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Steady-State Growth
in a Hotelling Model of Resource Extraction

Abstract

This paper re-examines the Hotelling model of optimal nonrenewable re-
source extraction in light of stock effects and technological progress. We assume
functional forms for cost and demand so that the solution to the Hotelling prob-
lem is a steady-state consistent with the empirical observation that the growth
rates of market prices have remained zero over a long period of time. We use data
on 14 minerals from 1970 to 2004 to estimate the supply and demand functions
using SUR and 3SLS and to test the model. We validate the model for 8 of 14
minerals.

Keywords: Hotelling, nonrenewable resources, resource prices
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1 Introduction

The basic Hotelling model of nonrenewable resource extraction predicts that the shadow

price of a resource stock, which is equal to the market price minus marginal extraction cost

and serves as an economic measure of resource scarcity, should grow at the rate of interest [8].

This prediction is commonly known as the “Hotelling rule.”2 Assuming constant marginal

extraction costs and no technological progress, among other conditions, resource prices should

be increasing over time. Real world prices do not follow this pattern, however. Empirical

studies have shown that mineral prices have either been roughly trendless over time or have

been stationary around deterministic trends with infrequent structural breaks.3 This paper

reconciles Hotelling’s theoretical model with empirical evidence on world mineral prices.

The Hotelling rule may not be a good guide to the actual behavior of mineral prices over

time for several reasons. In this paper we focus on two possible explanations: “stock effects”

and technological progress.4 Stock effects increase extraction costs and are consistent with

rising resource prices, while technological progress lowers extraction costs and causes prices

to decline.5 Slade [20] accounts for both of these effects in her theoretical model explaining

U-shaped price trends. We expand Slade’s theoretical model by estimating demand and

supply functions and by allowing for a steady-state solution to the Hotelling model. We also

expand the empirical analysis by using a more recent data set.

The simple Hotelling model assumes that extraction costs do not depend on the stock

of reserve remaining in the ground, or equivalently, on the cumulative amount of resource

already extracted. In fact, the original work by Hotelling [8] assumes that marginal extraction

cost depends neither on the extraction rate nor on the remaining stock. Many researchers

have followed this set of assumptions, while others have assumed that marginal extraction

cost is an increasing function of extraction but independent of stock [22]. However, extraction

costs will likely increase as more of the resource is extracted and fewer reserves remain [4].

Several reasons account for this phenomenon. Extraction costs rise if the resource is
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extracted from increasingly greater depths. For oil, greater extraction cost goes hand-in-hand

with declining well pressure. Moreover, oil as well as other minerals come in different grades.

Cheaper grades are likely to be mined before more expensive grades become economical,

again leading to increasing extraction costs with cumulative stock extracted. Adding a stock

effect to the classic Hotelling model causes shadow prices to rise less slowly than the rate of

interest, but market prices still increase over time [11].

A second important reason for why the Hotelling rule may not adequately describe the

actual behavior of world mineral prices is technological progress. Innovation enhances the

extractive capacity of firms and decreases extraction costs over time.

In the next section, we combine stock effects and technological progress to develop a

theoretical Hotelling model consistent with the often-cited stylized fact that mineral prices

have remained constant over a long period of time. We then confirm this fact using data on

14 minerals over the period from 1970 to 2004. Section 3 estimates and tests the model’s

main proposition. We confirm the model’s validity for 8 of 14 minerals. The final section

concludes.

2 A Theoretical Model of Resource Extraction

2.1 The Basic Hotelling Model

In this section, we present a theoretical model of optimal nonrenewable extraction under

perfect competition. We ignore inventories and assume competitive resource markets. We

also ignore any common access problems that may arise in perfect competition.6 Following

Pindyck [16], we assume a large number of identical firms that act as price takers. This is

equivalent to assuming that a social planner or a state-owned monopoly has sole produc-

tion rights and sets a competitive price. The assumption of perfect competition may not
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be realistic for some nonrenewable resources such as oil, tin or nickel. Oligopolistic and

monopolistic market structures may produce a bias towards conservation [19]. We abstract

away from these problems in favor of tractability of our model.7

The notation follows closely that used by Weitzman [24]. Let t ∈ [0, T ] index time. At

time t, the supply of the mineral is given by E(t), the total extraction flow in tons per unit

time at time t. Let X(t) denote the total cumulative stock of resource extracted at time t,

X(t) = X(0) +

∫ t

0

E(τ)dτ, (1)

where the initial stock extracted X(0) is taken as given. In contrast to Hotelling [8], no

fixed quantity is assumed for the total availability of the resource. However, it is likely that

only a limited total amount will be economically recoverable at any time [4], making this

assumption more realistic.

The market price of the mineral at time t is P (t). The corresponding demand is given

by D(P (t), t). Demand may shift over time; it may grow, for instance, owing to population

growth or rising income, or it may shift downwards due to technological progress that enables

consumers to use the resource more efficiently. At each time t, the market price P (t) adjusts

to equate supply and demand,

E(t) = D(P (t), t) ∀t. (2)

Total benefits U(·, ·) that accrue from the consumption of the mineral at time t are given by

the area under the demand curve,

U(E(t), t) =

∫ E(t)

0

D−1(x; t)dx, (3)

where D−1(·; t) is the inverse of the demand curve with respect to price. This area measures

the gross consumer surplus, and is a measure of the consumers’ willingness-to-pay for the
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resource. Weitzman [24] shows that using the area under the demand curve in place of

revenue yields the same outcome as a perfectly competitive market.8 Thus, a perfectly

competitive market maximizes total utility, or what Hotelling [8] terms the ”social value of

the resource”. In the following discussion, therefore, we analyze the social planner’s problem.

C(X, E, t) depicts the cost of extracting E tons at time t. Solow and Wan [21] as well as

Swierzbinski and Mendelsohn [23] discuss procedures for aggregating across multiple deposits

of an exhaustible resource with different extraction costs. They show that in the absence of

exploration, if firms extract first from the cheapest deposits and there are constant returns

to scale in extraction, then an aggregate extraction cost function can be defined and indexed

by the amount of cumulative extraction.9 We use the term “stock effects” to refer to the

dependence of extraction cost on the stock X of reserve extracted. This dependence will

likely be positive.

Let p(t) denote the non-negative current-value shadow price measuring the value of a

ton of reserve in situ at time t. This shadow price is known by a variety of terms, including

marginal user cost, in situ value, scarcity rent, dynamic rent, and resource rent [3, 9, 24].

The competitive interest rate is r.

Net benefits G(X, E, t) from extracting E tons at time t are given by total benefits

minus total costs:

G(X, E, t) = U(E, t)− C(X, E, t). (4)

The social planner’s optimal control problem yields the same solution as would arise

in perfect competition. The planner chooses her extraction profile {E(t)} to maximize the

present discounted value of the entire stream of net benefits, given initial stock X(0) and the

relationship between extraction E(t) and cumulative stock extracted X(t), and subject to

the constraints that both extraction and stock are nonnegative. Her problem is thus given

by



6

max
{E(t)}

∫ ∞

0

(U(E(t), t)− C(X(t), E(t), t)) e−rtdt

s.t.
•
X(t) = E(t) : q(t)

E(t) ≥ 0

X(0) = X0 ,

(5)

where q(t) ≤ 0 is the co-state variable associated with the total extracted stock, X(t). The

absolute value of this variable is the shadow price p(t) of the reserve still in the ground:

p(t) = |q(t)| . (6)

Without stock effects ( ∂C
∂X

(·, ·, ·) = 0), the solution to the optimal control problem yields the

Hotelling rule that the shadow price, price minus marginal cost, rises at the rate of interest,

•
p(t)

p(t)
=

d
dt

(
P (t)− ∂C

∂E
(X(t), E(t), t)

)
P (t)− ∂C

∂E
(X(t), E(t), t)

= r. (7)

If there are no stock effects and if marginal extraction costs are constant, then market

prices increase over time. With zero marginal extraction costs, market prices grow at the

rate of interest. With non-zero but constant marginal extraction costs, market prices still

grow, but at a rate less than the interest rate.

We now examine what assumptions need to be made in order to obtain steady-state

growth in the presence of stock effects and technological progress.

2.2 Steady-State Growth

We now make functional form assumptions on both the demand function D(P, t) and

the cost function C(X, E, t) so that the solution to the Hotelling resource problem (5) yields

a constant growth rate in prices. In particular, we assume the cost function C(X, E, t) is
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multiplicatively separable in each of its three arguments, and is of the form

C(X, E, t) = Ψ(X)Ee−γt, (8)

and where the stock effect Ψ(·) is isoelastic,

Ψ(X) ≡ Ψ0X
b, (9)

with a nonnegative elasticity b ≥ 0. All else equal, a one percent increase in stock extracted

causes costs to increase by b percent. Costs rise as more of the resource is being extracted.

Marginal costs are therefore equal to average cost

∂C(X,E, t)

∂E
=

C(X,E, t)

E
= Ψ(X)e−γt = Ψ0X

be−γt, (10)

and are constant with respect to the extraction rate at any point in time.10 Over time,

cumulative extraction rises, which exerts upward pressure on costs. On the other hand,

technological progress puts downward presson on total and marginal costs. The stock effect

and technological progress have countervailing effects on cost.

We assume that demand is isoelastic,

D(P, t) = AP− 1
η e

a
η
t, (11)

where η is the inverse of the absolute value of the demand elasticity. Demand is growing

over time if a is positive and decaying if a is negative.

With this demand curve, the total benefits U(·) from extraction at time t, as measured

by the area under the demand curve, are given by,

U(E, t) = ϕ(E)eat. (12)
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with ϕ(·) exhibiting constant elasticity,

ϕ(E) = Aη E1−η

1− η
. (13)

¿From (3), the market price P (t) satisfies:

P (t) = ϕ′(E(t))eat. (14)

The solution to the optimal control problem under these functional form assumptions

for cost and demand leads to a linear relationship between extraction and stock. The proofs

for the Propositions are in Appendix A.

Proposition 1 With isoelastic decaying costs (8) and isoelastic time-varying demand (11),

the optimal extraction rate is given by

E(t) = gX(t) (15)

and the growth rate of prices is constant,

•
P (t)

P (t)
= −ηg + a , (16)

where the growth rate g is given by

g =
γ + a

b + η
. (17)

The parameters satisfy

lim
t→∞

(
Aη(gX0)

−ηe(−ηg+a)t −Ψ0X
b
0e

(gb−γ)t
)
X0e

(g−r)t = 0 (18)

and the coefficient Ψ0 in the cost function is given by
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Ψ0 =
(ηg + r − a)Aη(gX0)

−η

(γ + r)Xb
0

. (19)

In this model, a constant ratio of extraction to stock extracted implies a constant growth

rate of prices.

Hartwick [6] also presents a model of steady-state in the presence of a nonrenewable

resource. Under the Hartwick rule, the economy could sustain constant per capita consump-

tion if it were to invest all the rents from the exhaustible resource in reproducible capital

such as machines. The rents to be invested are precisely the Hotelling rents given by the

Hotelling rule. The Hartwick rule therefore yields a steady-state in which consumption is

constant and mineral prices are increasing. Our model differs from the Hartwick model both

because it allows for constant mineral prices, which appear to better match the data than

do increasing prices, and because there is the potential for constant growth in consumption

at the steady-state.

Now that we have established that there is a set of parameters under which extraction

rates and market prices grow continuously, we examine conditions under which the growth

rates equal zero, as appears to be the case for many minerals.

Proposition 2 The market price P (t) is constant if the growth rate of extraction is given

by

g =
a

η
, (20)

or, equivalently,

γ

b
=

a

η
. (21)

The left-hand-side of equation (21) captures technological progress and stock effects in the

supply of minerals, the right-hand-side captures changes in demand over time and the de-
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mand elasticity. For a balanced growth path, we need the two effects to equal each other.

Thus, for market prices to be constant, the ratio of technological progress to the stock effect

must exactly offset the exogenous growth in demand. Holding demand fixed, rapid techno-

logical progress, depicted by a large γ, needs to go hand-in-hand with large stock effects, b.

Conversely, holding supply fixed, a higher exogenous growth rate a in the inverse demand

function needs to be balanced by a more elastic demand, η, and vice versa. In reality all

four coefficients will move simultaneously. This poses a challenge for the empirical analysis,

which we will address in the following section.

3 Empirical Analysis

We use extraction, price, and cost data for 14 subsoil assets from previously unpublished

World Bank data. The commodities are oil, natural gas, brown and hard coal, as well as

bauxite, copper, gold, iron, lead, nickel, phosphate, silver, and tin. The data cover 35 years

from 1970 to 2004. Table 1 presents summary statistics. We supplement price data for some

minerals with longer-term time trends from Berck and Roberts [2]. See Appendix B for a

detailed description of the data.

Growth rates of prices are trendless and zero at the 5% significance levels for all com-

modities except for gold over the 35-year period from 1970 to 2004. The downward-sloping

trend for gold is not surprising, considering that its price was indexed to the dollar through

1971 and it took several years for it to reach its natural equilibrium level. When we limit

our data to the time period from 1974 to 2004, all 14 minerals, including gold, are trendless

and zero. See Table 2 for the t-statistics of regressing the growth rate of prices on time and

a constant. Figure 1 shows absolute price levels and growth rates for gold for 1970 to 2004;

Figure 2 shows the same for oil for the extended time period 1870 to 2004.

Corresponding to Berck and Roberts’s [2] result that prices are difference-stationary, we

find that growth rates in prices are zero in all cases.11 Lee, List and Strazicich [10] use data
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similar to Berck and Roberts [2] to show that prices are stationary around deterministic

trends with up to two structural breaks over the period 1870 to 1991. For all eleven minerals

tested by Lee et al . [10], the last of these two breaks occurs between 1944 for bauxite and

1975 for natural gas, with the breaks for five minerals occurring between 1970 and 1975.

These structural breaks correspond with relevant historical events. Our conclusions are

unchanged, however, regardless of whether we use the entire series from 1970 to 2004 or

limit ourselves to the period after 1974 or 1975. While Lee et al. [10] and studies cited by

them find deterministic trends in their analyses from 1870 onwards, we do not find any such

trends for the time between 1970 and 2004, the extent of our dataset.12

Our main goal in this part of the paper is to estimate the theoretical model and verify

its conclusions. Since our data show that, consistent with previous empirical studies, mineral

prices have indeed been constant, we wish to see whether the data is consistent with our

theoretical model, which generates a constant growth rate in prices and, under certain con-

ditions, zero growth rates. We proceed in two steps. First we estimate the parameters of the

model using the supply and demand functions given by equations (8) and (11), respectively.

We then proceed to test whether these parameters satisfy relationship (21) that Proposition

2 postulates should hold when the growth rate of prices is constant.

3.1 Estimation

We take the logarithms of equations (10) and (11), resulting in

lnMC = lnAC = ln Ψ0 + blnX − γt, (22)

and

lnP = ln A− ηlnE + at, (23)

respectively. The data include values for average cost AC, extraction E, and price P . See
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Appendix B for a discussion of the data sources. Summing over E results in cumulative

extraction X.13 Given these data, we aim to estimate the stock effect coefficient ln Ψ0, stock

elasticity b, and the rate of technological progress g in the supply equation, as well as the

inverse absolute demand elasticity η, time trend a, and the constant demand shifter ln A.

We have no prior on the signs of the constant terms. Stock elasticity b has to be

nonnegative to capture the expected stock effect. The rate of technological progress g should

be positive, unless b fails to capture the full stock effect. Demand elasticity η needs to be

nonnegative to avoid an upward-sloping demand curve. Demand may also shift across time.

Positive a indicates an increase in demand, while a negative a would point to a decrease in

demand for the particular mineral.

Tables 3 and 4 report results from jointly estimating supply and demand using the

method of seemingly unrelated regression (SUR). Table 3 pools extraction across countries

to arrive at world demand and supply for each of the 14 minerals. Table 4 includes country

fixed effects, using vastly more information by relying on each country’s extraction rates and

accumulated stock.

The estimation results are similar. In the pooled regression, all but one of the estimates

for η are nonnegative. Copper, iron, lead, nickel, phosphate, and zinc have inelastic demand;

bauxite, gold, hard coal, natural gas, oil, silver, and tin have decreasing demand. The sole

exception is brown coal, whose estimate for η is negative. Ceteris paribus the demand curve

for all commodities, including oil and natural gas, seems to be shifting slightly downwards

over time, captured by negative values of a in both pooled and fixed effects SUR. The

downward shift in demand may be a result of technological progress such as energy-efficient

technology that enables consumers to use the resource more efficiently. Stock elasticity b

is nonnegative for all minerals in the pooled SUR. The stock effect for oil is by far the

largest, followed by natural gas, iron and gold. A one percent increase in b results in a 1.8

percentage change in the marginal cost of oil extraction. The corresponding value for natural

gas is 1.32. For iron it is 0.94, and for gold it is 0.92. The magnitude of b, however, decreases
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significantly once we account for country fixed effects. The coefficients for nickel and lead

even turn negative, indicating that technological progress might not be fully captured by γ,

or that we do not account for all other factors such as increasing reserves of the resource in

the ground. We do find positive γ for almost all industries, indicating positive technological

progress. The sole exception is gold under the specification of country fixed effects.

While SUR is more efficient than OLS, it is not necessarily consistent [15,25]. Demand

and supply are simultaneously determined. To address this last point, we attempt to identify

supply and demand shifters and employ three-stage least squares (3SLS) regressions. We

identify aggregate world GDP as a demand shifter and use it as an instrument for supply. As

an instrument for demand, we focus on small economies, for which production of a particular

resource accounts for a large part of that nation’s GDP. Assuming that domestic demand

for the minerals is negligible compared to world demand, we can use that country’s GDP as

a supply shifter and, thus, as an instrument for demand. We identify appropriate countries

by choosing the three countries for each mineral, which have the highest ratio of extraction

value to GDP. These countries are listed in Table 5.

Table 6 presents the results for the 3SLS regression. The results are similar to the SUR

regressions, both in sign and magnitude. We are unable to perform the same analysis using

country fixed effects, since we use individual countries’ GDP as instruments, making them no

longer exogenous. Since 3SLS requires us to focus on world averages pooled across countries,

and the results do not seem to be appreciably different from SUR estimates, our preferred

specification is to use SUR with country fixed effects.

3.2 Test of model

Proposition 2 postulates that the parameters of the model will satisfy equation (21) if

growth rates of prices are zero. Using the coefficients from SUR with country fixed effects

presented in Table 4, we proceed to test equation (21) using a Wald test. The null hypothesis

states that γ
b

= a
η
. The critical χ2 value at the 5% significance level equals 3.84. We hope
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not to reject the null to verify the validity of our model. This is the case for 9 of 14 minerals

at the 5% significance level. Table 7 presents the test results.14

Three of the minerals where the test fails under any significance level are phosphate,

tin and zinc. This is not surprising, however, since all three minerals also have negative

estimates for η. In that light, we should also exclude silver, since its η is negative as well.

This leaves 8 of 14 minerals, for which the model yields appropriate coefficients and its main

conclusion is shown to hold.

4 Conclusion

We modify the standard Hotelling model of natural resource extraction by accounting

for stock effects and technological progress. This enables us to achieve a balanced growth

path and estimate demand and supply functions for minerals. We then estimate the model

using data from 1970 to 2004. The prices for 13 of 14 minerals exhibited a zero growth rate

over that 35-year period. Using the estimated coefficients, we test the model and validate it

for 8 of 14 minerals.

An important caveat to note is that our model predicts ever growing economically

recoverable stocks and ever growing extraction. On a finite planet, this is clearly not possible

forever. Our model does point to a larger truth, though. Most resource prices have not

increased between 1970 and 2004, the years covered by our data. We argue that this was

due largely because technological innovation in both the supply side and the demand side

was able to offset stock effects. Since 2004, however, prices for many subsoil assets have

increased sharply. One possible explanation for this increase is that it is only a temporary

spike that will soon be followed by a decrease in prices driven by technological progress.

Another explanation is that the economy may currently be in the midst of a structural

break of the sort Lee, List and Strazicich [10] found to have occurred in the early and middle

parts of the last century. In our model, technological progress evolves smoothly, leading us to
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believe that the same was true for the time period of our data. It is possible that technology

may change abruptly at infrequent intervals, which may be a cause for a structural break.15

Nevertheless, although the finite nature of our resources may mean that its offsetting effects

cannot continue forever, technological progress has been a powerful force in maintaining

constant minerals prices over the past three and a half decades.

Appendix A: Proofs of Propositions 1 and 2

Before proving Proposition 1, we state the following Lemma:

Lemma With isoelastic decaying costs (8) and isoelastic time-varying demand (11), if the

optimal extraction rate were of the form:

E(t) = gX(t)

then the growth rates for different variables would be given by:

•
X(t)

X(t)
= g

•
E(t)

E(t)
= g

dϕ′(E(t))
dt

ϕ′(E(t))
= −ηg

dΨ(X(t))
dt

Ψ(X(t))
= bg

•
P (t)

P (t)
= −ηg + a

The results fall simply from direct calculation.

Proof of Proposition 1. From the Maximum Principle, the first-order necessary conditions
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for a feasible trajectory {X∗(t), E∗(t)} to be optimal are:

[#1]: p(t) = P (t)− ∂C (X(t), E(t), t)

∂E
(24)

[#2]:
•
p(t) = −∂C (X(t), E(t), t)

∂X
+ rp(t) (25)

[#3]: lim
t→∞

p(t)X(t)e−rt = 0 (26)

Substituting in equations (10) and (14) into [#1], we get:

p(t) = P (t)− ∂C

∂E
(X(t), E(t), t) (27)

= ϕ′(E(t))eat −Ψ(X(t))e−γt. (28)

Differentiating with respect to time, we get:

•
p(t) =

dϕ′(E(t))

dt
eat + aϕ′(E(t))eat −Ψ′(X(t))

•
X(t)e−γt + γΨ(X(t))e−γt (29)

=
dϕ′(E(t))

dt
eat + aϕ′(E(t))eat −Ψ′(X(t))E(t)e−γt + γΨ(X(t))e−γt (30)

¿From [#2],

•
p(t) = − ∂C

∂X
(X(t), E(t), t) + rp(t)

= −Ψ′(X(t))E(t)e−γt + rp(t)

which, after rearranging, becomes:

•
p(t)− rp(t) = −Ψ′(X(t))E(t)e−γt. (31)
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Substituting (27) and (29) into (31), and simplifying, we get:

−dϕ′(E(t))
dt

ϕ′(E(t))
+ r − a =

(γ + r)Ψ(X(t))

ϕ′(E(t))
e−(γ+a)t. (32)

By the previously stated Lemma, if the solution were of the form E(t) = gX(t), then

dϕ′(E(t))
dt

ϕ′(E(t))
= −ηg

Thus, equation (32) reduces to:

ηg + r − a =
(γ + r)Ψ(X(t))

ϕ′(E(t))
e−(γ+a)t. (33)

Since the left-hand-side of equation (33) is constant, this means that the right-hand-side

must be constant as well. Thus, it must be the case that the growth rate of the expression

on the right-hand-side must equal zero:

d
dt

(
(γ+r)Ψ(X(t))

ϕ′(E(t))
e−(γ+a)t

)
(γ+r)Ψ(X(t))

ϕ′(E(t))
e−(γ+a)t

= 0

which, after simplification, means

g(b + η)− (γ + a) = 0

so that

g =
γ + a

b + η

as desired.

At t = 0, equation (33) becomes:
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ηg + r − a =
(γ + r)Ψ0X

b
0

AηE−η
0

=
(γ + r)Ψ0X

b
0

Aη(gX0)−η
,

which, after some rearranging, yields the desired expression (19) for Ψ0.

In order to satisfy [#3], we need:

0 = lim
t→∞

p(t)X(t)e−rt

= lim
t→∞

p(t)X0e
(g−r)t

= lim
t→∞

(
P (t)− ∂C

∂E
(X(t), E(t), t)

)
X0e

(g−r)t

= lim
t→∞

(
P (t)−Ψ(X(t))e−γt

)
X0e

(g−r)t

= lim
t→∞

(
P (0)e(−ηg+a)t −Ψ0(X0e

gt)be−γt
)
X0e

(g−r)t

= lim
t→∞

(
AηE(0)−ηe(−ηg+a)t −Ψ0X

b
0e

(gb−γ)t
)
X0e

(g−r)t

= lim
t→∞

(
Aη(gX0)

−ηe(−ηg+a)t −Ψ0X
b
0e

(gb−γ)t
)
X0e

(g−r)t

Proof of Proposition 2. From the Lemma at the begin of this section, we know that
•
P (t)
P (t)

= −ηg + a. The result falls from setting this growth rate to zero and substituting

equation (17) for g.

Appendix B: Data Sources

We test the model using extraction, price, and cost data for 14 subsoil assets: oil, natural

gas, brown and hard coal, as well as bauxite, copper, gold, iron, lead, nickel, phosphate,
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silver, tin, and zinc. The data cover 35 years from 1970 to 2004 and were provided to us by

Kirk Hamilton, who compiled them from previously unpublished World Bank sources. We

use average annual world prices as calculated in the World Bank dataset. These price data

correspond to data from Berck and Roberts [2], who provide data from 1870 through 1991.16

From 1970 to 1991, where the data by the World Bank and by Berck and Roberts overlap,

the series are virtually identical.

The World Bank data also include average “rent” figures, which were calculated as ex-

traction times the difference between price and average cost; we use this formula to calculate

average costs. Assuming an isoelastic form of the cost function, as in equation (8), average

and marginal cost are the same. Extraction data by commodities are available for between

38 and 94 countries.

The dataset also includes reserve data. We deem these as the least reliable. For one,

reserves for some minerals and years are defined as “reserves”; others are defined as “reserve

base.” While exact definitions are not available, reserve bases are generally larger and less

precisely estimated than reserves. More importantly, though, reserve and reserve base refer

to minerals still left in the ground. Stock X(t) in our model, defined by equation (1), refers

to the cumulative stock already extracted. There is no apparent relationship between the

two quantities, which would enable us to calculate X(t) based on reserve or reserve base

estimates given in the data. Instead, we estimate X(t) by setting X(0) = 0 in equation (1)

and using extraction E(t) for the years 1970 through 2000. This normalization biases X(t)

downward and possibly overplays its effect on marginal extraction costs in equation (8) in

early years while underestimating it in later years.

Notes

1 Lin: University of California at Davis and member of the Giannini Foundation of

Agricultural Economics; cclin@primal.ucdavis.edu. Wagner: Harvard University; gwag-
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ner@post.harvard.edu. Correspondence should be sent to: C.-Y. Cynthia Lin, Agricultural

and Resource Economics, University of California at Davis, One Shields Avenue, Davis, CA

95616; cclin@primal.ucdavis.edu; (530) 752-0824. We thank Kirk Hamilton for providing

us with data for this analysis. The paper benefited from discussions with Richard Green,

William Hogan, Osmel Manzano, Charles Mason, Juan-Pablo Montero, Robert Stavins, Ian

Sue Wing, Martin Weitzman, two anonymous referees, and comments from participants at a

workshop in environmental economics at Harvard University. Lin received financial support

from an EPA Science to Achieve Results graduate fellowship, a National Science Foundation

graduate research fellowship, and a Repsol YPF - Harvard Kennedy School Pre-Doctoral

Fellowship in energy policy. Wagner worked on this paper in residence under a Repsol

YPF - Harvard Kennedy School Pre-Doctoral Fellowship in energy policy and received fi-

nancial support from an Austrian Academy of Sciences graduate research fellowship. See

http://gwagner.com/research/hotelling/ for data and Stata code. All errors are our own.

2See, for example, Krautkraemer [9] for a recent survey of the literature on nonrenewable

resource scarcity.

3See Krautkraemer [9] and references therein, Pindyck [17], and Lee, List and Strazicich

[10], as well as Lin [12,13] for the case of oil. Slade [20] has shown that mineral prices have

followed a U-shaped price path between 1870 through the 1970s, but the coefficients on the

quadratic trend are not robust to the period of estimation (Berck and Roberts [2]). From

the 1970s through 2004, prices have been nonincreasing.

4In addition to stock effects and technological progress, the Hotelling model excludes

several other factors. New discoveries, for example, expand the known stock of resource

reserves and decrease the price through stock effects. Other factors include adjustment costs

and capacity constraints due to the capital-intensive nature of mineral industries, market

imperfections in the extractive industries, stock effects on the benefit side caused by decreased

environmental services due to resource extraction, and the ever present uncertainty. See

Krautkraemer [9] for a further discussion of these factors.
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5See also Farzin [4] for a general discussion of these effects.

6Sinn [19] presents a model of exhaustible resource extraction in which storage facilities

are used as a result of the common-pool problem.

7Allowing for market power does not necessarily reconcile the theory with the data. For

instance, according to Salant’s [18] Nash-Cournot model with a cartel and a competitive

fringe, the real price of oil increases monotonically for both constant and increasing marginal

extraction costs. On the other hand, in Loury’s [14] Cournot model, the present value of

price net of the constant extraction costs declines over time. Moreover, minerals markets that

may seem to have market power may actually behave very much like perfectly competitive

ones. For example, Agostini [1] finds that prices in the U.S. copper industry prior to 1978

were close to the levels predicted by a competitive model, even though the copper industry

was highly concentrated.

8This holds because

P (t) =
∂U(E(t), t)

∂E
,

so that the first-order conditions for the social planner’s problem are the same as those

that arise in perfect competition.

9Our extraction cost function in the next section exhibits constant returns to scale.

10Heal [7], Hanson [5] and Solow and Wan [21] also assume that the extraction cost func-

tion exhibits constant returns to scale, where the marginal extraction cost is increasing in

cumulative extraction but independent of the current rate of extraction.

11These results are consistent with other prior studies (Krautkraemer [9] and references

therein; Lin [12,13]).

12Future research may identify another structural break in the period since 2004, given

the recent rise in many natural resource prices. Our model may therefore be a description

of the economy between structural breaks.

13We normalize X(0) to be 0. See Appendix B.
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14The nonlinear Wald test is not consistent across different, mathematically equivalent,

specifications. Rewriting the null hypothesis as γ = a
η
b, for example, would result in fewer

rejections. Stating the null hypothesis in terms of γ
b

= a
η

provides the more restrictive test

of our model.

15Another, more speculative, explanation may be that markets in the time period in

question acted as if resource extraction could continue forever. Only now, driven by enormous

increases in demand (in large parts due to growth in China and India) have markets come

to incorporate the binding limits of finite supplies, contributing to recent price spikes.

16Berck and Roberts [2] cover 1895-1991 for bauxite, 1870-1991 for copper, 1870-1985 for

iron, 1870-1988 for lead, 1870-1991 for oil, 1880-1991 for natural gas, 1901-1991 for silver,

and 1870-1991 for zinc. They also include data for coal. However, it is unclear whether these

data refer to hard or soft coal.
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Figure 1: World price and growth rates for gold from 1970 to 2004. (Source: Unpublished
World Bank data. See Appendix B.)

Figure 2: World price and growth rates for oil from 1870 to 2004. (Source: Unpublished
World Bank data and Berck and Roberts [ [2]]. See Appendix B.)
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Table 1: Summary statistics for price and extraction data.

BAU COP GOL HC IRO LEA NG NIC OIL PHO SC SIL TIN ZIN

Price (1982-1984 US$ per ton)

Min 10.33 893.1 3.3E+6 19.19 23.97 357.6 1138.8 2869.8 33.49 20.66 5.08 8.7E+4 2249 452.8
Max 49.99 3797.8 2.6E+7 79.68 63.95 1627.8 4482.2 11517.8 327.74 120.76 21.09 8.8E+5 20841 2060.4
Mean 27.96 1910.5 9.8E+6 39.79 38.17 651.6 2103.2 6128.6 131.78 38.21 10.53 2.1E+5 8718 925.7
Std.Dev 12.12 760.0 4.4E+6 17.72 11.08 285.7 932.8 2104.5 72.76 22.94 4.69 1.6E+5 5734 332.1

World Extraction (Million tons)

Min 153 16 0.0038 4290 1090 9 85 1 5140 199 719 0.025 0.58 14
Max 3580 331 0.0612 94700 20300 133 2020 49 99200 4560 25100 0.481 8.70 258
Mean 2125 199 0.0363 54164 12732 90 1104 28 61167 2806 14054 0.284 5.73 161
Std.Dev 995 88 0.0159 26237 5492 35 556 17 26644 1306 7851 0.132 2.27 69

Extraction by country (Million tons)

Min 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Max 43.00 4.02 0.0026 1420.0 273.00 1.41 58.80 0.71 1370 90.20 579.0 0.0042 0.193 3.23
Mean 2.91 0.14 0.0000 41.54 8.60 0.07 0.78 0.03 36 3.76 19.7 0.0002 0.007 0.13
Std.Dev 6.14 0.38 0.0001 144.90 25.02 0.16 3.44 0.08 99 10.56 50.8 0.0005 0.017 0.29

BAU = Bauxite, COP = Copper, GOL = Gold, HC = Hard Coal, IRO = Iron, LEA = Lead, NG = Natural Gas, NIC = Nickel, OIL = Oil, PHO =
Phosphate, SC = Brown Coal, SIL = Silver, TIN = Tin, ZIN = Zinc.
World extraction considers global extraction by year. Extraction by country includes pooled extraction rates for all years and all countries.
Source: Unpublished World Bank data.

Table 2: Tests of the stylized fact that the growth rates of prices equal zero. The table
presents t-statistics for regressions of the growth rates on year and a constant term.

BAU COP GOL HC IRO LEA NG NIC OIL PHO SC SIL TIN ZIN

 
P(t) P(t)  1970-2004

Year -1.04 0.71 -2.05** -1.50 -0.54 -0.66 0.02 1.19 -0.91 -0.91 -1.50 -1.04 -1.29 -1.17
Constant 0.57 -0.72 1.95* 1.16 0.02 0.38 0.57 -0.58 1.10 0.78 1.16 0.95 0.71 0.93

 
P(t) P(t)  1974-2004

Year -1.07 0.92 -1.00 -1.07 -0.37 -0.50 -0.18 1.20 -0.87 -0.86 -1.07 -0.81 -0.95 -0.30
Constant 0.65 -0.99 0.89 0.75 -0.13 0.24 0.78 -0.45 1.02 0.75 0.75 0.72 0.40 -0.04

 
P(t) P(t)  using Berck-Roberts data

Year 1.00 0.07 . . 0.06 0.17 1.53 . 0.31 . . 1.10 . -0.55
Constant -0.98 0.25 . . 0.23 0.19 -1.27 . 0.03 . . -0.96 . 0.98
BAU = Bauxite, COP = Copper, GOL = Gold, HC = Hard Coal, IRO = Iron, LEA = Lead, NG = Natural Gas, NIC = Nickel, OIL = Oil, PHO =
Phosphate, SC = Brown Coal, SIL = Silver, TIN = Tin, ZIN = Zinc. Two stars (**) indicate significance at the 5% level, one star (*) indicates
significance at the 10% level. Year in each case is normalized for the first year of the time period to equal 0. Regressions with robust standard
errors.
The third set of tests uses the entire data series from Berck and Roberts (1996). For BAU the years covered are 1895–1991, for COP 1870–1991,
for IRO 1870–1985, for LEA 1870–1988, for OIL 1870–1991, for NG 1880–1991, for SIL 1901–1991, and for ZIN 1870–1991.
Source: Unpublished World Bank data and Berck and Roberts (1996).
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Table 3: Seemingly unrelated regression for demand and supply pooled across all countries.

BAU COP GOL HC IRO LEA NG NIC OIL PHO SC SIL TIN ZIN

ln P =

ln 132.49 62.40 116.99 155.73 70.91 100.34 137.29 51.97 265.48 59.34 30.26 131.69 178.85 66.56
(6.43) (4.13) (12.36) (7.9) (5.43) (3.43) (9.45) (4.92) (4.35) (1.81) (2.49) (5.86) (6.54) (4.37)

0.83 -0.14 1.74 1.64 0.17 0.30 2.25 0.05 2.60 0.01 -0.53 0.83 0.48 0.16
(3.14) (0.71) (12.16) (5.28) (1.27) (1.32) (12.23) (0.69) (4.67) (0.03) (3.35) (2.47) (2.06) (1.10)

a -0.06 -0.03 -0.04 -0.06 -0.03 -0.04 -0.05 -0.02 -0.10 -0.03 -0.02 -0.06 -0.08 -0.03
(7.00) (4.62) (10.19) (8.43) (6.06) (3.44) (7.34) (4.23) (4.09) (2.06) (3.81) (5.63) (6.62) (4.29)

ln MC =

ln 153.91 160.62 123.31 78.91 294.99 51.34 521.06 87.31 535.77 66.87 61.85 157.58 168.97 83.63
(8.12) (7.72) (10.50) (10.10) (12.82) (5.22) (10.09) (5.57) (5.06) (5.94) (6.67) (10.41) (15.01) (10.80)

b 0.29 0.07 0.92 0.16 0.94 -0.13 1.32 0.03 1.82 0.04 0.02 0.43 0.46 0.17
(2.28) (0.42) (8.98) (2.67) (4.72) (1.70) (4.62) (0.35) (2.52) (0.54) (0.38) (3.97) (5.17) (3.66)

0.08 0.08 0.06 0.04 0.16 0.02 0.27 0.04 0.29 0.03 0.03 0.08 0.08 0.04
(7.39) (6.59) (9.23) (8.83) (11.70) (3.94) (9.55) (4.66) (4.78) (5.24) (5.84) (9.34) (13.63) (9.68)

BAU = Bauxite, COP = Copper, GOL = Gold, HC = Hard Coal, IRO = Iron, LEA = Lead, NG = Natural Gas, NIC = Nickel, OIL = Oil, PHO =
Phosphate, SC = Brown Coal, SIL = Silver, TIN = Tin, ZIN = Zinc. Parentheses depict absolute values of t-statistics.
Source: Unpublished World Bank data.

Table 4: Seemingly unrelated regression for demand and supply with country fixed effects.

BAU COP GOL HC IRO LEA NG NIC OIL PHO SC SIL TIN ZIN

ln P =

ln ‡ . . . . . . . . . . . . . .
. . . . . . . . . . . . . .

0.01 -0.01 0.01 0.00 0.00 0.02 0.01 0.03 0.01 -0.03 -0.01 -0.01 -0.02 -0.02

(1.77) (1.91) (2.53) (0.81) (1.16) (1.79) (1.50) (3.34) (1.09) (2.75) (1.20) (2.24) (3.92) (4.04)
a -0.04 -0.03 -0.01 -0.03 -0.03 -0.03 -0.01 -0.02 -0.01 -0.03 -0.03 -0.03 -0.06 -0.02

(44.06) (55.9) (7.37) (43.82) (59.62) (31.12) (8.15) (13.70) (4.90) (23.31) (33.52) (31.01) (39.11) (28.81)
ln MC =

ln ‡ . . . . . . . . . . . . . .
. . . . . . . . . . . . . .

b 0.01 0.01 0.01 0.01 0.01 -0.08 -0.01 -0.02 0.06 0.08 0.04 0.08 0.10 0.10
(1.00) (1.32) (1.34) (4.41) (2.67) (7.45) (1.09) (3.43) (10.77) (6.84) (8.23) (7.09) (8.76) (12.61)

0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.04 0.06 0.02
(4.66) (28.32) (0.70) (22.92) (58.00) (10.13) (10.69) (11.56) (9.70) (8.96) (26.50) (34.04) (46.13) (28.58)

BAU = Bauxite, COP = Copper, GOL = Gold, HC = Hard Coal, IRO = Iron, LEA = Lead, NG = Natural Gas, NIC = Nickel, OIL = Oil, PHO =
Phosphate, SC = Brown Coal, SIL = Silver, TIN = Tin, ZIN = Zinc. Parentheses depict absolute values of t-statistics.
Source: Unpublished World Bank data.
‡ Constant terms in the demand and supply regressions vary by country and are not reported here. All are positive and significant at the 5%
significance level.
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Table 5: Economies with the highest ratio of extraction value to GDP by mineral.

BAU COP GOL HC IRO LEA NG

Guyana Zambia Guyana Poland Liberia Australia Bahrain
Jamaica Zaire Papua N Guinea South Africa Mauritania Namibia Romania
Suriname Papua N Guinea South Africa Peru Qatar

Macedonia

NIC OIL PHO SC SIL TIN ZIN

Botswana Oman Togo Mongolia Peru Bolivia Peru
Qatar Jordan Romania Bolivia Nepal Zambia
Saudi Arabia Morocco Bulgaria Honduras Bolivia
UAE
Kuwait

Source: Unpublished World Bank data.

Table 6: 3SLS regression for demand and supply with World GDP as demand shifter and
small exporting countries’ GDP as supply shifter.

BAU COP GOL HC IRO LEA NG NIC OIL PHO SC SIL TIN ZIN

ln P =

ln A 117.0 130.57 134.05 235.65 135.72 19.57 0.00 32.61 0.00 0.00 14.31 572.74 158.42 112.32
(11.8) (3.57) (9.2) (5.07) (2.26) (0.23) (0.00) (1.12) (0.00) (0.00) (0.76) (2.84) (2.35) (1.21)

0.09 1.03 2.19 2.79 0.83 0.20 -0.02 -0.34 -0.09 -0.63 -0.93 7.64 0.30 0.72
(0.59) (1.95) (5.31) (3.89) (1.36) (0.12) (0.07) (0.93) (0.13) (4.18) (2.9) (2.46) (0.53) (0.76)

a -0.06 -0.05 -0.05 -0.09 -0.06 -0.01 0.00 -0.01 0.00 0.00 -0.02 -0.25 -0.07 -0.05
(14.8) (3.72) (8.33) (5.45) (2.42) (0.17) (1.34) (1.14) (0.19) (2.92) (2.2) (2.83) (2.41) (1.2)

ln MC =

ln 173.8 234.72 271.11 109.67 209.98 0.00 609.77 84.63 713.71 78.95 108.96 261.39 199.49 90.68
(2.63) (4.27) (4.83) (9.08) (11.95) (0.00) (8.17) (4.62) (4.62) (4.75) (6.97) (8.6) (10.77) (7.36)

b 0.47 1.53 2.88 0.37 0.44 -0.86 2.03 0.04 3.72 0.12 0.28 1.25 0.76 0.31
(0.5) (1.73) (3.62) (4.05) (3.09) (0.52) (3.78) (0.38) (2.65) (1.22) (3.07) (5.5) (4.79) (3.41)
0.09 0.13 0.14 0.06 0.11 -0.01 0.33 0.04 0.40 0.04 0.06 0.13 0.10 0.05

(2.11) (3.59) (4.43) (8.19) (10.61) (0.71) (7.59) (3.88) (4.3) (4.25) (6.45) (8.03) (9.79) (6.54)
ln E =

GDPX 1.91 -0.38 -0.38 -43.82 -9.99 -5.60 -0.02 0.60 0.06 -0.07 0.20 0.00 2.25 0.11
(3.21) (1.00) (0.15) (0.58) (0.75) (1.12) (3.96) (0.9) (4.72) (5.14) (1.51) (0.01) (5.66) (1.66)

ln X =
GDPW 2.05 2.30 0.08 9.39 7.40 -0.12 17.99 25.37 1.20 19.95 61.88 5.95 7.28 15.33

(3.78) (5.75) (0.92) (5.46) (8.98) (0.73) (2.59) (2.25) (0.99) (5.35) (3.34) (2.24) (2.35) (1.68)
 BAU = Bauxite, COP = Copper, GOL = Gold, HC = Hard Coal, IRO = Iron, LEA = Lead, NG = Natural Gas, NIC = Nickel, OIL = Oil, PHO =
Phosphate, SC = Brown Coal, SIL = Silver, TIN = Tin, ZIN = Zinc. Parentheses depict absolute values of t-statistics.
World GDP, GDPW, and the GDP of small exporters, GDPX, are in log values. The three small exporting countries used in the instrumental
variable regression for demand are the three countries with largest share of mineral production relative to GDP.
Source: Unpublished World Bank data.
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Table 7: Test of main result in Proposition 2 using coefficients from SUR with country fixed
effects.

BAU COP GOL HC IRO LEA NG NIC OIL PHO SC SIL TIN ZIN

H0 : b =
a

2 =

4.51 0.45 5.14 0.78 2.10 3.13 0.25 0.31 1.92 5.13 1.09 2.95 8.46 9.04

Prob. >  2 =

0.03 0.50 0.02 0.38 0.15 0.08 0.61 0.57 0.17 0.02 0.30 0.09 0.00 0.00
BAU = Bauxite, COP = Copper, GOL = Gold, HC = Hard Coal, IRO = Iron, LEA = Lead, NG = Natural Gas, NIC = Nickel, OIL = Oil, PHO =
Phosphate, SC = Brown Coal, SIL = Silver, TIN = Tin, ZIN = Zinc.
The critical value of 2 at the 5% significance level is 3.84. At the 1% significance level, it is 6.63. For values above that value, we reject the null
hypothesis. The second row depicts the probability of not rejecting the null hypothesis. For bauxite (BAU), for example, we reject the null
hypothesis at the 5% significance level because 0.03 < 0.05; we do not reject it at the 1% significance level because 0.03 > 0.01.
Source: Unpublished World Bank data.




