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by 
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Dr. Emma Aronson, Chairperson 

 

 

 

 

Microorganisms are ubiquitous in their distributions and are integral to global 

nutrient cycling. Yet, microbial metabolic strategies are niche-specific, as environmental 

conditions including nutrient and moisture availability, oxygen concentration, and 

salinity select for certain microbial adaptations. The Salton Sea, a hypersaline and 

eutrophic lake in Southern California, presents a unique opportunity to investigate how 

the environment selects for microbial survival and dispersal, which has urgent 

implications for both ecosystem stability and public health impacts.  

In Chapter 1, we explored the geochemistry of the Salton Sea sub-ecosystems 

(i.e., the playa, seawater, and aeolian) and how they structure their respective 

microbiomes. We also detail the paucity of research into these communities and describe 

modern methods like metagenomics and wind modeling that could be used to 

characterize the Salton Sea microbiomes. In Chapter 2, we examined the Salton Seawater 

microbiome within a water column during periods of lake stratification and turnover in 

2020 and 2021. We characterized the taxonomic composition of the lake’s microbiome 



 xii 

across seasons by sequencing the bacterial 16S rRNA gene (V3-V4) and used 

metagenomic sequencing to assess the community’s capacity for sulfur cycling. While 

microbiome composition significantly varied between seasons, halophilic, mixotrophic 

bacteria consistently dominated the water column. Additionally, sulfur oxidation genes 

were shared across depths and their relative coverage fluctuated with seasonal shifts in 

oxygen, sulfide, and sulfate concentrations. In Chapter 3, we used amplicon sequencing 

of the 16S rRNA gene (V3-V4), metagenomic sequencing, and wind geospatial data to 

characterize the aeolian dust microbiome and their adaptations that permit atmospheric 

survival and dispersal. We identified a core aeolian microbiome including bacterial 

genera such as Massilia, Sphingomonas, and 11 other stress-tolerant taxa. We also 

observed that the dust microbiome contains the necessary adaptations for persisting in 

dust, including UV radiation resistance genes and osmotic resistance genes, and that the 

distribution of these traits was driven by wind conditions. Together, these findings 

demonstrate that harsh environments select for microbial survival strategies, which in 

turn, regulate the ecosystems’ geochemistry and stability. Furthermore, this relationship 

structures both microbial colonization and dispersal, which may pose a danger to the 

public upon exposure. 
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 1 

Introduction 

The Salton Sea is a hypersaline, polluted lake within Southern California that is 

rapidly shrinking, directly leading to heightened dust emissions in the region that are 

inhaled by the local population. Exposure to this dust has led to a high incidence of 

respiratory distress within the nearby community, where access to healthcare and 

employment opportunities are lacking. The chemical composition of this dust has been 

investigated to determine its toxic components, however, the culprit(s) responsible have 

yet to be identified. While microorganisms have been hypothesized as contributors to the 

toxicity of this dust, the dust microbiome from the Salton Sea has not been explored. 

Additionally, though microorganisms within the Salton Seawater have been classified, 

these studies did not examine the microbial community within the larger context of the 

Salton Sea’s unique geochemistry. Thus, understanding the microbiomes and their 

functional traits would clarify their role in the decline of this ecosystem as well as and 

how this relationship is a detriment to public health.  

This dissertation aims to understand how substrate-specific microbiomes within 

the Salton Sea, specifically the seawater and aeolian dust microbiomes, survive in these 

extreme environments. Clarifying these survival strategies allows us to understand how 

environmental microbiomes influence the habitability of these ecosystems via dispersal 

and nutrient cycling. Furthermore, analyzing the abiotic factors that select for the 

diversity in microbial survival strategies provides insight into the conditions that 

encourage the survival of potentially pathogenic microorganisms, and how these 

microorganisms conserve and share metabolic and pathogenic traits. 



 2 

The first chapter of this work offers a detailed history of how the Salton Sea 

formed, what is currently known about its unique geochemistry, and expands on the 

putative microbial ecology of the sub-ecosystem microbiomes (i.e., the playa, seawater, 

and dust microbiomes) as well as how we can study these communities. The second 

chapter examines the microbial ecology within a water column in the Salton Sea by 

classifying the taxonomic composition of the seawater microbiome as well as the sulfur 

cycling pathways utilized by this community across seasons. The third chapter explores 

the aeolian (i.e., wind-blown) dust microbiome from the Salton Sea and identifies a core 

set of bacterial genera that can colonize atmospheric dust. Additionally, this chapter 

investigates the distribution of certain survival strategies used by the aeolian dust 

microbiome and how these adaptations promote its pathogenicity upon inhalation. 

Collectively, this work establishes that environmental microbiomes and their adaptations 

serve as the interface between ecosystem function and public health.  
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CHAPTER I 

Title: Microbiome Interactions and their Ecological Implications at the Salton Sea 

 

Authors: Freund, H.L.1, Maltz, Mia R.2, Swenson, Mark P.2, Topacio, Talyssa M.2, 

Montellano, Vanessa M.2, Porter, William3, and Aronson, Emma L.2 

1. Genetics, Genomics, and Bioinformatics Program, University of California, 

Riverside, CA 

2. Department of Microbiology and Plant Pathology, University of California, 

Riverside, CA 

3. Department of Environmental Sciences, University of California, Riverside, CA 
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Abstract 

Although the Salton Sea was once a thriving destination for humans and wildlife, 

it has now degraded to the point of ecosystem collapse. Increases in local dust 

emissions have introduced aeolian (wind-blown) microorganisms that travel, along 

with contaminants and minerals, into the atmosphere, detrimentally impacting 

inhabitants of the region. Proliferation of certain microbial groups in regions of the 

Sea may have a disproportionate impact on local ecological systems. Yet, little is 

known about how the biogeochemical processes of this drying lakebed influence 

microbial community composition and dispersal. To elucidate how these 

microorganisms contribute, and adapt, to the Sea’s volatile conditions, we synthesize 

research on three niche-specific microbiomes — the Sea, exposed lakebed (playa) and 

aeolian —and highlight modern molecular techniques, such as metagenomics, 

coupled with physical science methodologies, including transport modeling, to 

predict how the drying lakebed will affect microbial processes. We argue that an 

explicit consideration of microbial groups within this system is needed to provide 

vital information about the distribution and functional roles of ecologically pertinent 

microbial groups. Such knowledge could help inform regulatory measures aimed at 

restoring the health of the Sea’s human and ecological systems 

Introduction 

As impacts of climate change and policy-driven pollution worsen in the Salton 

Sea region, there is an urgent need to predict the Sea's ecosystem health and stability 

in response to water influx changes. Although there is increasing evidence about the 
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harmful effects of environmental degradation on wildlife within the Salton Sea, less is 

known about how microorganisms respond to mounting degradation throughout the 

region (California Natural Resources Agency 2020; Jones and Fleck 2020; Kjelland 

and Swannack 2018; Marti-Cardona et al. 2008; Moreau et al. 2007). Microorganisms 

and their respective communities (i.e., microbiomes) are ubiquitous, and the 

foundation of nutrient cycling within ecosystems (Falkowski et al. 2008). While the 

effects of long-term environmental stress on microbial communities are less 

understood, research indicates that microorganisms are sensitive to natural and 

anthropogenic perturbations, and thus may serve as useful indicators of ecosystem 

productivity (Karimi et al. 2017; Maltz et al. 2017).  

Without an explicit consideration of environmental microorganisms and their 

stress-response tactics, we may undermine our ability to respond to changing 

environmental and regulatory measures. For instance, policy decisions, plummeting 

water quality, and reduced Sea levels may have varying effects on microorganisms 

within this novel and vulnerable ecosystem. Moreover, understanding how the 

degraded environment surrounding the Salton Sea influences microbial processes, 

interactions and biogeochemical cycling is particularly important for assessing 

microbial contributions to overall ecosystem functionality, as well as for illuminating 

connections between policy- and climate-driven environmental changes and the 

health of nearby human and ecological systems. 
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Agricultural Runoff, Dust Emissions  

The implementation of the Quantification Settlement Agreement in 2003 diverted 

water from the Colorado River to other areas, which massively reduced inflows to the 

Salton Sea (California Natural Resources Agency 2020). The New, Alamo and 

Whitewater rivers feed the Salton Sea with agricultural runoff containing pesticides, 

metals, salts and other elements (Vogl and Henry 2002). Specifically, copper, arsenic, 

manganese and selenium have been detected at levels above the U.S. Environmental 

Protection Agency threshold in water and sediment samples (Moreau et al. 2007; Xu 

et al. 2016). Selenium is of particular concern due to its consistently high 

concentrations in local fish (i.e., tilapia), at levels surpassing Aquatic Life Criteria 

standards (Xu et al. 2016). Federally banned pesticides including polychlorinated 

biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and 

dichlorodiphenylethane (DDE) have also been detected in in the muscle tissue of 

local fish species (Moreau et al. 2007; Riedel et al. 2002; Sapozhnikova et al. 2004; 

Xu et al. 2016) and in water, exposed lakebed (playa), and submerged playa samples 

(Sapozhnikova et al. 2004; Wang et al. 2012; Xu et al. 2016). Selenium, DDT and 

other pollutants accumulate in detritus, and are introduced into the Salton Sea’s 

trophic network when consumed by algae, invertebrates and fish (Saiki et al. 2012). 

While the accumulation of these contaminants are detrimental to animal biodiversity 

(Canton and Van Derveer 1997; Köhler and Triebskorn 2013; Riedel et al. 2002), the 

extent to which pollution alters the Sea’s trophic structure warrants further study. 
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In addition to pollutants, agricultural effluent delivers excess nutrients to the 

Salton Sea, leading to eutrophication and subsequent die-offs of aerobic organisms 

(Beman et al. 2005; Chaffin and Bridgeman 2014; Heisler et al. 2008). Nutrient 

enrichment leads to harmful algal blooms as these algae consume a majority of the 

Sea’s dissolved oxygen. Eventually, these algae die off in the absence of sufficient 

oxygen, as other microorganisms decompose detritus and deplete the remaining 

dissolved oxygen (Qin et al. 2013). Additionally, strong winds during spring and 

summer seasons create upwellings of anoxic water and sulfide from the lake bottom 

to the surface (Marti-Cardona et al. 2008; Reese et al. 2008).  

Toxic plumes coupled with persisting anoxic conditions contribute to ongoing 

loss of wildlife, with particularly high mortality in local and migratory birds such as 

eared grebes (Podiceps nigricollis), fish such as Mozambique tilapia (Oreochromis 

mossambicus) and invertebrates such as pileworms (Neanthes succinea; Anderson et 

al. 2007; Carmichael and Li 2006; Marti-Cardona et al. 2008). Microbial pathogens, 

including Pasteurella multocida, cyanotoxins and botulinum toxin, have all been 

associated with mass die-off events (Carmichael and Li 2006; Meteyer et al. 2004; 

Nol et al. 2004); however, not all die-off events have been linked to heightened 

concentrations of these particular pathogens or toxins. Understanding how the 

region’s fauna and their trophic structures respond to eutrophication, upwellings and 

other natural processes will differentiate between vulnerable and resilient aspects of 

the Salton Sea ecosystem. 
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As playa exposure increases due to reduced inflow and hypersalinity, pollution 

and eutrophication exacerbate stressful conditions within the Salton Sea ecosystem. 

Over the next decade, the volume of inflow will be reduced by 40% and the volume 

of the Sea itself will be reduced by more than 60% (Cohen 2014). Ongoing shrinkage 

of the Salton Sea not only increases salinity in the Sea and the playa (California 

Natural Resources Agency 2020), but also exposes additional lakebed sediment, 

leading to heightened dust emissions in the area (Frie et al. 2017). These emissions 

are expected to contribute to already high levels of background particulate matter 

(Frie et al. 2017; Frie et al. 2019; US Fish and Wildlife 2014). Wet playas like the 

Salton Sea are vulnerable to erosion as capillary action in the sediment brings 

groundwater to the playa surface (Buck et al. 2011), softening sediment and 

stimulating groundwater evaporation (Reynolds et al. 2007). Playa emissions and 

aerosolized Sea spray contribute to the composition of the dust, which consists of 

minerals (e.g., selenium, sodium and sulfate), metals (e.g., cadmium and chromium; 

Buck et al. 2011; Frie et al. 2017; Frie et al. 2019) and dust-associated 

microorganisms, along with their respective microbial metabolites. These contributed 

materials, particulate matter size, and strong winds collectively influence dust 

composition, reduce local air quality and threaten downwind niches upon deposition.  

Dust emissions disperse microbial components from dust to surrounding locations 

(Frie et al. 2017; Griffin 2007), and the harsh, arid climate of the Salton Sea provides 

habitat for microorganisms acclimated to these inhospitable conditions (Paul and 

Mormile 2017). Salinity, nutrient availability, pH, oxygen concentration and 
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temperature collectively affect microbial composition and functional trait diversity. 

Most microorganisms are able to regenerate rapidly and transfer genes horizontally, 

which permits uptake of DNA from the environment as well as the sharing of DNA 

with other microbial species or viruses (Johnston et al. 2014). Altogether, these 

abilities allow microorganisms to easily adapt to the unique selective pressures of 

their environment.  

Microbial metabolic functions may be more dependent on environmental 

pressures than on evolutionary or phylogenetic relationships (Allison and Martiny 

2008; Louca et al. 2017; Shade et al. 2012). Likewise, pollutants, excess nutrients and 

geophysical processes may alter the collection of microorganisms found within the 

Salton Sea’s sub-ecosystems (Figure 1). The sub-ecosystem microbiomes include the 

playa, seawater and the wind-driven microorganisms that travel along with dust 

throughout the atmosphere (i.e., the aeolian microbiome). Interactions between 

environmental microbiomes and the ecosystem regulate the availability and 

accumulation of certain minerals. For example, anaerobic microorganisms in extreme 

environments akin to the Salton Sea can use selenate (SeO4
2-) or selenite (SeO3

2-) as 

electron acceptors; this reduces it to elemental selenium (Nancharaiah and Lens 

2015), which accumulates in sediment. Other anaerobes can reduce sulfate to 

hydrogen sulfide, which consumes dissolved oxygen and yields harmful “gypsum” 

blooms, which are somewhat analogous to algal blooms (Ma et al. 2020). Clarifying 

how these microbiomes contribute to the trophic structures and chemical cycling 
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within the Salton Sea is crucial to promoting the long-term sustainability and 

functionality of this ecosystem. 

 
Figure 1. Interactions among Salton Sea's Dynamic Sub-Ecosystems. There are three 

environmental microbiomes: (1) playa, (2) seawater and (3) aeolian; sea spray and playa 

dust contribute to the aeolian microbiome. As the Salton Sea recedes, lakebed sediment is 

exposed and concurrently transforms into playa. Playa emits loose particulates that 

entrain microorganisms, chemicals and sediment into the atmosphere, which travel 

throughout the region via surface winds. 

 

Sea Microbiome 

For decades, studies on the microbial composition of the Salton Sea have focused 

heavily on cyanobacteria. Cyanotoxins — specifically microcystin — contribute to 

the high frequency of avian mortality events occurring at the Sea (Carmichael and Li 

2006; Meteyer et al. 2004). Additionally, cyanobacteria and other phytoplankton taxa 

form microbial mats that sit above the water surface (Wood et al. 2002) and thus are 

easy to investigate. Nevertheless, these studies have failed to capture the microbial 

diversity that persists below the Sea surface.  
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The Salton Sea is characterized by hypersaline, alkaline and anoxic conditions 

where anaerobes and extremophiles (i.e., microorganisms that inhabit extreme 

environments) prevail (González et al. 1998; Reese et al. 2008). These extremophiles 

include halophiles, or salt-loving microorganisms, and alkaliphiles, which thrive in 

conditions with a pH of 8 or greater (Andrei et al. 2012; Mesbah and Wiegel 2008).  

To date, only two studies have examined microbial phylogenetic diversity in 

Salton Sea water (Dillon et al. 2009; Hawley et al. 2014; online technical Appendix 

Table 1). In contrast to previous work, these studies showed that Cyanobacteria 

compose less than 5% of the total taxa found in Sea water samples (Dillon et al. 2009; 

Hawley et al. 2014); instead, they detected high abundances of microorganisms from 

both Proteobacteria and Bacteroidetes phyla. Beyond Cyanobacteria, Dillon et al. 

(2009) observed seasonal shifts in the relative abundance of Gammaproteobacteria 

and Alphaproteobacteria classes, and the Bacteroidetes phylum. 

Proteobacteria are likely the most abundant phylum detected in Salton Sea water 

(Hawley et al. 2014). Rhodobacterales, an order within Alphaproteobacteria, was 

highly abundant within the summer months (Dillon et al. 2009). Rhodobacterales is 

composed primarily of photoautotrophs, which are capable of anaerobic 

photosynthesis, and haloalkaliphiles, which have been identified globally in saline, 

alkaline lakes (Kopejtka et al. 2017). Further determining which taxa within the 

Proteobacteria are most common and abundant would be a promising area for future 

research, as finer taxonomic resolution from this abundant phylum has rarely been 

reported. Given that a majority of these analyses about Salton Sea water capture 
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microbial diversity only at the Sea surface, and neglect to characterize the microbial 

diversity of the water column, future work assessing microbiome structure below the 

water surface would be particularly valuable. For example, exploring the taxonomic 

diversity of microorganisms within the Sea’s water column, particularly during 

seasonal upwellings and eutrophication events, would identify microorganisms 

responsible for depleting dissolved oxygen supplies via detritus consumption or 

sulfate reduction (Reese et al. 2008); classifying these microorganisms could improve 

predictions of anoxic periods within the Salton Sea and similar ecosystems.   

Playa Microbiome 

Because of their intimate associations within the Salton Sea, the biogeochemical 

interactions of the playa and the sediment beneath the lake are challenging to 

differentiate. Similar to microorganisms in Salton Sea water, anaerobes and 

extremophiles have a selective advantage in this niche due to the extremely high 

concentration of sulfate and salt in the sediments, which is compounded by the lack 

of oxygen and phosphorus resources (Swan et al. 2007). 

Sediment depth gradients have been shown to differentially structure microbial 

communities. Most Archaea have been observed with equal abundance across 

lakebed sediment depths (Swan et al. 2010). However, Crenarchaeaota (i.e., Archaea 

phylum) and bacterial communities consistently exhibit similar abundances with 

depth. Likewise, the relative abundance of certain bacterial classes, including 

Betaproteobacteria, Gammaproteobacteria and Clostridia, correspond with both 

increased depth and salinity in the Salton Sea. 
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Several taxa found in Salton Sea playa have also been identified in marine 

sediments (Dillon et al. 2009; Swan et al. 2010) as well as haloalkaline lake 

sediments and salt flats (McGonigle et al. 2019; Rojas et al. 2018; Yang et al. 2016). 

Saline concentration has been identified as one of the most important factors in 

structuring microbial communities across ecosystem types (Lozupone and Knight 

2007). These findings indicate that salinity and oxygen availability are crucial 

environmental drivers of microbial assembly in the Salton Sea playa. 

Although the microbial composition beneath playa crusts has been studied to 

some extent (Dillon et al. 2009; Swan et al. 2010), the microorganisms of the 

superficial playa have largely been neglected. Increased playa exposure directly 

corresponds to greater dust fluxes in the region (Buck et al. 2011; Frie et al. 2019; 

Parajuli and Zender 2018), entraining both chemical and microbial components into 

dispersing dust (Figure 1). Heightened playa emissions correspond to salt 

precipitation on the playa surface (Buck et al. 2011), driving the microbial 

community structure at this playa–dust interface. Considering that playa surfaces are 

global dust contributors (Abuduwaili et al. 2010; Kandakji et al. 2020; Reheis et al. 

2002; Reynolds et al. 2007; Ziyaee et al. 2018), characterizing and quantifying the 

impact of dispersing playa microorganisms on surrounding ecosystems and 

inhabitants of the region may be particularly important. Moreover, integrating these 

putative impacts into our understanding of wind-driven playa erosion may greatly 

advance our assessment of the vulnerability and toxicity of playa particulate matter. 

To understand the influence of both sediment and playa on dust composition — as 
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well as associated exposure and deposition risks for downstream niches — the 

phylogenetic structure, functional diversity and seasonal variation of the playa 

microbiome must be investigated. 

Aeolian Microbiome 

In addition to minerals and trace metals, microorganisms can become entrained in 

both playa dust and Sea spray, along with their microbial toxins, which may be 

capable of withstanding turbulent conditions and long-distance transport (Figure 1; 

Tang et al. 2017). Microorganisms persisting among and on dust compose the aeolian 

microbiome, which includes all bacteria, archaea, fungi and viruses that circulate in 

the atmosphere. Some fungal spores and bacteria are capable of surviving within — 

or atop — dust as single cells or filaments, moving freely or attaching to individual 

particles (Samake et al. 2017). 

Dust microorganisms have adapted to a unique set of environmental stressors 

including wind stress, ultraviolet radiation, humidity, temperature and nutrient 

availability. These microorganisms are equipped with a particular combination of 

traits, such as melanin production (Grishkan 2011) or biofilm formation (Aalismail et 

al. 2019), which enables their survival within this inhospitable airborne environment 

(Grishkan 2011). Several studies have reported higher microbial abundance on large 

dust particles at higher temperatures or low relative humidity (Lighthart and Shaffer 

1997; Polymenakou et al. 2008; Yamaguchi et al. 2012), which are common features 

of the Salton Basin. Increased microbial burden also often correlates with enriched 

organic matter and minerals in dust (Tang et al. 2017). Collectively, these results 
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suggest that larger dust particles shelter, sustain and protect microorganisms to ensure 

their dispersion and survival.  

Numerous microorganisms isolated from dust remain viable for long durations of 

time. Bacterial and fungal isolates from dust not only can be successfully grown in 

the laboratory environment (Maki et al. 2019; Yamaguchi et al. 2012), but also have 

been shown to be metabolically active while in transit (Tang et al. 2017). 

Additionally, airborne microorganisms can facilitate ice nucleation, promoting cloud 

formation and precipitation (Amato et al. 2015; Bowers et al. 2009; Failor et al. 2017; 

Gaston et al. 2017). Therefore, aeolian microorganisms may threaten downwind 

ecosystems by altering precipitation and temperature, or disturbing stable 

microbiomes upon deposition. Moreover, exposure risks from airborne pathogenic 

microorganisms originating in the Salton Sea, and associated playa, may yield 

deleterious consequences for plants and animals, as well as human populations. 

Construction and farm workers may be particularly vulnerable to increased inhalation 

risks and exposure to dust-associated microorganisms, based on their occupational 

hazards (Gorris et al. 2018).  

Although the microorganisms inhabiting the seawater and sediment of the Salton 

Sea have been examined, the dust microbiome has yet to be characterized. Given their 

remarkable ability to withstand environmental stress in the airborne environment, the 

aeolian microbiome could be dominated by either dormant or stress-resistant 

microorganisms. This resistant aeolian microbiome within Salton Sea dust could 

contribute to the health impacts of air quality in the region, especially if microbial 
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groups break dormancy or actively interact with plant, animal or human hosts upon 

deposition. Some microbial adaptations likely permit their survival in dust. For 

example, bacteria from the genus Bacillus, which have been identified in dust 

samples from across the globe (Tignat-Perrier et al. 2019), have the ability to form 

endospores, allowing them to survive harsh environments via dormancy (Nicholson et 

al. 2000). Upon deposition, these dormant and resistant microorganisms may perform 

vital ecosystem functions, or they may pose formidable threats to inhabitants of the 

region. Motile microorganisms exhibiting chemotaxis may also be uniquely suited to 

explore porous environments and establish in favorable niches upon deposition 

(Scheidweiler et al. 2020). Therefore, exploring the functional attributes and 

microbiome structure within dust surrounding the Salton Sea would clarify the 

contribution of the aeolian microbiome to either promoting ecosystem stability or 

exacerbating regional public health crises. 

Methods for Further Study 

Future examination of the Salton Sea must comprehensively explore the playa, 

seawater and aeolian microbiomes to characterize their structural similarities, as well 

as any differences among these communities. Temporal and compositional 

differences may influence the interactions between these microbiomes and their 

surrounding environment, as well as overall nutrient availability within the Salton Sea 

ecosystem. Common methodologies used in human and environmental microbiome 

research could be tailored to explore both the taxonomic and functional diversity of 

Salton Sea microbiomes. 
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Sampling and Analysis Strategies 

Multiple sample types (e.g., dust, water, playa) should be collected, at a variety of 

time points, from a replicated set of diverse locations within and around the Sea. As 

sample collection procedures will differ between media types (soil cores, dust 

collection, water samples), technological advances, such as the use of drones, water 

skimmers or seawater samplers (Xing et al. 2017), could be advantageous. Other 

valuable approaches may use semi-permanent passive samplers (Aciego et al. 2017; 

Frie et al. 2019), portable sampling platforms (Docherty et al. 2018) or active 

samplers, which collect all airborne cells and spores using filters from a known air 

volume (Frie et al. 2017).  

Sample processing procedures may include filtering dust suspensions and 

seawater, using sterile 0.2- μm filters to capture bacteria and other microorganisms on 

the filter, while allowing passage of water and other aqueous substances. From 

unfiltered suspensions, microbial biomass can be determined using flow cytometry 

(Schmidt et al. 2020) or phospholipid fatty acids (PLFA; Buyer and Sasser 2012).  

Amplicon marker genes, such as the 16S rRNA gene in bacteria or the internal 

transcribed spacer (ITS) region of fungal rRNA (Knight et al. 2018; Nilsson et al. 

2019), are selected for amplification or quantitative polymerase chain reactions 

(qPCR; Manter and Vivanco 2007) to determine the taxonomic diversity and the 

relative abundance of important microbial groups across samples. Amplicon marker 

gene sequencing is currently the most cost-effective, high-throughput next-generation 
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sequencing (NGS) method for studying microbiome composition across ecosystems 

(Liu et al. 2020). 

Microbiome composition may be altered by both seasonal and agricultural 

geochemical fluxes within the Salton Sea, which also may select for metabolic 

strategies employed by these microbiomes. Sampling campaigns across time points at 

the same locations will capture temporal and seasonal variation, as upwelling events 

in the summer are known to change surface water chemistry by increasing sulfide 

levels and reducing dissolved oxygen content (Reese et al. 2008; Watts et al. 2001). 

Organo-chloride pesticides (OCPs) accumulate within previously underwater 

sediments, and may subsequently volatilize or evaporate as polluted sediments are 

increasingly exposed. As these pesticide-laden sediments become entrained in dust, 

OCPs are likely transported throughout the region via increased wind speeds and 

storms (LeBlanc et al. 2002), exacerbating dust inhalation risks. Although 

microorganisms from the playa or aeolian microbiomes may be capable of 

metabolizing recalcitrant or labile components from polluted dust, ecophysiological 

assays and metabolic models would be required to quantify the extent to which these 

toxins can be transformed or biodegraded by extant microorganisms. Future work 

incorporating and altering model parameters would facilitate our ability to predict 

future fate and transport of toxic dust based on future water influx and climate change 

scenarios (D’Amato et al. 2008).  

Changes in geochemistry, such as total organic carbon concentrations, pH and 

nutrient levels, have pointed to detectable shifts in playa microbiomes in similar 
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hypersaline water bodies (Hollister et al. 2010). Collecting soil core samples from the 

playa over a distance transect would help to elaborate how geochemical variation 

impacts Salton Sea terrestrial microbiomes. Furthermore, as reductions in sea volume 

expand the exposed playa, these sampling strategies and subsequent analyses could 

clarify how microbiomes transition with their environments from moist to dry 

conditions. 

The impact of dust composition and evaporite minerals (e.g., magnesium, 

calcium, sulfate) on aeolian microbial metabolism and assembly could be studied via 

deploying dust collectors (Aarons et al. 2019; Frie et al. 2019). Dust samples can be 

analyzed using stable isotope ratios, such as 87Sr/86Sr and 143Nd/144Nd, to detail 

the provenance of the dust and its corresponding microbial community (Figure 1; 

Aciego et al. 2017; Dastrup et al. 2018; Xie et al. 2020; Yan et al. 2020). 

Furthermore, Sr-Nd isotopic analyses of Salton Sea dust may reveal geochemical 

features of the dust’s provenance (i.e., the geography and climate) that may select for 

microbial migration from the Sea and the playa to the aeolian microbiome. Coupled 

with NGS technologies, this comprehensive analytical approach will explicate the 

dynamics within the playa, seawater and aeolian microbiomes, as well as their 

associated implications for microbial dispersal throughout the Salton Sea Basin.  

Meta-Omics Analyses 

Exploring diversity in Salton Sea microbiomes could leverage sophisticated 

molecular techniques (i.e., -omics), such as high-throughput NGS methods, shotgun 

metagenomics, metatranscriptomics or metaproteomics. Briefly, a shotgun 
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metagenome describes the collection of genomic material from a particular 

ecosystem, including both eukaryotic and prokaryotic genomes (Quince et al. 2017). 

Metagenomics can be used to characterize taxon-level microbial diversity and 

categorize putative functions performed by the microbial community. Although 

metagenomics can identify the functional traits within a microbiome, 

metatranscriptomics confirms which traits are actively expressed by the microbiome 

at a given time. A metatranscriptome includes the totality of gene (i.e., RNA) 

transcripts found within an environment (Shakya et al. 2019). Recently, 

metaproteomics has been used to complement NGS methods, via classifying and 

quantifying proteins produced by microbiomes (Hettich et al. 2013). Metagenomics 

has been used to study Salton Sea leaf litter (Chase et al. 2018; Chase et al. 2019; 

online technical Appendix Table 1) and seawater (Hawley et al. 2014), but these 

studies did not detail the functional diversity of their samples. Salton Sea playa and 

aeolian metagenomes have not been thoroughly described, nor have 

metatranscriptomic or metaproteomic approaches been employed yet for 

characterizing the activity of Salton Sea microbiomes. Because of the dearth of 

information on microbiome structure within the region, the Salton Sea presents a 

unique opportunity to utilize -omics techniques to study both microbial taxonomic 

and functional diversity across sub-ecosystems, which compose the larger ecosystem 

(Figure 1).  

Metagenomic, metatranscriptomic and metaproteomic analyses have been 

performed on a wide variety of sample types, including the human gut (Long et al. 
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2020), soil (Romero-Olivares et al. 2019), deep-sea sediments (Mason et al. 2014), 

cloud water (Amato et al. 2019) and airborne dust particulates (Aalismail et al. 2019). 

These techniques allow for the comparative analyses of microbial genomes, 

transcriptomes and proteomes from different systems and ultimately identifies both 

shared taxa and genes among microbiomes. Functional annotation of metagenomes 

and metatranscriptomes, using comprehensive databases such as the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa et al. 2016; 

Kanehisa et al. 2017; Kanehisa et al. 2019) and analytical tools like KoFamScan 

(Aramaki et al. 2020), detail the functional traits that are differentially expressed 

under specific environmental conditions (Amato et al. 2019; Chung et al. 2020; 

Shakya et al. 2019). For instance, soil metatranscriptomes may indicate whether 

microbial communities are actively allocating resources to stress response or 

proliferation (Romero-Olivares et al. 2019). Functional annotations can then guide the 

classification of proteins, such as microbial exudates, identified in metaproteomes 

(Hettich et al. 2013). Collectively, these analyses may further reveal metabolic 

strategies that enable microbial persistence in harsh conditions (Brewer et al. 2019). 

Furthermore, understanding these associated metabolic processes may reveal 

mechanisms that drive microbiome-resource interactions throughout this dynamic 

ecosystem.          

Modeling Dust Emissions 

Mineral dust advection, or dust transference by fluid flow, has been shown to be 

an important vector for the long-range transport of microbial organisms, especially in 
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and around desert environments such as the Salton Basin. While smaller particulates 

have longer atmospheric lifetimes due to their slower deposition velocities, larger 

aerosols (> 5 μm) typical of desert surfaces are especially efficient vectors of 

microbial dispersal (Yamaguchi et al. 2012). Dust transport patterns and ranges are 

thus dependent on both particle size and meteorology, with strong wind systems 

capable of relocating larger particles — along with any attached microorganisms — 

across continental distances (Perry et al. 1997). The Salton Sea region is one of the 

dustiest in the United States, with both the Coachella Valley and Imperial Valley 

regions consistently exceeding daily EPA standards for particulate matter (PM10). 

Moreover, these regions exhibit strong seasonality and frequent wind storm–driven 

dust events (Evan 2019; US Environmental Protection Agency 2020). This makes the 

patterns of dust emissions and transport, as driven by seasonal meteorology and 

sporadic dust storms, important for understanding regional sources and biogeographic 

patterns of local microorganisms. 

Available tools for identifying sources of advected dust include trajectory or 

dispersion models such as the Hybrid Single Particle Lagrangian Integrated 

Trajectory Model (HYSPLIT; Stein et al. 2015). By combining local wind fields with 

physical dust deposition parameters, these models can run forwards (to estimate 

patterns of dust transportation and deposition from a given source) or generate 

backwards trajectories (to assess likely emission sources for particles collected at a 

given receptor site). These methods have been used previously to examine long range 

transport patterns of source-specific microbial populations (Cáliz et al. 2018; Rosselli 



 23 

et al. 2015; Stres et al. 2013; Yamaguchi et al. 2012) and impacts of dust storms on 

downwind microbial communities (Hagh Doust et al. 2017; Mazar et al. 2016). 

Our group has generated backward trajectories to evaluate the wind patterns 

blowing from the Salton Sea and estimate relative contributions of particulates 

reaching our passive dust collectors over a finite time period. Furthermore, we have 

explored the distribution and elemental composition in the Salton Sea region (Frie et 

al. 2019), which provides valuable context for explaining how seasonally shifting 

dust patterns — along with chemicals, physical particulates and associated microbial 

transport — may influence local microbiomes. 

Conservation and Public Health in the Sea 

Characterizing the unique microbial communities of the Salton Sea will 

complement ongoing investigations of the impacts of pollution on local residents and 

wildlife. Yet, many questions remain. For instance, how does the aeolian microbiome 

influence the lung microbiome? The aeolian microbiome may exacerbate respiratory 

symptoms via incidentally inhaled aeroallergens and particulate matter, resulting in 

the disproportionately higher rates of asthma and chronic respiratory disease detected 

in nearby communities (California Department of Public Health n.d.; Farzan et al. 

2019). Can we explain long-term exposure effects of Salton Sea dust on the health of 

wildlife and local residents by comparing the Salton Sea microbial communities with 

unpolluted microbial communities, collected in analogous systems? The 

microorganisms themselves, in addition to their extracellular exudates (Chae et al. 

2017; Rolph et al. 2018), may serve as bioindicators of either eutrophication or 
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pollution in soil, water or dust (Bouchez et al. 2016; Karimi et al. 2017; Schloter et al. 

2018). Furthermore, historical exposure to pollutants may select for microorganisms 

that are uniquely suited for tolerating — or even ameliorating — toxicity within these 

particular systems.  

In the interest of augmenting restoration efforts, how can we best deploy 

particular microbial taxa from the Salton Sea sub-ecosystems to remediate polluted 

systems via biodegradation or metal transformation (i.e., bioremediation; Kumar et al. 

2019; Sher and Rehman 2019; Voica et al. 2016)? Novel opportunities for restoration 

may arise as human activities, such as mining and food production, increase apace 

with the shrinking of the Salton Sea. To illustrate one example, lithium mining of 

geothermal brines in the Salton Sea (Vikström et al. 2013), coupled with evaporation, 

may provide opportunities to leverage endemic microorganisms for bioremediation. 

Yet, microbial bioremediation may not be sufficient to mitigate the environmental 

impacts and deleterious human health outcomes for inhabitants of the region exposed 

to air pollution; this pollution may be exacerbated by evaporating novel brines, 

replete with toxic metals such as arsenic and manganese, which may cause 

neurological issues in children (Dion et al. 2018). To promote community health and 

ecosystem stability, we must investigate the dynamic interactions among the playa, 

seawater and aeolian microbiomes throughout the region. Furthermore, a thorough 

characterization of the functional attributes of dust microbiomes is needed to inform 

holistic approaches for addressing regional public health crises throughout the Salton 

Sea Basin. 
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Conclusions 

The Salton Sea crisis necessitates immediate action as conditions rapidly worsen. 

Reduced precipitation and increasing temperatures are drivers of drought throughout 

California (Luo et al. 2017), advancing the diminution of the Salton Sea. Playa 

erosion and resulting dust emissions are predicted to rise (Parajuli and Zender 2018), 

which could interfere with incoming radiation and induce subsequent changes to local 

climate (Von Schneidemesser et al. 2015). Fluctuations in nutrient availability as a 

result of climate shifts will select for specific microbial functions (Louca et al. 2017; 

Louca et al. 2018), altering the overall trophic structure in the Sea. To better 

understand ecosystem resilience in this unpredictable landscape, more research is 

needed on the functional potential of these interacting environmental microbiomes 

and their contributions to nutrient cycling. 

Any actions taken to increase the stability or conservation of this ecosystem may 

have public health implications, and vice versa, and we must anticipate the 

consequences of inaction to humans and wildlife. Careful consideration of the 

impacts of restoration or mitigation attempts must be holistically examined, as 

approaches addressing one area of concern may inadvertently yield adverse 

consequences for other areas. With greater knowledge, resources can be allocated 

towards strategic measures that aim to ameliorate the health of local human 

populations and promote the restoration of diverse wildlife and microbial 

communities that support resilient ecosystems.   
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Table A.1.1. Microbial Studies within the Salton Sea Ecosystem 

Studies that focused on microorganisms within the Salton Sea, including which type of 

sample was collected in their study, as well as the type and taxonomic resolution of 

microorganisms identified in their work. Each study has been assigned numeric codes, 

depending on methods used within a particular study; numeric codes in ascending order 

correspond to: 1 = culture-based methods, 2 = chain termination sequencing (i.e., Sanger 

sequencing chemistry), 3 = next-generation sequencing, 4 = biochemical assays, 5 = 

biomass and/or microscopic assays. 
Study Sample type Microbial group Taxa resolution Methods 

Chase et al. 2019 leaf-litter Bacteria Strain 3 

Chase et al. 2018 leaf-litter Bacteria Strain 3, 4 

Schilling et al. 2018 sediment Bacteria NA 1, 4, 5 

Zhou et al. 2017 water Bacteria Species 1, 4, 5 

Fradet et al. 2016 sediment Bacteria, Archaea Species 1, 3 

Hawley et al. 2014 water Bacteria Phylum 3 

VillaRomero et al. 2013 water, sediment Bacteria NA 1, 4, 5 

Saiki et al. 2012 water, sediment Eukaryotes Species 4, 5 

Swan et al. 2010 sediment Bacteria, Archaea Class 2, 4 

Van Ginkel et al. 2010 water, sediment Bacteria Species 1, 2, 4 

Dillon et al. 2009 water, sediment Bacteria Genus 2, 4 

Tiffany et al. 2007 water Eukaryotes Species 5 

Carmichael & Li 2006 water, tissue Bacteria, Eukaryotes Genus 1, 2, 4, 5 

Lange & Tiffany 2002 water Eukaryotes Species 5 

Okeke et al. 2002 sediment Bacteria, Archaea Species 1, 2, 4, 5 

Reifel et al. 2002 water Eukaryotes Species 5 

Wood et al. 2002 water, sediment Bacteria, Eukaryotes Strain 1, 2, 5 

Arnal 1961 water, sediment Eukaryotes Species 4, 5 

Arnal 1958 sediment Eukaryotes Species 5 
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Abstract 

Microorganisms are the biotic foundation for nutrient cycling across ecosystems, 

and their assembly is often based on the nutrient availability of their environment. 

Though previous research has explored the seasonal lake turnover and geochemical 

cycling within the Salton Sea, California’s largest lake, the microbial community of this 

extreme ecosystem has been largely overlooked. We collected seawater from a single 

location within the Salton Sea at 0m, 3m, 4m, 5m, 7m, 9m, 10m, and 10.5m depths in 

August 2021, December 2021, and April 2022. We observed that the water column 

microbiome was influenced by seasonal shifts in geochemistry, varying significantly by 

time point (R2 = 0.59, P = 0.003). Of the geochemical features measured, temperature 

(R2 = 0.27, P = 0.004), dissolved organic matter (R2 = 0.13, P = 0.004), and dissolved 

oxygen (R2 = 0.089, P = 0.004) were significant drivers of microbial composition. In 

addition, several halophilic chemoorganotrophs, phototrophs, and mixotrophs were 

consistently found in samples across depths and time points, though their relative 

abundances fluctuated. We also observed a high relative coverage of sulfur cycling genes, 

particularly sulfur oxidizing genes, in the metagenomes and metagenome-assembled 

genomes isolated from the 0m, 5m, and 10m samples from the water column. Our work 

demonstrates that the microbiome within the Salton Seawater has the capacity to 

metabolize sulfur species and utilize multiple trophic strategies, such as alternating 

between chemorganotrophy and chemolithoautrophy, to survive this harsh environment. 

Together, these results suggest that the Salton Sea microbiome is integral in the cycling 
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of nutrients within this ever-changing ecosystem, most notably sulfur, and thus 

contributes to the seasonal geochemical dynamics of the Salton Sea.    

Introduction 

The Salton Sea is a terminal, hypersaline lake located in Southern California that 

receives agricultural runoff as its main source of inflow (Tompson 2016). Since the 

Quantification Settlement Agreement in 2003, Colorado River water intended for farms 

in Imperial County was diverted to support growing populations in Southern California, 

reducing freshwater input into the Sea (Taylor 2018). This reduction in inflow coupled 

with agricultural runoff entering the Salton Sea has contributed to its drop in volume and 

surface area as well as its hypersalinity. Furthermore, the agricultural runoff coming from 

the New, Alamo, and Whitewater Rivers introduce high concentrations of nitrogen, 

phosphorous, and sulfur into the Salton Sea, along with a range of agricultural chemicals 

and pesticides, contributing to the lake’s eutrophic and polluted status (Reese et al. 2008).  

Despite the shallowness of the Salton Sea, it is a holomictic lake that experiences 

regular stratification in the warm summer months. Temperatures in the region rise and 

warm the surface water of the lake, creating a thermocline that separates the surface 

water (i.e., epilimnion) from the bottom waters (i.e., hypolimnion). The difference in 

density throughout the water column prevents dissolved oxygen in the epilimnion from 

flowing into to the hypolimnion, leading to an oxycline (i.e., an oxygen gradient). Anoxia 

in the hypolimnion allows for anaerobic, sulfate reducing bacteria to decompose organic 

matter and reduce sulfate (SO4) to hydrogen sulfide (H2S), leading to H2S accumulation 

in the hypolimnion (Tiffany et al. 2007, Reese et al. 2008). As temperatures in the area 
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cool, the water column thermocline dissipates and lake turnover ensues, oxygenating the 

water column and stimulating sulfide oxidation. Lake mixing continues until 

temperatures in the Salton Sea region rise again in late spring, initiating the lake 

stratification cycle again. This seasonal stratification is expected to weaken as the lake 

continues to shrink because the lakes’ shallow depth will prevent an oxycline from 

forming, inhibiting sulfate reduction in an oxygenated water column and subsequently 

preventing the accumulation of H2S in the hypolimnion. 

Seasonal lake stratification and oxidation-reduction regulate the lake’s sulfur 

cycle, which greatly impacts the health and stability of this ecosystem. Summer winds in 

the region are occasionally strong enough to overcome the shallow lake’s stratification, 

causing upwellings that introduce H2S from the reducing hypolimnion to the oxic 

epilimnion (Reese et al. 2008). Rapid sulfide oxidation consumes the available oxygen in 

the water and contributes to gypsum crystal formation and precipitation, covering the 

surface of the Salton Sea in what is known as a gypsum bloom (Tiffany et al. 2007). 

These conditions are not only fatal to fish and birds but also fatal to phototrophic 

organisms in the water column by blocking out sunlight (Anderson et al. 2007, Ma et al. 

2020). Additionally, SO4 in the form of MgSO4 and CaSO4 minerals have also been found 

in high concentrations in the Salton Sea’s exposed playa and dust attributed to the playa 

(Buck et al. 2011, Frie et al. 2019). These SO4 minerals can hydrate and dehydrate 

repeatedly depending on their surrounding conditions, disrupting the sediment surface 

and increasing its vulnerability to wind erosion, leading to higher dust flux in the area 



 44 

(Buck et al. 2011, Frie et al. 2019). The sulfur cycle in the Salton Sea is a crucial process 

that contributes to this ecosystem’s dynamic structure and function. 

While the Salton Sea’s seasonal stratification and sulfur cycle have been well 

studied, the involvement of microorganisms in these dynamic processes has been 

neglected. To date, investigations into the Salton Sea microbiome have only focused on 

surface water microbial communities, and the functional diversity of the seawater 

microbiome is unknown (Freund et al. 2022). Considering that microorganisms are 

integral players in biogeochemical cycling within ecosystems, there is a need to 

understand how microorganisms are involved in the nutrient cycling of extreme 

ecosystems like the Salton Sea. For example, research from other sulfidic systems has 

shown that biological sulfide oxidation happens at a greater rate than abioitic sulfide 

oxidation (Luther et al. 2011), suggesting that sulfide oxidizing microorganisms are key 

drivers of rapid sulfur cycling. Without investigating the microbial contributions to 

nutrient cycling within an ecosystem, we cannot holistically understand the geochemical 

dynamics that create, maintain, and degrade extreme ecosystems such as the Salton Sea. 

Here, we explored the taxonomic and functional diversity of the Salton Sea microbiome 

across the water column. We utilized amplicon, marker gene sequencing (i.e., 16S rRNA 

sequencing) to determine the microbial composition of the Salton Sea water columns, as 

well as shotgun metagenomic sequencing to assess the functional capacity of a subset of 

these. The goal of this work is to better understand the distribution of microorganisms 

and their functions within the Salton Sea, and how these microbial communities regulate 

the geochemistry in their extreme, dynamic environment.   
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Methods 

Seawater Collection & Processing 

Water was collected from the same GPS coordinate (33.26265, -115.739) in the 

within the center of the southern basin in Salton Sea in August 2021, December 2021, 

and April 2022 (Supplemental Table 1). 1L of seawater was collected per depth, per 

timepoint using an ALEXIS peristaltic pump (Proactive Environmental Products) into 

acid-washed 1L Nalgene bottles from the following eight depths: 0m, 3m, 4m, 5m, 7m, 

9m, 10m, and 10.5m. These sampling depths were selected at the chemoclines to access 

the hydrogen sulfide gradient and various microbial communities throughout the water 

column. Upon collection, the 1L seawater samples were transported back to the lab one 

ice and immediately filtered through two subsequent vacuum filtrations. For the first 

filtration, an acid-washed, sterilized glass funnel holding an autoclaved 5 μm filter (47-

mm diameter; Durapore Membrane filters, Millipore Sigma, Temecula, CA, USA) was 

used to filter the 1L sample into an acid-washed, 1L flask to remove large aggregates 

from the sample. The resulting filtrate is then immediately vacuum filtered through an 

acid-washed, sterilized glass funnel holding a sterile 0.2 μm filter (47-mm diameter; Pall 

Supor 200 Sterile Grid filters, Pall Corporation, Port Washington, NY, USA) into an 

acid-washed, 1L flask. This second filtration is performed to capture microbial biomass 

on the 0.2 μm filters for future DNA extractions. Multiple 0.2 μm filters were used to 

process each 1L sample. Both the 5 and 0.2 μm filters were stored in sterile Whirl-pak 

bags respectively at -20 °C. 
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Geochemical Sampling Methods 

For all water monitoring and sampling, the deepest portion of the southern basin 

was accessed at 33.26265, -115.739. Temperature, conductivity, pH, turbidity, dissolved 

oxygen (DO; in mg/L and percent saturation), dissolved organic matter (DOM), salinity, 

and oxidation-reduction potential (ORP) was determined in situ with a calibrated YSI 

EXO2 multi-parameter sonde probe (YSI Incorporated, Yellow Springs, OH, USA; 

Supplemental Table 1). Water column samples were collected with a battery-powered 

peristaltic pump with in-situ filtering capabilities. Samples collected for sulfide and 

sulfate analyses were filtered at 0.4 micron and preserved immediately with powdered 

zinc acetate for sulfide and sulfate concentration determinations.  

Water column sulfates were precipitated as BaSO4 by addition of saturated 

BaCl2 solution (250g/L) followed by brief acidification (4N HCl) to remove carbonates, 

rinsed to neutral pH and remove sodium chloride, and then dried. Sulfate concentrations 

were determined gravimetrically. Total dissolved sulfide (ΣS2− = H2S + HS− + S2−) 

concentration in the water column (i.e., liquid phase) were determined from 1 mL sample 

aliquots dispensed into 2 mL microcentrifuge tubes pre-filled with 0.5 mL of 20% zinc 

acetate solution. Samples were then vortexed for 5 s and stored at 4oC in the dark until 

analysis. Sulfide concentration was determined colorimetrically using the method of 

Cline (Cline 1969). 

DNA Extraction and Amplification 

DNA extraction from the 0.2 μm filters were performed in duplicate with the 

Qiagen DNeasy PowerWater kit (Qiagen, Germantown, MD, USA), and the extracts 
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were quantified with a NanoDrop 2000 (Thermo Fisher Scientific, Wilmington, DE, 

USA). Half of the duplicate extracts were then purified via a bead clean-up using 

AMPure XP Beads and quantified with a NanoDrop 2000. Raw and clean DNA extracts 

were stored at −20 °C. Clean DNA extracts were amplified and indexed with 2-step PCR. 

Extracts from August 2021 were amplified with Nextera-adapted Klindworth primers 

(Klindworth et al. 2013)targeting the 16S rRNA V3-V4 region. Amplification products 

were cleaned in an AMPure magnetic bead clean up step then indexed with Illumina 

Nextera XT indices (Illumina, San Diego, CA, USA). Clean DNA Extracts from 

December 2021 and April 2022 were quantified using the NanoDrop 2000 and high-yield 

samples (>10 ng/uL) were normalized to 10 ng/uL. Clean and normalized samples were 

amplified with DipSeq adapted Klindworth primers (Klindworth et al. 2013) and cleaned 

up using an AMPure magnetic bead clean up step before being indexed using DipSeq 

indices. While the use of different sequencing indices may introduce potential variation, 

denoising and filtering of the reads via the DADA2 pipeline (please see the 

“Bioinformatics-Amplicon Sequence Data” section) yielded an even distribution of reads 

across samples before amplicon sequence variants (ASV) were assigned (Supplemental 

Figure 1). Furthermore, raw sequencing reads were transformed and/or normalized before 

downstream analyses. For the August 2021 samples prepared with the Nextera XT Index 

Kit, each amplification reaction contained the following: 1uL of DNA template, 5uL each 

of the 1uM forward and reverse index primers, 12.5 uL of PCR KAPA HiFi HotStart 

Ready Mix, and 1.5 uL of PCR grade water to create a 25uL reaction. For the December 

2021 and April 2022 samples prepared with the DIP-seq adapted Klindworth primers, 
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each amplification reaction contained the following: 2uL of DNA template, 12.5 uL 

Phusion HSII Hi-Fidelity Ready Mix, 1uL each of the 1uM forward and reverse index 

primers, 0.1uL of BSA, and 8.5uL of water to yield a 25 uL reaction. Before sequencing 

submission, indexed products were cleaned with an AMPure magnetic bead clean up step 

and quantified using Qubit. Samples were then pooled relative to their DNA 

concentration. 

DNA Sequencing 

The amplified, pooled DNA extracts were sequenced via the Illumina, Inc. MiSeq 

platform (Illumina 2017) by the UC Riverside Genomics Core. Raw DNA extracts 

collected from the 0m, 5m, and 10m samples from each timepoint were sent on dry ice to 

the SeqCenter for shotgun metagenome sequencing. The SeqCenter prepared these 

libraries using the Illumina DNA Prep kit and IDT 10bp UDI indices and sequenced the 

libraries on an Illumina NextSeq 2000 (2 x 151bp). 

Bioinformatics – Amplicon Sequence Data 

Amplicon sequences were demultiplexed by the UC Riverside Genomics Core, 

and the FASTQ sequences were assessed for sequencing quality via FastQC (Andrews 

n.d.). In addition to FastQC, the eestats2 program (Edgar and Flyvbjerg 2015) was used 

to determine the percentage of reads of specific lengths that will pass through the expect 

error threshold for a specific sample. The results supplied by FastQC and eestats2 were 

used to determine where the reads should be trimmed across the samples. Before 

trimming, there was a total of 4,237,100 reads across all 24 samples (including forward 

and reverse reads) that were 301 base pairs long. The reads were then trimmed and 
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filtered with BBDuk, a k-mer-based trimming and decontamination program from the 

BBTools suite created by the Joint Genome Institute (Bushnell n.d.), resulting in a total 

of 4,232,018 trimmed reads across the samples. After trimming, the Divisive Amplicon 

Denoising Algorithm 2 (DADA2) pipeline (Callahan et al. 2016) was used via the 

RStudio environment (version 2023.03.0+386) to assign reads to amplicon sequence 

variants (ASVs). Contaminant ASVs identified by the “decontam” package for R, as well 

as ASVs identified in the PCR positive and negative controls, were removed from the 

ASV count data. Singletons and ASVs that were assigned to “Chloroplast” or 

“Mitochondria” taxonomic classifications were also removed from the ASV count data 

set (Davis et al. 2018). Prior to decontamination (i.e., removing ASVs identified in 

library preparation or sequencing controls, as well as ASVs assigned to mitochondria or 

chloroplasts), there was a total of 515,899 ASVs. After decontamination, there was 

313,035 ASVs that were used for taxonomic identification. 

Bioinformatics – Metagenome Sequence Data 

In total there were nine samples submitted for shotgun metagenome sequencing, 

with each metagenome collected at the 0m, 5m, or 10m depths in August 2021, 

December 2021, and April 2022. The sequence quality of the shotgun metagenomic data 

was assessed using FastQC (Andrews n.d.), and adapter and primer sequences were 

trimmed using BBDuk (Bushnell n.d.). There was a total of 126,416,634 read pairs before 

the metagenome sequences prior to trimming. After trimming, there were 120,169,462 

read pairs used for contig assembly. BBNorm (BBTools suite, (Bushnell n.d.) was used 

to normalize the depth of trimmed read coverage in each metagenome. This 
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normalization step ensures that there is an equal distribution of reads across all the 

sequenced regions, which is a necessary consideration with shotgun metagenomes due to 

their unequal sequence coverage (Bushnell n.d.). The normalized reads are then error-

corrected with SPades (Bankevich et al. 2012) and subsequently used for contig assembly 

with metaSPades (Nurk et al. 2017), a metagenome-specific assembler available within 

SPades. The quality of the assembled contigs was determined using MetaQuast 

(Mikheenko et al. 2016). Trimmed, non-normalized metagenomic reads were then 

aligned to the assembled contigs using BWA-MEM. After read mapping, contigs and 

scaffolds were binned into genomes (i.e., metagenome-assembled genomes; MAGs) with 

metaBAT (Kang et al. 2019), using the read mapping results from BWA-MEM to guide 

the binning. The quality and completeness of the MAGs was determined using CheckM 

(Parks et al. 2015). A custom bash script was then used to read the output from CheckM 

and parse out bins based on their completeness and contamination, identifying high-

quality (i.e., >80% complete, <5% contamination) bins for downstream analyses (Bowers 

et al. 2017; Supplemental Table 2). Gene prediction was performed on the contigs and 

high-quality MAGs respectively using Prodigal (Hyatt et al. 2010a). KOFamScan was 

then used to assign functions and KEGG orthologies (i.e., KO identifiers) to the predicted 

genes (Hyatt et al. 2010b, Aramaki et al. 2020) in the contigs and high-quality MAGs. 

Genes assigned the same KO ID are functional orthologs of one another, and thus code 

for the same function across organisms. High-quality MAGs were also taxonomically 

annotated using GTDB-tk (Chaumeil et al. 2020).  
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The number of reads that mapped to each gene in both contigs and high-quality 

MAGs was determined using featureCounts (Liao et al. 2014), which compares the 

alignment file created by BWA-MEM and the predicted genes found by Prodigal. The 

number of reads mapped to each gene calculated by featureCounts was combined with 

the functional annotations from KOFamScan via a custom bash script. The featureCounts 

results were then used to calculate depth of coverage for each gene in R by dividing the 

number of reads mapped to a gene by the gene’s length. Multiple genes were assigned the 

same KO identifier(s); thus, the coverage for each gene assigned the same KO were 

summed together to calculate coverage per KO assignment within contigs and high-

quality MAGs respectively. The summed depth of coverage per KO was subsequently 

transformed via a center-log ratio transformation using the vegan package’s “decostand” 

command (Oksanen et al. 2020) to normalize the gene coverages by their respective 

sample library size (Quinn et al. 2018, 2019, Pereira et al. 2018, Xia 2023). Non-

transformed, summed KO coverages within the contigs and high-quality MAGs were 

used as input in a custom R script to create binary presence-absence tables for functions 

of interest. 

Statistical Analyses and Data Visualization 

The 16S rRNA amplicon data, the annotated contigs and MAGs, and the 

geochemistry data (i.e., dissolved oxygen (DO%), oxidative-reduction potential (ORP), 

dissolved organic matter (DOM), salinity, temperature, sulfate concentrations, and 

hydrogen sulfide concentrations) were analyzed in the RStudio environment using R 

software version 4.2.2. All environmental variables considered were centered and scaled 
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via the “scale” function from “base” package in R before statistical analyses were 

performed. Correlations between the environmental variables were determined using the 

“cor.test” function from the “stats” package and visualized using the “corrplot.mixed” 

function from the “corrplot” package (Wei and Simko 2021).  

Raw, decontaminated 16S V3-V4 rRNA amplicon counts were rarefied to a 

sequencing depth of 7,381 using the “rrarefy” function from the “vegan” package 

(Oksanen et al. 2020). The sequencing depth used for rarefaction was the minimum 

number of total ASV counts observed across samples, which was identified using the 

“min” and “rowSums” functions from the “base” package in R. Shannon-Wiener 

diversity (i.e., alpha diversity) and species richness of the rarefied 16S V3-V4 rRNA 

amplicon count data (i.e., microbial composition data) were calculated using the 

“diversity” and “specnumber” functions from the “vegan” package. Alpha diversity and 

species richness were assessed for normality via Shapiro-Wilks tests using the 

“shapiro.test” function from the “stats” package. The Shapiro-Wilks test determined that 

alpha diversity was normally distributed (P = 0.711) and species richness was not 

normally distributed (P = 0.009), and thus, analyzing species richness would require non-

parametric statistical tests for this work. A t-test was used to compare the means of alpha 

diversity between time points by using the “t.test” function from the “stats” package, and 

p-values were adjusted using the Bonferroni correction via the “p.adjust” function from 

the “stats” package. An analysis of variance (ANOVA) was also used to compare the 

variance of alpha diversity between time points by using the “aov” function from the 

“stats” package. After the ANOVA, a Tukey’s Honest Significant Difference (HSD) test 
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was used via the “TukeyHSD” function from the “stats” package to determine which time 

points’ variances were significantly different from one another. Then, a Levene’s test was 

used via the “leveneTest” function from the “car” package to compare the homogeneity 

of variances across timepoints (Fox and Weisberg 2019).  

A Wilcoxon test was used to compare the mean of species richness between time 

points using the “wilcox.test” function from the “stats” package, and p-values were 

adjusted using the Bonferroni correction via the “p.adjust” function from the “stats” 

package. Additionally, a Kruskal-Wallis test was used to compare variance of species 

richness between time points using the “kruskal.test” function from the “stats” package. 

After the Kruskal-Wallis, a Dunn test was used via the “dunn_test” function from the 

“rstatix” package to determine which time points’ variances were significantly different 

from one another.  To then compare the homogeneity of variances across time points, a 

Fligner-Killeen test using the “fligner.test” function from the “stats” package was 

performed. 

To determine if environmental variables could accurately predict the distribution 

of alpha diversity and species richness across samples, generalized linear models were 

used. Specifically, to assess the impact of environmental variables on Alpha diversity, a 

generalized linear model (i.e., GLM, a using a Gaussian distribution) was run via the 

“glm” function from the “stats”. As for species richness, a GLM (using a negative 

binomial distribution) was run via the “glm.nb” function from the “MASS” package. 

Environmental variables were chosen for these GLMs based on their ecological 

importance and on their correlations to one another. P-values from multivariate GLMs as 
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well as the ANOVA and Kruskal-Wallis tests were adjusted using the Bonferroni 

correction via the “p.adjust” function from the “stats” package (R Core Team 2024).  

Beta diversity of the microbial composition data was performed by first 

transforming the data via a center-log ratio (i.e., CLR) transformation using the 

“decostand” function from the “vegan” package. This function adds a pseudocount of 1 to 

all function counts, including those functions that have a count of zero, before performing 

the transformation. Then a Euclidean distance matrix of the CLR-transformed 16S V3-V4 

amplicon count data was created using the “dist” function from the “vegan” package and 

used as input to create a Principal Coordinates Analysis (i.e., PCoA) with the “pcoa” 

function from the “vegan” package. Homogeneity of variance in the microbial 

composition data across time points were compared using the “betadisper” function from 

the “vegan” package. Permutational multivariate analyses of variance (PERMANOVA) 

were performed with the “adonis2” function from the “vegan” package to determine if 

there were significant differences in microbial composition across time points and depths. 

All p-values for the PERMANOVAs were adjusted using the Bonferroni correction via 

the “p.adjust” function from the “stats” package. 

A Detrended Correspondence Analysis (i.e., DCA) was performed using the 

“decorana” function from the “vegan” package to determine if there was an arch effect 

present within the microbial composition data across sites and within sites. Due to the 

length of the first DCA axes, Redundancy Analysis (i.e., RDA) was chosen to determine 

if and how the microbial composition data are constrained by the geochemistry data. 

RDAs were calculated using the “rda” function from the “vegan” package. The variation 
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explained by the RDAs was obtained using the “RsquareAdj” function from the “vegan” 

package, and the significance of the RDAs was determined using the “anova” function 

from the “stats” package. The variance inflation factors for each predictor variable (i.e., 

the geochemistry data) in the RDAs was determined using the “vif.cca” function from the 

“vegan” package. To find the best fitting model, the “ordistep” and “ordiR2step” 

functions from the “vegan” package were used. The “ordistep” function builds the RDA 

stepwise to determine which variables lead to significant changes in variance and a lower 

AIC value for the model. The “ordiR2step” function builds the RDA stepwise based on 

which variables maximize the adjusted variation explained by each predictor variable 

considered (i.e., their adjusted R2) and are statistically significant. All p-values for the 

multivariate RDAs with the best fit were adjusted using the Bonferroni correction via the 

“p.adjust” function from the “stats” package. 

Results 

Seasonal Environmental Differences 

Environmental conditions throughout the water columns significantly varied 

across time, between August 2021, December 2021, and April 2022. Specifically, percent 

saturation of dissolved oxygen (i.e., %DO; P = 2.937e-04), dissolved organic matter (i.e., 

DOM; P = 3.508e-05), oxidative-reduction potential (i.e., ORP; P = 5.112e-05), sulfate 

concentration (P = 2.83e-06), hydrogen sulfide concentration (P = 0.005), and 

temperature (P = 3.524e-05) significantly varied across sampling dates. Hydrogen sulfide 

concentration was significantly different in August when compared to December (P = 
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0.03) and April (P = 0.016), whereas December and April did not significantly differ 

from one another (P = 0.703).  

Of the three time points studied, temperature was at its peak throughout the water 

column in August 2021 compared to December 2021 and April 2022 (Supplemental 

Table 1). Hydrogen sulfide concentration and DOM were also at their highest in August 

relative to December and April, particularly at 7m and below. Conversely, ORP and 

%DO were at their lowest in August. Within August 2021, %DO had a strong, negative 

correlation with DOM (r = -0.889, P = 0.003) and depth (r = -0.930, P = 0.0008), and a 

strong positive correlation with temperature (r = 0.821, P = 0.012). DOM was also 

strong, negatively correlated with ORP (r = -0.804, P = 0.016) but strongly, positively 

correlated with hydrogen sulfide concentration (r = 0.854, P = 0.007) and depth (r = 

0.977, P = 2.84e-05). Hydrogen sulfide concentration and ORP (r = -0.971, P = 6.06e-

05), as well as ORP and depth (r = -0.720, P = 0.044), were also strongly, negatively 

correlated. 

By December 2021, temperature and hydrogen sulfide concentration throughout 

the water column was at its lowest whereas sulfate concentration and %DO was at its 

highest relative to August and April. %DO was still significantly, negatively correlated 

with depth (r = -0.770, P = 0.025). ORP and temperature were strongly, negatively 

correlated (r = -0.819, P = 0.013). These were the only correlations observed in the 

geochemistry data in December. 

In April 2022, DOM had reached its lowest concentration relative to August and 

December, whereas ORP was at its highest throughout the water column. %DO strongly, 
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positively correlated with temperature (r = 0.920, P = 0.001), but negatively correlated 

with DOM concentration (r = -0.942, P = 0.0004) and depth (r = -0.873, P = 0.005). 

DOM is strongly, negatively correlated with temperature (r = -0.996, P = 1.098e-07) but 

positively correlated with depth (r = 0.738, P = 0.0365). 

 
Figure 1. Vertical Profiles of (A) % Dissolved Oxygen, (B) Dissolved Organic 

Matter, (C) Oxidative-Reduction Potential, (D) Temperature, (E) Sulfate, and (F) 

Sulfide in Our Sampling Location in the Salton Sea. Measurements were taken in 

August 2021 (orange), December 2021 (blue), and April 2022 (green) at 8 different 

depths (0m, 3m, 4m, 5m, 7m, 9m, 10m, and 10.5m). 
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Alpha Diversity and Species Richness 

Alpha diversity increased from August 2021 to December 2021 to April 2022 

(Figure 2, Supplemental Table 3). Mean alpha diversity in August 2021 was significantly 

lower than both December 2021 (P = 0.018) and April 2022 (P = 0.044), but December 

and April did not significantly differ from one another (P = 1). Additionally, the sample 

from the 9m depth consistently had the lowest alpha diversity of all the samples from 

each time point. Alpha diversity significantly varied across time points (P = 0.011), yet 

this trend did not hold true when comparing time points in a pair-wise fashion 

(Supplemental Table 4). The variance in alpha diversity of August 2021 was also 

significantly different than December 2021 (P = 0.017) and April 2022 (P = 0.01), 

whereas the variance in alpha diversity did not significantly differ between December 

2021 and August 2021 (P = 0.96). Lastly, a generalized linear model determined that 

temperature C (P = 0.0004) and SO4 (P = 0.036) together were the only environmental 

variables that significantly predicted alpha diversity (R2
adj = 0.406, P = 0.0016). 

In contrast to alpha diversity, species richness appears to slightly decrease across 

time points (Supplemental Table 3); but richness was not significantly different between 

any of the time points (Figure 2). The variance of species richness also did not vary 

significantly overall (P = 0.5, Supplemental Table 4). However, as was observed with 

alpha diversity, the 9m sample at each time point consistently maintained the lowest 

species richness. Furthermore, ORP (P = 0.627) and SO4 concentration (P = 0.0085) 

interacted significantly to predict species richness across time points (McFadden’s 

Pseudo R2 = 0.346, P = 0.0057).  
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Figure 2. Alpha (Shannon) Diversity (A) and Species Richness (B) by Time Point. 

These box-and-whisker plots compare alpha diversity and species richness by time point. 

Each point represents a sample and are colorized by depth, with red being the shallow 

depths and blue as the deeper depths. The statistical comparisons shown are the adjusted 

p-values from a t-test comparing Shannon diversity by time point and a Wilcoxon test for 

comparing species richness by time point. 

 

Microbial Composition and Diversity 

Microbial composition significantly varied between time points (R2 = 0.59, P = 

0.003); however, it should be noted that the dispersion of microbial composition was not 

homogeneous between time points (P = 0.0003). A principal coordinates analysis 

(PCoA) showed that microbial composition is tightly clustered by time point, rather than 

the depth that each sample originated from (Figure 3). Microbial composition throughout 

the water column in August 2021 exhibited the greatest dispersion in microbial 



 60 

composition and is significantly greater than the microbial dispersion in December 2021 

(P = 0.0034) and April 2022 (P = 0.0004). A PERMANOVA confirmed that the variance 

in microbial composition across time points were significantly different from one 

another: August 2021 and December 2021 (R2 = 0.49, P = 0.003), December 2021 and 

April 2022 (R2 = 0.55, P = 0.003), and August 2021 and April 2022 (R2 = 0.52, P = 

0.006; Supplemental Table 5).   

 
Figure 3. Principal Coordinates Analysis (PCoA) of Microbial Composition by Time 

Point and Depth. Each point represents a sample, with its shape corresponding to the 

sampling time point and the color corresponding to the sampling depth. The first axis of 

variation (PC1) represents 31.99% of the variation, and the second axis of variation 

(PC2) represents 27.38% of the variation.  

 



 61 

Within each time point, patterns of microbial taxa remained consistent throughout 

the water column (Supplemental Figure 2). Thus, we describe the total relative abundance 

of microbial taxa throughout the water column as opposed to focusing on specific depths. 

Two microbial families, Microbacteriaceae and Nitriliruptoraceae, dominated the water 

column microbiome across depths and time points. The relative abundance of 

Microbacteriaceae decreased from 29.45% in August 2021 to 27.29% in December 2021 

to 11.49% by April 2022. Conversely the relative abundance of Nitriliruptoraceae 

increased from 12.18% in August 2021 to 14.08% in December 2021 to 26.98% in April 

2022. Litoricolaceae appeared as the third most abundant family in August 2021 

(10.24%) and April 2022 (9.24%) but was replaced by Ilumatobacteraceae in December 

2021 (9.98%).  

A single genus from the Microbacteriaceae family, DS001, accounted for over a 

third of the total relative abundance of the water column microbiome in August 2021 

(39.40%) and December 2021 (39.57%; Figure 4). By April 2022, the relative abundance 

of DS001 throughout the water column had dropped to 11.87%. Litoricola represented 

15.22% of the relative abundance throughout the water column in August 2021, 

decreased to 4.51% of the total relative abundance in December 2021, then increased to 

16.66% of the water column microbiome in April 2022. Synechococcus CC9902 was the 

third most abundant genus in August 2021 at 7.78% of the total relative abundance, but 

decreased to 2.44% in December 2021, then to less than 1% in April 2022. Truepera 

increased in total relative abundance from 1.96% in August 2021 to 3.36% to 12.56% in 



 62 

April 2022, becoming the second most abundant genus in the water column at that time 

point.  

 
Figure 4. Relative Abundance of the Top 10 Most Abundant Bacterial Genera by 

Time Point. These stacked bar plots display the relative abundance of the top 10 most 

abundant bacterial genera (16S rRNA) in August 2021 (A), December 2021 (B), and 

April 2022 (C). The x-axis contains the Sample IDs organized in order of increasing 

depth, and the y-axis is the relative abundance. 

 

Temperature, DOM, and %DO are significant environmental drivers of overall 

microbial composition throughout the water column (Figure 5, Supplemental Table 6). 

Redundancy analyses found that temperature was the environmental driver that explained 

the greatest variance in microbial composition across time points (R2 = 0.27, Padj = 

0.004), followed by DOM (R2 = 0.13, Padj = 0.004), then %DO (R2 = 0.089, Padj = 

0.004). When evaluating environmental drivers of microbial composition within August 

2021, DOM appeared to be the only significant variable (Padj = 0.002). However, DOM 

only explained 10.91% of the variation observed in the microbial assembly in this time 

point. In December 2021, ORP was the most significant environmental driver (Padj = 

0.012), but only explained 4.23% of the total variation in microbial composition. DOM 
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was the only near significant environmental driver in April 2022 (Padj = 0.068) but 

constrained only 1.5% of the total variation in microbial composition.  

 
Fig 5. Redundancy Analysis of Environmental Variables and Microbial 

Composition. This is a redundancy analysis showing the significant environmental 

variables driving microbial (16S rRNA) composition. Each point represents a sample 

with its shape corresponding to its sampling time point, and the color corresponding to its 

sampling depth. Temperature (R2 = 0.27, P = 0.004), dissolved organic matter (DOM; R2 

= 0.13, P = 0.004), and percent saturation of dissolved oxygen (%DO; R2 = 0.089, P = 

0.004) significantly drive microbial composition across sites.  

 

Taxonomic Annotation of MAGs 

A total of 1,907,889 contigs were assembled from these nine metagenomes and 

subsequently binned into 231 metagenome-assembled genome (MAG) bins. Bins with 

80% completeness and < 5% contamination were classified as “good” bins and used for 
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taxonomic annotation (Anantharaman et al. 2016, Bowers et al. 2017). Out of 231 MAGs, 

35 bins had a completeness of > 80% and contamination < 5% and thus were selected for 

functional and taxonomic annotation. All 35 MAGs were identified as Bacteria and were 

assigned to the following phyla: Proteobacteria (n = 14), Bacteroidota (n = 12), 

Actinobacteriota (n = 8), and Cyanobacteria (n = 1; Supplemental Table 7). All 14 

Proteobacteria MAGs were of the Gammaproteobacteria class and all 12 of the 

Bacteroidota MAGs belonged to the Bacteroidia class. Actinobacteriota MAGs were 

split between the Acidimicrobiia class (n = 4) and the Actinomycetia class (n = 4). Of the 

35 MAGs, 26 were taxonomically classified at the Genus level (Supplemental Table 7). 

Eight MAGs were assigned to the genus HIMB30 of the Litoricolaceae family and did 

not reflect a pattern by season or depth; HIMB30 was isolated in metagenomes from all 

depths and timepoints except for the 5m August 2021 sample. Five MAGs were assigned 

to the genus UBA3478 of the Flavobacteriaceae family, which was found in August 2021 

(i.e., 0m and 5m samples) and April 2022 (i.e., 0m, 5m, and 10m samples) but absent 

during December 2021 at all depths. Four MAGs were assigned to the genus Casp-

actino5 of the family Ilumatobacteraceae and were isolated from the 5m metagenome in 

August 2021 and the 0m, 5m, and 10m metagenomes in December 2021, but was absent 

at all depths in April 2022. MAGs assigned to the SKUL01 genus (n = 3) were only found 

in the December 2021 metagenomes, with one MAG coming from each sampling depth. 

MAGs assigned to the genera CSBr16-57R1 (n = 2) and M55B157 (n = 2) were both 

found only in the April 2022 metagenomes, with CSBr16-57R1 found in the 0m and 10m 

metagenomes and M55B157 found in the 5m and 10m metagenomes. The singleton 
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MAGs belonging to the genera Synechococcus_C and UBA4419 respectively were only 

found in the 5m metagenome from August 2021. 

Functional Annotation of Metagenomes 

Gene coverage as well as the presence/absence of genes of interest were used to 

determine how prevalent certain functions of interest are in both contigs and MAGs 

throughout the water column. To understand the nutritional strategies employed by 

microorganisms in the Salton Sea, genes involved in sulfur energy metabolisms, 

phototrophy, and carbon fixation pathways were examined in the contigs and MAGs 

respectively.  

Sulfur Cycling Genes 

KO identifiers of genes involved in assimilatory sulfate reduction, dissimilatory 

sulfate reduction, thiosulfate oxidation, hydrogen sulfide oxidation, sulfite oxidation, and 

sulfur disproportionation were compared within and between each sample metagenome’s 

contigs.  

The relative depth of coverage of sulfur cycling genes varied across all depths and 

timepoints by pathway. Genes assigned to KOs involved thiosulfate oxidation pathway 

(i.e., soxABCDXYZ; the SOX pathway) exhibited relatively higher coverages in August 

2021 compared to other sulfur cycling pathways in this timepoint. The thiosulfate 

oxidation pathway oxidizes thiosulfate (S2O3) into SO4. Depth of coverage was also 

relatively high for genes involved in oxidizing hydrogen sulfide to polysulfide species 

and/or elemental sulfur (i.e., hydrogen sulfide:quinone oxidoreductase, sqr; hydrogen 

sulfide dehydrogenase flavoprotein chain, fccB), as well as genes involved in sulfur 
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disproportionation (i.e., thiosulfate reductase/polyhydrogen sulfide reductase chain, 

phsA/psrA). Sulfur disproportionation is a process in which sulfur species act as an 

electron donor and an electron acceptor, yielding H2S and SO4. The SOX pathway, fccB, 

and phsA/psrA displayed the highest relative coverages in the 5m metagenome, whereas 

sqr had the highest relative coverage in the 0m metagenome. Sulfite dehydrogenase 

(quinone) subunit SoeA (i.e., soeA), which oxidizes sulfite (i.e., SO3) to SO4, had lower 

relative coverage compared to other hydrogen sulfide oxidizing genes in August 2021, 

and was only observed in the August 2021 metagenomes. Two genes involved in 

dissimlatory sulfate redox, dissimilatory sulfite reductase subunits alpha and beta, dsrAB, 

were found in the August 2021 with low relative coverage. Specifically, dsrB was present 

at all depths in August 2021, whereas dsrA was present at the 0m and 5m depths, but not 

at 10m. dsrAB can oxidize H2S into SO3. Sulfate adenylyltransferase (i.e., sat, met3), 

which is involved in both dissimilatory and assimilatory sulfate reduction, exhibited a 

lower relative coverage in August 2021 compared to other sulfate reduction genes. The 

assimilatory sulfate reduction pathway was almost complete in the August 2021 

metagenomes, only missing sulfite reductase (NADH) flavoprotein alpha-component 

(i.e., cysJ) across all depths and sulfite reductase (NADPH) hemoprotein beta-component 

(i.e., cysI) at the 0m and 10m depths. Two genes within this pathway, bifunctional 

enzyme CysN/CysC (i.e., cysNC) and sulfate adenylyltransferase subunit 2 (i.e., cysD), 

exhibited relatively higher coverage in August 2021 compared to other assimilatory and 

dissimilatory sulfate redox genes. cysD exhibited the highest coverage in the 0m 

metagenome in August 2021, and cysNC maintained similar relative coverage in the 0m 



 67 

and 5m metagenomes but decreased in the 10m metagenome. Two genes belonging to the 

assimilatory sulfate reduction pathway were observed only in August 2021: cysI in the 

5m metagenome and sulfite reductase (i.e., sir), found in each metagenome. 

The 0m, 5m, and 10m metagenomes exhibited lower relative coverage of the SOX 

pathway and fccB in December 2021 compared to August 2021. Conversely, 

dissimilatory sulfate redox genes adenylylsulfate reductase, subunits A and B (i.e., 

aprAB) and dsrAB had the highest relative coverage in December 2021 at all depths 

compared to other sulfur metabolic pathways at this timepoint. Specifically, aprAB had 

higher relative coverage than dsrAB across depths, with the highest relative coverage of 

aprAB in the 10m contigs. aprAB were only observed in the December 2021 

metagenomes. aprAB can oxidize SO3 into adenylyl sulfate (APS). Additionally, relative 

coverage of dsrAB was higher in December 2021 than August 2021 at all sampling 

depths. Sqr maintained high relative coverage across depths in December 2021, with the 

highest coverage also found in the 10m contigs. As was observed in August 2021, cysNC 

and cysD exhibited higher relative coverage across the depths in December 2021 

compared to other KOs involved in the assimilatory sulfate reduction pathway. Both 

cysD, which reduces SO4 into APS, and cysNC, which reduces APS to phosphoadenylyl 

sulfate (PAPS), were observed to have the highest relative coverage in the 10m 

metagenome. The only observance of sulfite reductase (NADH) flavoprotein alpha-

component (i.e., cysJ), a member of the assimilatory sulfate reduction pathway that 

reduces SO3 into H2S, was in the 0m metagenome in December 2021. 
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Relative coverage of genes in the SOX pathway and hydrogen sulfide oxidation 

(i.e., sqr, fccB) increased across the metagenomes in April 2022. Relative coverage of the 

SOX pathway across the metagenomes was lower in April 2022 compared to August 

2021. However, sqr exhibited the highest relative coverage in the April 2022 

metagenomes, with the highest coverage found in the 5m contigs. Only one gene 

involved with the dissimilatory sulfate redox pathway, sat/met3, was found with low 

relative coverage in the April metagenomes from the 5m and 10m depths. High relative 

coverage of cysD and cysNC was maintained in April 2022. Specifically, cysNC exhibited 

the highest relative coverage in the 0m metagenome, and cysD exhibited the highest 

relative coverage in the 5m metagenome. April 2022 metagenomes contained less sulfur 

cycling genes (i.e., 14 of the 22 genes) than both August 2021 (i.e., 19 of the 22 genes) 

and December 2021 (i.e., 19 of 22 genes).  
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Figure 6. Relative Coverage of Sulfur Metabolic Genes in Salton Seawater 

Metagenomes. This is a heatmap detailing the relative coverage (i.e., centered-log ratio 

transformation of read coverage per gene) of sulfur cycling genes identified in the 0m, 

5m, and 10m metagenomes. Each column represents a metagenome, which are sectioned 

by their respective sampling time points, and each row represents a different KO 

assignment given to genes found in the metagenomes. The darker purple the square, the 

higher the relative coverage of that KO is. Gray squares represent genes that were not 

found in the metagenomes.  

 

Sulfur Cycling in MAGs 

KO identifiers of genes involved in the sulfur metabolisms described above were 

also examined within the MAGs from each sample. Of the 35 high-quality MAGs 

identified and annotated, 15 MAGs contained sulfur metabolic genes. Within these 15 
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MAGs, eight of the MAGs were assigned to the bacterial genus HIMB30. Two of the 15 

MAGs were assigned to the bacterial genus Casp-actino5, and 1 MAG was assigned to 

the genus SKUL01. The remaining four MAGs were not given bacterial genus 

assignments; however, three of these MAGs were assigned to the GCF-002020875 

bacterial family, and one MAG was assigned to the Crocinitomicaceae bacterial family.  

Two MAGs isolated from the 0m and 10m August 2021 samples respectively 

(and assigned to the HIMB30 genus) contained only sulfur oxidation genes. The MAG 

isolated from the 0m August 2021 sample contained all the SOX genes excluding the 

soxB gene, whereas the MAG found in the 10m depth in August 2021 contained all SOX 

genes (soxABCDXYZ) as well as the sqr gene involved in oxidizing hydrogen sulfide.  

Ten MAGs isolated from December 2021 metagenomes across depths contained 

sulfur metabolic genes. Six of the ten MAGs contained only sulfur oxidation genes. One 

MAGs only contained the soxB gene, and one MAG contained all the SOX genes 

excluding soxB. Three MAGs contained only the sqr gene or both sqr and fccB, involved 

in oxidizing hydrogen sulfide. One MAG contained the sqr and soxB gene. These MAGs 

containing sulfur oxidation genes were assigned to the bacterial genera HIMB30, Casp-

actino5, or their genus assignment was unknown. Three of the ten MAGs had genes 

involved in assimilatory sulfate reduction, specifically the cysNC, cysH, and cysD genes. 

One MAG containing the cysNC, cysD, and sqr genes was assigned to the bacterial genus 

Casp-actino5. One MAG assigned to the genus SKUL01 contained only the cysH gene, 

and the MAG containing cysH and cysD genes was not assigned to a genus. A single 
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MAG (that did not receive a genus assignment) contained both dsrAB genes involved in 

dissimilatory sulfate reduction genes, as well as the sqr and fccB genes.  

Three MAGs isolated in April 2022 contained only sulfur oxidation genes and 

exhibited the highest relative coverage of their genes compared to all the MAGs 

containing sulfur metabolic genes. All three MAGs were assigned to the bacterial genus 

HIMB30, and each MAG came from the 0m, 5m, and 10m samples respectively. Two 

MAGs, isolated from 0m and 10m metagenomes, contained only SOX genes, with one 

MAG having a complete SOX pathway. The other MAG contained a single gene, sqr. 

The MAG with the complete SOX pathway exhibited the highest relative coverage of all 

the MAGs discussed here and was isolated from the 10m metagenome. 
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Fig 7. Relative Coverage of Sulfur Cycling Genes in Salton Seawater MAGs. This is 

a heatmap detailing the relative coverage (i.e., centered-log ratio transformation of read 

coverage per gene) of sulfur cycling genes identified in metagenome-assembled genomes 

(MAGs) isolated from the the 0m, 5m, and 10m metagenomes. Each column represents a 

bin (i.e., MAG), which are sectioned by their respective sampling time points, and each 

row represents a different KO assignment given to genes found in the metagenomes. The 

darker purple the square, the higher the relative coverage of that KO is. Gray squares 

represent genes that were not found in the MAGs. 

 

Phototrophy and Carbon Fixation in Contigs 

KO identifiers of genes involved in carbon fixation pathways such as the Calvin-

Benson-Bessham cycle (CBB), 3-hydroxypropionate bicycle (3HP), the 3-
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hydroxypropionate/4-hydroxybutyrate cycle (3HP/4HB), the reductive acetyl-CoA 

pathway (RAcCoa), the dicarboxylate/4-hydroxybutyrate cycle (DC/4HB), and the 

reductive tricarboxylic acid cycle (rTCA). Additionally, KO identifiers of genes involved 

in oxygenic photosynthesis, anoxygenic photosynthesis, and photoheterotrophy were 

compared within and between each sample metagenome’s contigs.  

Genes involved in the CBB, RAcCoa, rTCA, and 3HP cycles were present in the 

metagenomes (Supplemental Figure 3). Of these pathways, genes involved in the CBB 

pathway had the highest relative coverage across all depths and time points. The 

December 2021 metagenomes appeared to have the highest relative coverage of CBB 

genes compared to the other time points. However, not all CBB genes were present 

across depths and time points. For example, sedoheptulose-bisphosphatase was only 

present in the 10m metagenome from December 2021 with relatively low coverage. 

Additionally, Rubisco genes (i.e., ribulose-bisphosphate carboxylase small chain rbcS 

and large chain rbcL) phosphoribulokinase (PRK), known to be necessary for oxygenic 

photosynthesis, were found at relatively low coverage across depths and time points.  

The rTCA pathway exhibited the highest relative coverage in the August 2021 

metagenomes, and the RAcCoa and 3HP pathways exhibited the highest relative 

coverage across the April 2022 metagenomes. The only pathway that was complete in 

any metagenome was the 3HP pathway, which appeared to be complete in the 0m and 5m 

metagenomes from August 2021, though the relative coverage of these genes was not 

equal across the pathway. 
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Genes involved in Photosystem I and II, anoxygenic photosynthesis, and in 

bacterial rhodopsin complexes (i.e., sensory rhodopsin, sop; beta-carotene 15,15’-

dioxygenase associated with proteorhodopsin, blh) were found in the metagenomes 

across depths and time points (Supplemental Figure 4). Of all the phototrophic genes 

examined, bacterial rhodopsin genes exhibited the highest relative coverage. The blh 

gene had the highest relative coverage across all depths and timepoints, with the highest 

relative coverage in the April 2022 metagenomes. This gene is part of the retinal 

biosynthesis operon that is required for a functional proteorhodopsin (Martinez et al. 

2007). The sop gene also exhibited higher relative coverage than other phototrophic 

genes (excluding blh), with the highest relative coverage across the December 2021 

metagenomes. Oxygenic photosynthetic genes, particularly those involved in the 

Photosystem II (PS II) exhibited higher relative coverage in the December 2021 

metagenomes, notably the 0m and 5m metagenomes. However, photosystem II P680 

reaction center D1 protein (psbA), a gene within PS II, exhibited the highest relative 

coverage in the August 2021 metagenomes, specifically in the 5m metagenome. 

Additionally, most of the genes involved in Photosystem I (PS I) were absent across the 

April 2022 metagenomes. The anoxygenic photosynthesis genes considered here (pufM, 

pufL) were both present only in the August 2021 metagenomes, and exhibited lower 

relative coverage compared to other phototrophic genes.  

Phototrophy and Carbon Fixation in MAGs 

As was done with the contigs, KO identifiers of genes involved in carbon fixation 

pathways (i.e., CBB, 3HP, 3HP/4HB, RAcCoa, DC/4HB), and rTCA) and genes involved 
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in various types of phototrophy (i.e., oxygenic photosynthesis, anoxygenic 

photosynthesis, and photoheterotrophy) were compared within and between the MAGs 

from each metagenome.  

Out of 35 MAGs, 27 MAGs contained carbon fixation genes. 21 MAGs contained 

genes involved in the CBB pathway, yet no MAG contained a complete CBB pathway 

(Supplemental Figure 5). Only 1 MAG (i.e., 8.2.21.10m.bin.22, assigned to the HIMB30 

genus) contained the three genes necessary for photosynthesis (i.e., rbcS, rbcL, PRK). 

This MAG also contained the 9 of the 12 CBB genes examined, the most of any MAG, 

and contained all the genes in the RAcCoa pathway. In total, 16 of the 35 MAGs contain 

genes belonging to multiple C fixation pathways. A portion of these MAGs with genes 

from multiple C fixation pathways were assigned to the HIMB30, Casp-actino5, and 

M55B157 genera.  Overall, the CBB genes exhibited the highest relative coverage of all 

the C fixation genes considered across the MAGs.  

Only one MAG contained genes involved in phototrophy (Supplemental Figure 

6); this MAG (12.22.21.0m.bin.13) was assigned to the genus HIMB30. This MAG 

contained blh gene at high relative coverage, and the sop gene at lower relative coverage. 

As described above, the blh gene contributes to the function of proteorhodopsin and the 

sop gene is involved in the sensory rhodopsin complex. Genes involved in oxygenic and 

anoxygenic photosynthesis were not found in the MAGs.  

Discussion 

The Salton Sea is a hypersaline lake in Southern California that is rapidly 

shrinking due to evaporation and water diversion. The only water the lake receives is 
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from agricultural runoff, contributing its eutrophic status (Tompson 2016). Though 

previous research has explored the microbial composition of the surface water, 

investigations into the microbial ecology of the water column across seasons have been 

lacking. Furthermore, the geochemical cycling resulting from stratification and turnover 

in the Salton Sea have been studied (Tiffany et al. 2007, Reese et al. 2008), yet the 

microbial contributions to these cycles have only been speculative. Here, we explore the 

microbial composition and functional diversity throughout the Salton Sea water column 

at eight depths across three different seasons. We specifically highlight microbial sulfur 

cycling genes because, while it is established that sulfate-reducing and sulfide-oxidizing 

bacteria contribute to the sulfur cycle (Tiffany et al. 2007), the metabolisms used and 

those performing these redox reactions were unknown. Collectively our findings suggest 

that halophilic chemoheterotrophs and phototrophs with the ability to oxidize hydrogen 

sulfide, thiosulfate, and other sulfur species dominate the Salton Sea across seasons even 

when hydrogen sulfide is depleted, yet their respective abundances and functional 

diversity fluctuates with changes in the geochemical profile of the water column.  

Halophiles are Found Across Time and Depth 

Across August 2021, December 2021, and April 2022, salinity in the Salton Sea 

water column fluctuated between 57 ppt – 61.54 ppt (Figure 1), maintaining its 

hypersaline status during periods of lake stratification and mixing. Hypersaline 

waterbodies such as the Salton Sea select for halophilic microorganisms that can 

withstand high osmotic stress (Aanderud et al. 2016). As hypothesized, the major 

bacterial genera that were present across all time points and depths in the water column 
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included known halophiles such as DS001 of the Microbacteriaceae family, Litoricola of 

the Litoricolaceae family, Synechococcus of the Synechococcaceae family, and Truepera 

of the Trueperaceae family. These organisms have been isolated from saline and 

hypersaline waterbodies from around the globe, however, only the Cyanobacteria 

Synechococcus has been previously identified in Salton Seawater samples (Wood et al. 

2002, Carmichael and Li 2006). DS001 was of particular interest because this genus 

found with a relative abundance of at least 5% in every sample and had a relative 

abundance of at least 20% in all samples collected in August 2021 and December 2021. 

DS001 has been found in hypersaline lakes including the La Brava-La Punta Lake system 

in the Atacama Desert, Lake Chiprana in the Menegros Desert, and Florida Bay within 

the Florida Everglades (Casamayor et al. 2013, Salazar et al. 2020, Laas et al. 2022). 

Litoricola, another dominating genus throughout the time points, has been found in the 

Florida Bay as well as other marine sources like the mariculture ponds in the Shandong 

province of China, the Xiamen Sea in the Fuijan province of China, and in the East Sea 

near the Gangwon province of South Korea (Kim et al. 2007, Huang et al. 2018, Laas et 

al. 2022). Truepera was also isolated from the mariculture ponds in the Shandong 

province and is known to be facultatively halophilic (Albuquerque et al. 2005, Huang et 

al. 2018). Collectively these results demonstrate that halotolerance is the most basic 

requirement for microbial survival within the Salton Sea water column.  

Lake Stratification Cycle Structures Microbial Communities 

Despite the resilience of these halophilic taxa across time and depths, the water 

column microbiome was affected by seasonal differences in geochemistry. Redundancy 
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analysis and a principal coordinates analysis revealed that not only do microbial 

communities throughout the water column cluster together by time point, but their 

compositional differences are driven by temperature, DOM, and %DO. Furthermore, 

alpha diversity across the water column significantly differed between August 2021 (i.e., 

as lake stratification subsides) verses December 2021 and April 2022 (i.e., as the water 

column is mixing and oxygenated), whereas species richness did not exhibit this pattern. 

These findings suggest that the overall microbial community is fluctuating with the 

seasonal geochemical transitions associated with fluctuating thermo- and chemo-clines. 

Though many dominant microbial genera found in the water column, such as DS001 and 

Litoricola, were observed across seasons and depths, their respective relative abundances 

were variable over time, further suggesting that the seasonal geochemistry is structuring 

the water column microbiome. 

Seasonal Lake Stratification and Sulfur Availability Select for Sulfur Oxidation and 

Intermediate Sulfur Cycling 

Thermoclines control the diffusivity of oxygen and other nutrients throughout the 

water column, thus selecting for the electron acceptors and electron donors of the 

geochemical constituents that are present in accordance to oxidation-reduction at a given 

depth. In turn, the distribution of these molecules selects for the metabolic strategies used 

by aerobes and anaerobes within an ecosystem. This is true for bacterial sulfur cycling 

pathways in the Salton Sea; the fluctuating prevalence of genes in the metagenomes that 

code for sulfur cycling enzymes paralleled the seasonal variations in the oxycline and 

sulfur chemoclines that form and dissipate across the water column. Many genes 
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involved in thiosulfate, sulfur, and hydrogen sulfide oxidation pathways were present 

across the metagenomes and the MAGs, yet the relative coverage of these genes varied 

by pathway in each season. The functional plasticity and redundancy observed in the 

Salton Seawater metagenomes and MAGs show that the water column is selecting for 

functional diversity over taxonomic diversity in the water column microbiome. 

Genes coding for proteins involved in hydrogen sulfide oxidation (i.e., oxidize 

sulfide to polysulfide or sulfur respectively; sqr, fccB) and thiosulfate oxidation pathway 

(i.e., oxidizes thiosulfate [S2O3
2-] to sulfate [SO4

2-]; soxABCDXYZ or SOX pathway) 

exhibited the highest relative coverage compared to other sulfur cycling genes in August 

2021 (Figure 6), when the oxycline was still present and hydrogen sulfide was at its 

highest concentration in the hypolimnion, with an average concentration of 23.30μM. 

Additionally, two of the nine MAGs isolated from August 2021 metagenomes contained 

most of the genes coding for enzymes in the SOX pathway and were assigned to the 

genus HIMB30, a bacterium that is a known halophile capable of sulfide oxidation 

(Huggett and Rappé 2012, Savoie et al. 2021). These findings suggesting that various 

hydrogen sulfide oxidation strategies are conserved in the microbiome while the lake was 

still stratified in August 2021 and hydrogen sulfide was available to oxidize. 

Furthermore, it appears that sulfide oxidation was most prominent in the 5m metagenome 

in August 2021, which corresponds to the depths where the oxic and anoxic waters 

interface. The relative coverage of genes assigned to phsA/psrA, which performs 

elemental sulfur/thiosulfate disproportionation (i.e., sulfur compound acts as an electron 

donor and acceptor), was also found at a relatively higher coverage in the 5m and 10m 
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metagenomes in August 2021. This result indicates that microorganisms in the lowest 

depths of the stratified Salton Sea are aerotolerant and capable of sulfur 

disproportionation. 

As water temperatures cooled by nearly 15oC in December 2021, sulfate and 

%DO were at their highest concentrations, and hydrogen sulfide was depleted due to 

microbial sulfide oxidation. The relative coverages of genes involved in the reverse 

dissimilatory sulfate reduction pathway (i.e., rDSR pathway), notably aprAB, were higher 

than the relative coverages of the SOX genes at this time. rDSR genes code for 

dissimilatory sulfate reduction proteins that work in reverse (i.e., not sulfate reduction) to 

oxidize sulfite into adenylyl sulfate (i.e., APS) and subsequently sulfate. Thus, the 

December 2021 metagenomes reflect that incomplete sulfate oxidation and intermediate 

sulfur cycling are ongoing processes in the microbial community while lake turnover 

occurred, and the water column was oxygenated. Interestingly, sqr genes maintained a 

relatively high coverage in December 2021 across metagenomes, suggesting that 

microbial polysulfide production continued as the lake overcome stratification. This was 

also observed in the MAGs found in the December 2021 metagenomes, where 6 of the 10 

MAGs with sulfur cycling genes contained sqr genes. Previous work has shown that 

heterotrophic microorganisms containing sqr genes and genes that code for persulfide 

dioxygenase (PDO) can oxidize sulfide in aerobic environments without releasing 

hydrogen sulfide (Xia et al. 2017). This further supports that intermediate sulfur cycling 

is a useful metabolic strategy during lake mixing, when dissolved oxygen concentrations 

are high and hydrogen sulfide concentrations are low.  
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By April 2022, sulfate and %DO decreased from December and chemoclines 

reemerge, with higher concentrations in the epilimnion and lower concentrations in the 

hypolimnion. Hydrogen sulfide concentrations had marginally increased throughout the 

water column from an average of 2.7 μM in December 2021 to an average of 3.31 μM in 

April 2022. Relative coverage of genes coding for fccB and SOX enzymes increased and 

was evenly distributed across all metagenomes. Additionally, two MAGs assigned to the 

genus HIMB30 that were isolated from April 2022 metagenomes contained almost 

complete SOX pathways with high relative coverage. Sulfide and thiosulfate oxidation 

are conserved metabolic pathways in the microbiome in April. Yet, sulfate concentration 

in the water column has decreased and hydrogen sulfide has marginally increased from 

December to April. Together, these findings demonstrate that the water column 

microbiome is utilizing incomplete sulfide and thiosulfate oxidation as the lake begins to 

stratify in spring, which is comparable to what we observed in August 2021.   
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Figure 8. Diagram of Sulfur Oxidation Genes and Sulfur Cycling Pathways Found 

in the Salton Seawater Metagenomes. This is a diagram that shows the enzymes 

involved in hydrogen sulfide oxidation (i.e., dark green arrows), sulfur disproportionation 

(i.e., red arrows), reverse dissimilatory sulfate reduction (i.e., black arrows), thiosulfate 

oxidation (i.e., purple arrows), and sulfite oxidation (i.e., blue arrow). The squares next to 

a gene name indicate if that gene was present in August 2021 (orange), December 2021 

(dark blue), and/or April 2022 (green).  

 

Functional Flexibility and Redundancy is Required for Survival in the Salton Sea 

Our results suggest that the Salton Seawater microbiome is resilient and well-

adapted to this extreme ecosystem in flux. We see this in the functional redundancy in the 

sulfur cycling metabolisms in this microbiome, and in the set of species that dominate the 

water column over time. Recent research has revealed that Litoricola, which was 

previously thought to be a chemoheterotroph (Kim et al. 2007), contains sulfur oxidation 

genes (i.e., soxAX genes), genes involved in oyxgenic photosynthesis (i.e., RuBisCO, 

carbon monoxide dehydrogenase; rbcL, coxL), and genes involved in photoheterotrophy 

(i.e., rhodopsin genes) in their genomes (Pachiadaki et al. 2019, Auladell et al. 2023). A 
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close relative of Litoricola, HIMB30 (Huggett and Rappé 2012), was assigned to eight of 

our 26 MAGs identified at the genus level. HIMB30 has been shown to oxidize sulfide, 

fix CO2 via the Calvin-Benson-Bessham (CBB) cycle, and use proteorhodopsin as a 

means of photoheterotrophy (Savoie et al. 2021). Savoie et al. found that the clade within 

Gammaproteobacteria that houses HIMB30, OM252, are capable of alternating between 

chemoorganoheterotrophic or chemolithoautotrophic growth. The functional annotation 

of the HIMB30 MAGs supports these results, showing that they contained genes that code 

for thiosulfate and hydrogen sulfide oxidation enzymes, enzymes in the CBB cycle, and 

genes involved in photoheterotrophy (i.e., blh, involved in proteorhodopsin function, and 

sop involved in the sensory rhodopsin complex). Other dominant genera we observed 

across seasons, Synechococcus and Trupera, are known to adapt to their surroundings. 

Synechococcus is a widely, globally distributed cyanobacteria that can adapt to both high 

light and low light conditions depending on its surroundings (Soulier et al. 2022). 

Truepera is facultatively halophilic thermophile that has been found in hypersaline lakes, 

marine environments, and hot springs (Albuquerque et al. 2005, Ivanova et al. 2011, 

Sirisena et al. 2018). Considering that these taxa maintained a stronghold in their 

microbiome throughout lake stratification and mixing, it is reasonable to surmise that the 

halophilic microorganisms have the functional flexibility and redundancy necessary to 

survive in this extreme, variable ecosystem.  

Typically, functional convergence is observed with taxonomic variation within 

environmental microbiomes, particularly across redox gradients and depth (Louca et al. 

2016, 2017, 2018). Larger ecosystems allow for the persistence of geochemical gradients, 
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creating a wide variety of habitats that promote niche partitioning, and thus, encourage 

greater microbial diversity (Nemergut et al. 2013). This has been observed in microbial 

communities inhabiting holomictic lakes, or lakes that occasionally mix, including both 

hypersaline (Phillips et al. 2021)and freshwater systems (Lee et al. 2017, Baricz et al. 

2021), as well as in marine water bodies at pelagic and benthic depths (Guo et al. 2022, 

Broman et al. 2022). However, the Salton Sea offers a unique insight into how shared 

metabolic strategies are selected for, allowing for survival in rapidly changing 

environmental conditions within a confined space. Despite the Salton Sea being a shallow 

lake (only reaching a depth of 10.5m at the time of this study), lake stratification can 

continue for months each year until temperatures in the region finally cool down enough 

for lake turnover to occur (Tiffany et al. 2007, Ma et al. 2020). The shallow depths limit 

the spatial dispersal of the microorganisms in the water column, and yet, we observed 

both microbial taxonomic variation and functional redundancy. These findings speak to 

the strong selective pressures in this hypersaline, eutrophic, fluctuating ecosystem that 

foster the colonization, adaptation, and persistence of its halophilic microbiome. 

The Lake Water and Dust Connection 

Ongoing water diversion from the Salton Sea is causing the lake to rapidly shrink, 

exposing its playa sediment and increasing the playa’s vulnerability to wind erosion 

(Kjelland and Swannack 2018). Research suggests that within the next five years, the 

volume of the Sea itself will be reduced by more than 60% and will expose 100 square 

miles of the Sea’s playa (Cohen 2014). As the exposed playa’s surface area increases, 

intensifying winds in the area will continue to introduce more particulate matter into the 
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atmosphere, in turn reducing air quality and threatening the pulmonary health of nearby 

residents and wildlife (Frie et al. 2017, 2019).  

As we previously described, mineral signatures from the lake water such as SO4 

have been identified in playa dust collected in the region (Frie et al. 2019). Furthermore, 

Frie et al. found that CaSO4 and MgSO4 consistently dominated dust from the Salton Sea 

playa, suggesting that these minerals are indicative of wind erosion and dust production 

at the playa surface (Frie et al. 2019). Increases in atmospheric H2S concentrations have 

also been found to correspond with increases in H2S concentrations in the Salton Sea 

surface water (Reese et al. 2008). Collectively, these findings suggest that Salton Sea’s 

sulfur cycle plays a role in the emissivity and composition of the dust in this region. 

Thus, considering that the Salton Seawater microbiome is involved in the ecosystem’s 

sulfur cycle, it is plausible that these microorganisms are also involved in structuring the 

chemical and microbial composition of the Salton Sea dust. Microorganisms can traverse 

the atmosphere as free cells or attached to particulates (Maltz et al. 2022) and likely 

become entrained in the dust as sea spray and playa sediment become airborne. While the 

interface between the lake water and the atmosphere has been explored, more research is 

required to investigate the microbial composition of the Salton Sea dust and its 

relationship to the seasonal dynamics of the lake. This work is increasingly urgent due to 

the rapid shrinking of the Salton Sea which will disrupt the seasonal stratification and 

sulfur cycle in this ecosystem, thus changing the biogeochemistry of the playa sediment 

that is entrained into the atmosphere as dust. Additionally, understanding the drivers of 

the Salton Sea microbiome, and how the Salton Sea’s microorganisms and their 
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metabolites are introduced into the atmosphere, can inform restoration and remediation 

strategies aimed at reducing harmful dust emissions in the region. Thorough investigation 

into the microbial interactions of the Salton Sea region across its substrates is required to 

holistically address and mitigate the unfolding public health crisis at the Salton Sea. 

Conclusion 

 

In this study, we have elucidated the assembly and functional diversity of the 

microbiome within the Salton Sea water column, which has not been previously explored. 

The taxonomic variation of the water column microbiome coincided with seasonal 

changes in the geochemistry because of lake stratification and mixing, particularly with 

the fluctuation of the temperature, dissolved oxygen, and dissolved organic matter. 

Despite the significant seasonal changes in microbiome composition, halophilic 

chemoorganotrophs, phototrophs, and mixotrophs (i.e., organisms that can alternate 

between chemorganotrophy and chemolithoautrophy) continued to dominate the 

microbial water column community. Metagenomes from the 0m, 5m, and 10m depths 

from the water column revealed that a variety of sulfur oxidation strategies are shared by 

the microorganisms in the lake, notably thiosulfate oxidation via the SOX pathway, 

sulfide oxidation via sqr and fccB, the reverse sulfate dissimilatory reduction pathway, 

and the sulfur disproportionation pathway. The prominence of the SOX pathway as well 

as sulfide oxidation genes (i.e., sqr, fccB) was also reflected in the isolated MAGs from 

the 0m, 5m, and 10m depths, with many of these MAGs being assigned to a known 

bacterial mixotroph capable of sulfur oxidation, HIMB30. Hydrogen sulfide was only 

present in the hypolimnion in summer, yet sulfur oxidation genes were prominent in the 
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water column microbiome across seasons. Our results highlight the functional versatility 

and redundancy in sulfur cycling strategies, namely sulfur oxidation, that are conserved 

in the Salton Seawater microbiome over time. Further work is needed to determine 

exactly how these microorganisms actively alternate between sulfur oxidation and 

reduction pathways throughout the Salton Sea water column, ideally using 

metatranscriptomics, to provide greater insight into the functional capabilities of the 

microbiome as the geochemical dynamics shift in this shrinking lake. Overall, our 

findings show that the water column microbiome within the Salton Sea is intimately 

involved with its seasonal nutrient cycling and redox structure and thus this ecosystem’s 

function and stability.
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Figure B.1.1. Total Amplicon Sequence Variants (ASVs) by Sample. This bar plot 

shows the total number of unfiltered ASVs per sample by Sample ID.  
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Figure B.1.3. Carbon Cycling in the Metagenomes by Depth and Collection Date. 

This heat map shows the relative coverage (i.e., center-log ratio transformed coverage) of 

genes assigned to KOs involved in carbon metabolism. Each column is a metagenome, 

organized from left to right by collection date and depth (0m, 5m, and 10m). The carbon 

cycling genes are broken up by their pathways: . Gray squares indicate that the gene is 

absent. 
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Figure B.1.4. Phototrophy in the Metagenomes by Depth and Collection Date. This 

heat map shows the relative coverage (i.e., center-log ratio transformed coverage) of 

genes assigned to KOs involved in various types of phototrophy. Each column is a 

metagenome, organized from left to right by collection date and depth (0m, 5m, and 

10m). The phototrophy genes are broken up by their phototrophic systems/pigments: 

proteorhodopsin (i.e., PR), sensory rhodopsin (i.e., SR), oxygenic photosynthesis 

Photosystem II (i.e., PS II), oxygenic photosynthesis Photosystem I (i.e., PS I), and 

anoxygenic photosynthesis (i.e., AnOx PS). Gray squares indicate that the gene is absent. 
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Figure B.1.5. Carbon Cycling in the Metagenome-Assembled Genomes (MAGs) by 

Depth and Collection Date. This heat map shows the relative coverage (i.e., center-log 

ratio transformed coverage) of genes assigned to KOs involved in carbon metabolism in 

the MAGs found. Each column is a MAG, organized from left to right by collection date 

and depth (0m, 5m, and 10m). The carbon cycling genes are broken up by their pathways: 

Gray squares indicate that the gene is absent.  . 
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Figure B.1.6. Phototrophy in the Metagenome-Assembled Genomes (MAGs) by 

Depth and Collection Date. This heat map shows the relative coverage (i.e., center-log 

ratio transformed coverage) of genes assigned to KOs involved in various types of 

phototrophy. Each column is a MAG, organized from left to right by collection date and 

depth (0m, 5m, and 10m). The phototrophy genes are broken up by their phototrophic 

systems/pigments: proteorhodopsin (i.e., PR), sensory rhodopsin (i.e., SR), oxygenic 

photosynthesis Photosystem II (i.e., PS II), oxygenic photosynthesis Photosystem I (i.e., 

PS I), and anoxygenic photosynthesis (i.e., AnOx PS). Gray squares indicate that the gene 

is absent. 
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Sample ID Shannon Wiener 

(Entropy) 

Shannon Weiner 

Diversity 

Species Richness 

SSW.8.24.21.0m 4.30307865 73.9270391 1194 

SSW.8.24.21.10.5m 4.55391783 95.0038891 1369 

SSW.8.24.21.10m 4.51325818 91.2185412 1276 

SSW.8.24.21.3m 4.21097987 67.4225727 1228 

SSW.8.24.21.4m 4.26386379 71.0841076 1242 

SSW.8.24.21.5m 4.41860564 82.9804998 1270 

SSW.8.24.21.7m 4.20000386 66.6865887 1021 

SSW.8.24.21.9m 3.7497824 42.5118302 507 

SSW.12.22.21.0m 4.58879386 98.3757033 872 

SSW.12.22.21.10.5m 4.65415079 105.019998 996 

SSW.12.22.21.10m 4.57793663 97.313393 1070 

SSW.12.22.21.3m 4.70919327 110.962607 954 

SSW.12.22.21.4m 4.61605442 101.094368 1040 

SSW.12.22.21.5m 4.63812073 103.349942 929 

SSW.12.22.21.7m 4.70742802 110.766903 990 

SSW.12.22.21.9m 4.12722217 62.0054428 796 

SSW.4.13.22.0m 4.53543507 93.2640825 847 

SSW.4.13.22.10.5m 4.83553778 125.906275 861 

SSW.4.13.22.10m 4.64441814 104.002833 940 

SSW.4.13.22.3m 4.29109902 73.046704 740 

SSW.4.13.22.4m 4.48281071 88.4830236 829 

SSW.4.13.22.5m 4.72598945 112.842095 788 

SSW.4.13.22.7m 4.74851125 115.412336 906 

SSW.4.13.22.9m 4.2845478 72.5697233 749 

 

Table. B.2.3. Bacterial Alpha Diversity and Species Richness by Sample. This table 

shows the Shannon-Weiner entropy, Shannon-Weiner diversity, and species richness for 

each sample.  
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 Comparisons by Time Point Padj value 

Shannon 

Diversity 

December 2021 vs August 

2021 
0.027 

April 2022 vs August 2021 0.018 

April 2022 vs December 2021 0.983 

Species 

Richness 

December 2021 vs August 

2021 
0.312 

April 2022 vs August 2021 0.442 

April 2022 vs December 2021 1 

 

Table. B.2.4. Pairwise Comparison of the Variance in  

Alpha Diversity and Species Richness. A Tukey test was  

used to compare the variance in Shannon diversity between  

collection dates, and a Dunn test was used to compare the  

variance in species richness between collection dates. 
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Comparisons by Time Point DF 
Sums of 

Squares 
F Model R2 

P 

value 

Padj 

value 

December 2021 vs April 2022 1 7006.287 17.13323  0.5503196    0.001       0.003 

December 2021 vs August 

2021 
1 7416.531 13.48028 0.4905437 0.001 0.003 

April 2022 vs August 2021 1 7987.429 15.15788 0.5198554 0.002 0.006 

 

Table. B.2.5. Pairwise PERMANOVA Results Comparing Beta Diversity by 

Collection Date. This is a pairwise permutational multivariate analysis of variance 

(PERMANOVA) comparing the variance in beta diversity between collection dates.  
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Site(s) Model Variance F value P value Padj value 

All Temperature °C + DOM + %DO 

335.51 13.8841 0.001 0.004 

169.84 7.0285 0.001 0.004 

113.20 4.6845 0.001 0.004 

August 

2021 
DOM 157.93 1.8571 0.001 0.002 

December 

2021 
ORP 77.39 1.3089 0.002 0.012 

April 

2022 
DOM 60.08 1.107 0.026 0.068 

 

Table. B.2.6. Redundancy Analysis Results of Microbial Composition Across and 

Within Collection Dates. These results show which environmental variables were 

significant drivers of beta diversity across all three collection dates and within each 

collection date based on a redundancy analysis (RDA). 
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Abstract 

The aeolian dust microbiome is composed of uniquely adapted microorganisms 

that can persist in the harsh conditions of the atmosphere. Specific microbial taxa and 

survival strategies have been observed in dust microbiomes from around the world, yet 

the environmental processes that select for both the composition and traits of the 

microbiome are poorly understood. Here we explore the taxonomic and functional 

diversity of the aeolian dust microbiome from sites around the Salton Sea in Southern 

California, and how dust sources and the local climate influenced the microbiome. Dust 

samples were collected from four locations around the Salton Sea in the summer and fall 

of 2020 and 2021, and 16S V3-V4 rRNA amplicon sequencing and shotgun metagenomic 

sequencing was used to characterize the aeolian dust microbiome. We observed 

significant differences in microbial composition between sites, and we were able to 

identify 13 microbial genera that were members of the core dust microbiome across 

samples. We also found that genes involved in sporulation, UV radiation resistance, 

thermal resistance, osmotic stress resistance, and quorum sensing were shared across the 

aeolian dust metagenomes. Lastly, local wind conditions and estimated dust source 

surface categories were significant predictors of the microbial adaptations we found in 

the aeolian dust metagenomes. Our results demonstrate the ability of airborne dust 

microorganisms to readily adapt to their harsh environment and highlight the survival 

strategies that allow them to disperse across broad distances, thus posing a potential 

health risk to exposed communities.   
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Introduction 

Microorganisms are ubiquitous and can be found in every environment, even in 

the most arduous and extreme ecosystems. Aeolian (i.e., windblown) dust is an example 

of such a system and is garnering more attention by microbial ecologists as of late. This 

is because global dust load has increased upwards of 55% since the mid-1800’s (Kok et 

al. 2018), impacting local and global climate, as well as public health. Dust is responsible 

for delivering abiotic and biotic particulates across thousands of kilometers as a 

constituent of aerosolized particulate matter (PM) in the atmosphere. Microorganisms 

become entrained in dust either as free-floating single cells or spores, or by attaching to 

existing particulates or aerosols to form aggregates, which can then serve as protection as 

they travel (Erkorkmaz et al. 2023). Some microorganisms can colonize the atmospheric 

environment, while others are readily dispersed and introduced to new ecosystems (Maltz 

et al. 2022). Like other forms of particulate matter, aeolian dust microorganisms impact 

the climate by acting as cloud or ice nucleating agents (Amato et al. 2015, Joly et al. 

2015), contributing to the formation of clouds and affecting Earth’s overall radiative 

budget (Kok et al. 2018, Shi and Liu 2019). They can also contribute to changes in the 

local ecology via dispersal and deposition, influencing the nutrient cycling dynamics in 

these new habitats. Furthermore, these microorganisms can also negatively impact public 

health as they can travel long distances and enter the respiratory tract via inhalation, 

leading to respiratory distress (Mayol et al. 2014, Biddle et al. 2021, Maltz et al. 2022). 

The assembly of the microbial communities associated with airborne dust is of crucial 

importance due to its implications for both ecological and public health, demonstrating 
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the strong connections between this ubiquitous microbiome, our own health, and the 

health of our environment. 

For microorganisms to survive in aeolian dust, they must overcome 

environmental stressors that are not commonly experienced in terrestrial or aquatic 

ecosystems. First, microorganisms can be introduced into the atmosphere via emission 

and suspension and are subjected to wind shear stress in the process. Once in the 

atmosphere, these microorganisms are exposed to UV radiation from unobstructed sun 

exposure and will experience rapid changes in temperature and pressure as the wind 

travels both horizontally and vertically through atmospheric advection (Schepanski 

2018). Additionally, moisture and nutrient availability is unpredictable in aeolian dust, 

which can lead to osmotic stress, desiccation stress, and starvation (Tang et al. 2018). 

Thus, the aeolian dust microbiome must have the adaptations required to survive 

inhabiting the atmosphere. Airborne microbial communities sampled around the world 

have been found to contain genes involved in UV-radiation resistance, osmotic stress 

resistance, and thermal resistance (Aalismail et al. 2019). Some Gram-positive dust 

microorganisms have been found to form endospores to endure the fluctuating conditions 

of the atmosphere. Lastly, both Gram-positive and Gram-negative bacteria can form 

biofilms, which may assist them in adhering to dust particulates in the air (Hu et al. 

2024). This allows the bacteria to form aggregates which can shield them against wind 

shear stress and provide nutrition when nutrients are scarce. These traits have been 

observed in other ecosystems, however, the combined environmental stressors 
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experienced by aeolian dust consistently selects for these adaptations in dust 

microbiomes. 

The Salton Sea ecosystem in Southern California presents a unique and urgent 

opportunity to explore the mechanisms that structure the taxonomic and functional 

composition of its aeolian dust microbiome. The Salton Sea is a hypersaline lake that is 

rapidly shrinking, exposing its playa sediment to wind erosion and thus increasing the 

dust load in the atmosphere. Emissions from increasingly dried lakebed surfaces have 

been associated with increases in PM in the area (Parajuli and Zender 2018, Jones and 

Fleck 2020) as well as increases in respiratory illnesses (Farzan et al. 2019, Jones and 

Fleck 2020), and have been shown in lab studies to induce lung inflammation upon 

exposure (Biddle et al. 2021, 2023). Furthermore, those experiencing the highest 

incidence of respiratory distress are primarily vulnerable populations that lack access to 

healthcare and are systemically barred from informing local policy, such as the Latinx 

and Indigenous Latin American (i.e., P’urhépecha) residents living around the Salton Sea 

(Doede and DeGuzman 2020, Rodriguez 2021, Knoerr 2022, Cheney et al. 2023). The 

rise in dust emissions coupled with the ongoing respiratory distress that predominantly 

affects local marginalized communities highlights the connection between local climate 

and public health, yet the influence of aeolian dust microorganisms on this relationship 

has yet to be explored. 

While the major elemental composition of this dust has been investigated and not 

found to be toxic (Frie et al. 2017), there is concern about dust toxicity in the region, and 

the microbial community of the dust has not been characterized. Here, we investigate the 
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taxonomic and functional diversity of the aeolian dust microbiome sampled from the 

Salton Sea. We utilize 16S (V3-V4) rRNA amplicon sequencing to determine the 

microbial composition of the dust and shotgun metagenomics to assess the functional 

capacity and redundancy of the aeolian dust microbiome. We explore how dust sources 

and wind conditions in this region select for the assembly and survival strategies of the 

aeolian dust microbiome, and how its diversity may influence the health of nearby 

residents. 

Methods 

Dust Collection & Processing 

Passive dust collectors were used to capture aeolian dust from around the Salton 

Sea at four different sites during the Summer and Fall months in 2020 and 2021 

(Supplemental Table 1). Five replicate collectors were deployed at each of the following 

sites: the UC Riverside Palm Desert campus (PD; coordinates here), the Boyd Deep 

Canyon Reserve (BDC; coordinates), the Dos Palmas Preserve (DP; coordinates), and the 

Wister Recreation Area (WI; coordinates). Dust collector deployment dates varied based 

on access to our collection sites, which was variable, for example due to rain events. The 

sites were selected such that 2 sites, DP and WI, are located adjacent to the Salton Sea, 

and would be more likely to be impacted by dust and aerosols from the Sea, while the 

other 2 sites are locates within the same region but more geographically separated from 

the Sea, PD and BDC. The passive collectors consisted of Teflon-lined bundt pans 

(Nordic Ware, St. Louis Park, MN, United States) holding a Kevlar mesh (Industrial 

Netting Inc., Maple Grove, MN, United States) and filled with sterile glass marbles (12.7 
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mm diameter, Brooklyn, NY, United States). All materials used to assemble the passive 

dust collectors were first acid washed in 2M HCl followed by two subsequent rinses in 

pure MilliQ water, and were always treated as such prior to re-deployment.  

Upon retrieval from the field, passive dust collectors were placed in Whirlpak 

bags and stored in 4C refrigerator for no longer than 24 hours before they were processed 

in the lab. Each passive collector was rinsed with 1L of 18.2 M water and used to create a 

dust suspension that was poured into acid-washed 1L Nalgene bottles (low density 

polyethylene), passing through a 2mm filter to remove insects or large particulates. Dust 

suspensions were immediately filtered via vacuum filtration through an acid-wash 

sterilized glass funnel using sterile 0.2 µm filters (47-mm diameter; Pall Supor 200 

Sterile Grid filters, Pall Corporation, Port Washington, NY, United States) into an acid-

washed collecting flask, as described in Maltz et al. (2022). Four to five filters were used 

per filtration of 1 L of dust suspension. Filters were then stored in sterile Whirlpak bags 

at –20°C until they could be used for DNA extraction. 

DNA Extraction and Library Preparation 

DNA extraction from the 0.2 μm filters were performed in duplicate with the 

Qiagen DNeasy PowerWater kit (Qiagen, Germantown, MD, USA), and the extracts 

were quantified with a NanoDrop 2000 (Thermo Fisher Scientific, Wilmington, DE, 

USA). Two negative controls were included during the DNA extraction process to 

confirm that contamination did not occur. Raw DNA extracts and the negative DNA 

extraction controls were quantified with a NanoDrop 2000. Half of the duplicate extracts 

were select for purification based on their higher raw DNA concentrations, then purified 



 116 

via a bead clean-up using AMPure XP Beads and quantified with a NanoDrop 2000. Raw 

and purified DNA extracts were stored at −20 °C. The purified DNA extracts were then 

amplified via through a 2-step PCR using dual indices and sequencing adapters in the 

Nextera XT Index Kit (Illumina, San Diego, CA, USA) targeting the V3-V4 region of the 

16S rRNA gene. Nextera-adapted Klindworth primers targeting the 16S rRNA V3-V4 

region (S-D-Bact-0341-b-S-17 and S-D-Bact-0785-a-A-21; Klindworth et al. 2013) were 

used. Samples were prepared with the Nextera XT Index Kit and each amplification 

reaction contained the following: 2.5uL of DNA template, 5uL each of the 1uM forward 

and reverse index primers, and 12.5 uL of PCR KAPA HiFi HotStart Ready Mix to create 

a 25uL reaction. Positive and negative controls were included in each step of the 2-step 

PCR and included in the sequencing libraries. 

DNA Sequencing 

The amplified DNA extracts for 28 samples were pooled and sequenced via the 

Illumina, Inc. MiSeq platform (2 x 300bp; Illumina 2017) by the UC Riverside Genomics 

Core. 24 raw DNA extracts were sent on dry ice to the SeqCenter for shotgun 

metagenome sequencing. The SeqCenter prepared these libraries using the Illumina DNA 

Prep kit and IDT 10bp UDI indices and sequenced the libraries on an Illumina NovaSeq 

6000 (2 x 151bp). Adapters were trimmed by the SeqCenter using the bcl-convert v4.0.3. 

DNA extracts from samples that were collected in October 2020 were not submitted for 

shotgun metagenome sequencing due to extremely low DNA concentrations across 

samples and were thus used only for 16S rRNA amplicon sequencing. 
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Bioinformatics – Amplicon Sequence Data 

Amplicon sequences were demultiplexed by the UC Riverside Genomics Core, 

and the FASTQ sequences were assessed for sequencing quality via FastQC (Andrews 

n.d.). In addition to FastQC, the eestats2 program (Edgar and Flyvbjerg 2015) was used 

to determine the percentage of reads of specific lengths that will pass through the expect 

error threshold for a specific sample. The results supplied by FastQC and eestats2 were 

used to determine where the reads should be trimmed across the samples. Before 

trimming, there was a total of 11,646,700 reads (including forward and reverse reads) 

with a length of 301 base pairs across all 28 samples. The reads were then trimmed and 

filtered with BBDuk, a k-mer-based trimming and decontamination program from the 

BBTools suite created by the Joint Genome Institute (Bushnell n.d.), resulting in a total 

of 11,616,898 trimmed reads, ranging from 250 – 271 base pairs in length, across the 

samples. After trimming, the Divisive Amplicon Denoising Algorithm 2 (DADA2) 

pipeline (Callahan et al. 2016) was used via the RStudio environment (version 

2023.03.0+386) to assign reads to amplicon sequence variants (ASVs). Contaminant 

ASVs identified by the “decontam” package for R (Davis et al. 2018), as well as ASVs 

identified in the 2-step PCR positive and negative controls, were removed from the ASV 

count data. A total of 2,156 contaminant ASVs. Singletons and ASVs that were assigned 

to “Chloroplast” or “Mitochondria” taxonomic classifications were also removed from 

the ASV count data set. Before statistical analyses took place, the counts for each ASV 

were divided by the number of deployment days for that specific sample; this was 

performed to account for the variation in deployment duration across samples. The scaled 
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counts were then multiplied by 100 and rounded to ensure that scaling by deployment did 

not skew the statistical analyses. 

Bioinformatics – Metagenome Sequence Data 

The sequence quality of the shotgun metagenomic data was assessed using 

FastQC (Andrews n.d.), and adapter and primer sequences were trimmed using BBDuk 

(Bushnell n.d.). After trimming, BBNorm (BBTools suite, (Bushnell n.d.) was used to 

normalize the depth of read coverage in each metagenome. This normalization step 

ensures that there is an equal distribution of reads across all the sequenced regions, which 

is a necessary consideration with shotgun metagenomes due to their unequal sequence 

coverage (Bushnell n.d.). The normalized reads were then merged using BBMerge. The 

normalized reads are also error-corrected with SPades (Bankevich et al. 2012) and 

subsequently used for contig co-assembly with MEGAHIT (Li et al. 2015). Co-

assembling contigs ensures that predicted genes identified by the functional annotation 

process are consistent across the metagenomes. The merged reads were also used to assist 

in the co-assembly of the contigs. The quality of the co-assembled contigs was 

determined using MetaQuast (Mikheenko et al. 2016). Trimmed, non-normalized 

metagenomic reads were then aligned to the co-assembled contigs using BWA-MEM. 

After read mapping, contigs and scaffolds were binned into genomes (i.e., metagenome-

assembled genomes; MAGs) with metaBAT (Kang et al. 2019), using the read mapping 

results from BWA-MEM to guide the binning. The quality and completeness of the 

MAGs was determined using CheckM (Parks et al. 2015). A custom bash script was then 

used to read the output from CheckM and parse out bins based on their completeness and 
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contamination, identifying high-quality (i.e., >80% complete, <5% contamination) bins 

for downstream analyses (Bowers et al. 2017; Supplemental Table 4). Gene prediction 

was performed on the contigs and high-quality MAGs respectively using Prodigal (Hyatt 

et al. 2010a). KOFamScan was then used to assign functions and KEGG orthologies (i.e., 

KO identifiers) to the predicted genes (Hyatt et al. 2010b, Aramaki et al. 2020) in the 

contigs and high-quality MAGs. Gene assignments from KOFamScan were filtered so 

that each gene was assigned to a single KO identifier based on the lowest e-value for that 

gene assignment using the “bit-filter-KOFamScan-results” script from the “bit” package 

(Lee 2022). Genes assigned the same KO ID are functional orthologs of one another, and 

thus code for the same function across organisms. High-quality MAGs were also 

taxonomically annotated using GTDB-tk (Chaumeil et al. 2020).  

The number of metagenome reads that mapped to each gene in both the contigs 

and the high-quality MAGs was determined using featureCounts (Liao et al. 2014), which 

compares the alignment of the reads against the assembly (i.e., the co-assembled contigs 

or the MAGs) by BWA-MEM and the predicted genes found by Prodigal. The number of 

reads mapped to each gene calculated by featureCounts was combined with the functional 

annotations from KOFamScan via a custom bash script. The featureCounts results were 

then used to calculate depth of coverage for each gene in R by dividing the number of 

reads mapped to a gene from a sample by the gene’s length. This was done because 

different genes may be assigned the same KO, and thus their gene length must be taken 

into consideration. These gene coverages were then divided by the number of days 

deployed for each sample to account for the variation in dust collector deployment. After 
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scaling the gene coverages by deployment, these coverages were multiplied by 100 to 

ensure that the small gene coverages did not skew or interfere with the median of ratios 

normalization calculation (see below). Because multiple genes were assigned the same 

KO identifier(s), the scaled coverages for each gene assigned to the same KO were 

summed together to determine the summed, summed coverage per KO assignment within 

the contigs and high-quality MAGs respectively. The summed, scaled coverages per KO, 

per sample were subsequently normalized using the median of ratios normalization with 

the DESeq2 package in R to account for differences in sequencing depth across libraries 

(Love et al. 2014, Pereira et al. 2018, Xia 2023). The normalized, summed coverages for 

the KOs will be referred to as normalized coverage throughout this manuscript.  

The median of ratios normalization process calculates the geometric mean by 

each gene across the samples to create a reference that each raw gene count is divided by, 

generating a size factor for each sample. Each raw gene count (or coverage in our case) is 

then divided by this size factor to normalize the data. Because we are working with gene 

coverages that have been scaled by deployment days rather than raw counts, we decided 

to scale up the gene coverages by 100. Without this step, the normalization process is less 

effective due to the size factor value being equal to or larger than the coverage of most of 

the KOs in the metagenomes.  

Surface Type Frequencies & Wind Conditions 

Estimates of likely source surfaces associated with PM during each collection 

period was calculated using hourly back-trajectories from the HYSPLIT dispersion and 

trajectory model, in combination with observed hourly PM data from nearby EPA surface 
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stations (Environmental Protection Agency 2024)and the gridded National Land Cover 

Database (NLCD) data product. For each hour of each collection period, HYSPLIT back 

trajectory simulations were run originating at multiple heights over each collector site. 

The resulting back trajectory points near the surface were then categorized based on a 

simplified set of NLCD surface types, including categories for barren land (i.e., Barren 

Land STF), crops (i.e., Crop Land STF), developed (i.e., urban; Developed STF), forest 

(i.e., Forest STF), herbaceous (i.e., Herbaceous STF), ocean (i.e., Ocean Water STF), and 

shrubs (i.e., Shrubs STF). The Salton Sea itself was also included as a distinct surface 

type (i.e., Salton Sea STF), representing possible emissions from the surrounding dried 

lakebed, as well as lake spray aerosol emitted directly from the water surface.  Lastly, the 

“Others STF” category consists of land use types within NLCD that have extremely low 

frequencies for this region, including: “Hay/Pasture”, “Emergent Herbaceous Wetlands”, 

“Woody Wetlands”, and “Perennial Snow/Ice”. These surface categories were then 

weighted to account for factors influencing emissions and suspension, including wind 

speed, surface emissivity, and gravitational settling, as well as by actual hourly PM 

observed at the nearest long term measurement site. This final data product, including a 

percent contribution from each surface type for every collection site and period, 

represents an estimate of likely source surfaces for collected PM, based on atmospheric 

dynamics and surface properties. 

To retrieve publicly available weather data for the areas around our dust collector 

sites, weather stations were selected based on their proximity to the dust collector sites 

and the climate data available. Wind climate data from MesoWest/Synoptic weather 
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stations was retrieved using the “mw” function from the “mesowest” package (Fick 

2018). Wind speed, wind direction, air temp, and relative humidity data was collected 

from the following weather stations: CI200 (nearest to our PD site), UCDE (nearest to 

our BDC) site, DPMC1 (nearest to our DP site), and CQ125 (nearest to our WI site). 

Accumulated precipitation data for a 24-hour period was collected from the following 

weather stations: C2285 (nearest to our PD site), COOPDEEC1 (nearest to our BDC 

site), COOPMCAC1 (nearest to our DP site), and D3583 (nearest to our WI site). Each 

variable was measured every hour between our dates of interest. After these data were 

retrieved for our dates of interest, all variables excluding wind direction were averaged 

by our dates and times of interest, with each date corresponding to our dust collector 

deployment dates (with the deployment starting at 12:00pm and collection ending at 

5:00pm; Supplemental Table 2). Wind direction was converted into its mathematical 

direction, then the meridional (north-south, v) and zonal components of the wind vector 

(east-west, u) were calculated for each site during our dates and times of interest. These 

wind components were then averaged with the other climate variables included here. 

Before surface type frequencies and climate data were used for statistical analyses, they 

were centered (i.e., each value was subtracted by its column mean) and scaled (i.e., 

dividing the centered values by their standard deviation) using the “scale” function from 

the “base” R package. 

Statistical Analyses and Data Visualization 

The 16S rRNA amplicon data, the annotated contigs and MAGs, the surface type 

frequencies, and the wind conditions (i.e., average 24-hour accumulated precipitation, 
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average wind speed, average relative humidity, average wind direction) were analyzed in 

the RStudio environment using R software version 4.2.2. All climate variables considered 

were centered and scaled via the “scale” function from “base” package in R before 

statistical analyses were performed. Correlations between the climate variables were 

compared using the “cor.test” function from the “stats” package and visualized using the 

“corrplot.mixed” function from the “corrplot” package (Wei and Simko 2021, R Core 

Team 2024). To determine if dust collector sites significantly varied by their climate 

conditions, the scaled surface type frequencies and wind condition data were log 

transformed, and the homogeneity of variance across sites were compared respectively 

using the “betadisper” function from the “vegan” package (Oksanen et al. 2020). 

Permutational multivariate analyses of variance (PERMANOVA) were performed with 

the “adonis2” function from the “vegan” package. All p-values for the PERMANOVAs 

were adjusted using the Bonferroni correction via the “p.adjust” function from the “stats” 

package. Additionally, specific site differences were explored using the “pairwise.adonis” 

function with 999 permutations from the “pairwiseAdonis” package (Martinez Arbizu 

2017). 

Scaled, decontaminated 16S V3-V4 rRNA amplicon counts were rarefied to a 

sequencing depth of 295 via rarefaction using the “rrarefy” function from the “vegan” 

package. The sequencing depth used for rarefaction was the minimum number of total 

ASV counts observed across the samples, which was identified using the “min” and 

“rowSums” functions from the “base” package in R. Shannon-Wiener diversity (i.e., 

alpha diversity) and species richness of the rarefied 16S V3-V4 rRNA amplicon count 
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data (i.e., microbial composition data) were calculated using repeated rarefaction and 

averaging. To do this, the ASV counts were rarefied, then the Shannon-Wiener diversity 

or species richness was calculated using the “diversity” and “specnumber” functions from 

the “vegan” package, and this result was saved. This process was then repeated 100 

times. Then the average of the Shannon-Wiener diversity and species richness 

measurements were calculated for each sample. Alpha diversity and species richness 

were checked for normality via Shapiro-Wilks tests using the “shapiro.test” function from 

the “stats” package. The Shapiro-Wilks test determined that alpha diversity (P = 

0.000151) and species richness (P = 0.0002459) were not normally distributed, and thus, 

analyzing alpha diversity and species richness would require non-parametric statistical 

tests for this work. 

The compositional relative abundance across samples was calculated using the 

scaled, decontaminated 16S V3-V4 rRNA amplicon counts and the “decostand” function 

(with “method = `total`”) argument from the “vegan” package. The core aeolian dust 

microbiome was determined using the “core_members” and “plot_core” functions from 

the “microbiome” package (Shetty S 2019), with a low detection (i.e., relative abundance 

in a sample) of 0.1% and a high detection threshold of 3%. Only microbial genera that 

had a minimum detection of 0.1% in at least 50% of the samples were considered 

members of the core microbiome. The justification for this detection threshold is two-

fold: because dust is an extremely low biomass substrate, and because we did not want to 

exclude potentially rarer, yet widely distributed taxa from this analysis. 
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A Wilcoxon test was used to compare the mean of alpha diversity and species 

richness between sites respectively using the “wilcox.test” function from the “stats” 

package, and p-values were adjusted using the Bonferroni correction via the “p.adjust” 

function from the “stats” package. Additionally, a Kruskal-Wallis test was used to 

compare variance of alpha diversity and species richness between sites using the 

“kruskal.test” function from the “stats” package. After the Kruskal-Wallis, a Dunn test 

was used via the “dunn_test” function from the “rstatix” package to determine which 

sites’ variances were significantly different from one another (Kassambara 2021). To 

then compare the homogeneity of variances across sites, a Fligner-Killeen test using the 

“fligner.test” function from the “stats” package was performed. 

Beta diversity of the microbial composition data was performed by first 

transforming the data via a center-log ratio (i.e., CLR) transformation using the 

“decostand” function (with “method = `clr`”) from the “vegan” package. This function 

adds a pseudocount of 1 to all function counts, including those functions that have a 

count of zero, before performing the transformation. Then a Euclidean distance matrix of 

the CLR-transformed 16S V3-V4 amplicon count data was created using the “dist” 

function from the “vegan” package to calculate Aitchison distance, which was used as 

input to create a Principal Coordinates Analysis (i.e., PCoA) with the “pcoa” function 

from the “vegan” package. To determine how these samples cluster together, K-means 

clustering was performed using the “eclust” function from the “factoextra” package 

(Kassambara and Mundt 2020). The gap statistic was calculated using the “fviz_gap_stat” 

and “fviz_nbclust” functions from the “factoextra” package to determine the ideal 
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number of clusters (i.e., value for k). SSU-Align (Nawrocki 2009)was used to create a 

multiple sequence alignment of the 16S V3-V4 rRNA sequences assigned to each ASV, 

and FastTree (Price et al. 2010)was used to build a phylogenetic tree for this specific 

locus. This phylogenetic tree and the CLR-transformed ASV counts were used to 

calculate the weighted and unweighted Unifrac distances of these samples using the 

“beta.div” function from the “rbiom” package.    

Homogeneity of variance in the microbial composition data across sites were 

compared using the “betadisper” function from the “vegan” package. This was done 

using the Aitchison distance as input. Permutational multivariate analyses of variance 

(PERMANOVA) were performed with the “adonis2” function from the “vegan” package 

(with 10,000 permutations) to determine if there were significant differences in microbial 

composition across sites and depths. All p-values for the PERMANOVAs were adjusted 

using the Bonferroni correction via the “p.adjust” function from the “stats” package. 

Significant differences in microbial composition between specific sites was explored 

using the “pairwise.adonis” function from the “pairwiseAdonis” package using 9,999 

permutations. 

A Detrended Correspondence Analysis (i.e., DCA) was performed using the 

“decorana” function from the “vegan” package to determine if there was an arch effect 

present within the microbial composition data across sites and within sites. Due to the 

length of the first DCA axes, Redundancy Analysis (i.e., RDA) was chosen to determine 

if and how the microbial composition data are constrained by the climate data. RDAs 

were calculated using the “rda” function from the “vegan” package. The variation 
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explained by the RDAs was obtained using the “RsquareAdj” function from the “vegan” 

package, and the significance of the RDAs was determined using the “anova” function 

from the “stats” package. The variance inflation factors for each predictor variable (i.e., 

the climate data) in the RDAs was determined using the “vif.cca” function from the 

“vegan” package. To find the best fitting model, the “ordistep” and “ordiR2step” 

functions from the “vegan” package were used. The “ordistep” function builds the RDA 

stepwise to determine which variables lead to significant changes in variance and a lower 

AIC value for the model. The “ordiR2step” function builds the RDA stepwise based on 

which variables maximize the adjusted variation explained by each predictor variable 

considered (i.e., their adjusted R2) and are statistically significant. To determine the 

contributed variation for each variable in the RDAs, variance partitioning was performed 

using the “varpart” function from the “vegan” package. 

Generalized linear models (i.e., GLMs) were used to determine which climate 

variables (i.e., wind data and surface type frequencies) were significant predictors of 

specific functions of interest (i.e., KOs) found in the contigs from the metagenomes. 

Functions of interest were first chosen based on their involvement in dust microbial 

survival according to previous literature. Of these functions, KOs were selected for these 

models based on their scaled coverage (i.e., after median of ratios normalization) across 

the metagenomes, specifically choosing KOs that exhibited higher mean scaled coverage 

across the metagenomes. A Shapiro-Wilks test was used to see if these KOs were 

normally distributed across the metagenomes. For functions that were normally 

distributed, a linear regression was run using the “lm” function from the “stats” package, 
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where the y variable was the scaled coverage for a specific KO and the x variable was a 

specific climate variable. For functions that were not normally distributed, generalized 

linear models were run using the “glm” function from the “stats” package using the 

Poisson distribution or a negative binomial distribution, where the y variable was the 

scaled coverage for a specific KO and the x variable was a specific climate variable. To 

determine the appropriate distribution for the non-normal dependent variables, a 

likelihood ratio test was performed using the lrtest() function from the lmtest package 

(Zeileis and Hothorn 2002) and the Aikaike’s ‘An Information Criterion’ (i.e., AIC) was 

calculated using the AIC() function from the stats package. Models with higher log 

likelihoods and smaller AIC values were then chosen as the best fit model for a particular 

formula. Significant predictors were identified by first iterating these GLMs in a stepwise 

fashion to identify which climate variables could be significant predictors of the 

distribution of these KO scaled coverages using the “step” function from the “stats” 

package. The “step” function runs these GLMs repeatedly, removing insignificant 

variables with every iteration, to determine which model has the lowest AIC. Based on 

the output of the stepwise GLM, the final GLMs were adjusted to only include significant 

climate predictors. After the final model for each function of interest was constructed, a 

Quantile-Quantile (i.e., Q-Q) plot of the models’ residuals was generated with the 

qqnorm() and qqline() functions from the stats package to assess their distribution. 

Additionally, the McFadden’s Pseudo R2 value for the negative binomial GLMs, as well 

as the GLMs using the Poisson distribution, was calculated to determine the variation 

explained by these models. 
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Results 

Surface Type Frequencies and Wind Conditions by Site 

A PERMANVOA of the surface type frequencies and wind conditions showed 

that these conditions significantly varied by site, respectively (P = 0.003, P = 0.0003), 

while the dispersion of these data did not significantly vary (P = 0.704, P = 0.963). This 

indicates that these climate conditions were significantly different, and this difference 

cannot be attributed to the dispersion of these data by site alone. Further investigation 

into the differences in STFs  between specific sites found that BDC and DP (P = 0.006), 

BDC and WI (P = 0.006), PD and DP (P = 0.006), and PD and WI (P = 0.006) varied 

significantly in their STFs. BDC and PD (P = 1) and DP and WI (P = 0.939) did not 

significantly vary from each other based on their STFs. All the sites significantly differed 

from each other based on their respective wind conditions. BDC and DP (P = 0.005), 

BDC and PD (P = 0.006), BDC and WI (P = 0.022), DP and PD (P = 0.002), DP and WI 

(P = 0.004), and PD and WI (P = 0.018) also varied significantly by their wind 

conditions. 

Microbial Composition 

Of the 54,118 ASVs identified, 3,306 bacterial and archaea genera were classified 

in our 28 samples. The fraction of Archaea identified in the samples were extremely low, 

with Archaea only being found in 10 of the 28 samples. The highest relative abundance 

of Archaea was found in the WI.D.11.5.20 sample, with a relative abundance of 0.175%. 

The bacterial phylum Proteobacteria was the most relatively abundant across all the 

samples, followed by Firmicutes, Bacteroidota, and Actinobacteriota (Supplemental 
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Figure 1). The bacterial order Burkholderiales was a major order (i.e., had a relative 

abundance of at least 5%) in all 28 samples. Bacterial genera and species that had a 

relative abundance of at least 10% in at least one sample include the following: 

Acinetobacter baumannii, Rhizobium unknown, Azohydromonas unknown, Bacillus 

funiculus, Brevundimonas unknown, Burkholderia unknown, Candidatus Soleaferrea 

unknown, Desulfovibrio cuneatus, Dyadobacter unknown, Hymenobacter unknown, 

Massilia unknown, Nibribacter unknown, Paenibacillus alvei, Panibacillus borealis, 

Pseudomonas lutea, Pseudomonas unknown, Ramibacter unknown, Ramlibacter 

unknown, Roboutsia ilealis, Rosenbergiella unknown, Spirosoma rigui, Variovorax 

paradoxus, and Zymobacter palmae. 

A core aeolian dust microbiome was identified by examining which bacterial 

genera were detected across all samples (i.e., prevalence) at various relative abundances. 

These analyses revealed 13 bacterial genera that had a relative abundance of at least 0.1% 

across over 50% of the samples. From most to least abundant, these genera include: 

Massilia, Sphingomonas, Planomicrobium, Hymenobacter, Planococcus, Nibribacter, 

Devosia, Rhizobium, Pseudomonas, Novosphingobium, Roseomonas, Kocuria, and 

Paracoccus, which we have determined to be members of the core microbiome (Figure 

1). Only two taxa, Kocuria rosea and Paracoccus marcusii, were identified in this 

analysis at the species level. These 13 genera were found in 61% of the samples at a 

minimum of 0.1% the samples’ relative abundances. Major genera (i.e., genera with a 

relative abundance of at least 10% in one or more samples) that were identified in the 

core aeolian microbiome include Massilia, Hymenobacter, Nibribacter, Rhizobium, and 



 131 

Pseudomonas. Massilia species were the most abundant bacteria at the genus level, and 

this genus represents one or more species that are member(s) of the core microbiome, 

with 64% of the samples containing Massilia taxa with a relative abundance of at least 

3%. Sphingomonas was the only other genus to be observed at a relative abundance of at 

least 3% in 32% of the samples. The remaining 11 genera that were members of the core 

microbiome had a relative abundance of at least 1% in 4 – 29% of the samples. 

 
Figure 1. The Core Aeolian Dust Microbiome. This heatmap contains the 13 bacteria 

genera that compose the core aeolian dust microbiome in Salton Sea dust. The x-axis 

shows the detection threshold, which represents the relative abundance across all 

samples. The shade of red corresponds to the prevalence which describes how many 

samples contain each taxa. 
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Alpha Diversity and Species Richness 

Shannon-Wiener diversity and species richness did not significantly vary by site 

(P = 0.749, P = 0.658). This appears to be because of the within-sample variance 

exhibited in both alpha diversity and species richness across the sites (Supplemental 

Figures 2 and 3). Alpha diversity and species richness did not significantly correlate with 

any of the surface type frequencies and wind condition data collected. 

Microbial Beta Diversity and its Environmental Drivers 

Microbial composition significantly varied between the four sites (R2 = 0.144, P 

= 0.0463) and the dispersion across sites was homogenous (P = 0.342). A principal 

coordinates analysis (PCoA; Figure 2) and K-means clustering revealed that the 

microbial composition forms three distinct clusters in these data. The first axis of 

variation in the PCoA (i.e., PC1) had a relative eigenvalue of 24.47%, indicating that this 

axis explained 24.47% of the total variation in microbial composition across the samples. 

The second axis of variation (i.e., PC2) had a relative eigenvalue of 8.31%, indicating 

that this axis explained 8.31% of the total variation in microbial composition. While a 

PERMANOVA found that these four sites were significantly different in their microbial 

composition, a pairwise PERMANOVA found that the sites were not significantly 

different from one another (Supplemental Table 7). PD and WI (R2 = 0.121, P = 0.068) 

and PD and DP (R2 = 0.113, P = 0.0904) exhibited differences in microbial composition 

that were near significant. A PERMANOVA also revealed that beta diversity did not 

significantly differ between samples collected after rain events compared to samples 

collected during dry periods (P = 0.844).   
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Figure 2. Principal Coordinates Analysis of Microbial Composition. This is a 

Principal Coordinates Analysis (i.e., PCoA) of microbial composition from the 16S V3-

V4 rRNA amplicon sequence data. Each sample is represented by a point, where the 

shape corresponds to the collection site and the color is the collection date of that sample.  

 

A redundancy analysis (i.e., RDA) of our samples found that the Developed STF 

(Adj R2 = 0.058, P = 0.0012), the average wind speed (Adj R2 = 0.02, P = 0.01), and the 

average 24-hour accumulated precipitation (Adj R2 = 0.043, P = 0.033; Figure 3) were 

significant drivers of microbial composition across sites (Adj R2 = 0.121, P = 0.0002; 

Supplemental Table 8). Yet, these environmental variables were not necessarily 
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significant drivers of microbial composition within each site. Microbial composition 

within the WI samples across time points was driven by average relative humidity (Adj 

R2 = 0.211, P = 0.02) and u, the zonal (east-west) component of local winds (Adj R2 = 

0.17, P = 0.02). The microbial composition within DP samples were significantly driven 

by both average 24-hour accumulated precipitation (Adj R2 = 0.179, P = 0.013) and the 

Barren Land STF (Adj R2 = 0.094, P = 0.034). Across the PD samples, average 24-hour 

accumulated precipitation (Adj R2 = 0.29, P = 0.002) and average wind speed (Adj R2 = 

0.22, P = 0.012) were significant environmental drivers of microbial composition. Lastly, 

average 24-hr accumulated precipitation (Adj R2 = 0.102, P = 0.045) and v, the 

meridional (north-south) component of local winds (Adj R2 = 0.038, P = 0.3), were 

significant environmental drivers of microbial composition in the BDC site across time 

points. While an ANOVA found the north-south wind component to be insignificant, the 

ordistep() function identified this variable as significant (P = 0.022).  
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Figure 3. Environmental Drivers of Beta Diversity. This redundancy analysis displays 

the significant environmental drivers of microbial composition across sites: the 

Developed STF (Adj R2 = 0.058, P = 0.0012), average wind speed (Adj R2 = 0.02, P = 

0.01), and the average 24-hour accumulated precipitation (Adj R2 = 0.043, P = 0.033). 

 

Metagenome Sequence Processing 

2,130,808,324 reads were produced from the 24 shotgun metagenomes 

sequenced. After trimming with BBduk, 2,130,495,120 reads were used for contig 

assembly and genome binning. MEGAHIT yielded 4,947,761 co-assembled contigs. 

After mapping the trimmed reads to the co-assembled contigs, genome binning produced 

a total of 730 bins across the 24 metagenomes. A total of 1,059,642,227 reads from the 

24 metagenomes were mapped to predicted genes identified in the co-assembled contigs. 

Of the 730 bins, 101 bins were considered high quality and used for taxonomic and 
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functional annotation. The average genome completeness across the 101 bins was 

93.81%, and the average contamination in the bins was 1.29%.   

Functions of Interest and their Depth of Coverage in the Co-Assembled Contigs 

A total of 3,569,088 genes were identified by Prodigal, but not all genes were 

assigned corresponding KO IDs. After dropping genes that did not receive KO 

assignments, there was a total of 1,249,948 genes used to calculate the scaled gene 

coverages. The average number of reads mapped to all the genes was 20. The mean 

coverage (i.e., after dividing the number of reads per gene by the gene’s length) was 

0.0254 per gene, and the mean coverage scaled by deployment (i.e., after dividing the 

gene coverage by the number of deployment days) was 0.00057. After scaling up the 

coverage by deployment (i.e., multiplying the coverages-by-deployment by 100), the 

mean scaled coverage was 0.057.  

12,012 KO ID assignments were given to the 1,249,948 genes found across the 

contigs. After dropping KOs with low scaled, summed coverage (i.e., KOs with a scaled 

coverage of <= 3), 8,777 KOs from genes in the contigs were normalized via median of 

ratios normalization and used for statistical analyses. Before normalization, the mean 

normalized, summed coverage per KO was 5.94. Normalized, summed gene coverages of 

KOs previously identified in aeolian dust microbiomes were used to determine if there is 

a core, aeolian dust microbiome at the functional level (DasSarma and DasSarma 2018, 

Aalismail et al. 2019). For simplicity, the normalized, summed coverages per KO ID will 

be referred to as “normalized coverage” for the remainder of this manuscript. 
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Genes assigned to KOs involved in endospore formation, UV-damaged DNA 

repair, the temperature shock response, osmoprotectant transport and accumulation, 

lipopolysaccharide (LPS) synthesis and modification, and quorum sensing were found in 

all 24 metagenomes. As for genes involved in forming endospores, four of the 38 

sporulation genes (i., the spore maturation protein A - spmA; site-specific DNA 

recombinase - spoIVCA, stage V sporulation protein K - spoVK, and stage V sporulation 

protein R - spoVR) were found in all 24 metagenomes while the remaining sporulation 

genes included in this work were absent. Only three of the metagenomes contained 35 of 

the 38 endospore formation genes examined in this study: PD.D.7.27.21, BDC.D.7.27.21, 

and WI.D.9.18.21. 

UV-damaged DNA repair genes were also found in all 24 metagenomes, though 

their normalized coverages were not evenly distributed. Excinuclease subunits ABC (i.e, 

uvrA, uvrB, uvrC) were at found at higher coverages than the repressor LexA (i.e., lexA) 

and DNA polymerase V (i.e., umuC, umuD) across the metagenomes. Only one 

metagenome (PD.D.12.8.21) did not contain umuC and umuD but did contain the other 

UV-damaged DNA repair genes of interest. Due to the presence and distribution of these 

genes in the metagenomes, a PERMANOVA was calculated to determine if these genes 

significantly varied in their normalized coverages by site and collection date. The 

PERMANOVA found that the normalized coverages of the UV-damaged DNA repair 

genes in the metagenomes did not significantly vary by site (P = 0.646) or collection date 

(P = 0.350).  
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Figure 4. Heatmap of UV Radiation Resistance in Aeolian Dust Metagenomes. This 

heatmap shows the normalized coverage of KO IDs involved in repairing UV-damaged 

DNA across the metagenomes. Each column is a metagenome (i.e., one sample), and the 

metagenomes are organized by their collection dates from July 2020 to December 2021. 

 

Genes involved in regulating heat and cold shock responses were found in all 24 

metagenomes. Heat shock proteins HtpX (i.e., htpX), 12.6 (i.e., HSP12.6), and ribosome-

associated Hsp15 (i.e., hsIR) were found across the metagenomes. Additionally, the cold 

shock protein (i.e., cspA) was found in every metagenome at twice the normalized 

coverage of the other temperature shock-related proteins examined in this work. The 

mean normalized coverage of cspA was 83.37. Other temperature shock-related genes 

found in the metagenomes include heat shock protein HspR (i.e., hspR), heat shock 

protein HsQ (i.e., hspQ), and a transcriptional regulator of stress and heat shock response 

known as ctsR. The heat shock 70kDa protein known as HSPA1s was only found in one 

metagenome (WI.D.11.5.20). To determine if these genes significantly varied in their 
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normalized coverages by site and collection date, a PERMANOVA was calculated. The 

PERMANOVA revealed that the normalized coverages of the temperature shock 

response genes did not significantly differ by site (P = 0.840) or by collection date (P = 

0.637). 

Osmoprotectant transport and accumulation genes were also shared across the 24 

metagenomes. The hyperosmotically inducible periplasmic protein (i.e., osmY), 

osmotically inducible lipoprotein OsmB (i.e., osmB), osmoprotectant transport system 

substrate-binding protein (i.e., opuC), osmoprotectant transport system permease protein 

(i.e., opuBD), osmoprotectant transport system ATP-binding protein (i.e., opuA), and the 

osmolarity sensor histidine kinase of the OmpR family EnvZ (i.e., envZ) were found in 

all the metagenomes. The osmotically inducible lipoprotein OsmE (i.e., osmE) was found 

in only two of the 24 metagenomes (WI.D.9.18.21, BDC.D.12.8.21) and the SHO1 

osmosensor (i.e., SHO1) gene was found in four of the 24 metagenomes (BDC.D.7.9.20, 

DP.D.11.5.20, WI.D.11.5.20, and DP.D.8.21.21). Due to the distribution of most of the 

osmoprotectant transport/accumulation genes in the metagenomes, a PERMANOVA was 

calculated to determine if these genes were significantly different in their normalized 

coverages by site and collection date. This PERMANOVA revealed that the normalized 

coverages of the osmoprotectant transport/accumulation genes found did not significantly 

differ by site (P = 0.831) or by collection date (P = 0.296). 

LPS synthesis and modification genes were widely distributed across the 

metagenomes. All genes that are involved in constructing or modifying various segments 

of LPS considered here were found in at least one of the 24 metagenomes. Most of the 



 140 

genes that contribute to building or modifying the core region and the lipid A portion of 

LPS were found in at least 12 of the 24 metagenomes. However, one gene involved in the 

LPS core region synthesis/modification (i.e., UDP-glucose:(glucosyl)LPS beta-1,3-

glucosyltransferase (i.e., waaV) was found only in the PD.D.7.27.21 metagenome, and 

the heptosyltransferase (i.e., opsX) was found in three metagenomes (BDC.D.7.9.20, 

BDC.D.9.20.21, and DP.D.12.8.21). Additionally, two genes involved in lipid A 

synthesis and modification were also only found in 2-3 metagenomes. Genes involved in 

constructing or modifying the O-antigen repeat unit within the LPS were widely 

distributed across the metagenomes, with two genes exhibiting the highest normalized 

coverages of the LPS genes considered: the UDP-GalNac:undecaprenyl-phosphate 

GalNac-1-phsophate transferase (i.e., wecP) and the O55-antigen biosynthesis 

glycosyltransferase (i.e., wbgP). Conversely, a few O-antigen repeat unit 

synthesis/modification genes were found in only 2-3 metagenomes: undecaprenyl-

phosphate galacotse phosphotransferase (i.e., rfbP; in DP.D.7.10.20 and WI.D.8.30.20), 

O-antigen biosynthesis alpha-1,3-rhamnosyltransferase (i.e., rfbN/wbaV; in 

BDC.D.7.9.20, DP.D.7.10.20, and BDC.D.8.14.20), and rhamnosyltransferase (i.e., rfbG; 

in DP.D.7.10.20, BDC.D.8.14.20, and BDC.D.12.8.21).  

Genes involved in various types of quorum sensing were also found in the 

metagenomes, though only one gene was shared across all 24 metagenomes: the LuxR 

family transcriptional regulator/ quorum-sensing system regulator BisR (i.e., bisR). Other 

genes in the LuxI/LuxR acyl-homoserine lactone (i.e., AHL) quorum sensing system that 

were identified in the metagenomes include the LuxR family transcriptional 
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regulator/quorum-sensing system regulators BjaR1 (i.e., bjaR1, 12 of 24 metagenomes), 

LasR (i.e., lasR, 20 of 24 metagenomes), and SolR (i.e., solR, 16 of 24 metagenomes). 

The HTH-type transcriptional regulator/major conjugation operon repressor known as 

prgX, which is involved in the Rap/NprR/PlcR/PrgX (i.e., RNPP) pathway, was found in 

20 of the 24 metagenomes. Of the quorum sensing genes considered, bisR had the highest 

normalized coverage, exhibiting a mean normalized coverage of 68.24. 
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Figure 5. Heatmap of Functions of Interest in Aeolian Dust Metagenomes. This 

heatmap shows the normalized coverage of KO IDs of interest identified in the 

metagenomes. The genes are grouped by functions in this order: housekeeping gene (i.e., 

HK), LPS biosynthesis/modification genes (i.e., LPS), osmoprotectant 

transport/accumulation (i.e., Osmo), quorum sensing genes (i.e., QS), sporulation genes 

(i.e., Spore), temperature shock response genes (i.e., TS), and UV-damaged DNA repair 

genes (i.e., UV). 

 

Surface Type Frequencies and Wind Conditions as Predictors of Dust Microbiome 

Function 

After identifying the core aeolian microbiome functions of interest in the 

metagenomes, certain KOs were selected for generalized linear models based on their 

normalized coverages compared to other KOs in their adaptation category (Supplemental 



 143 

Table 9). The KOs chosen had the highest mean normalized coverage within their 

respective categories across the metagenomes. spoIVCA and spmA represented 

sporulation genes, lexA, uvrA, uvrB, and uvrC represented the genes responsible for UV-

damaged DNA repair, cspA and htpX represented the temperature shock response genes, 

osmY and opuC represented genes involved in osmoprotectant transport and 

accumulation, wecP and wbgP represented genes involved in LPS modification and 

synthesis (of the O-antigen repeat unit), and bisR and prgX represented genes involved in 

quorum sensing pathways. 

spoIVCA was significantly predicted by average 24-hour accumulated 

precipitation (P = 0.013), average relative humidity (P = 0.016), and an interaction 

between these two predictors was near significant (Adj R2 = 0.375, P = 0.068). spmA was 

also significantly predicted by average 24-hour accumulated precipitation (P = 0.0009), 

near significantly predicted by the meridional (north-south) component of local winds, v 

(P = 0.089), and significantly predicted by the interaction between these variables 

(McFadden’s pseudo R2 = 0.333, P = 0.023). 

lexA was significantly, solely predicted by the meridional (north-south) 

component (v; McFadden’s pseudo R2 = 0.179, P = 0.016). uvrA, uvrB, and uvrC shared 

the same environmental predictors, though their relationships with these predictors were 

not identical. uvrA was significantly predicted by the meridional (north-south) component 

(v; P = 0.038) and the OpenWater STF (P = 0.019), and the overall model was also 

significant (Adj R2 = 0.239, P = 0.022). uvrB was also significantly predicted by both the 

meridional (north-south) component (v; P = 0.01) and the OpenWater STF (P = 0.032), 
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and the model was significant (Adj R2 = 0.278, P = 0.013). Lastly, uvrC was also 

significantly predicted by the meridional (north-south) component (v; P = 0.022) and the 

OpenWater STF (P = 0.006; McFadden’s Pseudo R2 = 0.327). 

cspA was significantly predicted by the meridional (north-south) component alone 

(v; Adj R2 = 0.145, P = 0.038; Figure 5). htpX was significantly predicted by the Barren 

Land (P = 0.0008) and the Open Water STFs (P = 0.001), and the overall model was 

significant (Adj R2 = 0.402, P = 0.002).  

 
Figure 6. Meridional Wind Component (v) Predicts cspA in Dust Metagenomes. This 

scatterplot shows how the meridional component (v) of local winds significantly predicts 

the normalized coverage of the cold shock protein cspA. Most points to the left of the 

dashed line include samples that received northerly winds, and points to the right of the 

dashed line include samples that received southerly winds. 
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osmY was significantly predicted by average 24-hour accumulated precipitation 

(P = 5.49e-7), average wind speed (P = 0.0005), and the meridional (north-south) 

component (v; P = 0.012; McFadden’s Pseudo R2 = 0.21). opuC was significantly 

predicted by average 24-hour accumulated precipitation (P = 0.001), and an interaction 

between average 24-hour accumulated precipitation and average wind speed (P = 0.017, 

McFadden’s Pseudo R2 = 0.336). However, average wind speed alone was not a 

significant predictor of opuC (P = 0.133).  

wecP was significantly predicted by average air temperature (P = 0.016) and the 

zonal (east-west) component of local winds (u) (P = 0.016), and the overall model was 

significant (Adj R2 = 0.442, P = 0.00084). wbgP was significantly predicted by the 

Salton Sea (P = 1.29e-8) and Shrub STFs (P = 0.00018), as well as the interaction 

between these two predictors (McFadden’s Pseudo R2 = 0.327, P = 6.41e-5). 

bisR was significantly predicted by average 24-hour accumulated precipitation (P 

= 0.013) and the Crop Land STF (P = 0.024), and the overall model was significant (Adj 

R2 = 0.441, P = 0.0009). prgX is significantly predicted by the average wind speed (P = 

0.0002) and the Developed STF (P = 0.039; McFadden’s Pseudo R2 = 0.334).  

Taxonomic Annotation of the Metagenome-Assembled Genomes (MAGs) 

The 101 high-quality MAGs were assigned to the Bacteria domain and to the 

following phyla: Proteobacteria (n = 44), Firmicutes (n = 27), Actinobacteriota (n = 19), 

Bacteroidota (n = 7), Spirochaetota (n = 3), and Desulfobacterota (n = 1). The 

Proteobacteria MAGs were assigned to the Gammaproteobacteria (n = 30) and 

Alphaproteobacteria (n = 14) classes. Firmicutes MAGs were assigned to the Bacilli (n = 
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25) and Clostridia (n = 2) classes. All 19 Actinobacteriota MAGs were assigned to the 

Actinomycetia class, and all 7 Bacteroidota MAGs were assigned to the Bacteroidia 

class. The 3 Spirochaeota MAGs were all assigned the same identity (i.e., Spirochaetia 

class, Borreliales order, and Borreliaceae family), but were not classified beyond the 

family level. Lastly, the MAG within the Desulfobacterota was assigned to the genus 

Frigididesulfovibrio (i.e., Desulfovibrionia class, Desulfovibrionales order, 

Desulfovibrionaceae family). 

88 of the 101 MAGs were identified at the genus level, and 37 MAGs were 

identified at the species level (Supplemental Table 5). The 37 MAGs identified at the 

species level include the following taxa: Corynebacterium sp012838715 (n = 12), 

Salinicoccus roseus (n = 11), Acinetobacter baumannii (n = 2), Bartonella sp016102265 

(n = 2), Priestia megaterium (n = 2), Brevundimonas vesicularis (n = 1), Cereibacter 

changlensis (n = 1),Curtobacterium sp001705035 (n = 1), Cutibacterium acnes (n = 1), 

Enterobacter kobei (n = 1), Exiguobacterium acetylicum (n = 1), Gilliamella apicola (n = 

1), and Pseudarthrobacter phenanthrenivorans (n = 1). 

Functions of Interest and their Depth of Coverage in the Metagenome-Assembled 

Genomes (MAGs) 

As was done with the co-assembled contigs, genes assigned to KOs previously 

identified in aeolian dust microbiomes were also identified in the MAGs. Genes assigned 

to KOs involved in UV-damaged DNA repair, the temperature shock response, 

osmoprotectant transport and accumulation, lipopolysaccharide (LPS) synthesis and 

modification, and quorum sensing were found in 95 of the 101 MAGs (Supplemental 
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Figure 4). Certain functions of interest were more widely distributed than others across 

the MAGs. 88 of the 95 MAGs contained the cspA gene, and 25 of the 95 MAGs had a 

normalized coverage greater than or equal to three for cspA. These bins were assigned to 

both Gram-negative and Gram-positive bacteria and were isolated from all four sites. In 

addition to cspA, other temperature shock genes shared across the MAGS included hsIR 

(i.e., a gene that codes for the ribosome-associated heat shock protein Hsp15) in 67 

MAGs and htpX in 39 of the MAGs. As for genes involved in UV-damaged DNA repair, 

87 of the 95 MAGs contained the uvrC gene, 85 of the 95 MAGs contained the uvrB 

gene, and 83 of the 95 MAGs contained the uvrA gene (Supplemental Figures 4, 5). 

Genes involved in osmoprotectant transport and accumulation were shared across the 

metagenomes as well, with 35 MAGs containing opuC and 28 MAGs containing osmY. 

12 of the 95 MAGs contained at least 18 of the 35 sporulation genes examined in this 

study. LPS development genes included wbgP in 51 MAGs, gtrB (i.e., polyisoprenyl-

phosphate glycosyltransferase; involved in O-antigen modification) in 43 MAGs, wecP in 

41 MAGs, and lpxD (i.e., UDP-3-O-[3-hydroxymyristoyl] glucosamine N-

acyltransferase; involved in Lipid A synthesis) in 41 MAGs. Lastly, while most of the 

quorum sensing genes and sporulation genes considered here were not widely distributed 

across the MAGs as other functions of interest, bisR was found in 53 of the MAGs, 

spoVR (i.e., codes for the stage V sporulation protein R) was found in 25 MAGs, and 

spmA was found in 24 MAGs. 

It should be noted that not all the functions of interest investigated here were 

identified in these 95 MAGs (Supplemental Figure 4). Only 82 of the 161 genes involved 
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in LPS biosynthesis and modification were found across the 95 MAGs. 35 of the 38 

sporulation genes considered here were shared across the MAGs, and 11 of the 37 genes 

considered that are involved in various quorum sensing pathways were found in our 

MAGs. Eight of the 29 genes considered that are involved in the bacterial temperate 

shock response and seven of the 11 genes involved in osmoprotectant 

transport/accumulation were found in our high-quality MAGs. Conversely, all six genes 

examined here that are involved in repairing UV-damaged DNA were found across the 

95 MAGs. 

A few MAGs contained many of these functions with a normalized coverage of 

greater than or equal to three. 25 MAGs contained cspA at a normalized coverage of at 

least three or higher, with its highest normalized coverage of 27.33 observed in the MAG 

WI.D.9.18.21.bin.6, which was assigned to Priestia megaterium. DP.D.7.10.20.bin.68, 

assigned to the genus Spirosoma, contained the following genes at a normalized coverage 

of greater than or equal to three: uvrA, the gene coding for the heat shock protein HsIJ 

(i.e., hsij), and 17 genes involved in LPS biosynthesis and modification. Specifically, this 

MAG contained LPS-related genes involved in various types of O-antigen synthesis at 

relatively high normalized coverages, with wbgP at a normalized coverage of 28.43, 

wecP at a normalized coverage of 19.29, and wbbC (i.e., O7-antigen biosynthesis 

mannosyltransferase) at a normalized coverage of 15.24. PD.D.7.27.21.bin.6 and 

WI.D.9.18.21.bin.11, both of which were assigned to Acinetobacter baumannii, 

contained the same set of genes at a normalized coverage greater than or equal to three. 

These genes included five genes involved in UV-damaged DNA repair (i.e., uvrA, uvrB, 
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uvrC, umuC, umuD), four genes the temperature shock response (i.e., cspA, htpX, hsIJ, 

and the hsIR gene that codes for the ribosome-associated heat shock protein Hsp15), two 

genes involved in quorum sensing (i.e., bisR and LuxR family transcriptional regulator 

solR), 1 gene involved in osmoprotectant transport (i.e., osmolarity sensor histidine 

kinase EnvZ, envZ), 16 genes involved in LPS biosynthesis, and the recA gene (i.e., a 

bacterial housekeeping gene).       

Discussion 

Here we investigate the microbial composition and functional diversity of the 

previously uncharacterized dust microbiome from the Salton Sea region. Despite 

significant differences in the dust sources and the wind conditions of our four sites (i.e., 

PD, BDC, DP, and WI) across several months in 2020 and 2021, we observed a core 

aeolian microbiome in both compositional and functional assembly. Additionally, the 

dust sources and wind conditions in this region contributed to the overall composition of 

the dust microbiome as well as specific adaptations required for aeolian microbial 

survival. Collectively, our results suggest that the influence of the local climate as well as 

the resilience of the microorganisms entrained in the dust work in tandem to structure the 

taxonomic and functional diversity of the core, aeolian dust microbiome. 

Dust Sources and Local Wind Conditions Drive Dust Microbiome Assembly 

We observed that aeolian dust microbial composition from around the Salton Sea 

significantly varied between our sites: PD, BDC, DP, and WI. A PERMANOVA found 

that microbial beta diversity significantly differed between sites, and K-means clustering 

of these data revealed three clusters, with one cluster containing four PD samples and one 
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BDC sample (i.e., PD.D.7.9.20, PD.D.8.14.20, BDC.D.11.6.20, PD.D.11.6.20, and 

PD.9.18.21) and another cluster containing three DP and two WI samples (DP.D.11.5.20, 

WI.D.7.29.21, DP.D.8.21.21, DP.D.12.8.21, and WI.D.12.8.21). Furthermore, while 

alpha diversity and species richness did not significantly differ between sites, we did 

observe that most of the samples in each site with a Shannon diversity of at least 117 and 

a species richness of at least 200 were grouped into these two respective clusters (i.e., 

PD/BDC and DP/WI). Upon deeper investigation, we found that the PD/BDC cluster 

shared microbial genera with a relative abundance of at least 2% or more, namely 

Adhaeribacteri, Segetibacter, and Bombilactobacillus. The DP/WI cluster also share 

major microbial genera including Adhaeribacter, Flavisolibacter, and Massilia 

(Supplemental Figure 6). The third cluster identified by K-means clustering groups the 

remaining samples from across the four sites together, with 17 of the 18 samples in this 

third cluster contain Massilia as a major taxon with a relative abundance of at least 2. The 

one sample in this cluster that does not have Massilia as a major genus, DP.D.10.10.20, 

has Spirosoma at a relative abundance of at least 2%, which is also observed in other 

samples in this cluster including BDC.D.9.20.21 and WI.D.11.5.20. These results 

demonstrate that samples from sites further from the Salton Sea (i.e., PD and BDC) share 

a specific set of bacteria, whereas sites closer to the Salton Sea (i.e., DP and WI) share a 

different set of taxa. Additionally, the third cluster containing samples dominated by 

Massilia represents the strength and resistance of specific taxa that have the ability to 

withstand a wide variety of environmental conditions. Collectively these findings suggest 

that while there are generalist, aeolian microorganisms driving compositional similarity 
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between our samples (i.e., like Massilia), there appears to be a location-specific signal 

regarding which taxa are dominant and shared between samples collected closer to verses 

further from the Salton Sea.   

Our findings are further supported by the significant differences we observed 

between the four sites based on their respective dust sources and contributors (i.e., 

surface type frequencies, STFs) and their wind conditions. We also found that dust 

sources and local wind conditions differentially structured the dust microbiomes within 

each site. For example, microbial composition within samples collected from the 

southernmost site, WI, were significantly driven by average relative humidity and the 

average zonal (east-west) component of local winds (u), whereas the microbial 

composition within samples from DP were significantly driven by both average 24-hour 

accumulated precipitation and the Barren Land STF, which represents desert land. These 

results suggest that the chemical composition of the dust and the source of the dust are 

stringent selective filters that differentially determine which microorganisms become 

entrained, persist, and disperse in aeolian dust around the Salton Sea and beyond. 

Previous research into the chemical composition and sources of dust collected around the 

Salton Sea has shown that dust composition and source vary depending on where the dust 

was collected. Frie et al. (2019) collected aeolian dust at our four sites (PD, BDC, DP, 

and WI) as well as a fifth site (Sonny Bono; SB) and found that evaporite-associated 

elements (i.e., Na, Ca, K, Mg, Sr) were most enriched in sites nearest to the Salton Sea 

(i.e., WI, DP) and decreased in concentration as the dust traveled north (Frie et al. 2019). 

Conversely, elements associated with soil crusts (i.e., Ti, Fe, Co, Ba, Sn) exhibited the 
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opposite trend, with the highest enrichment at PD and BDC, and decreasing as the dust 

moved south (Frie et al. 2019). The Frie et al. (2019) findings parallel our K-means 

clustering results described above (Supplemental Figure 6), where bacterial composition 

was distinct between several PD/BDC samples (i.e., collected further from the lake) and 

DP/WI samples (i.e., collected closer to the lake). Considering that nutrient availability 

and space are important factors in microbial dispersal and assembly, our results 

demonstrate that local wind conditions and sources select for the variation in taxonomic 

assembly of dust microbiomes in the Salton Sea region. 

Aeolian Dust has a Core Microbiome Based on Composition 

Despite the differences in aeolian dust microbial composition across our four 

sites, we observed a core aeolian dust microbiome composed of thirteen bacterial genera. 

Our results demonstrate that aeolian dust from around the Salton Sea shares a set of 

unique microorganisms that can withstand the harsh conditions of the atmosphere. 

Twelve of the thirteen bacterial genera identified in the Salton Sea core dust microbiome 

have been previously identified in dusts and aerosols from around the world (Figure 1). 

Of these thirteen taxa, Massilia dominated our samples and appeared to be the most 

abundant member of the core dust microbiome, appearing in all 28 samples with a 

minimum relative abundance of 0.33% (WI.D.7.10.20) and a high of 70.33% (i.e., 

PD.D.12.8.21). This Gram-negative genus was previously identified in the core 

microbiome of airborne dust in Kuwait (Al Salameen et al. 2020), dust samples from the 

Eastern Mediterranean (Erkorkmaz et al. 2023), and air samples collected in the Suwon 

region of South Korea (Weon et al. 2008). Massilia is of particular interest due to its 
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presence in all our samples and due to its known resiliency against both hot and cold 

temperatures as well as UV-radiation stress. Massilia species are known to be 

pyrophilous and heat resistant, dominating forest soils immediately after a fire (Pulido-

Chavez et al. 2023), and have been isolated from desert soil crusts in Moab, Utah, 

photovoltaic cells in southeast Brazil (Moura et al. 2021), and microbial mats in 

Antarctica (Shaffer et al. 2023). Massilia was found to dominate dust rains collected in 

Beirut, Lebanon and Granada, Spain (Itani and Smith 2016, Navarro et al. 2023). Our 

results are consistent with these studies’ findings, and comprehensively these results 

speak not only to Massilia’s ubiquity in atmospheric samples globally, but also to this 

genus’ ability to readily adapt to its harsh, dynamic conditions. Recent research 

discovered that Massilia frigida isolated from a microbial mat in the Don Juan Pond 

basin in Antarctica were capable of producing the red pigment prodigiosin, which assists 

with UV protection; yet non-psychrotolerant Massilia did not contain the necessary 

biosynthetic gene clusters to produce this pigment (Shaffer et al. 2023). Given the 

presence and abundance of Massilia species across our samples and collection periods, in 

both dry and wet months, it is evident that Massilia is has the necessary attributes to 

dominate the aeolian dust microbiome. 

In addition to Massilia, other members of the core dust microbiome have been 

isolated in a variety of environmental dust and soil surface samples. Air samples 

collected at Peking University in Beijing, China contained nine of our 13 core dust 

microbial taxa: Sphingomonas, Hymenobacter, Planomicrobium, Pseudomonas, 

Novosphingobium, Roseomonas, Paracoccus, Kocuria, and Massilia (Zhang et al. 
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2019b). Bacterial cultures isolated from dust collected in Ilam city, Iran, contained 

Pseudomonas, Planococcus, Paracoccus, and Rhizobium colonies (Amarloei et al. 2020). 

Additionally, a global study of settled dust (i.e., including samples from 33 countries and 

six continents) found that not only did Sphingomonas and Hymenobacter dominate their 

dust samples, but they also identified the presence of Devosia, Paracoccus, and 

Pseudomonas in their dust microbiomes (Chen et al. 2021). Lastly, while Nibribacter has 

not been explicitly identified in dust, this genus was abundant in emissive surface sand 

from the Kyzyl-Kum desert in Uzbekistan along with other known dust-inhabiting 

microorganisms such as Roseomonas, Hymenobacter, Novosphinogobium, Planococcus, 

Planomicrobium, Sphingomonas, and Massilia (Osman et al. 2023). Our results, in 

addition to prior research exploring the composition of the dust microbiome, confirm that 

these bacteria are capable of persisting in the harsh and volatile conditions of aeolian 

dust. 

Aeolian Dust has a Core Microbiome Based on Function 

Functional annotation of the aeolian dust metagenomes sampled from the Salton 

Sea revealed that the aeolian dust microbiome in this region is equipped to survive 

atmospheric conditions. Genes that code for proteins involved in endospore formation, 

UV-damaged DNA repair, the temperature shock response, osmoprotectant transport and 

accumulation, lipopolysaccharide (LPS) synthesis and modification, and quorum sensing 

were widely distributed across genes our metagenomes (Figure 5) as well as MAGs. The 

presence and distribution of these traits throughout the metagenomes from all four sites 

indicates that the aeolian dust microbiome contains the set of features required to 
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withstand entrainment and colonization of the atmospheric ecosystem. Furthermore, we 

observed that the normalized coverages of temperature shock response genes, genes 

involved in UV-damaged DNA repair, and genes involved in osmoprotectant transport 

did not significantly differ between metagenomes from different sites and collection 

periods. Previous studies into the functional diversity of atmospheric microbiomes have 

found similar traits that are necessary for windblown survival and dispersal. 

Metagenomes from air samples collected over the Red Sea contained genes that code for 

proteins involved in UV radiation resistance (i.e., uvrA), quorum sensing and biofilm 

formation genes (i.e., vpsT), heat shock resistance (i.e., HSP70, HSP90), and sporulation 

(i.e., spoVK, spoIVFB; Aalismail et al. 2019). Bacteria sampled from clouds (Joly et al. 

2015), rainwater (Ling et al. 2021) and air (Daussin et al. 2023) have been shown to resist 

a variety of stressors associated with the atmosphere and wind including UV radiation, 

osmotic stress, and the freeze-thaw cycle. Thus, we can conclude that the dust 

microbiome in the Salton Sea region has the functional capacity and redundancy to 

withstand the atmospheric stressors associated with aeolian entrainment, colonization, 

and dispersal. 

Sporulation genes were not as widely distributed throughout the metagenomes as 

the other aeolian-survival functions we considered, yet at least four of the 38 genes 

considered here found in each metagenome: spmA, spoIVCA, spoVK, and spoVR (Figure 

5). It is possible that the low representation of sporulation genes throughout the 

metagenomes and the MAGs is due to the presence of endospore formers traveling as 

endospores in the dust rather than as bacterial cells. Extracting DNA from endospores is 
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more challenging than extracting DNA from bacteria cells due to their resilience against 

both mechanical and temperature stress (Wunderlin et al. 2016). Future work into the 

functional diversity of aeolian dust microbiomes should take this into consideration when 

extracting DNA from atmospheric samples. 

Wind Direction and Seasonality Select for Microbial Adaptations 

We find that while the aeolian dust microbiome has a core set of required 

adaptations for survival, a single abiotic factor cannot explain the prevalence and 

distribution of these functions. Furthermore, these results highlight the complexity of the 

aeolian environment and its multiple selective pressures that synergistically structure the 

functional diversity of dust microbiomes. The average meridional (north-south) 

components (v) and zonal (east-west) components (u) of local winds were significant or 

near significant predictors for several core dust microbiome traits. Notably, the 

meridional (north-south) component (v) was a significant predictor for functions involved 

in sporulation (i.e., spmA), UV radiation resistance (i.e., lexA, uvrA, uvrB, and uvrC), 

thermal resistance (i.e., cspA), and osmotic stress resistance (i.e., osmY). When plotting 

the normalized coverage of these functions against the meridional (north-south) 

component (v; Figure 6, Supplemental Figure 7), a seasonal trend emerged: the UV 

radiation resistance genes and cspA appeared to have higher normalized coverage with 

northerly winds in the winter months compared to the lower coverage with southerly 

winds summer and fall months; whereas spmA and osmY exhibited a slight increase in 

normalized coverages with southerly winds during the summer months. These trends 

observed in the shared adaptations across sites highlight the functional plasticity, 
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redundancy, and resiliency of the aeolian dust microbiome throughout changing climate 

conditions over time. 

The wind conditions we observed here were like those described in Frie et al 

(2019), with predominantly northerly winds during the winter months. They found that 

dust flux in the region was highest during spring and summer, coinciding with high wind 

speeds and an increase in playa emissions from the Salton Sea (Frie et al. 2019). 

Similarly, we observed higher average temperatures during the summer months across 

our sites compared to the fall and winter months (Supplemental Table 2), and we found a 

positive correlation between the meridional (north-south) component (v) and the Salton 

Sea STF, where the Salton Sea contribution was greater with southerly winds and 

decreased with northerly winds (r = 0.67, P = 9.74e-05; Supplemental Tables 10, 11). 

The functional annotation results as well as the relationship between the Salton Sea STF 

and wind direction suggest that the aeolian microbiome is functionally resilient in the 

face of ecological disturbance. During the spring and summer months, temperatures are 

high, wind directions shift, wind speeds increase, and the contribution of Salton Sea playa 

dust and sea spray also increase. Together, these conditions disturb the aeolian 

microbiome. As summer turns to fall and winter, dust flux, wind speeds, and air 

temperatures decrease, and the generalist aeolian dust microbiome can thrive unhindered 

by the local climate. This could explain why there was an apparent recovery in the 

normalized coverages of the UV radiation resistance genes and cspA during the fall 

months. Moreover, this conclusion also supports the increase in the normalized coverage 

of spmA and osmY we observed during the summer months when UV radiation resistance 
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genes and cspA decreased; microorganisms that colonize the Salton Sea water and playa 

must be halophiles, and thus are uniquely adapted to survive severe osmotic stress 

(Freund et al. 2022). We did identify microbial genera that were shared between Salton 

Sea dust and seawater samples (Freund et al, in progress; Supplemental Figure 8), yet 

more comparisons of the taxonomic and functional diversity of these interacting 

microbiomes across seasons would further clarify this disturbance-recovery hypothesis. 

Despite observing this seasonal and directional shift in the distribution in dust 

microbial adaptations, the relative abundance of the genera found dust core microbiome 

did not follow this pattern (Supplemental Figure 9). This could be due to horizontal gene 

transfer (i.e., HGT) within the aeolian dust microbiome, contributing to the functional 

convergence and survival of microorganisms beyond those in the core dust microbiome. 

Evidence of HGT events using specific marker genes such as the Class I integron-

integrase gene (i.e., intI1) and commonly shared antibiotic resistance genes (i.e., ARGs) 

have been observed in dust microbial communities (Li et al. 2018, Zhang et al. 2019a, 

Maamar et al. 2020). Additionally, Massilia and Sphingomonas isolated from rain and 

snow samples showed evidence of previous HGT events via the ARGs they contained 

(Cáliz et al. 2022). We did identify the presence of several ARGs in all 24 aeolian dust 

metagenomes and in 12 MAGs, specifically macrolide phosphotransferase, beta-

lactamase class D OXA-9, dihydrofolate reductase DfrA, aminoglycoside 6’-N-

acetyltransferase I, and the ribosomal protection tetracycline resistance protein 

(Supplemental Figures 10, 11). Three of the 12 MAGs contained two ARGs that target 

different antibiotics, revealing that some of these microorganisms have multi-drug 
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resistance. Of note is beta-lactamase class D OXA-9 which exhibited the highest 

normalized coverage across the metagenomes; beta-lactamases have been found to be 

associated with plasmid mobilization and HGT, and they have been found in 

environmental microbiomes (Marathe et al. 2018). The identification of multi-drug ARGs 

in the aeolian dust microbiome from the Salton Sea region is alarming because these 

genes can be shared via HGT from the aeolian microbiome to the airway and lung 

microbiomes (Aogáin et al. 2020, Bai et al. 2024). The transfer of these ARGs to host 

microbiomes can reduce the efficacy of antibiotics used to treat infections, and thus 

increase the vulnerability of the exposed individual to a wide variety of illnesses, 

including respiratory illness. The distribution and dispersal of ARGs because of HGT has 

been well studied due to their pathogenic impact, yet the sharing of niche-specific 

adaptations via HGT within environmental microbiomes and between the environment 

and the host microbiomes requires further investigation (Fuchsman et al. 2017). Future 

work exploring HGT events in the Salton Sea dust microbiome is required to better 

understand the selective mechanisms behind the functional convergence and taxonomic 

divergence we observed in this microbial community, and how these selective processes 

give rise to the pathogenicity of the aeolian microbiome. 

Precipitation and Moisture Availability Impacts Dust Microbial Survival Strategies 

Average accumulated precipitation was a significant predictor of several 

microbial functions of interest that are involved in surviving osmotic stress (i.e., 

spoIVCA, spmA, osmY, opuC, and bisR). Average relative humidity was a driver of 

microbial composition within the WI samples and, with average precipitation, was a 
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significant driver of spoIVCA normalized coverage across the dust metagenomes. Our 

results highlight the importance of moisture availability and osmotic stress resistance 

within the aeolian dust microbiome. We found that the normalized coverage of spoIVCA, 

opuC, and bisR decreased as precipitation increased. This could be because precipitation 

provides readily available water for the dust microbiome, and thus the microbial 

responses to deal with this stress (i.e., sporulation, osmoprotectant accumulation, and 

biofilm formation) are not necessary. This relationship between spoIVCA, opuC, bisR, 

and precipitation is supported by the fact that moisture availability and osmotic pressure 

are triggers for the expansion of biofilms in both Gram-positive and Gram-negative 

bacteria, and are involved in initiating sporulation particularly within biofilm formation 

(Bremer and Krämer 2019). Conversely, spmA and osmY normalized coverages slightly 

increase with both precipitation and southerly winds. The opposing trends seen here with 

spoIVCA verses spmA and opuC verses osmY respectively suggests that aeolian dust 

microorganisms utilize a variety of survival strategies depending on their climate 

conditions. Furthermore, as described above, the increase in normalized coverages of 

spmA and osmY with southerly winds during the summer months may denote that playa 

and seawater microorganisms from the Salton Sea could be entrained in the aeolian dust 

when regional dust emissions are high. The functional redundancy, versatility, and 

flexibility we observed speak to the ability of the aeolian microbiome to employ multiple 

survival mechanisms as conditions change, allowing this community to travel long 

distances and withstand periods of ecological stress.  
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Conclusion 

We characterized the taxonomic and functional diversity of the aeolian dust 

microbiome from the Salton Sea ecosystem. The microbiome of the aeolian dust revealed 

that although there were location-specific differences in microbial composition between 

our four sites, there was a core microbiome of bacterial genera that are shared in the dust. 

These genera have been previously identified in other dust and atmospheric samples and 

are known to withstand the environmental stressors indicative of the aeolian dust 

ecosystem. The aeolian dust microbiome also contained a set of shared genes that 

contribute to its survival in the atmospheric environment, specifically genes involved in 

UV radiation resistance, thermal resistance, and osmotic stress. Moreover, the 

conservation and redundancy of these functions in the aeolian dust microbiome are 

selected for by climate characteristics such as relative humidity and precipitation and 

contributing dust sources. 

Our results help to establish a direct connection between microbial ecology in the 

environment and public health. There is a bias in the field of microbiology that focuses 

on studying human pathogens, which is reflected by the lack of environmentally sourced 

and/or non-culturable microorganisms in our reference databases (Steen et al. 2019, Dias 

et al. 2020). This perspective does us a disservice because as climate change worsens, our 

environment will continue to select for resilient and resistant microorganisms that may be 

pathogenic or can readily become pathogenic upon receiving ARGs and other harmful 

traits via HGT. While the dust microorganisms we observed were not necessarily 

pathogenic, their adaptations allow them to remain viable across long distances, 
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increasing the likelihood that they are inhaled upon exposure and induce inflammation. 

Furthermore, the Salton Sea aeolian microbiome contains multi-drug ARGs that can be 

transmitted via HGT to the host during inhalation and colonization of the airway and 

lungs, increasing the susceptibility of the exposed populations to respiratory illness. 

Individuals with respiratory illnesses such as chronic obstructive pulmonary disease (i.e., 

COPD) and bronchiectasis exhibited an increased abundance of certain ARGs compared 

to healthy individuals (Aogáin et al. 2020); considering the high rate of respiratory 

distress and asthma experienced by the community in the Salton Sea region, the variety 

of ARGs and other potentially dangerous adaptations we found in the Salton Sea aeolian 

microbiome could pose a serious threat to the local population. Thus, understanding the 

accumulation and exchange of ARGs and other harmful traits in the dust microbiome, 

and their transmission to the host microbiomes via exposure and HGT, warrants further 

study. As saline lakes like the Salton Sea are shrinking globally and increasing the global 

dust load, it seems plausible that this dust will drive the structure and function of global 

atmospheric dust microbiomes as we observed in the Salton Sea dust, and have 

unforeseen, detrimental health impacts. We use this work to urge healthcare 

professionals, policy makers, and community members alike to consider the importance 

of environmental microbiomes, especially dust microbiomes, as they work to combat the 

harm caused by industrialization and climate change.   
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Figure C.1.1. Bacterial Phyla Relative Abundance by Sample and Site. These stacked 

barplots show the relative abundance of bacterial phyla found in each sample and are 

separated by site: Palm Desert (PD), Boyd Deep Canyon (BDC), Dos Palmas (DP), and 

Wister (WI).  
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Figure C.1.2. Alpha Diversity by Site and Collection Date. These box-and-whisker 

plots show the alpha (Shannon-Weiner) diversity calculated from rarefied ASV counts 

from each sample within each site. The shape of the points indicate the site, whereas the 

color indicates the collection date. 
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Figure C.1.3. Species Richness by Site and Collection Date. These box-and-whisker 

plots show the species richness calculated from rarefied ASV counts from each sample 

within each site. The shape of the points indicate the site, whereas the color indicates the 

collection date. 
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Figure C.1.4. Genes of Interest and their Normalized Coverage in the Metagenome-

Assembled Genomes (MAGs). This heatmap shows the normalized coverage (median-

ratio normalized, scaled coverages) of specific genes in the MAGs. Each column 

represents a MAG and the MAGs are organized by collection month from left to right. 

The genes are separated into functional categories: LPS modification genes (LPS), 

osmoprotectant transport/accumulation genes (Osmo), quorum sensing genes (QS), 

sporulation genes (Spore), temperature resistance genes (Temp), and UV radiation 

resistance genes (UV). Gray squares indicate that the gene is absent.   
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Figure C.1.6. K-Means Clustering of Microbial Composition Data. This is a  

principle coordiantes analysis (PCoA) showing the K-means clustering of the samples. 

Each point represents an individual samples, and all points within a cluster only belong  

to that cluster. The clusters have been assigned the colors blue, red, and green.   
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Figure C.1.7. UV Radiation Resistance Genes lexA (A), uvrA (B), uvrB (C), uvrC (D), 

spmA (E), and osmY (F) plotted against the Meridional Wind Component (north-

south, v). These scatterplots show how the normalized coverages of these genes 

decreases (lexA, uvrA, uvrB, uvrC) or increases (spmA, osmY) with the meridional wind 

component. Most points to the left of the center of the x-axis are northerly winds, 

whereas points to the right of the center are southerly winds. 
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Figure C.1.8. Bacterial Genera Shared between Salton Sea Dust and Lake Water. 

This heatmap shows the relative abundance of bacterial genera that were found in both 

Salton Sea dust (Ch III) and lake water (Ch II). Each column is a sample, with dust 

samples on the left and seawater samples on the right. The values displayed for the dust 

samples were first scaled based on dust collector deployment duration by days before 
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calculating relative abundance, whereas the relative abundance for seawater samples was 

not scaled before calculating.  
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Figure C.1.9. Core Microbiome Bacterial Genera by Sample and Site. These stacked 

bar plots show the relative abundance of bacterial genera that were found in the core dust 

microbiome from the Salton Sea. Each column represents a sample, and samples are 

organized from left to right by collection date, then site (PD, BDC, DP, and WI). 
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Sample ID Site Collection 

Year 

Sample 

Month 

Deployment 

Date 

Collection 

Date 

Deployment 

Duration 

Latitude Longitude 

PD.D.7.9.20 PD 2020 July 5/13/20 7/9/20 57 33.773808 -116.35286 

PD.D.8.14.20 PD 2020 August 7/9/20 8/14/20 36 33.773808 -116.35286 

PD.D.10.8.20 PD 2020 October 8/14/20 10/8/20 55 33.773808 -116.35286 

PD.D.11.6.20 PD 2020 November 10/8/20 11/6/20 29 33.773808 -116.35286 

PD.D.7.27.21 PD 2021 July 6/5/21 7/27/21 52 33.773808 -116.35286 

PD.D.9.18.21 PD 2021 September 7/27/21 9/18/21 53 33.773808 -116.35286 

PD.D.12.8.21 PD 2021 December 9/18/21 12/8/21 81 33.773808 -116.35286 

BDC.D.7.9.20 BDC 2020 July 5/13/20 7/9/20 57 33.6516667 -116.37264 

BDC.D.8.14.20 BDC 2020 August 7/9/20 8/14/20 36 33.6516667 -116.37264 

BDC.D.10.8.20 BDC 2020 October 8/14/20 10/8/20 55 33.6516667 -116.37264 

BDC.D.11.6.20 BDC 2020 November 10/8/20 11/6/20 29 33.6516667 -116.37264 

BDC.D.7.27.21 BDC 2021 July 6/5/21 7/27/21 52 33.6516667 -116.37264 

BDC.D.9.20.21 BDC 2021 September 7/27/21 9/20/21 55 33.6516667 -116.37264 

BDC.D.12.8.21 BDC 2021 December 9/29/21 12/8/21 70 33.6516667 -116.37264 

DP.D.7.10.20 DP 2020 July 6/1/20 7/10/20 39 33.48859 -115.83517 

DP.D.8.30.20 DP 2020 August 7/10/20 8/30/20 51 33.48859 -115.83517 

DP.D.10.10.20 DP 2020 October 8/30/20 10/10/20 41 33.48859 -115.83517 

DP.D.11.5.20 DP 2020 November 10/10/20 11/5/20 26 33.48859 -115.83517 

DP.D.8.21.21 DP 2021 August 6/8/21 8/19/21 72 33.48859 -115.83517 

DP.D.9.18.21 DP 2021 September 8/19/21 9/18/21 30 33.48859 -115.83517 

DP.D.12.8.21 DP 2021 December 9/18/21 12/8/21 81 33.48859 -115.83517 

WI.D.7.10.20 WI 2020 July 6/1/20 7/10/20 39 33.283861 -115.60008 

WI.D.8.30.20 WI 2020 August 7/10/20 8/30/20 51 33.283861 -115.60008 

WI.D.10.10.20 WI 2020 October 8/30/20 10/10/20 41 33.283861 -115.60008 

WI.D.11.5.20 WI 2020 November 10/10/20 11/5/20 26 33.283861 -115.60008 

WI.D.7.29.21 WI 2021 July 6/8/21 7/29/21 51 33.283861 -115.60008 

WI.D.9.18.21 WI 2021 September 7/29/21 9/18/21 51 33.283861 -115.60008 

WI.D.12.8.21 WI 2021 December 9/18/21 12/8/21 81 33.283861 -115.60008 

 

Table C.2.1. Sample Metadata. This table details the metadata for each sample. PD 

represents Palm Desert, BDC represents Boyd Deep Canyon, DP represents Dos Palmas, 

and WI represents Wister. 
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Sample ID Bin 

Num 

Tax

a 

Lev

el 

Marker 

Lineage 

Lineag

e ID 

Geno

me 

Num 

Complete

ness 

Contamina

tion 

Strain 

Heterogen

eity 

GC_Con

tent 

DP_D_8_21_2

1_A 

bin.1 o Actinomycetale

s 

(UID15

90) 

562 98.46 0.11 50 70.3 

DP_D_8_21_2
1_A 

bin.1
4 

c Alphaproteobac
teria 

(UID33
05) 

564 98.69 4.41 7.14 67.5 

DP_D_8_21_2

1_A 

bin.2

0 

c Gammaproteob

acteria 

(UID42

67) 

119 98.89 2.46 6.25 67.4 

DP_D_8_21_2

1_A 

bin.2

7 

c Bacilli (UID28

5) 

586 92.53 0.72 50 50.7 

BDC_D_9_20_

21_B 

bin.1 o Bacillales (UID82

8) 

139 89.66 0 0 38.6 

BDC_D_9_20_

21_B 

bin.1

2 

c Bacilli (UID28

5) 

586 83.48 0.72 50 51.2 

BDC_D_9_20_
21_B 

bin.2
0 

p Bacteroidetes (UID26
05) 

350 86.27 1.32 100 40.7 

BDC_D_9_20_

21_B 

bin.2

3 

k Bacteria (UID20

3) 

5449 81.93 0.88 100 61.4 

BDC_D_9_20_

21_B 

bin.2

7 

o Actinomycetale

s 

(UID15

90) 

562 97.27 0.06 0 70.3 

BDC_D_9_20_

21_B 

bin.2

9 

c Gammaproteob

acteria 

(UID42

02) 

67 98.55 0 0 61.9 

BDC_D_9_20_

21_B 

bin.3

0 

c Gammaproteob

acteria 

(UID42

67) 

119 98.54 2.29 7.69 67.6 

BDC_D_9_20_
21_B 

bin.3
2 

o Burkholderiales (UID40
02) 

107 80.8 3.29 36.84 65.5 

BDC_D_9_20_

21_B 

bin.4 c Gammaproteob

acteria 

(UID43

87) 

965 83.18 2.07 54.55 33.9 

WI_D_7_29_2

1_A 

bin.1 c Bacilli (UID28

5) 

586 93.1 0.72 50 50.7 

WI_D_7_29_2

1_A 

bin.1

6 

o Actinomycetale

s 

(UID15

90) 

562 99.06 0.7 25 70.3 

WI_D_7_29_2

1_A 

bin.1

8 

o Rhodospirillales (UID37

54) 

63 98.91 0 0 57.1 

WI_D_7_29_2

1_A 

bin.6 c Gammaproteob

acteria 

(UID42

01) 

1164 99.43 1.15 0 47.5 

WI_D_7_29_2

1_A 

bin.8 o Actinomycetale

s 

(UID15

93) 

69 96.36 1.3 16.67 72.7 

PD_D_11_6_2
0_B 

bin.7 c Gammaproteob
acteria 

(UID42
02) 

67 98.55 0 0 61.9 

BDC_D_12_8_

21_A 

bins.

30 

c Bacilli (UID25

9) 

750 96.52 0.99 50 43.3 

BDC_D_12_8_

21_A 

bins.

6 

o Clostridiales (UID12

12) 

172 87.25 0 0 48.8 

BDC_D_11_6_

20_A 

bins.

11 

c Alphaproteobac

teria 

(UID33

05) 

564 85.92 3.86 87.5 45.2 

BDC_D_11_6_

20_A 

bins.

15 

c Bacilli (UID28

5) 

586 89.94 0.72 50 50.7 

BDC_D_11_6_
20_A 

bins.
20 

c Gammaproteob
acteria 

(UID42
02) 

67 98.55 0 0 61.9 

BDC_D_11_6_

20_A 

bins.

25 

o Actinomycetale

s 

(UID15

90) 

562 98.46 0.26 33.33 70.3 

BDC_D_8_14_

20_A 

bin.1

0 

p Bacteroidetes (UID26

05) 

350 96.16 4.35 53.85 40.8 

BDC_D_8_14_

20_A 

bin.3 o Rhizobiales (UID34

47) 

356 98.39 1.21 0 66.2 

BDC_D_8_14_

20_A 

bin.4

2 

o Cytophagales (UID29

36) 

47 98.21 0.6 0 52.5 

DP_D_8_30_2
0_A 

bin.1
4 

o Actinomycetale
s 

(UID15
90) 

562 98.46 0.82 16.67 70.3 

DP_D_8_30_2

0_A 

bin.5 c Bacilli (UID28

5) 

586 90.09 0.72 50 51.1 
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DP_D_12_8_2

1_B 

bin.1

2 

c Alphaproteobac

teria 

(UID33

05) 

564 98.69 4.41 7.14 67.5 

DP_D_12_8_2

1_B 

bin.2 k Bacteria (UID24

95) 

2993 98.77 0.62 100 25 

DP_D_12_8_2

1_B 

bin.2

2 

c Gammaproteob

acteria 

(UID44

44) 

263 90.84 2.92 12.5 54.5 

DP_D_12_8_2
1_B 

bin.2
3 

c Bacilli (UID28
5) 

586 91.38 0.72 50 50.7 

DP_D_12_8_2

1_B 

bin.2

4 

o Actinomycetale

s 

(UID15

90) 

562 98.46 0.11 50 70.3 

DP_D_12_8_2

1_B 

bin.2

9 

c Gammaproteob

acteria 

(UID42

67) 

119 98.54 2.64 7.14 67.5 

DP_D_12_8_2

1_B 

bin.3

3 

o Actinomycetale

s 

(UID15

30) 

622 95.86 2.96 83.33 60.2 

BDC_D_7_9_2

0_A 

bin.1

0 

o Actinomycetale

s 

(UID15

90) 

562 99.06 0.11 50 70.3 

BDC_D_7_9_2
0_A 

bin.1
1 

c Bacilli (UID28
5) 

586 92.53 0.72 50 50.7 

BDC_D_7_9_2

0_A 

bin.2

7 

k Bacteria (UID24

95) 

2993 97.18 0 0 23.2 

DP_D_7_10_2

0_C 

bin.1

7 

o Rhizobiales (UID34

47) 

356 96.43 1.02 0 61 

DP_D_7_10_2

0_C 

bin.2

3 

o Burkholderiales (UID40

00) 

193 92.4 4.19 15.38 68 

DP_D_7_10_2

0_C 

bin.3

3 

o Burkholderiales (UID40

00) 

193 89.68 4.63 56.25 65.4 

DP_D_7_10_2
0_C 

bin.3
7 

o Rhodospirillales (UID37
54) 

63 90.69 3.61 7.69 69.5 

DP_D_7_10_2

0_C 

bin.4

5 

o Cytophagales (UID29

36) 

47 95.89 1.34 20 61.3 

DP_D_7_10_2

0_C 

bin.4

6 

k Bacteria (UID20

3) 

5449 80.34 0 0 68.4 

DP_D_7_10_2

0_C 

bin.4

7 

o Sphingomonada

les 

(UID33

10) 

26 97.78 0.46 75 65.9 

DP_D_7_10_2

0_C 

bin.5

4 

f Micrococcaceae (UID16

31) 

31 95.03 0.55 25 65.9 

DP_D_7_10_2

0_C 

bin.6

2 

o Actinomycetale

s 

(UID15

93) 

69 93.98 2.53 0 67.8 

DP_D_7_10_2

0_C 

bin.6

8 

o Cytophagales (UID29

36) 

47 99.7 0.6 0 52.5 

DP_D_7_10_2
0_C 

bin.7
3 

c Alphaproteobac
teria 

(UID34
22) 

26 83.32 3.29 82.35 66.1 

DP_D_7_10_2

0_C 

bin.7

4 

p Proteobacteria (UID38

87) 

1487 97.56 1.98 25 64.6 

WI_D_8_30_2

0_B 

bin.1

7 

o Actinomycetale

s 

(UID15

93) 

69 97.38 2.95 18.18 67.2 

WI_D_8_30_2

0_B 

bin.1

9 

g Burkholderia (UID40

06) 

64 92.68 2.98 42.86 59.3 

WI_D_8_30_2

0_B 

bin.2

1 

o Cytophagales (UID29

36) 

47 90.18 0.3 100 45.9 

WI_D_8_30_2
0_B 

bin.2
4 

o Actinomycetale
s 

(UID15
93) 

69 94.9 2.98 36.36 68.5 

WI_D_8_30_2

0_B 

bin.6 o Actinomycetale

s 

(UID15

93) 

69 99.49 4.25 31.25 64.1 

PD_D_9_18_2

1_C 

bin.3 c Gammaproteob

acteria 

(UID42

02) 

67 98.55 0 0 61.9 

DP_D_11_5_2

0_A 

bin.5 o Actinomycetale

s 

(UID15

90) 

562 97.87 1.4 0 70.3 

BDC_D_7_27_

21_A 

bin.1

1 

k Bacteria (UID20

3) 

5449 82.14 0.89 0 45.3 

BDC_D_7_27_
21_A 

bin.3 f Bacillaceae (UID82
9) 

128 80.59 3.28 51.72 42.2 

BDC_D_7_27_

21_A 

bin.3

5 

o Burkholderiales (UID40

00) 

193 92.12 2.44 33.33 65.7 
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BDC_D_7_27_

21_A 

bin.3

7 

o Bacillales (UID82

8) 

139 89.63 1.6 0 49.1 

PD_D_12_8_2

1_A 

bin.1

8 

c Bacilli (UID25

9) 

750 96.52 0.99 50 43.3 

DP_D_9_8_21

_B 

bin.1 c Gammaproteob

acteria 

(UID43

87) 

965 96.74 0.14 100 34.3 

DP_D_9_8_21
_B 

bin.1
0 

c Gammaproteob
acteria 

(UID44
44) 

263 95.98 0.52 0 35.7 

DP_D_9_8_21

_B 

bin.1

7 

c Alphaproteobac

teria 

(UID33

05) 

564 82.35 2.53 81.82 45.2 

DP_D_9_8_21

_B 

bin.1

8 

o Burkholderiales (UID40

02) 

107 94.74 2.5 13.64 62.6 

WI_D_9_18_2

1_A 

bin.1

0 

f Enterobacteriac

eae 

(UID51

24) 

134 96.68 2.16 55.17 55.3 

WI_D_9_18_2

1_A 

bin.1

1 

f Moraxellaceae (UID46

80) 

86 95.39 0.27 0 39 

WI_D_9_18_2
1_A 

bin.2 c Bacilli (UID25
9) 

750 96.05 1.32 100 47.4 

WI_D_9_18_2

1_A 

bin.2

1 

o Bacillales (UID82

8) 

139 91.11 1.99 12.5 49.6 

WI_D_9_18_2

1_A 

bin.6 o Bacillales (UID82

8) 

139 98.28 0.03 0 38.4 

WI_D_9_18_2

1_A 

bin.9 o Bacillales (UID82

8) 

139 96.52 1.73 0 48.8 

WI_D_12_8_2

1_A 

bin.2

4 

o Actinomycetale

s 

(UID15

90) 

562 98.46 0.11 50 70.3 

WI_D_12_8_2
1_A 

bin.2
5 

c Spirochaetia (UID24
96) 

72 98.13 0 0 27.3 

WI_D_12_8_2

1_A 

bin.2

6 

c Bacilli (UID28

5) 

586 92.53 0.72 50 50.7 

WI_D_12_8_2

1_A 

bin.8 o Rhodospirillales (UID37

54) 

63 98.91 0 0 57.1 

PD_D_8_14_2

0_B 

bin.1

8 

o Actinomycetale

s 

(UID15

90) 

562 98.46 0.11 50 70.3 

PD_D_8_14_2

0_B 

bin.2

0 

c Bacilli (UID28

5) 

586 92.53 0.72 50 50.7 

PD_D_8_14_2

0_B 

bin.2

4 

c Gammaproteob

acteria 

(UID42

02) 

67 98.55 0 0 61.9 

WI_D_7_10_2

0_A 

bin.1 o Clostridiales (UID12

12) 

172 90.94 0 0 43.3 

WI_D_7_10_2
0_A 

bin.1
1 

o Actinomycetale
s 

(UID15
90) 

562 98.46 0.11 50 70.3 

WI_D_7_10_2

0_A 

bin.1

3 

c Spirochaetia (UID24

96) 

72 98.13 0 0 27.5 

WI_D_7_10_2

0_A 

bin.1

5 

c Deltaproteobact

eria 

(UID32

18) 

61 97.04 0.59 100 45.5 

WI_D_7_10_2

0_A 

bin.5 c Bacilli (UID28

5) 

586 92.53 0.72 50 50.7 

WI_D_7_10_2

0_A 

bin.8 o Bacteroidales (UID26

21) 

198 94.04 0.96 0 37.1 

WI_D_11_5_2
0_A 

bin.1
9 

c Bacilli (UID28
5) 

586 91.38 0.72 50 50.7 

WI_D_11_5_2

0_A 

bin.2 k Bacteria (UID24

95) 

2993 98.77 0.62 100 25 

WI_D_11_5_2

0_A 

bin.2

0 

o Burkholderiales (UID40

01) 

108 96.88 4.07 10 66.3 

WI_D_11_5_2

0_A 

bin.2

4 

c Spirochaetia (UID24

96) 

72 88 0 0 27.3 

WI_D_11_5_2

0_A 

bin.3 o Actinomycetale

s 

(UID15

90) 

562 98.46 0.11 50 70.3 

WI_D_11_5_2
0_A 

bin.5 o Rhodospirillales (UID37
54) 

63 98.91 0 0 57.1 

WI_D_11_5_2

0_A 

bin.8 k Bacteria (UID24

95) 

2993 97.18 0 0 23.2 
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PD_D_7_27_2

1_A 

bin.1

4 

k Bacteria (UID20

3) 

5449 81.03 1.72 0 52.3 

PD_D_7_27_2

1_A 

bin.2

3 

p Proteobacteria (UID38

87) 

1487 82.61 0.62 0 71.6 

PD_D_7_27_2

1_A 

bin.2

4 

c Alphaproteobac

teria 

(UID33

05) 

564 99.57 0.04 0 63.9 

PD_D_7_27_2
1_A 

bin.2
7 

o Bacillales (UID82
8) 

139 81.34 1.99 12.5 49.8 

PD_D_7_27_2

1_A 

bin.4 f Bacillaceae (UID82

9) 

128 82.49 2.73 53.57 42.2 

PD_D_7_27_2

1_A 

bin.6 f Moraxellaceae (UID46

80) 

86 93.74 0 0 38.8 

PD_D_7_27_2

1_A 

bin.9 o Bacillales (UID82

8) 

139 94.23 1.64 0 49 

 

Table C.2.4. CheckM Results for Metagenome-Assembled Genomes (MAGs) Bin 

Assignments. This table contains the CheckM results for each putative, high-quality 

MAG bin assignment.  
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Bin.ID Dom

ain 

Phylum Class Order Family Genus Species 

WI.D.7.29.21.A.

bin.8 

Bacte

ria 

Actinobacter

iota 

Actinomycetia Actinomycet

ales 

Microbacteria

ceae 

Curtobacteriu

m 

Curtobacteri

um 

sp001705035 

WI.D.8.30.20.B.

bin.17 

Bacte

ria 

Actinobacter

iota 

Actinomycetia Actinomycet

ales 

Microbacteria

ceae 

Frondihabita

ns 

Unknown 

WI.D.8.30.20.B.

bin.24 

Bacte

ria 

Actinobacter

iota 

Actinomycetia Actinomycet

ales 

Microbacteria

ceae 

Frondihabita

ns 

Unknown 

WI.D.8.30.20.B.

bin.6 

Bacte

ria 

Actinobacter

iota 

Actinomycetia Actinomycet

ales 

Microbacteria

ceae 

Mycetocola_

A 

Unknown 

DP.D.7.10.20.C.b
in.62 

Bacte
ria 

Actinobacter
iota 

Actinomycetia Actinomycet
ales 

Microbacteria
ceae 

Okibacterium Unknown 

DP.D.7.10.20.C.b

in.54 

Bacte

ria 

Actinobacter

iota 

Actinomycetia Actinomycet

ales 

Micrococcace

ae 

Pseudarthrob

acter 

Pseudarthrob

acter 

phenanthreni

vorans 

BDC.D.11.6.20.

A.bins.25 

Bacte

ria 

Actinobacter

iota 

Actinomycetia Mycobacteri

ales 

Mycobacteriac

eae 

Corynebacter

ium 

Corynebacter

ium 

sp012838715 

BDC.D.7.9.20.A.

bin.10 

Bacte

ria 

Actinobacter

iota 

Actinomycetia Mycobacteri

ales 

Mycobacteriac

eae 

Corynebacter

ium 

Corynebacter

ium 
sp012838715 

BDC.D.9.20.21.

B.bin.27 

Bacte

ria 

Actinobacter

iota 

Actinomycetia Mycobacteri

ales 

Mycobacteriac

eae 

Corynebacter

ium 

Corynebacter

ium 

sp012838715 

DP.D.11.5.20.A.b
in.5 

Bacte
ria 

Actinobacter
iota 

Actinomycetia Mycobacteri
ales 

Mycobacteriac
eae 

Corynebacter
ium 

Corynebacter
ium 

sp012838715 

DP.D.12.8.21.B.b

in.24 

Bacte

ria 

Actinobacter

iota 

Actinomycetia Mycobacteri

ales 

Mycobacteriac

eae 

Corynebacter

ium 

Corynebacter

ium 

sp012838715 

DP.D.8.21.21.A.

bin.1 

Bacte

ria 

Actinobacter

iota 

Actinomycetia Mycobacteri

ales 

Mycobacteriac

eae 

Corynebacter

ium 

Corynebacter

ium 

sp012838715 

DP.D.8.30.20.A.
bin.14 

Bacte
ria 

Actinobacter
iota 

Actinomycetia Mycobacteri
ales 

Mycobacteriac
eae 

Corynebacter
ium 

Corynebacter
ium 

sp012838715 

PD.D.8.14.20.B.

bin.18 

Bacte

ria 

Actinobacter

iota 

Actinomycetia Mycobacteri

ales 

Mycobacteriac

eae 

Corynebacter

ium 

Corynebacter

ium 

sp012838715 

WI.D.11.5.20.A.

bin.3 

Bacte

ria 

Actinobacter

iota 

Actinomycetia Mycobacteri

ales 

Mycobacteriac

eae 

Corynebacter

ium 

Corynebacter

ium 

sp012838715 

WI.D.12.8.21.A.

bin.24 

Bacte

ria 

Actinobacter

iota 

Actinomycetia Mycobacteri

ales 

Mycobacteriac

eae 

Corynebacter

ium 

Corynebacter

ium 
sp012838715 

WI.D.7.10.20.A.

bin.11 

Bacte

ria 

Actinobacter

iota 

Actinomycetia Mycobacteri

ales 

Mycobacteriac

eae 

Corynebacter

ium 

Corynebacter

ium 

sp012838715 

WI.D.7.29.21.A.
bin.16 

Bacte
ria 

Actinobacter
iota 

Actinomycetia Mycobacteri
ales 

Mycobacteriac
eae 

Corynebacter
ium 

Corynebacter
ium 

sp012838715 

DP.D.12.8.21.B.b

in.33 

Bacte

ria 

Actinobacter

iota 

Actinomycetia Propionibact

eriales 

Propionibacter

iaceae 

Cutibacteriu

m 

Cutibacteriu

m acnes 

WI.D.7.10.20.A.
bin.8 

Bacte
ria 

Bacteroidota Bacteroidia Bacteroidale
s 

Tannerellaceae Tannerella Unknown 

DP.D.7.10.20.C.b

in.45 

Bacte

ria 

Bacteroidota Bacteroidia Cytophagale

s 

Hymenobacter

aceae 

Hymenobact

er 

Unknown 

WI.D.8.30.20.B.

bin.21 

Bacte

ria 

Bacteroidota Bacteroidia Cytophagale

s 

Spirosomacea

e 

Dyadobacter Unknown 

BDC.D.8.14.20.

A.bin.42 

Bacte

ria 

Bacteroidota Bacteroidia Cytophagale

s 

Spirosomacea

e 

Spirosoma Unknown 

DP.D.7.10.20.C.b

in.68 

Bacte

ria 

Bacteroidota Bacteroidia Cytophagale

s 

Spirosomacea

e 

Spirosoma Unknown 



 192 

BDC.D.8.14.20.

A.bin.10 

Bacte

ria 

Bacteroidota Bacteroidia Sphingobact

eriales 

Sphingobacter

iaceae 

Pedobacter Unknown 

BDC.D.9.20.21.

B.bin.20 

Bacte

ria 

Bacteroidota Bacteroidia Sphingobact

eriales 

Sphingobacter

iaceae 

Pedobacter Unknown 

WI.D.7.10.20.A.

bin.15 

Bacte

ria 

Desulfobact

erota_I 

Desulfovibrion

ia 

Desulfovibri

onales 

Desulfovibrio

naceae 

Frigididesulf

ovibrio 

Unknown 

WI.D.9.18.21.A.
bin.9 

Bacte
ria 

Firmicutes Bacilli Bacillales Bacillaceae_G Ectobacillus Unknown 

BDC.D.7.27.21.

A.bin.11 

Bacte

ria 

Firmicutes Bacilli Bacillales Bacillaceae_G Ectobacillus Unknown 

BDC.D.7.27.21.

A.bin.37 

Bacte

ria 

Firmicutes Bacilli Bacillales Bacillaceae_G Ectobacillus Unknown 

PD.D.7.27.21.A.

bin.27 

Bacte

ria 

Firmicutes Bacilli Bacillales Bacillaceae_G Ectobacillus Unknown 

PD.D.7.27.21.A.

bin.9 

Bacte

ria 

Firmicutes Bacilli Bacillales Bacillaceae_G Ectobacillus Unknown 

WI.D.9.18.21.A.
bin.21 

Bacte
ria 

Firmicutes Bacilli Bacillales Bacillaceae_G Ectobacillus Unknown 

BDC.D.9.20.21.

B.bin.1 

Bacte

ria 

Firmicutes Bacilli Bacillales Bacillaceae_H Priestia Priestia 

megaterium 

WI.D.9.18.21.A.

bin.6 

Bacte

ria 

Firmicutes Bacilli Bacillales Bacillaceae_H Priestia Priestia 

megaterium 

BDC.D.12.8.21.

A.bins.30 

Bacte

ria 

Firmicutes Bacilli Bacillales_A Planococcacea

e 

Planococcus Unknown 

PD.D.12.8.21.A.

bin.18 

Bacte

ria 

Firmicutes Bacilli Bacillales_A Planococcacea

e 

Planococcus Unknown 

BDC.D.7.27.21.
A.bin.3 

Bacte
ria 

Firmicutes Bacilli Bacillales_B DSM-18226 Robertmurra
ya 

Unknown 

PD.D.7.27.21.A.

bin.4 

Bacte

ria 

Firmicutes Bacilli Bacillales_B DSM-18226 Robertmurra

ya 

Unknown 

WI.D.9.18.21.A.

bin.2 

Bacte

ria 

Firmicutes Bacilli Exiguobacter

ales 

Exiguobactera

ceae 

Exiguobacter

ium_A 

Exiguobacter

ium_A 
acetylicum 

PD.D.7.27.21.A.

bin.14 

Bacte

ria 

Firmicutes Bacilli Paenibacillal

es 

NBRC-103111 Unknown Unknown 

BDC.D.11.6.20.
A.bins.15 

Bacte
ria 

Firmicutes Bacilli Staphylococ
cales 

Salinicoccacea
e 

Salinicoccus Salinicoccus 
roseus 

BDC.D.7.9.20.A.

bin.11 

Bacte

ria 

Firmicutes Bacilli Staphylococ

cales 

Salinicoccacea

e 

Salinicoccus Salinicoccus 

roseus 

BDC.D.9.20.21.

B.bin.12 

Bacte

ria 

Firmicutes Bacilli Staphylococ

cales 

Salinicoccacea

e 

Salinicoccus Salinicoccus 

roseus 

DP.D.12.8.21.B.b

in.23 

Bacte

ria 

Firmicutes Bacilli Staphylococ

cales 

Salinicoccacea

e 

Salinicoccus Salinicoccus 

roseus 

DP.D.8.21.21.A.

bin.27 

Bacte

ria 

Firmicutes Bacilli Staphylococ

cales 

Salinicoccacea

e 

Salinicoccus Salinicoccus 

roseus 

DP.D.8.30.20.A.
bin.5 

Bacte
ria 

Firmicutes Bacilli Staphylococ
cales 

Salinicoccacea
e 

Salinicoccus Salinicoccus 
roseus 

PD.D.8.14.20.B.

bin.20 

Bacte

ria 

Firmicutes Bacilli Staphylococ

cales 

Salinicoccacea

e 

Salinicoccus Salinicoccus 

roseus 

WI.D.11.5.20.A.

bin.19 

Bacte

ria 

Firmicutes Bacilli Staphylococ

cales 

Salinicoccacea

e 

Salinicoccus Salinicoccus 

roseus 

WI.D.12.8.21.A.

bin.26 

Bacte

ria 

Firmicutes Bacilli Staphylococ

cales 

Salinicoccacea

e 

Salinicoccus Salinicoccus 

roseus 

WI.D.7.10.20.A.

bin.5 

Bacte

ria 

Firmicutes Bacilli Staphylococ

cales 

Salinicoccacea

e 

Salinicoccus Salinicoccus 

roseus 

WI.D.7.29.21.A.
bin.1 

Bacte
ria 

Firmicutes Bacilli Staphylococ
cales 

Salinicoccacea
e 

Salinicoccus Salinicoccus 
roseus 

WI.D.7.10.20.A.

bin.1 

Bacte

ria 

Firmicutes_

A 

Clostridia Oscillospiral

es 

Acutalibactera

ceae 

UBA945 Unknown 

BDC.D.12.8.21.

A.bins.6 

Bacte

ria 

Firmicutes_

A 

Clostridia Oscillospiral

es 

Ruminococcac

eae 

Unknown Unknown 

WI.D.11.5.20.A.

bin.5 

Bacte

ria 

Proteobacter

ia 

Alphaproteoba

cteria 

Acetobactera

les 

Acetobacterac

eae 

Unknown Unknown 
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WI.D.12.8.21.A.

bin.8 

Bacte

ria 

Proteobacter

ia 

Alphaproteoba

cteria 

Acetobactera

les 

Acetobacterac

eae 

Unknown Unknown 

WI.D.7.29.21.A.

bin.18 

Bacte

ria 

Proteobacter

ia 

Alphaproteoba

cteria 

Acetobactera

les 

Acetobacterac

eae 

Unknown Unknown 

DP.D.7.10.20.C.b

in.37 

Bacte

ria 

Proteobacter

ia 

Alphaproteoba

cteria 

Acetobactera

les 

Acetobacterac

eae 

Belnapia Unknown 

DP.D.7.10.20.C.b
in.73 

Bacte
ria 

Proteobacter
ia 

Alphaproteoba
cteria 

Caulobactera
les 

Caulobacterac
eae 

Brevundimon
as 

Brevundimo
nas 

vesicularis 

DP.D.12.8.21.B.b

in.12 

Bacte

ria 

Proteobacter

ia 

Alphaproteoba

cteria 

DSM-16000 Inquilinaceae Unknown Unknown 

DP.D.8.21.21.A.
bin.14 

Bacte
ria 

Proteobacter
ia 

Alphaproteoba
cteria 

DSM-16000 Inquilinaceae Unknown Unknown 

DP.D.7.10.20.C.b

in.17 

Bacte

ria 

Proteobacter

ia 

Alphaproteoba

cteria 

Rhizobiales Devosiaceae Devosia Unknown 

BDC.D.8.14.20.

A.bin.3 

Bacte

ria 

Proteobacter

ia 

Alphaproteoba

cteria 

Rhizobiales Rhizobiaceae Aureimonas_

A 

Unknown 

BDC.D.11.6.20.

A.bins.11 

Bacte

ria 

Proteobacter

ia 

Alphaproteoba

cteria 

Rhizobiales_

A 

Rhizobiaceae_

A 

Bartonella Bartonella 

sp016102285 

DP.D.9.8.21.B.bi

n.17 

Bacte

ria 

Proteobacter

ia 

Alphaproteoba

cteria 

Rhizobiales_

A 

Rhizobiaceae_

A 

Bartonella Bartonella 

sp016102285 

DP.D.7.10.20.C.b
in.46 

Bacte
ria 

Proteobacter
ia 

Alphaproteoba
cteria 

Rhodobacter
ales 

Rhodobacterac
eae 

Cereibacter Cereibacter 
changlensis 

PD.D.7.27.21.A.

bin.24 

Bacte

ria 

Proteobacter

ia 

Alphaproteoba

cteria 

Sphingomon

adales 

Sphingomona

daceae 

Unknown Unknown 

DP.D.7.10.20.C.b

in.47 

Bacte

ria 

Proteobacter

ia 

Alphaproteoba

cteria 

Sphingomon

adales 

Sphingomona

daceae 

Novosphingo

bium 

Unknown 

PD.D.7.27.21.A.

bin.23 

Bacte

ria 

Proteobacter

ia 

Gammaproteo

bacteria 

Burkholderia

les 

Burkholderiac

eae 

Unknown Unknown 

WI.D.8.30.20.B.

bin.19 

Bacte

ria 

Proteobacter

ia 

Gammaproteo

bacteria 

Burkholderia

les 

Burkholderiac

eae 

Caballeronia Unknown 

BDC.D.7.27.21.
A.bin.35 

Bacte
ria 

Proteobacter
ia 

Gammaproteo
bacteria 

Burkholderia
les 

Burkholderiac
eae 

Noviherbaspi
rillum 

Unknown 

DP.D.9.8.21.B.bi

n.18 

Bacte

ria 

Proteobacter

ia 

Gammaproteo

bacteria 

Burkholderia

les 

Burkholderiac

eae 

Noviherbaspi

rillum 

Unknown 

DP.D.7.10.20.C.b
in.74 

Bacte
ria 

Proteobacter
ia 

Gammaproteo
bacteria 

Burkholderia
les 

Burkholderiac
eae 

Pigmentipha
ga 

Unknown 

BDC.D.9.20.21.

B.bin.32 

Bacte

ria 

Proteobacter

ia 

Gammaproteo

bacteria 

Burkholderia

les 

Burkholderiac

eae 

Pseudodugan

ella 

Unknown 

DP.D.7.10.20.C.b

in.23 

Bacte

ria 

Proteobacter

ia 

Gammaproteo

bacteria 

Burkholderia

les 

Burkholderiac

eae 

Pseudorhodo

ferax 

Unknown 

DP.D.7.10.20.C.b

in.33 

Bacte

ria 

Proteobacter

ia 

Gammaproteo

bacteria 

Burkholderia

les 

Burkholderiac

eae 

Pseudorhodo

ferax 

Unknown 

WI.D.11.5.20.A.

bin.20 

Bacte

ria 

Proteobacter

ia 

Gammaproteo

bacteria 

Burkholderia

les 

Burkholderiac

eae 

Robbsia Unknown 

WI.D.7.29.21.A.
bin.6 

Bacte
ria 

Proteobacter
ia 

Gammaproteo
bacteria 

CAIQBE01 CAIQBE01 Unknown Unknown 

WI.D.9.18.21.A.

bin.10 

Bacte

ria 

Proteobacter

ia 

Gammaproteo

bacteria 

Enterobacter

ales 

Enterobacteria

ceae 

Enterobacter Enterobacter 

kobei 

DP.D.9.8.21.B.bi

n.1 

Bacte

ria 

Proteobacter

ia 

Gammaproteo

bacteria 

Enterobacter

ales 

Enterobacteria

ceae 

Gilliamella Unknown 

BDC.D.9.20.21.

B.bin.4 

Bacte

ria 

Proteobacter

ia 

Gammaproteo

bacteria 

Enterobacter

ales 

Enterobacteria

ceae 

Gilliamella Gilliamella 

apicola 

BDC.D.7.9.20.A.

bin.27 

Bacte

ria 

Proteobacter

ia 

Gammaproteo

bacteria 

Enterobacter

ales_A 

Enterobacteria

ceae_A 

Buchnera Unknown 

DP.D.12.8.21.B.b
in.2 

Bacte
ria 

Proteobacter
ia 

Gammaproteo
bacteria 

Enterobacter
ales_A 

Enterobacteria
ceae_A 

Buchnera Unknown 

WI.D.11.5.20.A.

bin.2 

Bacte

ria 

Proteobacter

ia 

Gammaproteo

bacteria 

Enterobacter

ales_A 

Enterobacteria

ceae_A 

Buchnera Unknown 

WI.D.11.5.20.A.

bin.8 

Bacte

ria 

Proteobacter

ia 

Gammaproteo

bacteria 

Enterobacter

ales_A 

Enterobacteria

ceae_A 

Buchnera Unknown 

BDC.D.9.20.21.

B.bin.30 

Bacte

ria 

Proteobacter

ia 

Gammaproteo

bacteria 

Nitrococcale

s 

Nitrococcacea

e 

Arhodomona

s 

Unknown 
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DP.D.12.8.21.B.b

in.29 

Bacte

ria 

Proteobacter

ia 

Gammaproteo

bacteria 

Nitrococcale

s 

Nitrococcacea

e 

Arhodomona

s 

Unknown 

DP.D.8.21.21.A.

bin.20 

Bacte

ria 

Proteobacter

ia 

Gammaproteo

bacteria 

Nitrococcale

s 

Nitrococcacea

e 

Arhodomona

s 

Unknown 

DP.D.12.8.21.B.b

in.22 

Bacte

ria 

Proteobacter

ia 

Gammaproteo

bacteria 

Pseudomona

dales 

Halomonadace

ae 

Zymobacter Unknown 

PD.D.7.27.21.A.
bin.6 

Bacte
ria 

Proteobacter
ia 

Gammaproteo
bacteria 

Pseudomona
dales 

Moraxellaceae Acinetobacte
r 

Acinetobacte
r baumannii 

WI.D.9.18.21.A.

bin.11 

Bacte

ria 

Proteobacter

ia 

Gammaproteo

bacteria 

Pseudomona

dales 

Moraxellaceae Acinetobacte

r 

Acinetobacte

r baumannii 

DP.D.9.8.21.B.bi

n.10 

Bacte

ria 

Proteobacter

ia 

Gammaproteo

bacteria 

Pseudomona

dales 

Pseudomonad

aceae 

Entomomona

s 

Unknown 

BDC.D.9.20.21.

B.bin.23 

Bacte

ria 

Proteobacter

ia 

Gammaproteo

bacteria 

Pseudomona

dales 

Pseudomonad

aceae 

Pseudomonas

_E 

Unknown 

BDC.D.11.6.20.

A.bins.20 

Bacte

ria 

Proteobacter

ia 

Gammaproteo

bacteria 

Xanthomona

dales 

Xanthomonad

aceae 

Xanthomona

s 

Unknown 

BDC.D.9.20.21.
B.bin.29 

Bacte
ria 

Proteobacter
ia 

Gammaproteo
bacteria 

Xanthomona
dales 

Xanthomonad
aceae 

Xanthomona
s 

Unknown 

PD.D.11.6.20.B.

bin.7 

Bacte

ria 

Proteobacter

ia 

Gammaproteo

bacteria 

Xanthomona

dales 

Xanthomonad

aceae 

Xanthomona

s 

Unknown 

PD.D.8.14.20.B.

bin.24 

Bacte

ria 

Proteobacter

ia 

Gammaproteo

bacteria 

Xanthomona

dales 

Xanthomonad

aceae 

Xanthomona

s 

Unknown 

PD.D.9.18.21.C.

bin.3 

Bacte

ria 

Proteobacter

ia 

Gammaproteo

bacteria 

Xanthomona

dales 

Xanthomonad

aceae 

Xanthomona

s 

Unknown 

WI.D.11.5.20.A.

bin.24 

Bacte

ria 

Spirochaetot

a 

Spirochaetia Borreliales Borreliaceae Unknown Unknown 

WI.D.12.8.21.A.
bin.25 

Bacte
ria 

Spirochaetot
a 

Spirochaetia Borreliales Borreliaceae Unknown Unknown 

WI.D.7.10.20.A.

bin.13 

Bacte

ria 

Spirochaetot

a 

Spirochaetia Borreliales Borreliaceae Unknown Unknown 

 

Table C.2.5. Taxonomic Annotation of Metagenome Assembled Genomes (MAGs). 

This table contains the taxonomic annotation results from GTDB-tk of the high-quality 

MAGs found in this work.  
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Sample ID Average Shannon Entropy 
Average Shannon Weiner 

Diversity 
Average Species Richness 

PD.D.7.9.20 5.58651627 257.587506 268.39 

PD.D.8.14.20 5.49306021 251.884917 263.9 

PD.D.10.8.20 3.17969277 24.0374646 37.88 

PD.D.11.6.20 5.10144386 176.817695 226.54 

PD.D.7.27.21 2.85625398 15.1319115 54.76 

PD.D.9.18.21 5.16974897 203.481405 241.72 

PD.D.12.8.21 3.56770734 34.1414489 66.82 

BDC.D.7.9.20 4.04827087 56.8750242 97.25 

BDC.D.8.14.20 3.49191003 34.9647012 68.31 

BDC.D.10.8.20 3.35610049 31.71798 63.66 

BDC.D.11.6.20 5.55184743 262.400544 271.74 

BDC.D.7.27.21 3.50690192 31.019953 68.06 

BDC.D.9.20.21 5.43019555 229.814552 249.08 

BDC.D.12.8.21 4.18342686 67.095712 122.63 

DP.D.7.10.20 3.29487321 28.2201776 56.52 

DP.D.8.30.20 2.75125404 16.4169953 35.31 

DP.D.10.10.20 5.50130696 240.433636 259.06 

DP.D.11.5.20 5.45460927 242.601314 260.04 

DP.D.8.21.21 5.50859887 247.205155 262.46 

DP.D.9.18.21 3.43817222 34.1079388 74.6 

DP.D.12.8.21 5.29072436 204.054367 236 

WI.D.7.10.20 4.21581267 66.344652 118.37 

WI.D.8.30.20 2.61146746 16.5978292 33.71 

WI.D.10.10.20 2.60362997 13.5126999 22 

WI.D.11.5.20 5.06746513 173.0724 224.8 

WI.D.7.29.21 5.50692347 242.420872 259.22 

WI.D.9.18.21 2.21999821 10.4367424 39.95 

WI.D.12.8.21 4.81033473 118.698956 208.29 

 

Table C.2.6. Average Alpha Diversity and Species Richness per Sample. This table 

contains the average Shannon Weiner entropy, average Shannon Weiner diversity, and 

average species richness per sample. 
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Pairs 
Sums of 

Squares 
F value R2 P value Padj value 

BDC vs DP 15216.07 1.225157 0.09263834 0.1374 0.8244 

BDC vs PD 24238.00 1.420882 0.10587098 0.1497 0.8982 

BDC vs WI 12253.51 1.025153 0.07870566 0.3050 1.0000 

DP vs PD 28382.01 1.523036 0.11262533 0.0902 0.5412 

DP vs WI 13648.12 0.008762 0.07754479 0.3503 1.0000 

PD vs WI 30062.35 1.654658 0.12117904 0.0717 0.4302 

 

Table C.2.7. Pairwise PERMANOVA Results Comparing Beta Diversity by Site. 

This is a pairwise permutational multivariate analysis of variance (PERMANOVA) 

comparing the variance in beta diversity between sites. 
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Site(s) Model Variance F value P value 

All 
average accumulated precipitation (24 hrs) + 

average wind speed + Developed STF 

22.500 2.1097 0.0317 

20.914 1.9609 0.0121 

28.238 2.6477 0.0015 

PD 
average accumulated precipitation (24 hrs) + 

average wind speed 

128.78 2.7279 0.001984 

129.75 2.7485 0.011706 

BDC 
average accumulated precipitation (24 hrs) + 

average meridional (north-south) component (v)  

93.661 2.2868 0.04484 

50.596 1.2354 0.29524 

DP 
average accumulated precipitation (24 hrs) + Barren 

Land STF 

65.890 2.3012 0.0131 

46.379 1.6198 0.03413 

WI 
average relative humidity + zonal (east-west) 

component (u) 

80.367 2.5942 0.01964 

69.044 2.2287 0.01984 

  

Table C.2.8. Redundancy Analysis Results of Microbial Composition Across  

and Within Sites. These results show which environmental variables were  

significant drivers of beta diversity across all four sites and within each site based  

on a redundancy analysis (RDA). 
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Category Gene Model 
GLM 

Family 

Adj R2 or 

McFadden’s R2 
P value 

Sporulation 

spoIVCA 

average accumulated 

precipitation (24 hrs) * 

average relative humidity 

Gaussian 0.375 

0.013 

0.016 

0.068 

spmA 

average accumulated 

precipitation (24 hrs) * 
average meridional (north-

south) component (v)  

Poisson 0.333 

0.0009 

0.089 

0.023 

UV Radiation Resistance 

lexA 
average meridional (north-

south) component (v)  
Poisson 0.179 0.016 

uvrA 
average meridional (north-
south) component (v) + 

Open Water STF 

Gaussian 0.239 

0.038 

0.019 

0.022 

uvrB 

average meridional (north-

south) component (v) + 

Open Water STF 

Gaussian 0.278 

0.01 

0.032 

0.013 

uvrC 

average meridional (north-

south) component (v) + 

Open Water STF 

Poisson 0.327 
0.022 

0.006 

Thermal Resistance 

cspA 
average meridional (north-

south) component (v)  
Gaussian 0.145 0.038 

htpX 
Barren Land STF + Open 

Water STF 
Gaussian 0.402 

0.0008 

0.001 

0.002 

Osmotic Stress Resistance 

osmY 

average accumulated 

precipitation (24 hrs) + 

average wind speed + 
average meridional (north-

south) component (v)  

Poisson 0.21 

5.49e-7 

0.0005 

0.012 

opuC 

average accumulated 

precipitation (24 hrs) * 

average wind speed 

Negative 

Binomial 
0.336 

0.001 

0.133 

0.017 

LPS Synthesis/Modification 

wecP 

average air temperature + 

zonal (east-west) component 

(u) 

Gaussian 0.442 

0.016 

0.016 

0.00084 

wbgP 
Salton Sea STF * Shrub 

STF 
Poisson 0.327 

1.29e-8 

0.00018 

6.41e-5 

Quorum Sensing 

bisR 

average accumulated 

precipitation (24 hrs) + Crop 

Land STF 

Gaussian 0.441 

0.013 

0.024 

0.0009 

prgX 
average wind speed + 

Developed STF 
Poisson 0.334 

0.0002 

0.039 

 

Table C.2.9. Generalized Linear Models Results of Functions of Interest in the 

Metagenomes and Climate Variables. This table displays the generalized linear models 

of genes of interest by category, the model for each gene and the GLM family used, and 

the associated statistics for each model.  
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Table C.2.10. Correlations between Climate Variables and Surface Type 

Frequencies. This table shows the correlation coefficients (r values) for correlations 

between the climate variables of interest and the surface type frequencies. 
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Table C.2.11. Correlations between Climate Variables and Surface Type 

Frequencies. This table shows the significance (p values) for correlations between the 

climate variables of interest and the surface type frequencies (see Table C.2.10). 
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General Conclusions 
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 My dissertation research focused on understanding how extreme environments 

select for the taxonomic and functional diversity of their microbiomes. I explored how 

these microbial communities use multiple trophic and resistance strategies to influence 

the geochemistry of these environments. Here, I studied the microbial communities of 

dust and seawater from the Salton Sea, a hypersaline ecosystem that is rapidly shrinking 

due to environmental policy failures and ongoing water diversion (Tompson 2016). 

Though the microbial ecology from substrates within the Salton Sea have been 

investigated (Freund et al. 2022), this is the first time that amplicon and shotgun 

metagenome sequencing have been used in tandem to clarify the composition and 

functional attributes of these microbiomes. My research explores the geochemical 

dynamics of the Salton Sea that select for specific microbial metabolic and survival 

strategies, and how these adaptations allow these microbiomes to regulate nutrient 

cycling and dispersal within and across ecosystems. 

 The first chapter is a literature review describing the current conditions of the 

Salton Sea environment, and how these conditions predispose the Salton Sea to a unique 

set of microbial taxa. Water diversion and rising regional temperatures are causing the 

Salton Sea to rapidly shrink, increasing the lake’s salinity and exposing its playa 

sediment (Frie et al. 2017, California Natural Resources Agency 2020). Evaporation and 

mineral precipitation leave the playa vulnerable to wind erosion, contributing to 

worsening dust emissions in the region (Frie et al. 2017). Moreover, the inflow that the 

Salton Sea receives is from nearby rivers carrying agricultural runoff, increasing the 

lake’s nutrient load (Vogl and Henry 2002). Thus, we proposed that the conditions of the 
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Salton Sea as well as the interactions between the lake’s sub-ecosystems (i.e., playa, 

seawater, and aeolian) select for extremophilic microbial taxa that can survive the volatile 

Salton Sea. We described the previous research that has explored the microbial 

composition of Salton Sea surface water and lake sediment (Table A.1.1), and we 

hypothesized that halophilic microorganisms dominant the sub-ecosystem microbiomes. 

We also posited that microorganisms commonly found in dust samples around the global 

such as Bacillus  (Tignat-Perrier et al. 2019) would also be found in the dust from the 

Salton Sea playa due to the adaptations required to survive stressors unique to the 

atmosphere such as UV radiation, thermal stress, and desiccation stress. We then 

described a variety of sampling methods, DNA sequencing technologies (i.e., 

metagenomics, metatranscriptomics, and metaproteomics), and dust modeling tools like 

wind backward trajectories that can be used to further investigate the sub-ecosystem 

microbiomes of the Salton Sea. We also suggested that due to the high incidence of 

respiratory distress in the region (Farzan et al. 2019), further study of the Salton Sea’s 

microbiomes is warranted to understand how this ecosystem is contributing to the local 

public health crisis. 

 In the second chapter, we explored the microbial composition of a water column 

within the Salton Sea across seasons and characterized the sulfur metabolic pathways 

conserved within this microbial community. Microbial composition significantly varied 

between time points, however, several bacterial genera including DS001, Litoricola, 

Truepera, and Synechococcus were found to dominate the water column and 

differentially fluctuate with the seasons. These taxa can be mixotrophic, facultative 
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anaerobes, and/or facultative halophiles depending on their surroundings (Ivanova et al. 

2011, Casamayor et al. 2013, Auladell et al. 2023). The functional flexibility we observed 

was further supported by the diverse set of sulfur oxidation genes identified in the Salton 

Seawater metagenomes. Genes involved in thiosulfate oxidation (i.e., the SOX pathway), 

hydrogen sulfide oxidation (i.e., sqr, fccB), and reverse dissimilatory sulfate reduction 

were found in all the metagenomes, yet their relative coverages appeared to shift with 

seasonal changes in sulfide, sulfate, and oxygen concentrations. Our findings suggest that 

multiple sulfur oxidation pathways are a conserved within the Salton Seawater 

microbiome, and thus, this community is deeply involved in regulating the seasonal 

sulfur cycle and redox conditions within the lake. 

           In the third chapter, we characterized the microbial composition of the 

aeolian dust microbiome as well as the survival strategies these microorganisms use to 

colonize the harsh atmospheric environment. Wind geospatial data from weather stations 

near our four study sites around the Salton Sea was used to determine if wind conditions 

were driving the distribution of microbial taxa and their niche-specific adaptations. We 

found that the local wind conditions significantly influenced aeolian microbial assembly 

across sites; however, we also observed a core microbiome consisting of 13 bacterial 

genera that have been previously identified in dust sampled from around the world 

(Zhang et al. 2019b, Amarloei et al. 2020, Chen et al. 2021, Osman et al. 2023). 

Furthermore, we identified genes involved in various forms of stress-resistance that are 

required to persist in the atmosphere. Of the genes of interest, genes involved in repairing 

UV damaged DNA (i.e., lexA, uvrA, uvrB, uvrC), thermal resistance (i.e., cspA, htpX), 
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and osmoprotectant transport (i.e., osmY, opuC) were widely distributed in metagenomes 

sampled from our four sites. Additionally, wind direction components, specifically the 

meridional wind component (north-south, v), significantly predicted the normalized 

coverage of the UV radiation resistance genes (i.e., lexA, uvrA, uvrB, uvrC) and cspA 

across the samples, with the highest normalized coverages found with northerly winds 

and decreasing coverages with southerly winds. Northerly winds reaching our dust 

collectors were predominantly occurring in the fall months, whereas southerly winds 

were occurring during the summer months. Prior research into the seasonal wind patterns 

at the Salton Sea have found that dust emissions are greatest during the summer months, 

corresponding with heightened dust and aerosol contributions from the Salton Sea playa 

and water (Frie et al. 2019). Based on these results, we propose that high winds coupled 

with southerly dust emissions from the Salton Sea playa and water during summer may 

disturb the aeolian microbiome, negatively impacting the overall survival of its native 

constituents. As wind speeds and dust emissions from the Salton Sea decline in the fall, 

the resilient aeolian microbiome can return to its undisturbed state. This hypothesis is 

further supported by our observation that spmA and osmY normalized coverages increase 

with southerly winds, suggesting that Salton Seawater microorganisms with the ability to 

withstand extreme osmotic stress can be introduced to the aeolian microbiome and 

persist. Collectively, our findings demonstrate that wind conditions and dust sources 

select for the various survival strategies that are conserved within the aeolian dust 

microbiome.  
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Holistically, the results from the second and third chapters in this work 

contextualize the mechanisms that allow microorganisms to traverse the sub-ecosystem 

microbiomes and become entrained in Salton Sea dust and sea spray. Bacterial genera 

found in Salton Sea dust and seawater samples appear to be shared (Supplemental Figure 

2.7), which is not surprising considering CaSO4 and MgSO4 have been found in dust from 

the Salton Sea playa and sulfide has been found in higher concentrations in the air above 

the lake (Reese et al. 2008, Frie et al. 2019). We also identified antibiotic resistance 

genes (i.e., ARGs) involved in multidrug resistance within the aeolian dust microbiome 

(Supplemental Figures 9, 10), which are often exchanged between microorganisms via 

horizontal gene transfer (i.e., HGT; Fuchsman et al. 2017). The presence of ARGs in the 

aeolian dust microbiome suggests that these microorganisms have the potential to be 

pathogenic upon exposure and can share this pathogenicity with other taxa within the 

host. Thus, the results of this dissertation have important implications for understanding 

the sources responsible for the respiratory distress experienced by the local community. 

Deeper investigation into the distribution and frequency of pathogenic traits like ARGs in 

the Salton Sea’s sub-ecosystem microbiomes is necessary to address and remediate the 

worsening public health crisis in this region.  
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