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Aro: a machine learning approach to identifying
single molecules and estimating classification
error in fluorescence microscopy images
Allison Chia-Yi Wu1 and Scott A Rifkin1,2*
Abstract

Background: Recent techniques for tagging and visualizing single molecules in fixed or living organisms and cell
lines have been revolutionizing our understanding of the spatial and temporal dynamics of fundamental biological
processes. However, fluorescence microscopy images are often noisy, and it can be difficult to distinguish a
fluorescently labeled single molecule from background speckle.

Results: We present a computational pipeline to distinguish the true signal of fluorescently labeled molecules from
background fluorescence and noise. We test our technique using the challenging case of wide-field, epifluorescence
microscope image stacks from single molecule fluorescence in situ experiments on nematode embryos where there
can be substantial out-of-focus light and structured noise. The software recognizes and classifies individual mRNA
spots by measuring several features of local intensity maxima and classifying them with a supervised random forest
classifier. A key innovation of this software is that, by estimating the probability that each local maximum is a true
spot in a statistically principled way, it makes it possible to estimate the error introduced by image classification.
This can be used to assess the quality of the data and to estimate a confidence interval for the molecule count
estimate, all of which are important for quantitative interpretations of the results of single-molecule experiments.

Conclusions: The software classifies spots in these images well, with >95% AUROC on realistic artificial data and
outperforms other commonly used techniques on challenging real data. Its interval estimates provide a unique
measure of the quality of an image and confidence in the classification.

Keywords: Single molecule imaging, smFISH, Random forest, Image informatics, RNA, Fluorescence microscopy,
Machine learning, Image quality
Background
In the last decade, a host of new technologies for tagging
and visualizing individual molecules have yielded unprece-
dented quantitative insight into the spatial and temporal
dynamics of fundamental biological processes as varied as
ligand-receptor interactions at the cell surface [1], protein
localization to synaptic junctions [2], and incomplete
penetrance [3]. For example, the ability to visualize mRNA
transcripts at the single molecule level without transgenic
methods has led single-molecule fluorescence in situ
hybridization (smFISH) to be widely used in studying gene
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expression in various organisms [3-14]. Recently this tech-
nique has been pushed to image up to 32 genes simultan-
eously with the promise of increasing this number still
more [11]. These microscopy-based techniques rely pri-
marily on fluorescent proteins or dyes that are bound to
the molecule of interest and appear as a bright, roughly
Gaussian spot. Background fluorescence can be consider-
able for some of these techniques, including smFISH [4,8],
which makes distinguishing signal from noise an image
processing challenge. However, a statistically principled,
automated, and robust method for analyzing the images
and classifying local intensity maxima as signal or noise,
and estimating the accuracy and variability of these classi-
fications has not been developed. This problem is acute
since highly sensitive microscopy methods like smFISH
are ideally suited for quantitatively studying stochastic
l. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
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variation in gene expression and other molecular pro-
cesses within a population.
We have extended a machine-learning pipeline for

identifying, localizing, and counting biologically mean-
ingful intensity maxima in 3D image stacks [15] both by
improving the initial spot classification and, crucially, by
providing a way to both estimate the quality of the data
and generate an interval estimate for the number of
molecules in it. We have tested it extensively on the
challenging case of wide-field epifluorescence smFISH
image stacks of nematode embryos where there can be
substantial background fluorescence, and it also works
on other samples like yeast and mammalian cell culture
where the signal to noise ratio is more favorable. Unlike
other commonly used methods [3,16,17], this software
does not rely on arbitrary or user-defined parameters
and cutoffs, but instead recognizes and classifies individ-
ual mRNA spots by measuring several features of local
intensity maxima and classifying them with a supervised
random forest classifier [18,19], It is a spot-centric ap-
proach as compared with approaches that involve thresh-
olding an entire image [3,16,17].

Implementation
Machine learning has been remarkably successful in a
variety of classification and prediction tasks [20,21]. As
with all supervised machine learning techniques, our
pipeline trains a classifier based on a curated training set
and then applies this classifier to new data. Our imple-
mentation includes a GUI to create the training set and
a GUI for review and revision of the final classification
(Figure 1). This review GUI also allows the user to re-
train the classifier incorporating any corrections. (If a
dataset only consists of a few image stacks, the GUIs used
for either the training or review could be used to manually
curate the images without the need for machine learning).
The software currently uses the random-forest implemen-
tation provided in the MATLAB Statistics Toolbox [18].
The first step for processing either a training image or

a new image is to identify all local intensity maxima
(spots) within an image stack and rank them in descending
order by their background corrected intensities (Figure 2).
These are then sequentially fit to 2D Gaussian surfaces
until the mean squared error from the fits are persistently
less than a cutoff value below which local maxima are
empirically found never to be true signal spots. This cut-
off is set to be extremely conservative because its function
is simply to save time and memory by removing the ma-
jority of local maxima that represent noise in an image
stack. The heart of the pipeline is a random forest classi-
fier [19] – an ensemble of decision trees built from boot-
strapped training sets – which has been shown to produce
highly accurate classifications in a wide variety of applica-
tions [22-29].
Our training GUI allows a user to view spots from a
subset of image stacks in the dataset, generate a manu-
ally curated training set by classifying them as true signal
spots or noise, and build a forest of decision trees based
on the features calculated from each spot (Figure 1,
Additional file 1). We find that a training set consisting
of a few hundred positive and negative examples is suffi-
cient for stable classification. For each tree, the algo-
rithm selects a bootstrapped sample from this training
data. Each split in the tree is based on a randomly
chosen subset of the statistics, and the tree is grown ac-
cording to pre-specified stopping criteria. The leaves can
be, but are not necessarily, comprised of a single class.
At the end of training, the user has a bagged ensemble
of decision trees.
To classify a new local maximum, the program runs

the statistics for the putative spot through each tree to a
terminal leaf. The proportion of training spots in this
leaf that are manually classified as good can be used to
estimate the probability that the new local maximum is
a true signal spot. Although such probabilities are
known to be inaccurate for single decision trees [30],
using an ensemble of bagged trees improves the prob-
ability estimate, and so we average these proportions
for a single candidate spot across all the trees in the
forest to estimate a preliminary probability that it is a
true spot [30-33]. However, these preliminary prob-
abilities do not necessarily reflect the long-run frequency
of a spot with particular features being classified as signal
or noise [34-36].
In order to calibrate these preliminary probability esti-

mates and transform them into more accurate probabil-
ities, we use empirical data derived from thousands of
training spot examples curated by different people. We
bin this data by the preliminary probability estimate and
then count the number of true spots in each bin. We fit
a sigmoidal function [36,37] to the plot of the propor-
tion of true spots against the probability estimate, and
we use this function to transform the preliminary prob-
ability estimate of a local maxima being a true spot (de-
rived from averaging across the decision trees) to an
empirical probability estimate based on curated data
(Figure 3, Additional file 2). This calibration curve is re-
markably similar for different users and different data-
sets, and users can create their own calibration curves
based on their own training sets. If the calibrated prob-
ability is greater than 50%, the local maximum is classi-
fied as a true spot. The user can then review and edit
the classification using the review GUI and has the
option to add any corrections to the training set, re-
train the random forest, and re-run the classification
(Figure 1). At any time the user can remake the ran-
dom forest based on the augmented training set and
rerun the classification.



Figure 1 GUIs in Aro. A. The training GUI. The left plot is a 16 × 16 square of pixels from the image on the right with local maxima (candidate
spots) marked in blue. The user has the option to designate the maxima as signal, noise and add them to the training set or to skip them. B. The
reviewing GUI. The left plot is a grid containing each identified local maximum ranked by its vote. Blue outlines mark signal spots; yellow boxes
mark noise spots. The user has the option to correct classifications and retrain the classifier. The image on the right shows the context for the
spot currently in focus (red outline).
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The calibrated probability reflects uncertainty in the clas-
sification of any particular spot, and, consequently, can be
used to measure the uncertainty in the count of the num-
ber of true spots in an image. A local intensity maximum
with a particular preliminary probability can be thought of
as a sample of size 1 from the population of all candidate
spots with the same preliminary probability, of which some
fraction (the calibrated probability) are true spots. We
would like to estimate a confidence interval for the count
of true spots in an image. The width of the confidence
interval is a measure of the quality of an image because it
will largely be driven by the fraction of spots for which the
user himself or herself would be ambivalent, based on how
he or she has classified similar spots in the training set.
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Figure 3 Calibration curves based on bagged probability
estimates are robust to individual curation differences. A large
corpus of manually curated training spots was binned by the
bagged probability estimate derived from averaging the probability
estimates for a local maximum from each tree in the ensemble. The
calibration curves are constructed by fitting a sigmoidal function to
the plot of bin centers (0 to 1 by steps of 0.1) versus the proportion
of curated good spots in that bin. Calibration curves based on
bagged probability estimates are less susceptible to curation
differences between individuals than ones constructed by
majority rules voting (Additional file 2).
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Figure 2 Flowchart of the analysis pipeline with details of the automated steps.
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To construct the interval estimate. we conduct a set of
n Bernoulli trials with variable probabilities (also known
as Poisson trials) [38] where n is the number of local
maxima tested in an image. The variable probabilities
(pk) are based on the calibrated probability estimates
for each local maximum (indexed by k) (see Additional
file 1 for details). The number of good outcomes (Xk = 1)
in this set of Poisson trials is a simulated estimate for
the number of transcripts in the image.

Te Xn
k¼1

Xk P Xk ¼ 1f g ¼ pk ; P Xk ¼ 0f g ¼ 1−pkð Þj Þð
" #

By rerunning this model 1000 times, we can derive a
confidence interval for the total spot number (T). This
interval will be tight for high quality images and will
widen as image quality degrades.
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Figure 4 The algorithm performs well even as data quality
degrades. We tested the software on artificially constructed images
of varying quality with realistic signal intensities, spot densities, and
background noise based on real data. Spot density is measured by
average distance of a pixel to an artificial spot in an image and is
shown in the inset. Signal intensity on the x-axis is the average pixel
intensity at the centers of the random spots minus the mean pixel
intensity of the image divided by the standard deviation of the pixel
intensities in the image. A sample of spots from the background 1
images were used to train the classifier.
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Estimating the variance of random forest and other
bagged predictions is still an open problem, in part be-
cause the variance is comprised of both (a) sampling
variance from training on a limited set of data and (b)
Monte Carlo effects arising from a finite amount of
bootstrapping [39-41]. Because we can empirically cali-
brate random forest probabilities in our classification
task, we can take advantage of standard probability the-
ory to construct an interval estimate.

Results and discussion
One key difficulty with evaluating image-based, molecule
counting methods is that there is not an independent
way to count the number of molecules in the specimen.
For smFISH (as well as other techniques) it has been ex-
perimentally established [4,8] that, with the exception of
transcriptional foci, spots in these images do represent
single, fluorescently-labeled, diffraction-limited mole-
cules. We can, however, use artificially generated data to
investigate how well our method performs in the face of
background noise.
In order to avoid making arbitrary assumptions about

the structure of background noise, we used three 3D
image stacks from actual specimens without any tran-
scripts as the background. The background therefore con-
sists of both autofluorescence and any diffuse fluorescence
due to unbound probes that were not removed by wash-
ing. To generate signal, we sprinkled point sources of a
specified magnitude throughout a blank image stack of
the same size as the background stack, convolved them
with a point spread function based on typical microscopy
parameters, added the background and signal stacks to-
gether, and then blurred them with a Gaussian filter. The
spots in these images look very much like actual data
(Additional files 3, 4 and 5).
To test our method, we used artificial images based on

one background to construct random forests and evalu-
ated the false positive and false negative rates for the im-
ages based on the other two backgrounds. The method
performed robustly (Figure 4), with the area under the
ROC curve well above 90% for realistic signal intensities
and spot densities (Figure 4, Additional files 3, 4 and 5).
The width of the confidence intervals increased at lower
signal to noise levels, but otherwise was a fairly constant
fraction of the total spot count. The software can reliably
distinguish spots that touch, particularly if the local in-
tensity maxima are separated by at least two intervening
pixels. However, when the local mRNA density is too
high, it is even impossible for humans to distinguish in-
dividual spots. Under these circumstances an intensity
and regression-based approach to estimating transcript
levels, while noisy, may be the only option [11,42].
A few unsupervised algorithms have been used to

automatically count the number of spots in smFISH
[3,16,17,43-45]. Two of them [3,16] use a watershed
method based on intensity to find a range of intensities
over which the number of connected components in the
image is insensitive to intensity thresholding. This num-
ber is taken as an estimate of the spot number. However,
when the expression level is high, spots are often clustered,
and out-of-focus light gives a higher local background that
can vary across an image. Under these common circum-
stances these methods underestimate the true signal
(often because neighboring spots are lumped together as
one) while the method described here performs consist-
ently well with few or many spots in the image, even if
they touch (see above) (Figures 3 and 5, Additional files 3,
4 and 5). FISH-Quant [16] further analyzes the connected
components, but its performance can be very sensitive to
user-defined global parameters when the background sig-
nal is high (Figure 5).
Another approach [43-45] has the primary goal of spot

localization and starts by identifying individual candidate
spots after intensity thresholding a 2D maximum projec-
tion, correcting for local background, and fitting them to
2D Gaussians. It then removes purported duplicates and
thresholds a measure of the intensity of the entire spot to
distinguish signal from noise. Because our algorithm also
starts directly from the local maxima, it also works ro-
bustly for images with high or inhomogeneous back-
grounds. However, it uses the 3D image, not a maximum
projection, and is able to resolve clustered spots. Further-
more, while our local-maxima-centric approach uses a
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Figure 5 Comparison of spot identification and classification methods. A. The upper left is a maximum merge projection of an smFISH
image from a C. elegans embryo for which 488 signal spots were counted by hand (using the GUIs described here). A green rectangle highlights
a section of the image. The other three images show spots identified in this green rectangle by FISH-Quant (upper right), the threshold-picking
method (lower right), and the method described here (Aro: lower left). The number of signal spots identified in the embryo by the various
methods are noted in the lower right of each image. Circles mark the locations of identified spots and are color coded by z-slice. Arrows point to
representative areas depicting the tendency of threshold method to identify a large high intensity region comprised of several spots as a single
spot. B. A plot of manually counted spot number (x-axis) and estimated spot number (y-axis) by Aro, threshold-picking, and FISH-Quant across 28
C. elegans embryos. Both FISH-Quant and threshold-picking tend to underestimate the true number of spots (particularly at higher spot counts
for the threshold method) while our Aro machine learning method performs well across a range of spots numbers. Spearman correlations (r)
between the true and estimated spot number are listed for each method. Both Aro and threshold-picking perform significantly better than
random on this dataset. Interval estimates are depicted for Aro. Neither FISH-Quant nor threshold-picking provides a way to estimate error.
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similar method for localization, its primary goal is robust
classification without setting semi-arbitrary thresholds.
The supervised learning process and the GUI allow the
user to manually curate the classification of individual
spots, and then feed these corrections back into the classi-
fication algorithm. This is particularly useful for low qual-
ity images, allowing the user to overrule the algorithm for
spots on the boundary between signal and noise.

Conclusions
As the throughput of microscopy-based single-molecule
techniques increases, robust image processing tech-
niques will be ever more crucial. We present a machine-
learning-based pipeline for identifying and classifying
fluorescently labeled molecules in 3D image stacks that
performs well under conditions where other algorithms
fail. The software (called Aro Spot Finding Suite after
Arothron hispidus) includes MATLAB [18] GUIs to gen-
erate the training set and review the classifications and a
detailed manual with examples. The ability to infer bio-
logical meaning from a quantitative imaging experiment
depends upon extracting reliable measurements from im-
ages. For single molecule imaging, our software uniquely
provides a way to measure this reliability.

Availability and requirements
Project name: Aro Spot Finding Suite.
Project home page: https://gitlab.com/evodevosys/

AroSpotFindingSuite.
Operating system: Platform independent.
Programming language: MATLAB.
Other requirements: MATLAB statistical toolbox; third-

party MATLAB packages that are included with their own
licenses with this distribution.
License: Apache 2.0.
Additional files

Additional file 1: Supplementary text. Additional information about
the statistics used in the classifier, the construction of the artificial data,
and the user experience.
Additional file 2: Figure S1. Calibration curves based on majority rules
classification are not as robust to individual curation differences as those
based on bagged probability estimates. As in Figure 3, a corpus of
manually curated spots was used to construct calibration curves. Instead
of the average probability across trees (as in Figure 3), the initial
probability estimate (x-axis) is the fraction of trees classifying a local
maximum as a spot.

Additional file 3: Figure S2. Artificial data used to test the method.
Maximum merge images of the image stacks constructed to test the
method. One of the three embryo background used for the artificial data.
The point source intensity decreases from left to right and density
increases from top to bottom. The density is measured by the mean
distance of a pixel to an artificial spot center. The signal to noise metric
(numbers in white to the bottom left of each embryo) is the average
pixel intensity at the centers of these artificial spots minus the mean pixel
intensity of the image divided by the standard deviation of the pixel
intensities in the image. (see Additional file 1 for details of construction).

Additional file 4: Figure S3. The second of the three embryo
background used for the artificial data. The description is the same as for
Additional file 3.

Additional file 5: Figure S4. The third of the three embryo
background used for the artificial data. The description is the same as for
Additional file 3.
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