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OPEN

ORIGINAL ARTICLE

Subcortical volumetric abnormalities in bipolar disorder
DP Hibar1, LT Westlye2,3, TGM van Erp4, J Rasmussen4, CD Leonardo1, J Faskowitz1, UK Haukvik2,5, CB Hartberg2, NT Doan2, I Agartz2,5,
AM Dale6,7, O Gruber8,9, B Krämer8, S Trost8, B Liberg10, C Abé11, CJ Ekman10, M Ingvar11,12,13, M Landén14,15, SC Fears16,17, NB Freimer17,
CE Bearden17,18,19, the Costa Rica/Colombia Consortium for Genetic Investigation of Bipolar Endophenotypes, E Sprooten20,21,
DC Glahn20,21, GD Pearlson20,21,22, L Emsell23, J Kenney23, C Scanlon23, C McDonald23, DM Cannon23, J Almeida24, A Versace25,
X Caseras26, NS Lawrence27, ML Phillips26, D Dima28,29, G Delvecchio28, S Frangou29, TD Satterthwaite30, D Wolf30, J Houenou31,32,
C Henry32,33, UF Malt34,35,36, E Bøen5,34,35,37, T Elvsåshagen2,34,35,38, AH Young39, AJ Lloyd40, GM Goodwin41, CE Mackay41, C Bourne41,42,
A Bilderbeck41,43, L Abramovic44, MP Boks44, NEM van Haren44, RA Ophoff17,44, RS Kahn44, M Bauer45, A Pfennig45, M Alda46,
T Hajek46,47, B Mwangi48, JC Soares48, T Nickson49, R Dimitrova49, JE Sussmann49, S Hagenaars49, HC Whalley49, AM McIntosh49,
PM Thompson1,18, OA Andreassen2 for the ENIGMA Bipolar Disorder Working Group

Considerable uncertainty exists about the defining brain changes associated with bipolar disorder (BD). Understanding and
quantifying the sources of uncertainty can help generate novel clinical hypotheses about etiology and assist in the development of
biomarkers for indexing disease progression and prognosis. Here we were interested in quantifying case–control differences in
intracranial volume (ICV) and each of eight subcortical brain measures: nucleus accumbens, amygdala, caudate, hippocampus,
globus pallidus, putamen, thalamus, lateral ventricles. In a large study of 1710 BD patients and 2594 healthy controls, we found
consistent volumetric reductions in BD patients for mean hippocampus (Cohen’s d= − 0.232; P= 3.50 × 10− 7) and thalamus
(d = − 0.148; P= 4.27 × 10− 3) and enlarged lateral ventricles (d = − 0.260; P= 3.93 × 10− 5) in patients. No significant effect of age at
illness onset was detected. Stratifying patients based on clinical subtype (BD type I or type II) revealed that BDI patients had
significantly larger lateral ventricles and smaller hippocampus and amygdala than controls. However, when comparing BDI and BDII
patients directly, we did not detect any significant differences in brain volume. This likely represents similar etiology between BD
subtype classifications. Exploratory analyses revealed significantly larger thalamic volumes in patients taking lithium compared with
patients not taking lithium. We detected no significant differences between BDII patients and controls in the largest such
comparison to date. Findings in this study should be interpreted with caution and with careful consideration of the limitations
inherent to meta-analyzed neuroimaging comparisons.
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INTRODUCTION
Bipolar disorder (BD) is a recurrent, severe illness characterized by
episodes of mania (or hypomania) and depression, and affects
~ 1–3% of the population.1 The disease is highly heritable2 but the
underlying pathophysiology is not yet understood. Although
structural brain abnormalities in BD have been reported, the pattern
of structural brain abnormalities based on magnetic resonance
imaging (MRI) is still not clearly defined. A set of retrospective meta-
analyses of structural MRI studies of BD and healthy controls found
right lateral ventricular enlargement in patients as the only
consistent volumetric difference based on previously published
studies.3–5 However, several studies report detectable differences in
the dorsolateral prefrontal cortex,6 the ventrolateral prefrontal
cortex,7 and the anterior and subgenual cingulate cortices.8 Meta-
analytic studies highlight the substantial heterogeneity across
studies for several structures of interest, notably the amygdala and
thalamus.3 Previously, a mega-analysis combined data frommultiple
sites around the world into a single model, and found differences in
lateral ventricle, temporal lobe and putamen volume.9

The sources of the heterogeneity in previously reported
findings are likely to be multifactorial and complex. First, there
may be true biological variability across cohorts, that may derive
from clinical phenotypes such as disease severity and duration,
medication status and history, and co-morbidity. One much
debated source of bias in the study of brain volumetric
associations with BD is the effect of mood-stabilizing medications,
primarily lithium, which may influence brain structure in individual
studies,10 meta-analyses,11 as well as mega-analyses.9 However, it
is difficult to distinguish unique effects of pharmacological agents
on brain volumes from concurrent effects of clinical and
demographic variables, which are likely to interact with medica-
tion status, and may even influence which medications are
prescribed. Second, variability in the neuroimaging data acquisi-
tion, processing and analysis protocols can affect the sensitivity
and apparent variability of the brain measures, making it
challenging to compare different studies directly.
To address several of these issues, we formed an international

collaboration for the study of BD as part of the Enhancing
Neuroimaging Genetics through Meta-Analysis (ENIGMA)
Consortium.12 Here, we aimed to identify subcortical brain
volumetric changes13,14 that may consistently distinguish BD
patients from healthy controls using a coordinated meta-analysis
approach that builds on the work from Hallahan et al.9 A number
of the studies included in this ENIGMA project have examined
volumetric brain differences previously (see Supplementary Table 2
citations), but this effort combines many new sites and additional
data in a coordinated analysis. We also aimed to examine and
characterize sources of heterogeneity in brain imaging volumetric
indices using exploratory analyses based on BD subtype (I or II), age
at illness onset, commonly prescribed medications, and mood state.
In the present study, we focused on subcortical structures for three
primary reasons: (1) they are critically involved in emotional
response and memory, hallmark behavioral features of BD;15–17 (2)
they are reliably measured across sites, as detailed in extensive
comparisons of multi-site/scanner analyses (see Supplementary
Tables 5 and 6a and h);18,19 and (3) are key components in dysregu-
lation network connections which interplays with the cortex.20

MATERIALS AND METHODS
Studies
Samples contributing to this project and demographics by site are given in
Supplementary Table 1. Participating sites were contacted to collaborate
on this project through the ENIGMA Consortium, after advertising the
goals of the project on the ENIGMA website and at numerous international
conferences in neuroimaging and psychiatry; none of the sites contacted
refused or were unable to participate in this project. In total, data from
4304 subjects including 1710 cases and 2594 healthy controls were

available for analysis. Each participating site obtained approval from an
institutional review board or local ethics committee, and all study
participants signed informed consent documents at their local institution.

Image acquisition and segmentation
High-resolution T1-weighted MRI brain scans were acquired at each of the
20 participating sites. Detailed information on scanner sequence and
acquisition parameters are found in Supplementary Table 2. A description
of image and volume segmentation quality control is given in
Supplementary Note 1.

Specification of statistical models and coordinated analysis across
sites
The present study involved coordinated analysis of brain structural MRI
scans. Our primary focus was on the mean volumetric differences between
patients with BD and healthy controls in seven subcortical brain structures:
nucleus accumbens, caudate, globus pallidus, putamen, amygdala,
hippocampus and thalamus. We also assessed lateral ventricular volume
and total intracranial volume (ICV). Within each sample, we used multiple
linear regression to quantify the differences between BD patients and
healthy controls, whereas accounting for age, sex and differences in head
size (ICV) as covariates. For each structure, we calculated effect size
estimates using Cohen’s d, adjusted for age, sex and ICV, using the
t-statistic from the diagnosis predictor variable (coded as patients = 1;
controls = 0).21 As an extension of this model, we examined
age-by-diagnosis and sex-by-diagnosis interactions using the t-statistic
from the interaction predictor variable (while leaving age, sex and
diagnosis predictors in the model) to calculate an adjusted Cohen’s d
effect size estimate. A description of the meta-analytical framework and
reported statistics is given in Supplementary Note 2.

Analysis of differences in diagnosis subtype, mood state, age of
illness onset and medications
To investigate brain differences associated with the clinical phenotype we
examined whether there were detectable differences between BD
subtypes, focusing on patients diagnosed with BDI and BDII. Methods
for determining subtype at each site are given in Supplementary Table 3.
We performed three separate meta-analyses comparing: BDI patients with
controls, BDII patients with controls and BDI with BDII patients following the
same model as in the section described above. Similarly, we examined how
mood state at the time of scanning influenced brain structure. Mood state
data were available from 13 sites; patients were categorized into six different
categories: euthymic, depressed, manic, hypomanic, mixed and unknown.
Tabulated results showing the number of subjects with a given mood state
at the time of scanning is available in Supplementary Table 1. A further
description is available for mood state, age of illness onset, medications and
the tests performed can be found in Supplementary Note 3.

Determination of statistical significance threshold
In total we performed 225 tests (25 separate analyses looking at nine mean
brain volumes). We controlled for multiple comparisons using the false
discovery rate22 at q=0.05, which corresponds to a P-value significance
threshold of Pthresho4.91× 10− 3. Throughout the manuscript we report
uncorrected P-values, but indicate when a test is significant.

RESULTS
Subcortical volume differences between patients with BD and
healthy individuals
Patients with BD had significantly lower bilateral mean volumes of
the hippocampus (d = − 0.232; P= 3.50 × 10− 7), thalamus
(d = − 0.148; P= 4.27 × 10− 3) and trending significant reduction
in amygdala (d = − 0.108; P = 7.65 × 10− 3). Patients also had
significantly larger lateral ventricles (d = 0.260; P= 3.93 × 10− 5)
than healthy controls. None of the other five structures
investigated (accumbens, caudate, globus pallidus, putamen and
ICV) showed significant differences between BD cases and
controls (Figure 1). Mean volumes (and s.e.) corrected for age,
sex and ICV) by site and by diagnosis are available in
Supplementary Table 7. Unadjusted means split by site and by
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diagnosis are available in Supplementary Table 8. Forest plots of
effect sizes for each structure across all sites are shown in
Supplementary Figure 1a and c.

Interactive effects of age and sex with BD diagnosis
We examined each of the nine brain structures in our study for
age-by-diagnosis and sex-by-diagnosis interactions. We found
significant evidence of decreased hippocampal volume in older
patients (d=− 0.104; P= 3.81 × 10− 3). No other structures had
significant interactive effects between age and diagnosis
(Supplementary Table 9). Further, we tested for sex-by-diagnosis
interactions for each structure and found significant evidence of
increased thalamus volume in female patients with BD (d= 0.202;
P= 9.65 × 10− 5). No other structures had significant interactive
effects between sex and diagnosis (Supplementary Table 10).

Effects of bipolar diagnosis subtype, mood state and age of onset
on subcortical brain volumes
We did not find any significant volumetric differences when
directly comparing BDI with BDII patients (Supplementary Table
11). When comparing BDI and BDII separately with controls, the
direction of effects (an increase or decrease in volume) for each
structure was similar regardless of subtype (Supplementary Tables
12–13). However, the magnitude of case–control differences on
brain volumes was consistently larger in patients with BDI
(Figure 2). Patients diagnosed with BDI had significantly smaller
volumes of the hippocampus (d = − 0.203; P= 1.31 × 10− 3) and
amygdala (d = − 0.117; P= 3.63 × 10− 3), and larger lateral ventricle
volumes (d= 0.251; P= 4.70 × 10− 3) compared with controls. In
contrast, none of the subcortical brain volumes of BDII patients
were significantly different from healthy controls. Further, we did
not find evidence of an association between brain volume
differences in any structure with age of onset (Supplementary
Table 14).

When examining case/control differences across sites with
mood state data available, we found a significant increase in
lateral ventricular volume in patients compared with controls
(d= 0.318; P= 6.06 × 10− 4). Mean hippocampal volume was
decreased at a nominally significant level (d=− 0.214; P= 0.016),
but was not strictly significant after correction for multiple
comparisons (Supplementary Table 15). We found that a subset
of euthymic patients (n= 401) had significantly decreased
hippocampal volume compared with healthy controls (d=− 0.233;
P= 1.53 × 10− 3). None of the other structures showed significant
differences (Supplementary Table 16). In addition, we found that a
subset of depressed patients (n= 134) showed a trending
significant increase in lateral ventricular volume compared with
healthy controls (d= 0.377; P= 8.00 × 10− 3). None of the other
structures showed significant differences between depressed
patients and controls (Supplementary Table 17). A direct
comparison between euthymic and depressed patients was not
possible given small sample sizes (the number of studies with
both euthymic and depressed patients was too low; n= 6).

Medication effects on brain volume in patients with BD
We examined the effect of treatment at the time of scanning with
lithium, antiepileptics, antidepressants, atypical and typical anti-
psychotics on brain volume in BD patients (Supplementary Tables
18–32). We found that patients treated with lithium at the time of
scanning had larger thalamic volumes compared with patients not
taking lithium (d= − 0.207; P = 7.31 × 10− 4). In addition, we found
that patients taking antiepileptics had significantly reduced
hippocampal volume (d= − 0.189; P= 4.91 × 10− 3) compared with
patients not taking antiepileptics (Supplementary Figure 2a). We
further performed a comparison between the brain volumes of
patients taking (or not taking) a given medication with the brain
volumes of healthy controls. Patients that were not taking lithium
at the time of scanning had significantly smaller hippocampal and
thalamic volumes and larger lateral ventricles compared with

Figure 1. Adjusted Cohen’s d estimates for all BD patients versus controls. Effect sizes for the volumetric differences between bipolar disorder
(BD) cases and controls (CTL), after accounting for age, sex and intracranial volume over all brain regions of interest. Error bars show mean
effect size ± s.e.m. Effect sizes were considered significant (marked with *) if they exceeded the study-wide significance threshold
(Po4.91 × 10− 3).
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controls (Supplementary Figure 2; Supplementary Table 19),
whereas in patients receiving lithium therapy hippocampal
volumes were comparable to controls.

DISCUSSION
One of the major points of uncertainty in BD has centered on
potential volumetric changes in the hippocampus. Two large
single-site studies reported a significant hippocampal
reduction23,24 but other multi-site studies reported no significant
differences.3–5,9 Also, smaller hippocampal volumes relative to
controls were reported in a meta-analysis of BD patients not taking
Li11 with Cohen's d=− 0.36 (−0.55, − 0.17) for the left hippocampus
and d=− 0.38 (−0.63, − 0.13) for the right. Our estimated Cohen's
d=− 0.24 (−0.37, − 0.12) for non-lithium treated patients is largely
in agreement. We re-ran the meta-analysis excluding data from the
two single-site studies mentioned previously (Fears et al.24 and
Rimol et al.23) and observed a nearly identical reduction of
hippocampal volume (d= − 0.220; P= 6.95× 10− 5) (Supplementary
Table 33). Upon further examination, we found a significant age-
by-diagnosis interaction whereby increasing age in patients was
associated with a decrease in hippocampal volume (d=− 0.104;
P= 3.81× 10− 3; Supplementary Table 9). This finding may reflect
accelerated hippocampal atrophy in patients or progressive effects
of chronic illness or medication on the hippocampus of patients.
Our finding of enlarged lateral ventricle volume (Cohen’s

d= 0.26) is in line with a previous mega-analysis by Hallahan
and colleagues who reported a d= 0.15 for right lateral ventricle.9

Because the UCLA-BP study includes unaffected relatives as
controls we re-ran the analysis with that study excluded but this
did not change the results (Supplementary Table 35). Similarly,
exclusion of data with poor age matching (the Halifax and CLING
studies) did not alter the results (Supplementary Table 36).

We found a significant reduction in thalamus volume in BD
patients as in our previous study by Rimol et al.23 However, none
of the comparable multi-site meta-analyses showed effects
significantly different from zero for the thalamus.3–5,9 To further
examine case–control differences in thalamic volume we under-
took additional analysis. First, we removed the data from the study
by Rimol et al and re-ran the analysis. Case–control differences in
thalamic volume remained nominally significant (d = − 0.11;
P= 0.013; Supplementary Table 34). Second, we re-ran the analysis
excluding data from the UCLA-BP study and found that the
volume reduction in the thalamus remained nominally significant
(Supplementary Table 35). Third, when the Halifax and CLING
samples were removed the effect on thalamus volume was
reduced but still nominally significant (Supplementary Table 36).
Finally, we found evidence of a significant sex-by-diagnosis
interaction whereby female patients with BD had significantly
increased mean thalamic volume (d= 0.202; P= 9.65 × 10− 5;
Supplementary Table 10). However, this finding conflicts with
previous reports showing no evidence of sex-by-diagnosis
interactions.23 The likely cause of the sex-by-diagnosis interactive
effect is unknown at this time, but deserves further investigation.
Previous literature-based meta-analyses had been unable to

detect a case–control difference in the amygdala. Individual
studies in adults with BD had reported either increase or no
change in amygdala volume.25,26 In contrast, reduced amygdala
volume has been repeatedly reported in adolescents with BD27

and has been attributed to abnormalities in the developmental
trajectory of this region in adolescence.28 In the present study,
case–control differences in amygdala volume were only nominally
significant when the UCLA-BP, Halifax and CLING studies
were excluded. No significant effects of age of illness onset
(Supplementary Table 14) or age-by-diagnosis interactions
(Supplementary Table 9) were detected in amygdala volume,

Figure 2. Adjusted Cohen’s d estimates for BD patients split by diagnosis subtype (type I or type II) versus controls. Effect sizes for the
volumetric differences between bipolar disorder (BD) type I and controls (CTL) are shown in red and BD II and controls are shown in green. All
effect sizes are reported after accounting for age, sex and intracranial volume. Error bars show mean effect size ± s.e.m. Effect sizes were
considered significant (marked with *) if they exceeded the study-wide significance threshold (Po4.91 × 10− 3).
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but this hypothesis might be better tested in a data set that
specifically includes adolescents. Further, brain changes over time
related to age of illness onset and duration are best studied in
longitudinal models rather than cross-sectional evaluations of
large cohorts.29,30

We also examined the effect of FreeSurfer version used for
segmentation. We found that the between-version agreement
(Supplementary Table 6a and h) was largely in line with the
within-version test–retest reliability (Supplementary Table 5). The
only case that seems problematic is v4.2 segmentations of the
globus pallidus; they seem to be consistently different than
estimates from the other versions. Only one of the data sets in our
consortium used v4.2 (UCLA-BP) and the globus pallidus results
are unchanged when running the meta-analysis with that
study dropped (see Supplementary Table 35). This suggests
that subcortical volumes segmented with different versions of
FreeSurfer are comparable.
The current findings of subcortical reduction in BD demonstrate

the sensitivity of volumetric assessment, but do not necessarily
implicate pathogenic specificity of subcortical structures in BD.
van Erp et al.31 reported significantly lower hippocampus,
thalamus and amygdala volumes and significantly larger lateral
ventricles and globus pallidus volumes in patients with schizo-
phrenia relative to healthy controls, suggesting that BD and
schizophrenia may share some common pathogenic mechanisms
associated with medial temporal lobe volume reduction, which
has been hypothesized to be related to excessive glucocorticoid
activity.31–33 In general, the effects of schizophrenia on subcortical
brain volumes seem to be stronger than those of BD. This trend
has been observed in prior single-site studies,23 which may be
related to the relatively greater neurodevelopmental disruption
characteristic of schizophrenia.34,35 Similarly, Schmaal et al.36

examined subcortical differences in major depressive disorder and
found significant reductions in the hippocampal volume of major
depressive disorder patients compared with healthy controls.
However, the observed effect sizes and pattern of effects seem to
be much milder than those observed in schizophrenia and BD.
We tested whether BDI (n= 862) or BDII (n= 317) are associated

with similar brain structural changes. We did not detect any
significant differences between patients with BDI and BDII
diagnoses (Supplementary Table 11) although we would have
80% power to detect differences of d= 0.087 (Supplementary
Note 4). When comparing each subtype separately with healthy
controls, we found that the pattern of case–control differences in
the volume of hippocampus, amydala, thalamus and lateral
ventricles was similar for both subtypes (Supplementary Tables
12–13). These differences were more pronounced in BDI patients,
who showed significantly smaller hippocampal and amygdala

volumes and significantly larger lateral ventricles volumes relative
to controls. In contrast, there were no significant differences
between BDII patients and controls (Figure 2). The literature
examining volumetric brain differences in BDII is decidedly
sparse4,5 and therefore most but not all4 large literature-based,
meta-analyses prior to this study grouped all BD subtypes
together; likely due to under-reporting of diagnosis subtype in
individual studies. Furthermore, we found that the effect sizes
when examining BDI patients alone were slightly smaller than the
effect sizes in a model that includes all BD patients regardless of
subtype (Table 1; Supplementary Table 12). These results in the
current samples suggest that there were no detectable volumetric
differences in subcortical brain structures between BDI and BDII.
The lack of detected differences between the two subtypes
mirrors findings in genetics, which also were unable to find
significant genetic patterns that distinguish BDI and BDII patients
despite large sample sizes.37 Future work is needed to further
disentangle the complex factors that may manifest as distinct BD
subtypes but have similar genetic and volumetric brain patterns.
We examined the effect of mood state at the time of scanning

to assess whether mood moderates BD effect size differences. We
examined only euthymic and depressed mood states compared
with controls due to the small sample sizes available of patients
scanned during a hypomanic, manic or mixed state. We found that
euthymic patients had significantly decreased hippocampal
volume compared with controls, which was not detected in
depressed patients (d=− 0.233; P= 1.53 × 10− 3). However, none of
the other comparisons made were significant after multiple
comparisons correction. Further, a direct comparison between
euthymic and depressed patients was not possible given the small
sample sizes. As the decrease in hippocampal volume was only
detected in euthymic patients and not in depressed patients,
further investigation is warranted. However, caution is needed in
interpreting these results given differences in sample size
between the two groups. A direct comparison between the two
groups would provide a more definitive assessment in the future.
The findings related to mood state highlight some of the
limitations and weaknesses of our approach whereby neurobio-
logical findings cannot readily be mapped onto clinical variables
and therefore have limited clinical value.
Medication is arguably one of the most widely debated sources

of heterogeneity in the brain morphological signature of BD. Much
of the BD literature has focused on the effects of lithium.10,38,39 In
animal models, lithium has been shown to have neurotrophic
effects in the hippocampus40 but the mechanism of action is
unclear.41,42 We performed the largest comparison of BD patients
taking (n= 535) and not taking (n= 845) lithium to date
(Supplementary Table 20). We found that patients taking lithium

Table 1. Effect sizes differences between all BD cases and controls (Cohen’s d) for the mean volume of each structure controlling for age, sex and
intracranial volume

BD–CTL (SE) 95% CI Percent difference Z-score P I2 Het. P # CTL # BD Hedges’ g

Lateral ventricle 0.260± 0.063 (0.136–0.384) 16.098 4.111 3.93 × 10− 5 65.4 1.64 × 10− 6 2592 1708 0.261
Thalamus − 0.148± 0.052 (−0.250 to − 0.047) − 1.156 − 2.858 4.27 × 10− 3 48.6 6.58 × 10− 3 2589 1702 − 0.147
Caudate − 0.09± 0.051 (−0.190–0.010) − 0.967 − 1.773 0.076 46.0 0.017 2586 1704 − 0.090
Putamen − 0.001± 0.044 (−0.088–0.085) 0.054 − 0.034 0.973 30.2 0.073 2588 1704 − 0.001
Globus pallidus − 0.028± 0.057 (−0.140–0.083) − 0.285 − 0.498 0.618 57.4 1.53 × 10− 3 2588 1707 − 0.028
Hippocampus − 0.232± 0.045 (−0.321 to − 0.143) − 2.010 − 5.094 3.50 × 10− 7 33.9 0.049 2582 1705 − 0.232
Amygdala − 0.108± 0.040 (−0.187 to − 0.029) − 1.068 − 2.667 7.65 × 10− 3 19.4 0.304 2590 1703 − 0.107
Accumbens − 0.064± 0.063 (−0.187–0.060) − 0.929 − 1.013 0.311 65.1 6.86 × 10− 5 2567 1689 − 0.064
ICV 0.012± 0.055 (−0.095–0.120) 0.155 0.225 0.822 52.9 1.75 × 10− 4 2594 1710 0.012

Abbreviations: BD, bipolar disorder; CI, confidence interval; CTL, controls; ICV, intracranial volume. The percent difference is the mean change in volume of a
structure in bipolar patients versus controls as a percent of the total volume of the structure in controls. I2 gives the estimate of the total heterogeneity as a
proportion of the total variability for each measure. Uncorrected P-values are reported. Effect size differences are considered significant (marked with *) if they
exceed Po4.91 × 10-3 (see Methods for threshold determination).
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had significantly larger thalamic volumes than patients not taking
lithium (d= 0.207; P= 7.31 × 10− 4). However, significant effects of
lithium on thalamic volume were not detected in other large
studies of BD.5,9 We did not observe significant effects of lithium in
other structures (that is, hippocampus and amygdala) both of
which have been studied extensively in the literature.5,9,11 In
addition to the moderating effects of lithium, we examined the
effects of treatments of four commonly prescribed medication
groups: antiepileptics, antidepressants, atypical and typical anti-
psychotics (Supplementary Figure 2). It is difficult to distinguish
medication effects on brain volumes from concurrent effects of
clinical and demographic variables, which interact closely with
medication status.43,44 It is possible as well that patients that
recently stopped taking a particular medication could be considered
to be ‘not currently taking a medication’ potentially biasing
medication effect estimates. The quality of information concerning
medication effects on brain correlates can be improved using
longitudinal methods along with tightly controlled medication
access and reporting. Further longitudinal studies of specific
medications are needed to disentangle medication effects on the
brain from other moderating effects or disease effects.
A major strength of this study is the large numbers and the

ability to harmonize, as far as possible the data, which, in the case
of imaging data, can be quite a daunting task. However,
the current study has limitations regarding the heterogeneity of
the sample and potential clinical confounds. Thus, the current
findings should be interpreted with caution and need to be
replicated in independent cohorts. In addition, there are several
key limitations to our study: (1) Samples were collected and
analyzed at different sites; we coordinated our work to maximize
homogeneity across sites, but differences persist. We showed that
scanner field strength, voxel volume and the version of FreeSurfer
used for segmentation do not significantly influence (Po0.05) the
effect size estimates in our analysis (Supplementary Table 37).
(2) We examined the moderating effects of medication, but
caution is needed in interpreting these effects, as differences in
medication status are likely to interact with illness characteristics.
Differences in the clinical definitions of medication use and history
could potentially confound the estimates in this study in
unexpected ways. Also, we did not test or account for possible
interactions between different pharmacological agents although
the majority of patients were treated with a combination of
agents. However, longitudinal studies of medication effects show
that most medications are likely to have a null or deleterious effect
on the brain45 with the exception of lithium, which may have
neuroprotective effects.39 (3) Most sites used the structured
interview (DSM-IV) for diagnosis, but some heterogeneity in
diagnosis inevitably exists across sites and findings should be
interpreted with care as they reflect the heterogeneity inherent to
a large multicenter/multinational comparison. (4) Drug and
alcohol dependence or abuse may be another source of
heterogeneity. These data were not uniformly available within
the cohorts in this study, but the potential impact of alcohol abuse
on ventricular volume has been demonstrated before,46 and is
being analyzed by ENIGMA’s addictions working group. (5) Finally,
our hypotheses explore the effects of BD on subcortical brain
structures and we did not assess effects elsewhere in the brain
(for example, cortex, white matter tracts). It is known that neural
networks subserve emotional processing and regulation and that
these almost certainly engage a number of cortical structures.
However, the current study was limited to subcortical data. The
analysis of cortical data will need another analytical approach,
with additional methodological challenges, which is currently
ongoing.
We have demonstrated a pattern of reduced volumes of the

hippocampus, thalamus and amygdala in patients with BD.
Whereas one should avoid making strong functional interpreta-
tions based on brain volume differences alone, these findings

pertain to neurocircuitry implicated in emotional processing and
executive behavior,47 and nevertheless provide important infor-
mation regarding the neurobiology of BD.48 Several functional MRI
studies report dysfunction in these regions during manic or
depressive episodes,49 and post mortem gene expression studies
have also implicated these structures.50 Mood-stabilizing drugs
may also act in this region.51 Further, we provide strong statistical
evidence of a lack of difference in the biological signature of BD
subtypes. These findings should be interpreted with caution given
the limitations outlined throughout the manuscript, especially
with consideration for the heterogeneity involved in using
meta-analysis to combine neuroimaging data across sites.
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