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Abstract

In this report, we discuss the various issues and problems associated with ASIC reuse. We
describe the different models of communication between components and the essential issues
in interfacing ASICs that use different communication protocols. We come up with guidelines
that help in modeling for reuse. We also propose a new HDL, SpecC, that has the desirable
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Abstract

In this report, we discuss the various issues and prob-
lems associated with ASIC reuse. We describe the
different models of communication between compo-
nents and the essential issues in interfacing ASICs
that use different communication protocols. We come
up with guidelines that help in modeling for reuse.
We also propose a new HDL, SpecC, that has the de-
sirable characteristics for co-designing systems. This
language is suited for ASIC reuse and overcomes the
limitations of VHDL.

1 Introduction

In the last decade, digital electronic systems have been
growing in complexity and functionality very rapidly.
Explorations must be done at the system level to re-
duce the number of objects that have to be dealt with.
The design-turnaround time and design costs can be
reduced by reusing existing designs. However, reusing
application-specific ICs (ASICs) is not an easy task.
Components need to communicate with other compo-
nents in the system for data transfer and synchroniza-
tion. ASICs may have to be redesigned when reuse
is employed because of communication protocol mis-
matches. It is now obvious that ASICs must be mod-
eled in a way that supports ease of reuse. In this
report, we outline the guidelines for modeling ASICs
with a goal of achieving reusability.

The report is organized as follows. We first describe
the reuse problem and the plug-and-play capability in
Section 2. This section also defines the concept of a
channel and emphasizes the dichotomy of communi-
cation and computation. Section 3 gives an overview
of the experiments performed to understand the is-

sues involved in the reuse problem. We then present
our guidelines for modeling in Section 4. Our critique
of VHDL as a modeling language leads us to present
SpecC as a preferred language for reuse in Section 5.
Finally, we conclude in Section 6.

2 The Reuse Problem

The reuse problem is well illustrated by the plug-and-
play feature. Consider a system shown in Figure 1
where it is desired to replace ASIC B with another
ASIC E that provides the same functionality. This
task is non-trivial in the general case because the com-
munication protocols of B and E might be different.

My ASICE
« Remove
A)
b1 |
........ de-y 7
‘ ' +* Insert new
1 e
| AsicB | e--T
! i
' I
! jz=| -
i 1
___________ ’
Bus
|Z2=] 2=}
ASIC A ASICD

Figure 1: Plug-and-play: change an ASIC

Similarly, in Figure 2, Bus 1 that connects ASIC A
to ASIC B has to be replaced with a new bus, Bus 2.

,gagain, this is not easy since the ASICs A and B used
the Bus 1 protocol earlier and now need to use the

il



Bus 2 protocol.

Bus2 T
i
]
L
+ Insert new bus
ASIC B
Remove oy
B 1) '
. ]
\‘ m ’l
A £
......... L B o e o s ats
e T S T PR [T + Bus1
=== =
ASIC A ASICD

Figure 2: Plug-and-play: change a bus

The plug-and-play capability essentially means ease
of replacing a component with a new component that
has the same functionality but different implemen-
tation. A system configuration consisting of three
ASICs, (A, B, D), is shown in Figure 3. It is de-
sired that ASIC B be replaced with a new ASIC E.
The new ASIC has the same functionality as B but
possibly a different design, e.g. it may be pipelined,
or may be area/power optimized. The new ASIC, in
general, will use a different communication protocol.
Hence, it cannot be directly connected in the existing
system. A protocol transducer is required to translate
the protocols. Thus, whenever an ASIC is replaced
and there is a protocol mismatch, a new transducer
has to be used.

Similarly, there may be protocol mismatches when
the bus itself is replaced, e.g., a VME bus might be
replaced by a PCI bus. A system configuration with
three ASICs connected through a bus is shown in
Figure 4. Bus 1 is replaced with Bus 2. The new
bus, Bus 2, uses a different communication protocol.
Hence, transducers must be inserted for each compo-
nent since the components used the older Bus 1 proto-
col. This i1s shown in Figure 4 where three new trans-
ducers are required to connect the ASICs to the new
bus. This is in contrast to replacing an ASIC where
only one transducer might be modified or where only
one new transducer has to be inserted. When a bus
is replaced then all the components connected to the
bus need new transducers.

2.1 Communication vs. Computation

The biggest obstacle to reuse is the communication
protocol mismatch problem. As a first step towards
reuse, the distinction between computation and com-
munication must be emphasised. In an ASIC design
model, the communication portion needs to be
separated from the computation portion. If
communication is mixed with the computation in a
component then every time there is a mismatch in
the communication protocols, the components have to
be redesigned to reflect the new protocol. However,
if communication is separated from the computation,
then the basic core that defines the ASIC functional-
ity remains the same. Only the communication block
needs to be modified for the new protocol. This di-
chotomy between computation and communication is
achieved naturally if communication channels are used
and modeling is done at higher abstraction levels as

explained below.
ASIC

Figure 5: A generic communication model with a
channel

ASIC channel

Ev=s

abstract interface encapsulated media
of function calls

A generic communication model [3] using a chan-
nel is shown in Figure 5. The main idea is to disas-
sociate the detailed communication protocol Like the
bus widths, number of control signals, timing and so
forth from the ports of the component. The compu-
tation in the ASIC component makes calls to abstract
function calls in order to read/write variables and ex-
change data. It does not even need to know what kind
of channel will be used eventually for the actual com-
munication. All that is required is that the channel
conforms to the port interface. The port interface of
the ASIC consists of function calls while the actual
communication media is encapsulated in the channel.
The data transport methods in the channel do the ac-
tual implementation of the protocol.

The port interfaces of ASICs would be comprised
of function calls whose primary purpose is to trans-
fer information across the port. It is upto the com-

Zgnunicating ASICs to give it a meaning and interpret

the information being transferred in different ways de-




Bus 1

ASIC A

Figure 3: Effect of replacing an ASIC in a system
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pending on the protocol. Typical function calls would
include read() and write(). An example is shown
in Figure 6. A skeletal code fragment and port in-
terface declaration is shown in Figure 6(a). The port
interface consists of detailed bit level signals and the
code includes the detailed timing. However, compare
this to the code fragment shown in Figure 6(b). The
port interface now consists of an abstract function call
called write(). The tranfer protocol is encapsulated
in this function call. The computation process in the
ASIC does not use detailed timing protocol. It just in-
vokes the function call provided in the port interface as
shown on the line “write (local);” in Figure 6(b).

port( .... POt ( ...

ck :in bit; function write (data : integer);
dout : out integer; %
start : out bit );
begin begin
start <="'1’; write (local);
wait until clk ="1"; d:...
dout <= local; end,

start <='0";

end;

(a) (b)

Figure 6: ASIC Port Interfaces: (a) Detailed Bit-level
(b) Abstract Function calls

Generic function calls such as read_word() and
write word() can be used to transfer any kind of in-
formation. Thus, the sender and receiver of words
can transfer data of various widths, control signals,
exceptions etc. using such function calls. There is
another option. The port interfaces can be mod-
eled differently to actually reflect the kind of trans-
action occurring across the port. If such is the
case, then the port interface will consist of func-
tion calls like request_and.wait(), data_size(),
component _exception(), terminate_operation(),
priority_trigger(), component_idle() etc.

The port interfaces do not include bit-widths and
timing details. It is, therefore, easier to develop the
protocol transducers at a behavioral level rather than
at detailed bit level. It may even be possible to gener-
ate the transducers automatically. Secondly, generic
transducers that do translations between typical pro-
tocols can be designed and stored in a library. Further-
more, customization of a generic transducer is simpler
if the models are at a higher level and do not include

timing details.

We next look at the implementation issues for sys-
tems containing channels. This will help us to deter-
mine the effect of using channels on the plug-and-play
problem. Consider a typical system of two synthe-
sizable ASICs as shown in Figure 7. ASICs A and B

(b)

Figure 7: Channel inlining for synthesizable ASICs:
(a) before inlining (b) after inlining

are synthesizable components and use a channel € for
communication. When the system is implemented, the
methods of the channel are inlined into the connected
ASICs. Figure 7(a) shows the model at the higher
level before the system is implemented. The channel
methods are moved into the ASICs during implemen-
tation and the resulting model is shown in Figure 7(b).
The bus wires that were originally encapsulated by the
channel are now exposed.

(b)

Figure 8: Channel inlining for a synthesizable ASIC
and a fixed component: (a) before inlining (b) after
<#lining



When B in Figure 7 is replaced with a fixed com-
ponent, we get a system as shown in Figure 8, where
a synthesizable ASIC A communicates with B. We en-
capsulate B in a wrapper W since B is not synthesizable
and has a low-level port interface. Thus, The function
of the wrapper is to provide an abstract port interface
for the fixed component, a port interface that consists
of function calls instead of the detailed bit-level inter-
face that a fixed component has. This model before
system implementation is shown in Figure 8(a). The
protocol of B as encapsulated by wrapper W may be
different from that used by the channel C. A protocol
transducer T will then have to be inserted between the
channel C and the wrapper W. If wrapper W and channel
C use the same protocol then the transducer will basi-
cally be an identity component or one that has just a
memory element. The primary function of this trans-
ducer is to translate all communication transactions
between the fixed component B and ASIC A. When
the system is implemented, the methods on the side of
the synthesizable ASIC are moved into the ASIC. The
methods of the channel on the side of the fixed com-
ponent are joined with the wrapper and implemented
together with the protocol transducer as shown in Fig-
ure 8(b).

Thus, the process of IP reuse involves modeling
components at a higher level and declaring port in-
terfaces using function calls. ASICs with such generic
interfaces are stored in a library. Any ASIC with the
desired functionality can be chosen and plugged into
the system model. An appropriate generic transducer
is picked from the library and modified for doing pro-
tocol translation between this particular ASIC and the
system being designed. This higher level system model
ts then refined and the channel methods are inlined
into the ASIC, as discussed above. The transducer is
also refined during system implementation along with
other components.

Similarly, the channel can be replaced with any
other bus channel in the library as long as it provides
the abstract function calls used inside the component
and specified by the port interface, e.g., a channel
might encapsulate a VME bus and provide an ASIC
with methods for reading and writing word a from
memory. This channel can be replaced by another that
encapsulates a PCI bus for instance but provides the
same interface that consists of the read/write meth-
ods. In addition, the channel can also be incremen-
tally refined. It can provide communication methods
using simple function calls and shared variables in the

earlier phases of specification and partitioning. Later
the channel can be refined into a detailed timing model
that reflects an actual physical bus protocol.

2.2 Communication Implementations

Another important issue for reuse is the prescence of
a rigorous methodology to design the system from a
high level specification. The methodology will consist
of well defined transformations and intermediate mod-
els. This provides documentation and helps in reuse
since reuse is difficult both at the final implementa-
tion level which is too detailed as well as the high
level specification which is too abstract.

A generic methodology for hardware-software co-
design for ASICs [1] is shown in Figure 9. The design
steps include allocation, partitioning, scheduling and
communication refinement, which form the synthesis
flow of the methodology. The task of allocation de-
termines the number and types of the system compo-
nents, such as processors, ASICs and busses, used to
implement the system behavior. The task of partition-
ing maps the sub-behaviors in the specification to the
system component. Scheduling determines the order-
ing of execution of the sub-behaviors on a sequential
processor. The task of communication refinement se-
lects the appropriate protocols and resources to imple-
ment the abstract communications between the sub-
behaviors. It also generates protocol transducers used
for interfacing components with different protocols.

Such a methodology with well defined design steps
can go a long way in keeping the design modular and
reducing debug/test time. Each design step generates
a more refined model, preferably in the same language.
This provides a standard documentation and improves
communication between the designers. The well de-
fined models and transformations also provide a good
base for formal verification of the refined models. The
intermediate models also make the design more man-
ageable and maintainable for future upgrades, thus,
encouraging IP reuse.

The different components in a system may commu-
nicate using different architecture implementations.
We next describe the different communication mod-
els. Communication between two components would
use one of these styles. It is, thus, important to de-
scribe the models so that abstract interfaces may be
defined for them. Later, this information can be used

& generate generic transducers for interfacing to these
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ASIC

communication models.

Direct Connection using a Bus: In the simplest

case, the two ASICs communicate using the
same protocol. The components can then be di-

ASIC channel ASIC

Figure 10: Direct connection of two ASICs

rectly connected to each other using a channel as
shown in Figure 10. This channel encapsulates
a communication bus like the VME or the PCI
or an application specific bus.

Protocol Translation: If the ASICs have different

protocols for communication, then the protocols
needs to be translated. This protocol transla-
tion is done by a transducer as shown in Fig-
ure 11. The transducer is basically a finite state
machine. It uses a few registers that may be
required for protocol translation, e.g., one com-
munication protocol uses a 16-bit wide data bus
while the other uses only an 8-bit wide bus. The
transducer then uses a register to first read the
16-bit word and then sends out one byte at a
time. Another example might be that of a par-
allel to serial convertor using a shift register.

channel transducer channel ASIC

Figure 11: Simple protocol translation

Proper synchronization of the communication
components must be ensured for correct results.
The rate of data production and consumption
may not be identical. If the system specifica-
tion and implementation guarantee equal pro-
duction and consumption rates then no transla-
tion effort is required. However, if this is not
assured then handshaking must be used, e.g., if
the producer generates data at a faster rate than
used by the consumer, then the producer is re-
stricted to generate the next set of data until it
gets an acknowledge signal. This signal is given

when the consumer reads the data. Similarly, a
faster consumer will wait for a data valid sig-
nal from the producer that denotes prescence of
a new data word. If handshaking signals cannot
be used, the data will have to be buffered using
other schemes as discussed below.

FIFO queue: The ASICs may produce and consume

data in a burst mode. In such a case, storing the
data in an intermediate buffer may be a better
solution than operating the system at the speed
of the slowest block. Data can be transferred
between the functional blocks using a First-In
First-Out (FIFO) queue as shown in Figure 12.
There can be two types of interfaces: blocking

" . FIFO oy 1 ASIC

1

Figure 12: Communication using a FIFO queue

and non-blocking. The blocking interface uses
full and empty lines for synchronization. Thus,
the producer writes data into the buffer only if
the full line is low. When the FIFO becomes
full, the £ull line is asserted. Similarly, the con-
sumer reads data from the buffer only when the
empty line is low. This protocol then ensures
that the slower component is not overwhelmed
with data by the faster one and that no data is
lost.

The non-blocking FIFO buffer does not use any
extra signals to flag the current status of the
buffer. Such an interface is used if the producer-
consumer specifications ensure that they syn-
chronize in such a manner that neither is over-
whelmed by the other. If this is not possible,
the FIFO will need to be large enough. In ei-
ther case, however, data will be lost if too many
burst requests occur.

Memory buffer: The inter-component communica-

=4

tion can also be done using a random access
memory in the interface as shown in Figure 13.
An advantage of using memories over FIFO
buffers is that they provide random access to the
data stored. In the case of FIFOs the consumer
must necessarily consume data in the same or-
der as supplied by the producer. The data is re-
moved from the FIFO queue as it is being read



Figure 13: Communication using a memory buffer

by the consumer. Hence, if the consumer needs
to use a data-set again, it must be stored inter-
nally. On the other hand, the data continues to
reside in the memory even after being read so
data may be read and written in different order.

The downside of using a memory is the added
complexity of addressing. In addition, an ar-
biter may be required since both components
access the memory. The arbiter needs to se-
quentialize requests that occur at the same time.
Multi-ported memories may also be used to ser-
vice more memory access requests at the same
time. A memory is less restrictive than a FIFO
because it can be used for bi-directional data
transfer. A shared memory can also be used to
exchange data amongst more than two ASICs
and for multicasting data.

3 Modeling DCT as an example

We next describe modeling of Discrete Cosine Trans-
form (DCT) as an illustrative example. Discrete Co-
sine Transform [2] is widely used in DSP applications
for image compression in both still and motion pic-
ture standards. The DCT problem can be expressed
as follows (details in Appendix A).

OutBlock = CosBlock x InBlock x CosBlockT

where InBlock is the input 8x8 block of pixels, f.
QOutBlock is the output matrix in the frequency do-
main F and CosBlock is defined above. The DCT
can, thus, be modeled as two 8 x 8 matrix multipli-
cations. These matrix multiplications (MM) can be
serialized in time.

TempBlock = InBlock x CosBlockT (MM]1)
and

OutBlock = CosBlock x TempBlock (MM2)

The DCT transformation can then be modeled
as two processes. The first process completes the

first matrix multiplication and generates the 8 x 8
TempBlock matrix. The results of this matrix multi-
plication is then used by the second process that gen-
erates the final output matrix, OutBlock. Both pro-
cesses have an internal copy of the CosBlock matrix.

DCT

Start Matrix TempBlock | Matrix Done
Multiplication 1 Muttiplication 2

Giobal Var

Figure 14: DCT modeled as two serialized matrix mul-
tiplications

The DCT can be modeled as two communicating
processes as shown in Figure 14. The design of this
ASIC, then, includes specifying the protocol of com-
munication between the two processes and synthesiz-
ing the communication interface. The high-level spec-
ification of the problem is given in Appendix B. This
high-level specification is partitioned into two pro-
cesses each performing a single matrix multiplication.
This model is shown in Figure 15. At this level of mod-
eling, communication is done through global variables.
The complete VHDL model is given in Appendix C.

S Tl i

Start Matrix Multiplication 1

Matrix Multiplication 2 Done

[ma] |t

Figure 15: Global variables in the partitioned model

Process 1 reads the input data and stores the results
of the first matrix multiplication in the global variable
TempBlock and makes a flag Finished high to denote
that it is done with its computation. This flag is a
global variable and hence accessible to the second pro-
cess also. The second process polls the Finished flag
and when it sees that the first process is over with its
computation, it goes ahead and does the second ma-
trix multiplication, sets the Completed flag and finally
puts the results on the output signal pins. Process 1

oceeds only after the second process has read the

“TempBlock matrix, i.e. it waits for the Completed flag



to be set. The InBlock and the OutBlock matrices
are stored in local memories of the first and second
processes respectively.

The DCT specification is partitioned into two com-
municating processes. The first process generates the
8 x 8 TempBlock matrix. The 64 bytes of this ma-
trix have to be transferred to the second process for
the second matrix multiplication. There are various
possible schemes for communicating this set of data.
We next explore some of the different styles of model
implementation and how components may be reused.

3.1 Protocol 1: Handshaking for each
byte

We first look at direct communication between the
two components without any intermediate storage el-
ements. The two components can communicate using
a dedicated bus with handshaking on every byte as
shown in Figure 16. This protocol uses four control
signals and separate address and data lines. The first
process stores the result of the matrix multiplication,
TempBlock, in local memory. When it is done with
the computation, it sends a transmit request signal on
TxReq. The second process responds with a TxAck
signal. The 64 bytes of data are then transferred over
the data bus with handshaking for each byte. The
detailed protocol is described below. MM1 is matrix
multiplication 1, MM2 is matrix multiplication 2, P1
is process 1 and P2 is process 2.

1. MM1 complete, P1 raises TxReq

2. P2 acknowledges when ready with a high on Tx-
Ack

3. P1 raises DReq and waits for ack
4. P2 sends DAck when ready to receive a byte

5. P1 places the address and data and pulls DReq
low

6. P2 reads the address and data when DReq goes
low

7. P2 pulls DAck low to signal completion of trans-
fer of 1 byte

8. steps 3-7 repeated for a total of 64 times
9. P1 lowers TxReq
10. P2 lowers TxAck

The VHDL model for this protocol is given in
Appendix D. This protocol dedicates 4 control sig-
nals for synchronization between the processes. The
TempBlock matrix is duplicated in the two processes.
Even though memory is wasted due to duplication and
extra time is required for transferring the entire ma-
trix from one block to the other, this might be the
only option in certain cases. If the producer and con-
sumer produce and consume data at the same rate,
then the consumer need not acknowledge receipt of
data. Data may be strobed on every low—high tran-
sition of a Req signal or clock. However, if such as-
sumptions about the relative rates cannot be made
then the system must be operated at the speed of the
slowest component by using request and acknowledge
signals.

3.2 Protocol 2: Handshaking for every
byte-pair

A dedicated bus may use protocols for communication
that differ from the one described above. The various
parameters in the protocol specification include the
number of control wires, if the protocol is synchronous
or asynchronous, the clock rate for synchronous proto-
cols, type/width of data/address busses and the exact
timing specification. Another protocol for communi-
cation over a dedicated bus is shown in Figure 17.

The first process stores the result of the matrix mul-
tiplication (T'empBlock) in local memory. When it is
done with the computation, it initiates data transfer
with a request on the Req signal. The second process
responds with an Ack signal. The 64 bytes of data
are transferred over an 8-bit bus with handshake for
every two bytes. The protocol can be specified as fol-
lows. MM1 is matrix multiplication 1, MM2 is matrix
multiplication 2, P1 is process 1 and P2 is process 2.

1. MM1 complete in P1

2. P1 raises Req

3. P2 acknowledges when ready with a high on Ack
4

. P1 places the address and pulls Req low at next
clock

5. P2 reads the address when Req goes low

6. P1 places data byte on bus at next clock

7. P2 reads the data byte

. P1 places the next data bye on bus at next clock
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9. P2 read the data byte and pulls the Ack low
10. steps 2-9 repeated for a total of 32 times

The VHDL model for this protocol is given in Ap-
pendix E. This protocol multiplexes address and data
on a single bus. The first process places only the even
addresses on the bus. It sends out 2 data bytes for
each address that it puts on the bus. The model uses
only 2 control signals but the data transfer is synchro-
nized with a common clock edge. The second process
must count the number of bytes received since there is
no transmission request signal. It interprets the first
data byte to be for the address supplied and the sec-
ond data byte for the next contiguous location.

3.3 Reusing an ASIC

The various components of a system may not have the
same communication protocol. It may not be possible
to synthesize the components to obey the protocol of
the other component. Communication between com-
ponents with different protocols for data transfer is
a major hurdle in ASIC reuse. If protocols of pro-
cesses that need to communicate with each other do
not match then a proper interface must be generated
that translates the protocols. We next describe ex-
periments done on this problem. Consider the DCT
system made up of two components that communicate
using Protocol 1 (described in Section 3.1). Now, Pro-
cess 2 which does the second matrix multiplication is
removed and replaced by a component that uses Pro-
tocol 2 (described in Section 3.2). This is similar to
the generic example shown in Figure 3.

Protocol 1 uses 4 control signals and a separate ad-
dress and data bus. It is a completely asynchronous
protocol. Protocol 2, however, uses only 2 control
signals and a single bus. The address and data are
multiplexed on this bus and two data bytes are trans-
ferred for each address put on the bus. After the data
transfer cycle has been initiated using the request and
acknowledge signals, the two data bytes are strobed
on consecutive clock edges. A transducer is required
between the two blocks since they do not use the same
protocol. The DCT model composed of processes with
different protocols is shown in Figure 18. The trans-
ducer (interface) needs to generate the proper control
signals and do the protocol translation. The exact
sequence of steps for the transducer can be listed as
follows.

. wait for the TxReq signal from process 1
. send the TxAck signal
. wait for a DReq signal from process 1

. send the DAck signal
wait for DReq to go low

read the address and the first data byte from
process 1

. lower the DAck signal

. wait for the next DReq signal
9. send the DAck signal

10. wait for DReq to go low

11. read the address and the second data byte from
process 1

12. send the Req signal to process 2
13. wait for Ack signal from process 2

14. put the first address on bus at the rising edge of
clock

15. put the first data byte at the next clock edge
16. put the second data byte at the next clock edge

17. wait until Ack from process 2 goes low

= I~ BN R R

0o =3

18. lower the DAck signal for process 1
19. repeat steps 3—-18 while TxReq is high
20. lower TxAck signal to process 1

The interface, thus, first gets the address and data
from the first process according to its protocol. It
stores them internally and does not give the final
acknowledge signal to the first process. It returns
this acknowledgment only when it completes the data
transfer to the second process. This way, it needs lim-
ited buffering. Other implementations of the interface
are also possible. The interface can be modeled as
an FSMD as shown in Figure 19. The actions are
associated with the edges which represent the state
transitions. The complete VHDL code is given in Ap-
pendix F.

3.4 Replacing the Bus

In the previous section, we discussed replacement of
a component with another that has the same func-
tionality but different communication protocol. The
Z@ommunication bus itself may be changed with an-
other that has a different protocol. Consider the DCT

11
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Figure 19: FSMD for protocol translation

example where both components use Protocol 1 as de-
scribed in Section 3.1. The bus used for communica-
tion between them is also a Protocol 1 bus. Hence,
transducers are not required for connecting the com-
ponents to the bus as shown in Figure 20. The proto-
col 1 bus which uses 4 control signals and handshakes
on every byte is then replaced by the protocol 2 bus
that has only 2 control signals and transfers two data
bytes for every handshaking transaction. Two new
transducers are needed to translate the protocols and
connect the components to the new bus as shown in
Figure 20. The complete VHDL model is given in Ap-
pendix G.

3.5 Communication using a FIFO

In the previous protocols the TempBlock matrix was
duplicated. Both the matrix multiplication units had
a copy of the matrix. The first process, MM1, stored
the computed results in a local memory and then
transferred the matrix to the second process, MM2,
which first saved a copy in local memory and then
proceeded with the computation. However, the mem-
ory duplication overhead can be avoided by sharing
the storage between the two components.

For this example and similar problems, bounded
First-in First-out (FIFO) queues can be used as means
of communication. FIFOs also avoid the data duplica-
tion problem. The advantage of using a FIFO is that
the consumer and producer can operate concurrently.
It is especially useful when the producer and consumer
data at approximately the same rate. The producer
and consumer do not require extra bits for address-
ing. The arbiter which is required for shared memory
access (discussed in Section 3.6) is also not required.
FIFOs, however, do not provide the random access ca-
pability that memories provide. The consumer must
read the data in the order in which the producer sup-
plies it. Thus, if the producer does not need to reuse

<#he data it produces, it can immediately transfer it to

the queue without storing it in local memory and then

ikl
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Figure 21: Communication using a FIFO queue

at a later stage reading from there and transferring it.
The consumer can read the data from the queue in the
first-in first-out discipline.

The protocol for communication using a FIFO is
shown in Figure 21. The complete VHDL code is
given in Appendix H. The operation is similar to the
shared memory protocol. MM1 computes the first ma-
trix multiplication and stores the 64 bytes of data in
the FIFO. After the computation is over, it sends an
Over signal to the other process. MM2 then reads the
64 bytes of data from the FIFO and does the second
matrix multiplication. When it is done with the com-
putation, it sends a Used signal to MM1 which denotes
that MM1 can proceed ahead and do another matrix
multiplication.

FIFOs are an efficient way of communicating be-
tween two processes. However, reading the data re-
moves it from the queue. Thus, if the consumer needs
to access some data repeatedly, it must store it inside.
This is not the case for random access memories. The
second matrix multiply unit, MM2, needs to use a
TempBlock byte repeatedly for the matrix multipli-
cation. It must either buffer the bytes internally or
use another matrix multiplication algorithm. This al-

gorithm will read a value from the FIFO (an element
of the TempBlock matrix), performs all the multipli-
cations which require this value and then discards this
value. This approach has been adopted in our case. If
the size of FIFO is the same as the amount of data to
be transferred, then dedicated control lines between
the two matrix multiply units are not necessary. The
full and empty lines from the FIFO can be used to
synchronize the two processes. If dedicated lines for
synchronization are used in conjunction with the full
and empty lines both the blocks may operate concur-
rently.

3.6 Communication using a Memory

The duplication of data and memory in the two com-
ponents can also be avoided by sharing a memory be-
tween the two components. This achieves the same
goal as the FIFO in the previous section. In the gen-
eral case, random access memory and FIFO provide
different benefits and have their own limitations.

The protocol for communication using a random ac-
7gess memory with implicit arbitration is demonstrated
in Figure 22. The two units do not have local mem-
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Figure 22: Communication through random access memory

ory for the TempBlock matrix. They use a random
access memory for storing the matrix. This memory
is shared between the two components. During the
first half of the computation, the first matrix multi-
ply unit writes into the memory. During this time the
address, data and control lines of the memory are as-
serted by the first matrix multiply unit. MM1 gives
the address of the data byte being written and asserts
the C'S and WE control lines according to the timing
diagram of the memory. MM1 send a computation
complete signal on the over line to MM2 and relin-
quishes control of the address and data busses. In the
next phase, the second multiply unit, MM2, controls
the random access memory after receiving the over sig-
nal from MM1. MM2 supplies the address and asserts
the C'S and OF lines to read the matrix values for the
computation. When the computation is over, MM2
relinquishes control of the address bus and floats the
CS and OE lines. It then sends a used signal to MM1
which denotes that the data from the random access
memory has been read and that MM1 can start the
next computation.

A NEC 1 M-bit (128K by 8-bit) CMOS static
RAM [5] (part number P D431008L) has been used

for modeling the random access memory between the
two processes. It has a read-write cycle time of 17 ns.
The complete VHDL code is given in Appendix I.

In this case, the arbiter is very simple and its job is
to turn around the data busses. The two components
do not try to access the memory buffer at the same
time. They communicate between themselves using
dedicated control lines to make sure that only one unit
accesses the memory at a time. This is possible since
the matrix multiply processes do not have any inter-
leaved memory accesses. MM2 reads the memory only
after MM1 has written all the data into the memory.
However, a priority resolution method and recovery
method in case of clashes will need to be determined
for the general case of accesses to a random access
memory. In this example, however, there is no need
for the arbiter to acknowledge successful grant of the
busses since it is guaranteed that the processes syn-
chronize between themselves and the arbiter does not
need to provide this functionality.

7
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3.7 Communication using a Memory
buffer and VMEDbus

In the previous sections, we have looked at designs
that all use dedicated application specific resources.
In particular, the communication busses have been all
configured to best suit the example in terms of number
of control signals and bus widths. However, this kind
of facility may not always be available. One or more
of the components might have been defined for some
particular protocol. There may not be the flexibility
of re-designing the entire component for the particular
communication scheme. Otherwise, system consider-
ations might force the designer to choose some stan-
dard bus for communication even if the components
are being synthesized. This section discusses use of
a VMEbus [6] as means of communication between a
component and the memory.

As shown is Figure 23, the component MMI1 is
a VME Master component and communicates in
the VMEbus protocol. The component writes the
TempBlock matrix data bytes in the VMEbus pro-
tocol. The shared memory, however, is not a VME
slave component. Hence, an interface is used between
the VMEbus and the SRAM. The interface unit in
this case is minimal since the VME master only does
single byte transfers on the lower 8 bits of the data
bus. There are no double, quad byte or burst mode
transfers. It generates the chip select signal from the
address strobe signal of the bus and sends an acknowl-
edgment based on the timing characteristics of the
SRAM.

Industry standard busses are commonly used for
communication between components. If the compo-
nents cannot be synthesized for the particular bus pro-
tocol then transducers (interfaces) must be created for
protocol translation. The interface can be quite com-
plicated with internal buffering along with a state ma-
chine for generating the proper control signals.

Experimentation with the DCT example has
demonstrated the issues in modeling for reuse. We ex-
plored different communication schemes between the
two components of DCT. We were able to look at the
IP reuse problem by changing an ASIC with another
that uses a different communication protocol. We also
looked at the effect of changing the bus on the system
models. These experiments lead us to propose some
guidelines for modeling in VHDL which we present
next.

4 Modeling for Reuse

In this section, we discuss some of the essential issues
in modeling for reuse. A system consists of various
components that communicate amongst themselves
for exchanging data and synchronizing computation.
In a hardware system, a component refers to any of
the processors, ASICs, FIFOs, random access memo-
ries that comprise the system. Thus, it is important to
ensure that there is no protocol mismatch amongst the
various components. Some of the important issues re-
garding modeling and implementation of a system are
as follows.

e Whenever there is a protocol mismatch between
two components or between a component and
a bus, a transducer must be used for protocol
translation. If the ASIC is a synthesizable com-
ponent then the transducer is not a separate en-
tity but can be integrated with the ASIC during
the synthesis process. Otherwise, the transducer
will exist as a separate component in the system.

e Whenever a component (ASIC, memory, FIFO)
is replaced with another that has a different com-
munication protocol, the existing transducer has
to be redesigned. If there was no transducer ini-
tially, then a new transducer must be inserted.

e The components might communicate using a
common bus. Every time a bus is replaced, all
the transducers that are used to connect ASICs
to this particular bus will need to be redesigned.

Reuse is encouraged if the ASIC does not have
the detailed communication protocol in its descrip-
tion. It is extremely difficult to modify a system
model if communication is interleaved with compu-
tation. Changing the communication protocols then
amounts to rewriting the entire model since the com-
munication steps are distributed all over the model.
In addition, it is hard to determine what constitutes
internal computation and what constitutes external
communication. Thus, reuse is encouraged if commu-
nication is separated from computation and is moved
outside the component model. If this is done then
the port interface of the component model consists of
function calls instead of bit signals. This is helpful be-
cause the components are generic and not restricted
to a particular protocol. They can be stored in a li-
brary and generic interfaces also facilitate automatic

“#eneration of transducers which is rather hard to do
if the interfaces specify timing on bit signals.
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4.1 Using VHDL as a modeling lan-
guage

The above mentioned guidelines though highly rec-
ommended cannot be put into practice easily when
VHDL is used as a modeling language. VHDL is in-
herently flat which means layered protocol specifica-
tion is not possible. VHDL requires that the entity
declaration of models be at the bit-level and hence,
communication must necessarily be modeled at the
physical level, i.e., transitions on signals [7]. But if
the communication has to be removed from the com-
ponent model, then the entity interface to the exter-
nal world will consist of function calls. However, in
VHDL an entity cannot consist of function calls. It
must use the standard data types like bit, integer
or std logic. The model then also defines the tim-
ing specification on these signals. Thus, the interface
is too detailed and cannot be used for incremental re-
finement and reuse at the behavioral model.

However, communication can still be separated
from computation by using a separate process inside
the behavioral VHDL architecture of the ASIC for
Jjust communication. This process encapsulates the en-
tire communication protocol and the computation is
done in other processes of the same architecture. The
computation processes do not access the ports of the
entity. They request the communication process
for all read/write requests. This is done using global
variables which are essentially signal declarations in-
side the architecture of the model. A typical model
looks like the one shown in Figure 24.

Now consider replacing an ASIC model with an-
other that uses a different communication protocol.
Typically, the entire model for this new ASIC will need
to be rewritten to reflect the different protocol. How-
ever, now the communication is clearly demarcated
and separated from all the computation since it is in
a separate process. Thus, only the communication
process needs to be redesigned and the computation
processes do not need to be modified. This modeling
technique is illustrated in Appendix D, E.

When an ASIC is replaced with a new ASIC, the
VHDL models need to be modified if the communica-
tion protocol of the new ASIC is different from the ear-
lier protocol. The communication process of either
of the two ASICs between which there is a protocol
mismatch needs to be modified. The changes must
reflect the protocol of the other ASIC. This might
also necessitate modifications in the port declarations

entity ASIC is
port interface port (clk : in bit;
of the ASIC data : in integer);
end ASIC;
architecture behav of ASIC is
signal sync, ready : bit;
signal local : integer;
begin
~  compute : process
variable a : integer;
begin
compute process(es) m -1
perform only wait until ready="1";
computations. a <= local:
No communication pE
sync <='0";
=5 endprooess compute ;
= communicate : process
begin
communicate
process does all wait until sync="1";
the communication local <= data;
with the external ready <='1";
world
1 end process communicate;
end behav;

Figure 24: Separate communication and computation
processes in VHDL

of the ASIC entity. However, if none of the ASIC
is synthesizable then the models cannot be changed
and a transducer needs to be inserted. This trans-
ducer is a separate entity which interfaces to the two
ASICs. The architecture of the transducer has a
model for the finite state machine that does the pro-
tocol translation as described for the DCT example in
Figure 19. When a bus is replaced, then the same pro-
cedure needs to be applied for each of the components
connected to the bus. If they are not synthesizable
then transducers need to be developed and inserted in
the top level entity that encapsulates all the different
components.

The inability to model at a higher level in VHDL
leads us to propose the use of the new language,
SpecC. SpecC is an executable hardware modeling lan-
guage suited for co-design and component reuse. In
the next section, we discuss the benefits of SpecC and
how it supports ASIC reuse.

'
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5 Modeling in SpecC

There is a modeling need to separate the computation
from communication, as discussed in Section 2.1. The
ports of entities can then be made abstract in terms
of number and width of signals. A port of a particular
type will then be specified by the function calls it will
support, e.g., read word() and writeword(). This
port will be resolved to a real channel that has the
actual details at the later time of component instan-
tiation. The SpecC language supports these features
and makes modeling for reuse a natural and easy task.
It is able to separate the computation specification in
a component from the communication protocols by us-
ing the concept of channels and the software modeling
techniques of data abstraction and information hiding.

5.1 Modeling Refinement in SpecC

A key feature of the SpecC language is that the de-
signer can model the system at a behavioral level and
the models can then be refined for system implemen-
tation. We next present how modeling refinement is
done in the SpecC methodology.

5.1.1 Global Variables

At the highest level, the models are composed of sys-
tem behaviors that communicate using global vari-
ables. This kind of modeling is closer to the concep-
tual model of the system. There is no notion of ports
of sub-behaviors or protocol transfers. It is the sim-
plest model that captures the algorithm being used
for solving the problem. The designer is not burdened
with communication protocols and target architecture
at this stage and uses such a model for verification of
the algorithms and functionality of the system under
design.

A typical system model at this level is shown in
Figure 25. The system behaviors see the communi-
cation variables as any other local variable since they
are declared as global in the specification.

5.1.2 Global variables through ports

The behaviors may also access the global variables
through their ports. This model is shown in Figure 26.
This model is in essence the same as the earlier one
that uses only global variables. The only difference

ASystem
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Figure 25: Global variables in a SpecC model
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Figure 26: Global variables through ports in a SpecC
model

is that in this model, the behaviors explicitly declare
the global variables as ports. They access the global
variables only through the formal port variable names.

The high level behavioral specification of the sys-
tem can be composed using either of the two models.
They are both at a high level and do not include any
notion of communication protocol and channels. This
model with ports can be generated automatically from
the previous model in a pre-processing step. It is use-
ful to have this model as it clearly defines the interface
of a behavior and what variables are internal and what
are accessed from outside the system behavior.

5.1.3 Variable inside a channel

The global variable model is refined automatically to
a model that includes channels. Each global variable
1s encapsulated in a channel and the channel defines
interfaces for accessing this variable. The behaviors
use function calls that are part of the port interface to
read and write these variables, as shown in Figure 27.

2> There is no timing information in either the be-

havior or the channel. Transfers take place by simply
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Figure 27: One-shot transfer using channels in a
SpecC model

reading or writing into the variable inside the channel
using the function calls of the interface. This model
is used for performing the allocation, partitioning and
scheduling operations required for system implemen-
tation as shown in the co-design methodology of Fig-
ure 9.

5.1.4 Protocol inside a channel

Allocation and partitioning determine how the sys-
tem behaviors are mapped and what is the connectiv-
ity between components. Channels between behaviors
that get mapped to the same component become lo-
cal variables. The channels then get discarded. The
channels going across behaviors on different compo-
nents are mapped to the common bus that connects
the components. A protocol is selected for this bus.
The bus is encapsulated in a channel that includes the
detailed protocol for the bus. The system behaviors
still use function calls for communication as shown in
Figure 28.

g N\
ASystem : 01 X
g akx
H
P ! [
]
,
M
p.write(..) | .. =p.read()
wes ' e
'
[}
L AMaster : ASlave

Figure 28: Protocol transfer using channels in a SpecC
model

The channel has the different bit level signals for

shared variable access like req, ack and defines the
bit-widths and timing of data transfer. These chan-
nels encapsulate a particular bus protocol and can be
stored in a library. Both the ASICs and the busses can
be replaced by new components with different proto-
cols. Reuse is performed at this level and behavioral
transducers may have to be introduced.

5.1.5 Inlined channel

After the different options for the components have
been explored on the channel model, communication
synthesis is done. This process inlines the channel
functions to synthesizable ASICs or along with the
wrappers as separate components. The refined model
again consists of ports that are connected to global
variables, as shown in Figure 29.
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Figure 29: Inlined channel in a SpecC model

This model is, thus, similar to the global variable
through ports model. However, the important differ-
ence 1s that the model is refined and the ports are now
bit signals instead of abstract data types like int,
float etc. The behaviors, too, have the detailed com-
munication protocol that was introduced in them as
a result of the inlining process. This model basically
consists of a component netlist and can be synthesized
using traditional back-end tools.

We next describe some examples in SpecC [4] and
how models can be written with desirable features for
reuse. We first describe a simple shared variable model
and then describe communication over a synchronous
bus.

i
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5.2 Shared Memory Channel

A shared memory channel which can be accessed by
concurrent processes is shown in Figure 30. For the

( System ]
Master Slave
%

Figure 30: A shared memory channel

sake of simplicity, consider the case when only one of
the processes writes into the shared variable and the
other reads from it. A typical system using such a
shared memory system can be modeled in SpecC as
follows (SpecC keywords are in boldface).

interface ILeft (void) {
void write (int val);
b

interface IRight (void) {
int read (void);
i

channel CShared (void) implements ILeft, IRight {
int storage;
bool valid;

void write (int val) {
storage = val;
valid = 1;

}

int read (void) {
while (!wvalid) ;
return storage;

}
}
behavior Master (ILeft p) {
int local;
void main (void) {
p. write (local);
}
}s
behavior Slave (IRight p) {
int local;

void main (void) {

local = p.read();

41
42
43
4
5
46
47
48
49
50
51
52
53
54
55
56

4
4

}
}

behavior System () {
CShared var;

Master X (var);
Slave Y (var);

void main (void) {
par {
X.main();
Y. main();

}

b

The actual variable, storage, is encapsulated by
the channel CShared which also has the synchroniza-
tion valid bit. The write operation stores the value
and sets the valid bit and the read operation spin-waits
on the valid bit. This simple example brings out the
concept of information hiding and how computation is
distinguished from the communication. The processes
(behaviors) themselves do only the computation and
just make function calls to write() and read() op-
erations. The details of the shared variable access are
described in the functions encapsulated in the channel.

The behavior entities have ports in the form of in-
terfaces. A channel relates to interfaces by the im-
plements keyword by which it is guaranteed that the
channel will implement the methods declared in the
interfaces that it implements. Thus, any other chan-
nel that implements the same interfaces ILeft and
IRight can be used in place of the CShared channel.
This kind of modeling is obviously conducive to reuse
of components.

5.3 Synchronous Bus Channel

)

0008 s

Figure 31: Synchronous bus channel

As a more complex example than shared memory
channel consider a synchronous bus channel as shown

“#n Figure 31. This example models read and write of
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memory over a bus using a simple synchronous bus

protocol which is detailed in Figure 32.

READ cycle

1
;
w 1
:
1

0 ———Laak X ods )—t—
1

Figure 32: Simple bus protocol

Such a system can be modeled in SpecC as follows

(SpecC keywords are in boldface).

1 interface ILeft (void) {

-
%)

void read (word addr, word xd);
void write (word addr, word d);

)

interface IRight (wvoid) {
void monitor(
void (xgrab)(word addr, word =d),
' void (=deliver)(word addr, word d));
b

channel CBus (void) implements Ileft, IRight {

clock clk;
signal<bit> start;

signal<bit> rw;

signal<word> AD;

void read (word addr, word xd) {
start=1, rw=l, clk. tick ();
AD=addr, clk. tick ();

=d=AD, start=0, clk.tick();
}

void write (word addr, word *d) {
start=l, rw=l, clk. tick ();
AD=addr, clk.tick ();
ADHd, start=0, clk.tick ();

29

30 void monitor (

31 void (*grab)(word addr, word xd),

az void (=deliver )(word addr, word =d)) {

as word a, d;

34

35 while (start==0) clk.tick();

36 if (=) {

a7 clk.tick ();

s a = AD, clk.tick ();
39 (»grab)(a, &d), ADd, clk.tick();
0 } else {

41 clk. tick ();

42 a = AD, clk.tick ();
43 d=AD, (*deliver)(a, d), clk.tick();
4 }

45 }

6 };

47

4s behavior Master (Ileft bus) {
49 word local;

50

51 void main (void) {

52 sse

53 bus. read(0x10, &local);
54 see

55 local ++;

56 bus. write (0x10, local);
57 e

8 }

59 };

61 behavmr Slave (IRight bus) {
word storage [0x100];

63
64 void my_grab (word addr, word xd) {

65 *d = storage (addr);

66 }

7 void my.deliver (word addr, word xd) {

68 storage (addr) = d;

69

70

71 void main (void) {

7 for (; 3) {

73 bus. monitor(my.grab, my._deliver);
74 ]‘

75 }

76 };

7

78 behavior System (void) {
79 CBus bus;

80 Master master(bus);
81 Slave slave(bus);

82

83 void main (void) {

84 par {

85 master. main();
86 slave.main();
a7

88 }

8 };

/# This example again brings out the distinction be-
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tween computation and communication achieved in
SpecC models. The channel CBus encapsulates the
wires in the simple bus, viz., clk, start, rw and
AD. The interface ports of the components (behav-
iors) consist of only abstract methods for communi-
cation. These methods just specify the behavior that
is used by the components. The actual procedure of
these methods is moved to the methods in the chan-
nel. Thus, the component only needs to make a func-
tional call to methods like read() and write(). The
detailed timing of c1k, start and rw signals as spec-
ified by the protocol is moved inside the channel.

The ports of the behaviors can be mapped to the
channel when they are instantiated. In this way, late
binding can be achieved. Thus, the behavior need
not know what channel it will eventually be mapped
to and hence the communication details are removed
from the functional specification of the component.
This also permits reuse because any other channel can
be used. The channel can use not only a different
timing specification but even with different number of
wires. The only requirement is that it should imple-
ment the interfaces of the ports of the components.

5.4 Abstraction Levels

The co-design methodology given in Figure 9 uses
models at different levels of abstraction. At the high-
est level, there is a behavioral specification of the sys-
tem in the SpecC language. Allocation and parti-
tioning on this model lead to the partitioning model.
Scheduling is performed on this model which gener-
ates the scheduling model. Finally, communication re-
finement leads to the communication model. These
abstraction levels are helpful for co-design since the
design can be debugged, validated and refined incre-
mentally. Each abstraction level refines the level that
is higher in the hierarchy. The different levels are es-
sential for reuse since the final implementation model
is too detailed and cannot be easily reused. The rig-
orous synthesis flow provides models with documenta-
tion at higher levels of abstraction which can then be
reused.

However, the models at the different level of ab-
straction have different accuracy. The performance
metrics of these models may be quite far from that of
the final implementation model. The initial specifica-
tion 1s only functionally accurate. The SpecC model
can be simulated and validated for correctness of re-
sults. There is no implementation detail in this model.

At the next level, the partitioning model includes the
software and hardware components of the system. The
different behaviors, however, execute concurrently on
the processing element on which they are allocated.
The performance accuracy at this abstraction level de-
pends on the accuracy of the estimation tools. The
performance of the hardware component can be com-
puted approximately but there are no interface models
for communication between the components. It is also
difficult to get the complete performance estimates for
software too because all the software behaviors execute
concurrently, contrary to the actual final implementa-
tion. However, good estimates for each behavior may
be computed separately.

The partitioning model is scheduled which serial-
izes the behaviors on the processing elements. Thus,
the software too can be estimated quite accurately.
However, the models at this level still do not include
the communication details. The communication re-
finement step introduces protocol transducers, com-
munication primitives and inlines the channel meth-
ods. The communication model is, thus, complete in
terms of specification of the final implementation. The
performance is still not accurate because there is scope
for optimizations during high level synthesis and com-
pilation.

The software component of the communication
model is compiled and the hardware component is syn-
thesized using HLS tools and techniques. Cycle-based
simulators and instruction set simulators can be used
to validate the design and estimate the performance.
The design may also be prototyped using FPGAs. The
implementation model is then quite close to the final
manufactured component and the performance of the
prototype with appropriate estimators may be accu-
rate enough for most purposes.

We note that even though the performance accu-
racy of models at higher abstraction levels is not high,
the hierarchy is still acceptable. This is because the
fidelity [8] of the estimators is usually high. Thus, ex-
perience with the estimator tools can be used to get
better performance accuracy than suggested by pre-
liminary estimates.

5.5 Proposed “Co-design Explorer”

We propose to develop and implement a co-design sys-
tem, the “Co-design Ezplorer” [9]. This system will be

“&ased on the new SpecC language [3]. SpecC is able to



model mixed abstraction levels as discussed earlier. It
can also capture the characteristic features of embed-
ded systems [8], such as concurrency, state transitions,
structural and behavioral hierarchy, exception han-
dling, timing, communication and synchronization.

Gul } Specification

Allocation, Partitioning
Scheduling
Protocol selection

Refined Model

Components
Database

Plug-and-play

Co-design Explorations

Refiner
(Expand and Translate)

/

C models VHDL models

(suﬂwara code running ( Behavioral model
On processors of ASIC architecture,

Figure 33: Proposed Co-design Explorer System

This system will be based on the co-design method-
ology presented in Figure 9 and use the channel con-
cept illustrated in Figure 5, 7, 8. An overview of the
system is given in Figure 33. A graphical user interface
(GUI) is used to generate the specification of the sys-
fem without learning SpecC. The GUI helps in spec-
ifying hierarchical and concurrent behaviors. It can
be used for specifying the state transition functions
and connectivity of behaviors. The GUI generates a
specification of the system in SpecC. This model uses
global variables for communication as shown in Fig-
ure 25. It is internally pre-processed to convert global
variables into channels. This model is then be used for
manual allocation, partitioning and scheduling with
assistance from estimator tools. Plug-and-play is per-
formed on the refined model using components from a
database. The database also stores generic transduc-
ers and busses encapsulated in channels. Explorations
are done to meet the performance and cost require-
ments.

Finally, a Refiner tool is used to expand and trans-

late the model generated after explorations. This step
includes channel inlining (as discussed in Section 2.1),
generation of C code that will run on processors and
generation of VHDL behavioral models for the hard-
ware architecture. These low level models can then be
compiled and synthesized using traditional techniques
to get the implementation model. The advantage of
using this methodology is that it uses SpecC which
provides a minimal and complete set of constructs re-
quired to model embedded systems at various abstrac-
tion levels. Furthermore, the designer does not have
to know the intricacies of hardware modeling as the
graphical user interface can be used to specify hierar-
chy, concurrency, timing and state transitions.

6 Conclusion

In this report, we have outlined a generic co-design
methodology that supports component reuse. We
have talked about the various steps in the methodol-
ogy and discussed the step of communication synthesis
in detail. We stress that computation needs to be sep-
arated from communication. This distinction needs to
be made to generate reusable components. This is be-
cause then only the communication part needs to be
re-designed. Separation can be achieved by declaring
the ports of the component at levels higher than bit
signals. The protocol can be abstracted away into the
channels used for connecting components.

We have also described different communication
models and done explorations using different commu-
nication protocols between two components that as a
system compute the Discrete Cosine Transform. It is
important that all communicating processes use the
same protocol. If a component uses a different proto-
col then a transducer must be used between the com-
ponents. This transducer will do the protocol transla-
tion. The transducer will, in general, be complicated
and may have internal buffering of data and ensure
correct timing of signals.

Using this exploratory example, we have come up
with a set of guidelines for modeling in VHDL. Our
critique of VHDL led us to propose the use of the new
co-design language, SpecC. We have described some
examples from SpecC which support its use for ASIC
reuse and incremental refinement. We need to do more
research to solve the open problems related to ASIC

Zzgeuse and use of SpecC. As future work, we need to
implement the DCT example at various abstraction
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levels in SpecC to evaluate the effectiveness of pro-
posed modeling techniques. We also need to compile
a list of all possible transaction level function calls in
order to study their effect on development of chan-
nels and generic transducers. Finally, we propose to
develop a new Co-design Ezplorer using the concepts
developed.
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A Formal Specification of DCT

The formal specification of the Discrete Cosine Transform (DCT) operation is as follows [2].

N-1N-1
c(m 2m + 1)urw 2n+1
i e — % E E Taiia cos( 2N) cos( 2N)mr

m=0 n=0
where:

fmn = gray level of pixel at (m,n) in the N x N image (0 < m,n < N - 1)

u,v = discrete frequency variables (0<u, v<N-1)

Fuy = coefficient at point (u,v) in spatial frequency domain

In typical designs (like the MPEG standard), the image is sub-divided into 8 x8 blocks of pixels. We also use
a value of N = 8 in this example. Furthermore, let CosBlock be a 8x8 matrix defined by

CosBlocky, = round(factor x (';-cos (2n -;—61)u1r))

An important property of the cosine transform is that the two summations are separable. Thus, the DCT can
be expressed as two matrix multiplications, one after the other.

TempBlock = InBlock x CosBlock™  (MM1)

and
OutBlock = CosBlock x TempBlock (MM2)

7
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1
2
3

B High-level Specification of DCT

The high-level specification of the DCT algorithm in VHDL is given below. The incoming matrix is first read
into the InBlock matrix. The first matrix multiplication generates the T'empBlock matrix using the InBlock
and CosBlock matrices. The second matrix multiplication generates the Out Block matrix using the CosBlock

and TempBlock matrices. Finally the outgoing transform matrix is written out.

—— Rockwell ASIC Reuse Modeling Project
—— QOct 28, 1997

5
6
7
8
®
10
11
12

13

22
23
24
25
26
27
28
29

30

31 _

32
a3
34
as
36
a7
38
39
40
41
42
43
a4
45
46
47

48

—— High Level specification of the DCT component
—— behavioral level model with only one process

library ieee;
use ieee.std logic_1164.all;

entity dct is
port (
start : in std_logic;
clk : in std_logic;
din : in integer;
done : out std_logic;
dout : out integer);
end dct;

architecture behavior of dct is

begin
process
type mem is array (0 to 7, 0 to 7) of integer;
variable InBlock, TempBlock, OutBlock: mem;
variable CosBlock : mem:=
((125, 122, 115, 103, 88, 69, 47, 24),
(125, 103, 47, -24, —88, —122, —115, -69),
(125, 69, —47, —122, —88, 24, 115, 103),
(125, 24, —115, -69, 88, 103, —47, —122),
(125, -—24, —115, 69, 88, —103, —47, 122),
(125, —69, —47, 122, —88, —24, 115, —103),
(125, —103, 47, 24, —88, 122, —115, 69),
(125, —122, 115, —103, 88, —69, 47, —24));
variable a, b, p, sum : integer;
begin

wait until start = '1’;

——read the input data matriz

for i in 0 to 7 loop
for j in 0 to 7 loop

wait until clk =’17;
InBlock (i, j) := din;
end loop;
end loop;

7
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49
50
B1
82
53
B4
55
56
57
58
59
60
61

62
63
64
65
66
&7
68
69
70
71

72
73
74
75
76
77T
78
79
80
81

82

83
a4

85

86 .

87
a8
89
90
91
92
93
94
95
96
7
98
29
100

——matriz multiplication 1

for i in 0 to 7 loop
for j in 0 to 7 loop
for k in 0 to 7 loop
a := InBlock (i, k);
:= CosBlock (j, k);
= a * b;
if (k =0) then

if (k=7) then
TempBlock (i, j) := sum;
end if;
end loop;
end loop;
end loop;

——matriz multiplication 2

for i in 0 to 7 loop
for j in 0 to 7 loop
for k in 0 to 7 loop
a := TempBlock (k, j);
b := CosBlock (i, k);
P := a % b;
if (k =0) then
sum := p;
else
sum := sum + p;
end if;
if (k=7) then
OutBlock (i, j) := sum;
end if;
end loop;
end loop;
end loop;

—— output the matriz

done <="1";
for i in 0 to 7 loop
for j in 0 to 7 loop
wait until clk =1’;
dout <= OutBlock (i, j);
end loop;
end loop;
done <="0";
end process;

102 end behavior;

7
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1

C Partitioned model for DCT with global variables

2 — Rockwell ASIC Reuse Modeling Project
s —— QOct 25, 1997

4 —

s ——DCT example with 2 components for the 2 matriz multiplications

s — The two components communicate using global variables

7

s library ieee;
s use ieee.std_logic_1164.all;

10

n entity dct is

12 port ( start :
13 clk
14 din :
15 done :
16 dout :
17 end dct;

18

i
: in
i

n

n

std_logic;
std_logic;
integer ;

out std_logic;
out integer );

19 architecture beh of dct is
type mem is array (0 to 7, 0 to 7) of integer;
signal tempblock : mem;

20
21
22
23
24
as
26
a7
28
29
30
31

signal finish

: std_logic;

signal cosblock : mem:=

((125, 122,
(125, 103,
(125, 69,
(125, 24,
(125, —24,
(125, —69,
(125, —103,
(125, —122,

a2 begin

as

34

as

a6

ar

38

39

40

41

42

43

44

45

46

47

49

51

52

53

mml : process

115, 103, 8, 69, 47, 24),
47, —24, —88, —122, —115, —69),

—47, —122, —88, 24, 115, 103),
-115, —69, 88, 103, —47, —122),
—-115, 69, 88, —103, —47, 122),
—47, 122, —88, —24, 115, —103),

47, 24, -88, 122, —115, 69),
115, —103, 88, —69, 47, —24));

variable inblock : mem;
variable a, b, p, sum : integer;

- begin

wait until start = ’1’;

finish <="'0";

——read the input data matriz
for i in 0 to 7 loop
for j in 0 to 7 loop

wait until clk = ’1’;
inblock (i, j) := din;
end loop;
end loop;

——do the computation
for i in 0 to 7 loop
for j in 0 to 7 loop
for k in 0 to 7 loop

a
b.
p:

1

inblock (i, k);
cosblock (j, k); by

a * b;
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B4
L1
56
5T
58
59
60
61
82
63
64
65
66
67
68
69
70
71
72
73
74
7
76
T
78
79
80
81
82
83
84
85
86
L
L1}
89

90

91

92
93
94
95
6
o7
98
29
100
101
102
103
104
108
106

107

if (k= 0) then

sum = p;
else

sum := sum + p;
end if;

if (k=17) then
tempblock (i, j) <= sum;
end if;
end loop;
end loop;
end loop;

——done with the computation, make finish true
finish <="'1";
end process;

mm2 process
variable outblock : mem;
variable a, b, p, sum : integer;
begin
wait until finish = ’1’;
——do the computation
for i in 0 to 7 loop
for j in 0 to 7 loop
for k in 0 to 7 loop
a := tempblock (k, j);
b := cosblock (i, k);
pi=a x b

if (k=0) then

sum := p;
else

sum := sum + p;
end if;

if (k=7) then
outblock (i, j) := sum;
end if;
end loop;
end loop;
end loop;

—— give the done signal and output the output matriz
done <="1";
for i in 0 to 7 loop
for j in 0 to 7 loop
wait until clk = ’17°;
dout <= outblock (i, j);
end loop;
end loop;
done <="'0";
end process; V7 4

108 end beh;
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D Protocol 1: Handshaking for each byte transfer

2 — Rockwell ASIC Reuse Modeling Project

s —— Oct 30, 1997

I

s —— DCT ezample with 2 components for the 2 matriz multiplications

¢ —— communication over a dedicated bus with handshaking for each byte
T
s library ieee;

s use ieee.std_logic_1164.all;
10 use ieee .std_logic_arith.all;
11

12 entity mml is

13 port ( start : in std_logic;

14 clk : in std_logic;

15 din : in std.logic.vector(7 downto 0);
16 txreq : out std_logic;

17 txack : in std.logic;

18 dreq : out std_logic;

19 dack : in std.logic;

20 addr : out std_logic.vector(5 downto 0);
n data : out std_logic_vector(7 downto 0));
22 end mml;

23

24 architecture behav of mml is

28 type mem is array (0 to 7, 0 to 7) of std_logic_vector(7 downto 0);
26 signal InBlock, TempBlock : men;

27 signal ready, over : std_logic;

28 begin

29 compute: process

30 variable cosblock : mem:= (

31 (”01111101”, ®01111010”, ™01110011", "01100111", "01011000”, "01000101”, 00101111”, ”00011000"),
32 (”01111101", “01100111”, ™00101111”, ”11101000”, 10101000, "10000110”, 10001101, "10111011"),
33 ("01111101”, ”01000101”, ”11010001”, "10000110”, ”10101000”, "00011000”, 01110011, 01100111"),
34 ("01111101", "00011000”, ™10001101”, "10111011”, ”01011000”, "01100111”, 11010001, ™10000110”),
as (701111101”, 11101000, ™10001101”, "01000101”, "01011000”, "10011001™, ”11010001", ”011110107),
36 - (7011111017, 710111011, "11010001”, "01111010”, ”10101000”, "11101000”, "01110011”, "10011001™),
a7 (011111017, "10011001”, "00101111”, »00011000”, "10101000”, "01111010”, "10001101”, “01000101"),
38 (7011111017, "10000110”, ”01110011”, ™10011001”, 701011000, "10111011”, "00101111”, "11101000")
39 ¥

0 variable a, b : std_logic_vector(7 downto 0);

a variable p, sum : std_logic_vector(15 downto 0);

42 begin

43 wait until ready = ’1°;

44 over <="0";

45

4 —— first matriz multiplication calculation

a7 for i in 0 to 7 loop

48 for j in 0 to 7 loop

48 for k in 0 to 7 loop

s0 a := InBlock (i, k);

51 b:
52 P:

53

CosBlock (j, k);
signed (a) = signed (b); Ve 4
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54 if (k = 0) then

L1 sum := p;

56 else

57 sum := signed (sum) + signed (p);
58 end if;

59

60 if (k=7) then

81 TempBlock (i, j) <=sum(15 downto 8);
62 end if;

63 end loop;

64 end loop;

65 end loop;

66

67 ——done with the computation

68 over <="'1";

69 end process compute;

70

7 communicate: process

72 begin

73 ready <="0";

74 wait until start = ’1°;

75 txreq <="0’;

76 dreq <="0";

77

78 ——read the input data matriz

79 for i in 0 to 7 loop

80 for _] in0to 7 ]OOp

81 wait until clk = ’1’;

82 InBlock (i, j) <= din;

83 end loop;

84 end loop;

85 ready <="1";

.11

87 —— transfer the data

88 wait until over = '1’;

89 ready <="'0";

90 txreq <="'1";

o . wait until txack = '1’;

92

93 for i in 0 to 7 loop

94 for j in 0 to 7 loop

o5 wait until clk = '17;

96 dreq <="1’;

97 wait until dack = '1’;

98 addr <= conv_std_logic_vector (8*i+j, 6);
% data <= tempblock (i, j);
100 dreq <='0" after 3 ns; ——mem read time
101 wait until dack = 0’;

102 end lDOp;

103 end loop;

104 txreq <='0";

105 end process communicate;

106 end behav;

107 ‘g

108 library ieee;
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109
110
111
112
113
114
118
116

125
126
127
128
129
130
131
132
133
134
138
136
137
138
139

140

use ieee .std_logic_1164.all;
use ieee.std_logic_arith.all;

entity mm2 is
port ( done : out std_logic;
clk : in std_logic;
data : in std_logic_vector (7 downto 0);
addr : in std_logic_vector(5 downto 0);
txreq : in std_logic;
txack : out std_logic;
dreq : in std_logic;
dack : out std_logic;
dout : out std_logic.vector(7 downto 0));
end mm2

architecture behav of mm2 is

type mem is array (0 to 7, 0 to 7) of std_logic_vector(7 downto 0);

signal TempBlock, OutBlock : mem;
signal ready, over : std.logic;
begin
compute: process
variable CosBlock : mem:= (
(7o1111101”, 01111010, 01110011, ”01100111”, 01011000,
("01111101”, 01100111, "00101111”, "11101000”, ™10101000",
(701111101”, 01000101, "11010001”, "10000110”, "10101000",
(701111101, ™00011000”, 10001101, "10111011”, "010110007,
(011111017, "11101000”, *10001101”, "01000101”, »01011000”,
("01111101”, 101110117, ™11010001™, "01111010", ™10101000",
(”01111101”, ™10011001”, ”00101111”, "00011000”, ”10101000",
(”01111101”, »10000110”, ”01110011”, ”10011001”, ”01011000”,
)i
variable a, b : std_logic_vector(7 downto 0);
variable p, sum : std_logic_vector(15 downto0);
begin
wait until ready = '1°;
over <="0";

——second matriz multiplication computation
for i in 0 to 7 loop
for j in 0 to 7 loop
for k in 0 to 7 loop
a := TempBlock (k, j);
b := CosBlock (i, k);
p := signed (a) * signed(b);

if (k= 0) then

sum := p;
else

sum := signed (sum) + signed (p);
end if;

if (k=7) then
OutBlock (i, j) <=sum(15 downto 8);
end if; iz
end loop;
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164 end loop;

165 end loop;

166

167 —— over with the computation

188 over <="1";

169 end process compute;

170

n communicate: Pprocess

172 variable tempi, tempj : integer;

173 begin

174 txack <="0";

175 dack <="'0";

176 done <="0";

177 wait until txreq = "1’;

178 wait until clk = '1’;

178 txack <="'1" after 1 ns;

180

181 while (txreq = ’1’) loop

182 wait until (dreq = ’1’ OR txreq = ’0’);
183 if (txreq = '1’) then

184 dack <=1’ after 1 ns;

185 wait until dreq = '0’;

186 tempi := conv_integer(unsigned(addr)) / 8;
187 tempj := conv_integer(unsigned(addr)) mod 8;
188 TempBlock (tempi, tempj) <= data;
189 dack <='0" after 8 ns; ——mem write time
190 end if;

191 end loop;

192

193 wait until clk = ’17;

194 txack <="'0":

198 ready <="'1";

196

197 —— output the computed matriz

198 wait until over = '1°;

199 ready <="0";

200

201 . done <="1";

202 for i in 0 to 7 loop

203 for j in 0 to 7 loop

204 wait until clk = '1’;

208 dout <= OutBlock (i, j);

206 end 100]);

207 end loop;

208 done <="0";

200 end process communicate;

210 end behav;

211

212 library ieee;

213 use ieee .std_logic_1164.all;

24

a5 entity dct is

216 port ( start : in std_logic;

17 clk : in std_logic; iz
218 din : in std_logic_vector(7 downto0);
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219 done : out std_logic;

220 dout : out std_logic_vector(7 downto0));

an end dct;

222

22s architecture struct of dct is

224 component mml

228 port ( start : in std_logic;

226 clk : in std_logic;

227 din : in std_logic_vector(7 downto 0);
238 txreq : out std_logic;

229 txack : in std_logic;

230 dreq : out std_logic;

231 dack : in std_logic;

232 addr : out std_logic_vector (5 downto 0);
233 data : out std_logic_vector (7 downto 0));
234 end component;

235

236 component mm2

237 port ( done : out std_logic;

238 clk : in std_logic;

239 data : in std.logic_vector(7 downto 0);
240 addr : in std_logic_vector(5 downto 0);
241 txreq : in std_logic;

242 txack : out std_logic;

243 dreq : in std_logic;

244 dack : out std_logic;

248 dout : out std_logic_vector(7 downto 0));
246 end component;

247

248 signal txreq, txack, dreq, dack : std_logic;

249 signal data : std_logic_vector(7 downto 0);

as0 signal addr : std_logic_vector (5 downto 0);

as1 begin

252 ul : mml
253
254
255 u2 : mm2
256 3

257 end struct ;

port map ( start, clk, din, txreq, txack, dreq, dack, addr,

7
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E Protocol 2: Handshaking for each byte pair

1
2 —— Rockwell ASIC Reuse Modeling Project

s — Nov 6, 1997

DRI,

s ——DCT ezample with 2 components for the 2 matriz multiplications
s —— components communicate using a dedicated bus and handshaking
7 —— bus multiplezed between address and data. 2 bytes of data for
s —— each address written on bus.

9
10 library ieee;

11 use ieee.std_logic_1164.all;

12 use ieee.std_logic_arith.all;

13

14 entity mml is

15 port ( start : in std_logic;

16 clk : in std_logic;

17 din : in std_logic_vector(7 downto 0);
18 dreq : out std_logic;

19 dack : in std_logic;

20 dbus : out std_logic.vector(7 downto 0));
21 end mml;

22

23 architecture behav of mml is

24 type mem is array (0 to 7, 0 to 7) of std_logic_vector (7 downto 0);
s signal InBlock, TempBlock : mem;

26 signal ready, over : std_logic;

27 begin

28 compute: process

29 variable cosblock : mem:= (

30 (7011111017, "01111010”, ”01110011”, 01100111”, "01011000”, “01000101",
31 (011111017, ”01100111”, 00101111, "111010007, ”10101000”, 100001107,
32 (01111101, ”01000101”, *11010001”, ”100001107, ”10101000”, 000110007,
33 (701111101, 00011000, ™10001101”, “10111011”, "01011000”, ”01100111",
34 (7011111017, 11101000, ”10001101”, ”01000101”, "010110007, 710011001,
as (”01111101”, 10111011, "11010001”, "011110107, ”10101000”, "11101000",
36 . (7011111017, 10011001, 00101111”, ™00011000", ”10101000”, "011110107,
a7 (*01111101™, ”10000110”, ”01110011”, "10011001”, "01011000”, ”101110117,
38 )

39 variable a, b : std_logic_vector(7 downto 0);

40 variable p, sum : std_logic_vector(15 downto 0);

41 begin

42 wait until ready = "17;

43 over <="0";

44

a5 —— first matriz multiplication computation

46 for i in 0 to 7 loop

a7 for j in 0 to 7 loop

18 for k in 0 to 7 loop

a9 a := InBlock (i, k);

50 b := CosBlock (j, k);

s1 p := signed (a) * signed(b);

52 Iy

53 if (k =0) then

36
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54 sum = p;
55 else
56 sum := signed (sum) + signed (p);
57 end if;
58
59 if (k= 7) then
s0 TempBlock (i, j) <=sum(15 downto 8);
61 end if;
62 end loop;
63 end IOD]);
64 end loop;
65
66 —— computation over
67 over <="'1";
68 end process compute;
69
70 communicate: process
71 begin
72 ready <='0;
73 wait until start = ’1’;
74 dreq <=0"; -
75 dbus <= (others =g );
76
7 ——read the input data matriz
78 for i in 0 to 7 loop
9 for j in 0 to 7 loop
80 wait until clk =’1°;
81 InBlock (i, j) <= din;
82 end loop;
83 end loop;
84 ready <="1";
85
86 ——transfer the data
87 wait until over = ’1’;
88 ready <='0";
89 wait until clk = ’1°;
90 for i in 0 to 7 loop
T for j in 0 to 3 loop
BT dreq <=1’ after 2 ns;
93 wait until dack = ’1’;
04 wait until clk = '1°;
95 dbus <= conv_std_logic_vector (8xi+2+j, 8);
96 dreq <="0";
o7 wait until clk = '1’;
98 dbus <= tempblock (i, 2%j);
99 wait until clk = "17;
100 dbus <= tempblock (i, 2*j+1);
101 wait until clk =17;
102 dbus <= (others =>Z’);
103 wait until dack = ’0’;
104 end loop;
108 end loop;
106 end process communicate;
107 end behav; vy

108

37




109 library ieee;
110 use ieee .std_logic_1164.all ;
11 use ieee.std_logic_arith.all;

112
13 entity mm2 is
114 port ( done : out std_logic;

115 clk : in std.logic;

116 dbus : in std_logic_vector(7 downto 0);
117 dreq : in std_logic;

118 dack : out std_logic;

119 dout : out std_logic_vector(7 downto 0));
120 end mm32

121

122 architecture behav of mm2 is

123 type mem is array (0 to 7, 0 to 7) of std_logic_vector(7 downto 0)
124 signal TempBlock, OutBlock : mem;

128 signal ready, over : std_logic;

126 begin

137 compute: process

128 variable cosblock : mem:= (

129 (701111101”, 011110107, "01110011”, 01100111, "01011000",
130 (”o1111101”, "01100111”, ”00101111”, ”11101000”, ”10101000”,
131 (”o1111101”, "01000101”, ”11010001”, "10000110”, "10101000",
132 (701111101, "00011000”, ”10001101”, 10111011, 01011000",
133 (”01111101”, 11101000”, ”10001101", 01000101, *01011000”,
134 (7o1111101”, "10111011”, ”11010001", "01111010”, "10101000",
135 (701111101”, "10011001”, "00101111”, 00011000, ”10101000”,
136 (”01111101”, 100001107, ”01110011”, "10011001”, "01011000”,
137 )

138 variable a, b : std_logic_vector(7 downto 0);

139 variable p, sum : std_logic_vector(15 downto 0);

140 begin

141 wait until ready = '1°;

142 over <="0";

143

144 —— second matriz multiplication computation

145 for i in 0 to 7 loop

146 - for j in 0 to 7 loop

147 for k in 0 to 7 loop

148 a: ;= TempBlock (k, _]),

149 b := CosBlock (i, k);

150 p := signed (a) * signed (b);

151

152 if (k = 0) then

183 sum := p;

154 else

185 sum := signed (sum) + signed (p);

156 end if;

157

158 if (k = 7) then

159 OutBlock (i, j) <=sum(15 downto 8);

160 end if;

161 end ]DOp;

162 end loop; Yy 4

163 end loop;
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167 end process compute;

168

169 communicate: process

170 variable tempi, tempj : integer;

17 begin

172 dack <="'0";

173 done <="0";

174 ready <="'0";

175

176 for i in 0 to 7 loop

177 for j in 0 to 3 loop

178 wait until dreq = ’1’;

179 dack <=1’ after 1 ns;

180 wait until dreq = ’0’;

181 wait until clk =1’;

182 tempi := conv_integer(unsigned(dbus))
183 tempj := conv.integer(unsigned(dbus)) mod 8;
184 wait until clk ='1’;

185 TempBlock (tempi, tempj) <= dbus;
186 wait until clk = ’17;

187 TempBlock (tempi, tempil) <= dbus;
188 dack <='0" after 1 ns; ——mem write time
189 end lOOp;

190 end loop;

191 wait until clk = '1’;

192 ready <="1";

193

194 —— output the matriz

195 wait until over = '17;

196 ready <='0";

197 done <="1";

198 for i in 0 to 7 loop

199 for j in 0 to 7 loop

200 wait until clk = '1’;

201 dout <= OutBlock (i, j);

202 end loop;

203 end loop;

204 done <="0";

205 end process communicate;

—— over with computation
over <="1";

206 end behav;

207
208 library
209 USE leee

210

ieee ;
.std_logic_1164.all ;

211 entity dct is

212 port
213
214
215
216
a7 end dct;

218

( start : in std_logic;
clk : in std_logic;
din : in std_logic_vector(7 downto 0);
done : out std_logic;
dout : out std_logic_vector(7 downto 0));



|

219 architecture struct of dct is

std_logic;

std_logic;

std_logic_vector (7 downto 0);
std_logic;

std_logic;

std_logic_vector(7 downto 0));

std_logic;

std_logic;

std_logic.vector (7 downto 0);
std_logic;

std_logic;

std_logic_vector (7 downto 0));

std_logic_vector (7 downto 0);

220 component mml

a  port ( start : in
222 ck : in
2323 din : in
224 dreq : out
235 dack : in
226 dbus : out
227 end component;

228

229 component mm2

230  port ( done : out
231 clk : in
232 dbus : in
233 dreq : in
234 dack : out
238 dout : out
236 end component;

237

238 signal dreq, dack : std_logic;
239 signal dbus :

240 begin

241

242

243

244

245

ul : mml

port map (start, clk, din, dreq, dack, dbus);

u2 : mm2

port map (done, clk, dbus, dreq, dack, dout);
246 end struct ;

7
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F Replacing an ASIC

1

2 —— Rockwell ASIC Reuse Modeling Project

s——Nov 18, 1997

s

s —— DCT ezample with 2 components for the 2 matriz multiplications
& —— components have different protocols. an interface is used

T
s library ieee;

s use ieee.std_logic_1164.all;

10 use ieee.std._logic.arith.all;

11

12 entity mml is

13 port ( start : in std_logic;

14 clk : in std_logic;

15 din : in std_logic_vector(7 downto 0);
16 txreq : out std_logic;

17 txack : in std_logic;

18 dreq : out std_logic;

19 dack : in std_logic;

20 addr : out std_logic_vector(5 downto 0);
21 data : out std_logic.vector(7 downto0));
22 end mml;

23
24 architecture behav of mml is

25 type mem is array (0 to 7, 0 to 7) of std_logic_vector(7 downto 0);

26 signal InBlock, TempBlock : mem;

a7 signal ready, over : std_logic;

2s begin

29 compute: process

30 variable cosblock : mem:= (

31 (”01111101”, ”01111010”, "01110011”, ™01100111”, ®01011000”,
32 (”01111101”, ”01100111”, ”00101111™, »11101000”, ”10101000",
a3 (”01111101”, 01000101, ™11010001”, ”10000110”, 101010007,
34 (”01111101”, ”00011000”, 10001101, ”10111011”, »01011000”,
as (”01111101”, "11101000™, ™10001101”, "01000101”, 010110007,
36 - (”01111101”, ™10111011”, ™11010001”, 01111010”, ”101010007,
37 (”01111101”, "10011001”, ™00101111”, ”00011000”, "10101000",
a8 (”01111101™, ™10000110”, "01110011”, "10011001”, "01011000",
as i

40 variable a, b : std_logic_vector (7 downto 0);

a variable p, sum : std_logic_vector(15 downto 0);

42 begin

43 wait until ready = '17;

44 over <="0";

45

16 —— first matriz multiplication computation

47 for i in 0 to 7 loop

18 for j in 0 to 7 loop

49 for k in 0 to 7 loop

s0 a := inblock (i, k);

51 b := cosblock (j, k);

52 p := signed (a) * signed (b); ‘e

53

41
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108

if (k = 0) then

sum := p;
else

sum := signed (sum) + signed (p);
end if;

if (k =7) then
TempBlock (i, j) <=sum(15 downto 8);
end if;
end loop;
end loop;
end loop;

—— computation over
over <="'17;

end process compute;

communicate: process
begin

ready <="0";

wait until start = '1°;
txreq <='0";

dreq <="0";

——read the input data matriz
for i in 0 to 7 loop
for j in 0 to 7 loop
wait until clk =1°;
InBlock (i, j) <= din;
end loop;
end loop;
ready <="1";

——transfer the data
wait until over = '1’;
ready <="'0";
txreq <="T1";
wait until txack = "1°;

for i in 0 to 7 loop
for j in 0 to 7 loop
wait until clk = ’1°;
dreq <="1";
wait until dack = '1’;
addr <= conv_std_logic_vector (8xi+j, 6);
data <= tempblock (i, j);

dreq <="0" after 3 ns; ——mem read time
wait until dack = ’0°;
end loop;
end loop;
txreq <='0";

end process communicate;

106 end behav;

107

108

2 4
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109 library ieee;

110 use ieee.std_logic.1164.all;

111 use ieee .std_logic.arith.all;

112

113 entity mm2 is

114 port ( done : out std_logic;

15 clk : in std_logic;

116 dbus : in std_logic-vector(7 downto 0);
17 dreq : in std_logic;

118 dack : out std_logic;

119 dout : out std_logic_vector(7 downto 0));
120 end mm32

121

122 architecture behav of mm2 is

123 type mem is array (0 to 7, 0 to 7) of std_logic_vector(7 downto 0);
124 signal TempBlock, OutBlock : mem;

125 signal ready, over : std_logic;
126 begin
127 compute: process
128 variable cosblock : mem:= (
129 (701111101, ”01111010”, ”01110011”, ™01100111”, "01011000”, 010001017, ”00101111”, "00011000™),
130 (701111101, 011001117, »00101111”, "11101000”, ”10101000”, »10000110”, ”10001101”, "10111011"),
131 (”01111101”, 010001017, ”11010001”, »10000110”, "10101000”, "00011000", 701110011, "01100111”),
132 (”01111101”, 000110007, 10001101”, "10111011”, ”01011000”, "01100111”, ”11010001”, ”10000110”),
133 (”01111101”, 111010007, ™10001101”, "01000101”, 010110007, ”10011001”, "11010001”, ”01111010”),
134 (701111101”, "10111011”, ”11010001”, "01111010”, 10101000, ”11101000”, ”01110011”, "10011001”),
135 (01111101”, 10011001”, ”00101111”, *00011000”, 101010007, ”01111010™, "10001101”, ”01000101"),
136 (”01111101”, 10000110, ®01110011”, ®10011001”, 010110007, 7101110117, ”00101111”, "11101000™)
137 );
138 variable a, b : std_logic_vector(7 downto 0);
139 variable p, sum : std logic_vector(15 downto0);
140 begin
141 wait until ready = ’1°;
142 over <="0";
143
144 —— second matriz multiplication computation
145 for i in 0 to 7 loop
146 _ for j in 0 to 7 loop
147 for k in 0 to 7 loop
148 a := TempBlock (k, j);
149 b := CosBlock (i, k);
150 p := signed (a) * signed (b);
151
152 if (k = 0) then
183 sum := p;
154 else
155 sum := signed (sum) + signed (p);
156 end if;
157
158 if (k = 7) then
159 OutBlock (i, j) <=sum(15 downto 8);
160 end if;
161 end loop;
162 end loop; iz
163 end ]()Op;
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164
168 —— over with computation

166 over <="1";

167 end process compute;

168

169 communicate: process

170 variable tempi, tempj : integer;

171 begin

172 dack <="0";

173 done <="0";

174 ready <='0";

178

176 for i in 0 to 7 loop

177 for j in 0 to 3 loop

178 wait until dreq = ’'1’;

179 dack <="'1" after 1 ns;

180 wait until dreq = ’0’;

181 wait until clk = ’1;

182 tempi := conv_integer(unsigned(dbus)) / 8;
163 tempj := conv_integer(unsigned(dbus)) mod 8;
184 wait until clk = '1";

188 TempBlock (tempi, tempj) <= dbus;
186 wait until clk = ’17;

187 TempBlock (tempi, tempj+l) <= dbus;
188 dack <=0’ after 1 ns; ——mem write time
189 end loop;

180 end loop;

191 wait until clk = '1°;

192 ready <="'1";

193

194 —— output the matriz

195 wait until over = '1°;

196 ready <="'0";

197 done <="1";

198 for i in 0 to 7 loop

199 for j in O to 7 loop

200 wait until clk = ’1’;

201 dout <= OutBlock (i, j);

202 end loop;

203 end loop;

204 done <="'0";

205 end process communicate;

206 end behav;

207

208

200 library ieee ;

210 use ieee.std_logic_1164 . all ;

211

212 entity transducer is

213 port ( clk : in std_logic;

214 txreq : in std_logic;
215 txack : out std_logic;
216 dreq : in std_logic;
27 dack : out std_logic;
218 addr : in std_logic_vector(5 downto 0);

7
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219 data : in std_logic_vector(7 downto 0);

220 dbus : out std_logic_vector(7 downto 0); '
an req : out std_-logic;

222 ack : in std.logic);

233 end transducer ;
224
235 architecture behav of transducer is

226 begin

227 process

228 variable taddrl, taddr2 : std_logic_vector(7 downto 0);
220 variable tdatal, tdata2 : std_logic_vector(7 downto0);
230 begin

231 txack <='0";

232 req <='0';

233 dack <='0";

234

235 wait until txreq = '17;

236 wait until clk = ’1’;

237 txack <="1";

238

239 while txreq = ’1’ loop

240 wait until (dreq = ’1’ ORtxreq = ’0’);

241 if (txreq = '1’) then

242 dack <="'1" after 1 ns;

243 wait until dreq = ’0’;

244 ——receive first address and data byte
245 taddrl := 700" & a.ddr,

246 tdatal := data;

247 dack <=0’ after 2 ns;

248 wait until dreq = "17;

249 dack <=1’ after 1 ns;

250 wait until dreq = ’0’;

251 ——receive second address and data byte
252 taddr2 := "00” & addr;

253 tdata2 := data;

254 ——ready to send two bytes

255 req <="1";

256 . wait until ack = '17;

287 wait until clk = "17;

258 dbus <= taddrl;

259 req:<="0";

260 wait until clk = 17;

261 dbus <= tdatal;

262 wait until clk =17;

263 dbus <= tdata2;

264 wait until clk =17

265 dbus <= (others =>"7");

266 wait until ack = ’0’;

267 —— give the ack signal to first process
268 dack <=0 after 2 ns;

269 end if;

270 end loop;

211 txack <='0" after 2 ns;

272 end process; iz

273 end behav;
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274

ars
a7e library ieee;

aTs
are entity dct is

280 port ( start : i

281 clk-:

282 din : in std
283 done : out std
284 dout : out std
2ss end dct;

286
as7 architecture struct of dct

288 component mml

s

326 begin
a7 ul : mml
EETY port map ( start ,

arr use ieee .std_logic.1164.all;

n std_logic;
n std_logic;

Jdogic_vector(7 downto 0);
logic;
Jdogic_vector (7 downto 0));

is

289 port ( start : in std_logic;

290 clk : in std_logic;

201 din : in stdlogic_vector(7 downto 0);
202 txreq : out std_logic;

293 txack : in std_logic;

294 dreq : out std_logic;

298 dack : in std_logic;

296 addr : out std_logic_vector (5 downto 0);
207 data : out std_logic_vector(7 downto 0));
298 end component;

299

300 component mm2

301 port ( done : out std_logic;

302 clk : in std_logic;

303 dbus : in std-logic_vector(7 downto 0);
304 dreq : in std_logic;

305 dack : out std_logic;

306 dout : out std_logic_vector(7 downto 0));
307 end component;

308

309 component transducer

310 port ( clk : in std_.logic;

311, txreq : in std_logic;

312 txack : out std_logic;

313 dreq : in std_logic;

314 dack : out std_logic;

318 addr : in std_logic_vector(5 downto0);
316 data : in std_logic_vector(7 downto0);
17 - dbus : out std_logic_vector (7 downto0);
318 req : out std_logic;

319 ack : in std_logic);

320 end component;

a

322 signal txreq, txack, dreq, dack, req, ack : std.logic;

323 signal data, dbus : std_logic_vector(7 downto 0);
324 signal addr : std_logic_vector (5 downto 0);

7
clk, din, txreq, txack, dreq, dack, addr, data);
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329

330 u2 : mm2

as1 port map (done, clk, dbus, req, ack, dout);

332

333 u3 : transducer

334 port map (clk, txreq, txack, dreq, dack, addr, data, dbus, req, ack);

ass end struct ;

w2
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G Replacing the bus

—— Rockwell ASIC Reuse Modeling Project

——Dec 2, 1997

——replace a bus with another bus that has different protocol
——two transducer need to be used

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

entity mml is

port ( start : in std_logic;
clk : in std_logic;
din : in std_logic_vector(7 downto 0);
txreq : out std._logic;
txack : in std_logic;
dreq : out std_logic;
dack : in std_logic;
addr : out std_logic_vector(5 downto 0);

data : out std_logic_vector(7 downto 0));
end mmi,

architecture behav of mml is
type mem is array (0 to 7, 0 to 7) of std_logic_vector(7 downto 0);
signal InBlock, TempBlock : mem;
signal ready, over : std_logic;
begin
compute: process
variable cosblock : mem:= (
(7011111017, "01111010”, ”01110011”, 01100111, "01011000”, ”01000101”, 00101111”,
(701111101”, 01100111, ”00101111”, ”11101000”, »10101000”, *10000110”, ”10001101",
(”01111101”, ”01000101™, ™11010001”, ™10000110”, ”10101000”, ”00011000”, 011100117,
(701111101, ”00011000”, ”10001101”, ”10111011”, "01011000”, "01100111”, ”11010001”,
("01111101”, ”11101000”, ™10001101”, ”01000101”, ”01011000”, ”10011001”, ”11010001™,
(”o1111101”, "10111011”, “11010001”, ”01111010”, ”10101000”, ”11101000”, ”01110011",
("01111101”, ”10011001”, "00101111”, ”00011000”, ”10101000”, *01111010”, ™10001101”",
(”01111101™, ”10000110”, ”01110011”, 710011001, 01011000, 10111011, "00101111”,
);
variable a, b : std_logic_vector(7 downto 0);
variable p, sum : std_logic_vector(15 downto 0);
begin
wait until ready = ’1°;
over <="0";

—— first matriz multiplication calculation
for i in 0 to 7 loop
for j in 0 to 7 loop
for k in 0 to 7 loop
a := InBlock (i, k);
b := CosBlock (j, k);
p := signed (a) * signed (b); by

”00011000” ),
101110117 ),
01100111 ),
10000110 ),
01111010” ),
100110017 ),
01000101 ),
»11101000”)
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- 105

if (k =0) then

sum := p;
else

sum := signed (sum) + signed (p);
end if;

if (k=7) then

TempBlock (i, j) <=sum(15 downto 8);

end if;
end loop;
end loop;
end loop;

——done with the computation
over <="'1";

end process compute;

communicate: process
begin

ready <='0";
wait until start = 1’;
txreq <=0";
dreq <="0";

——read the input data matriz
for i in 0 to 7 loop
for j in 0 to 7 loop
wait until clk = ’17;
InBlock (i, j) <= din;
end loop;
end loop;
ready <="'1";

—— transfer the data
wait until over = '1’;
ready <='0";
txreq <="1";
wait until txack = ’1°;

for i in 0 to 7 loop
for j in 0 to 7 loop
wait until clk = '1°;
dreq <="1";
wait until dack = "17;
addr <= conv_std_logic_vector (8*i+j, 6);
data <= tempblock (i, j);

dreq <="'0" after 3 ns; ——mem read time
wait until dack = '0’;
end loop;
end loop;
txreq <="'0";

end process communicate;

106 end behav;

107

108

7
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109 library ieee;
110 use ieee.std_logic_1164. all ;
111 use ieee.std_logic_arith.all;

112

113 entity mm?2 is
port ( done : out std_logic;

114
118
116
117
118

122

clk : in std.logic;

data : in std_logic_vector(7 downto 0);
addr : in std_logic_vector(5 downto 0);
txreq : in std_logic;
txack : out std_logic;

dreq : in std_logic;

dack : out std_logic;
dout : out std_logic_vector(7 downto 0));

123 end mm2

124

125 architecture behav of mm2 is
type mem is array (0 to 7, 0 to 7) of std_logic_vector(7 downto 0);

126
127

128

130
131
132
133
134

135

signal TempBlock

, OutBlock : mem

signal ready, over : std_logic;
129 begin

compute: process

variable cosblock : mem:= (

(01111101”
(01111101”
(”01111101”
("01111101”
(011111017
(011111017
(701111101”
(”01111101”

);

, "01111010”, ”01110011”, ”01100111”, ”01011000”,
, 701100111”, ”00101111”, ”11101000”, »10101000”,
, 701000101”, ”11010001”, »10000110”, *10101000”,
, "00011000”, ”10001101”, ”10111011”, ”01011000”,
, 711101000”, ”10001101”, ”01000101”, ”01011000”,
, 7101110117, ”11010001”, "01111010”, ”10101000”,
, 7100110017, 091011117, "00011000”, 10101000,
, ”10000110”, *01110011”, ”10011001”, ”01011000”,

variable a, b : std_logic_vector(7 downto 0);
variable p, sum : std_logic_vector (15 downto 0);

begin

wait until ready = *17;

over <="0";

—— second matriz multiplication computation
for i in 0 to 7 loop

for j in
for

0 to 7 loop

k in 0 to 7 loop

a := TempBlock (k, j);

b := CosBlock (i, k);

p := signed (a) * signed(b);

if (k = 0) then

sum := p;
else

sum := signed (sum) + signed (p);
end if;

if (k =7) then
OutBlock (i, j) <=sum(15 dowutgs);
end if;

50
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172

end loop;
end loop;
end loop;

——over with the computation
over <="1";
end process compute;

communicate: process
variable tempi, tempj : integer;

begin
txack «<="0";
dack <="'0";
done <="0";

wait until txreq = '1’;
wait until clk = '1’;
txack <='1" after 1 ns;

while (txreq = ’1’) loop
wait until (dreq = 1’ ORtxreq = '0’);
if (txreq = '1") then
dack <="'1" after 1 ns;
wait until dreq = ’0’;
tempi := conv_integer(unsigned(addr)) / 8;
tempj := conv_integer(unsigned(addr)) mod 8;
TempBlock (tempi, tempj) <= data;
dack <='0" after 8 ns; ——mem write lime
end if;
end loop;
wait until clk = '17;
txack <='0";
ready <='1";

—— output the computed matriz
wait until over = '1’;
ready <="0";

done<="1%:
for i in 0 to 7 loop
for j in 0 to 7 loop
wait until clk = '17;
dout <= OutBlock (i, j);
end loop;
end loop;
done <="0";
end process communicate;

211 end behav;

212

213 library ieee;
214 use ieee .std_logic_1164.all;

215

216 —— converts bus 1 protocol (4 control signals) to the
217 — bus 2 protocol (2 control signals) 2z
218 entity transducerl is
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219
220
221
222
2323
224
2328
228
227
228

230

port ( clk :
txreq :
txack :

dreq :

dack :

addr :

data :

dbus :

req :

ack :

229 end transducerl ;

n std_logic;
n std_logic;
out std_logic;
in std_logic;
out std_logic;
in std logic_vector(5 downto 0);
in std_logic_vector(7 downto 0);
out std_logic_vector (7 downto 0);
out std_logic;
in std_logic);

231 architecture behav of transducerl is

233 begin

233 process

234 variable taddrl, taddr2 : std_logic_vector(7 downto 0);
238 variable tdatal, tdata2 : std_logic.vector(7 downto 0);
236 begin

237 txack <="'0";

238 req <="'0";

239 dack <="0";

240
241

242
243
244
248
246
247
248
249
250
251

252
253
254

258
256
257
258
59
260
261
262
263
264
265
L1
267
268
269
270
m
72

T3

wait until txreq = ’1°;
wait until clk = ’'1’;
txack <="1";

while txreq = 1’ loop
wait until (dreq = ’1’ OR txreq = 0’ );
if (txreq = ’1’) then

dack <="'1" after 1 ns;

wait until dreq = '0’;

——recetve first address and data byte
taddrl := 00" & addr;

tdatal := data;

dack <=0’ after 2 ns;

wait until dreq = ’1’:

dack <=’1" after 1 ns;

wait until dreq = ’0’;

——receive second address and data byte
taddr2 := 00" & addr;

tdata2 := data;

——ready to send two bytes

req <=’1";

wait until ack = ’1’;
wait until clk ='1’;
dbus <= taddrl;

req <='0";

wait until clk = °1’;

dbus <= tdatal;

wait until clk = '1°;

dbus <= tdata2;

wait until clk = '1;

dbus <= (others => "7’ );

wait until ack = '0’; VY
——give the ack signal to first process
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274 dack <="'0" after 2 ns;

a7s end if;

276 end loop;

277 txack <="'0' after 2 ns;
278 end process;

279 end behav;

280

281

282 library ieee;

283 use ieee.std_logic_1164.all;

284 use jeee.std_logic_arith.all;

285

28s —— converts bus 2 protocol (2 control signals) to the
287 —— bus 1 protocol (4 control signals)

288 entity transducer2 is

289 port ( clk : in std_logic;

290 txreq : out std_logic;
201 txack : in std_logic;
202 dreq : out std_logic;
293 dack : in std.logic;
204 addr : out std_logic.vector(5 downto 0);
205 data : out std_logic_vector (7 downto 0);
296 dbus : in std.logic.vector(7 downto 0);
297 req : in std_logic;
298 ack : out std_logic);

298 end transducer? ;
300
sor architecture behav of transducer? is

o2 begin

303 process

304 variable tadd : std_logic_vector (5 downto0);
305 variable datal, data2 : std_logic_vector (7 downto 0);
306 begin

307 ——wait for protocol 1 to be ready

308 txreq <= '1";

309 wait until txack = ’17;

310

311 for i in 0 to 7 loop

312 for j in 0 to 3 loop

313 —— first read the addr and two data bytes
314 wait until req = '1°;

315 ack <='1" after 1 ns;

316 wait until req = 0’}

317 wait until clk = '1’;

318 tadd := dbus(S downto 0);

a1e wait until clk = *17;

320 datal := dbus;

an wait until clk = '1’;

322 data2 := dbus;

323 ——send the two bytes with the addresses
324 dreq <="1";

328 wait until dack = '1’;

326 addr <= tadd,

327 data <= datal; >
328 dreq <='0" after 3 ns;
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329 wait until dack = '0’;
330 wait until clk = °1’;
31 dreq <="17;

332 wait until dack = *1’;
ass addr <= conv.std_logic_vector (conv_integer(unsigned(tadd)) + 1, 6);
334 data <=data2;

a3s dreq <="'0" after 3 ns;
336 wait until dack = '0’;
337

asa wait until clk =’1’;
ass ack <='0" after 1 ns;
340 end loop;

341 end loop;

342 txreq <="'0";

343 wait until txack = ’0’;

344 end process;

s4s end behav;

346

347

sas library ieee;

349 use ieee.std_logic_.1164.all;

aso
ss1 entity dct is

353 port ( start : in std_logic;

383 clk : in std_logic;

354 din : in std_logic_vector(7 downto 0);

385 done : out std_logic;

ase dout : out std_logic_vector(7 downto 0));
as7 end dct;

358

sse architecture struct of dct is

360 component. mml

361 port ( start : in std_logic;

362 clk : in std_logic;

363 din : in std_logic.vector (7 downto 0);
364 txreq : out std_logic;

365 txack : in std_logic;

366 _ dreq : out std_logic;

367 dack : in std_logic;

368 addr : out std_logic_vector(5 downto 0);
369 data : out std_logic.vector(7 downto 0));
aro end component;

arn

372 component mm?2

ar3 port ( done : out std_logic;

374 clk : in std_logic;

ars data : in std_logic_vector(7 downto 0);
376 addr : in std_logic_vector(5 downto 0);
377 txreq : in std_logic;

378 txack : out std_logic;

are dreq : in std_logic;

380 dack : out std_logic;

sl dout : out std_logic_vector (7 downto 0));

382 end component;

&
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385
386
387
388
ase
390
381
392
393
394
385
396
397
388
| 399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

420

421 .

422
423
‘ 424
428

component transducerl
port ( clk : in std_logic;
txreq : in std_logic;
txack : out std_logic;
dreq : in std.logic;
dack : out std_logic;
addr : in std_logic_vector(5 downto0);
data : in std_logic_vector(7 downto0);
dbus : out std_logic_vector(7 downto 0);
req : out std_logic;
ack : in std.logic);
end component;

component transducer2
port ( clk : in std_logic;
txreq : out std_logic;
txack : in std.logic;
dreq : out std_logic;
dack : in std.logic;
addr : out std_logic_vector(5 downto0);
data : out std_logic_vector(7 downto0);
dbus : in std.logic.vector(7 downto0);
req : in std_logic;
ack : out std.logic);
end component;

signal txreql, txackl, dreql, dackl, req, ack : std_logic;
signal txreq2, txack2, dreq2, dack2 : std_logic;
signal datal, data2, dbus : std_logic_vector(7 downto 0);
signal addrl, addr2 : std_logic_vector (5 downto 0);
begin
ul : mml
port map (start , clk, din, txreql, txackl, dreql, dackl, addrl, datal);

u2 : mm2
port map (done, clk, data2, addr2, txreq2, txack2, dreq2, dack2, dout);

u3 : transducerl
port map (clk, txreql, txackl, dreql, dackl, addrl, datal, dbus, req, ack);

ud : transducer2
port map (clk, txreq2, txack2, dreq2, dack2, addr2, data2, dbus, req, ack);

‘ 126 end struct ;

i
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H Communication using a FIFO queue

1
2 — Rockwell ASIC Reuse Modeling Project

s — Nov 20, 1997

AT

s ——DCT ezample with 2 components for the 2 matriz multiplications

&« —— communication through a 64 byte FIFO queue with full /empty lines

7

8

s ——model of a 64 byte FIFO

10 library ieee;

11 use ieee .std_logic_1164.all;

12 use ieee.std_logic_arith.all;

13

14 entity fifo is

15 port ( enable : in std.logic;

16 reset : in std_logic;

17 rws : in std_logic;

18 clk : in std.logic;

19 din : in std_logic_vector(7 downto 0);
20 dout : out std_logic_vector(7 downto 0);
21 full : out std_logic;

23 empty : out std_logic);

23 end fifo;

24
25 architecture behav of fifo is

26 begin

ar process (clk)

28 type storagetype is array(0 to 63) of std_logic_vector(7 downto 0);
29 variable storage : storagetype;

30 variable front, back : integer;

a1 variable isempty, isfull : std_logic := ’0’;

32 begin

33 if (clk =’1") then

34 ——reset counters and flags

38 if (reset = '1’) then

36 - front := 0;

a7 back := 0;

a8 isempty = "17;

39 isfull := ’0’;

40 else

41 ——read from fifo

42 if (rws = ’0’ and isempty = ’0’ and enable = ’1’) then
a3 dout <= storage(front );

a4 front := (front + 1) mod 64;

as if (front = back) then

46 isempty := '1’;

a7 isfull := ’0’;

18 end if;

49 end if;

50

51 —— write into fifo

52 if (rws =1’ and isfull =0’ and enatd® = '1’) then
53 storage(back) := din;

56
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55
56
87
B8
59
60
61
62
63
64
&5
66
&7
68
69
70
71
72
73
T4
75
76
ki
78

Te

back := (back + 1) mod 64;
if (front = back) then
isempty := ’0’;
fafull == *1;
end if;
end if;
end if;
empty <= isempty ;
full <= isfull ;
end if;
end process;
end behav;

library ieee;
use ieee.std_logic_1164.all ;
use ieee.std_logic_arith.all;

entity mml is

port ( start : in std_logic;
clk : in std-logic;
din : in stdlogic_vector(7 downto0);

empty : in std_logic;
rws : out std_logic;
enable : out std_logic;
reset : out std_logic;
data : out std_logic_vector(7 downto0));

end mml;

architecture behav of mml is
type mem is array (0 to 7, 0 to 7) of std_logic_vector(7 downto0);
begin
process
variable inblock : mem;
variable cosblock : mem:= (
(”01111101”, "01111010”, "01110011”, "01100111”, ”01011000”, ”01000101”, ”00101111”, ”00011000”),
(”01111101”, "01100111”, "00101111”, "11101000”, ”10101000”, ”10000110”, ”10001101”, ”101110117),
(701111101”, ”01000101", "11010001”, "10000110”, "10101000”, ”00011000”, 01110011”, ”01100111”),
(”01111101”, ”00011000”, ”10001101”, 10111011, "01011000”, “01100111”, ”11010001”, ”10000110”),
(”01111101”, »11101000”, "10001101”, ”01000101”, ”01011000”, ”10011001”, “11010001”, ”01111010”),
(”01111101”, ”10111011”, ”11010001”, ”01111010”, ”10101000”, "11101000”, "01110011”, 7100110017 ),
(”01111101”, ”10011001”, ”00101111”, “00011000”, ”10101000”, ™01111010”, "10001101”, ”01000101" )
(701111101, ”10000110”, ”01110011”, ”10011001”, 01011000, ®10111011”, »00101111”, ”11101000”)
);
variable a, b : std_logic_vector(7 downto0);
variable p, sum : std_logic_vector (15 downto 0);
begin
wait until start = '1’;
data <= (others =>"7");

——read the input data matriz
for i in 0 to 7 loop
for j in 0 to 7 loop
wait until clk = '1°; i
inblock (i, j) := din;
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109 end loop;

110 end loop;

111

112 ——reset the fifo

113 reset <=’'1";

114 wait until clk = 1’

118 reset <="'0";

1186

17 ——do the computation

118 for i in 0 to 7 loop

119 for j in 0 to 7 loop

120 for k in 0 to 7 loop

121 a := inblock (i, k);

122 b := cosblock (j, k);

123 p := signed (a) * signed (b);
124

135 if (k = 0) then

126 sum = p;

127 else

128 sum := signed (sum) + signed (p);
129 end if,

130

131 ——computed one entry of matriz. write to FIFO
132 if (k=7) then

133 enable <="1;

134 rws <="1";

135 data <=sum(15 downto 8);
136 wait until clk = '17;
137 enable <="0";

138 rws <="'0";

139 end if;

140 end ]00]:);

141 end loop;

142 end loop;

143 end process;

144 end behav;

147 iibrary ieee ;
148 Use leee .std_logic_1164.all;
149 use ieee.std_logic_arith.all;

151 entity mm2 is
1852 port ( done : out std_logic;

153 clk : in std_logic;

154 data : in std_logic_vector(7 downto 0);
155 full : in std_logic;

156 rws : out std_logic;

157 enable : out std_logic;

158 dout : out std_logic_vector(7 downto 0));
159 end mm?2

161 architecture behav of mm2 is
162  type mem is array (0 to 7, 0 to 7) of std.logic-vecjg;.(? downto 0);
163 type widemem is array (0 to 7, 0 to 7) of std_logic_vector(15 downto0);

o8



164 begin

165 process

186 —— this algorithm will use wider memory
167 variable outblock : widemem;

168
169
170
171
172
173
174
175
176
iry
178

179

variable cosblock : mem:= (
(701111101”, "01111010”, ”01110011”, ™01100111™, ™01011000”,
(”01111101”, ”01100111”, ”“00101111”, "11101000”, "10101000™,
(?01111101”, ”01000101”, "11010001”, ”10000110”, ”10101000”,
("01111101", ”00011000”, ”10001101”, ”10111011”, ”01011000”,
(7011111017, 7111010007, 10001101, ”01000101”, 01011000”,
(011111017, ”10111011”, ”11010001”, 01111010, »10101000”,
(”o1111101”, "10011001”, "00101111”, ”00011000”, ”10101000”,
(”01111101”, ”10000110”, ”01110011”, ”10011001”, 010110007,
)i

variable a, b : std_logic_vector(7 downto 0);

variable p, sum, temp : std_logic_vector(15 downto 0);

begin

enable <='0’;

rws <="0";

wait until full = ’17;

wait until clk = ’1’;

——do the computation
for i in 0 to 7 loop
for j in 0 to 7 loop
——read one entry of matriz
enable <="1";
wait until clk = '1’;
enable <="0";
wait until clk = 17;
a := data;

——add the product to all the partial sums
for k in 0 to 7 loop
if (i /=0) then
temp := outblock (k, j);
end if;
b := cosblock (k, i);
p := signed (a) * signed (b);

if (1 =0) then

sum := p;

else
sum := signed (temp) + signed (p);

end if;

outblock (k, j) := sum;

end loop;
end loop;
end loop;

—— give the done signal and oultput the output matriz
done <="1";
for i in 0 to 7 loop
for j in 0 to 7 loop ‘e
wait until clk = ’17;

59
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219 dout <= outblock (i, j) (15 downto 8);
330 end loop;

221 end loop;
232 done <="0";
223 end process;

224 end behav;

228

azs library ieee;

227 use ieee .std_logic_1164.all;

228

229 entity dct is

230 port ( start : in std_logic;

231 clk : in std_logic;

232 din : in std.logic_vector(7 downto 0);
233 done : out std_logic;

234 dout : out std_logic_vector(7 downto 0));
2ss end dct;

236

237 architecture struct of dct is
238 component mmi

239 port ( start : in std_logic;

240 clk : in std_logic;

241 din : in std_logic_vector (7 downto 0);
242 empty : in std_logic;

243 rws : out std_logic;

244 enable : out std_logic;

245 reset : out std_logic;

246 data : out std_logic_vector (7 downto 0));
247 end component;

248

249 component mm2

250 port ( done : out std_logic;

251 clk : in std_logic;

252 data : in std_logic_vector(7 downto 0);
283 full : in std_logic;

254 rws : out std_logic;

2855 enable : out std_logic;

286 . dout : out std_logic_vector (7 downto 0));
287 end component;

258

259 component fifo

260 port ( enable : in std_logic;

261 reset : in std_logic;

262 rws : in std_logic;

263 clk : in std.logic;

264 din : in std_logic_vector(7 downto 0);
268 dout : out std_logic_vector(7 downto 0);
266 full : out std_logic;

267 empty : out std_logic);

268 end component;

269

270 signal rwsl, rws2, rws, enablel, enable2, enable : std_logic;

271 signal full, empty, reset : std_logic;
372 signal dmml, dmm?2 : std_logic_vector(7 downto 0 ;2>

273
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274 begin

278 ul : mml

276 port map (start, clk, din, empty, rwsl, enablel, reset, dmml);
arT

278 u2 : mm2

279 port map (done, clk, dmm2, full, rws2, enable2, dout);

280

281 enable <= enablel OR enable2;

282 rws <=rwsl ORrws2;

283

284 u3 : fifo

285 port map (enable, reset, rws, clk, dmml, dmm2, full, empty);
286 end struct ;

i
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I Communication using a shared memory

1

3 — Rockwell ASIC Reuse Modeling Project

s —— Nov 28, 1997

e,

s — DCT components communicate using a shared memory
]
7 library ieee;

s use ieee.std_logic_1164.all;

s use ieee.std_logic_arith.all;
10 use ieee.std_logic_signed.all ;
11

12 entity mml is

13 port ( start : in std_logic;

14 clk : in std_logic;

15 din : in std.ogic.vector(7 downto 0);
16 used : in std_logic;

17 over : out std_logic;

18 csm : out std_logic;

19 wem : out std_logic;

20 addr : out std_logic.vector(5 downto 0);
21 data : out std_logic_vector(7 downto 0));
22 end mml,

23
24 architecture behav of mmi is
25 type mem is array (0 to 7, 0 to 7) of std_logic_vector (7 downto 0);

26 begin
27 process
28 variable inblock : mem;
29 variable cosblock : mem:= (
30 (7011111017, ”01111010”, "01110011”, "01100111", "01011000”, ”01000101”, ”00101111”, "00011000"),
a1 (701111101”, 701100111, "00101111”, ™11101000”, ”10101000”, ”10000110”, "10001101”, ”10111011™),
32 (701111101”, ”01000101”, ™11010001”, ™10000110”, ”10101000”, ”00011000”, "01110011”, ”01100111"),
33 (7011111017, ”00011000”, 10001101, »10111011”, 01011000”, "01100111”, "11010001”, ”10000110"),
34 (”01111101”, ”11101000”, ”10001101”, ”01000101”, 01011000”, ®10011001”, "11010001”, ”011110107),
3s (*01111101”, "10111011”, "11010001”, ™01111010”, *10101000”, *11101000”, "01110011”, ”10011001"),
36 - (701111101”, ”10011001”, "00101111”, "00011000”, ”10101000”, 01111010”, ™10001101”, ”01000101" ),
37 (”01111101”, "10000110”, "01110011”, "10011001”, ”01011000”, ”10111011”, ”00101111”, ”11101000")
38 i
39 variable a, b : std_logic_vector(7 downto 0);
40 variable p, sum : std_logic_vector (15 downto0);
41 begin
42 wait until start = '1°;
43 data <= (others =>'7");
44
45 ——read the input data matriz
5 for i in 0 to 7 loop
47 for j in 0 to 7 loop
48 wait until clk = '17;
49 inblock (i, j) := din;
50 end loop;
~
3 end loop;
52 Iy
53 wait until clk = 1°;
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B4 wem<="'1";

55 csm<="0"; —— enable the chip

56 wait until clk = "17;

87

58 ——do the computation

59 for i in 0 to 7 loop

0 for j in 0 to 7 loop

€1 for k in 0 to 7 loop

62 a := inblock (i, k);

6 b := cosblock (j, k);

64 p := signed (a) * signed (b);

65

66 if (k = 0) then

67 sum := p;

68 else

6o sum := signed (sum) + signed (p);
70 end if;

T1

72 if (k=17) then

3 ——write the sum to shared memory
74 addr <= conv_std_logic_vector (i*x84, 6);
5 wait for 1 ns;

76 wem<="0";

77 wait for 8 ns; ——tWHZ time
78 data <=sum(15 downto 8);

79 wait for 9 ns; ——tDW
80 wem<="1";

81 wait for 1 ns;

82 data <= (others =>'7");

83 wait for 2 ns; —— next cycle after this
84 end if;

a5 end loop;

86 end I.OOD,

87 end loop;

88

89 ——done with the computation

90 s <="1";

o _ wait until clk = '1°;

92 over<="]1";

23

94 ——wait till second unit finishes

o5 wait until used = "17;

96 end process;

97 end behav;

1.3

e library ieee;

100 use ieee .std_logic_1164. all ;

101 use ieee .std_logic_arith.all;

102

103 entity mm2 is

104 port ( done : out std_logic;

105 clk : in std_logic;

106 csm : out std_logic;

107 oem : out std_logic; oz
108 addr : out std_logic_vector(5 downto 0);
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109
110
111
112

data : in std.logic.vector(7 downto 0);
used : out std_logic;
over : in std_logic;
dout : out std_logic_vector(7 downto 0));

113 end mm32

114

us architecture behav of mm2 is

ne  type mem is array (0 to 7, 0 to 7) of std_logic_vector(7 downto0);

ur  type widemem is array (0 to 7, 0 to 7) of stdlogic_vector(15 downto 0);

118 begin

119 process

120
121
122
123
124
128
126
127
128
129
130
131
132

134
135
136
137
138
139
140
141
142
143
144
145
146 _
147
148
149
150
151
152
153
154
155
156
187
158
159
160
161
162

variable outblock : widemem;

variable cosblock : mem:= (

(*01111101", ”01111010”, 01110011, ”01100111",

(701111101”, ”01100111”, ”00101111”, 111010007,
(*01111101”, ”01000101”, ®11010001”, 10000110,
(701111101”, "00011000”, "10001101”, ”10111011",
(”01111101", ”11101000”, 710001101, ™01000101”,
(7011111017, »10111011”, »11010001”, "01111010”,
(”01111101”, "10011001”, "00101111”, "00011000",
(701111101”, ”10000110”, ”01110011”, ™10011001”,
)i
variable a, b : std_logic_vector(7 downto 0);

”010110007,
”101010007,
”10101000",
”01011000",
”01011000",
7101010007,
”10101000",
”01011000” ,

variable p, sum, temp : std_logic_vector (15 downto 0);
133 begin

used <="0";
——do not assert the memory control lines
oem <="1";
csm <= ’1,;
——wait for the first matriz mult to finish
wait until over = '1’;
csm <="0";
addr <= (others =>"1");
wait until clk = ’1’;
——do the computation
for i in 0 to 7 loop
for j in 0 to 7 loop
——get the (i,j) data from memory
addr <= conv_std_logic_vector (184, 6);
wait for 1 ns;
oem <="0";
wait for 17 ns;
cem<="1";

a := data;
for k in 0 to 7 loop
if (i /= 0) then
temp := outblock(k, j);
end if;

b
Pt

cosblock (k, i);

64

signed (a) = signed (b); by

»01000101”,
»10000110”
»00011000” ,
»01100111”,
»10011001” ,
»11101000” ,
»01111010”,
”10111011”,

00101111”,
»10001101",
01110011”,
»11010001”,
”11010001”
"01110011”,
»10001101",
00101111",

»00011000” ),
”10111011"),
"01100111"),
»10000110"),
»01111010"),
»10011001"),
»01000101" ),
»11101000”)



165
166
167
168

169

171

172

173

178

176

177

178

179

181
182

183

184

!

185
186

187

189
180
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

208

if (i =0) then
sum := p;
else

sum := signed (temp) + signed (p);

end if;
outblock (k, j) := sum;
end loop;
wait for 3 ns; —— next cycle
end loop;
end loop;

cem<C="1";
oem<="'1";

—— give the done signal and output the output matriz

wait until clk = '1°;
done <="1";
for i in 0 to 7 loop
for j in 0 to 7 loop
wait until clk = '17;
dout <=outblock(i, j)(15 downto 8);
end loop;
end loop;
done <="0";
end process;
end behav;

library ieee;
use ieee.std_logic.1164.all;

entity arbiter is
port ( csl : in std_logic;
cs2 : in std_logic;
cs : out std_logic;
addrl : in std_logic_vector(5 downto 0);
addr2 : in std.logic.vector(5 downto 0);
addr : out std_logic_vector (5 downto 0);
datal : in std_logic_vector(7 downto 0);
data? : out std_logic_vector(7 downto0);

data : inout std_logic_vector(7 downto0));

end arbiter ;

architecture behav of arbiter is
begin

process (csl, cs2, addrl, addr2, datal, data)
begin
——only one component should access memory
assert (cs2/="0" or cs1/="0’)
report "memory.access.clash”
severity warning;

——unit 1 only writes to memory
if (cs1="0" and cs2/="0") then
g <="10%;

7
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219 addr <= addrl;

230 data <= datal;

221 ——unit 2 only reads from memory
222 elsif (es1/="0" and cs2="0") then

223 cs <="'0";

224 addr <= addr2;

225 data2 <= data;

228 else

227 cs<="1";

228 end if;

229 end process;

230 end behav;

231

232

233 library ieee;

234 use ieee.std_logic_1164.all;

2358

236 entity dct is

237 port ( start : in std_logic;

238 clk : in std_logic;

239 din : in std.logic_vector (7 downto 0);
240 done : out std_logic;

241 dout : out std_logic_vector(7 downto 0));
242 end dct;

243

1+ architecture struct of dct is
245 component mml

2

-

246 port ( start : in std_logic;

247 clk : in std_logic;

248 din : in std_logic_vector(7 downto 0);
249 used : in std_logic;

250 over : out std_logic;

251 csm : out std_logic;

253 wem : out std.logic;

283 addr : out std_logic_vector (5 downto 0);
254 data : out std_logic_vector (7 downto 0));
285 end component;

256_

287 component mm2

258 port ( done : out std_logic;

259 clk : in std_.logic;

260 csm : out std_logic;

261 cem : out std_logic;

262 addr : out std_logic_vector(5 downto 0);
263 data : in std_logic_vector (7 downto 0);
264 used : out std_logic;

265 over : in std.logic;

266 dout : out std_logic_vector(7 downto 0));
267 end component;

268

269 component sram

270 port ( nce : in std_logic;

271 noe : in std_logic;

272 nwe : in std_logic; ;
273 a : in stdlogic_vector(5 downto 0);
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275
aTe
T
a7s
79
280
281
282
283
284
285
286
87
288
289
290
291
292

d : inout std._logic_vector(7 downto 0));
end component;

component arbiter
port ( csl : in std_logic;
cs2 : in std.logic;
cs : out std logic;
addrl : in std_logic_vector(5 downto 0);
addr2 : in std_logic_vector(5 downto 0);
addr : out std_logic_vector (5 downto0);
datal : in std.ogic_vector (7 downto 0);
data2 : out std_logic_vector(7 downto 0);
data : inout std_logic_vector(7 downto 0));
end component;

signal csml, csm2, cs, oem, wem, used, over : std_logic;
signal addrl, addr2, addr : std_logic_vector(5 downto 0);
signal data, datal, data2 : stdlogic.vector(7 downto 0);

293 begin

294 ul : mml

295 port map (start, clk, din, used, over, csml, wem, addrl, datal);
296

297 u2 : mm2

298 port map (done, clk, csm2, cem, addr2, data2, used, over, dout );
299

300 u3 : sram

301

302

303

304

port map (cs, oem, wem, addr, data);

u4 : arbiter
port map (csml, csm2, cs, addrl, addr2, addr, datal, data2, data);

sos end struct ;

7
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