
rt) = 1) = v (2,68)
Q(l) I)g() ‘#(') ‘ .
to contain both the annihilation and creation operators, We shall
follow the convehtlon 'that wheﬁ two operators are mulltipl‘ied toge:her .
at equal times, the (P“' ¥s are always to _the left of the !,b 's
regardless of their order in the matrix product, Also we follow the -
" convention of summing over repeated indices (the index 1 1is construed

to include r;, tj, and the matrix index). Thus the “numbér operator
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ts given by‘
N(E) = 4 [abr F70) $(1) - 2.69)

The modified Hamiltonian, eqs. (2.6)(2.1), can be wri'tvten. in
the form | |
’ + & . o
He) = ~F S P (3L +p2) S(1) +

v
(2.70)

- ' o
+ % fa? gdz L) B yviz) Bl2) Pir)
v 2 o | |

where V(12) is defined as in eq. (2.2) and i{s not a matrix,
To include the condensaté, we introduce not only an external
disturbance U®*Y coupled to the ™density™ but also an external source

g?erst coupled to the quantum field, so as to add f.o the Hamiltonian,

eq. (2.70), the. terms

. XA ‘
H ) = A S A% faz §h) U Yz) Bez) +
(2.71)

+ Jel EH0) 9% (1) ’
) v o
.where UeXt(IZ) _.‘_is an external 2x2 matrix potential, ‘nonlocal in
space and time,__,coupled to the v"density" and‘ the pair opex;ators‘
Y(1) . _\,&(2) and !}’"4'(1) -(}44’(2), and vhere neXt(l) is an
external spinor source ‘ '

ext
o ¢ S 07 (’;tl>
1 ex () = .,7ext%

(ri¢)

coupied to the spinor §+(I),
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a potential U

G,é(a)- = (

BT P

We introduce rhe functional W [pEXt, ,7ext] , analogous to

eq. (2.33), by
W[U@c- cxé] n SP{e (S[quxé aéj)} (2.72a)

where( s is the imaginary time S-matrix in the interaction picture for

ext

ext and a source w? H

s[oe "“J exF{’*[f Stz £ B0 U2 B(2) +

(2 72b)

*f ot! sP"'(/)»;e”*(/)}}

Then we can define the following Green's functions

IW [y "“J) e GBLsEm)y e
J\,)ext#(/) Ucpe _ <7,2, (S)}

[

:G’(//'}E"z (fW[Uafvcxé] _ <7é£5g())§9+(,/)}>(2,73b)
| QUEQ) Jyexe KTl

 and the cumulant

- %i (1’) = G, ())’) -Gy () Gy, o)

= L (oﬂw [uest pexe] |
- ;qegc(,,) J\vektﬁ(,) )U‘”t

(2.73¢)
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We the that the’sepératlon:of the one-particle Greén's function

Gy into .G%G%+“ and Gl _is‘the'time-défendént>generalization of thé
sPIitting of the one-particle density matrix into an of f- diagonal
long-range order (ODLRO) part and a regular part, as introduced by

. Penrose énd Onsager51 and generalized bybYang.52

We shall refer to
.G% as the condensate wave function and G; as the propagator,
The equation of motion for the quantum field and its adjoint may

vbe w;itten

B e
jo A2, (12) Gy (2) = V=T 7] (1) "'J;dz 009Gy (2) +

| 7Y .
+ T E jdf vozy SRISEO gy “
° <‘(s)>
whe;e the operator G;l. is defined
~1roy = [ 2.. 12  (2.79)
G, (12) [7_- | “’*’%, -»‘7“')] $02) |

where J‘(IZ) = J‘(rlorz) &(tl-tz) or() , and the 7-'vs_‘are tﬁe

' Paull matrices

( (25): 7@(52); am
( ?)
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ext, T

ext and_its,traﬁspose wo)

The matrix U 1is gliven ln terms of U

<

- 1 ext . 1) | .
£z [U + 'r_“ (Uer)T .0 ]
" We now introduce the notation

0L f 42 (12 , <ais Q"“"*“"’“’ S
2 LTals))

’ (2.77)
and the equation of motion reads

. e

{dz Go,'(/z)&‘&(a) = .\/:T'ZVZ(I) + V'-_c-’fxt(/) +
- | (2.78)
#_452 5(12)6,(2) |

Note that if Z:!/,_(l) {s approximated by
‘ . -¢/3 ' -+_
V=& 2%(1) = -i-{ a2 v(12)Gy (1) Gu(2) Gy (2), | (2.79)

i o :
eq. (2.78) 1s identical to the equation investigated by Gross,53'55

Pitaevskii,56 and Fetter57 for nonuniform condensate wave functions,

. We consider only uniform condensates at equilibrium in which

and
z(l) .
2:,/1(!) = ( 2‘2)) = .cf'nsvtan.t - : (2.80b) .
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where n, #s the nﬁmber'density of_the’condeﬁsaﬁé. Note fhat

eq., (2.80) is jﬁst thevBogoliubov‘rep1acement, in Vhicﬁ the quantum
fields gré replaced by a éanumber proportion té | vr:i: . The.equation
of motion for G% , éq. (2.78),.then becomgs a félatiop beﬁween the '

chemical potential A< and the number density of the condensate

n, » vizf

o

- / 0 |
»/”‘ < 2vh [2'/’; zM/ ] - ((2.81a)

01" .
/3

fau 2y (l) Gn ) | (2.81b)

in the above approximation, eq. (2.79), we have

At = 175V

where

: . N
V,E.jogz viiz) .

The other equation relating ,&‘ and ho is the equation for the

'number dehslty

e L s £ *)
—26*(//*) 1o + 6’[“) . ()
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2. Self-Energy and Gapless Approximations

The equation of motion for Gl can be obtained from the equation
of motion for G , eq. (2.78), by functional differentiating (2.78)

with respect to 1? ext at constant UQXt. We get -

Zﬁ‘ &'02) G(2r) = J oz O (12) G(Z/’) +

32 ( ) : (2.83)
PPN vz (1 . '
+ &) + ( — )
. <r"’7 (' ) Lt
| . etot B '
We define the total self-energy Ee., by the usual Dyson
equation (matrix version) ‘
a“*cu') = Gy'(r) - @"m') ~ T’ (2.86)
and the inverse propagator G -1 by
é‘(n’) = fdz G 2> G(ZI') | -
(2.85)
= Laz G(IZ)G"(ZI’) .
Then the equation of motion (2.83) reads.
t’@t | -fﬂ sz.l/z(l) L Ay | , | '
Z 1) fa!Z' -————;—-—) G (21) o - (2.86)
g &7% (2) vext . | o

He have been considerlng E'Iz as a functional of

ext ext '
[_U s 1 « The natural variables are their conjugates

: ' + : ext -t
[.Gl . G% ]. Ve now change from 7} to its conjugate Gg
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as the lndependent functional variable, This is equivalent to a
ext ext ext
Legendre- transformation of W [U n- ) to H [U . 63;]

which i{s physically equivalent to the renormalization of the condensate

wave function.58 Then the functional derivative becomes

("‘2'/(‘)) foz W(—_M) G(32) (2.87)
U .

X . Gy (3)
" (Z) U@:‘f o J‘ 2 ext |
where we used eq. (2.73). Hence the equation of motion (2.86) becomes

REt2) = vy (L2 .o

§Gy (2 )Uext. )
Hence, given an appfoximation f&r :th/z’, eq. (2.88) gives ﬁs the
corresponding approximation for ]Z:trt' « We §ha11 éﬁow later that
such gppfoximatlons a:e‘gapiess;

Becausé the Green's functlons Gg + Gpo» 1;1 satisfy the‘same
boundary condition as the normal Green's function, eq. (2.10), we may
introduce the Fourier series (2. 13), The Fourier analysis of |

eqs. (2.84)(2.75) are
St e = G (P3) ~ G (P3Y) e
and

—e® ,
dv=Ep T4 (2.75%)

- ) o
G, (Pgv) = o -Zv'é;*/‘)



«37-

ext

where we have taken the limit U -t 0 , We separate the total

self-energy into the subtraction term plus f:he analytic self-energy
TP = 27 + Zim3) | (2.89a)

with .

o £%p)  FoP)
2P =°(¢p) =

F°(P) 5°(/’) (2.89b)
v and
o 2” (PI}”) ZIZI(PIXV)
. Z(PI }V) = -
| . ) Zu (P'}$> Zzz (P,}v/) (2-890)
'Asfuch that

2/2 (P3+) = 2oz (P 3») = '2\;, (P)"&v) | (2l-89d)

211 (P -}5’) = Zn.. (P 5"’) y N (2.89¢)

since the Hamiltonian is symmetric in ¥ and _(}’+ operators and
hence invariant under time reversal. Because of space invariance, all

- quantities depend on the magnitude of the momentum. -Therefore wve havé,
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after inverting the matrix G-l R

N . [ ‘ -}V_ E(P) -—-2“ (-P,-}") F(f)* 2[1(3”) v
a5 | SN
e FIP)+2,.(p5%)  3v-Elp)-2(p3,)

where D = det(gal) or

= - {[5,,-9-?(/7) + 2,, I-ﬂ"‘?v)_] [31/ -Ep)-32, (P3)] +

| ’ 2,90 |
<+ [F(P) + 212(’)}7)‘]‘ } : ¢ % .
with
E(py= - Qo
Elp) = €5 + E°(P) | . | (2.91b)

and we drop the Superscript o on F(p). We can introduce a spectral
~ ' ~ )
function A(p,« ) for the propagator G(p, 5 2% ) such that for

imaginary '}V

20 ~
A(pw _ '
) (pw) | e
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which satisfies the sum rule, for a glven momentum, v

2%

-m%%x(ﬂw)= 3 | (2.93)

He now show that eq. (2.88) leads to_gépless approximations.
We follow Hohenberg and Martin35 and'appl'y a gauge transformation onto
. t .
the source riext ’ 1.ee ?7 *tn ”‘7’3)‘/?[‘7'(3)"(] ') (D)

“where o s a constant, For an infinitesimal $ol , we have

B = 7@ g™ am

. : . : . N B \
The corresponding changes in G, and 2. , are

&G, (1 = V6 o @
Flp(= (P 2,000 . o
ext

The crux of the matter is that U does not change for a constant

e s Therefore we can write

;2"&({) )

o
'&zyz ) = o“‘z.,z G (2)

J‘G/(Z) oy

uexe

which becomes, using egs. (2. 95)(2 88).

< 7(39'2,;&(_:) ot = v:“ fdz, 21 (/z) '“‘” G‘{é (2) J“".»
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as dod—>0O

Recalling eq. (2.81) for the chemical potential, we_ha\iev

/ -3 | |
_ tot : .97
,“ = _—-—--z”oﬁv fatldz G’// (,) [T(a)z (12) T_(s)] C%(z) @ )
As ,G;; = G;é. are constants for a unlform system, the integratlon picks
out the p=0, ,37 =0 component of z‘toc o Therefore

' eq. (_2.97)‘ 'z"educes.to t':he Hugenh’oltz-_Plnesn form' |

t:ot

2.""%, °) - % (5,0)

°(2.98)

[E (0) F(O)] [2/,(0)°> Z;/Z(O)O)]

i $4 we'assume that: Z‘F"" !s well—behaved near p=0, 3«”- 0, we

have, from eq. (2.90b)

D= [,w s<p> 2“(0,0)] - [F°(o>+z: (o, )} .99

b

vwhich vanishes with the insertion of eq. (2 98), indicating the

presence of excitations for arbitrary small P and }‘V s O NO

energy gap.

.
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: (2.88)_ is guarahteed by the constancy of

4l

The sufficient (but perhaps not necessary) condition that an

approximation be gapless is that the self-enefgy '_be derivable from the

. ¢ ‘
functional - z\sl)z_ [ U_ex N G% ] by eq. (2.88). The sufficiency of

U®*t under a gauge trans-

formation of the first kind on the source | ext -

3. Self-Energyv and Conserving Agprokimations

In the normal system, we found a conserﬂng expansion of
8t°t [UeXt] in terms of V and Gl by utilizing the praperties

of the UySXt dependence and then considering Entc’t not as a -

~functional of U%*t  pbut its conjugate G, » 1.e. %0t r_Gl ].

This. procedure is equivalent matheniatlc.;ally to a Legendre transformationv
of W [Uextl ‘._'to W [Gl] or, more picturesquely, to a propagator
rénormaliz:ation.f | | ' '

- In thg anomalous case, we,caﬁ do the same. In the previous
section, we have already Legendre transformed W [ USXt, 7] e"":] .
to ”H [UeXt, G;' 1 ‘e _We can now coinblet:e the traﬁvsvformatlox.\ to
W [Gl, ’ G;'] K This has beenidone in a more general Context, and we
shal“l'novt repeat it hére. The generaiized expres_;sions for
= L6 .6) ana 5% [e,6") are fomd 1n
eqs., (f .65)(1,46) respectively of reference 58, Fufthermore, a

functional @ [Gl ’ GJ:] can be constructed such that

EdlG, 641
AG

2‘?0%(“1) =

- (2,100)
+
Gy '
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| (:éte,,c;u;])

z'/z(') = 2= | J‘sz(,)

as demonst£ated by eqs; (iI.ZS)(Ii.30) reSpeptiVely of réferencé S8.
 Existence of such a functional ,§é [_G1 . G%+ ]., as in thg normal

. caSe; guarantees the conservation lavs and'coﬁsistént thermodynamics.

| | P  depends on G%‘_'in'two wayst first, through the explicit
de?eﬁdence and secqnd th;pugh.the' G¥* dgpendence of iGi « Therefore

R [ (82&(6,64]
Zuz(') = aVv=T { J‘G};:(l) )G—

o (s@{a,,am) (m, 32) }

-+ ) d2a3 56, (32) F1) ) e

and _

s | S

- tot

2f SN0 G (3) a3 =

'"‘/’ A‘é[G;,GaIJ (3@(32)
$61(32) /o I (1) /g

so tﬁa;

Z‘;.}L(l)" fd3 Zf’t(sl) Gy, 3) *+ 755 zV"' S,, (1) (2.1022)

e

(2.101)

o




vwhere -
S &.é[GI) G//,. ]
{
'/2() A\ .J’G‘/‘([)

- o (2.102b)
G, . i

From the équgtion for the chémical potential (2,81), we see t:ha»i:

--94 ¢ol | - |
fd(dZG; [Z)Z 2') (') ‘/"9 3 (2.103a)

AET zn,/,»y-

where

ol S () Gy, (1 o
’“? 4 ,/5'1!‘ f /l(> () . (2.103)
: But: for a uniform system, G% and G;5 are constanté from eq.' (2.80);
and the integration in eq. (2,103a) evaluates Etot- at the values

p= Jy=>0, while the matrix summation adds up the 11 and 12 comboﬁents

of z‘.*"’*‘ to give

" To interpret this equation, we consider the poles of ?: - for‘sniall
p and. }V- assux_nlng the good behavior of Z‘.t’ (p, 3-;;) « Then

D, eq..(2 .‘9.0b), ‘becomes
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D=-{3 -[£%)+3,050) —pu]* +
- L s (2.105)

: »_+ [F'ofo)"f'z:/g(oko)]z} ,
gnd the vénishing of D .gives the'limit-as: p—> 0 of the energy
‘spectrum, vFra.meq. (2.105'),-‘ve find that D‘-. vanishes Qith }&'"— 5;
ﬁhere v
.  y oy, '

f::’; &p =z/u3 [F (0)+2/z(0,0)3-f/4§' - o
fhis shows that, in’gene;al; a conserving épproximat!on leads-to'én
energy gap in the spectrum of ?51‘. The source of the’energy.gap lies
in the fact that the condenséte,-by its very ngfure, does not have a
any exchange»propértiés;-therefore diagrams w!ﬂliza overcﬁunt,
necessitatiqg'subtraptiég d;agrams.expllcitly'with 'G%‘s. The
no;gxchange p;operty:of the condensate.fs a reflection OE'thevlong-

range order present in.the cohdénsate, vhich in turn i; a consequence
of a broken symmetry. The symmetry group iﬁ this case is the gauge
group - a group of gauge tranéformations of the first kind -- Vhich'is
broken by the presencé of G%f R 'El's., ete. In.a‘consgrving
.#Pproximation;_we considef the érgen’s function Gl which is
!nvarigpt under the g;ﬁge gréup, which is no ionger therpréper symmetry

group in our formulation, This disparity makes it increéslngly

‘difficult for excitations to "™propagate™ as Gy » leading_to the
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energy gap.f The proper symﬁétry in our formulatlén is attained by
considering ‘51 as'thezprdpagatbr, which leads to the closing of the
energy gap and the gapless approximations. We'élso“note that the
energy gap to each order approxlmation in V progresses as the number
density of the condensate raised to the ordgr-ccnsidered. . To first=

| - @ |
“order, we have /49,~ O(nd); ‘second or‘der,v/d-gpvv O(n:); ng‘- order,

/{;") o(n n).: Therefore the energy gap is ~~ O(n n) in the »Fh
order in V , Hence'as we approach the A -transltion, the energy
gap in the conserving approximation vanishes as expected, At the .

7\‘“-transi;ion, we have a'gapless spectrum and in generalftwo

solutions to D = 0 , viz,'

23“(@0) z_*""(o,o )

= [£%0) .;:9(0_)_] + [5;”(0, 02 212(0)5)] (2,107)

He'see that the + 'sign corresponds to the conserving app:oximatlon;

and the - sign to the gépléss approximations,

C. Approximations Below and Above the'7\ -tranéition “

1. Nomenclature

ﬁe ﬁave seen thct‘thére!is éhé phy#léa;iy lnteresting appfoximation;
ébove'the A -transltign, andwthatvis a cﬁnsérving éppfbximétion. |
Below the( A -transition, we have two cﬁoices, either a conserviné
approximation or a gapless approximat!on. Hence there are two

‘combinations which may . be suitable on both sides of the »\ -transitton:
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. g'VhOliY éonserving éppfoximation belbw ahd above, or a gapiess/
conserving approximation Q-Econservlng above and analytfévcontinued ,
below to be combined vith a giplgss approximation., Note that while

the order of the conserving approximation above and belév mﬁst be the.
same, 1t need not be so for the gépleés/coﬂsef#ing approximations
since tﬁe gapless apﬁrqxfmations singies out ;he réle of_the condensate
“from the rest of the system and ﬁeﬁce can assume q'differen:,order.

A word éhbuld be sé!d concerning the manner in which we name the
apéroximatigns;‘ For the'cohsérving approxlmatidns, we usé only generic
names.(e.g. Haftfeé-?ock) withoutvanf feferenée-to_the particuiér

”ofiginatof of tﬁé apprbkimétion as applied to the‘boSOn system.'
Howe?ét slnée th¢ gapies$ épproximations‘are characterlsti§ #o the
bosén sysfem, ve shall ﬁage them dftef the Qriglnator qf the :
approxlmation fegérdléss of the temperature Qt-whlch-thé apﬁfoximation
. was tirst‘uéed. Finally we;classify an épptbximétioh as nsh'ordér:
vhere n ié'the.highef of the 6rdér Beloﬁfand-ébove..

2, Bose-Einstein Condensation and the Very_Densé State Limit

7 Cbnsider the éystem above the 7\.-traﬁsltion and'aﬁproachiﬁg the
tr#nsition froﬁ'above. We ﬁish to give a criteria.fpr the Bose-
Einstein ﬁfﬁnSItion. Consider a quantum state cﬁaraéterized by"
momentum P e Let uS~déf1ne _Np as the1numbe; of partlcles‘in
stéte‘ P and n, E.Np/t)‘.‘ .as the number der;sity of stat;gl P Now
when we take our N/U™ limit (l.e. N —v09, v—vof,'n=~/v<o-);

we characterize a sparse state, dense state, very dense state, and a
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%

macroscopic state by the various inequalit{és'and 1limits:

sparse : o 0 < N? £1 n, - 0
dense . 1 < Np- | np-a~ 0
very dense ' 1 << N, n, —» 0
macroscopic ‘ 'Np—-aco | n> n, > 0.

The-Bose-Einstein transition is characterized by the appearance
of a macrdscopic sta;e, For a system at rest; vhich ls the only Systgm
we consider, the macroécopic state has p = 0 , - |
In our formulation; ﬁhe number of particles in the p stéte is
. 9o S ,
Np = -% APy w) F(e9) | | (2.108)

b

and A(p,w ) can be written from eq. (2,28)

. ’ ' w) ,
A(pw) = e, — —  (2.109)
- [w-etr)-2Upw) -9 ]+ L [rpw)
where
7 = —put €(0) + A(0,0) ' C@2.110)
and o | |
G(p)= e(p)- (o) . © (2.111a)

Y'A'(p,w) = A(P,W) “A(")Q) . (2.111b)
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It is easy to see that eq. (2.108) is well-beheved fof large w's, .so
that any divergence in N,;' m.us!:Acome from small ¢J's. Recailing the
general property of A , eq. (2.16),'vwe shell assume that. A(é,w)

is suitab'ly $mooth near v = Ov »  such that the divergence in Ny wiil
‘have its erigin in the pole'of the st:at:istical factof f(w).. Thls is
a physically. reasonable assumption as the sin qua non of the Bose-
‘Einstein t:ansitl-on is the Bose.statistlcs. Even when the spectral

function is as singular as a J‘ -function

2n J‘(w;_g/,. +pe) __ véa-,-/u,v o

Alp,w) = {

other wise

so that eq. (2.108) i;eads

')C‘(ép /"‘) = 6(67)/“) | ) blép-/&‘)O ’

N, has a divergence at /A— éo .which is a reflection of the pole
in f(w ). Therefore, for very dense states, we can approximate Np
by expanding f(w) about wWw=0 , i,e.
dw AP w) N -
: >y .
Np = /3__{0 = o p271 (2.112)
This approximation is called the Very Dense State limit, Using
eqs;'(Z.lh)(Z.Z_é),_we rewrite eq. (2,112) as
/
Np = N/,»/ (2.113)

ﬁ[e (P)-+A(ﬁ.0)+77] .
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Hence the Bose-Einstein transition (Ng—% 02 ) occurs at
M=o, t €(o;pp) — A(o,0; 1) = O ) o (2.114)

This equatfon felating )ub - and /3 along with the”equafion.for
:hé pressure will determine a transition linévon thé (pT)'planef

| In ordér ;hét eq. (2.,112) is valid, the main conftibutioﬁ to the
- integral mu‘st-come ffom.'w's such that ﬂw << 1, Henée th_e width
of thé spectfal function must-be-cohtalned in the small . &~( intérval,
l.e. for o 's satisfying Bw <</, Ar(p, w) << _v/ .
. Furtheimore, the peak of.the spectral function must be In thys range,
1.e, for ./3w<‘</ s /"3[6'(?)+;A’(p,.w)+7)é</';
From these two_donditions,”#evsee that our initial assuﬁption of a
suivtébly; smoéth Alpyw ) af)put w=0 is traf\éferred té an assumption
on the continuity of the self-energy Ztoé(]’, ;y) about the
point % =0 . Ve kn>ow that 2“"‘”(}?,&) is continuous across the
origin aloné the imaginary axis, and the addéd,éssumption concerns.fhe
entire neighbofhood‘of the_origln excluding the cuts on‘the real axis.
In a sense, this assumption is analogous‘to tﬁe assumption of

¢ot

continuity of (p,§) about the Fermi surface in order that the

Landau fermi-liquid theory is valid, Indeed, one can interpret the
above assumption as defining the normal boson system,
We note that the Very Dense State limit, eq. (2,112), can be

rewritten as

-/3Np s%@(p,},)_: Gtp,0) . (2.119)
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This limit should not be confused .with the quasi-particle approximation,

vig,

]

'%G(hﬁ) 2'21;3%__% *""/34.(@}3) . (2.116)

If however ée apbly the Véry Dense State limit'to the final expfesSion

in eq. (2.116)9 we do get éq. (2.115), This @erely asserts'the

' commutiv}ty of the tvo-Iimiting cases, not their equality, and thevfactb‘
thatvthé Very Dense State limit is trlvial';f the §uasi-partiéle
approxiﬁétibh is v#lid. Hence the main utility of_the.Very Densé Stéte
1imit is in dispersive systems, i.e. the second and higher-order |

‘approximations,

Let us rewrite eq. (2.110) in terms of the analytic s‘elf-energy ’
= ntOt , . ‘ '
7= —/44. +2 (Pz}so) . (2.117)
¥e note that 877 a above the transition an(_i véhishes on the transition,

It would be convenient then to analytic continue eq. (2,117) below the

transition, i.e,

‘et

7 opes K Gpayee)

where ’ the 11 _element of the matrix. 2""” s 1s the analytic

A Eot
b2 yp
continuation of Sut®% defined above. By analytic contlnuation, we

' mean continuing the propagator G, above to the propagator ,611 below,
Since X3%°% above is a functional of G , this operation defines

%tot « In general, - n <o below the transition.
¥
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I1T. ZEROTH-ORDER APPROXIMATION

The zerotﬁ-order app:oxlmation is mgrely our classification of the
ideal Bose gas, which was first studied for a hoﬁ-massive sy‘stem.59
For thé'méséivg SYStém, we note that the apprékiﬁation‘is trivially -
conserving == sfnce the interactlon. Vl,isvzefo, the function §§
is independent of Gi and '_G;; » and 835 s atot‘ | both
vanish.‘ '

We consider fi;stlthe bulk limit for the ideal Bose gas and show
th;t the tggnsiﬁlon is fi:st;otder. Ve apply the 1dea1‘Bose gas to
restricted gepmetry, first writing down'ﬁhe thermodynamics for an
ldeal Bosé gas_iﬁ an arblitrary rectangular box. .For concreteness,
we speclalizé to a fll& geoﬁetry and stﬁdy first the zero teﬁperatﬁre
1imit, We find that the ground state is not macréscopical;y occupied

~until T =0 and that ¢, diverges as T —% 0. indicating a film

P
analogue of the first-order.transltidn at T, » 0 " in the bulk limit
occurlngvat T=0, At arbitfary nonzero Eeﬁperatures; we féduce the
thermodynamic quantities toexpressions invélfiﬁg si# functions.of

f and & whlch.are tabu;ated. We then dlséuss the equation
for dehsity'holding groﬁnd state occupancy constant and varying L,
and the equation for énergy holding 1L fixed end varying T. In each
case we find three‘diséinct tégion§a' For the constant ground state
océupancy case, we find classical, quanfum diffragtioh, and.quaﬁtum

statistical effects easily discernable, In the conStant»film

thickness case, we find regions of two-dimensional Bose gas,
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: three—dimensional Bose gas, and three-dimensional Boltzmann gas
‘ behavior. Finally because of the reduction to functions of g and
A . we write down scaling laws enabling easy calculati_on of

thermodynamic quahtlties of -any filmbsystem once one film system has

been solved‘ completely.,

A, The Bulk Limit

Above the critical temperature T, , the equation of motion (2.26)
2.27) yields the usual _G;:: P‘/Zm spectrum for G; . The

chemical potential s 1is determined by eq. (2,30)
y o o e _
= G0IH*) = V%J(El’f/“). o (3.1)

We now take the bulk limit, létting the volume T/ - and the total
number get ‘arbi trarily large keeping the number density, #? =AN/T-,
at a given finite value', Then the sum over momentum is cqnverted to

an int:'egral by the usual prescription

[

g

= [IL,
‘U’ " (aﬂ;,-)
vhere we have ‘insert’_ved'the- % 's in explicitly. Eq. (3.1) becomes
nA = f, | - | (3.2)
r 3/2 ) ' o .
- where k= -ﬂ/u. and 7\7- is the thermal wavelength at temperature

= 2RBY8 _ Kt o
At LT M T zrmp, T 3.3

-
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and Fq.(ci_) is the @t order Bose-Einstein Functions®?

: o ol
‘ LR =1 -, : :
Fd'(d) = X d)ﬂ. = ‘e ﬁ“ C (3.4)

The critical teﬁperature‘ T, 1is giveﬁ by .

. o | |
rn Ay = J/z(o)»'-z-)"(-i-)vzz,élz (3.5

‘and is a'function of densit& n ahd mass m . For'Qalﬁes suitable for
h_elium-&, .we .fltid thaf:' T, 2= -3.1401(.’ whicﬁ is to be”compax.'ed v;rith the
A -translfion temperaturé; Ty = '2.!7°K. o
Below.iTo.,.the'BOSe+Einsteln condensation sets in, and the chemical’
potent!él; eq. (2.8_1), vahi‘shé,s. and 'f:hve.equa‘tion 6f motion (2.90) jields ‘

o - PV - S _ L
the t%p spectrum for G; . G% or n, 1is determined by eq. (2.82)

- n= 46 (//+) n, U'Z‘c’-"ef’-—/ | (3.6)
In the bulk limit, we get
- (n-ro) A7 = 2.612 5 TET, | NER)

The thermbdyﬁamlc quantities‘can be easily calCuiated in the
bulk limlt.zv The specifiézhea: at constant volume is cbﬁtinuous ﬁith
a d:iséoxitlhuqﬁs slope at T, . This‘ has led some to denote the
transitloﬁ as a fhirdf§£der transltién. Bﬁt 1f we follow Ehrenfest's

~lead in classlfying transitions, we should determine the order from
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the Gibbs*potential'in PT plaﬁe, Hence we calculate the Massieu
potential W , which is related to the pressure by eq. (1.3) and ié‘
- glven microscopically by eq. (2.61), For the ideal gas, we have

above To

W= - -«&n("' ”’)
_=.2,;""&,."(/f f_(a"’a)) .o G0
= U AP Fayp (=)

where the bulk limit is taken and the integral was integrated by parts,

The pressure p as a function of ( /3) o ) is given by
3., _ | o N
,67!7-? = Ry () B9
- For small ol s, we can invert eq. (3.9) by the expansion
B ()= Y(E) - ¥R« +r(-2) & "-+o(o<'~) (3.10)
to obtain an expllcit form for the chemical potential ,LL as a

function of (T, p), which is just the Gibbs potential per particle,

-eq, (1.11). Holding the pressure fixed at P , we find

/Amro)- e hT. (AT)-'Cz (~)3/ + o(ar?)  ':<3-_11>
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where TO(P_) is defined ‘by> |
‘ ;3 . | - . '
Pe KT W SIE) Gan.
and
PSERS A e
. o £ 3T - 3
¢ E 5 G(3/2) S (3.16a)

Co = ”‘(’3/8)‘ 63/2 _ ‘
2T Ty YL  (3.14b)

Below the transition, wé havé |
Aa(T<T) =0 | o (3a3)
Hence the transition is first-order, with the Clausius-Clapeyron

equation

2E scnty = £275(5) kg

L aT . o
A (3.16)
o 32 i tn en. (3.11). the specific heat
Note that from the ( AT) term in eq. (3.11), the specific heat at.
constant pressure diverges as ‘ AT -9 O+ as.
A .ﬁe (:73) - o
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Below T, , the pressure is fixed by the tempeiature'slohe, and <p
is not defined, The diVergence of cp' is a reflection of the

thermodynamie instabiiity that sets in at the trahsitlon.

B. Restricted Geometry

‘The ideal Bose gas confined to a finite (in any dimensions)

geometry has been of considerable interest, The geometries investigated

-66

o : . : 7,68
has been the film geometry62 and narrow,channels, ?

Moreover the

64,65

geometry may have infinlte extent In some dimensions or be

strictly finite.63'66-68

We first write down the general thermodynamic expressions for the
fdeal Bose gas conflned to any rectangular box. He next specialized

the geometry to the film geometry as defined below and investigate the 0
{

T—>0 limlt. The general equations are written down and discussed
Finally, we derﬁve some general scaling laws,

1. General Thermodynamics

Let us first consider the ideal Bose gas cénfined to a rectangular
box of dimensions (Ll,Li,L3),vwhere e impose the boundary condition
~ that the wave function vanishes on thebbox. Thﬁs fhe energy levels-,

are given by

' T 3 .
E(4 £:43) = i"%"z( £)"; =63 e

e=!

where 415 is the,quantum number associated with the dimensions £4; .

The Massieu potential W {s given by

i
‘ .
| . %
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J:a,
= - , - :

W(ﬂ’v;d)f Z.Ln[/ exp(—/&E(l;l:l,) o()] | G

Therefore, from eqs_.' (1.'5), we find

| o) = . o ,
| N(/’)V ) v};:" .,l,-!; -{3 o __ - (3..20:;1)

=/

VBV ) = 2 Ne4, 45 Ellitds) (3.200)
| Aoty ' I X
=y |

olids L

ey

P800 = 3 Mty [ D]y

‘where Ny, ¢, L3 ' is the mean number of particles in st.gate

(»é] N lz, 43 ) .

A!llllgalj = [exp (ﬂE(JI-(Bls) + d) -;,]-' . (?'21}
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The pressure is dependent upon the geometry of the system. We
shall consider three geometri-es below. The first geometry of interest
is the bulkAgeometry where all three dimensions can be varied, We set

4 e
L, =L, - L3 = '!)'-/-9 . and obt:ai»n»

-2 1 £:) = B (l,4s ¢ ,
QVE(J/QJJ) , E (4, z’ 3) (3.222)

SV

and

P UR) = FR(BY )

where ¢¢ = U/V’ is the energy density. The second case of
in;e:est is that of a film'geomet-ry in which one dimensions, say. L3 s

is considered riglidly fixed. Then

- %, [5(1.131;)] = 3’ [s(z 4:43) '_ ) A5 ] G.220)

and

P(BY, ot) = u{/z,v"c-()_ _4‘/377( )213 /:431.3»' G

ol ’ . ®

(’3’.22b) _
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The third case of interest is the pore geometry in vhich two dimensions,

say.L

2 and L3 s are consldered rigidly fixed. Then

- 2 ‘ z
L E(l 44 Eo64) -Z a2 (42 .45\ .
qv (l 2 J) [ ( I. 3 3) 4ﬁ 31‘ th. + L; ) ] - (3.244a)

and

P(/z, sel) =zur/s.v,e<) -

. 2 '
z/sv Ay Z. ( %) Ni,s 44

/olz{’ - 3 _ e

: Plnall&, the total (mean) entropy of the system is given by the
Legendre transformatiqn back to the exténsive parameters, eq. (1.6).

Using er.v(3.203b),'we flnd’the usual expression

S = z—\ [(I tN '1;13) ’L’"("* ,1‘513) -~ »
4,4;(, | o C(3.25)

-N/III;/;J 'L"' Mtl&'l.; ]

2, Film Geométry.

Now we consider the f£ilm geometry In more detail. Let us define

the dimensionless parameters

= El!l ' =. j‘ | v oy - ~2
;I L' . ) ?&'Z‘E' ). }_""23;' ]
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No physical system is infinite in extent, but the temperature needed
for size effects for a typlecal length of one millmeter is of the

order of 10'z ©KX for helium, which {s clearly too‘loq for our present
technology. Therefore we can take some of the lengths to be effectively
infinite in extent. For the film geometry, we take the limit o,
sz ——p O . as'éevapply the summation formulas in Appenaix.A to

eqs. (3.20ab)(3,23b) to:obtain the equations, valid for nonzero

temperatures,

.ﬁmr Bo (§') "() o o (3...263»)‘
puAy = 5%0(}',0() * g" %, (&) (3.26b)
/}P?\? = P (5L o © (3.26¢)

where
o ' |
¢fy‘k_ (£,2) =% ;Z; 5 (Z§* nz-;-o() K e
' SRR = | |

or

" %‘k (he) = ;zh' 2 5 (B +) K Gam
| | S 7
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where we ﬁsed‘
Ve oy e S ' o
K=ol + F | - (3.28)
‘and » _ ’
$=5 , L=l3.
‘}..3_ ) : 3  (3.29)
In Appendix A, we prove ;ﬁe folloﬁlng'asymptotic liﬁits:fdr' qéyk' .
) —> (&) (2k-01! Foppyy (%) — (3.30)
%’k(;ld) o0 77 ; TSk | . |
S = dkoh FFy ()

B (b o 57 By e

Théréfore»as'the bulk limit is approéched, ;’—49 O , eqs.(3.26)

. becomes

PAT = By (d) —EEF(=) e
AMZ;' = % E}/z(d)‘-'-ég' Fa(el) (3'.3?b)

BPAT = Fayle) = 25 Fple) G
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and the other thermodyhamic quantities are easily derlvéd from
thése equations, | |

The opposite iimit, ;—?00 s 15 the zero- temperature lixﬁit for a’
fixed film thickness L s in which the t:emperature is so low that
}'-—7 ¢ but yet high enough so that_ é’, 0, Fp—> o. Using the

asymptotic 1imit of ¢j[; » ©Q. .(3.,31),>we_obtain

7 23 = g F-—‘(O(') - (3..336)"
B AT = FFa(e) + g i (') (3.33b)
BPAT = R («) |  (3.33¢)

Let us considér this limit ixi' rriore'_d'etall.

8. _Zero-Temperature Limit (;-9@)

To interpret eqs. (3. 33), we conslder t:he following thermodynamic

quantities due to the ,ﬂs— band

%0
N2 i A : : o
e S T ‘t‘*‘%@ x,4‘4 o e

- U,g.
“e =Lt 3.34
| 4T L L,L;L 2’%1,4. E(4 4z £)  (3.34D)

-"'l

-

Pe= Yo —ne £, o R
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where

- -‘__71‘ 2.,2 - - :
Ep=g i . . (3.35)
He get in the limit of §—> 00 the following expressioh's '

perds FE(+EF@-0) 0

fBee 7\‘734 =-}Fg (at'?f- g-;"(,e‘—/)_) —+ Mg €¢_ . (3.36b) -

B Py FR(&+F L)) (3.36c)

We see that the terms from fhé excited bands, foe. Ng, g, Pe
for - £ > 1, all vanish exponentially as T —% 0, Hence as
.k\T % 0 , all the particles vsqueeze into the first band, and we find’
a striéti} two~diménsioha1vbéhavlor.- Therefore éqs..(3.33) are just
equal to the first-band contributions from eq. (3.36). Hé call .
| this limit the first=band approximation. ” |

The ground stat:e occupancy Ny B [ed - ‘J ~can be
obtained in this limit by studying the beh_avior of £/ as T-—=» 0.

From eq. (3.33&5 ve see that

.")2?4 = —A;Md,
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where we have expanded, for small o{’

F, (ol’) = -Lo (1 —e*) > Lo’

»

Thérefore as T —% 0 , we have

- 2

: -t
K'=€e ~ e T (3.37)
and the ground state occhpancy is
. 2 .
_ nArL R
N L = ™F L eF 0.3

' 80 that mactOSCopic occupation does not strictly appear until T = 0 ,
which is® well<known,

In order to discuss the specific heat, the energy density may be

wtltten_

,u(B‘U‘:N)- T g{j{) o
and the enthalpy density is

ﬁ(mf, )'?zm’% :f“fi"'; -)»nE,o  Gam

The specific heats are found by differentiating eqs., (3.39) to get
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Cp(T) = riky [F‘(“')

Fr (' o
1 (%9 . (3.40a)
a« [ Fe (o) F (o(') ‘ '
T 2
gd) (Fz(o(') Fo () __,)] |
TP\ By .
| From eq. (3.33a) we find
A ACY) -
(e ) = L2727
B9, 558w
From eq. {3.33c) ve find
T(?-——d = 2 — ~(3.41b
?T)p = Fw@y 2-410)

Inserfing eqs.'(S.AI)‘into (3.40), we have

o R Folat?y ) |
G = h 2 22 | K] -
v (7 é"[ Fla) ~ R ] (3.428)
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< (T) = 2.!?75?3 [Z RE)BE) _ R« ‘J Q)

F3 () Fi(L)

which has the limits, as T—>0 ,

'- N o~ 285 9(2) 4 ' | a g
Cyy(T) = G L A (3.43a)
CP (7‘) = 4-35?@ ¥*(=) L e"'er,g -r_ef%“ (3.43b)

L Az - y |

The diverges of ¢p does not violate Nernst's postuiate as the'entropy _
density is

y ; . °3' Vi .2!52 L - |
4 = ;ar F;(d) ;:;: r 2 ~ T (3.44)

and vanishes at zero temperature. We note that there is a ‘thermo-

dynamic instability at T = 0 , as

(2B) - - nfer Bow
3'0’7. v Foj(d')‘

'yanishes exponentially as T —> 0 , and the usual consequences of
Nernst®'s postulate does not all hold, namely for . Cp o This curious

~situation occurs because the analogue of the first-order transition at
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T, for the bulk limit takes place at T = 0 in the fiim geometry,

In the pore geometry,67 it hés‘been shown tﬁat a finite system
can behave as a one-dimensional system, In our infinite sysﬁem,.just
as ve ﬁave demonsfréted'thé strict two-dimensional behavior of‘a film
geométry, we can llkéwise do the same for the‘pore geOmétr&. The

equations analogous to egs. (3.33)'are _
: J. - 3,‘ -
”)7 = FTFy(et’)
Aud =25 By )+ FE4F, ()
PPt = 5 Fap ()
where we havg taken the system with
§= ;32?3 > k=Tiz=ly
and o

é(lg,o( "f‘ %EZ

b, Nonzero Temperatures

Now we return to the general equatidns (3.26) and calculate the
thérmpdynamics‘for thltrary teﬁperatures.
In order to calculate the specific heat, we write the energy:

densicy as
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«(g o) = nr(",T[ ¢i°(}"°‘) ‘g'é (}';d) ]

Bol F1et)

and the enthalpy density as

7%<rf;cﬁ) ='i7)%b'7-

[z % o) + %?%,(5«)] -

B (k) B

We need the'variOus derivatives of ﬁ%;k_ s viz,

;§T¢ (het) =

é?_;z %_k(}’jd) =

| —i;.-- B (%) -

-E"';»% ¢, kyi Q"d)

- ?7°;/)/¢ (}’)d) ‘ )

and from eqs. (3.26a)(3,26¢), we obtain respectively

T('a%“)

7GR, -

/a(f';"‘) + E%,(&‘U ,
| ¢%u>(f)°() H

2%005%) + T B, (5)

Bolk +)

(3.45a)

. (3.65b-)

(3.46a) -

(3.46b)

(3.47a)

(3.47b)
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The specific heats are then calculated by the equations

(? u) v

exp/ ( g"‘) ( _ 2'-i;;' .(g;;:()o(-

i

cy (7) (3.48a)

v CP(T) < F | | | | o B
. _(24 134\ 24 Foad - G
.j(gif?fézﬂpé -+'<;§ZZ,)f (ﬁf;?z, "‘3;;:(%%;;)Ci | |

which result in, using eqs. (3.45)(3.46)(3.47)

(3.49a)

(3.49b)

L
"Rt ke T b TR, F )]

By the use of egs. (3.30)(3.31),'one‘can easily verify that eqs. (3.49)

reduce to the first-band approximation, eqs. (3.40),as. T—%0 and to the _
usual expressions in the bulk limit.
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Equations (3.26}(3,49) contains much of the thermody.namic properties -
of the film geometry at arbitrary temperature, Note that the thermo- |

dynamicé are de_pendent on 6 functions ¢og, ¢,ﬂa', @to, ¢9,,'_ @,, S{éz. .

| These functions have been computed and are vtabulated in Tables 1-6.
Also ¢,b, ¢ao » d%,, are plottéd iﬁ_Figs. 4, .5, 6,

| Figure 4 and the equatidn for n , eq. (3.26a), give us directly a
relation for the density n(T) for a given occupation of the ground. |

state, NE

/
N, = ° .

and a glver_x film thickness _vL . However it ‘ls more interestlng to hold
the d‘ensity fixed and to compare the.tvempexﬁ'atu_re of the film with the
corresponding bulk system for a given occupation of i:he ground si:ate'.
Mathematically, we need the inverse ratio §f eq. (3.26a) with the

cdrresponding equation for the bulk system, i.e.
= (3;&) = {E% (%s) %3 ~ (3.50a)
Bolf, &) | o
with

/- ‘ 2 , - ' o

where T, 1s the bulk temperature for a given ground state occupancy

No = Ee“@-—l]-] » as defined by

P z% = Fy, (%) .
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Eq. (3.50) is plotted in Fig. 7, where instead of T/'I‘b versus » :

we have defined.

7‘77,;'7\r¢‘ ERE
; ; - T . (3.51)
The lnterestlng feature of Fig. 7 is that T, Tb for a reglon of
small ﬁﬂb ;s 1.0 as we "slice" the bulk system, decreasing 'L and
keeping n fixed, we find that the temperature must first increase and
then decrease in order to malntain the same occﬁpa;ibﬁ of the ground
sta;e. The T 2 Ty 'reglon.can be viewed as a regioﬁ in which

"classical® effects dominate, To see thié, let us considéf the point

where T = Ty ; f.e. we look for solutions to fhe equation
. - ey _ -2\, . ’
Py () =Bk, 4 FFE) (3.52)

for‘a'glvenv_ c(b . Qne so1ution_is ;;'= © , vwhich is ;riyi#l and
corresponds to the bulk systemvitself. A nontrivial solution does
exist in géneral és evidenced by Figs. 4 and 7. As ye.increase _cib ',
‘E; becomes.largEr and larger. Finally in the classical 1limit of
large oy s, }b —3 00 : and there is no finite nontrivial
solution to eq. (3.52) as shown in Appendix B. ‘Hence the region

;& < jﬁb is a classical region. The physical effect is that
as we "siice" the system decreasing L and keeping ' n”'constant, we
drastically reduce the number of hvailab1e energy Ievels fncluding the

ground state, Therefore-tovﬁaintain the same ground state occupation,
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we must incfease thg tempefatutea However, as we continue to "glice®
the system, the ground state energy increases making it increasingly
difficult to occupy the-g:oﬁnd stéte, and the teﬁperature must be
decreasedito maintain constanf o¢cupation of the ground state, This
latter effect is clearly a quantum diffraction effect which'takes
hold when the deBroglie wave length.is comparable to the film
thickness ¢ ‘g §L4f ), genérafing the flrétaband appréximationo'

In addition to the Meclassical® effect for shall' §' and the
quantum diffractioh,effect for large ' ¥ , there is a éuantum
statistiéal éffect in the region of very small e{y, or large‘

<

occupation of the Yground* state, If &, << | -, say X, 10-8 .

then

F(p) »> F (FRAP™=0D+ o) A2
and

BlForb-FRD 2B ACH . o

Using eq. (3.53), we can explicitly solve eq. {3.52) to.get

L= Fan(®) _  s.402 e _ 114 G

-

F (db) . mn oy, - 'egﬁlo“b

Note that the approximation which led to eq. (3.53) is not the same as

the first-band approximation which 1s valid for large ;f for all
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' ﬁéj;" *s, while tﬁe abqve apprOXimatioﬁ_is valid for small . ﬁ' and

is dependent on time divergences of Fl( HAp ) | as ._db —y O.

The phys!calvinterpretation of this approximation is that the grouhd
Qtate {s so densély'occﬁpied due to the quantum'stétistics thét it
dominates all thé other ;tatesiln the éystem. _Becadse of statistiéal
correlation, the ef}ective léngthvfdr quadtum effects ﬁay be much

larger than the deBrbglie wave length, the ﬁeasure of quantum diff:actlon
effects. This effective length due to statistical correlation is
obviously dependeht on the. range of db in wﬁich we are 1nté’res£ed.

1f, for’instance,_we were intere#ted- in cbmparing_some macréscopic
behavior éfva bulk system.and a flim within %ck of the bulk critical
temperétnre; Ty » Which éorreéponds to a ﬁaxiﬁumv &, of 102 .

the effective length accordiﬁg to eq. (3.54) is of thevorder.of 15 X .
However ol ~~ IO'2 is gtretcﬁing the validity of eq. (3.54); and
1f we solve eq. (3.52) by Eig. 4, we find an effecti?g length of the
order of 35 X . Hence we can definé a “small" sysfem as one with. |

L £ 35 2 in which the ground'staté i{s densely occuﬁied and dominétes
the system, and a "large® system as one with L 2 35 % 1in which
"classical" effects are prevalent so that all states.need to be summed,
According.to.this-estimaté, the diffraction effects which begins at
L~108 is completely pre-empted by the statistical gffects which
begins at a muchviarger L ~ 35.2 o‘ This estimate gives a microscopic
understandlng to thé %large® and "smali" Systemsrintroduced by

Goblie and Trainor66 on the basis of the specific heat behavior within

%OK of T, . They also suggested a correlation length of the order of

40 .
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.Levt us now consider the energy of the system .as.a function of
temperature, which can be déterﬁined 'dlrectly from eqs. (3.26) and

Figs. 4, 5, and 6, Eqs..(3.26b)(3,26a) éan be written as, respectively,

o( -2 P, (£ 0
x(-’z)t‘?/z.-.- Fol5i ) s

where t = ‘I.‘/T ’ ;o a.r s and e = u/(nk- o) are all dimensionless.

Let us fix L and vary T We find that eq, (3.55) reduces to : | s |
3‘(2) 2 /A : o
< e /. v
| e(t) = )‘,(%) fot ~Ih t</ e
eft)= Tt +5fVE  txs (3.57)

It turns out for L = 100 X that ghe function ¥;o* Zf-¢” :

is almost .constant in ( ; » ® ), so that eq. (3.55) becomes

_ -', ¢¢o+ ¢u] , 5. 5/2' . | (3.58)
Q(é) = [ ¥ (3/2) ¢ z ~ PO
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"Hence we can identify three regions:

(8) for T »>» T, , o 2, 1, we have a three-dimensional
Boltzmann gas, so that €~ T;
(b) for T~ To AL 1, we have a t:hrée-dimensional Bose gas

‘with. e~ 1T,
(¢) for T"&" To » o L< < ‘1, we have a twb‘-‘divn‘ler{slvénal Bosé
gés with =4 ~ .Tz . _ |
Ivn Fig. 8, we plot -e:(t), for L=108% and L » 100 %.

¥We note from eqs. (3.56)(3.57')(3.58)' that the specific ﬁeat at
constant volume, Cy ~ (36}“/3'1") . starts off near T = O
~proportional to (T/L), then goes over to a | 1 3/2 de‘pend.ex'\ce,. reaches
a max!mun'x,.and .descends at 'Iar_ge TA to the classical value. From
eq. (3.57), we see that the rate of descent to the classical value at
large . T becomes larger and iarger as the fbllm thickness decreases,
This impliés‘l that the specifié. heét: mé.lximum havé. ihcreased ot sﬁifted to
.higher t:empe_rat'\_xres or both. Goble and Trainor has plotted the s’pecific.
" heat at constant volume ‘showling that the 'maxi.mxim mow)es f:o hig‘ﬁer
tem;v)erétures' and is broadened as the film thickness is decreased. B

3. Scaling Laws

We novw turn to some géneral gcaling laws., The basis for these laws
is in the tedpction of therﬁodynamic‘quantitles to expressions involving
the ¢jk, (5", OL) . functions. Hence 1f we transform (or scale)
the system keeping f‘ -and a( -invariant, t;he’n we have laws relating
the thermodynamie quanti’ties for_ihe two systems, »Let‘ the systems be

primed and unprimed, 1If g’ is to be invariant, the lengths are
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T

‘related'by
. L -zr | T,),/z R o
L’ ’, p, Y < T - | (3.59)

| §4 ‘b( is to be lnvarlant, the densities69

e related by .
Ll 7‘7’ = __. (3.60)
n’ 7,.,.

Then the thérmodynamic qdantities in the unprimed system with density
n and film thickness L. at temﬁerature T are related to the primed
- system with dénsity"n° and film thickness _L' at temperature

T by

P s« _ A _(H?* |

‘f’f’;’ = T T % (,_) 4 - (3.61)
: . : 7 3 ' '

Lv_ = L2 = (._‘:_.) L (3.62)

The utility of these scaling laws'ih'principle is that it ﬁermits the

calculation of any film_system once one film system, i.e. one fixed

value of L , has been solvgd for all densities and temperatures,

“~
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IV. FIRST-ORDER APPROXIMATIONS

Almost gli‘interaﬁfing boson systems sfudigd in the literature fall
into this group of approxlmaiions. The reésqns for this préclivify
can be said to:be twofold, First, the first-order approximACion_is
clearly thérsimplest_way to anludel!nteractions 1ﬁt6 the system. |
Second; the first-order approximation has no dispersiyé character for
fhe self-energy; and heﬁce all‘firsﬁ-ordér theoriés may be characterized
by a gas of sultabl§ defined quasi-particles, |

We begiﬁ by constructing the éeneral micrqsc0plc theory for any
flrsf-order approximation, In>dolng so, we also derived the total
energy of thg sysfem good for any o:ders. .We then consider in succession
the following approximations: Bogoliubovlldeél,‘Haftree; Boédliubovl
o . Hartree, Hartree-Fock; and Bogolluboleértree-Féck approximations,
Finally the application of these'theories to the restricted geometry

is considered,

| Ao Géneral.Thebgy
AThe general theqry of the firsﬁ-drder appro*lmation abqve fhe
2\, -transition is sttaightfofward and will not Se'presented hefe;
Hé considgr the generaIAtheory below thg ';\\ ~transition. Thé general

first-order Eot$1 self-energy is

2Pt 22 -

E%)  F%p)
F°p)  E°P)

(4.1)
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3,

where all frequency dependencé is absent. The propagator, eq. (2.90),

becomes

-y [~3v-E )
G(f-‘)}v): 'é‘ j o B | k) .
b F(p) v-EP) (4.2a)
with
p=-{5-F%m +F @} )
where
E(P) = €;+ Elg ~ - | o (a.ﬁa)
and : .
F(p) = F-'; . L e

The excitation spectrum of Gl- is giveq.by D=0, or
Jvo=TEP o (aa)

where

ew= @ -rrpy . @

v

i

¥e can interpret these poleé of G; as a double spectrum, wﬁich to

" this order agrees with the double spectrum of Mohling,7o The two
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poles may be displayed explicitly by wrltlng:eq.i(d.Za),as '

NP Up  ~uptp
G(ﬁ?w) &,—E({’) ("“PVP ) -

Bt .
‘ | (4.5)
e — Bt —eptp |
| “}‘,+1£C?9‘ '—‘ﬁ’z§b . .ngt |
wﬁere . ‘ o
"u';.-: le-[-g% w] | o (4.6a)
o LB _
'V;’ T2 E0p) ’.]' (4.6v)
: £ FP
pVp = ——en H v
“p Vp z J
o E(p) (4.6¢)
and the spectral function for G, is
| L | | | | : > "'“Xv V;
Ape) = 21 d(w-£(p)) “p O I
. . '"‘$924; za;l
4.7)

-zwd“(w.-f-g(p)) Y '“P’Vf‘)
| \~%% o«

We note that the 647> and 'Lﬁ; are just the coherence coefficients

usually introduced by a canonical transformation, in which &4&p measures
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the admixturé of the new creatioﬁ-operator in the old creation
opérator aﬁd Eﬁb measures the admixture of the néw annihilat!oh ’
operator in tﬁe old creation operatore_vAlsb note that this ‘X(é,ul)v
safisfies the suﬁ rule, eq. (2,93). |

‘The first-order theory fredictﬁ in general a'depletion of the

ground state., At temperature T , the number density is given by

p o o
22 A (pe) £(«)

zf;"m""
= 7733 %:. [up (&) +1, (I-r-ﬁ(g;,,,))] (4.8)
where | |
F() =='““*-£-__mm
T ef-r e

and we have written ‘SP . for £(P> . As T~»0 , ve vl:xlave the

depletion

to = £ = "zj» % ?J;oz | | (4.10)

1. The Total Eneggy

Now we write down some general expressions for the energy that is
not restricted to firsteorder theory. The'general.expressions are then
specialized to the generalvfirstkofder theory by the use of the spectral

function eq. (&6.7).
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° The total energy of the system 1s just the ‘expectation value of the
Hamiltonian, Below the 7\, -transition, we can take the expectation

value of the modified H'amiltonian, eq. (2.6)’; and put it into the form

<HEDY

= UspuN -

- A (4.11)
= a3 [ (s).d _ v?_ ] oyt
Swfen iy - 25 e

‘ Ko

Recalling the definition of ?;‘1 » eq. (2,73¢c) and its Fourier series

eq. (2.'13), we reduce the matrix eq. (A.Ii) to_ aﬁ ordinarj equation
u—;«an = --,fn/u. el |

L oy 2% /o o

v 52 2w ) G (h3)

(4.12)

where we wrote

~ : g;(P rv ' 57 (PI?")
Gy = [ PP TR
| G (B 4 v,) o ?;n -(_Pa ~&v)

and e = U/'U' is the energy density. I.nt\ro,ducti,ng the spectral
function, we write eq. (4.12) as
oy € ’

"‘2”/“ | . " .

u.yunr . é%fﬂﬁf -é-(w-f-é;) AJ,(P}M)'F(“?)L -
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- If we,divide the Hamiltonian into two parts
FE) = [Hott) e (8)] + e ()

where Ho(t) is just the kinetic energy, we can define an'interaétion

energy as

.<4"/me ('t\)>v = Une

= £ [ . 2 Bl S
K Jas; [‘T“")z% + +/A]' G(11’) (4.14).
v o | n'-n
| Tt

Going through the identical'steps which ied from eq. (4.11) to (4.13),

we find
e = T RS EF F(w-&) A, (pe) Fle) +
o . | o (4.15)
S 1

Finally eq. (4.13) can be written as

F

_ —' L ' QZﬂyd f AJ' ’ .
pen = g 2] S W8P0 F) ~ ety 01O
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Above the A oi:tansitlon; the procedure is the same, We have

= = AL Ct,) >

| o G.17)
- € ) 7/
- fo[e8; - ) o0
| ‘ rn'-»r
/-,
" Mn‘é- = <""%£~ ('f'/)>
: (4.18)
= —-jaé [ é:}- T - am +/u.] G(II') |
nloh
¢/t
and
R N .
“pn = g BT A G5 g

27"'

i
Rk
M
‘2*\ '

Mﬁ(w-a’ é°)A(ﬁw)—:¢(w) --Ln/% <‘f;19b) |

=?JL’;‘ ‘{o%ﬂe w Apw) Flw) - "‘mt (e190)
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vhere

une = #2;.,‘ G2 L(w-E2) Alpw) £(u) +

(4.20)

He note the farmal éimilarity betweeh'these\equations for fhe1
.energy ahove with thdsé bélow.‘ However the similarity disappears‘once
we.iﬁtroduce éxplicit apeétral functions since A hés two,poles.ivNoce
. aiso that eqs.'(a;l6)(&.l9¢) are‘generalizationsfof fhé Koopmaﬁ's
théorem in solid state physics, Now we.lnsert the explicit first-order
spectral funétiogﬁ to demonstrate thesg rem§rks. |

The first-order spectral function above is

Alpw) = 2n §(w - Ep) | (a.zm
where
é; = Cppe= &7+ TP ~po  , 2w

.and the first-order spectral function below is from eq. (4.7)

A, (pw) = 27 A¢'J‘(w5&) -2 Ut (W) (fz.';zz)
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The énergy above is, inserting eq. (4.21) into (4.19)(4.20),

2, The Massgieu Potential

(4.23a)

(4.23v)

(4.24a)

(6.24b).

From eq. (1.3), we see that the Maséieu potential is'giﬁen by

W = @ - (wper) = 2P

(6.25)

Because of the ¢ -function in A(p, s ), eq. (4.21), the entropy

of the nermal system above is
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E S

| S.é%{(w#(@,’,)},&» (1+#(&)) '."__-F.(é,‘;)}—&vyf[é;) ] |
- | | ' (4.26a)

= %[/3%; (&) -f-‘,&n,_(w,c(g;))] | "

Below the transitlon, we note that superfluid component do not

contribute to the -entropy.71 ' The normal (quasi-particle) component has
. ~ -

a gspectral function like eq. (4.21) except @f"-‘? £p . Therefore

the entropy is below

S= % U’*Héf’)) Ln (1+ .ﬁf(f,,)) ~ F(&p) £ F(£) ]
|  (426D)

. % LpesF(5) + M(wf(ep))'] |

" Combining eqs.f(d.Zﬁ)_vith'those for the energy,feq5.'(4.23)(&.2&).

wve get the Massieu potential above

£ = LIl (1+F(5)) +
- P : o ' ‘(z;.zn)

f.%_zp‘_\ T RUP £(E)

. and below
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W L | -
7 v%%(l*f(gp)) f. %%‘(ép-e;)‘a»
o - o | o ‘.
-+ %ﬁoﬂ . _.
where we write
g,?:.-: é; -/u. | R | (4.27¢)

Then by eq. (4;25), we immediately have the pressure for first-order
approximations,

Summarizing the thermodynamics above, we write

7= :é'%f(gl;) o _ . | (4.288)
ee=L3Y g F(&) ~Conp i © (4.28b)

@z ST e () + & 2 §4(5) e
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= ..21; % k\-(l-#-‘f('é;;)) =t f/‘h

4= 34-%; ,&,\.(/-f-f(@' )) + .'
UL GFE) s
| .ggég iﬁ/b&

vhere
Uy = #%[éﬁ"(?)*(é;)]".
and v .
fE - éBT»d.
A o+ P

‘9= u-.-)?gTJ-* 7

(4.28d)

(4.28e)

(4.280)

(4.28g)

(4.28h)
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- Summarizing tﬁe'therﬁodynamics'below, we write
. L (e +UE) £ 2]
n-ﬂo*v—% (e +52) £(E) + U
“ETVLEHE) ~TREHEY —

EaaN

/?'... %M(M-ﬁ@»)) —.,-5,'2,; fg/, VP" -

o
[

F

J;\

%h(w ;(sp)) *5 S.EpF () +pem

*;

AT Sadn (/+fz:so>) «»-LZEP + Lome.

(4.29a)

(4.29b)

€4.29¢)

(4.29&)

. (A,ZQe)

€4.29¢)
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where
‘_v“mé' = ZVZ*[%P & ( ")]%(é}v) -
avz: (EP 50) . -Ln/u. (4.29h)
which rc?m be written
RN CRL oS
' : (4.291) -

Thus. to be able to do thermodynamlcs, we need the energy spectrum
Cp and the chemical potenuial Vand above, the energy spectrum
éf’ wlt:h the energy parameters E(p), F(p) and the chemical potential
’~ below, These.qugntities are ali_gpecifieq-onée ;he self-energy

" is known.

B, Bogoliubov/Ideal Approximation

The Bogoliubov/ldeal approximatlon is the natural extension to
- nonzero temperatures above and below the transition of the system first
studied by Bog‘oliubov72 at zero temperatures, He emphasize that the

extension {s natural because, unlike other gapless/conserving

"i%%?z(ﬁo*g}o).%fm/c . . |
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appfoximations, the‘Bogoliubov/Ideal involves‘noAanalyEic continuation.
The Bogqliuboy approxiﬁétlon at T=0 hés been extended to strong
potentials in a dllu:e gas by the u§e,of.a psengpoteﬁtlal?3 and.a
simultaﬁeous expansion 6f the poteﬁtial in powers of the two-body |
scattering amplitude.74 Furthermdre, ;he'Bogpliubov appréximatlon has 

" been éxtendéd-t; noﬁzero,tempefétures Selow'thq transitidn:using an
extended grand canonical formulatlon75 and Green's: functlon.7

t
The approxlmatlon is defined below by the functional iik[bex ’ G%+]

in the form eq. (2.79) which leads to the chemical potential
,u_:ﬁo‘_/o =~ '  (4.30)

and the éelf—energy by eq. (2.88)

i |
2“09(,,/) = ...‘..a(u’) fd.z WIZ) (-"-) G:/ (2) +

&

N ' (4.31a)
Ev(I’) Gy, (1) G,); (1%)

which feduces tq; for a uniform condehsate'
1Y) = prove E11%) + NV(1Y) [7’{f’)+7("_] )

in momentum space, we can ﬁrite the éelf-energy as

Ih?(VG'*‘972>' » ’15$¢’
A Ve mp(Vet¥p)

(4.32)

Dot - \2;°(P>\,=.
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where -

o= Jor v e T

e

and we can easily see that the Hugenholtz-Pines form is explicitly
satisfied by egqs. (4.29)(4.32)., From eq, (4.4), ﬁe,§ee that the

spectrum is the usual Bogoliubov ones

EP) = V’ef? (€p + Zﬂovpy | | (4.33)
with
g(f’) = é; + 170 Ve , : (4.34a)
Fep) = roVp ' - ~ (4.34D)
: g".(p) = ef -FVe - (4.34¢)

P » .

With thé energy15péctrum eqs. (4.33)(&.3&) and the chemical
potential eq. (4.30), we can insert them into eqs, (4.29) to obtain
éhe the:mbdynamicso -The integrals involving the Bogoiiubov energy -
spectrum needed for thermbd&namics are summarized_in‘Appendix C for
émall values of (/3!?5AV2 ) o« We note that among tﬁe»seven
thefmodynémié functions summarized in eqs. (4.29), only two of them,
the number density and the entropy density, are not dépendent upon'the

chemical potential /04;  explicitly. The_import'of this obsérvation’
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is that conclusionsireached'cbncemihg n and s at constant volume

are valid for all approximations with the ’same"spectt‘-um.

In particular, let us consider the number cler'\s‘lty,.,7 v

Meny + 7\7. (pnot/o)+ 21 o ‘(4.35a)v

which can be written as, up to order ng ,

7= 7o + 757- {T( ) \f~ 0( -+ )’(’L)o( + 0(0(”)] | (4.35b)

where
L

L= ~/377 = ﬁr?ak/o > o | (4.35¢)

Holding the number N and the volume. U of the system fixed,
we defined the transition temperature To(n) - by setting =0

in eq. (4.33a) '\

ha ?n Y(£ ) | | . RS

¥e note tﬁat for very small e{ , there is no solution to eq. (A.SSa)

if AT Si('l‘ - '1‘0) < 0 . However a solution does exist if we

' ‘allow - AT > 0, The positive o4 term in (4.35a) would then

turn the solution back into the &T <L O regibn, To see this,

' ‘we rewrite eq. (4.35a) as



| o%m
‘\ |

gt rygl2(xa-cyr ]+ (Pt =0 wn
where

a =/ + ¥(4) VG, x V2

{4.38a)
c = an/ () o | (4.38b)
" em VA, A”'? .

and g = ng/n, X =

T/T; are dimensionless parameters. The -
solutions to eq. (4.37) are

=g [cVpxt-20)a] 2
R - | (4.39)
o , ‘ 2
* 3 [(c Vie ¥~ gac Vi 22 (2 2-:)]' 2

Fdxf' small AT. we take the minus sign to obtain

Do . (8T |
= 2 -7;) | . | ‘ - (4.40)
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‘The solution begins to turn back when the discf!mlnant of (4.39)

vanishes, defining ¥e = T;/To
cVp 2E = da (-1) (huan)

which ylelds for small Vp

Te~To 7T ' '
e Wl 4 B
For small values of §T «(T—T,)< 0, we find from eq, (4.39)
‘using'the po;itlve.sign'
70 =~ 125(72) N Ya ‘
~ (— T (4.43)
£ Te
- where
Zo() < VL iﬁz
n T 4ar /o T (4. 64)

which haé the limit (n/2 )‘(?(3/3.))'# Vfo  for small Vr, .
Such behavior of ne/n w#s‘pointed out‘recently by Luban and'Gfobman
for.two'speéific models, but ﬁe éee its genérality, occufing'whenever '
& Bogoiiubqv enefgy sﬁectrum exists, Tg.complete the analysis, we

note that .

(4.45)

78
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and
ﬁz;Qfﬂsfbgil ~ _;'¢57”.)
R R T

(4.46)

This behavior of noéT) 'is-sumﬁafizéé'in‘Fig. 9.

We see from the abovg analysis that therebarg two témperatures
in the system; To and Tc « In order to determine where the
transition occurs, we must.calcﬁlate the thermédynamics° Luban and
Grobmén78 went ahead and calculéted the specific heat atuconstanﬁ

volume, assuming that T, {s the transition temperéthre. From eq. (4.43),

they found 'cv ~ (-6‘7‘)-'/2 » He shall‘ show that this is not

the case when the interaction is more general than Vo . When : e

VQ?_Q: Ve » the thérmodyhamlés appear to beﬂillodefinea. aFinally,;
we note thét ocur eéuatfon fd: the énergy, eqs. (4.29b)(4,29h), redpcés
to the form used by ki’ 1 ve set ¢4 yne = *mopt o The other
terms of ‘4'int'd°-“°t appear in GKW as they ignofed:the interactlpn'
term in. the Hamiltonlan, These interaction t;rms>are very importanf
near the transition;'   |

The the;modynamiés can be obtained from the Massieu botential or
thé pressure, from which the Gibbs potenfialvat'éonstanc pressure may
bg calcuiated;'_Wé shall be contented with thévf;rst two terms of the

expansion of Vp about p =10, i.e.

Vo= Vo+ V¥, S PPt : (4.47)



«97-

The cruclal' term_s'are the interaction tgms
-3 | o
“mé = %? Th [('f(z.) + 3 .4.7; Vo 3’( )) &« + 0(0("-)] (4.48)

vhere the 0( A) terms come from the first term of eq. (4.291),

If we lgnore these terms as in GKW we get

P= ﬁf—;[ﬂ%)' 5’(%)“‘*5"&’5%0(3/3-# o(c(")]_ (4.49)
| T | | - - -

Holding the pt:essurg fixed and expanding the temperature about
To(P) defined by séiv:'ting 7 =0 in eq. (4. 49), we see that there !
ts no éoiution to eq... (4.49) for A T < 0 and 7 < 0 for small |
" values of \A'H, inl . If.‘.v'e allow AT > 0, we

find a Gibbs potential'per particle wi\!ch is double-vélued as a function
of temperature, which is cértainly difficuit to interpret, If wé
inc_lud.e Mint s the | term linear in & cancels out, and we

find 4o ~ (-.-'A;'T‘)a'/-s iihich leads tq a divergent entropy. However
If we keep ‘the V, vtezb-m in the expansion (4.47) y WE. find to first-

order in V; , P

o AT 2.V ' 3 o
fP- ‘“‘5’%“[?(‘%)* 7 Vs 5(“9_“ + 0(“/*)] /“".5,0-)
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which yield the Gibbs potential per particle at constant pressure

P = kBTo 7\% ‘g(s/z)

(]

| /4[7‘(_7:.) =T %}2 !";’ '@@ ( ) -~ o(or%) | (4.51) -

The analogous equation above is that for‘the.idéal gas, eq. (3.11)

.M(TM:,) = -2 :ﬁfi %y 7o (—.“%

| | (4.52)
-, BT (AZ)% + o(a 2)’
280 \"5/ 774

Hence the transition oeccurs at To

a change in entropy per particle

a(%) = E(roT) - F(1<) |
¥ (/) 100 Vo ‘ - e

y(&2) ? v, .

i
mly

From the ¢ A H¥2  terms in eqs. 4.52)(4.53), ye see thét <p

diverges on- both sides of the transition as IAS'T l"'!5 e Since the

.

change in entropy per particle must satisfy

and appears to be first-order with
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a5 SR
< alF) < I 5em

we see from eq, (4.53) tha;t: V) 20 .and-t_:hat'

...V.».?. L —-‘g—_x_(__@ >~ 0.12 = (b.S6)
v, 4T p(3/2) : ) . (8.
Hence the Bogoliubov/Ideal approximation is strictly a weak potential
system. vathe potentigivis too strong, the system finds it more
favorable to remain in the ideal phase, as we can see from the free

' energy below the tra‘n.sltvion‘

- ﬁ;;[s(i) (&4 s8) - y<»>)a<+ozo<%>]

(4.55) '

“-‘,ﬁde“ = fﬁz[.%,%fr(—g) 3’(“)]« + o(ow/r.)

kK

f

The speciflc at constant volume may be obtained from the free energy,

or more easily from the energy
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“.-

-&,51 N .

From'éq. (5.35), we see thaﬁ g4 satisfy the equation
Ad —B Yl 4+ =0

where

("’A [W-) V“’J/y(ﬁ-)

{ e \rzﬁ’/‘r(ﬁ> |
| kc =.;3'=-  (Tol/’r)s/"v !

éith solutions

- | ' | B/n —- S/
- ....!.. 2--- Ay .
,-a( | ZA[B%\/-B‘ ‘MC} & {_C/e

for c©<<l
Therefore, taking the plus sign

VT pe

& (T) = T v Y(’:

’W {%w +(4,, «-—-y(ﬁ’) :r(»&))« + o(«%)]

(4.56)

(4.57)

(4.58)

(6.59)

(4.60)
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‘and

( _VaEmVe 3 'fr(fl) o |
-r-w- 2[5y +vyy)®  @vam \z/ o (4.8D

The specific heat at constant volume is from eq. (4.56)

- Sy (5 - :r@))“r(%)]

Therefore Cyr is finite at T aﬁd_has‘a finite discontinuity

.62

‘_across the transition.

Finally we noﬁe that the isotherms in the U  plane do ﬁot
have a fiﬁite interval with zero slope, but rather an instability at
the transition, i.e, <3 /9 v) —0 as P 0 .
' Despite the fact that é»d. »>0O , we have. AUT:- O ; therefore
we cannot write down a Clausius-Clapé:yon equation for ?he transition.
Hence we conélude that the pﬁase-transition is a vertical line in the
PT plane and of zero exten:,in the PU pléne. Furthermore Qe ‘
interpret the.transition.as_a fir;t-order one, desgpite the above

‘characteristics, because of the pfesence of the latent heat,
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C, Hartree ngrbx{mation'
"The Hartfee'gpprﬁximafion iévthe simplest conserving approximation,
in which only the direct fi;#toorder term is included“ip thevself-energﬁ.
For boéons, one usually inCIudes the exchanggvterm,,as.the exchapge term
is of the same order as the direct term for short-range potentials.
Herver this model has some-desiréble fegtufes: it 1s soluble and
it is unlquely égpless.as vell as éonservingo" |

Let us consider thevHartree approximation above, we_have'

-3

&[6] = %jmwz G(1) wm) G(22)

| » (4.63)
= - 'jé?ﬁ?’ Véﬂ V _3
t’oé’ /) = 14° V(Iz) 6-(27. :
E (') = cd"( )jdz ) . (4.60)
d‘(u’) nVe
Therefore
' =°(p) = » Vo S (4.65)

W= £n Ve — SN L (- g ep+7) ) (4.66)
o P n | S

-, DR . |
Lne = 5 H2 Vo | (4.67)
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(4.68) '

= - ,?*nl/o_‘- .

Taking the N/z}f iimit, we have the fo11owihg thermodynamic
'expressions | | |
M= 7i F;:g/& (“') . . . ) (4.69.:;)
=L TALE, () +4 Vs
" 278 ° 'T "S2 Tz Ve : _
S ' ' - (4,69b)
2
P ﬁgTKT 5/ (‘-”‘) ’#‘ 2 N Vo (4.69¢)
whefe
/= B7n o0 | (6.70)

We note the importance of the interaction term (4.67), for the entire N
effect of the interaction is wrapped ﬁp here.
Now we go below, He»have
v ' . . ‘ m‘ﬂ . V \ ‘ '
=] [G;, Gy = ".,?,,”fdldz G(11) V(12) G(22) (4.71)
° .
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Zi"’"*(u’) = "f‘g” J‘(l)') jd&;_ V(s2) G(22)
o o |

= &) mVe | - mm ”

4.1%)
Sp ()= © | .,
Eq. (4.74) tells us that the spectrum is gapless, In fact, from
eq. (4,72) we have . v
N nVé O :
22(p) = - )
o O Vs (4.75)
and eq, (4,73)vgives
/uani/o . . (4.76a) )
9= —-/4, f-n’!/o Y Py (4.76b)
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'so- that

Ep =€ | - (%)
ThebMa_ssi'eu potential is
-l s v ~fB€
Taking the N/ U~ limit, we have the thérmddjnam!c expresslpns

nEsmw AT N(E) (s
' 32
te = -5%28775 'ﬁf{-«) + -LI‘I"V ' (4.790)

7‘9 /f’eT 7i 3’(-‘-) -+ ‘ n"\/o (4.79¢)

'If we calculate the chemical potential /A(T,P_) at constant P
for linear deviations, = AT = T e T, » from To(P) defined by

setting 77“ 0 in eq. 'k4.69c)' vor (4.79¢) ; 1.e.
=3 & -6 argy ' (4.80
P T Ay, f( ) + %78 5(%) S

we find that the firstsorder transition of 'thé_ {deal gas is absent,
7 : . K
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To demonst:ate this assertion, we note that above the transition we have

= GRES(E) - velE) N2 VET o “‘;8“"; v

P= AT IE) + FRAL (R +

FENRTEFT 4w

i

which yields upon the elimination of g for P fixed by eq, (4.80)

N | ‘
pelTom) = v Wi 3(E) - -fg%,f_gfe_gvz(% b D)

Below the transition, we have
te = =7 13 . o 4,83
rm=Vedy J(z) =7 L (4.832)

P= 2T A7 J(E) + 4% 270 53(2) -

(4.83b)
’ .

-7 WP IE) -ty Y

T et
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which gives

‘ - <3 . . | oy "".- |
-;/“(7'<73) =¥ Ay J(%) - '5%%_% #eTo (‘47‘%—) e (4.88)

Egs. (4.83) (4.84) demonstrate that the first-order transition is
absent. In its place, we have a third-order fransltipn.
To demonstrate the third-order transitlon; we calculate the

specific heats explicitly.v The enthalpy per particle above is

£

L -‘FFI/("(,) |
Lo AP E (&) + Z Rllz LR 4.85
,énd
e - L [/2A4)
Ny %5 \OT #~ P
= 3 . = Ff
= TV "‘3/3 *+ 3 Fia)y (4.86)
ook’ {;57('F3Zif=0%. ‘) .]
+7(5%) | £ -1) - vy F,
2373%, 2 Aiﬁ: T Y
with
5 3 2
+2¢) - Tl T Ve Ry, s
5 = . : . |
TP Fap * Vo Fy Fy,
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where

Vo

I

Vr

Therefore, substituting eq. (4.87) into (4.86) » We gat

CP(T?%) R [z; Fé;z, Fi, 18 Fsp -

nky  I1+%4F, + 5y “+ Fare
| (4.89)
+I$V Fb’/&F’/Z -""yTFJ/z_]
Az ’ i .
Below we have
Ao oy 4 5 RT s | '
bernr EBL5E) ww

pl(7<7) 15 Y(%:) zs (%) __ .
ke TR TR Gy . e

From eqs. (5.89)(%91), we see that as n—>0 we have

p(Te+) = G (7-)

o2 T2s S%(52) 45 5(5/2)
= )ﬁ%’g 24 Vi §3(3/2) T $(3/2)

] (4.92)

35 7 | o 4.88)
Mt . Gew
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Note that ¢ is defined on both sides of 'l‘ (r) 'Iand is finite at ‘I ..

P
If we substitute into eq. (a 92) VT = 0, 73 (the appropriate number for

helfum at '1‘7_\ ), we get
¢p(%) = 3./ niey

which-is comparable to the classical limit of 2.5 nk.B In mass units,

we have , v ' _ :
| ' cal B Joule
pR) =15 ok T CF g,

which is the value of °sat(T) fér heliﬁm at“about l'l‘ - TA‘ - 0;1-°K .
To finish our demonstration that Hartree gives a third-order
transltion, we need to show that t:he slope of c (T) is discontinuous

at T, » This can. be done expliclt:ly by differentiating eqs. - €4.89)

(4.91). Instead, we note that <o satisfies the following relation

I (GP/aT)u' . ‘ v . . (aogz)
V (ePlovy), - |

CP= Cpp =

Fr_om the form of the.energy equations (4.49b) (4.59b), we see that
Cy = Cuyi,ideal
and. from eqs. (4,69¢)(4,79¢c), we can vrite eq. (4.93) as

CP g C_‘U‘, ideal

S - 2 (6.98)
- T (2_;2 “pV/ v-.-/} : (9? 3 :
14 - oV, T,ideal oe _ °oT U’ideal
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S-in.ce e has é 'discoﬁtinuit& in slope and (9 P] 2 'l?)‘2 | '
V' pideal _ ’ ' ~ “‘q),1deal 1
and (QP/D2UV )Tgidealv, do not, we conclude that ¢, has a

discontinuity in its slope. Also eq. {(4.74) shows how the in_terac_tion

bterm qugnches_ the; divergenqe in the ideal Bose gas at '1‘0 .

X.ondcm2 in his smobth poéential model for a Bosg-Einste'in liquid
arrived at a Hartree approximation by an intuitive‘ :'approfach attei\pting
to take ‘into account the volume charak:tgristics of a liqu‘id'.. The
mathematiés of his model is id»en‘ticail t;o’ the H;rtrée ap_broximat:ion,

thus ieading to the same results.

D. Bogoliubov/Hartree Approximation . v : :

Belowthe trénsition, we ‘consider the fvollowing_selfwenergy matrix

Vo 'f‘na\f;b Po Vb _
(4.95)

BNCOE

PoVp  nVe+trolp

which is just the Bogoliubdv‘sevlf-energy-, eq. (5.32), plus the analytic ;

continuation of the Hartree seif-emergy. -The chemical potential is 1

p g fry = 120V wf'n)l/’a = Ve (4.96)

7= n/””-#m’%‘:&—ﬂa% . “.97)' ‘

¥e see that Vs satisfies the Hugenholtz-Pinés fom so .tha‘t the energy

spectrum is gapless. In fact

| ; (4.98
Ep = \/&;(ﬁ;ﬂ#&ﬂav‘ﬁ) ¢ ).
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with

2(p) = ep =+ oV R (4.99a)
F(p) = 70 Vp | (a9
&%p) = € —r\% . (6.99¢)

Note that the energy séggtrum remains that §£ qupliubov and hence
leads to the double-value behavior of'.ﬁo(T). Thé;basic difference
befyeen Bogoliubov/fdeal énd Bogoliubov/Hartree is>iﬁ the chemical
potential, eqs, (4. 96)(4 97), which affects the thermodynamics ‘through
the lnteraction term %n Vo o

The effect of the interaction term %nz ,is hot trivial néar'

the transition, Ve npte that'

b\ T, 206 |
nt = 3,-6 3’(%) [I - 2,(;2)\/;(- + 0 () ] | (6.109a)

vhere

(&;IOOb)

B V1)

aiéé-/3§7 5"ﬁ?/a,bé, % é’

and'the thermodynamic quantities, eq. (4.29), are ill-defined for small

values of & > Oand AT T - To < 0., This'demonstrates the
subtle nature of the transition and the need for careful analysis in
creating approximations for the transitlon. :

Above the transition, of course, everything ls well. defined as we

have just the Hartree approximatione
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One can generalize the abqvevequations to include the Hartree-
Foek term above the transition but only as an additive constant term

to the Hartree one, !.e., we take Vp ::: Vo and write

nVe PV
o
E(P) | ( oV znt,/;.) (4.101)
/u. n,Vo +2n’Vo = 2_»71/0 — 770 Vo
'-;7 = - +zh’\/o = -n; Vo (4.102)
. 6569)f='y/éaf'(cag.#HZIWQvQ:j] |
E(p) = €5 +r0oVo L a03)

F(p) = 70 Vo B
The system defined by eqs. (&.1014103) is just the system studied

9 80who replaced V by the.Eerml

pefturbatiyely by Lee apd‘Yang
pseudopotential; and mofe fecently by Popov81 vho repiaCed Vé _by the
t-matrix.; Because the analysls was perturbatlive, neifher Lee and Yang
nor POpov had problems with double-valued functions near -the transition,
One should note that the effect of the interaction term above the |
transition was ignored by Popov, who found that the thermodynamics above
eas exactly that of the ideal gas, not like the Hartree with a third-
order fransition and specificali&_a finite cp .

As a crude approximation to eq. (4.101), one can neglect the
-'off-diagonal terms as they are small near the transltion. Thls leads to

.the theory of Huang, Yang, and Luttingeraz'
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%p) = (é; o © ) o (sa0)

o R (4.105)
77 = —-/Zpl/b'
E(P) = E(p) = &S+ 1oV

{4,106
F(p) = o )

: . b .

which is not the Hartree épproximation, eqs; (4.75-77), off by a \

Vtactorvof 2 because of the fuﬁdamental difference_lnIthe'éhemical
s o 78

potential. Recently Lgban and Grobman arrived at the same theory

although starting from the Hartree-Fock approximation. . Eq. (4.106)

leads to the following equation for the number density
, . ' -3 |
P —-) ' : 4,107
7 =ne = AP By (reve) (o)

which leads to the same double-value‘béhavidr as from the Bogoliubov

‘case, gd; (4.35). The pressure is given by eq. (4.29d)

P = T A7 By (BnaVe) +rive — 4 3 Vo

" Eqs., (4,107)(&.108) duplicate eqs. (39) of HYL.82 Working at constant

temberatufe; HYL argue that the double-valued functiqns.(actﬁally

triple-valued including the function above To ) should be fégularized

" by the Maxwell conétruction, yielding a "fifst-order‘transition."

One can apply the same treatment to the more geﬁeral Bogdllubov/Hartree

approximation,



E, Hartree-Fock Approximation

'The_Hart:ee-Fock approximation4is the fifst-brder‘conserﬁing'
app;o#imation in which the excﬁangé terﬁ 3s-ve11'aé the direct term
have been taken in;o éccoﬁnt.v The Ha;treeQFock épproxlmation Qas'
first stu&ied at T=0 b§ Gira:deau éﬂd A:ﬁoWitf,ssvwho fbund‘aﬁ_
eﬁergy gap in:the energy spectrum. Prior to this calculation, tﬁe. _
Hartree-Fock'at,néﬁzero temperatures_was studi§d by';éveral othe:s,sé’ss
but nb_energy-gap was fdund because of the se&efal approximétioﬁs
' uséd.' Toiméchev86 e*amined the Hartree-Fock equacions‘at nonzero
temperatnfes in greager'defail and.teported an enefgybgap, The

Hartree-Fock equations were SOIved.iteratlvelbey Luban87

who found
an'enefgy gap iIn ﬁhe sécond itefatidn. "

| Qe first conslder the Hértree;Fock'above the transitibn and
~!nvestlgatevthe quesfion of a shift in the transition temperature;
Hé‘next go beloﬁlthe traﬁs1ti§n and show that,there,is an energy gap
when the Hartreé-?ctk équation is golvéd self-consistenfly, thus
”justifyingvthe ite;ative solutibn;.

As Hohenberg34 has eﬁphasized, tﬁe existence‘qf the energy gap in

ftself is‘nog an.unphysicél result, since there is no g}gfiorl reason
that the exqitations of ?a -should be of the sound-wave type,. Howefer.

the thermodynamics, for the lteratlve:solution, does exhibit near the

transition the doublerélue behavior of the other approximations,
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1. Above the Transition

Let us begin with a brief resume of. the microscopic theory.,

¥e haVe

v;é[@,) = £ { d’_“'z,‘_"']""") [G(u) G(z22) + G(zz_) G(z:)] - (4.,109)

z‘toﬂ’(“l) = ¢ d\(”’) {dZ V(1) G (22) + ¢ V(') G(IIQ. (4.110)

Therefore | |
2"(;_9')': nVo +,'z§2 V(P-g)f.(é"a)' | (4.111)
RS |

vhere : ) ,

g(ﬁ») 56(3)7“ = é; *'2\0(3) 7l C(6.112)
satisfies the integral edpétion | |
E(P) =€ +nVo - +:5:§%V(/7-3.) (&) "§4.113)
" The transition is given by the vanishigg of | |
.’75_/‘4 20(0) = __/“,4_”%4_#% V(%>#(gi) (4.114)
and the fhermodynami?s by the Massieu potential

W= %Ln(/f#(%)) f‘fz‘,‘n"x@/zv"-;-

+3B T uVp-5) £(E,) (&)

= VF'?’ 3’ P) ” ~% |

(6.113)
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For a very short-range potential,i Vpb- Vo,, we see that we get the
ﬁartfee appfoxiﬁation, eqs..(4.63;70), with vV, —> ZVb . .Hence'the
specific heats are finite. We also note that in the 11mit of very
'shorﬁ;range potential, the transitlon‘temperéture‘ T, 1is not thfted

_ o : 7 _ :
‘from that of the ideal Bose gas. GKW 3 (in their Appendix B) found

in the short-range limit a temperature shift,which is entlrely spurious

and is due Eo thelr use of free-particle s;atistical factqrs‘father
thén self-consistent statistical factoré. e present a'ﬁery' o
pedestrién treatment of the aone fdea in Appendix D.

?oiobtain a shift'in thé traﬁsition :emperature, one has to’

include the momentum dependence of Vp « The easlest procedure is to

ekpand VP
Ve = V. ;*z 2 : ' | :
p=Vot Vi FL P+ o k116

so that eq. (4,111) can be written

3°(p) = 22(0) + av, (27 52 p2) | | (a.uu):

where

390) = 2n Vo + v,a;;;z%,)% FHE) '; ORIES

and eq. (4.112) qan'be written

€cp) = B o+ »7 | (4.118)
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vhere the effective mass m* {s defined’

3

= o+ val z’f A SR L (4.119)

L

Vo
As the'speccrum (4,118) is just the_fxee-particle'spectrUm, ve get
immedjately the shift in the transition température from that for the

ideal Bose gas

8% . 4nq oY | . (4.120a)
¢ : ¢ ’
e - k@-’; |
 antn |

. oo
? Svirrtar © (4.120D)
3 7\;&‘- f(@ 7; (-] . . _’

since from (4.116) and the definition of Vg

o .
V) = — J AL fV("’) réor ' (4.120c)
T o . o
and we defined A'i'o' = To - '1“:.i s Where ‘I'Qi s the transition -

temperature for :he ideal Bose gas, -Noté that the éh{ft depends on
the weighted radial integral of the potential, For helium, thé
éutoff for V(r) 'at small r 1is not well-knéwn and plays ah'fmportant
role in ascértainlng DTy o

To develop the theory furthef, let us take into a;count-the
strength of the interaction and replgce the potential (direct and

exchange) in eq. (4.111) by the two-body scattering mattix

< ra{Tlpqg > so that
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RO EReHTEP AT |

where T satisfies the opetator equation T sV 4 VGGT. HWe
approximate thevgeneral T-matrix by the "free" reaction matrix

for a nondegenerate Bosge gas

877#3" 2% =

<P3+I'.r.lp3>-.- W—%I |
' (4.122)
x2<zz+f> (Hie-3l)
e\/@ﬂ -
where & . 1s the phase shift of a wave of angular momentum 4 .
we define a "total“ phase shift A (x) where k 1is the wave number
G=h1 |
A(é) 2 (24‘“9 (k) | . (4.123a)
oven '
and expand it about small kis.
alk)= SN anPr R | (4.123b)
M=o .

We restrict ourselves to the case where 2, =0, or d'(0) =0
-which prevents the occurence of a real or virtual bound stat:'e._- ‘When '
&) 3£ 0, we see that .Z',.o(p) diverges at p=0, There

are indications that a virtual bound state exists for two helium

at:oms,89 as the 1 =0 phase shift approaches 1f/2 ~as p —» 0,
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However the effect of statistics, which as been neglected except to

select evexi l's between the two particles "i_n evaluating eq. (4.122),

would probably rexﬁqve ‘f.his virtual bound state. Thus we have,

_substituting eqs. (4.122)(4.123) into (4.121),

2‘ (p) = ”&i"‘l 2.“5 ;qg)s-lz;l#f%ffiﬁ(é’z)‘. | (a.tza)";’

=y

Since 3P(p) = + zo(ép), we expand Z2°(p) aboﬁt small p

'y 1 : . ‘ .
2P = BT 2, o (5p)  Gase
N e 5 S ' o
yhere
» 72 o L .
c,. (zr), (731' /- L( ) o kaT 0 (sa2sy)

In particular, we see that

| 42> o, [A Sl . mo |
Co = ~ ’"&L; a"(E%) %‘3’ "(‘55)  (4.126)
LY . . ~

and

7Y (4.127)
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Using the same- argument that led to eq.'(A.lZO), we see that to

first-order
AT

-ﬁt‘=@W7Q(BV’ . . (4.128)

and to the same order, ci(T) is given by in the N/ lmit

/

0 . ‘
- L ¥ ey
S (7) = -5 :z: s(s+) a .9*1 /rv <

'(4f129)
“M(£) Fgf,. (ﬂf’ﬂ o
where =i  is given by
'%‘w"‘ ! +4nc, - - (4.1300)
wt vy |
ﬂ’f = =/~ + Co | . I  (41300)

Eqs, (4.128)(4.129)(4.130) gives in principle the shift in T, once
the phase shifts for two particles are known, To see how this vofks,v
let us consider a weakly interacting gas such that the phase shifts.

v may be calculated by the Born approximation, i.e.

o0

.*ﬁ?ﬂ9é§ > d, (k) = - 355227 v(r) fZ;iV (%r) ror
; o < : )

~ (4.131)

y
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where J£+%v is the Bessel function. One can easiiy show that the

“total" phase shift is
. ®
AlR) = - -*'ﬂ-.fefv(r)r*df -~
- 2R o -

3',(4.132)»,'

4%" jV{r).svn(sz) r'dr |

Expanding the sine function, ve find the following a s upon comparison
with eq. (4. 123b) |
@ = -2rfB3Ay Jvtr) rice
- 7 e -
“yﬁ el = , : S ' (4.133)

: ... o\, A= 32N ﬂz e2n
@y = (1) 187 (arsryt 2 S v A Cetr

" where n = 1,2,3, ... o Taking just the first term of eq. (4.129),
e seevthat

' /-]
< = - zw"%."’jv(',’)rﬂ'dr
. 3 |

1]

<3 7\7 (4.134)
and AT, » eq. (4,128), becomes fdentical to eq. (4,120). Hence

in the ﬁom approximation,we recover our previous analysls in terms

of the potential direcfly., Note the feature that all even &n's

vanishes, which in the Born approximation can be traced directly to

the fact that the "total® phase shift A 1is just kv' times the sum
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of the forward and backward amplitude £( @ ) which are even in k .
- The utllicy of this reaCtion matrlx approach is that it allows us

to go beyond the Bom approximation.

For example, 2 hard core of radius ro' has phase shifts which.

satisfies
-tan&(fe) = JA (k) B (4.135)
S P (Rrs) J o
where J:l. ‘and ry_ -~ are sphe;ical Bessei fmctlons.with the
following expénsions .
. - , ' | '>
( )= 1) (£+m0 S 2m
‘?A,P N r g'\'; sl (z,lvzmw)/
( ) = -J (M-H) (zz—zm)_l  2rm
jp ;E:“ ! (L-sm)! S

”mso . .

Expanding the phase shifts for small kr, , we find that the Ytotal"

phase shifﬁ 1s given by c
A(R) = —nk =z () -

Note again that all even an's vanishes; mored_ver- 4_3 =0,

Therefore taking the flirst nonvanishing term in eq. (4.129), we find that ,

O _ 4y SCB) nrt
% Y (3/z) -,\f;_‘.

(4.136)




123

" We note that the shfft is.upwardg‘in the case of oﬁlj hard cores and
that the shift appears in the ‘25 -expansion.éoegf;clent of the "totgl"
phase shift. |

‘For.our seﬁond example, let us consider the casé'of a hard coré
potential with an additiohal-weak potential'outsidé‘bf the hard core.
We assume that the weak potential's phase shift are well approximated
by the Born approximation.»,?he ‘hard core can then be separated out
of the problem by'including lté_effec: entirely wiﬁﬁin the boundar&
condifions for the'wavefunctlon; The résultingvproblem with the
ﬁeak potenti#l with har&-core boundary conditl6né, we solve in the

Born approximation., We find that the phase shifts are given by

[Cos(arcéan l" (f"’” )] x |

o (G-4") = - P (Fer)
_ B B 275

3#[3

(4.137)

&[;’2;(%?) V?,f) %(f&r)rdr -+

(Fer,
1‘4-;;;15“ f U Rr) V¥ i) rar

where 'ro is the radius of the hard core, the supérscripts HC and
WP refer to the hard core and weak potential respectively, and
L S
@fz.(r) is the exact radial wavefunction. Since V (r) is so weak, -

ve approximate Q&L(r) by

%' Ly (F) ' ,%,-{;L(ﬂ?r) (fer) z?:c(/"’?’) (fer)} (. 138)
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so that eq. (4.137) can be written
(fa) = £y(4) - &%)
ﬁ ﬁ[cos(arcé'afl (fl'/- )]
(6.139)

% ? (ffo ‘
[j RV B + 2 8202 o :Jj ()2, (o 5 et

&(;Z))) f”z(f’f‘)y (r) r‘"m-]
R .

One can verify that as r, —% 0 ) we recover eq. (4. 131), recalllng

.the definition of the spherical Bessel functlon .
(%) = \/._, e
j!v- ) ~ V2% \Z;'*Vz(r) .

_ , o ' HC WP
Since the phase shifts separate into J:L - J:& + 6:& .

. . M . : w i .
we can likewise write Qa = %ﬂc + a3 P . But we know that

a;‘c = 0 . Hence to the first: approximation, :t,he effect of ‘the
. u |
hard core is implicit, acting through &VP, To calculate the

“total™ phase shift, we exband for small fo to get
WP ) -2 o |
- = %
87R = -2n8%] [‘é‘ﬂ’fV Xr) ricdr +
- )
o o

+;;,_£ (r).s/r;(zfv-)rdr + | 6140

+ 7%#3‘.[; VIEr) cos (2ter) ar]



~

w125«

| and

QJ = F A -/,:-,Vv (’)f‘?dr-f- o
+ 4% )V ror 4607 [V 2
o Lrar ren’ Ve ridr
) R o.' v ’5 . 5 . °
Combining eqs. (4.128)(4.129)(4.141), ve see |
8% _ _gn® -2 1 [ (e .
=TT M B [{;" () ridr+

. % o0 (6.142)
wp.,. .3 ’ : :
+4’5£V (nrdr ""é’ézj"y?r)rzdr
, . .
ok o
Therefore if the weak potential i{s of one sign, the effect of the
hard core is to enhance the shift due to the weak potential alone,

i.e. eq.‘(h;lzo).

For our third and last example, we cbnsider‘thevp§ob1em of a

VSOft core, which we approximate by the square repulsive potential,

We assume a potential given by

Y* rerR . N
u(r) = '%W")"- { A . o (4a3)
_ o r>Rr '

The s-wave phase shift satisfies fhé-eqﬁation

kcot&a = %h"(ﬁp)"””}' (RYYLfE) + fr=£F - ‘(&.lab)
 tanh (Q\/r"-fz?)"'hff/i’?-fz_‘ Farn(fkR) |
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which can Be' expanded for small k's as

kﬁot J;n "'"-'a‘.(' + -z‘fafé; -+ *o_(ﬁ"-): - | '(.a._u.s)
wieh - R S S
a=R ( /= faﬁh (re) ) (4.1468)
and : | |
=R (l * ""'()’2 2 é- Z“‘ ) o ._(‘4.14;6_b)-

: For smail ks, f.e. kR <<1- s We have that the phase shift
J‘ (k) ~ kzl . Therefore, for the a3 expansion coefficient

of the "total" phase shift, we need only the s-wave phase shift,

Expanding eq. (5.145), we: tind _

- "' . . - o
2 [Fa® - tars]
| | (4.147)

= £ RA7 [1 422 32%- 52 (rr)7? )

s Cqmﬁining' (4,128)(4.129)(4,147), we see tﬁat |

OTo _ _. | 2
F=-Ynr[1+22%-32%-32(rr)?] wae

(-]

. ' - 90
"Finally, we take note of the work of Brout on the nature of the

transition based on the Hartree-Fock approximation above the ’I\_-transl-

tion, Brout uses the same type of expansion as GKW, viz. in terms of
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;he freé statistical factors, to show a ch#néebln the order of the
transition. We have pointed out that the shift in the transition
ﬁemﬁeraturé must>be cal¢ulated‘using éelf-consistent'statistlcél factor,
‘since the gig'ggg’ggg of the transition is the statistics, Likewise,
consistent the;modynamics iéugenerated only by cénservlng'approxlmation
which implies self-consistent statisficél factbrs.. In pafticular,

for a very short-tange potential, Brout's demonstration fails, while
the Hartree-Fock exhlbits a third-order transition if only diagonal
elements of the self-enetgy are retained below {a Hartree-like

: approximation)...This bfihgs ué to the final comment ﬁhat the nature

of the transition is amenable to discussion only as the. approximations
. above and below are well-defined |

2. Below_ the Transition

"The'ngtree-Fock approximation may be. represented below the

transition by the functlonals .

3

@ {G,, Gr/: ] :f,'j u) l/(/z) G'(zz.)dlda -+

e C
,q»-;:,,[’ ard2 GV G(21) |
2 - (6.149)
—-‘5{ /o2 G, (NG (@) Virz) G, (2) G (1)
tot ’ | = &. ﬂ
2707 C’) _~<§‘(u)f d2 V(:z)G—(..z) -+
(4.150)

* +é_V(/:') G(ir')
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,é(l) = -2 G%_(')fdz 6,/ (z) v(iz) G, (z)

C (4.151) | .

:-4_,;0%6,&(1) L I |
In momentum space, we write

o+ 1Y +GulP) At Giolp)

Zt‘ct__: XQ(P) =1 | a ' (6.152) -
. v np%?"’g/g(F) v h}/b'*”o%*ﬁﬂ(P) |

where ée defined v

ﬁn(P)- "LZV(P"?)]&T‘ A,,(j)w)f(w) '

(4;153a)
?/z(/’) =35 Z\ V(P'f)»/ A, (3)“’) ’C(“’) (4.i53b)

From eqs. (2,103) (2.1045. we calculate the chemical potential S as
Ae=nVo + 9,(0) + Ga(0) (4.1542)

with .

Hg = -2moVYo . y '(4.1'545')_

— - -
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The energyvparame.térs are |
3"@) = é; «ﬁh; Vi +'g,'.,(p')-5,,(o) ~9,.(0) ~ (4a1559)
- );-’(P)_ =-5o‘/P "'9/2(1’_)‘( D (4.’1551:)_

with an energy spéctfum:

E(P) = \/E(NZ-'F(P)_Z,  (.156a) |

which has an energy gap, using eqs. (2.106)(6.154b)(4.155§)
L E(P) = -4—nol/a g,,_(o) | L (4.156b)

pv0 - -

Using these_eng;gyxpgrémeﬁers; vé rewrité eqs. (4.153) as
Gn(P) = # %;V(P-g)[agf(&z) + véz(/%vﬁ(é‘z)) ] (4.157a)
?)z(?) = —#%:,V(P-_-?)a [I+,z-}'(£3_)]  (4.157D)

wﬁere up,'v; are defined by (4.6)(4.155). Thu§ below tﬁe-fransition;
we have two iﬁtegral equations, (4.157ab), for the two parameters

81s 812, instead pf the.oné»equation above the fransitioﬁ, " This is a o
reflection of'thé two external'ﬁoteﬁtlal introduced beléw'the trahsitlon;
0ext and 11GXt » versus UéXt aboVe,jand the concomi tant dqﬁble and -

" single Legendre transformatiog, respectively, néeded for a één;érving

approximation,
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If we 1terate.eqs. (4,157) or (4.153) iﬁ some fashion father than
_solvlng them consistently,'we can reprodﬁcé seyeral works in thé |
literature; _These‘iterétion schemes will yield a gapless speét:um
until the iteration is sufficientl& far along to yleld a nonzero
g12€0) (see eq. (A,L26$)). |

&, Iteration in Vp

‘In this scheme,‘we'begin by setting Vp = 0 ;od'the right hand side
of eqs,'(h.153) and iterating., The zérqth fteration ylelds the ideal
gas, The first iteration 1s»obtainéd by setting thelépectrai function

equal to that of the ideal gas
“"(l_)_ O ' _ &(I)

to get

N - | ~
2, (P).»-'-* %%,V(pf3) £(&2)

L _® (4.158
Sz (P)= O .12
Hepcg #hé self-energy matrl# is
C fes, W n%-f’-niv,’o +951p) n,lv'ﬂ,,‘ |
.‘ [2 (] = | | (6.159)

vyl g
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with an energy sﬁeétrﬁm

8"’(;»):. J(e,, +3, ’(p) g (o).,«-n,, P)‘;. (nGW,F. - _(a.léo)

~ which has no gap. - This calculation was first done by Zubarev and
Tserkbvnikovo8

The second iteration is obtained by substituting into eq. (4 153)

| ‘ 1
the spectral function based ori [zo( )3( ),. Eq. (4.159) yields a

(2
nonzero A:Z) (p, W )3 hence Ei‘z)(p) has an energy ‘gap.

b. Iteration in n,

In this scheme, we begin by setting n, = 0 on the right hand
'side of eqs. (4.157) and iterating. The zeroth iteration, solved
selfoconsistently, yields the analytic continuatlon below of the

Hartree-Fock approximation above the transltion.‘

R 2V + ,"’(P) o
[ZG(P)] = | ;n‘ °7é m (4.161)
- ‘ o *éan
.vhere
= GEvep ety
8%’) = E(N(d—) an +ﬂVo +g, (P) ""/‘\'-
F(o)(%): o | S - (4a63)
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The first iteration is obtained by gubstituting into eqs. (4.153)

the spectrum function based on the self-energy (4.161), which yields

(22 )]"" o *"o ‘*Sff ’(P> : "’0'45' O\
| Pl = | 1 (s.68)

and

P) J[.ér" 9/(,0)(P g,f”(o)] [§,+5 P~ 9,, ’(o)+:m y] (6.165)

which is gapless.

The second iteration ylelds

g o, o, |
o nlr_’o'_f’z,% +Gu (P)' *5,’1’(» AR
[2- (_P)J = ) o - (b.166)
| | -n, L¢+9,2 P n%,-/-ﬂ, +f],, (P) - .

where

?n (P) Z:V(P 5)[ [I+2 f(gw)] - 1] | (4.167a)

: (4.167b)

?fi’(P) | ZV(P 3) e"’ [I+21C(5"’)]



and the spectrum is

£¥p) = J[ E@@)]t - [FYp)]* © (4.168a)
| E®p)= & +roVp + 9::}(/9)" 95:](.‘0) -~ g (o) (4.168b)
W ORRG ,c?l(g(/’)v" .  (4.168¢)

This fteration-scheme was used by Luban.87

Other_itgfétiqn schemes qf the same structure may be concocted
. as needed. For instance, we can have an iteratibn in 811 and 812 »
in which we first set g14 -‘gl2 n.Ol_anq obtain the Bogoliﬂbov/ngtree
approximation for the ieroth fteration. The first iteration woul@
have an energy gap.. Finally if we fterate oniy in £12 ,vthe zer&th‘
fteration is the Bogoliubov/Hartree-Fock approﬁimafion which we.shall
discuss in the next seétion;r The above comments are just concrete
“examples of the fact that the Hartreé-Fock approxlm;tf9n includes
aill fhe terms to first order in V , and hence contains all other
‘first-order approximations,

In diécussing the‘thefmodynamiCS of ‘the Hartfee-Fbék approximation,
we follow Lﬁban_in his {terated solufion for gll'gnd'glz and point
out_a trivial sign difference91 which leads tq double-valued functions.

‘In'partlcular, iet us conslder the number dénsity, éq. (4.29a), which

Vo
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"~ can be written.

P ed

e L BB Lo g [E( ] |
’_7"”0"* U% g(P) "(éf')-*zvzl 'E?f.’; - 1. (_lo..169). :

P _ )
where . the superscript (2) has been deleted (see eq. (4.168)), For

very small‘ n,

's, eq. (4.169) may be expénded a's,‘ keeping the, lowest

order term,

7= S@INT = Vil X7 B (am ) o) o

Eq. (4.170) has no soluti'onufor Qjmall AT and 77-'-' -a vV < 0
for A T = T;Té < 0., In fact, the sofution of eq. (4,170) for 7

small AT >0 1is

' T |
Lo, 4:‘._7_'_) o | &.171)

which is to be compared with eq.. (4,40) for the Bogoliubov spectrum,

Thus the analogous expression to eq. (4.37) must be a quartic vequatic'm‘.'

More important is the fact that eq. (4.170) through the interaction

terms umt 1lead to thermodynamic functions which are double-value_d
and thus fll-defined, There is, hovever, an open question on whether

the self-consistent Hartree-Fock would display such a behavior or not.
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F. Bogoliubov/Hartree-Fock Approximation

The Bogolluboleartree-Fock approxlmation is the final first-

. order approximation which we consider., As mgntloned before, this
approximatlon, like the othéré; may'be obtained as a speclai case of
the-Harttéé—Fock approximatipn. Thg Bogoliubov/Hartree-Fock épproki-‘
mation wés first studiéd by Shohno?z who derivéd it by a normal-mode

. . analysis. . We give now fhe Green's function derivatibnvofvit.

Above the transition, we have just Che Hartree-Fock approximation;

eqs. (4. 109—115). It 1s convenlent to define a function ‘
g(p) = *zﬂ"ZV(P-}) £y 0 wana
3 3
[3d .
go_ that e%p is given by
e/,-.-.- ép + 9(/?)-—9(0) +97 . (4.172b)
Below the transltion, we consider the following seif-energy matrlx-

sopy = | T RTER) e
Ve ne+Vp tFP)

where Ekp) is the analytic continuation of g(p), t.e.

?(P) L\/(P'i) 'rn' A// (3)“") f(w) | ‘(&.1_710.
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and'thé chemical potential
L= prg et pye = nVot glo) C(179)

. Note'thét eq. (4.175) satisfies the Hugenholtz-Pines form and hence

leads to a gapleés energy spectrum, viz.

Elp) = \/.(57;+c‘,p)(c—;-_rqo'fzhov/:)' © (6.176a) -
Ep) = _e’g + rolp *+Cp o (Z;,176b)
Fp) = m Ve - - | '.(a.nsc)‘

whefg‘we defined
Cp= g P)— g (o) . | o (4.176d)

Eqs; (4:176) give the spectrum derived by Shohno. Since Shohno does
‘not include the interaction term, L‘int , Into the thermodynamics,

‘ . [ ,
the double-~value behavior of the thermodynamic functions does not appear,

Nevertheless the double-value behavior of the number denéity is » 'f

implicitly wrapped up in Shohno's eq. (3.31).
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G, Restricted Geometry

One of the major objections:in using £he'idea1 Bose gas as

N‘g model for liquid helium;A'confined to some testricted'geqmetty ﬁhete

& length is definitgly finite is that the ﬁose-Einstein condensation
no longer occurs in the sffict sense At hon;ero temﬁeratﬁres;_ This
featufe is general slncé the Bose-Einstein condensation is a phase-
space phenomenon. This featﬁre is eiplicitly éxhlbiéed 1n-the absence
otVAny macroécopic occupation of. the ground state in the film geoﬁetry
until T—»0 , as shown in Chapter III. |

Unfortunately, the first-order approximations do not help the

_ situation at all. The Bose-Einstein condensation is still largely a

phése-space phenomenon, end ény change“ln the phase-space like to
a two-dimensional geometry would change the phenomena and obliterate

the Bosé-Einstein éondensation; To demonstrate this assertion, let us.

'considef the number density above the transitioh‘and work downwards;

from eq. kh.28a), we have
N:-{ #'2%(§;b) o a1y
| £ Lo
where' v
A~ O o, N o _
€ =€ 2P ope ; S (ea118)
Sinée the expansion of ﬁioﬂp) about p =0 ié

:E:O(},) - }5:9(00 - }>2 <'.é 51?(Ep'. -+ v |
| V9P Jpra
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rwé see from (4.178) thaf | 2§P4~v p2“ fpr small'moﬁenta. Hence =
'p:oceedihg from thé abové, 6ne finds the identical phasg-spacé effect
éccuring‘as-in the ideal gas case fo force a condensgté'in.fhe

bulk limit and to.give no condehsate for restricted geometriés;

In particular in the bulk limit, eq. (&5177) yields at

”n ~ -%;.F‘(OO

and further decrease ln_the'tempetature_fo:_fixed n yields the

condensation, In restricted geometry, say the film geometry,

< PP
nn..}%_ {ﬁ[P=¢cZz "(ﬁ IJ)

which at low temperatures RT > L’ becomes the first-band
approximation and
o P 2

\
Therefore we have no condensate until T =0, |

Therefore we conclude that the first-order approximations do not
include enough of the effect of interactions on the Bose-Einstein
condensation to change it from being a phase?space phendmehon. In
this spirit, we now turﬁ to investigate the next order, nameiy the

second-order approximations,
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V. SECOND-ORDER APPROXIMATIONS

To second-order in the potential V, we have the gapless

32

approximation first studied by Beliaev™“ at zero temperature and

extended to nonzero tempefatures.by Hohenbergga and by Tserkovnikov,93‘
and the consérving approiimatibn'knéwn as thé>Born-Collisi§n approxjmation.
Tﬁg.gapiess appfoximation used by Beliaév when extendéd aBove the
'Qg-transition léads'ﬁéturally to the conse:vlng Hartree;Fock
approximation, Hence the gapless/conserving approxlmation.thu§ generated
is the‘Beliaev/Hartree?Fock aﬁproximation.‘ The Beliaev wo;k.can be

extended further to thé Beliaev/Born-Collision épﬁroximatidn so that

we have second-o;der on both_éides pf the ?\.ftransjtione Finally

ve can have first-order‘ﬁeldw-ahd seéondnordgrvabove, or the

Bogoliubov/Born-Collision approximation,

Of the four possible second-order approximations, we shall pay

v particulat attention to the conserving one, the Born-Collision

-

‘approximation. We show that the Bdrn»Collision approximation above the

?\,-trans{tion contains the essential features of the more‘complex _

theory of Patashinskii and Pokrovskiio94

A. Beliaev/Hartree-Fock Approximétion .

The Beliagv/Hartree-chk approximation is giQen above the transition
by the Hartree-Fock equatioﬁs, eqs. (4.109-115), Below the transition,
the equaﬁions are quite different,

Recall thaﬁ the'Bogoliubqv approximation was obtained from the

functional z% ivext, G;] | i;n the form, eq. (2.79), which yielded
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- the seif.-energy via éq. (2.88), For the Beliaev ai)proximat:ion, ve
éonsiderv the functional Eg[ne"t. ‘G§+] which 1n°1ﬁd¢9 all firste

order diagrams,95 ji.e.

: e . -"ﬁ \ i . ’ :
V=T 2, () = £ Gy, (1) / da v(i2) [5,,;(,,) ORY: (zZ)]' +
N L] et o
=~ _ - (5.1)
*i !dZ v(iz) Gy, (2) G(12)

The self-cnefgy is' calculated by eq. (2.88) which can be wrlttén

o ST RO
z‘t t(” )= \'/:T (J‘Gu&(l') )etpl. o

¢ . .
uesE (5.2)

+J—'—Tf;/:zd3 (SL*’*(')) (4‘5(«’-3> o
_ §G(23) &Gy, (1) Uc‘t “

Recalling the identity

s‘é‘(za>) i " sz”(qs) )
_— = - |d4dS o e
(56:‘3(') yert '.[ 6(24) 46y, cE 3>

we rewrite eq. (53.2) as

expl. + _ .
yexe (5.

| ER (1)1
2 ur) = \’:""(m%u') )
i §2,,) .. = $xFtus)

+sf_fd2d3d4d5 S2LT Bagy ST U5 ~
15en P Tseumy ¢
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. To obta_in the desired order of appmi{imation, we iterate eq, {(5.3) with
- tot ' .
respect to S 2, ° /SG;5 . Applying eq. (5.3) to the functional
- (5.1), we see that the first term of (5.3) gives the Hartree&_‘ock terms

and that the second term with the Hartree-Fock t,éms inserted into

s 2':0:/ by G% gives the'Bell.aev second-order terms., Thus the

-‘ total self-energy is
Zta (u') fz?- gar’) ,£dz v(iz) [Gyz(Z) Gt (2) + & (22) ] +
+even’) [60,0)62) + Em')] +

;92; G(11°) fféds V02>V(") x

l["é(sz)G,,&(aD 6’,&(3) + G%(3)6,4 2) 5(23)) o
2 - .4‘ ’ "7‘ ' | »n O “p
+ £ 6y G ~£ A2t V(12) V(zg ) G(23) G(32) +
...[/3 ‘
o+ £?-,I;dz,d3 V) v(31’) G(13) x
* [5(3z) GG + Gyl3) 64(2) B (21)] +

- { A2a3 V(i2)VI31) G063y G(32) B (21")

(5.4)
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'Lv B_orn-Colllsion Approximationv (Self-Consisteht Calculation)

We now consider the Born-Collision approximation, the second-order
conserving approximation, above the transition., This approximation

can be defined by the functional é [61] as

-8
&[G ] = < fau a2 V{lz) [G(u) G(22) + G(rz.) G-(ZI)J +.

+ -g-_[ did2d3de V(i2)V(3#) x (55

x ['@(, 3)6(31) G(2%) ';;(-xz) t+ G(14)6(42) G(zs)c,(.é l)]{

The total self-energy is obtained by eq. (2.32)

--5’3
Zt”(u') = ¢ J(H')jdl V(12)G(22) + ¢ V(”') G(“)

+£2fdzd3 V(zz)v{.?/’)'ir - (5.6)
¥ [G(H’) G(32) G(23) + G(13) G(32) G(21) ]
We recognize the first term of eq. (5.6) as the Hartree-Fock ':erms,

which is the entire subtraction term 242 . In most of the analysis,

we are interested in the dispersive part of the total self-energy

| =i | o
(1) = £2£d2d3 V(2)v (51°) - (5.7)

A [g(n') G(22) G(23) + G( 13) G(32) 6(2i7]
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which we shall refer to simply as the self-energy.
We now Fourier transform eq. (5.7) to 6btain the analytic self-

energy in the form

. Z(Pl}) = zﬁ(aﬂf) é‘(P-#P -—F,"‘") -L[V(F 5)*V(P*P')Jza
» PP |

k=1 =ik 21§t B=T) x
(5.8)

* Alp'wr’) A(F D) AP/ &)

et st £ - £ s £1o ')]

whére‘the integrals over chel ¢&;'s go from. -0 to N , and
£7( ) = £t ) ) f+(¢.«)) - 1+ f‘(&d_) . We first note that as
¥ -—p 0 in éq.'(5.8), we get the ;eal part of the self-energy

2y (p,0) since »j:;(p,z.) is continuous across the real axis
at the origin, Furthermﬁre the iméginary part can be easiiy obtained

ftom eqSo (2.24)(508), Viz.

Fpe> = 5553 618700pep 270 4 [ip-p2+ V7]
' ‘ !Djs o0

f“"" ‘""“’ zné‘(w-fw' ©B-7) -

(5.9)
'y A(le’) A(F &) A(ﬁ'&:") ~ ‘

~[F s () — £ ) £ F (w')]
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- Eqs. (5.8)(5. 9) are Qery complicated nonlizr\eaf .in-tegral equations
whzch are practically intractable as they stand, |

One reduction which we.can make depends on the fact that we are
deallng-with a homogeneous system in space, Therefore the spectral
function A(p,w_) 'and the self-energy x(p.}‘ ) are fmctions
i

only of the maghi tude of the momentum, If we write the momentum

5\ «function as

(@n%)°8 (ptp'~p-5') = fa’r s (P*‘P'/"'-P’)/n

?
we can do the 'angular integrations in eq. (5.8) to obtain, in the

N/ U7 limit,

‘ : ‘ : %-q ‘” @)' 0o . . _”’ ,
RUp») = Lz [riar]Ftep [P [Fap” «

(5.10)

FRAE ) 4. (E)do(F) 9(/9;»/:;3;;)

where jo () = x"smx and &'(pp"p’f)'} ;}') is defined as

F =£[vpp) +vip-p] faz _wf 2 (o fai’
w201 d\( w =D - 1) A(P'td_’) A (F D) A_?P'&*J') u

<[ 1w) £ FHBY) = £ (DI 10 ]

(5.11)
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A similar reductlon ‘can ee performed on the imaginary part (5.9).

In order to proceed further in the reduction of the self-energy
tola more trectable form, we make two approxlma;ious.' First of all
and more slghlficanté we take the Very'benee Seete 1imit not only for
'.the initial and finél.etetee but'fof ali dntermediete states of
eq. (§.li). Thie'means ﬁatﬁema;ically that we expand the statistical
fac.torsls o | o . | d,
Fl) = 3%, - (5.12)
and apply the egs. (2;108)(2.113)

f A(P,"))r‘(w) ﬂw S ay

vith‘
Wp = &'lp) +4'po) +7 I BTN

to eq;v(S;IOQll) after taking  ¥ —> 0. Physicelly, this meaee that
weveonsider the system to be very close to the'traneition:so that all
signlficant'contribution'Hte.the'self-energy comes from the states which
are very. densely occupled viz. the low momedtum statesb Hence we'

| incorporate into the system explicitly the high degree of correlation v
among the low momentum states as they "anticipate" the ‘macroscopic
.occupation of the zero momentum state. Second, we restrict the

potential to a very short ranged potentlal, so that

= vy = fadr Ve 319



-146-

This assumption réduqes the Hartree-Fock terms to a constant

2’(/3) = Zn\/o» |

vhich changes the transition to a third-order one but in no way affect v

the energy spec:fum which remains a free-particle one. Therefore

€'t - €7 " and
wpm Eraporen  can

» = —/A-'f- Z"Vo *A(0,0> . a . . >(5.17)

Applying the'appréximatlons (5.12-15) to eqs. (5,10)(5,11), we
find that the real part of the self-energy (as ¥ Sand 0)>‘satisfies the
equation

R -
bp= - [rrar [i(5) -] 0% G

N o
- 3 N e T LA : _ :
() = f 345 7, (5E) ;. , e
vhetevwe defineé a zs'p é OD'(p,0) = A;é f- A, and”wq by
eqs. (5.16-17). Note that eqs. (5.18-19) is a nonlinear homogeneous
ihtegral equation for [}'é « Note also that any reference t§ the
imaginafy part has been eliminated, eqs. (5.18-19) is'independent of
r {p,« ). Finally we note that 1f dny >0 in E\(p, r 2R K
we cannot effect the reduction to aﬁ eqygtioﬁ similar to eq., (5.18-19),

t
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1. Real Part of Self-Energy at b 0 .

We now solve theL integral equations for A‘ R eqs. .(5 18)(5,19)
for the limiting case ‘q—@ 0 and the general case of N> o,
The llmit 11—-90 leads to ‘the divergence of N o * the number in the
 gero momentum state, and corresponds to moving onto. the transition from
above., On the other hand, when_ N7’ o, ..No_. is finite correSponding
‘to the region above the tran-slt:ién. | |

Becausevof the Véfy Dense State llmit,'. the range of mohientum iﬁ
‘which the integrai equation (5.18,19) is valid is restficfed. If we
define a gxdmentum. P, by /gwp? n 1, we _:I:a_n;_‘expec’t _the. 1nt.:egfa1‘ |
equa;ion to be valid only for p <4 Py. . '!_.‘hi.s- restrictiog appiies..
"also to the bdummyv variable. q 1in the integral for D(r), since the
"Vet;y Dense State l‘iinit' was taken also for intermediate si:a!:e_s._
';‘hetefore 1t t;he fntegral '-for D(r), trgas some n;nnegligibl_e; contribution
from mbmenta near pg this signals the br'eakdown"iof the integral
’equation.' Howevex;, when the contributlbns‘au Icome from ‘the low -
mémehta states_ p &4 P, and the integral 'b(r) ¢6nver§es forl..large

q's, the upper limit of D(r) ‘can be effectively extended to infinity.

a., On the Transition

.Eq.‘ (5.1.9) can be written, in tf\é limit 97-00 ,:as
D(r) fd§ 3783"“@ go(F ) - (5.20)

Let us define a momentum bo such that A.Po m ég . From
o : _ o

physléal gi’ounds, we expéct the self-energy to dominate the kinetic
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. énergy at low momenta be'tl:ause' of th_e. hlgh correlétion. ‘In f‘act,_ i'h the
région ) < < .po » | e': ~can be nveglecce‘d in (5,20). To see th'i.‘s, »
we considef the case for tbe slqwest‘convefgence of the r-’integrat_lon
- of (5.18) wh_icﬁ oécurs,wheh A'q is neg.‘le;ted in (5.20). The

AN

resulting lntegra_nd for 'the r-integ_raitlon

R & _':Z _ E .

r,[ao(fﬁ) ’] : |

has a peak'at r“.'.-: ﬁ_/p but also ylelds a logarithmically divergent
fntegral, This dive.rgence we ignore as we expect A‘ q to dominate
and as we are mérely interested in the peak of the integrand., Now we -
estimate the contributions to D(# /p):

(5.21)

o(E)= ,‘{dﬁ —2-3- 3,(3/,,) ,*}fdg"'ég&(z/ﬁ)

Note that the second integral is proportional to si(p,/p) - $1(p,/P)»

which-vanishés for p << po',p2 o Hence we neglect é: in the lntegfgl

for D(r). Furthermore {f _A'q - A %d" and of, > 1 (so that
the integral (5.20) converges as v'q — 00 ) and & < 2 (so .that
the integral (5.17) converges as r —p08 ), we can extend the'ih’tégtal

over iq tor 1nflnity. Smnmatizing, we have
o(r) = {3‘,(%) _32_’5_3. | (5.22)

which is valid for 0 X p << p, and 1 < X < 2.

-
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The estimation 6_f the two terms for D(r) can be made more precise
. 32 .
if we utilize the solution A p = AoP /2 and the asymptotic -

éxpansion for Si(x)

7 cos¥ _ SinX ..
riu +

si(x) = ~  xE

S0 that97 '

o ?o . - o
. = . o ~ . [ 7
Za (P) = {30 (3//’)'52??‘ "" WP ZAP
| in ?:he limit of p 57 p and

I (p) = .f"i o (3/P) @———3—
* o ampt {'_4. m@@/p) £ m(P;/P)}

3

~ in the limit of p 4( p(,,p2 o The worse case is whAen cos(po/_p) -4 1,

cés(pzlp) = .] ; therefore
I_(p) < 2mp"(';° +;32-) < +mp® L

and the ratio of the two terms is

Ze(P) '< zf/

ZLp(P)
which is very small in the limit P L= Py -

To sbive- the nonlinear integral equation, (S‘.lS)(S.ZZ), e assume

‘ the form

P AoP . R ' . (5023)
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Substituting (5;23) into (_5,18)(5.22); we get
4 o(, Vel 6-3cty
A . - M -
0P 75 43,2 P f AT ( fo“:fJ ')
% dz
[J %%%-2 ?o("_)]
.vhere ve have put ‘)‘t‘- 'rq/ﬁ y ¥y =1rp/P  and ﬂo - (kBTo)
The integrals within the braces are numbers independent of p , so the
'veiponent K, is &etemined'by_. the eqﬁation 'o(o =6-3 X, or
&, " 3/2. Furthermore, A, is given by98
' < 2 7 Ve :
Ao 53 ﬁo;';B) . ( )

Therefore the solution for 0 £ p<< p, 1is (recall v.ro - ﬂovol 7\'1‘0)

AP (/5”) \/V_r; (2 -)%Z;gTo o | (525)

We note that the pl3/2, — spectrum is wholly vdependent upon the presence

of interactions..

The relative ﬁagnltudes of‘. Py and p2 i,sb of some interest as
they give an estimate of the vstrength of the interaction allowable for
éur system, There are three distinct cases; (a) po ‘>} P, 3
(b) P, ~ Py} () p << P, « The fifst case we do not know
enything about since our equation is not valid for P~ pé . The

next two cases are amenable to our analysis, and are considered below

within an expanded context.
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ranged, io.eof rfn S rfalso

ai51-.

Note that our system {s characterized by five quantities:

(2) the number density, n ; :(b) ‘the integral or strength of the

_ 4 . , |
‘potential, Vo s f V(r)d'r ;3 (c) the range of the potential, re 5

(d) the mass of the particle, m ; (e) the temperature of the system, T .

From these five quant;ities,_ four lengths can be formed:

: | t‘f = range of the potential

i -1/3 ‘ ‘ ' .
n = average Interparticle distance S
ag - .'scattering length

,'X.r c - thermai wavelength

From the offset, we have assumed that the pq'tential is short-

1/3 ' s T ;\'T.l'<<, 1 . Note that ﬁhe

transition temperatufé for the 1dea'1‘ Bose gas is given by

R e 2 2/ ' , L
kBTo = 3,31 "F\zn /3/m , S0 that A nl/3~ (T i/'1‘ )’5 ~ 1.
" T, - o "o

The only ratio that has not been estimated s nl/3as s and it will be
determined by the relative magnitude of poi and Py o

‘1‘6 see this, we note that po may be approximated by

3/2 _ _e . n 20
Ap, = ‘epo and p, by 'ﬁo ep2 = 1 . Therefore the relations
. N ‘ o
Po Py afx.d P, ({. pz can be translated to ﬂo GPON l and
3 €° << 1 respectively, But o
1?0 Po _
2
16 Vo m3

e 3 ¢ _ 16 ' N2
v /-306&: Fm/%,Ao = isn3 m ~ ’é(”'qu-;) ’

. S 1 : o : : .
where we apprgximat:ed | ﬁona ﬁo ?n_the last step. Thus p°~ pz
1/3 ‘ 1/3 '

is éQuivalent_ to n’ a .~ ¥ and Py << pz to ‘n a;s << X,

Therefore the above calvculatio‘n is good for weakly-coupled or low

-
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1/3 ‘ o
density systems up to n= a_~ %Y . For liquid helium-4, we have

2
- It would seem that for a very weakly-coupled or léw;dens_ity sy stem,
tvhe reglion P, 4% P éz would be agmenabl_e go our #nalysls. We show
néw that tﬁis thoﬁght is Iincorrect, ,Cons:lder agaiﬁ f:he funccion’
D(ﬁ/p} » Qe (5.21). In the region po‘¢<’ P <% 152 » the first integral
of.(S.'Zl) is negligibie, while tl;e secohd lnltegra'l apéroaches T /2.
However the second intégral is the .contributzions ffoin §~ p2 which
is unacceptabie since it is in clgar contradiction with our initial
assumption in making the Very Dense State limit, ?urthermorg, if we
went ahead with D(r) approximated by the _sécond_integral in (5.21),
then the t-integratlon of eq. (5.18) does not éonverge. Thus for bnly
P €< p, s can we say that the main con_tribution to t';he self-energy is
from'intermediate stéteé which are very dense, Otherwise contributions

come from intermediate states of all occupations,

b, Above the Transition

He begin By defining some momenta. First, we define po by
. e

formélly the s_amevequation as for p-» 0 , i.e. A'Po - épo »
where A.p satisfies_ the integral equation (5.18,19) with > 0 ,
Second, we define p,? by Qp“ - :? . |

With these definitions, we now attempt to reduce eqs. (5.18,19)
as much as poésible for the various regions in momentum space. ' First,
for p &< Py » the é: term in D(r) can be neglected as before, so
that eq. (5,19) can be written

s o
o) =] 3. (5%) jz:j:;,

(5.26)
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In the sﬁbreglon P& P L P, which e_xist;_for very small " we

" |
further reduce eq. (5;26) t;o

olr) = .f“ﬁ 30( ) - o (5.2])
This" is'jusv-,t.ifiedv by estimating »D(v'ﬂ /f)
. 7;; ;.‘   72’ z.,.“ |
o(B)= a3 Fh(30) + ,,f?dz Eatwn

Aand tﬁe first integfal is very small for p >% p," ‘o The solution to
- (5.18,27) is just the psf‘z-—‘s'pgct-t.‘\_nn',' .A'p - Aop3/2 ,véhere A, 1s .
given by eq. (5.24) with By —» /3 . B |

In tﬁe su,b:'regiox.;‘ .'0_5 P << ph ,:'we mgst: t_:'o‘nslder eq. (5.26)
as"lt.:. stands, for élthough the 7 term 1s larger than | A'q s but
A'q is ineeded fqrvconire‘rgen‘c‘e. However, .eq. (5.26) ‘ha.s an exponene

tial decay in r for large values of r , To see this, we note the

evenness of the integrand, so that eq. (5.26) can be written

R ” e;xd% |
D(P) % ) Q‘M - (5.28)

90 A(Rx/r)+ *7

vhere we wrote X = rq/ % -and }ns denotes the imaginéry part, In

general ND(Y) ~ y"" , and a braﬁch point appears at % =0 ‘with
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poles off the real axis since ', » 0, Closing the contour in the
upper half plane, we pick up the poles in the upper‘halnf plane

satisfying c( Px/r)® «+ n - 0 . Therefore

o) ~ e §’7 . F=200, BP0 o (5.29)
Eq. {5.29) is in mark contrast with the asymptotic behavior of D(r)v

for 7 -:0 s in which we find

D(P)"’m,. ', I'-"-v-aaa‘,._’;‘.:.'o" ‘(5.30)

Eq. (5.30) is another ‘maﬁifesta'tion of t:hé inacr_osco;:lc o'ccu;}atidn of
the zero momentum state whic;h ieéag to an infinite-ranged correlation
‘Aln :posit:io‘n‘ space, while eq. (5.29) tésfifies téwards the ‘ab‘sence of
“guch correlation. Because of the ‘exponential behavior of D(r) for

large r, we can obtain tﬁe solution to the ih_tégra_l eqﬁét!on (S._18,26)'

in the s'ubreglén P << pvﬁ by expanding in eq. (5.18)

° i . 2
ERAUC PR A

to obtain

A'-_,‘._/?f.' .E.zj:o, re 3).,‘....
TP T ewS5%3% (z)_’o r ,D(",.

which hag the solution
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99
- with

3_ W

Al - 432n2ﬁ6_ﬁ1’7 | . - (5.32)

Therefore for 22 0 , the energy spect_:rum begins with a p2— spectrum
- . which goes. over to a p'g',z- spectrum at p” The _p"iz- spectrum
subsists up to P, as in the 57 - 0 case., Thus as r, 18 increased,

3/2' spectrum is

or as we get further éway from the transltion,the
®squeezed out" from the low mo'menta side until there is ;no 22 left,
The vanishing of the pzlz' spectrum occurs when p"’l ~ Py o Approximatlng o

by A -7 ", we find the 3/".. spectrum vanlshing when

Pn lp“?
N~ Q (nlsas). kBTb o

2. Imaginary Part of Self-Energy

' Alt;hough "the- imaginary part I~ (p,W ) cannot be reduced in the
Verﬁr Dense State limit into a form as tractable as eqs. (5.18,19). for
the real pa.rt: D' (p,0), we nevertheless can make some ‘i'nteres‘cing
observations concem{ng‘ r (p,t_d ) ‘le‘s‘t.o‘f all, we show that for
small .Iw"s, F(p,W ) v in the Very Dense State liﬁit with
N ? 0 . Second, we calculate f'(p;w-) for s;rxéll p's and
small ¢ %s with n=0. | |

a, Above the Transition

We begin with eq. (5.9) for I (p, ) which can be written as

r(pw) = L A(Pp"' 5p0 [ f 2y 2nJ(w+w-£5—5:Qx
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" A(P“‘*") AfP &) A("'a;') f{w");(@)wa') "

[ L. (5 33)
+{£3) ‘f(@') ‘f(w)

where we have néglected a term llneér in f(es) in-anticipationbfv

of taking tﬁe Very Dense State,limit'and where

| APP'BPY) = é[wp-fﬁ)-«- vip-7)]*

oo 42 Y2 | (5.38)
{znt)” &p+p'-p-P') -

We now take the Very Dense State limit,.expanding the stafistical
factors as in (5.12). Also ve assume that for small values of «J ;

" the spectral function has the following behavior1
A(pwd ~ Ap ¥ SR (5.35)

As (5,35) is obviously‘ohly valid for smail - ?’°s’<“é introduce

cutoffévin‘the ¢ -integration. Then eq. (5.33) becomes

repw) = };L A(PM'F’)(:&@,T)

I-s-p

(5.36)

| fé’an
“_f """(’;)f (50 W) 277 § (s w3 -’)
ﬁ?@% : . 8 2
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where 7\(??'_3 ') = Ap'AﬁAﬁ' O (pp*P ') . Eq. (5.36) is

trivially integrated to glve
ripe)=rnpw (5.37)

where YP is independent of v, This linear relation (5.37)
should be éompéred with the quadratic relation, [~ (p, W) ~ ‘4)2 R
for normal fermi systems near zero -temperatures, as first shown by

101 The above proof can be easily extended to

Luttinger and Ward,
include the ren'ormaliz..e'd vertex part .V(p,w) in p_»lavc'e of the
instantaneous potential Vp - fhe added gssmnption h'geded is that
'vV(p,u) ) be regular about V(p,0) .

From eq. (2.29), we express the spectral function in terms of

the imaginary part [,

ApW) = e mf) ‘ 5 (5.38)
- [w-g-ap-9T 2 TR W]

From eqs. (5.37)(5.38), ve éee that eq.. (5.35) _holds_'fbr all

romenta as long as %) » 0 . Therefore we conclude that eq. (5.37)
is vaiid a'b.ovev tﬁe» transition.'. However th;re is a singularity in
(5.38) as p—»0 and #—> 0, which i_s due to the macrqscopic
occupation of the zero momenta staﬁé. ¥e now c‘onsid.er the l-lmiting :

cese 'r)—» 0 in m<“>'re detall,
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b. _On the Transition

A self-consistent calculation as 7 —>0 for [ (p,w)
involves a formidable integral equation (5.3_3),_ which is much too
: coqnp_lek._ Therefore we settle for a non sel_f'-cvonsi'stent calculation

generated by assuining a quas'i-pa_rticle spectral f_unction, :

' Zﬂcf(w—wp) wro e
AMMP‘ . S (5.39)
Lo otherw:se |

where Wp = ,A'P +6: s on the right hand side of (5.33). Taking
the Very: Dense State 1limit ahdbdoing .,the‘. angular. lntegrations‘ 1xi

- mome_:itm_n space, we rewrite eqs (5._33) as v 7 - | ' ' -

ur
r(;aw)- 7 - wfd,- r*do(!ﬁ)

N o
u.‘{P%‘?‘ao(g}’){fiﬁ;&?o (-’:ﬁ&) ® (5.50)

R pledp - 5 v L
~ { W La',("‘)”zw(m%f W WP)

The r-integration in eq. (5.40) can be explicitly performed,

‘ resultlng‘ in |
'A .OB : . . | ,'  | - s
g (B g (B4 (B)s(F) =

=% =z
- pPEF T E

(5.41)

<td\'
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for p 7;7;' > p' and p + p* < ; + p' . However in the integration
over p " ;', p* , there are le terms due to the 4! permutations of
the inequaliity. Fortunately, 6n1y 6 out of the 24 terms need to be
considered, the lrest being m.egligible; The 6 terms are those with »p

. as the largest momenta: " - |
) p>Prp» P }

- - PP P+
@ prp>F > RS

() prp'>p'>p - -
p+p< Pt o+ pt

(&) p>g'5'>p'>

|

() p>»p'»p »p" N - -
' , perp'<p +7p

() p>»p>p' >0
ficto;ially, these six lnec{’ualities define the .si'x'tvetrahedrons which
-compc'»se the solid cube of length p fn the (p*, p » ;5) space, |
See Fig, 10, Hence when we intégrate over tﬁése six regions, we are .'
integrating over those values of (p* P p') which yield the majof
contffibutiqn in the Very Dénse State li_m.it. Further simplification
can be had if we notice the symmetyry between ; and ;' lt}i the
integrand, Piétofialiy, this méans that the integrand on'thie cube
in (p* ; ;v) space is symmetrical abogt the -plane .defined by the
main diagonal and the diagonal on the ; ;' face, Also wé neglect.

in Vp to obtain

Voo
2?55,

‘ )
r(pw) = - =
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| {"jfys AEE‘[P"“? J[F”*F£1° T '
n Bletp! 2n J‘(wv-A '—"A’_/) -+
A 45 p-p o “F P - £

P, P  y=l ' . , .
____E.jﬁ_e_.d _[Lﬁ zﬁd‘(w+4 —Ag =85 )+
A Ll P P
PP P' A |

- Perte |
*j.&.;._if” e f ﬁé‘(w+A -4 ,)]

 CF P o | o

Te do the & -»function 1ntegration, we change variables to

(4
Ap = Aopal?“ s 1.@. for an arbitrary funct:ion £(p)

plalp ‘ 2 ’ '
f»ﬁzg« ) = 353 Jat) £p)
Note that the limitation to the cube in (p* ;;') is consistent

with the setting of A; equa'l to A°p3/2- e The § -function is

trivially integrated,. 'and the resulting three integrals are equal.

Therefore in the small e region

- P
Fpe) = fsm % f..,ﬁ_j
yrwv
Wk P'P’
which gives
I‘{Bw) = -%5;-(4-77) ) | . .(5.43)

which is valid for p €& p_ . Therefore as 7) ~p» 0 , we find

15 '
Yp - "; ( & -7 ), independent of p for p £L<X. Pg *
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;1, Spectral Function and Green's Function
From eqs. (5._38)(5.37)_, we may explicitly write down the spectral

function for Bl , l.e.

.'A(Pﬂ*") = P (5.44)
| [o-ne) g et
where |
Y = %(4-.-77) a{»;-—fo .

First we show that the low frequencies exhaust the identity

Cfew Al _ 1 (5.45
,-’”37)' Y ) BwWp R . .._)

We have
00

’j”dw Alpw) _ 573‘ J Ao

/

T2 fBew | anB SplPprDwt-2ngw s Wit

-, e
= 4rz .[ﬁ;’r z(l+¢);"_‘w-z_vé]_
&5 pre e

(5.46).
-0s

I’ .
3

‘Eq. (5.39) demo"nst:rateA the consistency of the Very Dense State limit..
To 'demof\strate the validity of the Very Dense State limit, we note
‘that for /3(.0«{1 ’ /5['(p;w)<< 1, so that the width of the

| spectral function is contained in the small (W interval, The
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condition on the peak of the spectral function is always satisfied
if p < Py o Hence the "continuity™ conditions are satisfied,

Now we show that the low frequencies do not exhaust the sum rule

go - | |
&t - . .
2m APW) =1 SR L (5.47)
» . .
We write
%
afen ' ¥p ¢
amr Alpw) = J’ ] £ .
T -e, n G rw)w Mww%"_

where wc is introduced as a cutoff for the logarithmic singularity
at infinity. As we want td include as much as possible of the peak

at HP , We se't. wc >>WP « ZThen

f A(ﬁ,w)» m{ “&’{&y -H)Nc =2 W/p ]}

’) w@ +2WP w;

{5.48)

a4 Wi >
é)%;,-#! 'ﬁr °>“\/on

. Iﬁ the particular case n—»0, 1/ + X sz) > 0.1 .
Thergfore the .sum rule is far from being exhaustéd.

Eq. (5.&8) can aiso be obtained‘from‘the analytic Green's function.
and Herglotz Theorem.loz Herglptz) 'I.‘l'u.=.corjexnl°3 s;ateg that {f, in the

upper half plane ( M}?O), G(}) is analjtlc, Sm G( 3 ) » 0,
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Lorrr [} G(3) ] = €, (a real constant), tﬁen
Bt dd ’ ‘ :

. >0 ) " . .
G6(3> =_{° o ;f‘;’.f- - mpo

- and v
et . "
> Alw) = &
In- our case, the analytic Green's function can b'e‘writ:t:en, for
i,@ 3,' << / . asl‘

/
3-Wp-iip}

G6(p3)= G FEwril  sug

Eq. (5.48) is then obtained from (5.49) by applying Herglotz Theorem
to (5.49) aqd noting that  ¢° « 1/(1 + % sz) .

o Note that in the ;iormal fermion case where 1f‘~w" the sum
fuie' is satisf;ed nea'r'z'ero temperature if we ignore rthe W deﬁéndence
Aof the “reial pa?f._ quthetmorg fof the fermions, thé imagin_ary pa_rt;
is smali witﬁ respecf' to the real paft:, i.e. for a pole at |

},'n w+i the time development is

L(w+il)t cewt (1 + ir/w)
= e - | b
and the attenuation  _( F/w) ~ ¢ 1is small. These ‘conslderations

v led to the naming of the excitations in fermi systemvs near zero |
temperatures as quasi‘-patticles. | In the case of bosons, since F~w,
no ‘quasi-particle intéfpretation is warranted. Following Patashinskil

94 _ -
and Pokrovskii, we call these excitations with F~w and A~P3/2

(.
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as iow-ffeéuency,_lowagentum sinéle-parﬁicle flucﬁuations.
Mathematically, these excltétions are fepresgnted by a pble of the
single-particlé ana}ftic Green's function on the unphysiCa1 z-p1ane

near the origin, fbr .p‘>~6 s the pole is on the unphysicai sheet

iﬁ thé first quaarén:., As p*—P.O the pole Apprpaches the cut Qﬂ fhe'
real axis at 3=7 tt_lenv as n—%0 ,. the pole approachies the or'igiq
and goes onto the physiéal sheef,vwhiéh is the mathgmafical‘tepresentation
of‘the:macroscbplc occupation éf the zero momentum'sta:e.: Physically

the excitations are fluctuations in the low-lying states as they

anticipate the macroscopic occupation of the zero momentum state, v f

&. Macroscopic Properties

Ve tum frptﬁ our microscopi.c anaiys_is and con_side‘r‘vits'macroscop'ié N x
conseqpenées. As a beginnin‘g,b we.coll.ect some thermody‘navmic' relations
" for the three second-derivatives of the Gibbs potential. The

isothermal compressibility K;‘ is

 Kq E (, = - (5.50) ,
V_-’} TN Ne e - . o

where we wrote in shorthand '..ﬂ.ﬂ/“, = (-3‘:!?-/3/&9"-7‘;(, R

The isobaric coefficient of thermal expansion 9\ is

= (5.51)
(?TPN N[N —Q/u/u]%“{ ‘

The isobaric specific heat cp is
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e L éiéi . | s n : o

P ‘V(ar) = Cy == --—_./.':I]_n (5.52a)
A - vIN
72 n ol 11
wheie'the isometric spécific heat c1” is

2 27 z(25) ._,&Z- ..(2 - (5.52b)
cv‘ ‘U”3T 7 7r +528)
Yo . -

Note the common occurence of the,factor .f%,;;, in eqs. (5.50,51,52)4
‘The macroscopic properties may be obtained from the microscopic

analysis. by eq. (2.61) for the Massieu pofeﬁtial, which can be written
¥4 / . ‘ '_
pA=-d 4+ +r(f£§6',) +trLn(-G)) (5.53)

where J2 is the Grand potential expressed as a function of
: . Y .
(T, V", ), §§ does not include the Hartree-Fock terms which

have been absorbed into the free particle Green's function
o ! ’ ' | ' :
[6%r3n) = 3w -€tr) +n . (5.56)

-f -t ’
[Gr3n] = [67ksn] - Zp3w) G

vhere 7 and eE/(p) are defined by eqs. (2.110)(2.111a5

respectively and

Zp3v) = Zulps) = Zi(0:°)
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IO
f6(pyn) -

(5.56)

) =

®©

We first take the derivative of (5.53) with respect to 7
L2 » = : ,
2R - 4 (622) 4 ,-(G 9@' | 557

where we have used the fact that
‘ESE; - <r§2; Q’éb‘) '
1b97 .

From eq. (5.55), we see that

)
<.
-~

2 = - 2

_ LRI O (5.58)

and eq. (5.57) becomes simply
2.0 | o '
ﬂ 75—-;7— = -"f‘?"G} = ﬂM - ] | (5.59)

Téking one more derivative with respect to ?7 ¢ We have from

(5.58) (5,59)

s | e | | =
Ao = -+ G- 1r(G 9?;7.2} ) <s.§§§.
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The general equations are now specialized to the Very Dense State
limit, which is most convenlently taken in the (p, },1) representation

by setting 3y= 0 . Ve have in this manner

- p= —-Plepa)] + "%A’(”W) G(po) +. (5.61)

+ 2\ e (-67p,0))

ga, = —L6wa G

‘ : ' N/
,/ﬁé.ﬂ.,;,7 = —%63(30) - % Gl(p,o) ?;%_%2_‘2 .69 _
_ f . ‘ o ,
wﬁeré functionals of Gl(p’ 3,, ) are replaced by the same fuﬁctlonal
of Gl(p,OD._ It should be ehphasized again.that eqs.‘(5.61-63) ére
'vnot the equations for a qqas!-particle‘description.of the system,
elthough the imaginary part of the self-energy do not play an 1mport§nt
role, The. discussion of eqs, (2.115,116) appiies here to eq. (5.62).
| The Green's function in the Very Dense State limit can be written, |

from (5.49), as

/

’ 0‘ ‘
Ap-ré/,#“q .

Gpo)= - (5.64)

We write the real part of the self-energy at ; m 0 as
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A,p”H(}g p) + Ay P H(P-ﬁ}H(Pa ) + )
© (5.65a)

-Afs, €
4bé%y e S (7’ }Q’)AHI(VQ -7 ) ,
wh?re B(p) is tﬁe Heaviside function , o
H(P) {*'  pro S
CH(p) = - | s
" l e PO , ~ (5.65b)

A is an arbitrary 'con_stant introduced to preserve the continuity of -

: A'p and will be taken as very large; and 5_p1, p o are defined

2 2 3/2 N ' .
by Alpl nA°p13/. and éo = A,P, 'respectively, Using eqs,(5.64)

Po _
(5.65), we can evaluate J?.;’,)_of (5,63). We write

RGP = TG + I G*w + LG‘CF) C (5.66)
A S S A
and find'
B | . | o
27,y . U P v ' |
p%G ) = z,rr%%ﬁ[ 2(p>+7/A) + (5.67a)

-'?}: .Ar'aﬁénv{iﬁ /—%:) }
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P

v 2 [ P ©+ /Ao l
2 2 e = | O -

| - (5.67b)
A (lez-w-"]/ﬁa 73/3‘ 7)/A¢, ) ]

Cp . _ o

- Yoy . ()" | Fo -

Z5 = s [2%‘“_'"7) o

| |  (5.67¢). .
2\/——— Arc-han[vym? ) T

TRV £y, (B7)

2/3

In the 1imit »—» 0 , we note that Py~ s A ~'r] 3 o that the

leading term is logarithmically divergent

'ZG'(P)'-V_-—--—MVv | 2o |- 7 o  (5.69)
R CP = P%-»??/Ao ;e

- which comes from the integration over the p3/z-; spectrum eq. (5.67b),

To complete the calculation, we note that

27 '9’7' 27

where the exponential term is negligible as A—% 00 and

IQA(P)O) g.éﬂ = ?_&PZH(PI-P) -f' (expo§entia1)
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% o | |
26%p) = e d B B
,5%;59 _ P .377*1§5f%f‘ E?F§ 2 A f%éﬂ@ﬁrﬁéy

L, e (5,69)
= 3E arcran(rf2) ]
ks 7} ~» G, %GZ(P) ( [} &’(pao)/'a‘q ) e~ 0(1). Therefore we

have

v ' i fa?/%.'

,
BLlyy T = T (5.70)

where the prime indicates just the divergent teruw, ﬁsing the

definitions of po s Py and Ao (5. 24), we rewrite eq. (5 70) as

pa5, = B2 /fwwxzm.) e G

o.

To make contact with the macroscdpicvrelations (5.50-52), ve
need to go from (T, 7/, 7} } to (T, z’zfA;). We do this for small

?7 .only, expanding ¥} as
75 alpe=pp) + b(T-7p) N - (5.72)
where a and b are constants. Then

'{Z/Mﬁ :a'&.,jz,m 3y Ly = ab_(z?m O b’:ﬂ,m (5.73)
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Therefore eqs. (5.50-52) reduces to

.. N | | | |
K‘ S pmye— . aos o . ‘ :
T ¥ Nz_a -!_217;7 "" (5.74)
-_tTs_& 2’ o
Cp = N [N a ] Q 'Q’7’7 nd ' ~ (5.15)
c .-.'-l[._i;ﬁjzéz_(z’ e
P™ YL N 2] M | (5.76) .

where we retained only the 'lbgarithmically divergent term, Thus we
conclude that the logarithmic singularity appears in all three of the
quantities K, , 9(_1) . cIV,‘ , but not in Cor -

The ratio -b/a can be'exptessed as the change in A+ divided

by the change in T when 7 = 0 . In other words

1

-_@,g(?&)- s .Y 2Py o
e s [ S . v (5.77)
a 97‘9):0 N N 37,-720

after the usual thermodynamic manipulations. Using eq. (5.77) in

(5.74-76) , we see that
V = - -—-—- 2 .a R .‘ ) »
Ky ~i @ _(2 (5.78)

z’ , en »
('a'r A ‘n”m + (5.79)
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In liquid hélium-&, .(3?/ ) T)’)-'-'o o2 —130 atm/ol(‘ at Ta, =2,18%,
:which is a large number cdmpared with nkB o= 3 atm/°K ’ Thérefore
one would expect the logarithm singularity to be most accessible in

ép s less so in gx ° andAlgss so in K& . To make a reasonable
estimate of this, one has to include the relative magnitnde of the
nondivergent terms.loa‘ We note that the ratio of the logarlthm term
of é to dp is given by 'r( T P/B '1‘) + Using the

P
measured value for €p » ©q. (1.1) and ctp

dp= o;a§/5 + 145 16% Log, | T-Ty | (‘5}’2) ,

we find that (c !/ & )log L2 -=298 atme This is to be compared with
the above predictzon of T,\ (DP/2T) = - 284 atm,
n=0" "
A crude estimate of the width of the logarithm can be made by
! ) ' . 2 :
noting its dependence on the p3/2-specttum. The y?l_-spectrum
vanishgs when vzav 9(;I§as)2kBTo o ‘Therefore thé width of fhe logarithm

i

_is glven by
T=Te 91‘% . /3 |
-7:0’ ~ b (ﬁ a’) o
Of course the width depends on the relative magnitude of the nondivergent

terms,

- To determine the shift in the transition temperature, we go back

to QQe (5 62)

N == fou T %;G’(P,o) (5.81)
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As 7) — 0, we have

 /‘
ne BE [ -a) +aEsd)

. (5.82)
v‘Appr6£imating bé by (Zon)2 and using (5,24), we get
_ . | : | 2/3 3 _

\

where Toi 1s the transition temperature for the ideal Bose gas.

Treating the term involving Vo as small, we write (5.83) as

T 7l | | | . o
’OT > = 0838 (nas) o (5.84)
e o ° ‘

Hence the presence of the repulsive potential V raisés the
transitlon temperature. Recalling eq. (4.120), we see that a
‘ tepulsivé potential contributes both.to a lowerlng term through the.
. effective mass and to a raiéing term in the very sfxort-rang‘ed limic,
The sign of eq. _(5.8&) is conéistenc with the hard core example,

eq. (4.136),
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C, Born-Collision Approximation -=- (Variational Calculation)
He continue our ﬁnvestigation,of the Born-Collision approximation
above the transition by considering variational techniques, .In

'Chapter ng'we'noted that in general thé variation of the Massléu

potential W with r@spect o the total self-energy JE; does not .

have a maxnmal prOperty but a stationary one. However for a special

clags of variations, we can show that the variation of W does

indeed have a maximal property. We :irst show that the Born-Collision

approximation in the Very Dense State 1imit is stable under arbltrary

variations of a special class of selffenergﬁeso 'W¥e then apply the
vgriétionai»techniques to‘the bulk 1imit to recover some of the
results of the pfévious section, aﬁd finally we apply the same
techniques éo res;ricfed géometry.

1. Stability in the Vegy'Dense State Limit

He begin by recalling the general equations for first and second
variations of the Massieu potential, eqs. (2.62)(2, 65) respectively,

and tewrite them in terms of the Gtand potential —ﬁL

B = ZGZ( léu)i toﬁ(P%‘) 0 jgfgtot@}v) (5.85) |

§G(Psy)

s = 60 | (eme o3 -
| | (5.86)

| €2§[G: | tot ot
-Z Gz(Pﬁv d‘&(ﬂ EGPI) Z Ph)d’Zf (p;y)
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where the second varlation is evaluated at the point

~tot, «Sé@[ﬁh]- o o :
2 (Pyy) = | (5.87)
| .J’G(P&v)
From eqs, (. 85 87), it can be shown that if ve restrict ourselves
to arbitrary variations in :Efnpt' whlch are frequency independent,
tot v
tee. . %2 (p)' S 2 ‘the Ideal Hartree, and Hartree-
Fock approximations are all stable, i.e. 6':.!1. 2 0. Thls result
is to be compared with the fact that even the ldeal approximation
105 to
~is not stable ~~ under arbitrary variations of }:: (p, }v’ ) .
- For the Born-Collision approximation, ve find that 42 1s stable in -
the’Very Dense State limit qnder arbitraryﬂvariatldns in Aﬁﬁb .
- To demonstrete this assertion for the Born-Collision approximation,

we find it convenieht to abserb the Hartree-Fo'cl; terms into the free

particle Green's functions, not unlike eqs. {(5.53-56), viz.

: 5 B | |
[6°r 3] = 3v-€tp) -5 .80

- ) _ o |
[6tm3n]) = [67Gm]) " - Znsy 69

2\(?:}‘/) }:\(P;}v) '2:(0,0) _' '(5.90)..
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 e8le]

'.Z(P,gyh gee) (5.91)

J\G"(f’)}‘v) . >

‘where 7] end v é’(p) are defined by eqs. (2.110)(2.111a) respectively

and <P  does not include the Hartree-Fock terms. Then eqs. (5.85)

(5.86) become

' _ e N /. 5@[@] )l ﬁr.
,ggm .,g\@(g;,) [2&(;%’”)-("'"—-3@(%” 1&‘4(?;«:)» (5.52)

Py g%s‘(ﬁg) [(&Zl'(fs};))z -

_ , s . (5.93)
- ' G¥p'y. g (ﬁ&l) lete s ’
P%;’ (P'3) &&(Pi}?') ) §2.(p'sy ) J'Z, (P}v)]
WBere ,
£ (6. )’___ $El6] (a@[eﬂ S
&6lpay) &GP 3) 36y pao (329
R - | 3,20

. From eq., 5.5), we see that the Born-Collision part of P

can be written in the symmetric form
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(cﬁv’) N AP iv) »

Prefy Py
A -
A v ?(5.95a)
* 6(P3v) GP2jw) (P 3wy) GRTW) |
. whére
A({Pl 1) = % [V(&-r.) +V(p, - m]
- (5.95b)

“(l'"f’v) J‘(P/-Fz.+e, -2) (~«/3) &‘

%r 4%

We now take the Very Dense State 1limit by setting all the }1/ =0,
perform the angular integration in momentum space, and assume a
very short-ranged potential to reduce (5,95) to .

- ' - -2Vz“v" / A ' ;) S, 4 ,
| §5ﬁ° = ""/'f";“""’ ;‘{_"3” [V%G(p,o);o(%’)] IS
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'Therefore
&é,,c[éfv])' _ zv,, -
(J‘G(p,O) B f “r (a2 "] N
“ (5,97)
[6 Deron]
and
5\ | sSe. | Ve
(i) = £ feor {zo(%)-d ()
(5.58)

x E—é %‘;Gr;o)i;(%g)]

Hence from eqs. (5. 92)(5 97), we see that the vanishing of the first
variation of .fl. with respect to Sa(p,o) = ?A
leads direetly te eq. (5.18), Substituting eq. (5.98) into (5»93)-9

we see that the second variatlons can be written as .

ﬂf(;;) U,EAG"(PO) Jap J‘A,, +

+ 6% ja.s [Z,zeff»om(’ )]

(5.99)

»« #%G’(po) (-8:5) o] [—L’;;’;G’(p’o)}, (2) 84,




Ly
/2179

Since the pbintegrétionszare over small p's, the Integrations are allh

‘positive, Therefore 5‘-Q70 and 2. is minimized at the

vanishing of the first variations under arbitrary variations of A .

_ . P
Since the variations are arbitrary, the second functional derivative
is 'g!,ven by
/35-”* = G*(po) + o Gﬁo,
st POl G &P

faf‘ [1~do (—*&)] Fo( 52
[-"' ZAG(F’O);,(#)J

{5.100)

2, The Bulk Limit
In order to gain some confidence and insight into the va’riationai
technique, we now apply it to a case for which we have the solution,

the bulk limit, We assume a trial .self'—enérgy of’the form'_(5.65)

3/z

8} = Ap? HCR~P) + AoP ' HIP-P) H(f-p) +

» (5.101)
+e,§ exp L—-?«/&, 'éa(P"Po)j HCP=Ps)

where pl and P, are defined so that A'p is continuous, i.e.

. 2 3/2 3/2.
e ,Alpl = A Pl s AP,

- e; . Inétead of an arbitrary
o .
varlation, which as we have seen recovers the sgelf-consistent lntegfal

equation (5.18), we assume the form (5.101) and vary A, and ‘A; .
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L / .
The first variation then gives us two algébraic equations for A, and

~ A} . However, because of.thé explicit variational form of (5,101},
we run 1nto‘some.spurious results which we now examine in detail.

Inserting eq. (5.101) into (5.92), we obtaln the first variation

| ' s | %V 2 _;’ég /
pine Ectoop art- (555 ) n.

*ZG‘(P)O)P [ P (é‘éac.)’}mo ~(5.102)

P=P dG(po)

where the exponential term has been heglected. Inserting eq. (5.101)

into (5.97), we find

é?é@é;; Voo 2 ]
Soipo)  TIHP) f recte 1= '»)]D(’") (G109

wiéh

S
pes = f A Al +J’ 3/,.30(;9) +

A 3"-4-17
_(5.104)

+j._g-_3- (4.)
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" where we used the similar arguments as in the self-consistent case

to reduce D(r). The second variation is obtained from (5,93)

ﬁé‘ﬂ- ZGa(pO) 38, é‘AF -
(5.105)

3 Mgc L

with

oo db, = ,o’z &H(;?,-P’) HCp=p) (§4,)% +

'&P%H(P”F’)H(FO'P)-H(/%'F')] FAodAy (5.106)

P'%P% H(ep) Hipyp) Hp-pr) Hipsp) (€40

and from eq, {5.98)

& (8P \ . _ et .,
| %(P’O)(éa(:;)) - ﬂsu U j" d"["‘&'a ]%(‘?)pz{») (5.107)

where D(r) is given by (5.104). The rest of this section will be

. spent in approximating D(r) for Speclal cases of momen tum range,
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We begin by considering the limlt *x)-—-v 0, which results in

v p.l -_p 0 5 - J’Al — 0__ . Therefore the vanishing of the first
variation (5.102) yields

sy =3 sy

S w2 36T, 3/2_ 6053» ‘]
e = 3 Gpo A

(5,108)

We estimate - D{r) ‘

at v = H/fp:

P,
3”8*&3 g ( 3/P) + 2”‘?_/’ dg gJ( WF)
— S5 X
. gv/g. ’5; J%llg g(x)d}" -+2.rnr> :fo(J")dJ‘-’
| ,\ % - i%/P-
In the interval

0 £ p < po‘, we see that D(-'ﬁ /p) goes from

s p( \/ - 3"3‘

P“’?O
to | |
o ‘ f—'3’.”. : ‘ Y 37/,__ » , - /
Lown D (-'{-} =3 ﬁ B - -Z?;-i [I;@g"’l(}%(}«:)d}( -
P#"ffo 3 ‘2' Ao Ao / 20 .
, 1‘-"‘{}:5(5} ’J'X-]

Kumerical estimate of the integrals in the bracket shows their value

2¢ 0,008 and therefore negligible. Hence D(r) is given by

D(r) ~ ( j‘i/zd?c?s(‘;) zﬁlg (5)3/3 | (5.109)
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Substituting (5.109) back into (5.103), we find

’

- ) | (5.110)
§G(pO) /5"3 /3“‘6 A2 |

which, when .lnse.rted'i.nto (5._108), yields eq. (-'5.24)_ ’

4. 2 (Voo \
‘A_o = I593 ﬁaz,t,e) - (5.111)

The second variation (5.105) ‘can be likewlse calculated, and we find

2 83& | _ |
BA, SAZ “37,z<——£‘3—) | (5.112)

which vanishes at ’povm 0.
" We cdnsi'der now the case ”n > 0 . The vanishing of the first
variation (5.102) now leads to two equations, one for Ao (5,108)

and another for AL -

l4 :
/3 A ZG(PO)P {A’P (&0 )_] = o (5.113)
We treat first the equation for: Ao o In the region p'!‘ < P <P
we add to our previous expression for D(!f) in 0< p < p, .

eq. (5.109), corrections for the presence of pl' » 0, so that -
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P :4‘:/-?6-?)% - AE T o

A [ m
¢

B (pgr/A)®

(5.116)

where p.,,‘ {s defined by Alpﬁz =7 which is a little smaller

than Py e and we assume p1 << P, o Numerical estimate of the
two integrals in (5.11&) show that the first integral dorhinates the
second oné. Therefore we approximate (5.114), just to get qualitative

behavi or, by

L [E Pl _ 22 5 "
o(r) = Aaf;(_;:, "_3"% H(%"") .', (5.115)

where thelcut'off in r 1is introduced since the expansion of . jo(ﬁ) >1

is good only for % £ 1. Treating the constant term as a

perturbation, we substitute (5.115) into (5.103) to obtain

4 ésc )I AL | ) 32 __ /5 3/; .
= < (5.116)

where we have neglected a slowly varying logarithmic term in p and

have defined

S = {'g;} ("‘J;(‘;)) | (5.117)
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Eq. (3.108) finally gives

A = 25?73 756/3*) [’ 2-77 c(p’/l) ] | - G

vwhere <P3/z>’°' is defined by

<p3’3> = ZGZ(PO)P / ZG‘M)PB’"
PR PR |

' | (5.119)
~ L p X .
2. "Pa's'/'““z —n) .

Thus in che,n'mic Py << p o ve find from (5.119) that (5.118) is

o.‘ 1571-3 (-;;co/,:z>[ /5:, (_&)3/21 o (5.120)

and we see that the se'];‘foconslstent solution 1s approached for

pl' €< P <2 Py and the ¥ ~» 0 solution for P, —® 0.
A Now let us consider the equation for A1 (5.113). In the region

0] < P < pl s ve write eq. (5.114) as

o T B —EPy 2 xadxsz
' . g ‘ ' (5.121)
_.L 24 x¥? :
+ 7 ) __'g Fotrlax
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Recall that we have shown thatvﬁsymptqticaliy D(r) 3w£5°r as

T —p 06 . This asymptotic behavior is'impor;aﬂt‘in'the region

0 < P < P, for it is necessary for the pz— spectrum to occuf. The
other two terms in eq. (5.121) do not have an exponential behavior

at large x's ,‘But a ”E/rz dependenceo ‘This l/rzl'dépendence ariseé
because of the Heavi#ide fuﬁcﬁionslos in our variatiénal form'(S;IOI).
iIn dther words, the'qxgét zg;' is smooth and yields an exponential
cutoff in D(z), while (5.101) is not smoo;h ieading to ;X/rz
asymptotic Béh&vior of D(r). Because of the 1m§ortance of the
exponential cutoff, we demand that the sbecfal variation satisfiés it
2lso, Therefore we neélect the two integrals in (5,12i§ which lead

.to the spurious hsymptotic behavior,

From eq. (5,103), we obtain

véﬁia?c . - ‘ V&z

é‘&(p0)> 57;2@6/3* A3 Zo (P> y (5.122)
where

I (P) 0 ? [Im&(%’p‘/}’*));] - xg. -

' €5.123)

( ) [’ 30( """'] .

ot ¥

~
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‘Substituting eqs. (5.122)(5.123) into (5.113), we obtain to first-order

a3 = ! Yo ) .
AP = a32m? (_7'6/3‘77_) . . - (5.124) .

The second variation may now be calculated from eqs. (5. 105-107).

For O<p,p<p1,wehave'

€§3c = _.. 3 et .«
%ff’o) J‘G(pO) - 2nH3BUARP |
o - (5.125)
x Jelx [i-4ot0)] 4, () & 2*P/P
o .
which lea;d's to
$AL 7 o | | | (5.126)
~ with ;ﬁe equal sign when P, -0 . For pl- < PP < Po ’
we.have ' .
‘ / \
$ (aégc) 175
" J‘&(P’O) é\G(Po) zr’%‘A:Ub (5 127)

_— . . ./
z{%[l—‘}om)] go(x%)

which Ieadé to elementary integrals and the explicit second variation

n 15¢;, (p, \3/ I
Ao, i‘Ag- 37;?- 3(?0 A’) [’ nl ) ZJ (5.128)
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I

which vanishes when P, —® pl and reduces to (5.112) for p1~—9 0.
Finally we have the two {inixed regions: for 0 p < Py < Pl< P, s
we have (5.125); for © 2vp’:g pé <P &P s We have (5.128). Then

‘only the xange of the_incégration changes, and we conclude that

g | | |
SAa, 84, 7 e (5.129)

_wﬁth the equal gign when P =Py " 0.,

3. The-Fﬁim Geometyy

- With the insight galned in the bulk limit, we apply the yarigtionai
tschniqueé to the fllmvgeqmetry. He érieﬁt the £ilm to be.in the |
xy-plane, of infinité‘exteht,vwith the thickness L along the 3-axiso

-He assume'the same varﬁatiohal form fof the self-energy as in

- eq. (35.101) with the stipulation thatlthé momenta are to be given by
pz'm pllz < pBBZ ’ with pu2 ™ p*z + Py2”° vBecause of the'variétional
form (5.101); a sum over momenta can be thought of as a total of
three sums in momentum space over (1) a sphere up to P, » {2) a
spherical shell from pi to po s €3) a spherical shell frqm Py to
pz o For any function f(p) where p 1s the magnitude.of the-moménta,

.we have the limﬁé

. ‘ ’ 7 7 Fs
L5, LA = g [fen ) 2 nf

(5.130)

P 7o ' P ;%' P '
1%Jfogo -+ ]Qéd[ + .f}s ep p F(p)
bnd, el v ] Jarpte
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As ushal, vé assume box quantization
~ 5, . |
P} - ‘Z"L-A X 4:()2)3).~¢-

Thus for finite L , eq. (5.130) bécomes

,z,,,, f(P)"' = | 22 f
6‘ v%: 2”%3[ }-% z'i_.&,c

.* Zﬂ;:E: Jr - 77;;Aa’jrfﬁ-+

| of-/,fl _7%5‘5
| .£a4,+/ kL) Ly

- ] clp P 1‘(?&)

- (5.131)

(5.132)

where 1@, 4, lg_ are defined (ln the % -direction only) by

Po."‘..

25551&5 )'7: 7"‘ 271; (‘ y P

=

(5.133)

. where the equal sign isvtaken to mean taking the nearest integer.

| Eq. (5.130) can be recovered from (5.132) by the usual limit

_- : L"’m ._e.jo*,

Limm ZE 2%00) fc%-/’(f’)

(5.134)

With these pre}fminaries out of the way, we consider the physical

gituation.

We shall consider the model in which the fiim is in contact

(thermal and materlal) with the bulk system. ‘In the bulk systemn,

7} is given by (5.17)



«190-

Towita: = /T %o + 2 Vo S (a3

In a film geometry, we have
= —pet Ay 20V + £, | i (5.136)

where Eo §fs the additional ground state energy due to finite L.,

HWe consider the bulk system to be on the transition, i.e. 7 = 0
: < bulk

Therefore since the Chemical potentials are equal, we have for the

£film geometry’ ; _ v
= Ey 7O, ' {5.137)

.This me#ﬁs that at 'To ‘» the‘transition tempe;atﬁre of fhé bulk system,
the film has_not yet reached its transitién temperature because

of:the additlbnalvgrouhd staté energy. Hehéé as L decfgases from
‘itS'bulk value, the transition teméeraturé decreases from To o 'For_a'
crgdé*estimate of this dependence, we gxtrapolate (5,136»137)'t6

¥} = 0 , which corresponds to - Eo = b(T - To)' Since

T buik

' v 2
E, = Al( w#HA [L) , we have

. v D .
Tp-7, = -2 (Z2)" <o C(5.138)

where If §s the film transition temperature. This l/L2 dependence
agrees well with éxperimentalvobservations {(see next chapter for more

discussion). However since our Born-Coliision approximation has only
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been investigated for 2 0 , we consider the £11m geometry

,"\Ibu‘lk
on?.y for nZE . S

We now proceed vith the variational calculation. As we use the
same varfational form (5.101) as in the bulk limlt,v we get the same

equatioﬁs.as the bulk limit, eqs. (5.102-;103)(5._105-107), with

D(r) given by

£ P Ao i)
p(r):—[ﬁ v .,..Z";..,zj -+ 77324 -+
. L=/ :{’;fl L > | 'én.,ll#[ ”‘"’A
‘ % L g ‘ e 139)
+ ”g,(oj 4+ 7y * } o
“ 7R "'.géw 75 g ¢ 35%(7‘-@) G(g0) |

-~ "~ As in the bulk limit, the last two terms of eq. (5.139) which integrates

over the spherical shell fromp0 to may be neglected. Eq. (5.139)

can b_é further reduced to, in the region p<pP< P, ®

P2 ) A
oty = B A28 S(L8) 4
| | - £=, ?—15“ l+77 .é.) | |

+Z2 ., ;’o 33/.2. 3o (7?') * 3.160)

7
Ao o
+ Z5 S\ J 8
".e;z.l:w Zo¢ &33/2 j"( ) ]

Note that for 7= E, = A( w5 /L) s P » - 745 /L, and

77' c}an', be negiected also from the first integral without conséquences.

Furthermore since Py & » we can neglect the first term and

P.)v
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approximate the second integral by

pr) = ZE g [ET - yE ] +

| : Lo 0 - (5.141)
o o :
I VER, L e
Aol T8 i e ”

As L —» &0, eq. (5,161) :éduceé to (5.109). Note also thét b(r)
is independent of ‘r]_; hence .Ao as a result of eqs., (5.102~103)
is independent of .71'., so that the L dependence of Ao appearé
only through the @um over the discrete'quantum states,
We take the firstwordef Correction'to eq. {(5.109) from (5.141)
by letting L =~ 90 but retaining the firsteorder term. We note that
'pl z pn » hence ve take p, = (75 /L) ’él with ll’ zZ 1.

The sum over £ is approximated by the Euler-Maclaurin series to

get (see Appendix E)

o oe
o ~ _
Ekg‘éz" 'f;r, x:;/z.S/n)f_ o .g‘/g
4t ()5

(5.142)
- ;?:«’r 2 (zﬂé) "+ o(;_’;,&) _

o

Therefore eq. {5.141) becomes

(,-) = (ﬁ) 3/2 [/- m-] + o(l_g,.) . | .(5.143)

[P o - e e e - O ST AU A P 2
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' Treating the I/Li term as a perturbation, we sixbstitute (5.143) into

(5.103) to obtaln

——w—é\é 3/ 5 5 " ‘ ‘ '
6‘6;.;)) -"/.5'773(7 )Af [P z_ fz Z.P/z] G

The vanishing of the first variationsv(s 108) then.leéds fo

: 4_ 2 [ _ /5772‘ '] | |

‘ Ao /57,3 (#éﬁ) 2L<P> (5.145) _
whei-e_ < p >'°- is defiﬁed

| - o Po.v32v 22:_? '2..‘

Lpoo= 2.PG (PO,)/P PG (PO)

PP , 2p, R

"_‘/%':::%‘E). . - (5.146)

Thus in the pl << po 1imit, we have from (5.146) that (5.145) is

A% = ‘5”3( e )[ | “JT(_P_:Z):} - ,.(5;.147)
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Note that for liéuid helfum-4, e;q. (5.147) predi‘ci‘ts size effects to
occur at L == 35 A /p a2 70 X » which 1s of the order of magnitude
of experimental observatlonso We note also that (5.147) predicts

a narrowing of the logarlthmic singularify in the specific heat,

Ihis pred;ction {s neither proved or disproved by the experimental
data as Frederikse® data” show§ a broadening but only when the bﬁmp
‘is aimost gone, | o

The second variation (5.,105-107) gives

fn 3
Aoﬂ JAQ Ao ZP G(POJ *

. Ph
- % P
33‘32 3/?, 13k =0
—ar G(po) p'*G(p'o) »
| Wzﬁ3ﬁzv%%, P )P v ) (5.148)

. f ax (z-;bzx))éo(%&) [/ 27% ¢

Hence at To s We sée that the 'pB/?-

- spectrum can l?ecome mstable,
t.e.. &rn2/ ‘ SAoz = 0 , when .L decreases to some critical L
as determined by the equation (5.148), A crude estimate of éhis L
- dependence can be obtained by peffotming all the sums in (5.148) in

the bulk limit., This procedure yields the estimate

08 82~ (BRG] | o
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‘ whieh gives the eéme or&er of magnitude for 1 as from _(5.147).

In fact; if we vcan extrapblate l(5 149) beyond fts region of validify,

(5.149) predicts that the logarithmic behavior disappears at. L= 33 x
Now we co_nsidez_- ‘the case 7 7.E—° or T 7'1‘ o The analysis

for A, temagiﬁs essentially t.:h.e' same with the excepl_:{on of a

»pllp .<<. 1 ’cortection term as ‘in 'the bulk case. We consider in

detail the calculation of A « In the region O< p< Py » Ve have

1
to remove the, spurious asymptotic behavior in D(r) “to preseﬁre the

' pz- spectrum for p«P. ‘ Therefore we have

/l/ '?,

;) = B \
D(.) - ,;7 zj':iz Az-n? J (?-3') o (5.150)

l...

Application of the Euler-Maclaurin series to (5.150) leads to

o) 35 F “7‘7’/’-{/ + £ | S RIS | -

(5 151)

g [ - P i)}

where Ei(y) _is the exbonentlai integral

5‘(9) fx e*ax
"3'
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Substituting (5.151) into (5.103) and expanding in terms of small

p's, p &< bl » we have

168\ |
"(W) IRZIEE %%‘ )A: {’*27£fff"r‘]}‘5 152)

z, : od‘_ ? e‘i‘Z%v Eeﬁ-ga(-g) —5555(?)] (5.‘1531))_

Examination of the integrand of 12 shows thgt; I2 is positive,

- Therefore the vanishing 6f the first Qariation (5.113) gives

) U B e

where ¢ = 27 (I, + ¥I,) 1s a positive number, From eqs. (5.147)

(5,154), we can draw the followiﬁg conclusion about P, = (Zon)2 and

2 .
P, = (AO/A1> . As L décreases from its bulk value, we find that

both P, and ‘pl decrease,, but whether P, - pl decreases or not

depends on thé relative magnitudes of the coefficients.
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V1. MACROSCOPIC THEORIES

. Thus‘far, we have centered our aetentlon on mlerescogic theories;
i.e, theories which begin with-eﬁe‘dynémicai descfipt!ons of the
elemental particles of the system. Now we turn to the complementary
pleture of macroscogic theories, iae. theories which do not begin with
the elemental: particles of the_system_but with some gross, overall
features of the entife.system° Once again we.shall use the variational

approach.' Instead of varying the grand potential JCL with respect to-
the self -energy :E: ) We shall vary the Gibbs potential per volume,
'g s with respect to some gross order function & o In order that
such a variatienal apprqech be productive, we consider ohly the region
where the order function is.small.so that some partlculer expansion
" of the functional g [&] can be made,
The genetal featufes of the sheory afe as follows., We first

. characterize the system by some order function Sp.. Next; the
functional g L¥] s constructed. Then we minimize ¢ L&) with o
- respect to &E s and ﬁhe resultihg Eulez; eeuat:ion i1s used to
determlne the order function Q e -The main problem of t:his_procedure
is finding sﬁltable order function ‘W and functional form 9[.@].

_ Historically, Landau107°108.was the originator of the general
theo;j in 1937.” In 1950, he and Ginzburg applied the theory to the
‘superconductor transitioﬁlogwith'great_suceess. Eight yearsvlatef,
Giﬁzburé and Pitaevskii appliee the same theory-to the supeffluid;

110 |

transition, =~ but without the magnitude of success as in the super-

conductor case,



We begin by reviewgng.the Ginzburg;Pitaevskii (Gp) vérsion.of ‘
the geﬁer#l Landau theory and applyiﬁg it to.the film g§0metry. We’shdé_'
expiicitly Ehat the funcfiénal form g LQE) assuméd by Gf 1ead§ tb
é seéond-order traz_\siti‘on for the film, which is contrary té.
» experimental obseﬁratiqns. Ve 'ne_xt: cbnsider»a'- moé!fiéd theory which

circumvents soﬁe»of the difficulties of the_GP theory,

Ao  Ginzburg-Pitaevskii Theory

The first assumption of the GPY theory is that the order function

% () corresponds to an meffective wave functioﬁ" of the superflow
: component. It should be noted that this order function ’i’ (r)
is not assumed to be the ’condensat::.e,wavvefunétion,\ which is quite
different from that of the 'superflm.v _comj;onentf Névért:heless, the
order function ‘E_(r) is related to the condef@_satg wavefunction in
that the superfluld component exists _only if there exists some
‘lpngo'r_ange braer vwhich_. is a éharacte:lstic .of fhe condensate.‘ As

k? (r) " i1s a complex w&véfmctiqn, we can write lf as
| &) = 2t ¥ e

thus defining the real functions X (r) and @ (r) whose
correspondence to the sﬁpetfluid mass density fs‘(r) and the

superfluid velocity ‘U’s_(r) is given by
P () = () | (6.2a)

Y(r) = 2 ver) (6.20)
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The seoond assumption involvee the fun.c.tl'onal ’form of the Gibbs
potential per volume g{."l?l o ‘He consider thersystem .‘}ith its
normal component at rest and at a temperature below but very close to
the -7\ -transition. Then 8 L @] is assumed to be expandable in
povers of @ s since ’I is small. As I..andaul_o8 has emphasized

for the general theory, this analyticity assumption is the basis of

. the theory, and its Va‘lidity is not at all obvious a priori. Keeping

only the first nonvanishing terms, we have for a homogeneous system
gLe] = g, — 1B(* + £ 12|* s ' (6.3)

where o and /3 are expansion coefficients which are functions of
pressure and t:empemt:ure.l ! Any inhomogenefty can then be incorporated

.by retaining the fi_rst ‘term in the expansion In terms of VQ o ’fhe-

final GP functional form of g EEE} RY}

The structure of eq. (6 4) is quite evxdent. The first term on
the right is the Gibbs potential for the normal component. The next
two terms are t:he "potential energy" contribution from the superfluid

component, ’I’he last term is the "kinetic energy" contribution from

‘the superfluid component,

Now we vary g E‘Q} with respect to § in order to determine

¥ from the resulting Euler equation, which can be written
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[-—ﬁ_vzmd -_f-ﬁ!&?!’ ] Q(’) = O (6.5)

This equation, analogous to the Ginzburg-Landau equaﬁion for sﬁper--
conductors, is the Giﬁzb;;g-?ltaevékii (QR) equafion.

The third'assumption éonéerns'the ﬁressurevand température
dependence of;the tﬁb parameters ol (P,T) and KQ(P,T). Since the
transition is‘characterized by the solutiqn QQ = 0 above and‘
ig? E#- U below, X (P, T) mﬁst vanish on the tr#nsition. For the
transition to be stable; ﬁ3 (p, T),must be poéitive on the transltion..

We have then a transition line in the PT plane defined by & (P, T) = 0,

. Holding preSSure constant GP assumes that OQ(T) can be expanded

ilinearly about the transition,

d(T) = ' (To-T) = = &’ AT o (6.6)

- There is also no a priori reason why this expansion is valid. This
assumption immediately leads to the temperature‘dependence of f& s

as for a homogeneous system at equilibrium

2 ol at’ v
|2l = % =-F4T; arse (6.7

and from eq., (6.2) !
mat’ ' (6.8)
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Hence in the bulk limit, the Gibbs potentia‘l per volume is
! 2 o o
9=8 =27 (8T)" ;  oa7so (6.9)

F:bmv(6.9), we seei,that we.héire. a second-order tt;arrlsit.i_o'n for the
bulk limit, |

Now we cons!der the film geometzy and show that the GP theory
ylelds a second-order transition as a direct consequence of the assumed
.fur_tctivonavl form of E Lg] o HWe begln by introduclng two

dimensionless paramefer#
Po= Q/@e o ' ‘;e = \/0‘//5. | . , (6.10a)
, Eo= % /L L = 'ﬁ/(vab()‘VZ) is0,2,3 (6.10b)

and (x; X, k3) are the cartesian coordinates, Eq. (6.4) assumes

the forn
9[@35‘%. ﬂ[zt@ 1-ssz.,x“~z:v.@°\] (6.1

and the resulting Euler e'quaition,is | |
g, = (120~ '390 L (e

- As eq. (6.12) is a homogeneous:equatlon, the first 'integi‘a'l yields

%8 =V£8%-FFwc . (6.13)
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where C is aiconstant of integrétion to be determined by some

" boundary conditions. Substituting (6.13) into (6.11), we get

725 35 [¢1G1- 2% ]

. We consider a film of thickness L in the % direction and
infinite extent in the xy-plane.~ The bohndary conditions are taken to

be those of an impenetrable well; viz,

C(5)=0 Ar Y=o0,t/2 , (615
vw_here _ f' = §3 -=. J /£ . The formal solution of eq. (6.13) with
boundary conditions (6.15) can be expressed in terms of an elliptic

112 o |

integral of the first kind

;rf

6.16
\f-t‘"-.e.t +2C (6.16)

which can be solved explicitly in terms of the Jacobiah elliptic.

function of the first kind§l3 sn( ¢ 3k)

L, (5) = m‘-—f s (G k) | (6.17)

where the modulus k is given by

z‘/,,,.‘ﬁ,z' K(f) | i . - (6.18)
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and K(k) is the complete elliptic funCtipn of the first kind;llz
The constant C {s expressed in terms of 'k as ‘
e e ._ 5 (6.9
T (+ AR, | o

The average Gibbs potential per volume for the entire film is

? :30 - ;,2‘.:_ .Z (-—224-)@[2.(24-7'\-1) K?(/«I) __‘

N
>
i

)
o o ' " - . 112
where E(k) 1is the complete elliptic integral of the second kind. -
The transition is determined by the van{shing of the order

function P (r), which occurs when k=0 o Then'eq. (6.18) reads
Lfe = 7 ) - (6.2

which defines a film transition temperature ”Tf which is shifted

from the bulk transition temperature T

o DY the amount

A vaanf - T, sgiven by

AT, o wExEHY _ﬁ
o=~ ( ) (6.22)

, To . amd’ T, (Lt

He note that eq. (6.22) has the same 1/1.2 dependence as eq. (5.138)
which was based ﬁot oh»fhe disappearance of the superfluid component -

but was concerned with the effect of the ground state energy.
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vMathematically we expect this coincidence, as the kinetic energy term

for the superfluid component in (6.4) is of the same form as the

~

Alp2 for small p's assumed for the ground state energy effects in

(5.138).

To investigate the film transition further, we expand eqs. (6.20)

(6.18) for small ks, respectively

- . : |
Grz) = 1+ 2R+ G RP w0029
Substituting {6.24) into (6;23), Qe get
, i 4 y
#=8 — 75 2/3 "3 (77 ) [(mﬁ) .1

Since k 7 0 , we are slightly below Tf o

Therefore we define

(6.23)

(6.24)

(6.25)

ET=7T - Tfi, so that AT AT, + &T . Then eq. (6.25)

i

can be rewritten as

| .
;?.2 90 ~ ffé;;%kb :§” (?%%é)ZL

(6.26)

and we conclude that the‘ttansition at Tf' is a second-~order one.

Actually we do not have to use the fact that A ~v ¢:'r, eq. (6 6)

As long as o (T) is analytic about the point - 0((T ), the order

|
[
|
-
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of fhe transition is second-order. Since oL (1) ié assumed to have a
slngularity only at T° ,fthe conélusion of a second-order trahsltion |
A..at Tf' is gene‘ral, énd f_ollowsb solely ’fvrom the functional form of
SI\P) which was .,assurvned. | | | o
We note that very n_é.a_r the transition the order function J(r)

.hasia spa_tiv‘al_' dependence like th'e gr_ounci st;te wavefunction for an

. ldeqi gavs.. : To.'see this we need only to ":ecall the asymptotic forms
 for- the Jacobian elliptic function sn{ & 3k), viz, | |

V2 f@sln }’ fz—yo ‘ ' | (6.27a)
-&anh"(l'/ﬁ)“v ki ..  (6.271)

Thereforé, the order function (6.17) becomes

#n(“.i f() =

L 9@(?) i-.ﬁvk"’.'r - 20 o (6.2§a)
| Bo(¥) = tunh (}'/ﬁ) - T l(é.z'sb)'

f’roin eq. (6.28a) we see that very ﬁ‘earvthe transition &T 2o,
vlSTl <<(ﬂ3%“/zm ol'L‘,‘?) , the order function behaves as a sine |
function with an amplitude proportienal to J:?_'F? . The sine
behavior 1is a direct consequerf\ce qf ftihe Iklnetlc energy‘ term wvhi‘ch always -
dominates very 'near_ the t“ran.si'tion. |

Howe\;er in the opposite limit, not so close g:o'the tr’énvsit.lon,
1§71 75(113'ﬁ3'/&Ma(fL‘), ‘eqi. (6.28b) is applicable and the ié'rder
55

function disp\lays;é "healing length" behavior as expounded by Gross

for the ground state wavefunction. o
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Be Modified Theory

'Thefé are &t‘ieast'thfée'reasoné why the Gp versidn of the

general Landau theory. should be modified. The first is that the GP
theory gives a secondaorder transitionnla in the bulk limlt, while'
measurements9 have shown a logarithmic behavior in cp within |

10” °K to 10 6°K of the ‘ ?\.-pointo The second 1s'thatxthe GP
'theory gives also a secondaorder transition in a film geometry, while
measurements of the specifie heat“91 has resulted in a very smooth
'_curvé gt the su#erflow trans!fion, indlcating a high-order transition{
Finally recehc measurgmeﬁts of thé superfluid éompohent have'demOnstréted
thaf 5 obeys the relétionll’lz £ M(-A’f)g/‘g éitﬁln 10°1°K to
io°5ox nof the A -point, while,fhé GP version has g ‘going as -
(-8 D . | . |
Let us first.dismiss one obvious way to incorporate the logarl;hmic

behavior of e near T, -~ , which is to retain the same functional

p ,
" form for gi%) s Qo (6 &), and change the temperature dependence -

of the coefficients & and /@ accordingly. -This scheme was applied

by MattisilsAto the Ising model in two dimensions, with the following

_choices { AT =T = To)
«(r) = ~'OTB(T) 5 AUT) = flhn(-0T) (629
|@1*= Mm% = -a’aT (6.30)

go that

' X3 ' . (6.
3=90- 22" 307) e (-57) (63
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vhere M ‘is tﬁe magnetization, For helium, all we have to change is
:'the.ldentlfication (6.30) of the order f;nction. But such a theory
gives.no shift in the t:ansitlén temperature for a film, becguse the
"kinetic'energy" term.ié proportional to ( AT)2 and is negligible
as AT~—> 0. compar‘e.d with the "éotential _éﬁergy" term
~ (D I)Z in(« DT .‘ Fur:hermore_eyen 1f.this is overlooked,
~the ‘theory is mtstaﬂle wi_i:ho'ut the addition of a positive- l@lvé
term,. K#danoffllé ﬁasvreceﬁtly Qritten down equations similar to (6.31)
for the Ising model, and the above éo@ﬁenﬁs,are alsb_appiiéaﬁle to
its extenslion td helium.' | |

In our microscopic éalculatioﬁs of';he Born-Collision approximation,
it waé seen how Qhe‘logarithm!c behavior of ¢, came about not because
of the-long—:ange_qrder dde-;o the condensate:itself, but because of
the anticipation by singléfpérticle fluctuatiqns §f such an erder
setting in as éxemplified‘by the applicability of the Very.Dense State
limic, ‘Suchfobgervaﬁions concérning fluctuations‘are not néw117”119
and in fgct predétes any mi?rOSQOpic calculafions. In order that such
an antlcipatory“acfion_be included into che:ma¢roscopic'theory, a new

' ordér parameter whiéh must be related to the number of pa;ticles in

" . the low momenta stétes can be 1ntfoduced. Unlike the order function
- SE’ (r) which character{zes:fhe-long-rénge 6rder‘of the system,
this new parametef chafacte:izes the fluctuations and must be noniero
for a neighborhood about .T7\ - and vanish'oufside. We shall not.
lntroduce spch‘§ parameter nor take into account any fluctuacions119

in any way. Hence we shall be satisfied with the attainment of a
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second-order transition without the logarithmic singularity frdm the

‘general Landau theory.

The basis of the Landau theory is the symmetry of the system near:

the transition. Based on our knowlédge of the symmetries of helium

,. which we review belo#, we argue for a new, modified theory,

In Fig. -1, we have réproduced'schematically the phases of heljum.

The A -curve CA-6] 1s characterized by the onset in helium II of an

off—diagonal-long-rénge order’(ODLRO) of the reduced 6ne-partic1e

‘ 52
density matrix in the coordinate space representation, This ODLRO
_ 120,121 . |
is connected with a broken symmetry, namely the phase.symmetry
that leads to the conservation of particle nnmber. This symmetyy is
realized by the gauge group operating on thé quantlzed field operators --

a continuous, one-parameter Abelian group. The vapor curve [0 - A - Kj

is characterized by the appearance in the l1iquid phase of the diagonal

- shorterange order in the reduced one-particle density matrix, as

exhibited by the radial distributions from X-ray and neutron diffraction
experiments. The spatial structure which gives rise to the observed
diffracéion patterns is quite elusive, although Keesom and Taconis122
has suggested the space gtoup sz » Of course, liquid helium-4
does not have a crystalline‘strﬁcture, and the space group sz should
be viewed only as a model,

The above considerations of symmetfies suggest that we make the

following proposal. Consider an order furction Q? (to be identified

later) which characterizes the ODLRO, and construct the functional

gﬂ%) as
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L 2 3. . S .
= 9 +AIRI*+8| P +c P F+ B [vg* (6.3
. _ v %) .
He aé.sume that; the spatiai structure of the liquid is such that the
third-order term vanishes 1dén‘tica11y,' f.e. '.1_5 - G . The A\ -curve
is then glven'by‘ v , -
Alp,7) =0 . (6.33)

At the 'A -point, however, the diagdna1 shorterange order of the
. liqixid disappears, Therefore we have the following two equations to

define the R _-point'.

A(?;\, Ta)= O

~and the vapor curve near the X"-polnt is given by
err)=0 . - . - (6,35)

Therefore along the vapor curve at the A -point, the theory has' the
same form as for the rest of the ;\-cuwe. Since the vapor curve is

almos_t‘at constant. pressure, Coar = cp N aqd Cp does not

quélitatively chan'ge as one moves to higher pressure on the A -curve,

Now we consider the identlfication. of the order funétion P ().

.He consider. the functional g [@) - given by eq. €6.32) and vary it

- with respect to g o yield the following Euler equation
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2 0*C 4+ A + %B.Qz +z2c¢3 = o (6,36)

which is used to determine jg (r) givén sujtable boundary condiﬁions.
.io make the identification of ,QP » We appeal to a ﬁicrbscopic
argument. ‘We consider the derivation of (6 36) from the equation of
motion for the oneopartlcle prOpagator Gl below the" transition,

following the lead of Gorkov123

who derived the Ginzburg-Landau
equations. From eqs. (2.83)(2,86), we have the matrix equation of .

motion

fﬁz G5 '(12) G-(217) = 8117} + |
° ' —ih | 6.37)
+Jeaz 2%%e) i)

It is convenient to single out the 11 component and the 12 compénent
respectively of eq. (6.37)

jf& G@ ‘(12) & ”(2! = 8(1) +f 22;:0(42.) %;, (21’) -+

(6¢ 388)

....;;/5 '
tol ad ol ’
tfa2 3 02) G (20)
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o e
faz s '(rz> 221 = [tz 32%2) &, (21) +

' (6.38b)
t ™)
+j¢a & L (12) G,, (w')

o : . o~ '~+  e ~ * v
where we have_gsgd the fact that G, = GIZ and ,Gyy = Gy; « Now

we define the "normal® one-paiticle Green's functionlza- Gn(12) which

obeysvthe equations,

f:vxz G, (/z) zl) é‘(ll)‘*.fdz Z: ?-) G, (21%) (6,30

y o

Jaz G,(12) G '(21) = 00119 +] @26, (12) é:f,"‘( )
. e | _.) (6,39b)

and we note that ‘Gn(IZ)' is a propagator with no "anomalous" self-

energy effects from :Z;tot « The operator Gy -1 may then be

eliminated from eqs. (6,38) by folding (6 38) with  fd3 ¢ (13)

~and using eq. (6.39b) to get the following coupied'intégral equations

..qﬂ? -ot'

2;‘;,(”) G,,(u +fd2d3 G, (13) . (32.)6""(2/) (6.40a)



=212-

-

_ 3 : | .
G,a(n') j’dZdB (:3) 2 (3;) G;,, (-,,l) - (6,40b) |

e
(.

Eqs. (6.40) are precisely t:he integral equathns from which Gorkov

derived the Ginzburg-Landau equation. Gorkov inserted (6 403) into

(6.601)), expanded the resulting integral equation in powers of ztot
tot

as the system §{s near the superconducting transition and , 2:12

is small, and obtalined an equation with terms involving . ﬁtc’t _ v . |
‘ ’ tot 12

to the first power and a term with 2 ° to the third power

: o , 12

jeading immediately to the Ginzburg-Landau equation and the identifica-

tionof ¥ with xtot . We note that it is essential in
12 '

Gorkov“s derivation that .G, (12). bve unchanged as we pass through the
ransition and that: the only ‘small quantity as we approach the

transition from below is 2 tot e Unfortunately for liquid _
' . ‘ 12 C '
. _ tot
helium-4, this is not so. In addition to the small quantity 21 .
) A ‘ 2

ve note that the boson System also has the condensate entering into

diagrams for the self-energy Emt whose contribution vanishes
: . _ 1 ' ,
at the transition, If we write

eot _ TALOT _ Aket " i
z" -au * Zlu ' : - (6.41) ‘ t
o~ tot o ' :
where P39 is the total self-energy due to particles not in the
11 '

A tot’
condensate only and e is the total selfeenergy due to the
, - = :
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condensate, we see that in the boson system we have two small

tot A tot
quantities near the transition: ﬁE: 12 and n ° We
can then go back and define the normal one-particle propagator.
~ ' oy : ' T e TOt '
Gn(IZ) involving xtOt instead of 2 ‘

1 I ¥

_l‘é’z G:.(R)é;(?-") = J‘(N') +‘ o
‘ (6942)'

+f otz z“ (:z) G, (217
and obtain in plaée of‘eqs. (6.40ab5 .
v_ -3 '
G, (1) = u) ~+ ,fdad.% G,,(I3) 2‘” (32) a, (20') +

*/o dzd3 G, ( 13) Zt"t(az) (ZI’) (6.432)

o~ B -‘.ﬂ | | o~
G, (1) = [ dzct3 G (/3) ‘2“’*(3;) G, (21°) +
7 — (6.43b)
+/ dza3 G, (13) 526(32) G,/ (21) .

A tot

As there is no reason to do otherwise, we treat 211 and

ztot on the same footingo‘ Inserting eq. (6.43a) into (6, 43b)

12 .
. v tot .
and expanding in terms of - ztOt and 24 s WE obtain
: 1L » 12
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Vo

n S 5 e s
Go = Gn Xa12Gr ~+ anv::_&: 22 Gn 201z Gn +

~ A il AR R (6.44
*5‘“[2”5‘*92/;"’212@7 Eu]Grf , )

where we have used matrix notation for the integration and suppressed the

superscript tot on the total se1f~¢nergies. We nofe tﬁaf if lelv
vanﬁ’éhes, then eq. (6.&&) would yield Gorkev's derivation of ﬁhe
‘Ginzburg—Lax}dau'eqpatidn. pr liquid heliun-s, %n ‘is of the
same order as .E;u_f ng.a.r thé translt;on as was shown by

' 94 . o
Patashinskii and Pokrovskii; in fact for 7L 0

iu (p=o, 5’7“—‘0_) = 22/1(1”;:’731/:07.': -27 | (6.45)

' Thus eq. (6.44) has the same dependence with S\ as eq. (6.32) has

vith ‘-E . HYe conclude. t_hen that the identification of \E ' should be

(6.46)

4

tot Aeot
& ~ zwa ~ ZM

To first-order in V , we find that P ~ ﬁovo';

Tl;at: 'thé order function is prdportional to the "anomalous"
.self-en_ergy is most i#tereétlng. ~ First of all, & vanishes for the
noninteracthg boge gas, even though thern.v is ODLRO and n is nonzero,

This fact underscores the importance of interactién on the transition;

for without interaction, the transition is firét-orderi with interaction,
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the ttansltipn is sé@ond-ofdér.as we will show, -Fprthérmofe, e
‘recall that the "anomélous" self-energy represent the interaction
energy beﬁweén condensate particles and fhe rest of the particles.
We will see that it is just this lnterac:;on.enérgy that makes the
condensaté'energetically possibles Hence in an interactlng'ﬁoson
system, the transition'is not toﬁally a ‘phase-space phenomena as
in the ideal gas or tﬁ§‘first-ofderAapproxiﬁatiéns. 'Ftnally, we note
that P . should be interpreted neither as the wavefunction of -the
i cOndensaté not’of the sdperflui@ ﬁomponept,‘but.as the_wavefunétion'
of‘a pair.of bosénsb(wfﬁh respecc‘co its center of mass) scatteringb
into, out of, or‘by the condeﬁéate. Hénce the appropriate mass is
‘the reduced mass m,

We consider the system very close to the 7\ -curve so. that ve
can take F ~ ng . Since the condensate number density n° has
not Séén measured, we shall normalize - Q?' ln terms of the measured

- superfluid number density ns‘- }9sﬁ°1 » _Lét us first'note that the
microscopic theory94 yields the résult:that near the | 7\-cﬁrve
~n M < 0. This fact can be ea;ily verified_in the -
Born-Collision approximation applying the Very Dense State limit
"’0"'[?,07,75 —'E‘**Aapm-‘] ~ . - (eun)
iNéw we considef_the total momen tum density -f in the Very Dense Séaté

.llmit'below the transition
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r= '2%—%??7',@0) o (6B

which c]_.eérly vanishes for a homogenaou§ system, We imaginé that the
Roas of’elementar& excitations" which appear once | 'r) % 0 moves
.relative to the liquid af: an infinitesimal velocity S'U" .- Then we
can consider (] A z - Wp’l with W, —» HP— p.. Sv .
Expénding in terms _of" é‘?)' s taking care in éubtract;i;ig out the

excitations at n -?‘0 s» and setting ? - on Svr s wé find

‘ '=_;!___° "y g:?%(', . _‘-—L. Nz; . _
A 3mf} [v§ 1 P Q)P I’I<° v—%@u(ﬁ?)k 17“] (é.ao)

’lfherefofe near the transition, we can estimate (6.-&9_) by

_ » | _
L pt ] 3 6.50)
2~ . FAN M ‘
[V’%(A’Pz) 7 .-.@(Aap%) 7" . _
Therefore from (6.&7)(6,50), we conclude th‘atvnear TA
3/2 . - S (6.51)

fig™ ~ F,

With the above considerations, we norn‘\aliz‘e the order function

¥ () as .
2
) /2 (6.52)

1@t = (s zro
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where 7\1,'18 the usual_thermél_wgvelength which is introduced for
dimensional_reésons, |

.Hg note that'eq. (6-52) is quite different from‘the relations

~ between n, and Q? proposed recently by Josephson125 based on
the 1dentl.fi.c.at,ion Q (‘P) ‘/__' Neverthelegs. we w111
show thaf thé exponent scaling laws;26 for the critical.eprnents

of various physical quantities as | AT — 0 .afe still valid since -
they Are independent of'ﬁhe identification of the order parameter,

1. The Bulk Limit

In the bulk limic, the Gibbs . potential per volume is

gﬂl‘sﬂ = g, +A(PT)I'~UI + BI@I’

*CCPr) IL.E!4 -3
- where for a given v?alue vo‘f_pres.sure P we assume the-hfollo‘wing‘
reiationé, as there is no reason to do bthér#ise., |
A(BT) = Ap AT - Ap%o0 N .(‘6.5A.a)
B;.(P’T)': By AT - 8rz0 (6.54b)

AT & 7“70 <o, i - (6.56d)
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We eenter our attention on the A -point where V'g-n [%3 is
minimized by | o

38 , L [T
g:-;fé-_-é-gc»\/?B?z.«b’zAc A (6.55)

Staying on the saturated vapor curve where B = 0 , we find

e

< : .
gl = ".% AT (6.56)
: Substituting (6.56) back inté {6,53), we f£ind
2 ‘ |
- -~ A 2 ‘ o
&z = Iz """““'2: (47)°, . o750, (6.57)

Eqs. (6.56) and (6.52) immediately tell us that the superfluid number .

~density is proportional to (G775 T;ﬁﬁg 9 in'agreement with recent

1,12

. ) o
experiments, Also eq, (6.57) tells us that the transition is

second-order with a jump in the specific'heat given by
2
Are

HCo = Crp,p ~C = T, 2 R 6,58
. P P,ﬂ” Pz o zc v ® ' ( )

)

. Let us determine the coefficients. Ap and € numerically from

) | v , o .
-comparing eqs. (6.52)(6.56)(6,58) with the experimental valueslls 2

9

ng = 1,43 n(T,) (-A‘r)a’/s - and &_cp = 0.759 x 10’ efg/"K cm3 .

We find

7.
v




X
ACp AT =g.20x15'7 €3 ’
%= T (gt " e

C= Acp, __(979 -2 = 2.5¢ %159 ery

3 110 S
In the GP theory, Ginzburg and Pitaevskil found for the analogous

40

constants A = 4,5 x 10'1? erg/°_K and Cw 2 x 107 erg/cm3 « The

T
agreement is strictly fortuitous, GP assumed the value
S

m (9 nsla 'I).r = 0,7 gm/°K cm in order to evaluate A‘I ~and C ,
o _ :

But from the experimental data, we see that m( D ns/3 '1‘)T ~
. , . °

~ (~AT)'1/3__.~,°'Q . .

L L ' 126
Now let us ccnslder the exponent scaling law, The relation
between n, and ﬁo was derived uslng_the results from the Born-
Collislon'Ia'pproxim;ation. We shall do the same h_ere. Consider the

equal-time correlation function C(r)
C(r) = -é ( (P yio) + ¢ ‘#((‘)) b © (6.60)

As C(r) is at equal time, it is 'éqt;ival,ent to an ivns'tantaneous
probagator. But in fhe Very Dénée State limit we have

6{r,t = 0) ~ G(r,z » 0) , Therefore in the Very Dense'vatate limit
€(r) ~ D(r) where f)(r)’ 1s defined by eq. (5.19)., The exponent

scaling laws make use of the large asymptotic behavior of C(r) on
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the transition, From eq. .(5030), ve see that on the transition

C(r)~ 7/ 3 _ ' (6.61)
or defining127 g by C(r) A, ’r'l"" . #e‘have n = ¥,

B

If we define the critical expoﬁehts by the felatiohs t§?l ~ (-;1510 ’
some cohefencé length §~ (=& T)v' o €p ~ (-—A T)d’ ’

f.s N (=D ‘1‘)g a ve can . write tﬁq_e scaling law as u':-y: lZﬂ-vV’(
or | » | | | ' '
wey e 2 (6.6
| 1+ . _
¥We have 7 nﬁ - ¥, ‘th'erefpfe >/ - _ S - 2/3 , Fur#hermore

& -2 . 3 5’ 3 and qélng ¥ - 2/3, we s»ee.tb:he;t o/ -0 which.'
is the_closest ve will get to the logatithm., Oﬁe may of c§drse proceed
backwérds, beginning with the experimentally\fouﬁd' f’ and the
mlcroséopically calculated _5? to.deQuce‘the value ‘As = % from ‘;'

eq. (6.62).

2, Restricted Geometries

We apply our theory now to two restrictedl geometries, the unsaturated
| ) | . .
£1ims and the vycor pores.'128 .In both of these casés, the Gibbs
potential per volume is
- o TP : 4
gg[ €)= g +AIE > +BIQP+cl@(* +

S (6.63)
At o2
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where the coefficients A, B, C have the properfles (6 54). We note
that the mass in the kinetic energy term of (6,.54) is %m by previous

arguments.

We consider first the unsaturated film, oriented such that the

thickness L 1s along the ",-dlrection' from (0, L) and the film

plane {s in the icy-pl'ahe. ‘We consider the boundary conditions
QE ( } = 0) = 0 at the bottom of the film and (d ¥ /dz)z_L =0

at the free surface on the top of - the film. In the GP theory, we

_have shown that near the - transitlon, the order function behaves as the v

ideal gas wavefunction. In the interest of & slmplified analysis,

we assume ‘such [a form for the orde‘r_ functlon ;
F(y) = pom(ZE)=bembé |, e

so that the functional g {QJ becomes a function _g(¢) of the order

'parameter 9 . Substituting (6.64) into (6.63) ,; ve _have

9.21'(¢) = 3: + A ¢"’J‘In’; + 8 ¢3.ﬂn +*
-+ C¢4J/'7 ; 1". o S | _(6.65_) .

('-) ml." ¢3- co._sz;' ’

. which when averaged across the film becomes



=222-

&)= gz P2 ejﬁ:)‘f
s IR

(6.66)

Eq. (6.66)‘ is minimized by

B = f[ 6\/7,3-n/ 8*- é’c('“mu)} (6.67)

The transition is characterized by ' ¢ vanishing, which occurs

when A + ( 77'2 ﬁ;zllsmpz) vanishes, for then

4 /2 LI ‘
¢ 6»’"3 (A+ 4.,”»;.2) ~ (6.68)

ylelding the transition at T =T, + (AT  with

- i S 99.6 | |
o foT) =~ TS - 2R e 6.69)
T T T ama T Ty s O
which is to be compared with the corresponding equation from the
GP theory

AT).=-’50..° .
('.-";" [£A)]? < oy (6.10)
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and the experimental £1£19
: '71; e i
(a7, = [1.(2)]‘ wo R

The agteementbof (§.69)‘with the ¢#per!menf§i (6.71) ls‘almost too'“
gobd to be true, ﬁe'also ndte that the diffefence-bf a fa§tor of tﬁo
between the.GB (6,70) and ours (6.69) is due to the'identtficatioﬁ‘of
the order function.wifﬁ the "anomalous" sélf-eﬁergy. Finally it must
be said that éqs. (6.69~71) are §alid ﬁnly for thick films I.>553 R ;_
~since in;the 6pposite regioﬁ oﬁr bulk evalﬁétions:of AT and ‘C are
dubious and fhe 1n£eraction of the wall which heretoforé has :been v
ignored must be included, | . |

The order of theitransition may be obtained byﬁmbving away ffom'
T slightly ana evaluéting the GiBbsiﬁotentiaI per volume. Define

&1 by

AT=T7T-T, =(a7), +8T
Therefore eq. (6.68) becomes
.¢=‘— g@ ‘%I-'JT. , J?-&.;o,’. TR )
and the Gibbs gocenuai per &01@ (6.66) is

o gr2 ES ' ‘
$z=9z * = -Erz' (d‘r) - drso . (6.3
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Therefore we conclude from eq. (6,73) that we have a third-order
transition in the unsaturated film at Tf -T, + (s 'I‘)f . We note
that the coefficient B 1is a constant in this case as it is evaluated

- at Tf_ « The sp‘eclfic‘ heat for temperatures J‘T << ‘l‘o' is

2 A3

Cpy (L)7) = Cpp (L,T) za Fr R 4T, (6.76)
and as éxpected there is no jtini'p. The theory does predict a
discontinuity in the slope of cp(T) , Viz,
e | 2¢p. 1 | 2 A3
%%z _ Pz] = I Ar -

3 g K

but. its n_xagni tude i{s not known aé B h.a‘s not_ been evé_luated ﬁumerically.
| -Now we consider .the second case of rest"ricted geometry, namely
that 'of-ﬁﬁ impen'et:éble pore of radius. Lo and tnfinite in length.
As the walls are 1mpenetrabfe, ‘the boundary .condit:ions are
Q (r cF?Lo) = 0 where we construct a cylindrical set of coordiﬁates,
with 3 albng the (infinite) length of the pore.
Again in the interes: of simplicity we assume a variational form

.for the order parameter &L (), viz, | .
F()= PTHl(2L) = PTH(ay) |

vhere Jo( f ) is the zeroth-order Bessel function of the first kind
with the first root at Jo(a) = 0 where a = 2,405. Going throuvgh the

‘same procedure as for the f_iim geometry, we find that g(¢) is
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minimized with respect to order parameter 95 by

ﬁ?a‘l)

where the K 's are constants-obtained from averaging over the pore
. , . ; . _ . |
Kp = z{. ;"‘5 o (“;) . ‘ T (6.7T)

The t;ansition therefore occurs at Tpore - T, + (A ?)pore with

_ aAt ) 234
(AT%ore = mar (L‘) = f.‘"(. F; )']"z °K . .'(6.78)

Hence the difference between the film geometry and the pore geometry
fs found in the first zeros of the cosine functlon versus the zeroth-
order Bessel function, vizf, /2 and 2.405 respectively. This
result agrees well Qith experiment§ and are compared with thg experiméntdl
obs;rvations in Fig. 11,

‘Now we consider a partially filled pore of radjus 12 ’ fliied in -

~to radius L, . We take as our boundary conditions

F(r)=0 'viat r=ly; (wall) | (6.79a)

ot F(7)
ar

=0 &t e Ly (-&'pée,._su(face) (6.79b)
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- Qur 'ln_t'u'it:i'On- for the form of Q in this case is not so good, so we

v "deri‘_ve the_solution. ‘V'arying g [QJ with respect to @ we get the

Euler equation
2 25 L L3y o3
-~ By + AL + £8P  +2c ¢ = 0, (6.80)

If‘rém thi;.s general equatioh, it can be verifi.ed that the general solution
for f in fhe flim geoﬁetry 15 in tems.of elli‘ptic functibonsv, which
be‘con»\e sine »functions as the tr_ansiﬁon is apﬁ_réached. As we havé seen,
for a\v'restvricted'gecnietry the dominant role is playéd By' thé kinetic

energy term, shlfting the tfan_sition below that 6f bulk system. Hence

near the trarisition, we .work with the linearized equation
o T2 ' ’ | | |
[ Evrrarrn]Em =0 (6.81)

In the film geometry, eq. (6.81) obviously has sine function

solutions. In cylindrical geometry we may write (6.81) as
[”E Lt A )raer) ] B =0 . ~
L FANdrs T raird’ =0, | (6.82)

If we Introduce a new length £ (1)

4(7)“ mA  mAr AT . (6.83)

and a dimensionless parameter ;' - r/ L , we can cast (6,81) into
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standard form L o . _ _ .
ot L Lod o S o
(‘"f‘ ¥ 3}""’)9(?),_- °, 6.84)
which has general solutions of the form SR : .

SP(?)- S % (3’)"" Cz%(}‘)" . (6.85)

" where C1 >y C2 are constants and Y (;‘ ) is the zeroth-order
Ueber's Bessel function of the second kind. The boundary conditions

| : .
_ (6. 79ab) become respectively

(R) ‘*Cz (?3.) 0‘ (6.86a)
< (}’) + c;Y(,&',) o - (6.86b)

which result in, after elimlnating one of the constants,
U(E)};-)vz J;(}'I)' Y, () - )7(5) . J'o()’&) =0 1 (6.87)

Note that if we took as our boundary conditions !,E(};) 5_75(}",,) O

ve would get, instead of (6. 87),

S(;_.p) ;a,) = (;'z.) %(;, [;z) o, (6.88)
~ We define the annular radius L, as L =1L, - L) and |
: fo =L /L . Ve also define the ratio k - LZ/LI: > 1 which '
v determines the percentage‘ of the pore filled
% filled = 1 « llkz . ‘ (6.89)
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Théréfore given fﬁe'pérEéntage‘fllled, we can. calculate, on the basis
of (6.87) or (6.38) dependihg onvthe boundary'conditions, the lowest
root‘§f $o which will thén give us the shift in the transition
tempefature. fhe‘fOots of a cross produét of Bessel functions is most

. easiiy solved for by a 8raph;ca1 method129,130

in which u(}"“}l) -0
vand s (.};)}E_).w 0 étg plotted as a function»of.:gj ‘and '}3 .

and the roots are giveﬁ_by tﬁé intersection with the' ‘Jg - k'}l'
~line. Such a plot is feﬁroduced.in.Fig. 12, Ihe‘results thus attained
vfor'the’?artia11y~f111ed pore an& the previoﬁs calculations for :he film

‘and pore are summarized in Table 7.

To sum up this section, we note that the new, modified theory,

base&von a fundamentally different {dentification of the order function

¥  and the assumed symmetry of the 1iquid phése, agrees with the
expérlmental.behavior of s ,and a cb s satisfies the expohent
scallngulaws, gives a second-order trans!tién fér the bulk system and
.a third-order one for the film, and yields shifts-in tﬁé transition

temperature in agreement with experimental observations.

oy
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'VII. CONCLUSION

i
‘ NN
o

As a result of this.study,,we can come to the following»conclpsions
from the microscopic vieWpoint:b
(a) the present state of microscopic models for liquid helium-4

is extremely primitive (Chap. III - V)

(b) the Green's function formulation is both convenient and powerful | E

for the discussion of various approximations (Chap. 11 ; V)

e

{ec) no microscopic explenation for the :\,-transition can be foond
in aveimple qﬁesiaparticle picture, like the BCS modelAfor~supercor-
ductivity (Chap. 1V)

(d) no microscopic explanation for,the onset of Bose-Einstein
condensation is restricted geometry can.be,found in a zeroth or first#_

order theoty (Chap. III, 1IV)

(e) the Born-CoIlision approximation in the Very Dense State Iimit

offers a simple modelrfor the ;\_-transition~(Chap. V).

' Fromvthe'nacroscOpic vievpoint, ve make these concloding remarks:

v(a) the Ginzburg-Pitaevskii-theory, unlike the Ginzburg-Landau theory
for superconeuctorsglhas major difficulties in describing the transition
in heiium in particular for films (Chap Vi)

(b) the new, modified theory has major qualitative and quantitative
agreement with experimental observations of the transitlion in helium,

1

in particular for restricted geometries (Chap. VI). .
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- On thevbasis of these conclusions, we can formulate the following
conjectures: |

(a) the mic:oscopic explaﬁatibn of.the onset of Bose-Einstein
condensation‘in restricted geometry can be fouﬁd in.second-order‘theory,
in particular the Borh-Coliision approximatioﬁ. (A preiiminary
discussion of this po?ht is coﬁta;ﬁed in Appéndix F)

(b) the miéroscopigleﬁplanation of the specific heat anoﬁaly in
_ heiium films can be_féﬁnd in the Born=Colli§ion aﬁproximétion. (A.
prelimiﬁary indiqatipn bf the "smoothing’ovér” éf the lbgarithm"
foﬁnd'ih‘the bulk limit is discuséed iﬁ_Chap. V, section C) |

{c) the microscopic explanation for the ﬁew, modified theory frdm
the macroscopic viewﬁpiﬁt qéh be found in the Botn-Collisién
:aﬁproxlﬁation. (A péftiél;microscoﬁié dérivapion isrpreﬁéntgd in
Chap. IV, section B). |

Fiﬁally we'héiegthe following_open_queétidﬁs:

{2) What Qould bejthe shitable extension below the transition of thé
Eoranoiiision approximation which does not exhibit double-valued
_thermodynamievfunctiéns? | | H

(b) Is the double-value behavior connected to some general microscopic
properties of the ap?roxim;tioh? |

{c) How can be logarithmic behavior b2 consisténtly.incbrporated into’
the-mac;oscopic theory?

- (d} Why is the tehpe;atune of‘the.onset of superflow.in helium films

and pores lower than the temperature of the specific heé; maximum?

ke e e e
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(e) What are the effects of attractive forces on the ;L-transition?
It is hoped that this dissertation would be the beginning point

towards the-soiution,of these problems,
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APPENDICES -

A, Asymptotic Series for an Infinite Sum of Bose-Einstein Functions

131
We utilize the Mellin: transform technlque to obtain our
asymptotic forms. Consider a function f(x) Its Mellin'transformv
is defined

Fls)= [#) e dx, BRSO

and its inverse transform is

£(x) = 277‘ j as 25-3 }(s) '5 <y (A.Ib)

where s = ¢+ 1v~ 1is complex with -L¢ and vzrv'real, and the

limits 'é‘l and L(z define a vertical strip in the complex

s-plane in which the integral for 5?1(5) is convergent.» Now replace
f(x) by £(n + a) , where n can assume integer values, We sum over
n from O to €@ , and interchange the order of summation and

|

integration to get

Upito ' .
zf(nf-a) jd.s 5’(5,&)}(3) >t (A.2)
L 15 &t-ceo »

where ¥ (s,a) 1is the generalized zeta functlon

y(-’a“) = 2

riso

(’7‘*3)3 .
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The added restriction t:hat w > 1 arﬁses from the interchange of the
summation and . integration, which is valid only vhen the summation (in

our case y (s,a)) converges uniformly. Now’We specialize to a =1 ,

so that ¥ (s,a) = ‘¢ (s), the Riemann zeta function, and

Ao ' . gepioo . e X
SnFn) = os ¥ s) F(s e
=y - emé g{,‘” ( ) ‘/ I<ee |

The procedure vi's: . giveﬁ 8 swmxiand f(ic)', calculate fts Mellin Q‘:ransform
F (s)g‘and look fer poles of ?(s) Y% (s). The sum is then given by |
the sum of the residues of the poles‘pius vt:he eOntributi’on of the arc
which closes the contour;

“We apply this general theory to the summand.

}

»Hzc) = Zk é_(a%’-#b)v' ?’és‘a,/,zéu.

vheye F‘j v
easily calculated to be _ 7 : |

18 the Bose.-Eins_te'in"fun,cti.ons.‘ The Mellin transform can be

F(s) = 4®C5/2+f2)r(3+fé) J*ﬁ"ﬁ?*%.(b)’ a)b,'u'po&

The poles of o (8) ¥ (s) are the .poles of [T (% +2)YY ),

ﬁ"kf*s/z {(b) is anaiytic in the eﬁtire smplanemz except fo_'r' ' - ,3

a singuleri_ty at s = 2(1 = j -fe) when b =0, g (This pole corresponds

since F

to .the Bose-Einstein’condensaﬁion) . To find the poles of
r (";' + & ) ¥ (s) , we note ?:hatl33 |
i

\
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== /z wor.) ol %
) - 36 - ::r::‘s -*f(" L) T
where _ . . » E
wix) =& X7 - A

=/, ' . _.’

and the integral term is analytic in the entire s-plane,  From the

_functional equation for [ ( 3-)

}l"(}) I‘(}w)

we can write eq. (A.A) as

r(’m)r(s) [(2etem) (3002 ] »

.S/ - (A,6)
i 4 /; -w-()
[—-—-——-——s(s._,) f(x + X z) X }:]

Therefore for 7% 2, 1, there is one pole of eq. (A.6) at s = |

with résidué' | : _
Vit Y e.. (3)(1 } —(R+'a) L
S [(R- ) (D)) & B gy (B
and for fz =0, .there is an additional vpole at s = 0 with residue

~tFi(6) .

The sum of the residue(s) at the pole(s) glﬁes only an asyinptot:ic series

because the ‘cont:rlbuit:ion from the contour at infinity which closes around
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the poles does not vanish in_general, although {t approaches gero as | o

a =¥ 0+ . Hence the asymptotic series is

e [m-é) Cr)] & stk Eegeunl®)

- '3:: j(b) ;}%a (A.7)

In terms of the qél% func££ohs defined by ‘
BlH) = £ ”’*'zng’" (l’-f»wa)

we rewrite eq. (A.7) as

. £ \_F o
;::; %‘Ie(’bd) = (%) (zﬁ—w)!.’v f}.;-fgw/a(“) - fé'ﬁ("“),é;g,a‘ (A.8)

We note that the above'ﬁsympfotlc series may also be obtained by the
Fourier cosine transform technique which is embodied in the Poisson's

formula, Using Poisson's formula, we find for the special case

oo , . |
2N £y (anteb) = $(5 Fry(8) ~ 145 78+

(A.9)
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We can easliy see from eq. (A,5) that

e~ X
~nX

w(x.) <

A Therefore as a —» 0+ , thellast term of eq. (A.9) is bounded by

VE z:e - Tima_ e
- Ve M,_ awor & 7 b2o-

" Hence eq. (A 9) is a special case of eq.. (A 7). The other cases can

be likewise obtalned.

B. Absence of Nontrivial Solution in ClaSsicél Limit

Ve verify here the assertion that there is no nohtrivial solution

to (3 52), oeo .
.s/z(db) -;b ZF(IL}}, (n=_,)+a,,) - .1
fn the classlcal limit of large ak where eq. (B.1) becomes
= ZEE(nt- | 2y ~ZFE* 5.2
/= f Ze _5 (n* _""5'5 w(-%,eg,z)ke.‘» 5o |
where the 1¢?(x) function is defined in (A.S)..'Recall_that (x)

satisfles the folloving equation133
1+ 2Wr(x) = K -t [' +W(’/?4)] - B
and hence has.the following limit as %X —» 0 '

2xV> wr(x) =1 -x7 - (8.4)

Using eq} (B.&4), we verify that eq. (B.2) admits the trivial solution
&f‘b = 0 , But we also note that 2% wix)e" 7 X ponotonic decreases
from the value 1 at x = 0 to zero at infinity. _Hehée there is no

nontrivial solution to eq. (B.2) in thevra(b or classical limit.
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€, Entegrais Involving the Bogoliubov Energy Spectrum

For ease of refetence, we 1ist here the various integralis‘involving
the Bogoliubov ener‘gj= spectrum in the N/P™ ‘1imit, We consider the

following energy parameters

E(p) = € +roVo o e
Fip) = rpVo o .2
EcP) = Je€S(eS+2m0Va) | (€.3)
end the following substitgtions -
‘t mﬂﬁavﬁ . ' -‘ ‘ : (CQI")
}Lg.‘:ﬁé;z ﬁ(‘/ga.lf,/ ﬂ-i). o | (Cos)

ty =BE() = x [iT42E :

(c.6)

go that for an arbitrary function £, in the N/ limit
ol S R 3
v%-ﬁ, = A2 »_..n.‘ém dx £,

e o : Ve (c.D)
o t s 2 -, r' o
3 =y o Vg +i '
Ay Y g% J ', g2y } .ﬁ"

|~

He 1ist aiso the asymptotic series for the integrals in the limit of
small t . We have - o _ a i

1 | _ ! . . S
R Rt TS

oL N A - |
v% Ep £ (&) = D 5,(—&) - (c.9)
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TL (R A(Ep) = 7 Bs(®)
zv'z&[EP Ep(“f*"’l)]fffp)‘ e 54-("5)
zr‘%§L1‘(€k) = Bé; Bs(e)
2O LR
vhere the functions B,(t) are defined .

a,(e) = —-—jx"dx .an(,-' £%%)

=_t3/2-—— \/ i -.,} ,&)v(l &?t)
u+,

3;(“") "'"ﬁ',./ ”l egt../

= 254 V’ Yt =) [

t vsfr‘f"‘:f? [ oy J eFo—/

2@ = & Sae iy

- 232 2 ~ 1%

=¢ \fﬁ‘odﬁ [‘/3'” 'J —9%:/

(€.10)

(c.11)

- (C.12)

(c.13)

(C.14)

(C.15)

(c.16)

(C.17)



¢ f” L
Bo(t)= —=— J »*dx |
£ Vit % | e¥C~1 s wm (c.18)
_ L3k % [v el — /
€ 3 od% 7 Py e#c—/
. %0
_ 4 2, L f .
By (e) = v {% d".gc e?~) | (c.19)
| o "
= 2% 2 [ oy | Vet ! ’
Vﬁ'"fé %[ Gl e%c-1

For small values of ¢ , we have

B,(¢)= r(-‘-f) 3( )t+,3 ﬁt“w -~5¢(°")t+~ (c.20)
8, (¢) =%y(%)°éy(%)t —-5( )ﬁ' P (c.21)

5,(¢) = ¥(3 3) - ﬁ't% y#)t--:‘-f‘t’m C (a2

8, (¢) = 3‘(%)*‘-2\/57'1’-&3/‘ +3Y(E) £ + oo (c.23)
6;;(7:)=5’( ) - #f% e 5‘( )L"“’"" o

B,4) = ¢ ~% {" S(k) - 2 e <n>/‘y(}-)t+. (.29
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D, 'Se1f~Consistent Statistical Factors and-

Shift in Transition Temperature .

He present a vefy e;ementary eXamﬁle in which'self-consistent
statistical facﬁ?rs aré essen;igl to eﬁaluéting the cor?ect.shiff'in
the Eran#ffion‘tempe:afure. Tﬁe.examplevis the copstaht energ&'shlft
model, in which the effect of the interaction is to shift all the enérg}

levels so that thé”numbérvdenSIty is’glven.by-.
n= %Z\-f(ep-,u) RN (0.1)
where
Ep =+ W | . (.2)

and W 1is a constant., This is in facf the case in the Hartree-Fock
approximation for a very shért;rangé potential. We note that eq. (D.1)
can be expfessed in terms @f the non-interacting statistical factor

£( gPo‘ ) , where g; = C’? —f s as.

n=b DAE) 14148 WA
' - | | 0 o ' (D.3)

Eq. (D.3) is an explicit expansion of the number density h, in terms

of the energy shift W . In the N/t* 1limit, we can write eq. (D.3)

as
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AT R, () + W Ry () + o
., | s s B ey
- 23-#_2’ (-—pw)"%f(_éﬁ )(1+£(&°)) ") o

Mn=2

where & = -2 o . Then for small energy shifts such that

73 W << 1 s We negl-ect‘ all terms with n 2 2 in eqv'.. (b.&) to get . |
v ' A’ i o
rdy =By (R) + BWE (1) | | ©.5

If we take the Hartree-Fock approximation wit_h_'é very shozft:-range

potential

W= 2, V6 "—“_37*}3 Fap () Vo i (.8

and eq. (D.S) is exactly eq. (B.6) in GKW.75

: Also eq. (0.5) with ¥ a
constant or given ,by‘eq. (D.G) givés an .upward shift in the transition
temperature for_ _W ? 0 ., which is enti't;ely unexpected fof a constant

. energy shift model, The miAstake lies: in the trunicatin»g of the 'infinite
series in (D.4) té get (D.5). What ve have done is to ,expahd a fuﬁction
into an infinite serles about> a singular point and to tru'ncate‘ f:he |
series,‘vobl.i'térating the ori’ginal‘ singularity in fhe.process, The proper

way to treat eq. (D.1) in the N/2/” 1limit is to simply write
nAy $/p (X ®.7)

where b(' n/3"7, N==pas Wi and eq. (D.7) predicts no shift in
the transition temperature, which is the correct. result,

—




«243-
The above consideratith may be formal!zed-by appealing to the
time-independent formulation of Balian and DeDominics,45 ln which
self-consistent statistical factors are used along with unperturbed

3‘energy dinominators. Then the above example with W given by eq. (D.6)

is the first-order approximatlon in V .

. E, ‘Application of the EﬁlérfMaclaur!n Setles:
The_Euler-Maclaurin series for a §um can be written

- m | | |
APE:;*(&) f #(P)olp + ,—-—f-[f(Pm) ‘F(Pn)] +
=/ _ .

|
I

. ’ (E 1)
0o L]
a ‘ ¢ (
+ 2 (c:i)o.' it E’( ( m = F )]
oo
whére : —
AP"'&’E&—I-J. netsm €D

and By 1s the ig-l Bernoulli number, Lét'us apply che_Eulgr~

. Maclaurin series (E.l1) to the sum

sa'..ﬁz_;[ 2.{:(;25.1)- | - (E.3)
L= . - _
vhere | ’ ' { B
o dx Y - pomE, o
Ap) = S s E 5 R=L &.9)
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The first two terms of eq. (E.1) leads to

= ""'[j__ %,&smzé ;é it 2, 1’?,/ Sln%] (E.5)
‘-‘ .
which leads to eq. (5.143) since L
o= 4F) ks . (.6)
The next term in the Euler-Maclaurin series (E.l) has‘a‘ !./1.3/2

dependence, To see this, we note that

£00) =g - (R

&’c)( ) (_,__f;) (acwé’).!! «5"9(”"/4.) {"*0{%’)}(3.3)

2t (rrsef * oz

sc that the remainder term

| o Ap)?! |
R= ; %:‘525“1” 44»/ [‘f'“)( ) ~ 'F“)(Tﬁ)] (E.9)

is, using eqs. (E.7,8) in (E.9)

(wr/e)¥e (G-PI) P2¢

R= Sin(nre) Cn’ﬁ)zﬁ (ze—i) | B;, D +é(££)} (é.m)’

The ratie of the remainder over the term (E.5) is (& z‘/l..)lj . Since

o ' D(r) is integrated over r with = peak at r &= #%/p, the ratio is

7( nh /pL)% Finally the smallest momentum of {nterest is

~ % (0.1) X° ; hence the expansion (E.5) is good for L »> 308,
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F, Bose<Einstein Coﬁdensation in Restricted Geometfies

In Chap. Iv, sec, G, we saw how the fitst-otder epproximations
were unable to ehange essentially tﬁe phase-Spece-natUre of the Bose-
Einstein condensation as it occurs in the ideal gase Now we consider
the Born-Collision approximatlon as deveIOped in Chap, V and present
a tentative argument that Bose-Einsteln condensation does occur in
restricted geometries. We cannot demonstrate this assertion dlrectly,
therefore we proceed in.a more clrcuitous manner. If we have a film
geometry, then for low enough temperatures we.ere in the‘two~d1mensiona1
- limit, Ifemaeroscopie occepation occurs in the two-diﬁensionel limit,

then we may deduce that Bose-Einstein condensation occurred at some
higher temperature as there is obviously no macroscoplc occupation in
the high temperature or classical limit, If we have a pore geometry,

then the low'tempe:ature l1imit is the one-dimensional limit._' '

Ne.note that the strﬁCture of the seif-energy for the Bern-Colllsion

..approximation in the Very Dense State limit¢ on the transition is

~2, [8(r+p-P—P9 J(P-F’F')]
PER . FA"

. If we write A ~ pdo s then by counting powers we have a&o - 6-3 a(o
since each summation over ' p brings in a p3 factor. Thus we have the ‘
'p3/2-spectrum. -Nov if we were in the'two;dimensional limit, then each

_ , , N | A
summation over p brings in a p factor, and we have Cio = 4.3 o(o

Therefore in the two-dimensional 1limit, we have e p-Spectrum. Likewise,
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in the one-dimensional limit, we find a p%-spectrum.

- 'Above the transition, we have

&;,N 2 , [éf(P#p';fp-»P’) - &(Pl;;a ‘...,39 ] A |

4 o=

(F.2)

Nl

« L&+ 85+ “p)(d}-,: ]

and for very small p’s because of the cohvergence due to %) , we can

expand the éyafunction

£lpep'-B~F) = &(p'-F-F) +
! 4};:‘(%% é\(fﬂy@”_ﬁ _P-zj) P

(F.3)

Fu:a.

to obtain a p2¢5pect:um, which is independent of the dimensionality
of the.system,

; Now we.calculate the number‘density

Vﬁ:-ﬁgré%\G(ﬁa) e

. with G(p,0) given bdy

- | | )
- G{po)= -~ =5, (F.5)
o o é%bqplﬁpff17

S
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- and

by = A,p° )+ A, ‘
p = AP H(p-P) * Ao P "H(p-p) H(p,-p) +
o o | | F.6)

tep exp (-7\/356‘(;%-/%)) H (k “Po) .

To evaluate eq. (F 4), we utilize (5, 132) to write, for the £ilm

geometry ( ci - l) .

N .
3\ G(po) = - —=— [27;.5 PP
v ko) 2m*%3 | "L 3;) ’{‘z A pr+?)
o £ -
N Y
25 £ (P _pan ]
I Y 5 4 APt |

'where we neglected the last two terms of (5,132) as in the bulk limit

land P" Ao/Al . po'- Zon « Now we<c6nsider the two-dimensional

- 1imit of eq, (F.7), which is to retain terms with A =1

—é;smon— L 7k f L2ar_

" (F.8)

.
which yields, upon evaluating the integrals,.
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X . .
| 2 oy 3 n+ Ao Ay ! !
= . ! - =— -+ .&n!
Al A R 77 e Eevwevas
- _2?.____2 b n#’A}AZ’_} ] . (F.9)
2mAg N +2mAL . |
‘¥Writing Ai - C 5"1/3 s Py A 711/3/C,Awe find the 7?;~? 0 ;jmit;

of eﬁ. (F.9) as

= -;§}=—’E:/ - —22?§'J. 2’7&é A -Ziji-) -+
Ay & 2mcC ° g¢mc  l7H

. | Vs (F.10)
A 4| 2 ’
2m A, _' 2mc
which is finltg as ?7F—9'0° .Hence Bose-Einstein condensation occurs
. for this film system of density n at temperatures lower than the

transition temperature To‘ given by %) =0 . One can likewise

. demonstrate that in the pore system, Bose-Einstein condensation occurs,

Et should be emphaslzed that this calculation shows that the.
'onsec of Bose-Einstein condensation in an interacting system is not
a ﬁhase;spgce phenomena, buf 1s a result of the correlétioﬁs at low
momenta due to interactions, and hence is not determined only by_ﬁhe

dimensionality of the system,

e
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Fig. 1. Schematic Plot of the Phases of Helium-4.
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" . | v ,
(b) : | ! | o + | D

()

Fig.-2, Irreducible Diagrams for the Total Self-Energy
(a) firsteordéf in V
(b) second-order in V

(c) third-order in v
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Fig. 3. ol Order Irreducible Diagrams for
(a) Total Self-Energy
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Fig. 4. The &gb{;w Function,
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Fig. 5. The ¢2'0 Function.
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Ratio of Film Temperature over Bulk Temperature at Constant Density and

Figo Te

Grourid State Occupancy
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Pl e

Energy as a Function of Temperature for L = 10 2

8

Fig.

and L = 100 X .
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b — ~CoaT)

Fig. 9, Condensate Number'Density as a Function of
Temperature for Bogoliubov Energy

Spectrum (not to scale).
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Fig. 10, Regiénstof Integratioh for Imaginary

Part of Self-Energy.
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Fig. 11, 'Comparison of Experimental Déta and TheorecicalV

Calculations,

X
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Specific Heat Maximum in Vycor'Pores1

17,19
Specific Heat Maximum of Film
“. . ) 9.22
Superflow Transition of Film1 -

- Superflow Transition and Specific Heat

Maximum of Vycor Pores2

Superflow Transition in Vycor Pores
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The ¢ 00 Function

E N\ | 108 104 1072 0.1 1.0 10.0
0.1 0,100 0.101 0.165  0.388 0,482 0,435
0.2 0,200  0.200- 0.231 0.391 0.468 0,422
0.6 0.400  0.400  0.410 0,476 0,463  0.412
0.6 0.600 0,600 0,602 0.616  0.489  0.422
0.8 | 0.800 0,800 0,798 0,782 0,52  0.450
1.0 11,000 1.000  0.996 0,960  0.619  0.498
1.2 1,200 1.200 1.9  1.1&5 0713 0,563
1.4 1,400 1,400 1.393 1,332  0.820 0,642
1.6 1,600 1,600 - 1,592 152 0,933 0.728
1.8 1.800 1,800 1,791 1,712  1.048  0.818
2.0 2,000 2,000  1.990 1,902  1.166  0.908
2.2 | 2.200 2,200  2.189 2,092  1.280  0.999
2.4 | 2,400  2.400 2,388  2.282 1,397 1.090
2.6 | 2.600  2.600  2.587  2.472 1,513  1.180
2.8 2.800  2.800 2,786  2.662  1.630  1.271
3.0 3.000  3.000  2.985  2.852 1,746  1.362
x 108 x10® =102 . x 10t x 1 x 1074




The 9b
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Function
'l o - | _
3 108 107% 107 0.1 1.0 10,0
0.1 0.360  0.268  2.148 1,548 4.003 4,347
0.2 0.499 0,316 2,190  1.512 3,970  4.216
0.4 | 081t 0.k2 20570 1,572 3.901 4,118
0.6 1166 0.5  3.172 - 1,773  sose 4,217
0.8 1.495  0.758  3.901 2,076  4.403 4,503
1.0 1.852 0.931 &ML 2.8 40960 4979
1.2 2215 1.109  5.573  2.860  5.654  5.632
1.4 2.580  1.291  6.468  3.306 6.472  6.419
1.6 2.948  1.476  7.380 3,767 7.353  7.282
1.8 | 3.316  1.658  8.300  4.235  8.259  8.176
2.0 3.686  1.842 9,220 4,706  9.174  9.081
2,2 4.053 2,026 1014 5.175 10,09 9,988
2.4 4421 2,210 11.07  5.645  11.0l  10.90
2.6 4,790 2.395 11.99 6,116  11.93 11.80
2.8 5,158 | 2,579 12,91 6o586 12.84 12.71
3,0 5.526 2,763  13.83  7.057  13.76 13.62
f x10!  x10! 1 x1  x10!  x107




TABLE 3, ‘
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The 9520 chfion

10°8 1074 1072 01 1o 10,0
e.t’ 1.277 1,277 1.255 1,094 0,378 4,347
0.2 1.245  1.266 1,221 1,062 0,367  4.216
0.4 1.256 1,255 1.226 _1,054». 0.360  4.118
0.6 1352 1351 L1616 0370 4.216
0.8 1,519 1518  1.472 1.232 0,399 4.503
1.0 L7646 1,743 1,687 1401 0,445 4,979
1.2 2.015 2,014  1.%47  1.6l1 0505 5.632
1.4 2,317 2.315 2,238 1.850 0577 6.419
1.6 2,636  2.634  2.546 2,103 0.655 - 7.282
1.8 2,962 2,960 2,861 2,363 0.736  8.176
2,0 3,200 3,288 3.178  2.624  0.818 9,081
2.2 3.619  3.617 3,496 z,saiv 0.900  9.988
2.4 3.948  3.945  3.813  3.140  0.981  10.90
2.6 6.277 4274 4,131 3412 1,063  11.80
2.8 4,606 6,603 . 4,649 3,676 1146 12,71
3.0 £.935 4,932 4,767 3,936 1,226 13,62
x 1 x 1 x1 x1 x1  x107

1
U
et
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TABLE 4. The ?6 oi Function

dI' ) -~
ENC| 1078 1074 1072 0.1 1.0 10,0
0.1 0,0010 . 0,0012 0,016 006 0,275 0.201
0.2 | 0,0080 0,008 0,022 0,114 0,283 0,298
0.4 0.064 0,066 0,075 0,158 0.317  0.328
0.6 | 0.216  0.216 0,224  0.285  0.385  0.383
0.8 | o0.512 0512 0.516  0.546 - 0.512  0.478
1.0 | 1.000  1.000  0.999 0,990 0;733 0.634
1.2 1,728 1.728 1,722 1.665  1.093 0.8
1.4 | 274 2946 2,731 2,619 1.607 - 1.295
1.6 | 4,09 4,096 4.076 3,898 2,398 1,878
1.8 5.832 5,832 5.803  5.546 3,398 2,653
2,0 | 8.000  8.000  7.960  7.607  4.657  3.633
2.2 | 10,65  10.65 10,59 10,12 6197 4,835
2.4 13.82  13.82  13.76  13.16 8,045  6.276
2.6 17.58  17.58  17.49  16.71  10.23  7.980
2.8 31.95 21,95 21,8  20.87  12.78 9,967
3.0 27.00 27,00 26,87 25,67 15.72 12,26
| x10®  x10% . x 10 x 10 x 1 x 1074
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TABLE 5, The 9611' Function

\\
N . ~ . i
£ 100 w0 10?0 100 10,0
0.1 0.088 0,087  0.085 0,739  0.25% 0,291
0.2 | o0.102  0.094 0.8 0,765 - 0,261 0,298 -
0.4 0.202  0.14% 0,113 0,888  0.289 0,328
0.6 0,673  0.274 - 0.174 1,175 0.344 0,383 |
0.8 | 1.003  0.532  0.295 1741  0.44l  0.478
1.0 | 1.88  0.963  0.502 2.726' © 0.607 0,634
1.2 3,207 1.615 0,820  6.280 0,879  0.891
T 5.066  2.538 1,276 6553 1.299 1,205 _
1.6 7,549 :3;777 1,892 9.670  1.893 1,877
1.8 10.74 5,373 2.690  13.73 2,679 2,653
2.0 16,74 7.369 3,688 18,82 3,670  3.633
2.2 19,61 0,807  4.900 25,05  4.886  4.835
2.6 | 25.66 12,73 6.313 32,52 6,361 6,276
2.6 32,38 . 16419 8,103 41.3% 8.062 7.980
2.8 | 40.46 20,22 10,12 51.63 10,07 9.966
3.0 49.76 26,87 12,45 63.51 12,38 12,26
<0t x10'  x 10! x1 xt  x1o™®
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TABLE 6, The ¢ 02 .Functi on
\‘ )
o - |
3 108 107t 1072 0.1 1.0 10,0
0.1 1x10°%  2x10">  0.0016 - 0,014 ‘0.049 0,056
0.2 310" 5,107 0.0017  0.015  0.050 0,057
0.4 0.0010 . 0,0010  0,0029 o;o;? 0.055  0.063
0.6 | 0.0078 0.0078  0.0097 0.025  0.066  0.073
0.8 0.033  0.033 ©0.035  0.049  0.085  0.091
| 1.0 0.100 0,100 . 0,101 - 0.111 = 0,122  0.121
1.2 0,249 0.249 0,249 0,249 0.196  0.175
1.6 0.538°  0.538  0.536  0.519  0.344  0.283
1.6 1,049 1,049 1,044 - 1.001. 0,625  0.49
1.8 1.890  1.889  1.880 1.788  1.105  0.865
2,0 3.200 3,200 3184 3,043 1.864 1,455
2.2 5.154 5.153 5.128 4,900 3,000  2.340
2.4 7,93 7.962 7,923 1.571 - 4.634 3,615
2.6 11.88  11.88  11.82  11.30 60915 5,39
2.8 17,21 17.21 17,12 16,36 10,02 7814
3,0 | 26.30 24,30 24,18 23,11 14.14 10,03
| x10°  x10°  x10® =x102  x1!  x107
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TABLE 7. Superfiqw Transition for Various Geometries and -

Boundary Conditions

(2= -H/mAr AT)

' Wall Boundaries

One Free Surface Boundary

Geometry | % filled
' F=0 T =0
£ilm L . L 9 '
Y- ] o 8 == P lo = wp &l m
(L = thickness) £ Tf‘ 3.14, L2 1.571
pore ' L .5 : ,
" {L = radius) fuil Y 2’_“05 No free surface
(Lo np::renula:" 99 % i‘g - 2.8 ig - 2.20
radius) d‘ “e A &
“ 96 % f = 3,05 E‘-’; = 2,08
n 89 % 3%2"- 3,09 Lo o 1,04
L .
o 75% jB.lz %"1.80
" 60 % j%? = 3,13 ‘%; - 1.75
, L |
. 50 % 2 =314 ;‘2 = 1.7
" 30 % %m;&.m %..1,5
- /2,
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