
UC Irvine
ICS Technical Reports

Title
Modeling guidelines for ASIC reuse

Permalink
https://escholarship.org/uc/item/21w67800

Authors
Aggarwal, Gaurav
Gajski, Daniel D.

Publication Date
1998
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/21w67800
https://escholarship.org
http://www.cdlib.org/


Modeling Guidelines for ASIC Reuse

Gaurav Aggarwal
Daniel D. Gajski

Technical Report UCI-ICS-98-03
March, 1998

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92697-3425.
Phone; (714) 824-8059

gauravQics.uci.edu
gajskiflics.uci.edu

Z-
f

Abstract

In this report, we discuss the various issues and problems associated with ASIC reuse. We
describe the different models of communication between components and the essential issues
in interfacing ASICs that use different communication protocols. We come up with guidelines
that help in modeling for reuse. We also propose a new HDL, SpecC, that has the desirable
characteristics for co-designing systems. This language is suited for ASIC reuse and overcomes
the limitations of VHDL.
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Abstract

In this report, we discuss the various issues and prob
lems associated with ASIC reuse. We describe the

different models of communication between compo
nents and the essential issues in interfetcing ASICs
that use different communication protocols. We come
up with guidelines that help in modeling for reuse.
We also propose a new HDL, SpecC, that has the de
sirable characteristics for co-designing systems. This
language is suited for ASIC reuse and overcomes the
limitations of VHDL.

1 Introduction

In the last decade, digital electronic systems have been
growing in complexity and functionality very rapidly.
Explorations must be done at the system level to re
duce the number of objects that have to be dealt with.
The design-turnaround time and design costs can be
reduced by reusing existing designs. However, reusing
application-specific ICs (ASICs) is not an easy task.
Components need to communicate with other compo
nents in the system for data transfer and synchroniza
tion. ASICs may have to be redesigned when reuse
is employed because of communication protocol mis
matches. It is now obvious that ASICs must be mod

eled in a way that supports ease of reuse. In this
report, we outline the guidelines for modeling ASICs
with a goal of achieving reusability.

The report is organized as follows. We first describe
the reuse problem and the plug-and-play capability in
Section 2. This section also defines the concept of a
channel and emphasizes the dichotomy of communi
cation and computation. Section 3 gives an overview
of the experiments performed to understand the is

sues involved in the reuse problem. We then present
our guidelines for modeling in Section 4. Our critique
of VHDL as a modeling language leads us to present
SpecC as a preferred language for reuse in Section 5.
Finally, we conclude in Section 6.

2 The Reuse Problem

The reuse problem is well illustrated by the plug-and-
play feature. Consider a system shown in Figure 1
where it is desired to replace ASIC B with another
ASIC E that provides the same functionality. This
task is non-trivial in the general case because the com
munication protocols of B and E might be different.

Remove

Insert new
component

Figure 1: Plug-and-play: change an ASIC

Similarly, in Figure 2, Bus 1 that connects ASIC A
to ASIC B has to be replaced with a new bus, Bus 2.

^^gain, this is not easy since the ASICs Aand Bused
the Bus 1 protocol earlier and now need to use the



Bus 2 protocol.

biMitnewbus

Figure 2: Plug-and-play. change a bus

The plug'Ond'play capability essentially means ease
of replacing a component with a new component that
has the same functionality but different implemen
tation. A system configuration consisting of three
ASICs, (A, B, D), is shown in Figure 3. It is de
sired that ASIC B be replaced with a new ASIC E.
The new ASIC has the same functionality as B but
possibly a different design, e.g. it may be pipelined,
or may be area/power optimized. The new ASIC, in
general, will use a different communication protocol.
Hence, it cannot be directly connected in the existing
system. A protocol transducer is required to translate
the protocols. Thus, whenever an ASIC is replaced
and there is a protocol mismatch, a new transducer
has to be used.

Similarly, there may be protocol mismatches when
the bus itself is replaced, e.g., a VME bus might be
replaced by a PCI bus. A system configuration with
three ASICs connected through a bus is shown in
Figure 4. Bus 1 is replaced with Bus 2. The new
bus, Bus 2, uses a different communication protocol.
Hence, transducers must be inserted for each compo
nent since the components used the older Bus 1 proto
col. This is shown in Figure 4 where three new trans
ducers are required to connect the ASICs to the new
bus. This is in contrast to replacing an ASIC where
only one transducer might be modified or where only
one new transducer has to be inserted. When a bus

is replaced then all the components connected to the
bus need new transducers.

2.1 Communication vs. Computation

The biggest obstacle to reuse is the communication
protocol mismatch problem. As a first step towards
reuse, the distinction between computation and com
munication must be emphasised. In an ASIC design
model, the communication portion needs to be
separated &om the computation portion. If
communication is mixed with the computation in a
component then every time there is a mismatch in
the communication protocols, the components have to
be redesigned to reflect the new protocol. However,
if communication is separated from the computation,
then the basic core that defines the ASIC functional
ity remains the same. Only the communication block
needs to be modified for the new protocol. This di
chotomy between computation and communication is
achieved naturally if communication channels are used
and modeling is done at higher abstraction levels as
explained below.

abstract Ifflertaca

of function calls

artcapsulated media

Figure 5: A generic communication model with a
channel

A generic communication model [3] using a chan
nel is shown in Figure 5. The main idea is to disas
sociate the detailed communication protocol Like the
bus widths, number of control signals, timing and so
forth from the ports of the component. The compu
tation in the ASIC component makes calls to abstract
function calls in order to read/write variables and ex
change data. It does not even need to know what kind
of cheinnel will be used eventually for the actual com
munication. AH that is required is that the channel
conforms to the port interface. The port interface of
the ASIC consists of function calls while the actual

communication media is encapsulated in the channel.
The data transport methods in the channel do the ac
tual implementation of the protocol.

The port interfaces of ASICs would be comprised
of function calls whose primary purpose is to trans
fer information across the port. It is upto the com-

/'^ftiunicating ASICs to give it a meaning and interpret
the information being transferred in different ways de-



Figure 3: Effect of replacing an ASIC in a system

( Replace with
' newBus2

Figure 4: Replacing a bus necessitates change of transducers



pending on the protocol. Typical function calls would
include readO and «rite(). An excLmple is shown
in Figure 6. A skeletal code fragment and port in-
terfeice declaration is shown in Figure 6(a). The port
interface consists of detailed bit level signals and the
code includes the detailed timing. However, compsire
this to the code fragment shown in Figure 6(b). The
port interface now consists of an abstract function call
called write(). The tranfer protocol is encapsulated
in this function call. The computation process in the
ASIC does not use detailed timing protocol. It just in
vokes the function call provided in the port interface as
shown on the line "write (local)in Figure 6(b).

port( ....
dk : in bit;

dout: out integer
start: out bit);

start <='1':
wait until ciks'i'

dout <= iocai;

start <= "O'l

port( ....
function write (data: integer);

):

write (local);

Figure 6: ASIC Port Interfaces: (a) Detailed Bit-level
(b) Abstract Function calls

Generic function calls such as read_word() and

write_wordC) can be used to transfer any kind of in
formation. Thus, the sender and receiver of words
can transfer data of various widths, control signals,
exceptions etc. using such function calls. There is
another option. The port interfaces can be mod
eled differently to actually reflect the kind of trans
action occurring across the port. If such is the
case, then the port interface will consist of func
tion calls like request-and-wait(), data_size(),
component jexceptionO, terminatejDperationO,
priority.trigger(), componentJ.dle() etc.

The port interfaces do not include bit-widths and
timing details. It is, therefore, easier to develop the
protocol transducers at a behavioral level rather than
at detailed bit level. It may even be possible to gener
ate the transducers automatically. Secondly, generic
transducers that do translations between typical pro
tocols can be designed and stored in a library. Further
more, customization of a generic transducer is simpler
if the models are at a higher level and do not include

timing details.

We next look at the implementation issues for sys
tems containing channels. This will help us to deter
mine the effect of using channels on the plug-and-play
problem. (Consider a typical system of two synthe-
sizable ASICs as shown in Figure 7. ASICs A and B

Figure 7: Channel inlining for synthesizable ASICs:
(a) before inlining (b) after inlining

are s3aithesizable components and use a channel C for
communication. When the system is implemented, the
methods of the channel are inlined into the connected

ASICs. Figure 7(a) shows the model at the higher
level before the system is implemented. The channel
methods are moved into the ASICs during implemen
tation and the resulting model is shown in Figure 7(b).
The bus wires that were originally encapsulated by the
channel are now exposed.

Figure 8: Chsmnel inlining for a synthesizable ASIC
and a fixed component: (a) before inlining (b) after

^^iining



When B in Figure 7 is replaced with a fixed com
ponent, we get a system as shown in Figure 8, where
a synthesizable ASIC A communicates with B. We en
capsulate B in a wrapper Vsince B is not synthesizable
and has a low-level port interface. Thus, The function
of the wrapper is to provide sm abstract port interface
for the fixed component, a port interface that consists
of function calls instead of the detailed bit-level inter

face that a fixed component has. This model before
system implementation is shown in Figure 8(a). The
protocol of B as encapsulated by wrapper Wmay be
different from that used by the channel C. A protocol
transducer T will then have to be inserted between the

channel C and the wrapper W. If wrapper Wand channel
C use the same protocol then the transducer will basi
cally be an identity component or one that has just a
memory element. The primary function of this trans
ducer is to translate all communication transactions

between the fixed component B and ASIC A. When
the system is implemented, the methods on the side of
the synthesizable ASIC are moved into the ASIC. The
methods of the channel on the side of the fixed com

ponent are joined with the wrapper and implemented
together with the protocol transducer as shown in Fig
ure 8(b).

Thus, the process of IP reuse involves modeling
components at a higher level and declaring port in
terfaces using function calls. ASICs with such generic
interfaces are stored in a library. Any .\SIC with the
desired functionality can be chosen and plugged into
the system model. An appropriate generic transducer
is picked from the library and modified for doing pro
tocol translation between this particular ASIC and the
system being designed. This higher level system model
is then refined and the channel methods are iniined

into the ASIC, as discussed above. The transducer is
also refined during system implementation along with
other components.

Similarly, the channel can be replaced with any
other bus channel in the library as long as it provides
the abstract function calls used inside the component
and specified by the port interface, e.g., a channel
might encapsulate a VME bus and provide an ASIC
with methods for reading and writing word a from
memory. This channel can be replaced by another that
encapsulates a PCI bus for instance but provides the
same interface that consists of the read/write meth
ods. In addition, the channel can also be incremen
tally refined. It can provide communication methods
using simple function calls and shared variables in the

earlier phases of specification and partitioning. Later
the chatnnel cam be refined into a detailed timing model
that reflects an actual physicail bus protocol.

2.2 Communication Implementations

Another important issue for reuse is the prescence of
a rigorous methodology to design the system from a
high level specification. The methodology will consist
of well defined transformations aind intermediate mod
els. This provides documentation and helps in reuse
since reuse is diflScult both at the final implementa
tion level which is too detailed as well as the high
level specification which is too abstract.

A generic methodology for hardware-software co-
design for ASICs [1] is shown in Figure 9. The design
steps include allocation, partitioning, scheduling and
communication refinement, which form the synthesis
flow of the methodology. The task of allocation de
termines the number and types of the system compo
nents, such as processors, ASICs and busses, used to
implement the system behavior. The task of partition
ing maps the sub-behaviors in the specification to the
system component. Scheduling determines the order
ing of execution of the sub-behaviors on a sequential
processor. The task of communication refinement se
lects the appropriate protocols and resources to imple
ment the abstreict communications between the sub-

behaviors. It also generates protocol transducers used
for interfacing components with different protocols.

Such a methodology with well defined design steps
can go a long way in keeping the design modular and
reducing debug/test time. Eztch design step generates
a more refined model, preferably in the same language.
This provides a standard documentation and improves
communication between the designers. The well de
fined models and transformations also provide a good
base for formal verification of the refined models. The

intermediate models also make the design more man
ageable and maintainable for future upgrades, thus,
encouraging IP reuse.

The different components in a system may commu
nicate using different architecture implementations.
We next describe the different communication mod

els. Communication between two components would
use one of these styles. It is, thus, important to de
scribe the models so that abstract interfaces may be
defined for them. Later, this information can be used

generate generic transducers for interfacing to these
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communication models.

Direct Connection using a Bus: In the simplest
case, the two ASICs communicate using the
same protocol. The components can then be di-

Figure 10: Direct connection of two ASICs

rectly connected to each other using a channel as
shown in Figure 10. This channel encapsulate
a communication bus like the VME or the PCI

or an application specific bus.

Protocol Translation: If the ASICs have different

protocols for communication, then the protocols
needs to be translated. This protocol transla
tion is done by a transducer as shown in Fig
ure 11. The transducer is basically a finite state
machine. It use a few registers that may be
required for protocol translation, e.g., one com
munication protocol use a 16-bit wide data bus
while the other use only an 8-bit wide bus. The
transducer then uses a register to first read the
16-bit word and then sends out one byte at a
time. Another example might be that of a par
allel to serial converter using a shift register.

Figure 11: Simple protocol translation

Proper synchronization of the communication
components must be ensured for correct results.
The rate of data production and consumption
may not be identical. If the system specifica
tion and implementation guarantee equal pro
duction and consumption rates then no transla
tion effort is required. However, if this is not
assured then handshaking must be used, e.g., if
the producer generates data at a faster rate than
used by the consumer, then the producer is re
stricted to generate the next set of data until it
gets an acknowledge signal. This signal is given

when the consumer reads the data. Similarly, a
faster consimier will wait for a data valid sig
nal from the producer that denotes prescence of
a new data word. If handshaking signsds cannot
be used, the data will have to be buffered using
other schemes as discussed below.

FIFO queue: The ASICs may produce and consume
data in a burst mode. In such a case, storing the
data in an intermediate buffer may be a better
solution than operating the system at the speed
of the slowest block. Data can be transferred
between the functional blocks using a First-In
First-Out (FIFO) queue as shown in Figure 12.
There can be two types of interfaces: blocking

Figure 12: Communication using a FIFO queue

and non-blocking. The blocking interface uses
full and empty lines for synchronization. Thus,
the producer writes data into the buffer only if
the full line is low. When the FIFO becomes

full, the full line is asserted. Similarly, the con
sumer reads data from the buffer only when the
empty line is low. This protocol then ensures
that the slower component is not overwhelmed
with data by the faster one and that no data is
lost.

The non-blocking FIFO buffer does not use any
extra signals to fiag the current status of the
buffer. Such an interface is used if the producer-
consumer specifications ensure that they syn
chronize in such a manner that neither is over

whelmed by the other. If this is not possible,
the FIFO will need to be Izu-ge enough. In ei
ther case, however, data will be lost if too many
burst requests occur.

Memory buffer: The inter-component communicar-
tion can also be done using a random access
memory in the interface as shown in Figure 13.
An edvantage of using memories over FIFO
buffers is that they provide rzindom access to the
data stored. In the case of FIFOs the consumer

must necessarily consume data in the same or-
p- der as supplied by the producer. The data is re

moved from the FIFO queue as it is being read



Figure 13: Communication using a memory buffer

by the consumer. Hence, if the consumer needs
to use a data-set again, it must be stored inter
nally. On the other hand, the data continue to
reside in the memory even after being reeid so
data may be read and written in different order.

The downside of using a memory is the added
complexity of addressing. In addition, an ar
biter may be required since both components
access the memory. The sirbiter needs to se-
quentialize requests that occur at the same time.
Multi-ported memories may also be used to ser
vice more memory access requests at the same
time. A memory is less restrictive than a FIFO
because it can be used for bi-directional data

transfer. A shared memory can also be used to
exchange data amongst more than two ASICs
and for multicasting data.

3 Modeling DCT as an example

We next describe modeling of Discrete Cosine Trans
form (DCT) as an illustrative example. Discrete Co
sine Transform [2] is widely used in DSP applications
for image compression in both still and motion pic
ture standards. The DCT problem can be expressed
as follows (details in Appendix A).

OutBlock = CosBlock x InBlock x CosBlock^

where InBlock is the input 8x8 block of pixels, /.
OutBlock is the output matrix in the frequency do
main F and CosBlock is defined above. The DCT

can, thus, be modeled as two 8x8 matrix multipli
cations. These matrix multiplications (MM) can be
serialized in time.

TempBlock = InBlock x CosBlock^ (MMl)

OutBlock = CosBlock x TempBlock (MM2)

The DCT transformation can then be modeled

as two processes. The first process completes the

first matrix multiplication and generates the 8x8
TempBlock matrix. The results of this matrix multi
plication is then used by the second process that gen
erates the final output matrix, OutBlock. Both pro
cesses have an internal copy of the CosBlock matrix.

luMtlpncation 11
TnvBlack Matrix

MuMplicailon2

Figure 14: DCT modeled as two serialized matrix mul
tiplications

The DCT can be modeled as two communicating
processes as shown in Figure 14. The design of this
ASIC, then, includes specifying the protocol of com
munication between the two processes stnd synthesiz
ing the communication interface. The high-level spec
ification of the problem is given in Appendix B. This
high-level specification is partitioned into two pro
cesses each performing a single matrix multiplication.
This model is shown in Figure 15. At this level of mod
eling, communication is done through global variables.
The complete VHDL model is given in Appendix C.

sw!—— Matrix MultlpUcaHon 11 I Matrix Multiplication 2 | -»Ooiw

Figure 15: Global variables in the partitioned model

Process 1 reads the input data and stores the results
of the first matrix multiplication in the global variable
TempBlock and makes a fiag Finished high to denote
that it is done with its computation. This flag is a
global variable and hence accessible to the second pro
cess also. The second process polls the Finished flag
and when it sees that the first process is over with its
computation, it goes ahead and does the second ma
trix multiplication, sets the Completed flag and finally
puts the results on the output signal pins. Process 1

^^oceeds only after the second process has read the
TempBlockmatrix, i.e. it waits for the Completed flag



to be set. The InBlock and the OutBlock matrices

are stored in local memories of the first and second

processes respectively.

The DCT specification is partitioned into two com
municating processes. The first process generates the
8x8 TempBlock matrix. The 64 bytes of this ma
trix have to be transferred to the second process for
the second matrix multiplication. There are various
possible schemes for communicating this set of data.
We next explore some of the different styles of model
implementation and how components may be reused.

3.1 Protocol 1: Handshaking for each
byte

We first look at direct communication between the

two components without any intermediate storage el
ements. The two components can communicate using
a dedicated bus with handshaking on every byte as
shown in Figure 16. This protocol uses four control
signals and separate address and data lines. The first
process stores the result of the matrix multiplication,
TempBlock, in local memory. When it is done with
the computation, it sends a transmit request signal on
TxReq. The second process responds with a TxAck
signal. The 64 bytes of data are then transferred over
the data bus with handshaking for each byte. The
detailed protocol is described below. MMl is matrix
multiplication 1, MM2 is matrix multiplication 2, PI
is process 1 and P2 is process 2.

1. MMl complete, PI raises TxReq

2. P2 acknowledges when ready with a high on Tx
Ack

3. PI raises DReq and waits for ack

4. P2 sends DAck when ready to receive a byte

5. PI places the address and data and pulls DReq
low

6. P2 reads the eiddress and data when DReq goes
low

7. P2 pulls DAck low to signal completion of trans
fer of 1 byte

8. steps 3-7 repeated for a toted of 64 times

9. PI lowers TxReq

10. P2 lowers TxAck

The VHDL model for this protocol is given in
Appendix D. This protocol dedicates 4 control sig
nals for synchronization between the processes. The
TempBlock matrix is duplicated in the two processes.
Even though memory is wasted due to duplication and
extra time is required for transferring the entire ma
trix from one block to the other, this might be the
only option in certain cases. If the producer and con
sumer produce and consume data at the same rate,
then the consumer need not acknowledge receipt of
data. Data may be strobed on every low->high tran
sition of a Req signal or clock. However, if such as
sumptions about the relative rates cannot be made
then the system must be operated at the speed of the
slowest component by using request and acknowledge
signals.

3.2 Protocol 2: Handshaking for every
byte-pair

A dedicated bus may use protocols for communication
that differ from the one described above. The various

parameters in the protocol specification include the
number of control wires, if the protocol is synchronous
or asynchronous, the clock rate for synchronous proto
cols, type/width of data/address busses and the exact
timing specification. Another protocol for communi
cation over a dedicated bus is shown in Figure 17.

The first process stores the result of the matrix mul
tiplication (TempBlock) in local memory. When it is
done with the computation, it initiates data transfer
with a request on the Req signal. The second process
responds with an Ack signal. The 64 bytes of data
are transferred over an 8-bit bus with handshake for

every two bytes. The protocol can be specified as fol
lows. MMl is matrix multiplication 1, MM2 is matrix
multiplication 2, PI is process 1 and P2 is process 2.

1. MMl complete in PI

2. PI raises Req

3. P2 acknowledges when ready with a high on Ack

4. PI places the address and pulls Req low at next
clock

5. P2 reads the address when Req goes low

6. PI places data byte on bus at next clock

7. P2 reads the data byte

^ 8. PI places the next data bye on bus at next clock
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Figure 16: Bus with handshaking for each transmitted byte
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Figure 17: Bus with handshaking for every byte-pair



9. P2 read the data byte and pulls the Ack low

10. steps 2-9 repeated for a total of 32 times

The VBDL model for this protocol is given in Ap
pendix E. This protocol multiplexes address and data
on a single bus. The first process places only the even
addresses on the bus. It sends out 2 data bytes for
each awidress that it puts on the bus. The model uses
only 2 control signals but the data transfer is synchro
nized with a common clock edge. The second process
must count the number of bytes received since there is
no transmission request signal. It interprets the first
data byte to be for the auldress supplied and the sec
ond data byte for the next contiguous location.

3.3 Reusing an ASIC

The various components of a system may not have the
same communication protocol. It may not be possible
to synthesize the components to obey the protocol of
the other component. Communication between com
ponents with different protocols for data transfer is
a major hurdle in ASIC reuse. If protocols of pro
cesses that need to communicate with each other do

not match then a proper interface must be generated
that translates the protocols. We next describe ex
periments done on this problem. Consider the DCT
system made up of two components that communicate
using Protocol 1 (described in Section 3.1). Now, Pro
cess 2 which does the second matrix multiplication is
removed and replaced by a component that uses Pro
tocol 2 (described in Section 3.2). This is similar to
the generic example shown in Figure 3.

. Protocol 1 uses 4 control signals and a separate ad
dress and data bus. It is a completely asynchronous
protocol. Protocol 2, however, uses only 2 control
signals and a single bus. The address and data are
multiplexed on this bus and two data bytes are trans
ferred for each address put on the bus. After the data
transfer cycle has been initiated using the request and
acknowledge signals, the two data bytes are strobed
on consecutive clock edges. A transducer is required
between the two blocks since they do not use the same
protocol. The DCT model composed of processes with
different protocols is shown in Figure 18. The trans
ducer (interface) needs to generate the proper control
signals and do the protocol translation. The exact
sequence of steps for the transducer can be listed as
follows.

1. wait for the TxReq signal from process 1

2. send the TxAck signal

3. wait for a DReq signal from process 1

4. send the DAck signal

5. wait for DReq to go low

6. read the address and the first data byte from
process 1

7. lower the DAck signal

8. wsdt for the next DReq signal

9. send the DAck signal

10. wait for DReq to go low

11. read the address and the second data byte from
process 1

12. send the Req signal to process 2

13. wait for Ack signed from process 2

14. put the first address on bus at the rising edge of
dock

15. put the first data byte at the next clock edge

16. put the second data byte at the next clock edge

17. wait until Ack from process 2 goes low

18. lower the DAck signal for process 1

19. repeat steps 3-18 while TxReq is high

20. lower TxAck signal to process 1

The interfetce, thus, first gets the address and data
from the first process according to its protocol. It
stores them internally and does not give the finsJ
acknowledge signal to the first process. It returns
this acknowledgment only when it completes the data
transfer to the second process. This way, it needs lim
ited buffering. Other implementations of the interface
are also possible. The interface can be modeled as
an FSMD as shown in Figure 19. The actions are
associated with the edges which represent the state
transitions. The complete VHDL code is given in Ap
pendix F.

3.4 Replacing the Bus

In the previous section, we discussed replacement of
a component with another that has the same func
tionality but different communication protocol. The

/jBbmmunication bus itself may be changed with an
other that has a different protocol. Consider the DCT
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Figure 19: FSMD for protocol translation

example where both components use Protocol 1 as de
scribed in Section 3.1. The bus used for communica

tion between them is also a Protocol 1 bus. Hence,
transducers are not required for connecting the com
ponents to the bus as shown in Figure 20. The proto
col 1 bus which uses 4 control signals and handshakes
on every byte is then replziced by the protocol 2 bus
that has only 2 control signals and transfers two data
bytes for every handshaking transaction. Two new
transducer are needed to translate the protocols and
connect the components to the new bus as shown in
Figure 20. The complete VHDL model is given in Ap
pendix G.

Matrix Multiplication 2
(ProtocBll)

mbuiMraplic*<<:
Tiwaduon an rndrad

Matrix MuitipUcation 2
(Prenooii)

o.o v^ommunicaxion using a r if u

In the previous protocols the TempBlock matrix was
duplicated. Both the matrix multiplication units had
a copy of the matrix. The first process, MMl, stored
the computed results in a local memory and then
transferred the matrix to the second process, MM2,
which first saved a copy in locsd memory and then
proceeded with the computation. However, the mem
ory duplication overhead can be avoided by sharing
the storage between the two components.

For this example and similar problems, bounded
First-in First-out (FIFO) queues can be used as means
of communication. FIFOs also avoid the data duplicar
tion problem. The advantage of using a FIFO is that
the consumer and producer can operate concurrently.
It is especially useful when the producer and consumer
data at approximately the same rate. The producer
and consumer do not require extra bits for address
ing. The arbiter which is required for shared memory
access (discussed in Section 3.6) is also not required.
FIFOs, however, do not provide the random access ca
pability that memories provide. The consumer must
read the data in the order in which the producer sup
plies it. Thus, if the producer does not need to reuse
^e data it produces, it can immediatelytreinsfer it to
the queue without storing it in local memory and then
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Figure 21: Communication using a FIFO queue

at a later stage reading from there and transferring it.
The consumer can read the data from the queue in the
first-in first-out discipline.

The protocol for communication using a FIFO is
shown in Figure 21. The complete VHDL code is
given in Appendix H. The operation is similar to the
shared memory protocol. MMl computes the first ma
trix multiplication and stores the 64 bytes of data in
the FIFO. After the computation is over, it sends an
Over signal to the other process. MM2 then reads the
64 bytes of data from the FIFO and does the second
matrix multiplication. When it is done with the com
putation, it sends a Used signal to MMl which denotes
that MMl can proceed ahead and do another matrix
multiplication.

FIFOs are an efficient way of communicating be
tween two processes. However, reading the data re
moves it from the queue. Thus, if the consumer needs
to access some data repeatedly, it must store it inside.
This is not the case for random access memories. The

second matrix multiply unit, MM2, needs to use a
TempBlock byte repeatedly for the matrix multipli
cation. It must either buffer the bytes interndly or
use another matrix multiplication algorithm. This al

gorithm will read a value from the FIFO (an element
of the TempBlock matrix), performs all the multipli
cations which require this value and then discards this
value. This approach has been adopted in our case. If
the size of FIFO is the same as the amount of data to

be transferred, then dedicated control lines between
the two matrix multiply units are not necessary. The
full and empty lines from the FIFO can be used to
synchronize the two processes. If dedicated lines for
synchronization are used in conjunction with the full
and empty lines both the blocks may operate concur
rently.

3.6 Communication using a Memory

The duplication of data and memory in the two com
ponents can also be avoided by sharing a memory be
tween the two components. This achieves the same
goal as the FIFO in the previous section. In the gen
eral case, random access memory and FIFO provide
different benefits and have their own limitations.

The protocol for communication using a random ac-
memory with implicit arbitration is demonstrated

in Figure 22. The two units do not have local mem-
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Figure 22: Communication through random access memory

ory for the TempBlock matrix. They use a random
access memory for storing the matrix. This memory
is shared between the two components. During the
first half of the computation, the first matrix multi
ply unit writes into the memory. During this time the
address, data and control lines of the memory are as
serted by the first matrix multiply unit. MMl gives
the address of the data byte being written and asserts
the CS and WE control lines according to the timing
diagram of the memory. MMl send a computation
complete signal on the over line to MM2 and relin
quishes control of the address and data busses. In the
next phase, the second multiply unit, MM2, controls
the random access memory after receiving the over sig
nal from MMl. MM2 supplies the address and asserts
the CS and OE lines to read the matrix values for the

computation. When the computation is over, MM2
relinquishes control of the addr^s bus and floats the
CS and OE lines. It then sends a used signal to MMl
which denotes that the data from the random access

memory has been read and that MMl can start the
next computation.

A NEC 1 M-bit (128K by 8-bit) CMOS static
RAM [5] (part number /4/'£>431008L) has been used

for modeling the random access memory between the
two processes. It has a reeid-write cycle time of 17 ns.
The complete VHDL code is given in Appendix I.

In this case, the arbiter is very simple and its job is
to turn around the data busses. The two components
do not try to access the memory buffer at the same
time. They communicate between themselves using
dedicated control lines to make sure that only one unit
accesses the memory at a time. This is possible since
the matrix multiply proc^es do not have any inter
leaved memory accesses. MM2 reads the memory only
after MMl has written all the data into the memory.
However, a priority resolution method and recovery
method in case of clashes will need to be determined

for the general case of accesses to a random access
memory. In this example, however, there is no need
for the arbiter to acknowledge successful grant of the
busses since it is gusiranteed that the processes syn
chronize between themselves and the arbiter does not
need to provide this functionality.



Matrix Multiplication 1

Matrix Multiplication 1
memory omtrol lines asserted by
MM1.64 bytes writtento memory

Memory

TempSiock Mattlx Multiplication 2

OutBlock

Matrix Multiplication 2
memory control lines asserted by
MM2.64 bytes read from memory

Figure 23: Communication using a Memory 2Uid VMEbus



3.7 Communication using a Memory
buffer and VMEbus

In the previous sections, we have looked at designs
that all use dedicated application specific resources.
In particular, the communication busses have been all
configured to best suit the example in terms of number
of control signals and bus widths. However, this kind
of facility may not always be available. One or more
of the components might have been defined for some
particular protocol. There may not be the flexibility
of re-designing the entire component for the particular
communication scheme. Otherwise, system consider
ations might force the designer to choose some stan
dard bus for communication even if the components
are being synthesized. This section discusses use of
a VMEbus [6] as means of communication between a
component and the memory.

As shown is Figure 23, the component MMl is
a VME Master component and communicates in
the VMEbus protocol. The component writes the
TempBlock matrix data bytes in the VMEbus pro
tocol. The shared memory, however, is not a VME
slave component. Hence, Jin interface is used between
the VMEbus and the SRAM. The interface unit in

this case is minimal since the VME master only does
single byte transfers on the lower 8 bits of the data
bus. There are no double, quad byte or burst mode
transfers. It generates the chip select signal from the
address strobe signal of the bus and sends an acknowl
edgment based on the timing characteristics of the
SHAM.

Industry standard busses are commonly used for
communication between components. If the compo
nents cannot be synthesized for the particular bus pro
tocol then transducers (interfaces) must be created for
protocol translation. The interface can be quite com
plicated with internal buffering along with a state ma
chine for generating the proper control signals.

Experimentation with the DCT example has
demonstrated the issues in modeling for reuse. We ex
plored different communication schemes between the
two components of DCT. We were able to look at the
IP reuse problem by changing an ASIC with another
that uses a different communication protocol. We also
looked at the effect of changing the bus on the system
models. These experiments lead us to propose some
guidelines for modeling in VHDL which we present
next.

4 Modeling for Reuse

In this section, we discuss some of the essential issues
in modeling for reuse. A system consists of various
components that communicate amongst themselves
for exchanging data and synchronizing computation.
In a heirdware system, a component refers to any of
the processors, ASICs, FIFOs, random access memo
ries that comprise the system. Thus, it is important to
ensure that there is no protocol mismatch amongst the
various components. Some of the important issues re-
geirding modeling eind implementation of a system are
as follows.

• Whenever there is a protocol mismatch between
two components or between a component and
a bus, a transducer must be used for protocol
translation. If the ASIC is a synthesizable com
ponent then the transducer is not a separate en
tity but csin be integrated with the ASIC during
the synthesis process. Otherwise, the transducer
will exist as a separate component in the system.

• Whenever a component (ASIC, memory, FIFO)
is replaced with another that has a different com
munication protocol, the existing transducer has
to be redesigned. If there was no transducer ini
tially, then a new transducer must be inserted.

• The components might communicate using a
common bus. Every time a bus is replaced, all
the transducers that are used to connect ASICs

to this particular bus will need to be redesigned.

Reuse is encouraged if the ASIC does not have
the detailed communication protocol in its descrip
tion. It is extremely difficult to modify a system
model if communication is interleaved with compu
tation. Changing the communication protocols then
amounts to rewriting the entire model since the com
munication steps are distributed all over the model.
In addition, it is hard to determine what constitutes
internal computation and what constitutes external
communication. Thus, reuse is encouraged if commu
nication is sepajated from computation and is moved
outside the component model. If this is done then
the port interface of the component model consists of
function calls instead of bit signals. This is helpful be
cause the components are generic and not restricted
to a particular protocol. They can be stored in a li
brary and generic interfaces also f£u:ilitate automatic

^^neration of transducers which is rather hard to do
if the interf£ices specify timing on bit signals.



4.1 Using VHDL as a modeling lan
guage

The above mentioned guidelines though highly rec
ommended cannot be put into practice easily when
VHDL is used as a modeling language. VHDL is in
herently flat which means layered protocol specifica
tion is not possible. VHDL requires that the entity
declaration of models be at the bit-level and hence,
communication must necessarily be modeled at the
physical level, i.e., tremsitions on signals [7]. But if
the communication has to be removed from the com

ponent model, then the entity interface to the exter
nal world will consist of function ceJls. However, in
VHDL an entity cannot consist of function calls. It
must use the standard data typ^ like bit, integer
or stdj-ogic. The model then also defines the tim
ing specification on these signals. Thus, the interface
is too detailed and cannot be used for incremental re

finement and reuse at the behavioral model.

However, communication can still be separated
from computation by using a sepsirate process inside
the behavioral VHDL architecture of the ASIC for
just communication. This process encapsulates the en
tire communication protocol and the computation is
done in other processes of the same architecture. The
computation proc^ses do not eiccess the ports of the
entity. They request the communication process
for all read/write requests. This is done using global
variables which are essentially signal declarations in
side the aarchitecture of the model. A typical model
looks like the one shown in Figure 24.

Now consider replacing an ASIC model with an
other that uses a different communication protocol.
Typically, the entire model for this new ASIC will need
to be rewritten to reflect the different protocol. How
ever, now the communication is clearly demarcated
and separated from all the computation since it is in
a separate process. Thus, only the communication
process needs to be redesigned and the computation
processes do not need to be modified. This modeling
technique is illustrated in Appendix D, E.

When an ASIC is replaced with a new ASIC, the
VHDL models need to be modified if the communica

tion protocol of the new ASIC is different from the ear
lier protocol. The communication process of either
of the two ASICs between which there is a protocol
mismatch needs to be modified. The changes must
reflect the protocol of the other ASIC. This might
also necessitate modifications in the port declarations

port Interface

(rf the ASIC

compute process(es)
perform only
computations.

No communication

communicate

process does all

the corrvnimication

with the external

world

entity ASIC is
port(ce( :lnbit;

data: in integer);
end ASIC;

architecture l)^uv of ASIC is
signal sync, ready: bit;
si{ptal local; integer;

begin

compute :proc68s
variatM a: irSeger;

begin

sync <= "1•;

wait unto readys'V;
a o local;

sync^a'C;

end process compute;

communlcato: procesa
be^

wait until syno'V;
local o data;

ready <b'i ';

end process communicate;

end iMhav;

Figure 24: Separate communication and computation
processes in VHDL

of the ASIC entity. However, if none of the ASIC
is synthesizable then the models cannot be changed
and a transducer needs to be inserted. This trans

ducer is a separate entity which interfaces to the two
ASICs. The architecture of the transducer has a
model for the finite state machine that does the pro
tocol translation as described for the DCT example in
Figure 19. When a bus is replaced, then the same pro
cedure needs to be applied for each of the components
connected to the bus. If they are not synthesizable
then transducers need to be developed and inserted in
the top level entity that encapsulates all the different
components.

The inability to model at a higher level in VHDL
lesids us to propose the use of the new language,
SpecC. SpecC is an executablehardwaremodeling lan
guage suited for co-design and component reuse. In
the next section, we discuss the benefits of SpecC and
how it supports ASIC reuse.



5 Modeling in SpecC

There is a modeling need to separate the computation
from communication, as discussed in Section 2.1. The
ports of entities csm then be made abstract in terms
of number and width of signals. A port of a particular
type will then be specified by the function calls it will
support, e.g., readjiordO and writejordO. This
port will be resolved to a real channel that has the
actual details at the later time of component instan
tiation. The SpecC language supports these features
and makes modeling for reuse a natural and easy task.
It is able to separate the computation specification in
a component from the communication protocols by us
ing the concept of channels and the software modeling
techniques of data abstraction and information hiding.

5.1 Modeling Refinement in SpecC

A key feature of the SpecC language is that the de
signer can model the system at a behavioral level and
the models can then be refined for system implemen
tation. We next present how modeling refinement is
done in the SpecC methodology.

5.1.1 Global Variables

At the highest level, the models are composed of sys
tem behaviors that communicate using global vari
ables. This kind of modeling is closer to the concep
tual model of the system. There is no notion of ports
of sub-behaviors or protocol transfers. It is the sim
plest model that captures the algorithm being used
for solving the problem. The designer is not burdened
with communication protocols and target architecture
at this stage and uses such a model for verification of
the algorithms and functionality of the system under
design.

A typical system model at this level is shown in
Figure 25. The system behaviors see the communi
cation variables as any other local variable since they
are declared as global in the specification.

5.1.2 Global variables through ports

The behaviors may also access the globsd variables
through their ports. This model is shown in Figure 26.
This model is in essence the same as the earlier one

that uses only global variables. The only difference

ASystem

Figure 25: Global variables in a SpecC model

ASyMm

Figure 26: Global variables through ports in a SpecC
model

is that in this model, the behaviors explicitly declare
the global variables as ports. They access the global
variables only through the formal port variable names.

The high level behavioral specification of the sys
tem can be composed using either of the two models.
They are both at a high level and do not include any
notion of communication protocol auid channels. This
model with ports can be generated automatically from
the previous model in a pre-processing step. It is use
ful to have this model as it clearly defines the interface
of a behavior cind what variables are internal and what
are accessed from outside the system behavior.

5.1.3 Variable inside a channel

The global variable model is refined automatically to
a model that includes channels. Each global variable
is encapsulated in a channel and the channel define
interfjices for accessing this variable. The behaviors
use function calls that are part of the port interface to
read and write these variables, as shown in Figure 27.

There is no timing information in either the be
havior or the channel. Transfers take place by simply
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Figure 27: One-shot tmnafeT using channels in a
SpecC model

reading or writing into the variable inside the channel
using the function calls of the interface. This model
is used for performing the allocation, partitioning eind
scheduling operations required for system implemen
tation as shown in the co-design methodology of Fig
ure 9.

5.1.4 Protocol inside a channel

Allocation and partitioning determine how the sys
tem behaviors are mapped eind what is the connectiv
ity between components. Cheinnels between behaviors
that get mapped to the same component become lo
cal variables. The channels then get discarded. The
channels going across behaviors on different compo
nents are mapped to the common bus that connects
the components. A protocol is selected for this bus.
The bus is encapsulated in a channel that includes the
detailed protocol for the bus. The system behaviors
still use function calls for communication as shown in

Figure 28.
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Figure 28: Protocol transfer using channels in a SpecC
model

The chemnel has the different bit level signals for

shared variable access like req, ack and defines the
bit-widths and timing of data transfer. These chan
nels encapsulate a particular bus protocol and can be
stored in a library. Both the ASICs and the busses can
be replaced by new components with different proto
cols. Reuse is performed at this level and behavioral
transducers may have to be introduced.

5.1.5 Inlined channel

After the different options for the components have
been explored on the channel model, communication
synthesis is done. This process inlines the channel
functions to synthesizable ASICs or along with the
wrappers as separate components. The refined model
again consists of ports that are connected to global
variables, as shown in Figure 29.

ASystem

Figure 29: Inlined channel in a SpecC model

This model is, thus, similar to the global variable
through ports model. However, the important differ
ence is that the model is refined and the ports are now
bit signals instead of abstract data types like int,
float etc. The behaviors, too, have the detailed com
munication protocol that was introduced in them as
a result of the inlining process. This model basically
consists of a component netlist and can be synthesized
using traditional back-end tools.

We next describe some examples in SpecC [4] and
how models can be written with desirable features for

reuse. We first describe a simple shared variable model
and then describe communication over a synchronous
bus.



5.2 Shared Memory Channel

A shared memory channel which can be accessed by
concurrent processes is shown in Figure 30. For the

Figure 30: A shared memory channel

sake of simplicity, consider the case when only one of
the processes writes into the shared variable and the
other reads from it. A typical system using such a
shared memory system can be modeled in SpecC as
follows (SpecC keywords are in boldface).

interface ILeft (void) {
void write (Int val);

};

interface IRight (void) {
int read (void);

};

channel CShared (void) implements ILeft, IRight {
int storage;
boot valid;

void write (int vat) {
storage = val;
valid = 1;

}

int read (void) {
while (! valid) ;
return storage;

behavior Master (ILeft p) {
int local;

void main (void) {

p.write(iocal);

behavior Slave (IRight p) {
int local;

void main (void) {

behavior System () {
CShared var;

Master X (var);
Slave Y (var);

void main (void) {
par {

X.RUun();
Y.main();

}
>

The actual variable, storage, is encapsulated by
the channel CShared which also has the synchronizar
tion valid bit. The write operation stores the value
and sets the valid bit and the read operation spin-waits
on the veilid bit. This simple example brings out the
concept of information hiding and how computation is
distinguished from the communication. The processes
(behaviors) themselves do only the computation and
just make function csdls to writeO and readO opH
erations. The deteuls of the shared variable access are

described in the functions encapsulated in the channel.

The behavior entities have ports in the form of in
ter/aces. A channel relates to interfsices by the im
plements keyword by which it is guaranteed that the
channel will implement the methods declared in the
interfaces that it implements. Thus, any other chan
nel that implements the same interfaces ILeft and
IRight can be used in place of the CSheired channel.
This kind of modeling is obviously conducive to reuse
of components.

5.3 Synchronous Bus Channel

Figure 31: Synchronous bus channel

As a more complex example than shzired memory
channel consider a synchronous bus channel as shown

Figure 31. This example models read and write of



memory over a bus using a simple synchronotu bus
protocol which is detailed in Figure 32.
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Figure 32: Simple bus protocol

Such a system can be modeled in SpecC as follows
(SpecC keywords are in boldface).

interface ILeft (void) {
void read (wc«d ziddr, worded);
void write (word addr, wcxdd);

}:

interface IRight (void) {
void monitor(

void (»grab](ward addr, word*d),
void (♦deliver)(wt*daddr, wordd));

channel CBus (void) implements Ileft, IRight {
clock elk;
signal<bit> start;
signal<bit> rw;
8ignal<>vi»cb> AD;

void read (word addr, word *d) {
8tart=l, rw=l, clk.tick();
ADaddr, clk.tick();

starts, clk.tick();
}

void write (word addr, word *d) {
start=I, rwsd, clk.tick();
AEkaddr, clk.tick();
ADd, startd), clk.tickQ;

}

v<^ monitor (
void (*grab)(ward addr, WQrd*d),
void (••deliver)(wonl addr, wordvd)) {

word a, d;

while (start^^) clk.tick();
if (r^) {

elk. tick ();
a = AD; clk.tickO;
(«grab)(a, &d), AI>d, clk.tickQ;

} else {
clk.tick();
a = AU clk.tickO;

(*de!iver)(a, d), clk.tick();

behavior Master (Ileft bus) {
word local;

v(»d main (vend) {

bus.read(OxlO, &locaI);

local ++;
bus. write(0x10, local);

behavior Slave (IRight bus) {
word storage [0x100];

void my.grab (word addr, word *d) {
*d — storage (addr);

} .
void my-deliver (word addr, word *d) {

storage (addr) = d;
}

void mdn (void) {
for (; ;) {

bus.monitor(my.grab, my-deliver);
}

}

7»behavior System (void) {
7B CBus bus;
so Master master(bus);
Bi Slave slave(bu8);
B3

83 void main (void) {
84 par {
88 master. main();
88 slave.main();

}
88 }
89 >;

This example again brings out the distinction be-



tween computation and communication achieved in
SpecC models. The channel CBus encapsulates the
wires in the simple bus, viz., elk, start, rv and
AD. The interface ports of the components (behav
iors) consist of only abstract methods for communi
cation. These methods just specify the behavior that
is used by the components. The actual procedure of
these methods is moved to the methods in the cham-

nel. Thus, the component only needs to make a func
tional call to methods like readO and vrite(). The

detailed timing of elk, start and rw signails as spec
ified by the protocol is moved inside the channel.

The ports of the behaviors can be mapped to the
channel when they are instantiated. In this way, late
binding can be achieved. Thus, the behavior need
not know what channel it will eventually be mapped
to and hence the communication details are removed

from the functional specification of the component.
This also permits reuse because any other channel can
be used. The channel can use not only a different
timing specification but even with different number of
wires. The only requirement is that it should imple
ment the interfeices of the ports of the components.

5.4 Abstraction Levels

The co-design methodology given in Figure 9 uses
models at different levels of abstreu:tion. At the high
est level, there is a behavioral specification of the sys
tem in the SpecC language. Allocation and parti
tioning on this model lead to the partitioning model.
Scheduling is performed on this model which gener
ates the scheduling model. Finally, communication re
finement leads to the communication model. These

abstraction levels are helpful for co-design since the
design can be debugged, validated and refined incre
mentally. Each abstraction level refines the level that
is higher in the hierarchy. The different levels are es
sential for reuse since the final implementation model
is too detailed and cannot be easily reused. The rig
orous synthesis flow provides models with documenta
tion at higher levels of abstraction which can then be
reused.

However, the models at the different level of ab
straction have different accuracy. The performance
metrics of these models may be quite far from that of
the final implementation model. The initial specifica
tion is only functionally accurate. The SpecC model
can be simulated and validated for correctness of re

sults. There is no implementation detail in this model.

At the next level, the partitioning model includes the
software and hardware components of the system. The
different behaviors, however, execute concurrently on
the processing element on which they are allocated.
The performance accuracy at this abstraction level de
pends on the accuracy of the estimation tools. The
performance of the hardware component can be com
puted approximately but there are no interface models
for communication between the components. It is also
difficult to get the complete performance estimates for
softweire too because all the software behaviora execute

concurrently, contrary to the actual fined implementa
tion. However, good estimates for each behavior may
be computed separately.

The partitioning model is scheduled which serial
izes the behaviors on the processing elements. Thus,
the software too can be estimated quite accurately.
However, the models at this level still do not include
the communication details. The communication re

finement step introduces protocol transducers, com
munication primitives and inlines the ch2uinel meth
ods. The communication model is, thus, complete in
terms ofspecification of the final implementation. The
performance is still not accurate because there is scope
for optimizations during high level synthesis and com
pilation.

The software component of the communication
model is compiled and the hardware component is syn
thesized using HLS tools and techniques. Cycle-based
simulators and instruction set simulators can be used

to validate the design and estimate the performance.
The design may also be prototyped using FPGAs. The
implementation model is then quite close to the final
manufactured component and the performance of the
prototype with appropriate estimators may be accu
rate enough for most purposes.

We note that even though the performance accu
racy of models at higher abstraction levels is not high,
the hierarchy is still acceptable. This is because the
fidelity [8] of the estimators is usually high. Thus, ex
perience with the estimator tools can be used to get
better performance accuracy than suggested by pre
liminary estimates.

5.5 Proposed "Co-design Explorer"

We propose to develop and implement a co-design sys
tem, the "Co-design Explorer" [9]. This system will be

^^ased on the new SpecC language [3]. SpecC is able to



model mixed abstraction levels as discussed earlier. It
can also capture the characteristic features of embed
ded systems [8], such as concurrency, state transitions,
structural and behavioral hierarchy, exception han
dling, timing, communication 2Lnd synchronization.
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Figure 33: Proposed Co-design Explorer System

This system will be based on the co-design method
ology presented in Figure 9 and use the channel con
cept illustrated in Figure 5, 7, 8. An overview of the
system is given in Figure 33. A graphical user interface
(GUI) is used to generate the specification of the sys
tem without learning SpecC. The GUI helps in spec
ifying hierarchical and concurrent behaviors. It can
be used for specifying the state transition functions
and connectivity of behaviors. The GUI generates a
specification of the system in SpecC. This model uses
global variables for communication as shown in Fig
ure 25. It is internally pre-processed to convert global
variables into channels. This model is then be used for

manual allocation, partitioning and scheduling with
assistance from estimator tools. Plug-and-play is per
formed on the refined model using components from a
database. The database also stores generic transduc
ers and busses encapsulated in channels. Explorations
are done to meet the performance and cost require
ments.

Finally, a Refiner tool is used to expeind and trans-

late the modelgenerated after explorations. This step
includes channel inlining (asdiscussed in Section 2.1),
generation of C code that will run on processors and
generation of VHDL behavioral models for the hard
ware architecture. These low level models can then be
compiled and synthesized using traditional techniques
to get the implementation model. The advantage of
using this methodology is that it uses SpecC which
provides a minimal and complete set of constructs re
quired to model embedded systems at various abstrac
tion levels. Furthermore, the designer does not have
to know the intricacies of hardware modeling as the
graphical user interface cein be used to specify hierar
chy, concurrency, timing and state transitions.

6 Conclusion

In this report, we have outlined a generic co-design
methodology that supports component reuse. We
have talked about the various steps in the methodol
ogy and discussed the step of communication synthesis
in detail. Westress that computation needs to be sep
arated from communication. This distinction needs to
be made to generate reusable components. This is be
cause then only the communication part needs to be
re-designed. Separation can be achieved by declaring
the ports of the component at levels higher than bit
signals. The protocol can be abstracted away into the
channels used for connecting components.

We have also described different communication

models and done explorations using different commu
nication protocols between two components that as a
system compute the Discrete Cosine TVansform. It is
important that all communicating processes use the
same protocol. If a component uses a different proto
col then a transducer must be used between the com
ponents. This transducer will do the protocol transla
tion. The transducer will, in general, be complicated
and may have internal buffering of data and ensure
correct timing of signals.

Using this exploratory example, we have come up
with a set of guidelines for modeling in VHDL. Our
critique of VHDL led us to propose the use of the new
co-design language, SpecC. We have described some
examples from SpecC which support its use for ASIC
reuse and incremental refinement. We need to do more
research to solve the open problems related to ASIC

/^use and use of SpecC. As future work, we need to
implement the DCT example at various abstraction



levels in SpecC to evaduate the effectiveness of pro
posed modeling techniques. We also need to compile
a list of all possible transaction level function calls in
order to study their effect on development of chan
nels and generic transducers. Finally, we propose to
develop a new Co'design Explorer using the concepts
developed.
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A Formal Specification of DCT

The formal specification of the Discrete CJosine Transform (DCT) operation is as follows [2],

c(m)c(n) (2m + l)u7r (2n+l)u7r
=-r- I. E /•»» 2iv ""—2N—

msO nsO

where:

/mn = gray level of pixel at (m, n) in the N x N image (0 < m, n < —1)
u,v = discrete frequency variables (0<u, v<N-l)
Fuv = coefficient at point (u, v) in spatial frequency domain
In typical designs (like the MPEG standeird), the image is sub-divided into 8x8 blocks of pixels. We also use

a value of ^ = 8 in this example. Furthermore, let CosBlock be a 8x8 matrix defined by

CosBlockun =round{factor *(^coa^^"
8 16

An importsuit property of the cosine transform is that the two summations we separable. Thus, the DCT can
be expressed as two matrix multiplications, one after the other.

TempBlock = InBlock x CosBlock'̂ (MMl)

OutBlock = CosBlock x TempBlock (MM2)



B High-level Specification of DCT

The high-level specification of the DCT algorithm in VHDL is given below. The incoming matrix is first read
into the InBlock matrix. The first matrix multiplication generates the TempBlock matrix using the InBlock
and CosBlock matrices. The second matrix multiplication generates the OutBlock matrix using the CosBlock
and TempBlock matrices. Finally the outgoing transform matrix is written out.

— Rockwell ASIC Reuse Modeling Project
— Oct 2S, 1997

— High Level specification of the DCT component
— behavioral level model with only one process

library ieee;
use ieee . stdJogic.1164 . all;

entity dot is

in stdJogic;
in std-logic;
in integer;
out std-logic;
out integer);

integer;

architecture behavior of dct is

begin
process

type iDsn is array (0 to 7, 0 to 7) of
variable InBlock, TempBlock, OutBlock:
variable CosBlock : n)an:=

((125, 122, 115, 103, 88, 69,
(125, 103, 47, -24,-88,-122,-
(125, 69, -47,-122,-88, 24,
(125, 24,-115, -69, 88, 103,
(125, -24,-115, 69, 88,-103,
(125, -69, -47, 122,-88, -24,
(125,-103, 47, 24,-88, 122,-
(125,-122, 115,-103, 88, -69,

variable a, b, p, sum : integer;
begin

wait until start = M';

47, 24),
-115, -69),

115, 103),
-47, -122),
-47, 122),
115, -103),

-115, 69),
47, -24));

— read the input data matrix

for i in 0 to 7 loop
for j in 0 to 7 loop

wait until elk = '1';
InBlock (i, j) := din;

end loop;
end loop;
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— matrix multiplication 1

for i in 0 to 7 loop
for j in 0 to 7 loop

for k in 0 to 7 loop
a := InBlock (i, k);
b := CosBIock (j, k);
p := a ♦ b;
if (k = 0) then

sum := p;

else

sum := sum + p;

end if;
if (k = 7) then

Ten^Blodc (i, j ) := sum;
end if;

end loop;
end loop;

end loop;

— matrix multiplication 2

for i in 0 to 7 loop
for j in 0 to 7 loop

for k in 0 to 7 loop
a := TempBbdc (k, j);
b CosBIock (i, k);
p := a * b;
if (k = 0) then

sum := p;

else

sum : — sum + p;

end if;
if (k = 7) then

OutBlock ( i, j ) := sum;
end if;

end loop;
end loop;

end loop;

— output the matrix

done <= '1';
for i in 0 to 7 loop

for j in 0 to 7 loop
wait until elk — *1';
dout <= OutBlock (i, j );

end loop;
end loop;
done <= '0';

end process;
behavior;



Partitioned model for DCT with global variables

7—Rockwell ASIC Reuse Modeling Project
» — Oct 25, 1997

s—DCT example with S components for the 2 matrix multiplications
« — The two components communicate using global variables
7 —

a library ieee;
d use ieee . stdJogic.1164 . all;

n entity dct is
13 port ( start
13 elk

14 din

15 done

16 dout

17end dct;

in std.logic;
in stdJogic;
in integer;
out StdJogic;
out integer);

19 architecture beh of dct is

30 type man is array (0 to 7, 0 to 7) of integer;
31 signal tempblock : man;
33 signal finish : stdJogic;
33 signal cosblock : n3an;=
34 ((125, 122, 115, 103, 88, 69, 47,
35 (125, 103, 47, -24,-88,-122,-115,
36 (125, 69, ^7,-122,-88, 24, 115,
37 (125, 24,-115, -69, 88, 103, -47,-
38 (125, -24,-115, 69, 88,-103, -47,
29 (125, -69, -47, 122,-88, -24, 115,-
30 (125,-103, 47, 24,-88, 122,-115,
31 (125,-122, 115,-103, 88, -69, 47,
33 begin
33 mml : process

34 variable inblock : man;
36 variable a, b, p, sum : integer;
36 . begin
37 wait until start = '1';
38 finish <= '0';

39 —read the input data matrix
40 for i in 0 to 7 loop
41 for j in 0 to 7 loop
43 wait until elk = '1';
43 inblock (i, j) := din;
44 end loop;
46 end loop;
46

47 —do the computation
48 for i in 0 to 7 loop
49 for j in 0 to 7 loop
80 for k in 0 to 7 loop
61 a := inblock (i, k);
63 b := cosblock (j, k);
63 p := a « b;

24),
-69),
103),

-122),
122),

-103),
69),

-24)):



If (k = 0) then
sum p;

else

sum := sum + p;

end if;

If (k = 7) thmi
tempblock (i, j } <= sum;

end if;
end loop;

end loop;
end loop;

— done loith the computation, make finish true
finish <=s *1';

end process;

ra inm2 process

73 variable outblock : Tnwn;
74 variable a, b, p, sum : integer;
7ft begin
7B wait until finish = '1';
77 — do the computation
7« for i in 0 to 7 loop
7» for j in 0 to 7 loop
•0 for k in 0 to 7 loop
ai a := tempblock (k, j);
•a b := cosblock (i, k);
sft P := a * b;
•4

•ft if (k s 0) then
ee sum :s p;

•7 else

•ft sum ;= sum + p;

•ft end if;
90

01 , if (k = 7) then
•a outblock (i, j) := sum;
Oft end if;
94 end loop;
OS end loop;
•ft end loop;
•7

Oft — give the done signal and output the output mairii
9» done <='!';

100 for i in 0 to 7 loop
>01 for j in 0 to 7 loop
loa wait until elk = '1';
ICS dout <s outblock (i, j );
104 end loop;
lOft end loop;
loft done<='0';
>07 end process;
ioft end beh;



D Protocol 1: Handshciking for each byte transfer

a — Rockwell ASIC Reuse Modeling Project
, — Oct SO, 1997

4

8 ——DCT example with 2 components for the 2 matrix multiplications
a—communication over a dedicated bus with handshaking for each byte
T I .. I

s library ieee;
» use ieee . std Jogic.1164 . all;

10 use ieee . stdJogic.arith . all;
It

13entity mml is
13 port ( start : in stdJogic;
14 elk : in std-logic;
IB din : in stdJogic.vector(7 downtoO);
16 txreq : out stdJogic;
IT txack ; in stdJogic;
18 dreq ; out stdJogic ;
i» dcick : in stdJogic ;
30 addr : out stdJogic.vector(5 downtoO);
31 data : out stdJogic.vector(7 downto0));
33end mml;

34 architecture behav of mml is

as type man is array (0 to 7, 0 to 7) of 8tdJog!C_vector(7 downtoO);
36 signal InBiock, TempBlodc :
37 signal ready, over : stdJogic ;
36 begin
39 compute: process

so variable cosblock : mem: = (
31 ("01111101", "01111010", "01110011", "01100111", "01011000", "oloooior. "00101111", "00011000")
33 ("01111101", "01100111", "00101111", "11101000", "10101000", "10000110", "10001101", "10111011")
33 ("01111101", "01000101", "11010001", "10000110", "10101000", "00011000", "01110011", "01100111")
34 ("01111101", "00011000", "10001101", "10111011", "01011000", "01100111", "11010001", "10000110")
36 ("01111101", "11101000", "10001101", "01000101", "01011000", "10011001", "11010001", "01111010")
36 • ("01111101", "lOlllOlI", "11010001", "01111010", "10101000", "11101000", "01110011", "10011001")
37 ("oiiiiior. "10011001", "00101111", "00011000", "10101000", "01111010", "loooiior. "01000101")
36 ("01111101", "10000110", "01110011", "10011001", "01011000", "10111011", "00101111", "11101000")

variable a, b : 8tdJogic_vector(7 downtoO);
variable p, sum : stdJogic_vector(15 downtoO);

begin
wait until ready = '1';
over <= '0';

— first matrix multiplication calculation
for i in 0 to 7 loop

for j in 0 to 7 loop
for k in 0 to 7 loop

a := InBiock (i, k);
b ;= CosBlock (j , k);
P signed (a) * signed (b);
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B4 if (k —0) then
B8 sum := p;

B8 else

B7 sum :s signed (sum) + signed (p);
#• end if;
BB

BO if (k = 7) then
Bi TempBlodc (i, j) <=Bum(15 downto8);
Ba end if;
BB end loop;
B4 end loop;
BB end loop;
•6

B7 — done with the computation
BB over<='l';
BB end process compute;
70

7} communicate: process
73 begin
78 ready <='0';
74 wait until start s *1';
7B txreq <= '0';
78 dreq<=*0';
77

78 — read the input data matrix
7B for i in 0 to 7 loop
80 for j in 0 to 7 loop
81 wait until elk = '1';
ea InBlock(i, j)<ssdin;
BB end loop;
84 end loop;
88 ready <= ' 1 *;
86

87 —transfer the data
88 wait until over = '1';
8B ready <= *0';
BO txreq <= '1';
Bi . wait until txack '1';
Ba

BB for i in 0 to 7 loop
B4 for j in 0 to 7 loop
BB wait until elk = '1';
BB dreq <= '1';
B7 wait until dack = '1';
•8 addr <=: conv_stdJogic.vector (8*i-lj , 6);
*9 data <= tempblock (i, j);

"0 dreq<s='0' after 3 ns; —mem read time
101 wait until dack = '0';
loa end loop;
103 end loop;
104 txreq <= '0';
108 end process communicate;
toB end behav;
107

108 library ieee;



109 use ieee . std Jogic.1164 . all;
110 use ieee . 8td.logic.arith . all;

iia entity mn]2 is
us port ( done : out stdJogic;
114 elk : in stdJogic;
lie data : in stdJogic.
ii« addr : in stdJogic.
117 txreq : in stdJogic;

elk : in stdJogic;
data : in stdJogic.vector(7 downtoO);
addr : in stdJogic_vector(5 dcwnto0);

txreq : in stdJogic;
txack : out stdJogic;
dreq : in stdJogic;
dack : out stdJogic;
dout : out 8tdJogic.vector(7 downto0));

laa end miQ^

134 architecture behav of Tnm2 is

135 type man is array (0 to 7, 0 to 7) of 8tdJogic.vector(7 downtoO);
138 signal TempBlodc, OutBlock : man;
137 signal ready, over : stdJogic ;
138 begin
139 compute: process

150 variable CosBlock : man:= (
151 ("01111101", "01111010", "01110011", "01100111", "01011000", ""01011000'

"10101000'

"10101000'

"01011000'

"01011000'

"10101000'

01000101"

10000110"

00011000"

01100111"

10011001"

11101000"

("01111101"
("01111101"
("01111101"
("OlllllOl"
("01111101"
("OlllllOl"
("OlllllOl"

);
variable a, b

'01100111"

'oloooior

•00011000"

'11101000"

'loiiioir

'10011001"

'lOOOOllO"

"00101111"

"11010001"

"10001101"

"10001101"

"11010001"

"00101111"

"01110011"

"01100111"

"11101000"

"10000110"

"lOlllOll"

"01000101"

"01111010"

"00011000"

"10011001"

"10101000", "01111010'
"01011000", "10111011'

variable a, b ; stdJogic.vector(7 downto 0);
variable p, sum : stdJogic.vector(15 downto0);

begin
wait until ready = '1';
over <= '0';

— second matrix multiplication computation
for i in 0 to 7 loop

for j in 0 to 7 loop

for k in 0 to 7 loop
a := TempBkxk (k, j );
b := CosBlock (i, k);
p := signed(a) * 8igned(b);

if (k = 0) then
sum := p;

else

sum ;= signed (sum) + signed (p);
end if;

if (k = 7) then
OutBlock (i, j) <=mm(15 downtoS);

end if;
end loop;

"00101111"

"10001101"

"01110011"

"11010001"

"11010001"

"01110011"

"10001101"

"00101111"



end loop;
end loop;

-

— over with the computation
over <= 'T;

end process compute;

communicate: process
variable tempi, tempj : integer;

begin
txack <= '0';
dack<= '0';
done <= *0*;
wait until txreq = *1*;
wait until elk s: *1';
txack <='1* after 1 ns;

while (txreq = '1') loop
wait until (dreq = *1' CHtxreq = '0*);
if (txreq = '1') then

dack<='l' after 1 ns;
wait until dreq = '0*;
tempi conv-mteger(unsigned(addr)) / 8;
tempj := convJnteger(unsigned(addr)) mod 8;
TonpBlodc (tempi, tempj) <= data;
dack <= *0' after 8 ns; —mm write time

end if;
end loop;

wait until elk = *1';
txack <= '0';
ready <= ' T ;

— output the computed matrix
wait until over '1';
ready <= ' 0';

done <= ' r ;
for i in 0 to 7 loop

for j in 0 to 7 loop
wait until elk = '1';
dout <= OutBIock (i, j );

end loop;
end loop;
done <= '0';

end process communicate;
behav;

313 library ieee;
319 use ieee . std-logic.1164 . all;

319 entity dct is
319 port ( start : in stdJogic;
317 elk : in stdJogic;
318 din : in stdJogic.vector(7 downtoO);

.•.'fWs-, —-Vjn



7ii end dct;

done : out std.logic;
dout : out stdJogic.vector(7 downto 0));

»s architecture struct of dct

334 oomponent wimi
33B port ( start : in
33« elk : in

337 din : in

33a txreq : out

339 txack : in

330 dreq : out
331 dack : in

333 addr : out

333 data : out

334 end component;
333

33e con^xment iiini2
337 port ( done : out
338 elk : in

330 data : in

340 addr : in

341 txreq : in
343 txack : out

343 dreq : in
344 dack : out

346 dout : out

343 end component;

stdJogic;
stdJogic;
stdJogic.vector(7 downto 0);
std.logic;
std.logic;
std.loglc;
std.logic;
6tdJogic-vector(5 downto0);
8tdJogic.vector(7 downto0));

8td.logic;
Btd.logic;
stdJogic.vector(7 downto0);
stdJogic.vector(5 downto0);
stdJogic;
stdJogic;
stdJogic;
stdJogic;
stdJogic.vector(7 downtoO));

343 signal txreq, txack, dreq, dack : stdJogic;
349 signal data ; stdJogic.vector(7 downto 0);
360 signal addr : stdJogic.vector (SdowntoO);
351 begin
353 ul : mml

353 port mep(Start, elk, din, txreq, txack, dreq, dack, addr, data);
364

365 u2 : nini2

366 , port n:Kg>(done, elk, data, addr, txreq, txack, dreq, dack, dout);
367 end struct;



Protocol 2: Handshaking for each byte pair

a—Rockwell ASIC Reuse Modeling Project
,—Nov 6, 1997

»—DCT example with S components for the 2 matrix multiplications
• —components communicate using a dedicated bus and handshaking
r—6u5 multiplexed between address and data. 2 bytes of data for
• —each address written on bus.

9

}o library ieee;
11 use ieee . stdJogic-1164 . all;
13 use ieee . stdJogic.arith . all;

14 entity mml is
IB port ( start
IB elk

IT din

IB dreq
i» dack

30 dbus

31 end mm];

in stdUogic;
in std-logic;
in 8tdJogic_vector(7 downto0);
out std-logic;
in std-logic;
out stdJogic-vector(7 downto 0));

39 architecture behav of mml is

34 type man is array (0 to 7, 0 to 7) of std_logic_vector(7 downto
30 signal InBlock, TempBlodc : mwn;
30 signal ready , over : stdJogic ;
37 begin
30 compute: process
39 variable cosblock : man:= (
90 ("oiiiiior, "01111010", "oiiiooir, "oiiooiii", "oioiiooo"
31 ("01111101", "01100111", "00101111", "11101000", "10101000"
S3 ("01111101", "01000101", "11010001", "10000110", "10101000"
83 ("01111101", "00011000", "10001101", "10111011", "01011000"
34 ("01111101", "IIIOIOOO", "10001101", "01000101", "01011000"
9s ("oiiiiior, "10111011", "iioiooor, "oiiiioio", "loioiooo"
36. ("01111101", "looiioor, "00101111", "oooiiooo", "loioiooo"
37 ("01111101", "10000110", "01110011", "10011001", "01011000"

("01111101", "01100111", "00101111", "11101000"
("01111101", "01000101", "11010001", "10000110"
("01111101", "OOOIIOOO", "10001101", "10111011"
("01111101", "IIIOIOOO", "10001101", "01000101"
("oiiiiior, "10111011", "iioiooor, "oiiiioio"
("01111101", "looiioor, "00101111", "oooiiooo"
("01111101", "10000110", "01110011", "10011001"

variable a, b : 8tdJogic_vector(7 downtoO);
variable p, sum : std_logic_vector(15 downto 0);

begin
wait until ready = '1';
over <= '0';

— first matrix multiplication computation
for i in 0 to 7 loop

for j in 0 to 7 loop
for k in 0 to 7 loop

a :ss InBlock (i, k);
b CosBlock (j, k);
p := signed(a) * signed(b);

"01011000"

"10101000"

"10101000"

"01011000"

"01011000"

"10101000"

"10101000"

"10011001", "01011000"

if (k = 0) then

"01000101"

"10000110"

"OOOIIOOO"

"01100111"

"10011001"

"IIIOIOOO"

"01111010"

"10111011"

"ooloiiir

"10001101"

"01110011"

"11010001"

"11010001"

"01110011"

"10001101"

"00101111"



sum := p;

else

ami ;= signed (sum) + signed (p);
end if;

if (k = 7) then
TempBlodc (i, j) <=ssum(lS downtoS);

end if;
end loop;

end loop;
end loop;

— computation over

over <= '1';
end process compute;

communicate: process
begin

ready <= '0';
wait until start = '1';
dreq <= '0';
dbus <= (others => 'Z');

— read the input data matrix
for i in 0 to 7 loop

for j in 0 to 7 loop
wait until elk = '1';
InBlock (i, j) <= din;

end loop;
end loop;
reeidy <= ' 1';

— transfer the data
wait until over = '1';
ready <= '0';
wait until elk = '1';
for i In 0 to 7 loop

for j in 0 to 3 loop
dreq<='l' after 2 ns;
wait until dack = ' 1';
wait until elk — 'T;
dbus <= conv_stdJogic_vector(8*i+2»j , 8);
dreq <= '0';
wait until elk = '1';
dbus <= tempblock (i, 2*j );
wait until elk = '1';
dbus <= tempblock (i, 2*j-H);
wait until elk = '1';
dbus <= (others => 'Z');
wait until dack = '0*;

end loop;
end loop;

end process communicate;
behav;



109 library ieee;
110 use ieee . stdJogic.1164 . all;
111 use ieee . std-logic.arith . all;

iia entity usnSl is
114 port ( done
118 elk

lie dbus

117 dreq
lie dack

lie dout

lao end znm^

out std-logic;
in std-logic;
in stdJogic.vector(7 dommto0);
in StdJogic;
out stdJogic;
out stdJogic-vector(7 downtoO));

133 architecture behav of mn^ is

133 type ncm is array (0 to 7, 0 to 7) of 8tdJogic.vector(7 downtoO);
134 signal TeropBlodc, OutBIock : man;
138 signal ready, over : stdJogic;
136 begin
137 compute: process

138 variable cosblock : nian:= (
139 ("oiiiiior, "01111010", "01110011", "01100111", "oioiiooo", "

"11101000". "10101000",

01011000", "oloooior
10101000", "10000110"
10101000", "00011000"

"01100111", "00101111"
"01000101", "iioiooor

"00011000", "loooiior

"11101000", "10001101"
"10111011", "11010001"
"10011001", "00101111"
"10000110", "01110011"

'10000110",

'10111011",
'01000101",
'01111010",
'00011000",

'10011001",

'01011000'

'01011000'

'10101000'

'10101000'

'01011000'

("01111101"
("01111101"
("01111101"
("01111101"
("01111101"
("01111101"
("01111101"

);
variable a, bvariable a, b : stdJogic.vector(7 downto 0);
variable p, sum : stdJogic.vector(15 downtoO);

begin
wait until ready = '1';
over <= '0';

second matrix multiplication computation
for i in 0 to 7 loop

for j in 0 to 7 loop
for k in 0 to 7 loop

a := TempBlock (k, j);
b := CosBlock (i, k);
p := signed (a) * signed (b);

if (k = 0) then
sum p;

else

sum ;= signed (sum) + signed (p);
end if;

if (k = 7) then
OutBIock (i, j) <= sum(15 downtoS);

end if;
end loop;

end loop;
end loop;

"01100111"

"10011001"

"11101000"

"01111010"

"10111011"

"00101111"

"10001101"

"01110011"

"11010001"

"11010001"

"01110011"

"10001101"

"00101111"



—-a-.--

les — over with computation
ie« over <= ' 1';
i«7 end process compute;
ICS

169 communicate: process
170 variable tempi, tempj : integer;
171 begin
173 dack <= '0';
17J done <= '0';

174 ready <='0';
176

176 for i in 0 to 7 loop
177 for j in 0 to 3 loop
178 wait until dreq = '1';
176 dack<='l' after 1 ns;
160 wait until dreq = '0';
161 wait until elk = '1';
183 tempi ;= convJnteger(un8igned(dbus)) / 8;
183 tempj convJnteger(unsigned(dbus)) mod 8;
184 wait until elk = '1';
168 TempBlock (tempi, tempj) <= dbus;
166 wait until elk = 'I';
167 TempBlock (tempi, tempj+1) <= dbus;
166 dack <='0' after 1 ns; —mem tvrtte time
169 end loop;
190 end loop;
191 wait until elk = '1*;
193 ready <= ' 1';
193

194 —output the matrix
198 wait until over = '1';
196 ready <= '0';
197 done <= ' 1';
196 for i in 0 to 7 loop
199 for j in 0 to 7 loop
300 wait until elk = '1';
301 . dout <= OutBlock (i, j );
303 end loop;
303 end loop;

304 done <= '0';
306 end process communicate;
306 end behav;
307

308 library ieee ;
309 use ieee . std-logic_1164 . all;

311 entity det is
313 port ( start
313 elk

314 din

tart : in stdjogic;
elk : in stdJogic;
din : in stdJogic.vector(7 downto0);

done : out std.logic;
dout : out stdJogic.vector(7 downtoO));



-ft

aig architecture struct of dct is

330 component mml

331 port ( start : in std-logic;
333 elk : in stdJogic;
335 din : in stdJogic.vector(7 downto 0);
334 dreq : out stdJogic;
336 dack : in stdJogic;
33« dbus : out 8tdJogic.vector(7 downto0));
337 end con^xxient;
336

330 component niin2

330 port ( done : out stdJogic;
331 elk : in stdJogic;
333 dbus : in stdJogic.vector(7 dotwnto 0);
333 dreq : in stdJogic;
334 dack : out stdJogic;
335 dout : out stdJogic.vector(7 downto0));
336 end component;
337

336 signal dreq, dack ; stdJogic;
330 signal dbus ; 8tdJogic.vector(7 downto0);
340 begin
341 ul ; mml

343 port map(start, elk, din, dreq, dack, dbus);
343

344 U2 : TTim2

346 port map (done, elk, dbus, dreq, dack, dout);
346 end struct;



F Replacing an ASIC

3—Rockwell ASIC Rettse Modeling Project
a—Nov 13, 1997

B—DOT example with 2 components for the 2 matrix multiplications
6—components have different protocols, an interface is used
T ' •

a library ieee;
9 use ieee . stdJogic.1164 . all;

10 use ieee . stdUogic.arith . all;

13 entity Tnml is
13 port ( start
14 elk

itart : in std.logic;
elk : in stdJogie;
din : in 8td-logie-veetor(7 downto0);

xreq ; out std-logie;
xaek : in std.logie;
dreq : out stdJogie;
dack : in stdJogic;
addr : out 8tdJogic.vector(5 downtoO);
data : out stdJogic.vector(7 downto0));

33 end

34 architecture behav of mml is

3B type mm is array (0 to 7, 0 to 7) of 8tdJogic_veetor(7 downto 0);
36 signal InBloek, TempBIock : mmi;
37 signal ready, over : stdJogic ;
36 begin
39 compute: process

so variable cosblock : mm:= (
31 ("01111101", "01111010", "01110011", "01100111", "01011000", "01000101", "00101111"
33 ("01111101", "01100111", "00101111", "11101000", "10101000", "10000110", "loooiior
33 ("01111101", "01000101", "11010001", "10000110", "10101000", "00011000", "01110011"
34 ("01111101", "00011000", "10001101", "10111011", "01011000", "01100111", "11010001"
35 ("01111101", "11101000", "10001101", "01000101", "01011000", "10011001", "11010001"
36. ("01111101", "10111011", "11010001", "01111010", "10101000", "11101000", "01110011"
37 ("01111101", "10011001", "00101111", "00011000", "10101000", "01111010", "10001101"
36 ("01111101", "10000110", "01110011", "lOOllOOl", "01011000", "10111011", "00101111"
39 );
40 variable a, b ; stdJogic_vector(7 downto 0);
4x variable p, sum : 8tdJogic_veetor( 15 downtoO);
43 begin
43 wait until ready — '1';
44 over <= '0';
46

46 —first matrix multiplication computation
47 for i in 0 to 7 loop
46 for j in 0 to 7 loop
49 for k in 0 to 7 loop
so a := inbloek (i, k);
61 b := cosblock (j , k);
53 p := signed (a) * signed (b);

"00011000")
"10111011")
"01100111")
"10000110")
"01111010")
"10011001")
"01000101")
"11101000")



if (k = 0) then
sum ;= p;

else

sum := signed (sum) + signed (p);
end if;

if (k —7) then
TempBlnck (i, j) <= sum(15 downtoS);

end if;
end loop;

end loop;
end loop;

— computation over
over <=s 'r;

end process compute;

comm\inicate: process
begin

ready <= '0';
wait until start = '1';
txreq <= '0';
dreq <= '0';

— read the input data matrix
for i in 0 to 7 loop

for j in 0 to 7 loop
wait until elk = '1';
InBlock (i, j) <= din;

end loop;
end loop;
ready <= '1';

— transfer the data
wait until over = *1';
ready <= '0';
txreq <= '1';
wait until txack = '1';

for i in 0 to 7 loop
for j in 0 to 7 loop

wait until elk = '1';
dreq <= ' 1';
wait until dack = U';
addr <= conv_8tdJogic-veetor(8»i-tj , 6);
data <= tempblock (i, j );
dreq<='0' after 3 ns; —mem read time
wait until dack = '0*;

end loop;
end loop;
txreq <= '0';

end process communicate;
behav;



100 library ieee ;
no use ieee . stdJogic.1164 . all;
111 use ieee . stdJogic-aritb . all;

119 entity mma is
114 port ( done
119 clk

no dbus

iir dreq
119 dack

ii« dout

130 end

out std-logic;
in std-logic;
in stdJogic.vector(7 downto0);
in stdJogic;
out std-logic;
out stdJogic-vector(7 downto0));

123 architecture behav of n-im2 is

139 type man is array (0 to 7, 0 to 7) of 8tdJogic-vector(7 downto
134 signal TempBkxk, OutBlock : mar^
139 signal ready, over : std-logic ;
136 begin
i3r compute: process

139 variable cosblock : man:— (
139 ("01111101", "01111010", "01110011", "oiiooiir, "oioiiooo"
190 ("01111101", "01100111", "00101111", "11101000", "10101000"
191 ("01111101", "01000101", "11010001", "10000110", "10101000"
193 ("01111101", "00011000", "10001101", "10111011", "01011000"
199 ("01111101", "11101000", "10001101", "01000101", "01011000"
194 ("01111101", "10111011", "11010001", "01111010", "10101000"
196 ("01111101", "10011001", "00101111", "00011000", "10101000"
196 ("01111101", "10000110", "01110011", "10011001", "01011000"

"00011000", "10101000"
"10011001", "01011000"

variable a, b : 8tdJogic-vector(7 downto0);
variable p, sum : stdJogic-vector(15 ck>wntoO);

begin
wait until ready = '1';
over <= '0';

— second matrix multiplication computation
for i in 0 to 7 loop

for j in 0 to 7 loop
for k in 0 to 7 loop

a := TempBlodc (k, j);
b := CosBlock (i, k);
p := signed (a) * signed (b);

if (k —0) then
sum := p;

else

sum := signed (sum) + signed (p);
end if;

if (k = 7) then
OutBlock (i, j ) <= sum(15 downto 8);

end if;
end loop;

end loop;
end loop;

"01000101",
"10000110",
"00011000",
"01100111",
"10011001",
"11101000",
"01111010",
"10111011",

"00101111"

"10001101"

"01110011"

"11010001"

"11010001"

"01110011"

"10001101"

"00101111"



les •— over icttA computation
t«e over <= '1*;
i«r end process compute;
IM

14* communicate: process
170 variable tempi, tempj : integer;
tri begin
in dack<='0';
173 done<='0';
174 ready <= ' 0';
174

174 for i in 0 to 7 loop
177 for j in 0 to 3 loop
174 wait until dreq s *1';
179 dack<='l' after 1 ns;
140 wait until dreq = '0*;
141 wait until elk = '1';
143 tempi := convJnteger(unsigned(dbus)) / 8;
143 tempj := convj[nteger(unsigned(dbus)) mod 8;
144 wait until elk = '1';
144 TempBlock (tempi, tempj) <= dbus;
144 wait until elk = '1';
147 TempBlodc (tempi, tempj+1) <= dbus;
148 dack <='0' after 1 ns; —mm write time
149 end loop;
190 end loop;
191 wait until elk = *1*;
193 ready <= ' 1';
193

194 —output the matrix
194 wait until over = *1';
196 ready <= '0';
197 done<='l';
199 for i in 0 to 7 loop
199 for j in 0 to 7 loop
300 wait until elk = '1';
301. dout <= OutBlock (i, j);
303 end loop;
303 end loop;
304 done <= '0';
306 end process communicate;
306 end behav;

309 library ieee;
310 use ieee . stdJogic.1164 . all;

313 entity transducer is
313 port ( elk : in stdJogic;
314 txreq : in stdJogic;
314 txack : out std.logic;
314 dreq : in std.logic;
317 dack : out stdJogic;
314 addr : in 8tdJogic.vector(5 downto0);



319 data

390 dbus

331 req

333 ack

339 end transducer;

in stdJogic-vector(7 downtoO)
out 8tdJogic.vector(7 downtoO)
out stdJogic;
in stdJogic);

339 architecture behav of transducer is

330 begin
337 process

339 variable taddrl, taddr2 : stdJogic.vector(7 downtoO);
330 variable tdatal, tdata2 : stdJogic.vector(7 downto0);
330 begin
331 txack<='D';
333 req <= '0';
339 dack <= '0';

wait until txreq = *1*;
wait until elk = '1';
txack <= ' 1';

while txreq = '1' loop
wait until (dreq = '1' ORtxreq = '0');
if (txreq = '1') then

dack<='l' after 1 ns;
wait until dreq — '0';
— receive first address and data byte
taddrl := "00" & addr;
tdatal ;= data;
dack<='0' after 2 ns;
wait until dreq = '1';
dack<='l' after 1 ns;
wait until dreq = '0';
— receife second address and data byte
taddr2 := "00" & addr;
tdata2 ;= data;
— ready to send two bytes
req <= '1';
wait until ack = ' 1';
wait until elk = '1';
dbus <= taddrl;

req <= '0';
wait until elk = ' 1';
dbus <= tdatal;
wait until elk = '1';
dbus <= tdata2;
wait until elk = '1';
dbus <= (others => 'Z');
wait until ack = '0^;
— give the ack signal to first process
dack<='0' after 2 ns;

end if;
end loop;
txack <='0' after 2 ns;

end process;
behav;



arc library ieee;
arr use ieee . 8td-logic-1164 . all;

arc entity dct is
aco port ( start
act elk

aca din

tart : in stdJogic;
elk : in stdJogie;
din : in stdJogic-veetor(7 dofwnto0);

done ; out 8td.logic;
dout : out 8tdJogic.veetor(7 downtoO));

acB end dct

Wj <-n^.V\ <v--»JM^j.;V

acr architecture struct of dct is

acc corr^icnent mml
acc port ( start : in st
aco elk : in st

act din : in st

aca txreq : out st

aes txack : in st

acc dreq : out st
acc dack : in st

acc addr : out st

acr data : out st

acc end component;

in StdJogie;
in stdJogie;
in 8tdJogie.veetor(7 downto 0);
out stdJogic;
in stdJogic;
out StdJogic;
in stdJogic;
out stdJogic.vector(5 downto 0);
out stdJogic.vector(7 downto0));

component mni2
port ( done

elk

dbus

dreq
dack

dout

end conqxment;

out StdJogic;
in stdJogic;
in stdJogic.vector(7 downto 0);
in stdJogic;
out stdJogic;
out stdJogic.vector(7 downto0));

component transducer
port ( elk : in stdJogic;

in StdJogic;
out StdJogic ;
in StdJogic;
out StdJogic ;
in stdJogic-vector(5 downtoO);
in 8tdJogic.vector(7 downtoO);
out stdJogic-vector(7 downtoO);
out StdJogic;
in stdJogic);

txreq

txack

dreq
dack

addr

data

dbus

req

ack

end component;

signal txreq, txack, dreq, dack, req, ack : stdJogic;
signal data, dbus : 8tdJogic.vector(7 downto0);
signal addr : stdJogic.vector (5 downtoO);

9a« begin
aar ul : mml

port nop(start, elk, din, txreq, txack, dreq, dack, addr, data);



»S0 u2 : mm^

Ml port map (done, elk, dbus, req, ack, dout);

SM u3 ; transducer

334 portm8p(clk, txreq, txack, dreq, dack, addr, data, dbus, req, ack);
ssB end struct;



G Replacing the bus

3 Rockwell ASIC Reuse Modeling Project
a—Dec 2, 1997

4

B— replace a bus with another bus that has different protocol
e — two transducer need to be used

Blibrary ieee;
• use ieee . stdJogic.l 164 . all;

10 use ieee . stdJogic.arith . all;

13 entity mml is
15 port ( start
14 elk

IB din

16 txreq
17 txack

itart ; in stdUogic;
elk : in stdJogic ;
din : in 8tdJogic.vector(7 downtoO);

.xreq : out stdJogic;
iXack : in stdJogic;
dreq : out std-logic;
dack : in std-logic;
addr : out std-Iogic-vector(5 downtoO);
data : out stdJogic-vector(7 downtoO));

33end mml;

34 architecture behav of mml is

38 type man is array (0 to 7, 0 to 7) of stdJogic_vector(7 downtoO);
36 signal InBlock, TempBlock : man;
37 signal reeidy, over : std-logic;
36 begin
39 compute: process

30 variable cosblock : man(

01111010", "oiiiooir
"01100111"

"01000101"

"00011000"

"11101000"

"10111011"

"10011001"

"10000110"

"00101111"

"11010001"

"10001101"

"loooiior

"11010001"

"00101111"

"01110011"

"oiiooiir, "01011000", "01000101", "ooioiiii"
"11101000", "10101000", "10000110", "10001101"
"10000110", "10101000", "00011000", "01110011"
"10111011", "01011000", "01100111", "11010001"

"oioooior, "01011000", "looiiooi", "iioioooi"
"01111010", "10101000", "11101000", "01110011"
"00011000", "10101000", "01111010", "10001101"
"10011001", "01011000", "10111011". "00101111"

("01111101"
("01111101"
("01111101"
("01111101"
("oiiiiior
("01111101"
("01111101"
("01111101"

):
variable a, bvariable a, b : stdJogic-vector(7 downtoO);
variable p, sum : 8tdJogic-vector(15 downtoO);

begin
wait until ready = '1';
over <= '0';

— first matrix multiplication calculation
for i in 0 to 7 loop

for j in 0 to 7 loop
for k in 0 to 7 loop

a := InBlock (i, k);
b := CosBlock (j , k);
p := signed (a) * signed (b);



if (k = 0) then
sum := p;

else

sum := signed (sum) + signed (p);
end if;

if (k = 7) then
TempBlodc (i, j) <=aim(15 downtoS);

end if;
end loop;

end loop;
end loop;

— done with the computation
over <= '1';

end process compute;

communicate: process
begin

ready <= '0';
wait until start ^ '1*;
txreq <= '0';
dreq <= '0';

— read the input data matrix
for i in 0 to 7 loop

for j in 0 to 7 loop
wait until elk = '1';
InBlock (i, j) <= din;

end loop;
end loop;
ready <= '1';

— transfer the data
wait until over = '1';
ready <= '0';
txreq <='!';
wait until tx«w:k = '1';

for i in 0 to 7 loop

for j in 0 to 7 loop
wait until elk = '1';
dreq <= '1';
wait until dack = ' 1';
addr <= conv_std_logic_vector (8*i+j , 6);
data <= tempblock (i, j);
dreq <= '0' after 3 ns; —mem read time
wait until dack — '0';

end loop;
end loop;
txreq <= '0';

end process communicate;
behav;



109 library ieee;
110 use ieee . stdJogic-1164 . all;
111 use ieee . std-logic.arith .all;

113 entity Tnm'̂ is
114 port ( donedone : out std-logic;

elk : in stdJogic ;
data : in stdJogic.vector(7 downto0);
addr : in stdJogic.vector(5 downtoO);
xreq : in std-logic;
xack : out std-logic
dreq : in std-logic;
dack ; out stdJogic;
dout : out stdJogic_vector(7 downtoO));

133 end

"01011000", "01000101", "00101111"
"10101000", "10000110", "10001101"
"10101000", "00011000", "01110011"
"01011000", "01100111", "11010001"
"01011000", "10011001", "11010001"
"10101000", "11101000", "01110011"
"10101000", "01111010", "10001101"
"01011000", "10111011", "00101111"

135 architecture behav of Tnm2 is

136 type man is arrs^ (0 to 7, 0 to 7) of stdJogic_vector(7 downtoO);
137 signal TempBlock, OutBlock : iwwi;
136 signal ready , over : stdJogic ;
139 begin
130 compute: process

131 variable cosblock : man:= (
133 {"01111101", "01111010", "01110011", "01100111", "01011000", "
133 ("01111101", "01100111", "ooloiiir, "11101000", "loioiooo", "
134 ("01111101", "01000101", "11010001", "10000110", "10101000", "
135 ("01111101", "00011000", "10001101", "10111011", "01011000", "
136 ("01111101", "11101000", "10001101", "01000101", "01011000", "
137 ("OlllllOl", "10111011", "11010001", "01111010", "10101000", "
138 ("OlllllOl", "10011001", "00101111", "00011000", "10101000", "
139 ("OlllllOl", "10000110", "01110011", "10011001", "01011000", "
140 );
141 variable a, b : stdJogic-vector(7 downtoO);
143 variable p, sum : stdJogic-vector(15 downtoO);
143 begin
144 wait until ready = '1';
145 over <=; '0';
146 .

147 —second matrix multiplication computation
146 for i in 0 to 7 loop
149 for j in 0 to 7 loop
160 for k in 0 to 7 loop
151 a := TempBlock (k, j);
153 b := CosBlock (i, k);
153 p := signed(a) * signed(b);
164

155 if (k = 0) then
156 sum := p;

157 else

158 sum := signed (sum) + signed (p);
159 end if;
160

161 if (k = 7) then
163 OutBlock (i, j) <= sum( 15 dowQ^^);
163 end if;



i«4 end loop;
i«s end loop;
t«« end loop;
1«7

lea — over with the computation
is» over <= ' 1';
iro end process compute;
ITl

173 communicate: process
173 variable tempi, tempj : integer;
174 begin
17# txack<^'0';
17# dack <= '0';
177 done<—'0';
17# wait until txreq = *1';
179 wait until elk = '1';
ISO txack<—'r after 1 ns;
i#i

i»3 while (txreq = '1') loop
i»3 wait until (dreqss '1' CSltxreq = *0*);
i#4 if (txreq = '1') then
la# dack<=U* after 1 ns;
186 wait until dreq = '0';
187 tempi := convJnteger(unsigned(addr)) / 8;
188 tempj := convJnteger(unsigned(addr)) mod 8;
189 TempBkxk (tempi, tempj) <=data;
190 dack<='0' after 8 ns; —mem write time
191 end if;
193 end loop;
193

194 wait until elk = '1';
19# txack<='0';
196 ready <= ' 1';
197

198 — output the computed matrix
199 wait until over = '1';
300 ready <= '0';
301 .

303 done <= ' 1';
aos for i in 0 to 7 loop

304 for j in 0 to 7 loop
306 wait until elk = *1';
306 dout <= OutBlock (i, j );
307 end loop;
308 end loop;
309 done <= '0';
310 end process communicate;
311 end behav;
313

313 library ieee;
314 use ieee . stdJogic-1164. all;
316

316—converts bus 1 protocol (4 control signals) to the
317—6u5 2 protocol (2 control signals)
318 entity transducerl is



- -.j.'..5:V^ 'r:; .. ,. .•.

port ( elk : in std-Iogic;
txreq : !n stdJogic;
txack : out stdJogic;
dreq : in stdJogic;
dack : out stdJogic;
addr : in stdJogic.vector(5 downto 0)
data : in stdJogic.vector (7 downto 0)
dbus ; out stdJogic.vector(7 downto0)

req : out stdJogic;
ack : in stdJogic);336 ack

339 end transducerl

stdJogic-vector(7 downto0);
stdJogic-vector(7 downto 0);

361 architecture behav of transducerl is

333 begin
339 process

334 variable taddrl, taddr2 : st
398 variable tdatal, tdata2 : st
336 begin
337 txack <='0';
336 req <= '0';
389 dack <= '0';
340

341 wait until txreq s '1*;
343 wait until elk s *1*;
343 txack <='1';

while txreq = '1' loop
wait until (dreq= '1' ORtxreq = '0');
if (txreq = '1') then

dack<='l' after 1 ns;
wait until dreq = '0';
—receiwe first address and data byte
taddrl := "00" & addr;
tdatal := data;
dack<='0' after 2 ns;
wait until dreq = '1';
dack<ss'l' after Ins;
wait until dreq = '0';
— receive second address and data byte
taddr2 := "00" &; addr;
tdata2 := data;
— ready to send two bytes
req <= ' 1';
wait until ack = '1';
wait until elk = '1';
dbus <= taddrl;
req <= '0';
wait until elk '1';
dbus <= tdatal;
wait until elk = '1';
dbus <= tdata2;
wait until elk = '1';
dbus <= (others => 'Z') ;
wait until ack = '0';
— give the ack signal to first process



m dack<='0' after 2 ns;
ars end If;
37« end loop;
vtt txack <=: *0' after 2 ns;
ars end process;
379 end behav;

383 library ieee;
383 use ieee . std Jogic-1164 . all;
384 use ieee . stdJogic-arith . all;
388

386 —converti S protocol (2 control signals) to the
387 — 6uj 1 protocol (4 control signals)
388 entity tran8ducer2 Is
388 port ( elk : in std-logic;
390 txreq : out std-logic;
381 txack : in 8td.logic;
383 dreq ; out stdJogic;
383 dcick : in stdJogic ;
384 addr : out 8tdJogic.vector(5 downtoO);
388 data : out stdJogic.vector(7 downtoO);
388 dbus : in 8tdJogic.vector(7 downto 0);
397 req : in stdJogic;
388 ack : out stdJogic);
389 end transducer2;

301 architecture behav of traii8ducer2 is

303 begin
303 process

304 variable tadd : stdJogic.vector (5 downtoO);
308 variable datal, data2 : stdJogic.vector (7 downtoO);
306 begin
307 —wait for protocol 1 to he ready
308 txreq <= ' 1';
309 wait until txack = '1';

for i in 0 to 7 loop
for j in 0 to 3 loop

first read the addr and two data bytes
wait until req = '1';
ack<='l' after 1 ns;
wait until req — '0';
wait until elk = '1';
tadd := dbus(5 downtoO);
wait until elk = '1';
datal ;= dbus;
wait until elk = ' 1';
data2 dbus;
— send the two bytes with the addresses
dreq <= 'I';
wait until dack = '1*;
addr <= tadd;
data <= datal; /py
dreq <= '0' after 3 ns;



wait until dack = *0*;
wait until elk ss ^1*;
dreq<= '1';
wait until dack = *1*;
addr <= conv_stdJogic.vector(convJnteger(unsigned(tadd)) + 1, 6);
data <= data2;
dreq<='0' after 3 ns;
wait until dack = '0*;

»9« wait until elk = *1';
asft ack<='0* after 1 na;
340 end loop;
341 rad loop;
343 txreq<=s*0';
343 wait until txack = *0*;
344 end process;
348 end behav;

348 library ieee;
349 use ieee . stdJogic.l 164 . all;

entity dot is
I port ( start

elk

Hin

done

dout

end dot;

architecture struct of

component mml

port ( start :
elk :

din :

tjcreq :

txack :

dreq :
deu:k :

addr :

data :

end cnnponent;

stdJogie;
stdJogie;
stdJogic.vector(7 downtoO);
std-logic;
8tdJogic.veetor(7 downtoO));

dct is

in std-logic;
in std-logic;
in stdJogic.vector(7 downtoO);
out std-logic;
in std-logic;
out std-logic;
in std-logic;
out std-logic.vector(5 downtoO);
out std-logic.vector(7 downtoO)):

component inn)2

port ( done :
elk :

data :

addr ;

txreq :

txack :

dreq :
dack :

dout :

end component;

out std-logic;
in std-logic;
in std.logic-vector(7 downtoO);
in std-logic-vector(5 downto 0);
in std-logic;
out std-logic;
in std-logic;
out std-logic;
out std-logic-vector(7 downtoO));



GOfnpcxient transducer!
port ( elk : in stdJogic;

txreq : in stdJogic;
txack : out stdJogic ;
dreq ; in stdJogic;
deu;k : out stdJogic ;
addr : In 8tdJogic.vector(5 downto0)
data : in stdJogic-vector(7 downto 0)
dbus ; out stdJogic-vector(7 downto 0)
req : out stdJogic;
ack : in stdJogic);

end component;

component transducer2
906 port ( elk in stdJogic;
999 txreq out stdJogic ;
400 txack in stdJogic;
401 dreq out stdJogic;
403 Hark in stdJogic;
409 £uidr out stdJogic.vector(5 downto 0);
404 data out 8tdJogic_vector(7 downto 0);
406 dbus in stdJogic_vector(7 downtoO);
406 req in StdJogic;
407 ack out StdJogic);
4oe end componoit;
409

410 signal txreql, txackl, dreql, dackl, req, eick : stdJogic;
411 signal txreq2, txack2, dreq2, dack2 : stdJogic;
413 signal data!, data2, dbus : stdJogic-vector(7 downto 0);
413 signal addrl, addr2 : stdJogic.vector (SdowntoO);
414 begin
415 ul : nnul

416 port map(start, elk, din, txreql, txackl, dreql, dackl, £iddrl, datal);
417

416 u2 : iiiin2

419 port mep (done, elk, data2, addr2, txreq2, txack2, dreq2 , dack2, dout);
430

431. u3 : transducer!

433 ix>rtni^(clk, txreql, txackl, dreql, dackl, addrl, datal, dbus, req, ack);
433

434 u4 : transducer2

436 port map (elk, txreq2, txack2, dreq2 , dack2, addr2, data2, dbus, req, ack);
436 end struct;



H Communication using a FIFO queue

a — Rockwell ASIC Reuse Modeling Project
a—Nov 20, 1997

s——DCTexample with 2 components for the 2 matrix multiplications
«—communication through a 64 byte FIFO queue with full/empty lines

B—model of a 64 byte FIFO
10 library ieee;
11 use ieee . 8t<Uogic-1164 . all;
la use ieee . std-logic.arith . all;

14 entity fifo is
IB port ( enable
16 reset

ir rws

18 elk

IB din

ao dout

ai full

33 empty

33end fifo;

in stdJogic;
in stdJogic;
in stdJogic;
in stdJogic;
in stdJogic_vector(7 downtoO);
out stdJogic_vector(7 downtoO);
out stdJogic ;
out StdJogic);

35 architecture behav of fifo is

36 begin
37 process ( elk)
28 type storagetype is arr^(0 to 63) of 8tdJogie-veetor(7 downtoO);
39 variable storage : storagetype;
30 variable front, back : integer ;
31 variable isempty , isfull : stdJogie '0';
82 begin
33 if (elk = '1') then
84 reset counters and flags
38 if (reset = '1') then
36 - front := 0;
37 back := 0;
38 isempty := '1';
39 isfull ;= '0';
40 else

41 —read from fifo
43 if (rws = '0' and isempty — '0' and enable = '1') then
43 dout <=storage(front);
44 front ;= (front + 1) mod 64;
48 if (front = back) then
46 isempty := '1';
47 isfull ;= 'C;
48 end if;
49 end if;

— write into fifo
if (rws — '1' and isfull — *0' and en

storage(back) := din;
= ' 1') then



64 back := (back + 1) mod 64;
68 if (front = back) then
66 isempty :=: '0';
8T isfull := '1';
66 end if;
89 end if;
60 end if ;
61 empty <= isempty;
83 full <= isfull ;
83 end if;
64 end process;
65 end behav;
68

67

68 library ieee ;
89 use ieee . stdJogic.1164 . all;
rouse ieee . stdJogic-arith .all;

73 entity mml is
73 port ( start
74 elk

78 din

78 empty

77 rws

78 enable

79 reset

80 data

81 end TTiml^

in std-logic;
in std-logic;
in stdJogic_vector(7 downto 0);
in std-logic;
out stdJogic;
out stdJogic;
out std-logic;
out 8tdJogic-vector(7 downto0));

83 architecture behav of mml is

84 type man is array (0 to 7, 0 to 7) of 8td_logic_vector(7 downtoO);
65 begin
86 process

87 variable inblock : man;
88 variable cosblock : roan:= (

89 ("01111101" "01111010", "01110011", "01100111", "01011000", "01000101", "00101111" "00011000")
90 ("oiiiiior "01100111", "00101111", "11101000", "10101000", "10000110", "10001101" "10111011")
91 . ("01111101" "01000101", "11010001", "10000110", "10101000", "00011000", "oiiiooir "01100111")
93 ("01111101" "00011000", "10001101", "10111011", "01011000", "01100111", "11010001" "10000110")
93 ("01111101" "11101000", "10001101", "01000101", "01011000", "10011001", "11010001" "01111010")
94 ("01111101" "10111011", "11010001", "01111010", "10101000", "11101000", "01110011" "10011001")
98 ("oiiiiior "10011001", "00101111", "00011000", "10101000", "01111010", "10001101" "oloooior)
96 ("01111101" "10000110", "01110011", "10011001", "01011000", "10111011", "00101111" "11101000")

variable a, b : stdJogic_vector(7 downto 0);
variable p, sum : stdJogic.vector(15 downtoO);

begin
wait until start = U';
data <= (others => 'Z');

— read the input data matrix
for i in 0 to 7 loop

for j in 0 to 7 loop
wait until elk = '1';
inblock (i, j) := din;



iM end loop;
ito end loop;
111

iia — reset the fifo
tis reset <= '1';
114 wait until elk = '1';
118 reset <= '0';
118

iiT —do the computation
118 for i in 0 to 7 loop
119 for j in 0 to 7 loop
130 for k in 0 to 7 loop
121 a := inblock (i, k);
132 b := cosblock (j, k);
133 p := 8igned(a) * signed(b);
134

138 if (k = 0) then
136 sum := p;

137 else

136 sum := signed(sum) + signed(p);
139 end if;
130

131 —computed one entry of matrix, write to FIFO
133 if (k = 7) then
133 enable <= ' 1';
134 rws <= '1';
138 data <=sum(15 downtoS);
136 wait until elk = '1';
137 enable <='0';
138 rws <= '0';
139 end If;
140 end loop;
141 end loop;
143 end loop;
143 end process;
144 end behav;

147 library ieee ;
146 use ieee . stdJogic.1164 . all;
149 use ieee . std_logic_arith . all;

151 entity mm2 is
183 port ( done ; out std.logic;
183 elk : in std-logic;
184 data : in stdJogic.
156 full : in std.loEic:

in std-logic;
in stdJogic.vector(7 downto 0);
in std-logic;
out std-logic;
out std-logic;
out std-logic.vector(7 downto 0));

169 end rom^

enable

dout

161 architecture behav of is

163 typeman is array (0 to 7, 0 to 7) of std-logic.vec^^^7 downto 0);
163 type widemem is array (0 to 7, 0 to 7) of stdJogic-vector(l5 downtoO);



164 begin
186 process

166 —this algorithm will use wider memory
I6T variable outblock ; wkkmem;
166 variable cosblock : mEitt;= (
16# ("01111101", "01111010", "01110011", "01100111", "01011000"
iro ("01111101", "01100111", "00101111", "11101000", "10101000"
m ("01111101", "01000101", "11010001", "10000110", "lOlOlOOO"
172 ("oiiiiior, "00011000", "10001101", "loiiioii", "oioiiooo"
176 ("01111101", "11101000", "10001101", "01000101", "01011000"
174 ("01111101", "10111011", "11010001", "01111010", "lOlOlOOO"
176 ("oiiiiior, "looiioor, "ooioiiii", "oooiiooo", "loioiooo",
176 ("01111101", "10000110", "01110011", "10011001", "01011000",
177 );
176 variable a, b : 6tdJogic.vector(7 downtoO);
17# variable p, sum, temp : std-logic.vector(15 downtoO);
160 begin
181 enable <='0';
162 rws <= '0';
183 wait until full = '1*;
184 wait until elk = '1*;

— do the computation
for i in 0 to 7 loop

for j in 0 to 7 loop
— read one entry of matrix
enable <= ' 1';
wait until elk = '1';
enable <= '0';
wait until elk = '1';
a := data;

— add the product to all the partial sums
for k in 0 to 7 loop

if (i /= 0) then
temp := outbloek(k, j);

end if;
b := eosbioek (k, i);
p := 8igned(a) * signed(b);

if (i = 0) then
sum := p;

else

sum := signed (temp) + signed (p);
end if;
outbloek (k, j) ;= sum;

end loop;
end loop;

end loop;

— give the done signal and output the output matrix
done <= ' 1';
for i in 0 to 7 loop

for j in 0 to 7 loop
wait until elk = '1';

"01000101",
"10000110",
"OOOIIOOO",
"01100111",
"10011001",
"11101000",
"01111010",
"10111011",

"00101111"

"10001101"

"OlllOOll"

"11010001"

"11010001"

"OlllOOll"

"10001101"

"00101111"



319 dout outblock (i, j) (15 downtoS);
330 end loop;
331 end loop;
333 done<='0';
339 end process;
334 end behav;
335

336 library ieee;
337 use ieee. stdJogic.1164. all;

339 entity dct is
390 port ( start : in
331 elk : in

333 din : in

333 done : out

334 dout : out

333 end dct;

337 architecture struct of

396 component nsnl

339 p>ort ( start :
340 elk ;

341 din I

343 empty :
343 rws :

344 enable :

343 reset :

346 data :

347 end ocmponent;

8td.logic;
std.logic;
8tdJogic.vector(7 downtoO);
stdJogic;
8tdJogic.vector(7 downtoO));

dct is

in stdJogic;
in stdJogic;
in 8tdJogic_vector(7 downtoO);
in std-logic;
out std-logic;
out stdJogic;
out stdJogic;
out 8tdJogic-vector(7 downtoO));

cranponent nim2

port ( done ;
elk :

data ;

full :

rws :

enable :

dout :

end ownpon^t;

out std-logic;
in std-logic;
in stdJogic-veetor(7 downto0);
in std-logic;
out std-logic ;
out std-logic;
out std-Iogie_vector(7 downtoO));

compcBient fifo
port ( enable :

reset :

rws :

elk :

din :

dout ;

full :

empty :

end cwnpcxioit;

in std-logic;
in std-logic;
in std-logic;
in std-logic;
in 8tdJogic-vector(7 downto 0);
out 8tdJogic-vector(7 downtoO);
out std-logic ;
out stdJogic);

signal rwsl, rws2, rws, enablel, enable2, enable ; std-logic;
signal full, empty, reset : std-logic;
signal d-irnnl, djiua2 : stdJogic-vector(7 downto0)^^



374 begin
37ft ul : mml

9T« port mep (start, elk, din, empty, rwsl, enablel, reset, dmml);
377

37ft u2 : Tnm2

37ft port niq>(done, elk, djmn2, full, rws2, enable2, dout);
3ft0

sat enable <= enablel GR.enable2;
3ft3 rws <= rwsl CSlrws2;
3fta

3«4 u3 : fife

3as port msp (enable , reset, rws, elk, dmml, djnm2, full, empty);
386 end struct;



Communication using a shared memory

3 Rockwell ASIC Reuse Modeling Project
a—Nov 28, 1997

a—DOT components communicate using a shared memory

r library ieee;
« use ieee . stdJogic.1164 . all;
e use ieee . stdJogic.arith . all;

10 use ieee . std-logic-signed. all;

13 entity mml is
13 port ( start : in stdJogic;
14 elk : in stdJogic;
15 din : in stdJogic-vector(7 downto0);
16 used : in stdJogic;
IT over ; out stdJogic;
IS csm : out stdJogic;
19 won : out stdJogic ;
30 addr : out stdJogic.vector(5 downto 0);
31 data : out stdJogic.vector(7 downto 0));
33end mml;

34 architecture behav of mml is

35 type man is array (0 to 7, 0 to 7) of stdJogic-vector(7 downtoO);
36 begin
37 process

36 variable inblock : man;
39 variable cosblock : man;= (
30 ("oiiiuor, "01111010", "oiiiooii", "oiiooiii", "oioiiooo",
31 ("01111101", "oiiooiir, "00101111", "11101000", "loioiooo",
33 ("01111101", "01000101", "11010001", "10000110", "10101000",
33 ("01111101", "00011000", "10001101", "10111011", "01011000",
34 ("01111101", "11101000", "10001101", "01000101", "01011000",
3B ("01111101", "10111011", "11010001", "01111010", "10101000",
36. ("01111101", "10011001", "00101111", "00011000", "10101000",
37 ("01111101", "10000110", "01110011", "10011001", "01011000",

"01011000",
"10101000",
"10101000",
"01011000",
"01011000",

"10101000",
"10101000",
"01011000",

variable a, b : stdJogic_vector(7 downto 0);
variable p, sum : stdJogic_vector(15 downtoO);

begin
wait until start = '1';
data <= (others => 'Z');

— read the input data matrix
for i in 0 to 7 loop

for j in 0 to 7 loop
wait until elk = '1';
inblock (i, j) := din;

end loop;
end loop;

wait until elk = '1';

"01000101"

"10000110"

"00011000"

"01100111"

"10011001"

"11101000"

"01111010"

"10111011"

"00101111"

"10001101"

"OllIOOll"

"11010001"

"11010001"

"01110011"

"10001101"

"00101111"

"00011000")
"10111011")
"01100111")
"10000110")
"01111010")
"10011001")
"01000101")
"11101000")



B4 wan<='l';
OB C8in<=*0'; —enable the chip
BB wait until elk = *1';
S7

BB the computation
s* for i in 0 to 7 loop
80 for j in 0 to 7 loop
61 for k in 0 to 7 loop
63 a := inblock (i, k);
69 b := cosblock (j , k);
64 p := signed (a) * signed (b);
BB

66 if (k = 0) then
67 sum p;

BB else

6B sum := signed (sum) + signed (p);
70 end if;
71

73 if (k = 7) then
79 — write the sum to shared memory
74 addr <= conv_stdJogic.vector(i6>8-{j , 6);
7B wait for 1 ns;
76 w«n<= '0';
77 wait for 8 ns; —tWHZtime
78 data <=sum(15 downtoS);
79 wait for 9 ns; —tDW
BO wem<= '1';
ai wait for 1 ns;
63 data <= (others => ' Z');
89 wait for 2 ns; —next cycle after this
84 end if;
68 end loop;
86 end loop;
87 end loop;
88

89 — done with the computation
90 csm <= '1';
91 wait until elk = '1';
92 over <= ' 1';
99

94 —wait till second unit finishes
98 wait until used = '1';
96 end process;
97 end behav;
9%

99 library ieee ;
100 use ieee . std Jogic.1164 . all;
101 use ieee . std-logie-arith . all;

out std.logie;
in stdJogie;
out StdJogie;
outstdJogic;
out stdJogic_veetor(5 downtoO);



endnmi^

data : in 8tdJogic.vector(7 downto 0);
used : out stdJogic;
over : !n stdUogic;
dout ; out stdJogic.vector(7 downto0));

iiB architecture bebav of nim2 is

lie type man is array (0 to 7, 0 to 7) of stdJogic.vector(7 downto 0);
117 type widemem is array (0 to 7, 0 to 7) of 8tdJogic.vector(15 downtoO);
lie begin
lie process

lao variable outblock : wkkmem;
lai variable cosblock : man:=s (
laa ("01111101", "01111010", "01110011", "01100111", "01011000", "OlOO
las ("oiiiiior, "oiiooiir, "ooioiiir, "iiioiooo", "loioiooo", "looc
lae ("01111101", "01000101", "11010001", "10000110", "10101000", "0001
tae ("Ollllior, "00011000", "10001101", "10111011", "01011000", "0110
lae ("01111101", "11101000", "10001101", "01000101", "01011000", "1001
137 ("01111101", "10111011", "11010001", "01111010", "10101000", "1110
lae ("01111101", "10011001", "00101111", "00011000", "10101000", "0111
lae ("01111101", "10000110", "01110011", "10011001", "01011000", "1011

"10000110", "10101000'
"10111011", "01011000'
"01000101", "01011000
"01111010", "10101000
"00011000", "10101000
"10011001". "01011000'01011000'

"01000101"

"10000110"

"00011000"

"01100111"

"10011001"

"11101000"

"01111010"

"10111011"

variable a, b : 6tdJogic.vector(7 downto 0);
variable p, sum, temp : stdJogic.vector(15 downto 0);

begin
used <= '0';
— do not assert the memory control lines
oem <= '1';
csm <= ' r ;
— wait for the first matrix mult to finish
wait until over = '1';
csm <= '0';

addr <= (others => ' 1');

wait until elk =: '1';

— do the computation
for i in 0 to 7 loop

for j in 0 to 7 loop
--'get the (itj) data from memory
addr <= conv_stdJogic-vector (i ♦S+j , 6);
wait for 1 ns;
oem <= '0';
wait for 17 ns;
oem<= '1';

a data;
for k in 0 to 7 loop

if (i /= 0) then
temp := outblock(k, j);

end if;

b := cosblock (k, i);
p := signed (a) * signed (b);

"00101111"

"10001101"

"01110011"

"11010001"

"11010001"

"01110011"

"10001101"

"00101111"



i«4 if (i = 0) then
isB sum := p;

t«6 else

167 sum := 8igned(temp) + signed(p);
168 end if;
169 outblock (k, j) sum;
iTo end loop;
171 wait for 3 ns; —next cycle
179 end loop;
178 end loop;
174

178 csm <= '1';
176 oem <= ' 1';
177

178 —give the done signal and output the output matrix
179 wait until elk =: '1';
180 done <= ' 1';
161 for i in 0 to 7 loop
189 for j in 0 to 7 loop
183 wait until elk = '1';
184 dout <= outblock(i, j)(15 downtoS); -
188 end loop;
188 end loop;
187 done<='0';
188 end process;
189 end behav;
190

191 library ieee ;
193 use ieee . stdJogie-1164 . all;

194 entity arbiter
198 port ( esl
196 es2

197 cs

198 addrl

199 addr2

300 addr

301. datal

303 data2

303 data

304 end arbiter ;

: in stdUogie ;
: in stdJogic ;
: out stdJogie ;
: in stdJogic-veetor(5 downto 0);
: in stdJogic_veetor(5 downto 0);
: out stdJogie_vector(5 downtoO);
: in stdJogie_vector(7 downto 0);
: out stdJogic_veetor(7 downtoO);
: incut stdJogjc.vector(7 downto 0));

306 architecture behav of arbiter is

307 begin

309 process (esl, cs2, addrl, addr2, datal, data)
310 begin
311 — only one component should access memory
313 assert (cs2/='0' or csl/='0')
313 report "memay-aecess-elash"
314 severity warning;

— unit 1 only writes to memory
if (esl='0' and es2/='0') then

es <= '0';



319 addr <=: addrl;
330 data <s; datal;
331 — unit 2 only reads from memory
333 elsif (csl/='0' and C82='0') then
335 cs <=s '0';
334 addr <= addr2;
336 data2<=data;
330 else

33T CS <= ' 1';
338 end if;
336 end process;
380 end behav;

393 library ieee ;
334 use ieee . std-logic.1164 . all;

336 entity dct is
337 port ( start
338 elk

339 din

tart : in std.logic;
elk : in std-logic;
din : in stdJogic.vector(7 downto 0);

done : out std-logic;
dout : out 8tdJogic_vector(7 downtoO));

343 end dct;

344 architecture struct of dct is

345 oomponait mml

346 port ( start : in st
347 elk ; in st

348 din : in st

349 used : in st

in std-logic;
in std-logic;
in stdJogic-vector(7 downto0);
in std.logic;
out std-logic;
out std-logic;
out std-logic;
out stdJogic-vector(5 downto 0);
out stdJogic-vector(7 downto 0));

addr

data

end oranpMient;

ccKnponmt niiii2
port ( done

elk

dout

end axnponent;

cnnpcmait sram

port ( nee

out std-logic;
in std-logic;
out std-logic ;
out std-logic ;
out stdJogic-vector(5 downtoO);
in stdJogic-vector(7 downto 0);
out std-logic ;
in std-logic;
out stdJogic-vector{7 downtoO));

stdJogic;
stdJogic ;
stdJogic;
stdJogic-vector(5 downtoO);



374 d : inout 8td_logic_vector(7 downtoO));
37e end component;
376

377 component arbiter

376 port ( csl : in stdJogic;
379 cs2 : in stdJogic;
3ao cs ; out stdJogic ;
361 addrl : in stdJogic.vector(5 downto0);
363 addr2 : in stdJogic-vector(5 downtoO);
3«s addr : out stdJogic_vector(5 downtoO);
384 datal : in 8tdJogic_vector (7 downto 0);
388 data2 : out 8tdJogic-vector(7 downtoO);
386 data : inout stdJogic_vector(7 downto 0));
387 end component;
388

389 signal csml, csm2, cs, oem, wm, used, over : stdJogic;
390 signal addrl, addr2, addr : stdJogic_vector(5 downto0);
391 signal data, datal, data2 : stdJogic.vector(7 downto 0);
393

393 begin
394 ul : mini

port map(start, elk, din, iised, over, csml, wan, addrl, datal);
396

397 u2 : Trmri^

388 port ni^(done, elk, csm2, oem, addr2, data2, used, over, dout);
399

900 u3 : sram

901 portm^(cs, oem, wan, addr, data);
303

903 u4 : arbiter

port ni^(csml, C8m2, cs, addrl, addr2, addr, datal, data2, data);
308 end struct;




