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ABSTRACT OF THE DISSERTATION

Novel Linearity Tests with Applications to
Lattices and Learning Problems

by

Parker Newton

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2022

Dr. Silas Richelson, Chairperson

Linearity testing is an area of theoretical computer science which has been widely studied

over the last few decades, and lends itself to numerous applications in cryptography and

coding theory. Beginning with the seminal work of [BLR93], the goal of linearity testing

is to design an algorithm which distinguishes functions that are linear from those that are

far from linear. Linearity tests are characterized by two parameters: the test acceptance

parameter ε and agreement parameter δ. Linearity tests have the property that they should

always accept when the input function is linear, but if the function is (1−δ)−far from linear

should reject with probability 1− ε. We build on previous work in this space to construct

two novel high dimensional linearity tests, each of which operate in what we refer to as

a “hybrid” mode between the high and low agreement regimes. Additionally, we provide

concrete applications of each to cryptography. Specifically, we use our first novel linearity

test to aid us in proving a lattice hardness result; we use our second novel linearity test in

the course of proving an approximation variant of the celebrated Goldreich-Levin Theorem

in high dimension with low agreement.
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Lattice-based cryptography is the theory of constructing cryptosystems whose se-

curity is based on the assumed hardness of lattice problems. Several hard lattice problems,

such as the renowned problem of Learning with Errors (LWE), are conjectured to be hard

even in the quantum model of computation. As such, many lattice-based cryptosystems

serve as the most promising candidates to offer robust security guarantees against quantum

adversaries. Beginning with the seminal work of Oded Regev in 2005, a plethora of cryp-

tosystems have been constructed from LWE, including symmetric key encryption, public

key encryption, digital signatures, trapdoor functions, fully homomorphic encryption, and

many more. However, for many years we had been unable to construct certain types of

“deterministic” cryptosystems directly from LWE, such as pseudorandom function (PRF)

families. In 2012, Banerjee, Peikert, and Rosen (EUROCRYPT’12) introduced the problem

of Learning with Rounding (LWR), reduced LWE to LWR when the modulus parameter q

is super-polynomial in the lattice dimension n, and constructed a PRF family from LWR.

The assumption that q is super-polynomial in n, though, does not provide for practical

instantiations of LWR-based cryptosystems; in order to achieve these, we need q to be poly-

nomial in n. Many subsequent works provided improved reductions from LWE to LWR

for polynomial q, but all such works impose an a priori bound on the number m of input

samples to the reduction.

We show that when q is polynomial and m is unbounded, there does not exist

a certain type of reduction from LWE to LWR. In particular, every prior reduction from

LWE to LWR is of this type. Hence no prior reduction from LWE to LWR will work for

polynomial q and unbounded m. Our result does not imply that LWR is easy; instead it
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asserts that any prior reduction from LWE to LWR for polynomial q and unbounded m

cannot operate like any prior reduction in the literature.

In the course of proving our result, we introduce a high-dimensional approximate

version of the celebrated Goldreich-Levin Theorem (STOC’89). The Goldreich-Levin The-

orem at its core solves a learning problem; specifically, it states that any function which

predicts the inner product of a secret vector and a uniformly random vector with any ad-

vantage over randomly guessing admits an algorithm which recovers the secret vector. Over

the last few decades, the Goldreich-Levin Theorem has found numerous applications in

cryptography and coding theory, such as to symmetric key cryptography and error correc-

tion codes. In our work, we introduce a novel conditional linearity test, and reduce our

approximate version of the Goldreich-Levin Theorem in higher dimension to proving such

a conditional linearity testing theorem.
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Chapter 1

Introduction

Linearity testing is the problem of algorithmically distinguishing between functions

which are linear and those which are far from linear. Beginning with the seminal work of

[BLR93], the goal of linearity testing is to design an algorithm T which gets oracle access

to a function f : Zmq → Znq (m,n, q ∈ N), and outputs 1 if f is linear, and 0 if f is far from

linear. Linearity tests have found a plethora of applications in theoretical computer science

over the last few decades, such as to coding theory (locally testable codes [FS95], [RS96],

[GS02], [DEL+21]), program checking and PCP systems ([ALM+92], [BGS95], [H̊as96],

[H̊as97]), and cryptography (linear cryptanalysis [Mat93], [SS22]).

In slightly more detail, if f, g : Zmq → Znq are functions, then we define agree(f, g) :=

Prx∼Zmq
[
f(x) = g(x)

]
, and dist(f, g) := 1 − agree(f, g). We say that an oracle algorithm

T is an (ε, δ)−linearity test (ε, δ > 0) if for every function f : Zmq → Znq , if f is linear,

then Pr
[
T f = 1

]
= 1, and if dist(f, φ) ≥ 1 − δ for every linear map φ : Zmq → Znq , then

Pr
[
T f = 0

]
≥ 1 − ε. Henceforth, we will consider the completeness condition in the defi-
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nition of an (ε, δ)−linearity test T (i.e., T f = 1 with probability 1 when f : Zmq → Znq is

linear) as implicit in the definition. So, we will equivalently define an (ε, δ)−linearity test

T as follows: If f : Zmq → Znq is a function such that Prx∼Zmq
[
T f = 1

]
≥ ε, then there exists

a linear map φ : Zmq → Znq such that agree(f, φ) ≥ δ. We will call ε the test acceptance

parameter and δ the agreement parameter.

The original work of [BLR93] in this space constructed an (1−ε, 1−9ε/2)−linearity

test when q = 2 and n = 1, and the follow-up works of [BGLR93, BS94, BCH+96, BCLR04]

improved this result by obtaining an (ε, ε/3+O(ε2))−linearity test. In [SW06], the authors

generalized the notion of linearity testing to affine homomorphism testing, and constructed

an (1− ε, 1− 5ε)−affine homomorphism test for general q, n.

A natural question which arises in this space is can we construct a high-dimensional

linearity test (i.e., for general n) in prime characteristic q for low ε. In particular, it would

be desirable for such a high-dimensional low agreement linearity test to have δ ≥ poly(ε).

In [Sam07], the author constructed an (ε, q−Ω(n)poly(ε))−linearity test; note in their con-

struction that δ is exponentially small in n. The breakthrough result of [San12] im-

proved this result by constructing an (ε, q−polylog(1/ε))−linearity test, in which δ is quasi-

polynomial in ε. Indeed, the construction of a high-dimensional (ε, poly(ε))−linearity test

has since evaded the community. However, it was shown that there exists a high-dimensional

(ε, poly(ε))−linearity test assuming the Polynomial Freiman-Ruzsa (PRF) Conjecture, a

major conjecture in additive combinatorics. Unfortunately, a proof of the Polynomial

Freiman-Ruzsa Conjecture today remains an open problem in additive combinatorics. In-

terestingly enough, the fact that the PFR Conjecture is sufficient for constructing an
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(ε, poly(ε))−linearity test provides a data point on the difficulty of, and quite possibly

exposes a barrier in, constructing such a high dimensional low agreement linearity test.

In this dissertation, we prove two novel linearity testing theorems, and demonstrate

a concrete application of each to lattices and learning problems, respectively. Both linearity

tests are high dimensional in prime characteristic q, and can be viewed as a “hybrid” between

the high and low test acceptance parameter regimes; we expand on what we mean by this

hybrid model in the next section. The application of our first novel linearity test is to the

hardness of lattice problems. Specifically, we continue a line of work on the hardness of a

lattice problem called Learning with Rounding (LWR) from the renowned lattice problem

of Learning with Errors (LWE). We show that in a specific parameter regime, there does

not exist a type of reduction from LWE to LWR. Our application of our second novel

linearity test is to a celebrated learning problem in theoretical computer science called

the Goldreich-Levin Theorem. Specifically, we continue a line of work on list-decoding

group homomorphism codes by applying our second novel linearity test to proving a high

dimensional Goldreich-Levin Theorem; again, we expand on our result in the next section.

1.1 Our Contributions

Here we elaborate on our contributions in this dissertation, which include two novel

linearity testing theorems and concrete applications of them to lattice-based cryptography

and the Goldreich-Levin Theorem in high dimension, respectively.
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1.1.1 A Novel High Dimensional Linearity Test

We introduce a novel high dimensional linearity test, captured by the following theorem.

Theorem 1 (Informal) Let n, q ∈ N such that q = poly(n) is prime, and h : Znq → Znq be

a function. If ∀(α1, α2) ∈ Z2
q,

Pra1,a2∼Znq
[
h(α1a1 + α2a2) ∈ Span(h(a1), h(a2))

]
≥ 1− ε,

for ε > 0, then there exists a linear map φ : Znq → Znq such that

Pra∼Znq
[
h(a) ∈ Span(φ(a))

]
≥ 1−O(nq2ε).

Strictly speaking, this test isn’t exactly a linearity test, and as such we call it the

(1 − ε)−quasi-linearity test. However, note that if we apply an averaging argument to the

conclusion of Theorem 1, we obtain the following corollary.

Corollary 2 (Informal) Let n, q ∈ N such that q = poly(n) is prime, and h : Znq → Znq be

a function. If ∀(α1, α2) ∈ Z2
q,

Pra1,a2∼Znq
[
h(α1a1 + α2a2) ∈ Span(h(a1), h(a2))

]
≥ 1− ε,

for ε > 0, then there exists a linear map φ′ : Znq → Znq such that

Pra∼Znq
[
h(a) = φ′(a)

]
≥ (1−O(nq2ε))/q.

Moreover, if we examine our quasi-linearity test more closely, we discover that by

similarly applying an averaging argument to the hypothesis of the corollary, it follows that

∃(α1, α2) ∈ Z2
q

Pra1,a2∼Znq
[
h(a1 + a2) = α1h(a1) + α2h(a2)

]
≥ (1− ε)/q2, (1.1)
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and viewed through this lens, our quasi-linearity test appears to resemble a traditional high

dimensional low test acceptance linearity test. Of course in reality, (1.1) is not equivalent

to the hypothesis in Theorem 1 and Corollary 2, and thus our result is not equivalent to a

high dimensional low test acceptance linearity test. However, our result can be viewed as

somewhat of a “hybrid” high dimensional linearity test between the high and low agreement

regimes. Finally, while most traditional linearity testing theorems ([BLR93], [BCH+96],

[SW06], etc.) use combinatorial and Fourier analytic techniques, our proof of Theorem

1 uses purely algebraic techniques. Indeed, our proof follows that of the Fundamental

Theorem of Projective Geometry ([Art57]).

1.1.2 Application to Lattices

Lattice-based cryptography is the theory of constructing cryptosystems whose se-

curity is based on the assumed hardness of lattice problems. A lattice is defined as a free

Z−module, and can be thought of as the Z−span of a set of linearly independent vectors in

Rn. Several computational problems defined on lattices, such as Shortest Vector Problem

(SVP), Closest Vector Problem (CVP), Short Integer Solution (SIS), Short Basis Problem,

etc., have been studied thoroughly for the past few decades. In particular, SVP is widely

conjectured to be hard even in the quantum model of computation. As such, cryptosys-

tems whose security can be based on the assumed hardness of SVP serve as candidates for

post-quantum cryptography. The seminal works of [Ajt96] and [Ajt99] showed that many of

these lattice problems are all equivalent in hardness to SVP. The breakthrough work of Oded

Revev in 2005 ([Reg05]) introduced the problem of Learning with Errors (LWE), which can

be intuitively thought of as the problem of solving a noisy random linear system, in which

5



each linear equation is perturbed by a small error term sampled from a discrete Gaussian

distribution defined on a lattice. Regev provided a quantum reduction from SVP to LWE

and constructed symmetric key encryption (SKE) and public key encryption (PKE) from

LWE. A line of follow-up work ([Pei09], [BLP+13]) provided improved reductions from SVP

to LWE, which culminated in a classical reduction from SVP to LWE, as well as improved

constructions of SKE and PKE from LWE.

In the years since, the community has constructed an extensive list of cryptographic

primitives from LWE which enjoy robust security guarantees against quantum adversaries,

such as digital signatures ([Pei09]), trapdoor functions ([GPV08], [MP12]), fully homo-

morphic encryption ([BGV11], [Bra12], [FV12], [GSW13]), non-interactive zero knowledge

proofs ([PS19]), and many more. However, one cryptographic primitive whose construction

from LWE evaded cryptographers for many years was pseudorandom function (PRF) fam-

ilies. A PRF family is a family F of functions f : Zm2 → Zn2 that is efficiently sampleable

and pseudorandom (i.e., the distribution which samples a function f ∼ F and outputs f

is computationally indistinguishable from that which samples a uniformly random function

f : Zmq → Zn2 and outputs f). An explicit construction of PRF’s from LWE evaded the

community for so long because of the deterministic nature of PRF’s; that is, a PRF family

F as the property that randomness is used to sample f ∼ F , but no randomness should be

employed thereafter to evaluate f(x) on any input x. The distribution of LWE, which is

inherently dependent on sampling error terms from a probabilistic distribution (specifically,

a discrete Gaussian distribution on a lattice), lends itself well to constructing encryption

schemes and many public key cryptographic primitives, but not to constructing “deter-
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ministic” cryptosystems such as PRF’s. However, in 2012, the work of Banerjee, Peikert,

and Rosen ([BPR12]) introduced a novel learning problem called Learning with Rounding

(LWR), which is almost exactly the same as LWE, but instead of perturbing each linear

equation by an error term sampled from a probabilistic distribution, the error in each linear

equation is introduced by rounding the equation (an element in Zq, for some modulus q

which is polynomial in the security parameter n), down to the nearest integer (mod p), for

an integer p < q. Banerjee et al. showed that LWE reduces to LWR when q = nω(1) and

constructed PRF’s from LWR in this parameter regime.

However, the assumption that q = nω(1) does not admit very computationally

practical instantiations of PRF’s; ideally, q should be a small polynomial in n. A line of

follow-up work ([AKPW13, BGM+16, AA16]) provided improved reductions from LWE to

LWE with q = poly(n), but all such reductions imposed an a priori bound on the number

m of input samples to the reduction. Also, every known reduction from LWE to LWR

([BPR12, AKPW13, BGM+16, AA16]) operates in the follow general method: Take as

input LWE samples {(ai, bi)}mi=1 ∈ (Znq × Zq)m, map these to LWR samples {(a′i, b′i)}mi=1

point-wise, according to some function f : Znq × Zq → Znq × Zp ((a′i, b
′
i) = f(ai, bi),∀i),

invoke a solver S for LWR on the resulting LWR samples, and output the secret s ∈ Znq

computed by S. Therefore, these reductions all construct an efficient function f which

maps LWE samples computed under an LWE secret s to LWR samples under s. We call

reductions from LWE to LWR which conform to the aforementioned template a pointwise

reduction parameterized by the function f . We show that when q = poly(n) is prime, m is

unbounded, and p > q2/3, then there cannot exist a reduction from LWE to LWR, unless
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LWE is tractable. We state our result informally in the following theorem; see Chapter 3

for the formal theorem statement.

Theorem 3 (Informal) Let n, p, q ∈ N be integers such that such that q = poly(n) is

prime and q2/3+c < p < q = poly(n) for a small constant c > 0, and let χ be a discrete

Gaussian distribution on Zq. If there exists a pointwise reduction f : Znq × Zq → Znq × Zp

from LWE to LWR, then there exists an efficient algorithm which directly solves LWE.

Briefly, our proof works by first showing if there exists a pointwise reduction f :

Znq ×Zq → Znq ×Zp from LWE to LWR, then f satisfies our quasi-linearity test of Theorem

1. Then, by Corollary 2, f agrees with an linear map with non-negligible probability. We

use the linear agreement of f together with statistical properties of a pointwise reduction

to efficiently extract the LWE secret s from m input LWE samples {(ai, bi)}mi=1, thereby

efficiently solving LWE. See Chapter 3 for further details.

1.1.3 A Novel High Dimensional Conditional Affine Linearity Test

We prove a second novel linearity testing theorem, which is a high dimensional

conditional affine linearity test. We state our result informally below.

Theorem 4 (Informal) Let m, d, q ∈ N such that q is prime. Let f : Zmq → Zdq be a

function, and T ⊂ Zmq a subset of density λ. If

Prx,y∼Zmq
[
f(x + y) = f(x) + f(y)

∣∣ x,y,x + y ∈ T
]
≥ 1− (q − 1)λ3

8q3d−2
,

then there exists an affine map (A,b) ∈ Zd×mq × Zdq such that

Prx∼Zmq
[
f(x) = Ax + b

∣∣ x ∈ T
]
≥
(
1/q + poly(λ, q−d)

)d
.
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Our theorem proves a high dimensional conditional affine linearity test in characteristic q.

Although the parameters suggest an affine linearity test with high test acceptance and low

agreement, we note that the hypothesis of the theorem includes a conditional test accep-

tance property; if we remove the condition, we obtain a low test acceptance. This low test

acceptance condition is clearly not sufficient for our conclusion, but instead demonstrates

how our conditional affine linearity test can be viewed as a “hybrid” between the high and

low test acceptance regimes.

1.1.4 Application to the Goldreich-Levin Theorem in High Dimension

We apply our conditional affine linearity test to solving an approximate version of

the Goldreich-Levin Theorem in high dimension. The Goldreich-Levin Theorem ([GL89])

is a cornerstone theorem in theoretical computer science with numerous applications to,

for example, cryptography ([GL89]) and coding theory (list-decoding group homomorphism

codes [GKS06],[DGKS08],[BBW18]). At its core, the Goldreich-Levin Theorem is a learn-

ing result, which states that any function f : Zm2 → Z2 (m ∈ N) which predicts the inner

product of a secret vector s ∈ Zm2 and a uniformly random vector with non-zero advantage

over guessing randomly admits an algorithm which recovers s. The original application of

the Goldreich-Levin Theorem in [GL89] was to symmetric key cryptography; the authors

used their learning result to show that one-way functions imply pseudorandom generations,

which, when combined with the work of [GGM84], concludes that one-way functions are

sufficient for symmetric key encryption. An immediate consequence of the Goldreich-Levin

Theorem in coding theory is that the Hadamard code is list-decodable. A line of work
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([GKS06],[DGKS08],[BBW18]) generalized the Goldreich-Levin Theorem’s “prediction im-

plies inversion” techniques to work for general finite abelian groups.

We continue this line of work by investigating the Goldreich-Levin Theorem in

high dimension when the prediction guarantee is low (that is, less than guessing randomly).

Suppose f : Zmq → Znq (q, n ∈ N such that q is prime) is a function and A ∈ Zn×mq is a

matrix such that Prx∼Zmq
[
f(x) = Ax

]
≥ ε, for 0 < ε ≤ 1/q. Note that when n = 1, it

can be shown that this problem is impossible, since a function which guesses randomly will

agree with the inner product of the secret and a uniformly random vector with probability

1/q. For general n, this probability becomes q−n. So, we will restrict our attention to values

of ε such that q−n < ε ≤ q−1.

As a simple example, consider the function f : Zmq → Znq which, on input x ∈ Zmq ,

computes y = Ax ∈ Znq , chooses α ∼ Zq, and outputs (y1, . . . , yn−1, α) ∈ Znq . That is,

f agrees with A in the first n − 1 components, and outputs a random guess for the last

component. It follows that f agrees with A with probability 1/q, but also agrees with

probability 1/q with any other matrix A∗ ∈ Zn×mq which has the same first n−1 rows as A.

It follows that f agrees with at least qm such matrices A∗, and so we can’t hope to exactly

recover any particular one. However, we can hope to recover an approximation of A (i.e.,

a matrix A′ ∈ Zn×mq such that Prx∼Zmq
[
A′x = Ax

]
≥ ε′). Indeed, we prove the following

theorem, stated informally below.

Theorem 5 (Informal) Let m,n, q ∈ N such that q is prime. Suppose there exists a

function f : Zmq → Znq and a matrix A ∈ Zm×nq such that

Prx∼Zmq
[
f(x) = Ax

]
≥ ε,
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for ε > 0 such that q−n < ε ≤ q−1. Then, there exists an algorithm A, running in time

poly(m,n, q, 1/ε), which gets oracle access to f , and outputs with probability poly(1/m, 1/n, 1/q, ε)

over its randomness a matrix A′ ∈ Zn×mq such that Prx∼Zmq
[
A′x = Ax

]
≥ q−O(1), unless f

satisfies a conditional linearity test with high probability.

Briefly, the proof of our theorem shows that either we can use the function f to

compute an approximation of A, or there exists a subset on which f conditionally passes

the linearity test of Theorem 4 with high probability. In this informal theorem statement,

for ease of exposition we have vaguely described the conditions under which f satisfies the

conditional linearity test; see Theorem 4 for the formal theorem statement.
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Chapter 2

Two Novel High Dimensional

Linearity Tests

In this chapter, we prove two novel high dimensional linearity testing theorems.

These high dimensional linearity tests are both in prime characteristic q and can be viewed

as a “hybrid” between the high and low test acceptance regimes. To be clear, these are not

low test acceptance linearity tests. However, a careful analysis of the hypothesis of each

theorem reveals that both of these tests can be viewed through a certain lens as a “hybrid”

between the high and low test acceptance regimes. We elaborate more in the sequel. But

first, we establish some preliminaries.

2.1 Preliminaries

Basic Notation. If n ∈ N, then we denote by [n] the set {1, . . . , n}. For a prime q ∈ N,

we denote by Zq the field of integers modulo q. We will denote scalars, vectors and matrices
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with lowercase italic, lowercase bold, and uppercase bold respectively (e.g., z ∈ Zq, z ∈ Znq

and Z ∈ Zn×mq ). For a distribution D (resp. set D), we write r ∼ D (resp. r ∼ D) to

indicate that the random variable r is drawn according to D (resp. the uniform distribution

on D). For an event E, we denote by 11E the indicator random variable corresponding to

E. Namely, 11E = 1 (resp. 11E = 0) when E occurs (resp. does not occur). Unless otherwise

specified, every vector space in this work is over the field Zq, for a prime q ∈ N. If n ∈ N,

then a quantity f(n) is said to be negligible if f(n) ≤ n−c for every constant c ∈ N. On

the other hand, we say that f(n) is non-negligible if there exists a constant c ∈ N such that

f(n) ≥ n−c.

Roots of Unity. Let q ∈ N be prime. A qth root of unity in C is a complex root of the

monic degree q polynomial f(X) = Xq − 1. It is a well known fact that there exist exactly

q roots of f , which are the elements {e−2πik/q}q−1
k=0, where i is the imaginary unit. The qth

roots of unity in C form a multiplicative cyclic group of order q, which is isomorphic to Zq.

A generator of the group is called a primitive qth root of unity in C. The subset of primitive

qth roots of unity in C form a subgroup of order q − 1, which is isomorphic to Z∗q .

We’ll prove two claims regarding qth roots of unity which will be useful in this

section. Our proof of the first claim utilizes the following well-known fact: If ω ∈ C is a

primitive qth root of unity, then
q−1∑
k=0

ωk = 0.

Claim 1 Let m, q ∈ N such that q is prime, and ω ∈ C be a primitive qth root of unity.

Then, ∀x ∈ Zmq ,

Ey∼Zmq
[
ω〈x,y〉

]
= 11x=0.
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Proof. Let x ∈ Zmq . If x = 0, then Ey∼Zmq
[
ω〈x,y〉

]
= 1. Now, assume x 6= 0. Then,

Ey∼Zmq
[
ω〈x,y〉

]
= q−m

∑
y∈Zmq

ω〈x,y〉 = q−m
∑
β∈Zq

∑
y∈Zmq s.t.

〈x,y〉=β

ωβ

=
∑
β∈Zq

ωβ · Pry∼Zmq
[
〈x,y〉 = β

]
= q−1

∑
β∈Zq

ωβ = 0.

Claim 2 Let m, q ∈ N such that q is prime, and ω ∈ C be a primitive qth root of unity. Let

{αk}k∈Zq ⊂ [0, 1] such that
∑
k∈Zq

αk = 1, and let z =
∑
k∈Zq

αkω
k ∈ C. If |z| ≥ 1/q + γ, for

some γ > 0, then ∃k ∈ Zq such that αk ≥ 1/q + (1/q3 + γ/q2).

Proof. Let η = 1/q3 + γ/q2, and suppose that ∀k ∈ Zq, αk < 1/q + η. We have that each

αk = 1 −
∑

`∈Zq\{k}
α` > 1 − (q − 1)(1/q + η) = 1/q − (q − 1)η. So, 1/q − η(q − 1) ≤ αk ≤

1/q + η ≤ 1/q + η(q − 1), which implies that |αk − 1/q| ≤ η(q − 1). Hence

|z| =
∣∣∣(1/q) ∑

k∈Zq

ωk +
∑
k∈Zq

(αk − 1/q)ωk
∣∣∣ ≤ ∑

k∈Zq

|αk − 1/q| ≤ q(q − 1)η < q2η = 1/q + γ,

a contradiction. For the first inequality above, we have used

Discrete Fourier Analysis on Finite Abelian Groups. Here we briefly summarize

several key results in discrete Fourier analysis on finite abelian groups. Actually, we special-

ize our results to the group Zmq (m, q ∈ N such that q is prime), which is also a vector space

over Zq of dimension n. See [Luo09] for a complete treatment on general finite abelian

groups. Let F = {f : Zmq → C} be the set of all functions f : Zmq → C, which is a

C−vector space. A character of Zmq is a group homomorphism χ : Zmq → C∗. It turns

out that each character χ of Zmq is characterized by an element u ∈ Zmq , and is defined
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by χu(x) = ω〈u,x〉, where ω ∈ C is a primitive qth root of unity in C. Moreover, the set

{χu : u ∈ Zmq } ⊂ F of characters of Zmq form a C−basis for F , hence F is a C−vector

space of finite dimension qm. If f ∈ F and u ∈ Zmq , then we define the Fourier coefficient

of f at u as f̂(u) := Ex∼Zmq
[
f(x)χ̄u(x)

]
= Ex∼Zmq

[
f(x)ω−〈u,x〉

]
. It turns out that for every

f ∈ F , f can be expressed as a unique linear combination of the characters of Zmq over C

of the form f =
∑

u∈Zmq
f̂(u)χu. Parseval’s identity, an extremely useful tool in application,

relates the expectation of the norm of |f(·)|2 to the sum over its Fourier coefficients of their

squared norm:

Ex∼Zmq

[∣∣f(x)
∣∣2] =

∑
u∈Zmq

∣∣f̂(u)
∣∣2.

2.2 A High Dimensional Linearity Test

In this section, we prove a novel high dimensional linearity test. Our linearity testing

theorem operates on a function h : Znq → Znq (n, q ∈ N such that q = poly(n) is prime)

which has a non-degeneracy property, defined below.

Definition 6 (Non-Degeneracy) Let n, q ∈ N such that q = poly(n) is prime, and ζ, ρ >

0 such that ζ > ρ. A function h : Znq → Znq is said to be (ζ, ρ)−degenerate if there

exists a subset T ⊂ Znq of density |T |q−n = ρ such that Pra∼Znq
[
h(a) ∈ T

]
≥ ζ. If h

is not (ζ, ρ)−degenerate then we say that h is (ζ, ρ)−non-degenerate. If h is (ζ, ρ)−non-

degenerate for every non-negligible ζ = ζ(n) and negligible ρ = ρ(n), then we say that h is

non-degenerate.
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Remark. Suppose h : Znq → Znq is a non-degenerate function, and let V ⊂ Znq be a

subspace of constant dimension d = O(1). Then, |V|q−n = q−(n−d), which is negligible in

n, and since h is non-degenerate, it follows that Pra∼Znq
[
h(a) ∈ V

]
= negl(n). We will use

this fact heavily throughout the proofs in this section.

We now state our high dimensional linearity testing theorem.

Theorem 7 (Theorem 1 (Formal)) Let n, q ∈ N such that q = poly(n) is prime. If

h : Znq → Znq is a non-degenerate function such that ∀(α1, α2) ∈ Z2
q,

Pra1,a2∼Znq
[
h(α1a1 + α2a2)) ∈ Span(h(a1), h(a2))

]
≥ 1− ε,

for ε = ε(n) > 0 non-negligible, then ∃H ∈ Zn×nq such that

Pra∼Znq
[
h(a) ∈ Span(Ha)

]
≥ 1−O(n2q

√
qε).

We remark that our result is not a traditional linearity test. However, by averaging

our conclusion, it follows that ∃H′ ∈ Zn×nq such that Pra∼Znq
[
h(a) = H′a

]
≥ (1−O(nq2ε))/q.

Although this appears to give us a high test acceptance and low agreement linearity test, a

closer analysis of the hypothesis of our theorem yields that if we again average, ∃(α1, α2) ∈

Z2
q such that our hypothesis becomes:

Pra1,a2∼Znq
[
h(α1a1 + α2a2) = α1h(a1) + α2h(a2)

]
≥ (1− ε)/q2,

which resembles more traditional linearity tests. Note in this case we obtain a low test

acceptance. Even though this low test acceptance condition is not sufficient for our theorem,

it provides an interesting data point to support our belief that our linearity test can be

thought of as a “hybrid” between the high and low test acceptance regimes. With this in

mind, we now prove Theorem 7.
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Proof of Theorem 7. We prove the theorem through a sequence of claims.

Claim 3 It holds with probability 1 − 4nqε over a1, . . . ,an ∼ Znq that ∃{a′1, . . . ,a′n} ⊂ Znq

such that:

1. h(αai) ∈ Span(αa′i),∀α ∈ Z∗q.

2. h(a1 + ai) ∈ Span(a′1 + a′i),∀i ≥ 2.

Proof. Let a′1 = h(a1) ∈ Znq , and fix i ∈ {2, . . . , n}. By hypothesis, except with probability

ε, yi := h(a1 + ai) ∈ Span(a′1, h(ai)), and so ∃(β1, β2) ∈ Z2
q such that yi = β1a

′
1 + β2h(ai).

Since h is non-degenerate, β1 6= 0 except with negligible probability. So, yi = β1(a′1 +

β−1
1 β2h(ai)). Let λi := β−1

1 β2 ∈ Zq, and note that λi must be unique, except with negligible

probability, since h is non-degenerate. Let a′i := λih(ai) ∈ Znq , and note that yi ∈ Span(a′1+

a′i) with probability 1− (ε+ negl(n)) ≥ 1− 2ε. By the union bound, the second point holds

with probability 1− 2nε.

To prove the first point, let i, j ∈ [n] be distinct, and α ∈ Z∗q . We have z :=

h(αai) = h(αai + 0aj) ∈ Span(a′i,a
′
j), except with probability ε. So, ∃(γ1, γ2) ∈ Z2

q such

that z = γ1a
′
i + γ2a

′
j . Since h is non-degenerate, then γ2 = 0, except with negligible

probability. Hence z ∈ Span(a′i) = Span(αa′i), except with probability ε+ negl(n) = 2ε. By

the union bound, the first point holds with probability 1− 2nqε.

In total, we’ve shown that with probability 1−4nqε, ∃{a′1, . . . ,a′n} ⊂ Znq such that

conditions (1) and (2) in the statement of the claim hold.

If a1, . . . ,an ∼ Znq , then Claim 3 guarantees with high probability the existence

of a set {a′1, . . . ,a′n} ⊂ Znq such that conditions (1) and (2) of the claim hold; we say
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such a set {a′1, . . . ,a′n} which satisfies conditions (1) and (2) is good for {a1, . . . ,an}. If

a1, . . . ,an ∼ Znq , then let D({ai}i) denote the distribution which computes a good subset

{a′1, . . . ,a′n} with probability 1 − 4nqε. Throughout the remainder of this proof, unless

otherwise stated, all probabilities are over a1, . . . ,an ∼ Znq , {a′1, . . . ,a′n} ∼ D({ai}ni=1).

Claim 4 It holds with probability 1− 6n2q2ε that ∀i ∈ {2, . . . , n}, there exists a map

πi : Zq → Zq defined by πi(α) = β such that h(a1 + αai) ∈ Span(a′1 + βa′i).

Proof. Let i ∈ {2, . . . , n} and α ∈ Zq. Except with probability 4nqε + ε ≤ 5nqε, we

have y := h(a1 + αai) ∈ Span(a′1,a
′
i), and so ∃(β1, β2) ∈ Z2

q such that y = β1a
′
1 + β2a

′
2 =

β1(a′1 +β−1
1 β2a

′
2) (β1 6= 0 except with negligible probability since h is non-degenerate). We

define πi(α) = β−1
1 β2 ∈ Zq such that y ∈ Span(a′1 +πi(α)a′i) (note that πi(α) is indeed well

defined, except with negligible probability, since h is non-degenerate). Our total probability

loss is 5nqε + negl(n) ≤ 6nqε, and so the conclusion follows by the union bound over all

α ∈ Zq and i ∈ {2, . . . , n}.

Claim 5 For all distinct i, j ∈ {2, . . . , n} and for all (α1, αi, αj) ∈ {0, 1} × Zq × Zq such

that (αi, αj) 6= (0, 0), it holds with probability 1 − 30n2q2ε that h(α1a1 + α2a2 + α3a3) ∈

Span(α1a
′
1 + πi(αi)a

′
i + πi(αj)a

′
j).

Proof. Fix distinct i, j ∈ {2, . . . , n}, and (αi, αj) ∈ Zq × Zq. First, let α1 = 1. Let

y = h(a1 + αiai + αjaj). If either αi = 0 or αj = 0, then WLOG write y = h(a1 +

αiai) ∈ Span(a′1 +πi(ai)a
′
i) = Span(a′1 +πi(ai)a

′
i+πj(0)a′j), except with probability 6n2q2ε

by Claim 4. So, assume αi 6= 0 and αj 6= 0. We have y = h((a1 + αiai) + αjaj) ∈

Span(h(a1 +αiai), h(αjaj)), except with probability ε, by hypothesis. We have that h(a1 +
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αiai) ∈ Span(a′1 + πi(αi)a
′
i), except with probability 6n2q2ε by Claim 4. Also, h(αjaj) ∈

Span(αjh(aj)) = Span(a′j), except with probability 4nqε by Claim 3. Thus y ∈ Span(a′1 +

πi(αi)a
′
i,a
′
j), except with probability ε+ 6n2q2ε+ 4nqε ≤ 11n2q2ε. Similarly, we also have

that y ∈ Span(a′1 + πj(αj)a
′
j ,a
′
i), except with probability 11n2q2ε. So, ∃(β1, β2), (γ1, γ2) ∈

Z2
q such that

β1(a′1 + πi(αi)a
′
i) + β2a

′
j = y = γ1(a′1 + πj(αj)a

′
j) + γ2a

′
i,

and we must have β1 = γ1, β2 = γ1πj(αj) = β1πj(αj), except with negligible probability,

since h is non-degenerate. It thus follows that y = β1(a′1 +πi(αi)a
′
i+πj(αj)a

′
j) ∈ Span(a′1 +

πi(αi)a
′
i + πj(αj)a

′
j), except with probability 22n2q2ε+ negl(n) ≤ 23n2q2ε.

Now, let α1 = 0. If either αi = 0 or αj = 0 then WLOG write y = h(αiai) ∈

Span(a′i), except with probability 4nqε by Claim 3. Also, y = h(αiai) = h((a1+αiai)−a1) ∈

Span(a′1 + πi(αi)a
′
i,a
′
1), except with probability ε + 6n2q2ε ≤ 7n2q2ε by the hypothesis of

the theorem and Claim 4. Hence y ∈ Span(a′1 + πi(αi)a
′
i,a
′
1)
⋂

Span(a′i) ⊂ Span(πi(αi)a
′
i),

except with negligible probability, since h is non-degenerate. In total, y ∈ Span(πi(αi)a
′
i),

except with probability 4nqε+ 7n2q2ε+ negl(n) ≤ 12n2q2ε.

We may now assume that αi 6= 0 and αj 6= 0. We have y = h(αiai + αjaj) =

h((a1 +αiai +αjaj)−a1) ∈ Span(h(a1 +αiai +αjaj),a
′
1), except with probability ε. Also,

by the above argument, h(a1 + αiai + αjaj) ∈ Span(a′1 + πi(αi)a
′
i + πj(αj)a

′
j), except with

probability 23n2q2ε. So, y ∈ Span(a′1 + πi(αi)a
′
i + πj(αj)a

′
j ,a
′
1), except with probabil-

ity 23n2q2ε + ε ≤ 24n2q2ε. We also have that y ∈ Span(a′i,a
′
j), except with probability

ε+ 4nqε ≤ 5nqε by the hypothesis of the theorem and Claim 3. Hence, except with prob-

ability 24n2q2ε+ 5nqε ≤ 29n2q2ε, y ∈ Span(a′1 + πi(αi)a
′
i + πj(αj)a

′
j ,a
′
1)
⋂

Span(a′i,a
′
j) ⊂
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Span(πi(αi)a
′
i + πj(αj)a

′
j), except with negligible probability since h is non-degenerate.

In total, we have that y ∈ Span(πi(αi)a
′
i + πj(αj)a

′
j), except with probability 29n2q2ε +

negl(n) ≤ 30n2q2ε.

Claim 6 It holds with probability 1− 48n3q3ε that ∀i ∈ {2, . . . , n}, πi(α) = α,∀α ∈ Zq.

Proof. Let i ∈ {2, . . . , n}. If α = 0 then h(a1 +αai) = h(a1) ∈ Span(a′1) = Span(a′1 +αa′i),

except with probability 4nqε ≤ 48n2q2ε by Claim 3. We now proceed by induction to

show that πi(α) = α with probability at least 1 − α(48n2q2ε),∀α ∈ Z∗q . If α1 = 1, then

h(a1 + αai) ∈ Span(a′1 + πi(α)a′i), except with probability 6n2q2ε ≤ 48n2q2ε by Claim 4.

For the induction step, assume that πi(α− 1) = α− 1 with probability

1−(α−1)(48n2q2ε). Let y := h(a1+αai+aj) = h((a1+(α−1)ai)+(ai+aj)) ∈ Span(a′1+(α−

1)a′i,a
′
i + a′j). Here we have used the hypothesis of the theorem, the induction hypothesis,

and Claim 5, which incurs an additional probability loss of ε+(α−1)(48n2q2ε)+30n2q2ε ≤

(α − 1)(48n2q2ε) + 31n2q2ε. Also, we can write y = h((a1 + αai) + aj) ∈ Span(a′1 +

πi(α)a′i,a
′
j), except with probability ε+ 6n2q2ε+ 4nqε ≤ 11n2q2ε by the hypothesis of the

theorem, Claim 4, and Claim 3. Finally, we have y = h((a1 +aj)+αai) ∈ Span(a′1 +a′j ,a
′
i),

except with probability ε+ 4nqε ≤ 5nqε by hypothesis and Claim 3. In total, except with

probability (α− 1)(48n2q2ε) + 31n2q2ε+ 11n2q2ε+ 5nqε ≤ (α− 1)(48n2q2ε) + 47n2q2ε, we

can express y as:

1. y = β1(a′1 + (α− 1)a′i) + β2(a′i + a′j) (β1, β2 ∈ Zq).

2. y = γ1(a′1 + πi(α)a′i) + γ2(a′j) (γ1, γ2 ∈ Zq).

3. y = δ1(a′1 + a′j) + δ2a
′
i (δ1, δ2 ∈ Zq).
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By rearranging, and since h is non-degenerate, it holds with overwhelming probability that

β1 = γ1, γ1(α−1)+γ2 = β1πi(α), and γ2 = δ1 = β1. Hence β1πi(α) = β1(α−1)+β1 = β1α.

Since h is non-degenerate, then β1 6= 0 except with negligible probability, hence πi(α) = α.

Our total probability loss is (α − 1)(48n2q2ε) + 47n2q2ε + negl(n) ≤ (α − 1)(48n2q2ε) +

48n2q2ε = α(48n2q2ε), which completes the induction step. The conclusion follows by

induction and by the union bound.

Claim 7 For all distinct i, j ∈ {2, . . . , n} and (α1, αi, αj) ∈ Z3
q such that (αi, αj) 6= (0, 0),

it holds with probability 1−82n3q3ε that h(α1a1 +αiai+αjaj) ∈ Span(α1a
′
1 +αia

′
i+αja

′
j).

Proof. Fix distinct i, j ∈ {2, . . . , n} and (α1, αi, αj) ∈ Z3
q such that (αi, αj) 6= (0, 0). If α1 =

0, then the conclusion follows by Claims 5 and 6 with probability 1− (30n2q2ε+48n3q3ε) ≥

1− 78n3q3ε. So, assume α1 6= 0. Then, y := h(α1a1 + αiai + αjaj) = h(α1(a1 + α−1
1 αiai +

α−1
1 αjaj)) ∈ Span(α1h(a1 +α−1

1 αiai+α−1
1 αjaj)), except with probability 4nqε by Claim 3.

Also, h(a1 +α−1
1 αiai +α−1

1 αjaj) ∈ Span(a′1 +α−1
1 αia

′
i +α−1

1 αja
′
j), except with probability

30n2q2ε + 48n3q3ε ≤ 78n3q3ε by Claims 5 and 6. Thus y = Span(α1(a′1 + α−1
1 αia

′
i +

α−1
1 αja

′
j) = Span(α1a

′
1 + αia

′
i + αja

′
j), except with probability 4nqε+ 78n3q3ε ≤ 82n3q3ε.

Claim 8

Pra1,...,an∼Znq
{a′1,...,a′n}∼D({ai}ni=1)
(α1,...,αn)∼Znq \{0}

[
h
( n∑
i=1

αiai

)
∈ Span

( n∑
i=1

αia
′
i

)]
≥ 1− 89n4q3ε.

Proof. We proceed by induction on r ∈ {3, . . . , n}. Assume all probabilities are over

randomness in the hypothesis of the claim. Since (α1, . . . , αr) 6= 0 then assume WLOG

that α1 6= 0.
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The base case in which r = 3 follows from Claim 7. For the induction step,

assume that h
( r−1∑
i=1

αiai

)
∈ Span

( r−1∑
i=1

αia
′
i

)
with probability 1− (r− 1)(89n3q3ε). Let y =

h(
r∑
i=1

αiai). Then, y = h((α1a1 + . . . , αr−1ar−1) +αrar) ∈ Span(α1a
′
1 + · · ·+αr−1a

′
r−1,a

′
r),

except with probability (r − 1)(89n3q3ε) + ε + 4nqε ≤ (r − 1)(89n3q3ε) + 5nqε. Here we

have used the hypothesis of the theorem, the induction hypothesis, and Claim 3. Also,

we have y = h((α1a1 + αrar) + (α2a2 + · · · + αr−1ar−1)) ∈ Span(α1a
′
1 + αra

′
r, z)

(
z =

h(α2a2 + · · · + αr−1ar−1)
)
, except with probability ε + 82n3q3ε. Here we have used the

hypothesis of the theorem and Claim 7. In total, except with probability (r−1)(89n3q3ε)+

5nqε+ ε+ 82n3q3ε ≤ (r − 1)(89n3q3ε) + 88n3q3ε, we can write

β1(α1a
′
1 + · · ·+ αr−1a

′
r−1) + β2a

′
r = y = γ1(α1a

′
1 + αra

′
r) + γ2z,

for β1, β2, γ1, γ2 ∈ Zq. Note that the randomness of z is independent of a1 and ar. Then,

since h is non-degenerate, except with negligible probability we must have β1α1 = γ1α1

and β2 = γ1αr. Since α1 6= 0 then β1 = γ1 and β2 = β1αr. Hence y = β1(α1a
′
1 + · · · +

αr−1a
′
r−1 + αra

′
r) ∈ Span(α1a

′
1 + · · · + αr−1a

′
r−1 + αra

′
r). Our total probability loss is

(r− 1)(89n3q3ε) + 88n3q3ε+ negl(n) ≤ (r− 1)(89n3q3ε) + 89n3q3ε = r(89n3q3ε). The claim

follows by induction.

Now, by averaging Claim 8, we have that with probability 1 −
√

89n4q3ε over

a1, . . . ,an ∼ Znq , {a′1, . . . ,a′n} ∼ D({ai}i), it holds that

P({ai}i, {a′i}i) := Pr(α1,...,αn)∼Znq

[
h
( n∑
i=1

αiai

)
∈ Span

( n∑
i=1

αia
′
i

)]
≥ 1−

√
89n4q3ε− q−n.

Hence Pra1,...,an∼Znq

[
{ai}i L.I. & ∃{a′i}i s.t. P({ai}i, {a′i}i) ≥ 1− (

√
89n4q3ε+ q−n)

]
≥ 1−

(n/q +
√

89n4q3ε). So, if {a1, . . . ,an} ⊂ Znq is a basis for Znq , {a′1, . . . ,a′n} is good, and
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P({ai}i, {a′i}i) ≥ 1−(
√

89n4q3ε+q−n), then letting (A,A′) ∈ Zn×nq ×Zn×nq be the matrices

whose ith rows are ai,a
′
i, respectively, and H = A′A−1 ∈ Zn×nq , it follows that

Pra∼Znq
[
h(a) ∈ Span(Ha)

]
= Prα∼Span(a1,...,an)

[
h
( n∑
i=1

αiai

)
∈ Span

(
H
( n∑
i=1

αiai

))]

= Prα∼Span(a1,...,an)

[
h
( n∑
i=1

αiai

)
∈ Span

(
HAα

)]

= Prα∼Span(a1,...,an)

[
h
( n∑
i=1

αiai

)
∈ Span

(
A′α

)]

= Prα∼Span(a1,...,an)

[
h
( n∑
i=1

αiai

)
∈ Span

( n∑
i=1

αia
′
i

)]

≥ 1− (
√

89n4q3ε+ q−n) ≥ 1−O(n2q
√
qε).

Hence Pra1,...,an∼Znq

[
∃H s.t. Pra∼Znq

[
h(a) ∈ Span(Ha)

]
≥ 1 − O(n2q

√
qε)
]
≥ 1 − (n/q +

O(n2q
√
qε)).

2.3 A High Dimensional Conditional Affine Linearity Test

In this section, we prove the following theorem.

Theorem 8 Let m, d, q ∈ N such that q is prime. Let T ⊂ Zmq be a subset of density

λ := |T |q−m ≤ 1/
√

2 such that for every subset T ′ ⊂ T such that |T ′|/|T | ≥ q−i (i ∈

{0, 1, . . . , d − 1}), Prx,y∼Zmq
[
x,y,x + y ∈ T ′

]
≥ λ3q−3i/4. If there exists a function f :

Zmq → Zdq such that

Prx,y∼Zmq
[
f(x + y) = f(x) + f(y)

∣∣ x,y,x + y ∈ T
]
≥ 1− (q − 1)λ3

8q3d−2
,
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then there exists an affine map (A,b) ∈ Zd×mq × Zdq such that

Prx∼Zmq
[
f(x) = Ax + b

∣∣ x ∈ T
]
≥
(

1

q
+

(
1

q3
+

λ

8qd+1

))d
.

Before proving Theorem 8, we prove the following lemma.

Lemma 9 Let m, q ∈ N such that q is prime, and T ⊂ Zmq be a subset of density λ :=

|T |q−m ≤ 1/
√

2 such that Prx,y∼Zmq
[
x,y,x + y ∈ T

]
≥ λ3/4. If φ : Zmq → Zq is a function

such that

Prx,y∼Zmq
[
φ(x + y) = φ(x) + φ(y)

∣∣ x,y,x + y ∈ T
]
≥ 1− γ,

for some γ > 0, then ∃(a, b) ∈ Zmq × Zq such that

Prx∼Zmq
[
φ(x) = 〈a,x〉+ b

∣∣ x ∈ T
]
≥ 1

q
+

(
1

q3
+

λ

4q2

(
1− qγ

q − 1

))
.

Proof. Define ψ : Zmq → Zq by ψ(x) = φ(x), if x ∈ T , and α ∼ Zq otherwise. Let

P := Prx,y∼Zmq
[
x,y,x + y ∈ T

]
. Then, we have

Prx,y∼Zmq
[
ψ(x + y) = ψ(x) + ψ(y)

]
= P(1− ν) + (1− P) · 1

q
=

1

q
+ P

(
1−

(
γ +

1

q

))
.

Now, for all α ∈ Zq, define τα : Zmq → C by τα(x) = ωα·ψ(x), where ω ∈ C is a primitive qth

root of unity in C. We have

1

q
+ P

(
1−

(
γ +

1

q

))
= Prx,y∼Zmq

[
ψ(x + y) = ψ(x) + ψ(y)

]
= Eα∼Zq ,x,y∼Zmq

[
τα(x + y)τ̄α(x)τ̄α(y)

]
= Eα∼Zq ,x,y∼Zmq

[ ∑
u,v1,v2∈Zmq

τ̂α(u) · ¯̂τα(v1) · ¯̂τα(v2) · ω〈x,u−v1〉 · ω〈x,u−v2〉
]

=
1

q

∑
α∈Zq

∑
u∈Zmq

τ̂α(u) · ¯̂τα(u)2.
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We prove Claim 9 below, from which the lemma follows. To see this, observe that

we have

1

q
+ P

(
1−

(
γ +

1

q

))
=

1

q

∣∣∣∣ ∑
α∈Zq

∑
u∈Zmq

τ̂α(u)¯̂τα(u)2

∣∣∣∣ ≤ λ3

q

∑
α∈Zq

∣∣∣τ̂α|T (uα)
∣∣∣ ∑
u∈Zmq

∣∣∣τ̂α|T (u)
∣∣∣2

=
λ2

q

∑
α∈Zq

∣∣∣τ̂α|T (uα)
∣∣∣ ≤ λ2

q
·
(

1 + (q − 1)
∣∣∣τ̂α∗ |T (uα∗)

∣∣∣),
where the first inequality follows from the first point of Claim 9 and the triangle inequality(
∀α ∈ Zq,uα := arg maxu∈Zmq

{∣∣∣τ̂α|T (uα)
∣∣∣}), the second equality follows from the second

point of Claim 9, and the last inequality follows from
∣∣∣τ̂0|T (u0)

∣∣∣ = 1. Here we have defined

α∗ := arg maxα∈Z∗q

{∣∣∣τ̂α|T (uα)
∣∣∣}. It thus follows that

∣∣∣τ̂α∗ |T (uα∗)
∣∣∣ ≥ 1− λ2

λ2
· 1

q − 1
+

q

q − 1
· P

λ2
·
(

1−
(
γ +

1

q

))
≥ 1

q
+ η,

for η = λ
4

(
1− qγ

q−1

)
. Then,

1

q
+ η ≤

∣∣∣Ex∼T
[
ωα
∗φ(x)−〈uα∗ ,x〉

]∣∣∣ =

∣∣∣∣ ∑
b∈Zq

ωb · Prx∼Zmq
[
α∗φ(x) = 〈uα∗ ,x〉+ b

∣∣ x ∈ T
]∣∣∣∣,

and so by Claim 2, ∃b ∈ Zq such that

Prx∼Zmq
[
φ(x) = 〈(α∗)−1uα∗ ,x〉+ (α∗)−1b

]
≥ 1

q
+

(
1

q3
+
η

q2

)
,

which completes the proof.

Claim 9 For all α ∈ Zq:

1. For all u ∈ Zmq , let τ̂α|T (u) := Ex∼Zmq
[
τα(x)ω−〈u,x〉

∣∣ x ∈ T ]. Then, each τ̂α(u) =

λ · τ̂α|T (u).

2.
∑

u∈Zmq

∣∣τ̂α|T (u)
∣∣2 = λ−1.
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Proof. Let α ∈ Zq. We begin by proving the first point. We have

τ̂α(u) = Ex∼Zmq
[
ωα·ψ(x)−〈u,x〉] = q−m ·

∑
(β,x)∈Zq×Zmq s.t.

α·ψ(x)−〈u,x〉=β

ωβ

=
∑
β∈Zq

ωβ · Prx∼Zmq
[
α · ψ(x)− 〈u,x〉 = β

]
=
∑
β∈Zq

ωβ
(
λ · Prx∼Zmq

[
α · φ(x)− 〈u,x〉 = β

∣∣ x ∈ T
]

+ (1− λ)q−1
)

= λ
∑
β∈Zq

ωβ · Prx∼Zmq
[
α · φ(x)− 〈u,x〉 = b

∣∣ x ∈ T
]

= (λ/|T |)
∑

(x,β)∈T×Zq

11α·φ(x)−〈u,x〉=β · ωβ = (λ/|T |)
∑
x∈T

ωα·φ(x)−〈u,x〉 = λ · τ̂α|T (u).

where the third line follows from the definition of ψ and the fourth line follows from Claim

1.

Now, we prove the second point. We have

∑
u∈Zmq

∣∣τ̂α|T (u)
∣∣2 =

∑
u∈Zmq

τ̂α|T (u) · ¯̂τα|T (u) = |T |−2
∑
u∈Zmq

∑
x,x′∈T

τ̂α(x) · ¯̂τα(x′) · ω〈u,x′−x〉

= |T |−2
∑
x∈T

∣∣τ̂α(x)
∣∣2 · qm = qm/|T | = λ−1,

where the third equality follows from Claim 1.

Now, we can prove Theorem 8.

Proof of Theorem 8. For each i ∈ [d], we’ll denote the ith projection of f by fi : Zmq →

Zq. We use induction to show that for each i ∈ [d], ∃((aj , bj))ij=1 ∈ (Zmq × Zq)i such that

Prx∼Zmq
[
fj(x) = 〈aj ,x〉+ bj , ∀j ∈ [i]

∣∣ x ∈ T
]

≥
i∏

j=1

(
1

q
+

1

q3
+

λ

4qi+1

(
1− q

q − 1
· 4q3(i−1)γ

λ3

))
,
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for γ = (q−1)λ3

8q3d−2 . Thus

Prx∼Zmq
[
fi(x) = 〈ai,x〉+ bi,∀i ∈ [d]

∣∣ x ∈ T
]

≥
(

1

q
+

1

q3
+

λ

4qd+1

(
1− q

q − 1
· 4q3(d−1)γ

λ3

))d
≥
(

1

q
+

1

q3
+

λ

8qd+1

)d
,

as desired.

For the base case in which i = 1, observe that

Prx,y∼Zmq
[
f1(x + y) = f1(x) + f1(y)

∣∣ x ∈ T
]
≥ Prx,y∼Zmq

[
f(x + y) = f(x) + f(y)

∣∣ x ∈ T
]

≥ 1− γ.

So, by Lemma 9, ∃(a1, b1) ∈ Zmq × Zq such that

Prx∼Zmq
[
f1(x) = 〈a1,x〉+ b1

]
≥ 1

q
+

1

q3
+

λ

4q2

(
1− qγ

(q − 1)λ3

)
.

Now, for the induction step, assume ∃((aj , bj))i−1
j=1 ∈ (Zmq × Zq)i−1 such that

Prx∼Zmq
[
fj(x) = 〈aj ,x〉+ bj , ∀j ∈ [i− 1]

∣∣ x ∈ T
]

≥
i−1∏
j=1

(
1

q
+

1

q3
+

λ

4qj+1

(
1− q

q − 1
· 4q3(j−1)γ

λ3

))
.

Let Ti = {x ∈ T : fj(x) = 〈aj ,x〉+ bj ,∀j ∈ [i−1]}, and note that λi := |Ti|q−m ≥ λq−(i−1).

Also, we have

Prx,y∼Zmq
[
fi(x + y) = fi(x) + fi(y)

∣∣ x ∈ Ti
]

≥ Prx,y∼Zmq
[
f(x + y) = f(x) + f(y)

∣∣ x ∈ Ti
]

=
Prx,y∼Zmq

[
f(x + y) = f(x) + f(y) and x ∈ Ti

∣∣ x ∈ T
]

Prx,y∼Zmq
[
x ∈ Ti

∣∣ x ∈ T
]

≥
Prx,y∼Zmq

[
x ∈ Ti

∣∣ x ∈ T
]
− γ

Prx,y∼Zmq
[
x ∈ Ti

∣∣ x ∈ T
] ≥ 1− 4γ

λ3
i

= 1− 4q3(i−1)γ

λ3
.
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Thus by Lemma 9, ∃(ai, bi) ∈ Zmq × Zq such that

Prx∼Zmq
[
fi(x) = 〈ai,x〉+ bi

∣∣ x ∈ Ti
]
≥ 1

q
+

1

q3
+

λ

4qi+1

(
1− q

q − 1
· 4q3(i−1)γ

λ3

)
,

and so Prx∼Zmq
[
fj(x) = 〈aj ,x〉+ bj , ∀j ∈ [i]

∣∣ x ∈ T
]

is at least

i∏
j=1

(
1

q
+

1

q3
+

λ

4qj+1

(
1− q

q − 1
· 4q3(j−1)γ

λ3

))
,

which completes the induction step.
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Chapter 3

A Lower Bound for

Proving Hardness of

Learning with Rounding with

Polynomial Modulus

Regev’s Learning with Errors (LWE) problem (STOC 2005) is a fundamental hard-

ness assumption for modern cryptography. The Learning with Rounding (LWR) Problem

was put forth by Banarjee, Peikert and Rosen (Eurocrypt’12) as an alternative to LWE, for

use in cryptographic situations which require determinism. The only method we currently

have for proving hardness of LWR is the so-called “rounding reduction” which is a specific

reduction from an analogous LWE problem. This reduction works whenever the LWE error

is small relative to the noise introduced by rounding, but it fails otherwise. For this reason,
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all prior work on establishing hardness of LWR forces the LWE error to be small, either

by setting other parameters extremely large (which hurts performance), or by limiting the

number of LWR samples seen by the adversary (which rules out certain applications). Hard-

ness of LWR is poorly understood when the LWE modulus (q) is polynomial and when the

number of LWE samples (m) seen by the adversary is an unbounded polynomial. This range

of parameters is the most relevant for practical implementations, so the lack of a hardness

proof in this situation is not ideal.

In this work, we identify an obstacle for proving the hardness of LWR via a reduc-

tion from LWE in the above parameter regime. Specifically, we show that any “point-wise”

reduction from LWE to LWR can be used to directly break the corresponding LWE problem.

A reduction is “point-wise” if it maps LWE samples to LWR samples one at a time. Our

argument goes roughly as follows: first we show that any point-wise reduction from LWE to

LWR must have good agreement with some affine map; then we use a Goldreich-Levin-type

theorem to extract the LWE secret given oracle access to a point-wise reduction with good

affine agreement. Both components may be of independent interest.

3.1 Introduction

Regev’s learning with errors (LWE) problem [Reg05] is fundamental for modern

cryptography due to its versitility and strong security guarantees. LWE asks an algorithm

to solve a random noisy linear system of equations mod q: given integers n, q,m, an “error”

distribution χ on Zq and a uniform s ∼ Znq , recover s given samples

{
(ai, bi = 〈ai, s〉+ ei)

}
⊂
(
Znq × Zq

)m
, (3.1)
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where the ai are drawn uniformly from Znq and the ei are drawn according to χ. It is

known that when q is sufficiently large compared to n, there are error distributions which

make solving LWE efficiently given any number of samples as hard as solving computa-

tional problems on lattices in the worst case [Reg05, Pei09, BLP+13]; such problems are

conjectured to be hard even for quantum computers. In addition to the strong hardness

guarantees, LWE has proven to be extremely useful for cryptography. Since its introduction

15 years ago an immense research effort has established LWE-based constructions for most

known cryptographic primitives (e.g., [GPV08, ACPS09, BGV11, CHKP12, MP12, BNS13,

GSW13, GVW15, GKW18, PS19] and many, many more).

The randomness inherent to the LWE problem (i.e., the randomness used to draw

the ei ∼ χ) precludes constructing certain cryptographic primitives which require deter-

minism, such as PRFs. Banarjee, Peikert and Rosen [BPR12] introduced the learning with

rounding (LWR) problem in order to overcome this obstacle. LWR asks an algorithm to

solve a random linear system with “deterministic noise”: given n, p, q,m with p < q and a

uniform s ∼ Znq , recover s from

{
(ai, bi = b〈ai, s〉ep)

}
⊂
(
Znq × Zp

)m
, (3.2)

where each ai ∼ Znq and where b·ep : Zq → Zp is the function which, given x ∈ Zq, outputs

the nearest integer to px/q. Since its introduction, LWR has been used in numerous works to

give cryptographic constructions where determinism is mandatory (e.g., [BPR12, BLL+15,

BV15], and more).

Hardness of LWR is established via the following reduction from LWE: given an

LWE sample (a, b) ∈ Znq × Zq, round the second value and output (a, bbep) ∈ Znq × Zp.
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In [BPR12], it is shown that this reduction is valid whenever q/p = nω(1) (n the security

parameter), and so establishes hardness of LWR for this parameter regime. In practice

we would like to be able to use small q as this lends itself better to efficient implemen-

tations. So establishing hardness for LWR in the “polynomial modulus” setting, where

q = poly(n), was an important open problem left by [BPR12]. This direction was pursued

in the follow-up works [AKPW13, BGM+16, AA16] where it is shown that if the number

of LWR samples given to the solver (i.e., m) is bounded, then the correctness proof of

the above reduction goes through and one can establish hardness of LWR with polynomial

modulus in the “bounded sample” setting. This is good enough for some cryptographic

applications [AKPW13], but not for all, e.g., PRFs.

The problem with the above reduction when q/p is small is that the error in the

LWE sample might cause the rounding function to make a mistake. The reason for this is

that the “threshold points” of the rounding function1 b·ep : Zq → Zp have density p/q in Zq,

and so when q/p� m, some of the ai’s chosen will be such that their secret inner product

〈ai, s〉 is close to a threshold point. Whenever this occurs, the reduction will make an error

if 〈ai, s〉 + ei is on the opposite side of the threshold from 〈ai, s〉. Prior work handles this

issue by forcing q/p to be large relative to m (either by setting q/p to be superpolynomial,

or by bounding m).

Getting a version of the above reduction to yield a hardness proof for LWR in

the case when m is large compared to q/p is challenging because it requires dealing with

situations where the LWE error creates a rounding problem. By definition, a reduction

1By threshold points we mean the half integer multiples of q/p where the rounding function switches
from rounding to adjacent values in Zp.
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from LWE to LWR is an oracle algorithm which solves LWE when instantiated with access

to any LWR solver, including the pathological LWR solver who aborts whenever it sees

a rounding error. Specifically, suppose S is an algorithm which takes m LWR samples{
(ai, b

′
i)
}
⊂ Zq × Zp, (somehow) recovers the hidden secret s, then scans the m samples to

make sure that b′i =
⌊
〈ai, s〉

⌉
p

for all i, aborting if it finds an error, outputting s otherwise.

It is clear that S will solve LWR when it is given true LWR samples, however in order for

the reduction to make use of S’s solving power to solve LWE, it must produce m LWR

samples without making an error. This is the core challenge in proving hardness of LWR

with polynomial modulus and unbounded samples.

3.1.1 Our Contribution

In this work we convert the above difficulty into a lower bound for proving hardness

of LWR with polynomial modulus and an unbounded number of samples via reductions from

LWE. Our barrier applies to any “pointwise” reduction from LWE to LWR, i.e., any function

f : Znq × Zq → Znq × Zp. This includes and broadly extends the reduction (a, b) 7→ (a, bbep)

mentioned above. The starting observation for our work is that any pointwise reduction f

which works in this parameter regime must implicitly be able to handle the “problematic”

LWE pairs which are close to a rounding threshold. What we prove is essentially that f ’s

understanding of how to handle these threshold samples can be extracted in the form of

knowledge about the LWE secret. Our main theorem is the following.
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Theorem 1 (Informal) Let n, q, p ∈ N be integers such that q = poly(n) is prime and

such that q2/3+c < p < q for a small constant c > 0. Let χ be an error distribution on Zq.

Suppose an efficient function f : Znq ×Zq → Znq ×Zp is a pointwise reduction from LWEn,q,χ

to LWRn,q,p. Then f can be used to design an efficient algorithm which solves LWEn,q,χ.

The Hypotheses of our Theorem. We view the requirements that q be prime and

especially that q2/3+c < p as shortcomings of our work, and we believe it should be possible

to improve our result to remove these extra hypotheses. Our proof requires q to be prime

so that linear algebra works on the set Znq . The lower bound on p comes from one place in

the proof where we use two LWE samples (a0, b0), (a1, b1) ∈ Znq ×Zq to generate three LWR

samples:

(a′0, b
′
0) = f(a0, b0); (a′1, b

′
1) = f(a1, b1); (a′2, b

′
2) = f(a0 + a1, b0 + b1) ∈ Znq × Zp,

and we require essentially that the three output values b′0, b
′
1, b
′
2 ∈ Zp contain more infor-

mation than the input values b0, b1 ∈ Zq. We suspect that a different proof technique could

be used to improve the lower bound required of p or remove it altogether. We note however

that our result does not require the amount of LWR “noise” (i.e., q/p) to be small relative

to the amount of LWE noise. In particular, our theorem applies in situations where q/p is

much larger than the standard deviation of the discrete Gaussian used for the LWE noise.

Our Reduction Model. A natural question is whether our theorem holds for relaxations

of our reduction model. For example, does our theorem hold for pointwise reductions

between problems with different dimensions and moduli (i.e., reductions from LWEn,q,χ to

LWRn′,q′,p′)? Moreover, we might hope that our main result would hold even for pointwise
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reductions which are allowed to abort on some inputs. We actually consider such reductions

and note that part of the proof of our main theorem goes through even when the pointwise

reduction is allowed to abort. However, we were only able to prove some of the steps for

non-aborting pointwise reductions so our main theorem inherits this restriction. We believe

that it should be possible to prove our main theoem even for pointwise reductions which

are allowed to abort.

In a similar vein, our notion of pointwise reductions does not allow the reduction

to use two or more LWE samples to produce an LWR sample. One might hope that a

similar theorem to ours would hold for any “k−to−one” function f :
(
Znq ×Zq

)k → Znq ×Zp

as long as k is small enough to ensure that s has sufficient entropy given k LWE samples.

If k is large enough so that k LWE samples determine s information theoretically, then

one could imagine a function f which takes k LWE samples and (somehow) recovers s and

outputs a single LWR sample with secret s. While it feels like such a function is breaking

LWE, it would be hard to prove a theorem like the above since it seems that in order to

extract any knowledge about the LWE secret, one would have to solve LWR.

Interpreting our Result. Our main theorem identifies a barrier to proving the hardness

of LWR in certain practical parameter regimes via reductions from LWE. This explains, to

some extent, why this problem has remained open for so long. Our result does not suggest

that LWR is easy. Rather, it speaks to the fact that the current techniques we have available

for deriving hardness from worst-case lattice problems are inherently probabilistic. Our

work indicates that a reduction from a hard lattice problem to LWR with these parameter

settings would be extremely interesting as it would likely contain significant new ideas.
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3.2 Preliminaries

Throughout this work, the integer n will denote the security parameter. If m ∈ N,

then we denote by [m] the set {1, . . . ,m}. We use boldface lower case for vectors, and

boldface capitals for matrices (e.g., v or M). Given a distribution χ on a set X, we write

x ∼ χ to indicate that x ∈ X is drawn according to χ; we write x ∼ X as shorthand for

x ∼ Unif(X), the uniform distribution on X.

3.2.1 Learning with Errors/Rounding

Definition 1 (The LWE/LWR Distributions) Let n, q ∈ N be positive integers, let s ∈

Znq , let χ be a distribution on Zq, and let X ( Zq be a proper subset.

• The LWE Distribution: The learning with errors distribution LWEn,q,s,χ works as

follows:

− draw a ∼ Znq , e ∼ χ, set b = 〈a, s〉+ e and output (a, b) ∈ Znq × Zq.

• The LWR Distribution: The learning with rounding distribution LWRn,q,s,X is:

− draw a ∼ Znq , set b = argminx∈X
{
|〈a, s〉 − x|

}
(breaking ties arbitrarily) and

output (a, b) ∈ Znq ×X.2

Given m ∈ N, the distributions distributions LWEn,q,m,χ (resp. LWRn,q,m,X) work by drawing

s ∼ Znq once and for all and then outputting m independent samples from LWEn,q,s,χ (resp.

LWRn,q,s,X).

2Here |α−β| for α, β ∈ Zq denotes min{|α̂− β̂| : α̂, β̂ ∈ Z st (α̂, β̂) ≡ (α, β) (mod q)}; | · | the real absolute
value.
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Definition 2 (The LWE/LWR Problems) Let n, q,m ∈ N be positive integers, χ be a

distribution on Zq, and X ( Zq be a proper subset. The search/decisional version of the

learning with errors/rounding problems refer to the following computational tasks.3

• Search LWE/LWR: Given (a1, b1), . . . , (am, bm) ∼ LWEn,q,m,χ/LWRn,q,m,X , output

s.

• Decisional LWE: Distinguish LWEn,q,m,χ from Unif
(
Znq × Zq

)m
.

Error Distributions and Rounding Subsets. The most common choice for the error

distribution χ is a discrete Gaussian on Zq, centered at 0 with standard deviation αq for some

α = 1/poly(n). Hardness of decisional LWE with this error distribution is known assuming

worst-case hardness of computational problems on lattices which are believed to be hard

even for quantum computers [Reg05, Pei09, BLP+13]. The arguments in this work will apply

equally well to any bounded error distribution which gives output in {−B, . . . , B} ⊂ Zq

for B � q with overwhelming probability 1 − 2−n. The rounding set for LWR will be

X = Zp, the set of nearest integers to the multiples of q/p in Zq. We write bbep instead of

argminx∈X
{
|b− x|

}
, and we write LWRn,q,p instead of LWRn,q,Zp .

Solvers and Distinguishers. Given ε > 0 and m ∈ N, we say an algorithm S is an

(ε,m)−solver for LWEn,q,χ (resp. LWRn,q,X) if it solves search LWE (resp. search LWR)

with probability at least ε, given m samples:

Pr{(ai,bi)}mi=1∼LWEn,q,m,χ

[
S
(
{(ai, bi)}mi=1

)
= s
]
≥ ε,

3We will not need the decisional version of LWR in this work, so we do not give the definition.
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and similarly for LWRn,q,m,p except the probability is over {(ai, bi)}i=1m ∼ LWRn,q,m,p.

Likewise, we say that an algorithm D is an (ε,m)−distinguisher for LWEn,q,χ if

Pr{(ai,bi)}mi=1∼LWEn,q,m,χ

[
D
(
{(ai, bi)}i

)
= 1
]
≥ Pr{(ai,bi)}mi=1∼Unif(Znq×Zq)m

[
D
(
{(ai, bi)}

)
= 1
]
+ε.

Definition 3 (Reduction from LWE to LWR) Let n, q, p ∈ N be integers with p <

q, and let χ be a distribution on Zq, and let `err : R>0 → R>0 and `samp : N → N be

functions. We say that a PPT oracle algorithm A is an (`err, `samp)−reduction from LWEn,q,χ

to LWRn,q,p if the following holds: if S is an (ε′,m′)− solver for LWRn,q,p, then AS ( i.e.,

A instantiated with oracle access to S) is an (ε,m)−solver for LWEn,q,χ, where (ε,m) =(
`err(ε

′), `samp(m′)
)
.

Remark. We are interested in noticeable solvers which run in polynomial time; i.e.,

(ε′,m′)−solvers for ε′ = poly
(
1/n

)
and m′ = poly(n). In order to preserve this, our re-

ductions will always have `err(ε
′) = poly

(
1/n, ε′

)
and `samp(m′) = poly(n,m′). Thus, our

reduction model requires AS to be a polynomial time noticeable solver for LWE whenever S

is a polynomial time noticeable solver for LWR. As mentioned in the introduction, several

prior works [AKPW13, BLL+15, BGM+16] prove hardness results for LWR with q = poly(n)

via LWE hardness as long as there is a bound B on the overall number of samples given

to the LWR solver. In the above language, these works give a reduction A such that AS is

a polytime noticeable solver for LWE whenever S is a polytime noticeable solver for LWR

which uses m′ ≤ B samples.
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3.2.2 Pseudorandomness

Definition 4 (Statistical Distance) Let X and Y be random variables, both supported

on the same set Ω. The statistical distance between X and Y , denoted ∆(X,Y ), is equal

to both of the following expressions:

max
T⊂Ω

∣∣∣Prx∼X
[
x ∈ T

]
− Pry∼Y

[
y ∈ T

]∣∣∣ =
1

2
·
∑
z∈Ω

∣∣∣Prx∼X
[
x = z

]
− Pry∼Y

[
y = z

]∣∣∣.
We will use a version of the the fact that the inner product mod q is a good two-source

extractor. Results of this type originated with the work of Goldreich and Chor [CG88], the

proof of this next claim is similar.

We will use the mod q version of the the fact that the inner product is a good two-source

extractor. Results of this type originated with the work of Goldreich and Chor [CG88].

Fact 1 Let n, q ∈ N be such that q is prime, let X ⊂ Znq be a subset, and let D be the

distribution on Zn+1
q which draws a ∼ Zq, x ∼ X and outputs

(
a, 〈a,x〉

)
. Then

∆
(
D,Unif(Zn+1

q )
)2 ≤ q

4|X|
.

The following corollary will be used several times throughout the paper. Intuitively, it says

that any property which holds with good probability over (a, b) ∼ Znq ×Zq holds with similar

probability over (a, b) ∼ LWEn,q,s,χ for almost all s ∈ Znq .
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Corollary 1 (Sampling of LWE) For any test set T ⊂ Znq × Zq of size |T | = τ · qn+1,

and any e ∈ Zq,

Prs∼Znq

[∣∣∣Pra∼Znq
[
(a, 〈a, s〉+ e) ∈ T

]
− τ
∣∣∣ > q−n/4

]
= q−Ω(n).

In particular,

Prs∼Znq

[∣∣∣Pr(a,b)∼LWEs

[
(a, b) ∈ T

]
− τ
∣∣∣ > q−n/4

]
= q−Ω(n).

Proof. Fix T ⊂ Znq × Zq of size |T | = τ · qn+1, and let S ⊂ Znq be the set of

s ∈ Znq such that Pra∼Znq
[
(a, 〈a, s〉 + e) ∈ T

]
> τ + q−n/4 for some e ∈ Zq. We will prove

|S| < qn/2+3 = q−(n/2−3) · qn; the result follows since we can argue similarly for the set of

s ∈ Znq such that for some e ∈ Zq, Pra∼Znq
[
(a, 〈a, s〉+ e) ∈ T

]
< τ − q−n/4. For the part of

the claim about LWE samples, note that if s /∈ S then

Pr(a,b)∼LWEs

[
(a, b) ∈ T

]
=
∑
e∈Zq

Pr
[
χ = e

]
· Pra∼Znq

[
(a, 〈a, s〉+ e) ∈ T

]
≤ τ + q−n/4.

So it suffices to bound |S|. Let Se ⊂ S be the s ∈ S such that Pra∼Znq
[
(a, 〈a, s〉+ e) ∈ T

]
>

τ + q−n/4. For all e ∈ Zq, we have

τ + q−n/4 < Prs∼Se,a∼Znq
[
(a, 〈a, s〉) + (0, e) ∈ T

]
≤ τ +

√
q

4|Se|
,

where the inequality on the second line is Fact 1. Thus, |Se| ≤ qn/2+1/4 holds for all e ∈ Zq,

and so |S| =
∣∣⋃

e Se
∣∣ ≤ qn/2+2. The result follows.
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3.3 Our Reduction Model and Main Theorem

3.3.1 Pointwise Reductions and Main Theorem Statement

In this section we define pointwise reductions from LWE to LWR, which are the

reductions ruled out by our main theorem. To say that A is a pointwise reduction is

to require that the LWE solver AS uses its oracle access to S in a precise way. First,

AS must map its input LWE samples to LWR samples in a pointwise fashion (i.e., using

f : Znq × Zq → (Znq × Zp) ∪ {⊥}, applied pointwise on each of the input samples). Then AS

invokes S on the “non-bot” outputs obtaining an LWR secret. Finally, AS outputs an LWE

secret computed using the original LWE samples and the LWR secret. All LWE to LWR

reductions in the literature fit into this pointwise model.

Definition 5 (Point-Wise Reduction from LWE to LWR) Let n, p, q ∈ N be inte-

gers such that p < q, let χ be a distribution on Zq, and let `err : R>0 → R>0 and

`samp : N→ N be functions. We say the PPT oracle algorithm A is an (`err, `samp)−pointwise

reduction from LWEn,q,χ to LWRn,q,p if it is a reduction per Definition 3 and, moreover, if

there exists an efficiently computable function f : Znq × Zq →
(
Znq × Zp

)
∪ {⊥} and a

PPT algorithm B such that for any (ε′,m′)−solver S for LWRn,q,p, the (ε,m)−solver AS for

LWEn,q,χ works as follows where (ε,m) =
(
`err(ε

′), `samp(m′)
)
.

1. Given {(ai, bi)}mi=1 ⊂ Znq × Zq, compute (a′i, b
′
i) = f(ai, bi) ∈

(
Znq × Zp

)
∪ {⊥} for

i = 1, . . . ,m.

2. Call S
(
{(a′i, b′i)} \ {⊥}

)
obtaining s′ ∈ Znq ∪ {⊥} (S reads only the first m′ pairs; if

fewer than m′ pairs are given, S outputs ⊥).
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3. Compute B
(
{(ai, bi)}, s′

)
obtaining s ∈ Znq ∪ {⊥}; output s.

We say A = (f,B) is a ν−non-aborting pointwise reduction if Pr(a,b)∼Znq×Zq
[
f(a, b) 6= ⊥

]
≥

ν. We say A is a non-aborting pointwise reduction if it is a 1−non-aborting pointwise

reduction; i.e., if f(a, b) 6= ⊥ for all (a, b) ∈ Znq × Zq.

Theorem 2 (Main) Let n, p, q ∈ N be integers such that such that q = poly(n) is prime

and such that q2/3+c < p < q = poly(n) for a constant c > 0, and let χ be a distribution

on Zq. Let `err : R>0 → R>0 and `samp : N→ N be functions so `err(ε
′) = poly

(
1/n, ε′

)
and

`samp(m′) = poly(n,m′). Then any non-aborting (`err, `samp)−pointwise reduction A = (f,B)

from LWEn,q,χ to LWRn,q,p can be used to build an efficient (ε,m)−distinguisher for LWEn,q,χ

for some non-negligible ε > 0 and some m = poly(n).

We also state as a conjecture, our main theorem without the lower bound requirement on

p, and where the pointwise reduction is allowed to abort.

Conjecture 1 Let n, p, q ∈ N be integers such that such that q = poly(n) is prime. Let ν =

ν(n) > 0 be non-negligible in n, and let χ be a distribution on Zq. Let `err : R>0 → R>0 and

`samp : N → N be functions such that `err(ε
′) = poly

(
1/n, ε′

)
and `samp(m′) = poly(n,m′).

Then any ν−non-aborting (`err, `samp)−pointwise reduction A = (f,B) from LWEn,q,χ to

LWRn,q,p can be used to build an efficient (ε,m)−distinguisher for LWEn,q,χ for some non-

negligible ε > 0 and some m = poly(n).

If the error distribution χ on Zq is such that LWEn,q,m,χ is hard for all m = poly(n) (e.g., if

χ is a discrete Gaussian), then these results say that it is impossible to reduce LWEn,q,χ to

LWRn,q,p in a pointwise fashion. The only difference between Theorem 3 and Conjecture 1

is that Theorem 3 makes two additional assumptions about the parameters:
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• q2/3+c < p;

• ν = 1 (i.e., f is non-aborting).

The first assumption is needed in one specific point of the proof of Theorem 3; we will

indicate this point when we get to it. We make use of the second assumption through-

out. Occasionally, it is possible to rework the proofs to some of our supporting lemmas

to allow f to abort, but since there is more than one point where we require it, we just

assume it everywhere; this will simplify our overall proof. Nevertheless, as mentioned in

the introduction, we believe it should be possible to remove the dependence on these extra

hypotheses.

3.3.2 The LWR Secret Recovery Algorithm and Proof of Theorem 3

Notation. Let n, p, q ∈ N be integers such that q is prime such that q2/3+c < p < q for

a small constant c > 0. Let f : Znq × Zq → Znq × Zp be part of a pointwise reduction from

LWEn,q,χ to LWRn,q,p. Since n, p, q, χ are fixed throughout the remainder of the paper, we

write LWEs and LWRs′ , respectively, instead of LWEn,q,s,χ and LWEn,q,s,p. The lemmas in

this section make reference to non-negligible quantities η, δ > 0 which will be specified in

the next section.
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Lemma 10 (Main Technical Lemma) Let notations be as above. There exists an effi-

cient algorithm A with the following syntax and correctness guarantees.

• Syntax: A takes no input, gets oracle access to a
(
Znq × Zq

)
−oracle and to f , and

outputs a vector s′ ∈ Znq .

• Correctness: If A is run when given oracle access to LWEs for a random s ∼ Znq ,

then with non-negligible probability (over s ∼ Znq and the random coins of A), A

outputs s′ ∈ Znq such that:

Pr(a,b)∼LWEs

[
b′ =

⌊
〈a′, s′〉

⌉
p

]
≥ 1− η. (3.3)

Lemma 11 Assume (f,B) is a pointwise reduction from LWEn,q,χ to LWRn,q,p. If there

exists s′ ∈ Znq such that

Pr(a,b)∼Znq×Zq

[
b′ =

⌊
〈a′, s′〉

⌉
p

]
≥ 1− η

2
,

then B is a (δ,m)−solver for LWEn,q,χ for m = n(1 + log q)/η.

We now prove Theorem 3 assuming Lemmas 10 and 11.

Proof of Theorem 3. Let A denote the algorithm promised by Lemma 10. Consider

the following distinguishing algorithm D, which gets oracle access to a
(
Znq ×Zq

)
−oracle O

and works as follows.

1. D instantiates A with oracle access to O, obtaining output s′ ∈ Znq . If A fails to give

output of the proper type, D outputs a random bit.
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2. Now D draws samples (a1, b1), . . . , (aN , bN ) ∼ O for N = n/η, and computes an

approximation P̂ of the probability

P := Pr(a,b)∼O

[
b′ =

⌊
〈a′, s′〉

⌉
p

]
.

If P̂ ≥ 1− 3η/4, D outputs 1, otherwise D outputs a random bit.

Note D either outputs 1 or a random bit. We show that it outputs a random bit with prob-

ability 1−2−Ω(n) when O is a random oracle, and outputs 1 with non-negligible probability

when O is an LWE oracle. The theorem follows.

Uniform Samples. Consider the execution of D when O is a random oracle, and let

s′ ∈ Znq be the vector obtained by A in Step 1 (if A outputs ⊥ during this step then

D outputs a random bit). In this case, the Chernoff-Hoeffding inequality ensures that

|P̂− P| < η/4 holds with probability 1− 2−Ω(n). Thus by Lemma 11, P̂ < 1− 3η/4 occurs

with probability 1− 2−Ω(n), and so D outputs a random bit with high probability.

LWE Samples. Now consider the execution of D when instantiated with a LWEs−oracle

for a random s ∼ Znq . In this case, Lemma 10 ensures that with non-negligible probability,

A outputs s′ ∈ Znq such that P ≥ 1− η. In this case, P̂ is again accurate to within ±η/4 by

the Chernoff bound, and so P̂ ≥ 1− 3η/4 and D outputs 1 with non-negligible probability.

3.4 The Statistics of a Pointwise Reduction

In this section we begin to impose structure on f : Znq × Zq → Znq × Zp which

is part of a pointwise reduction from LWEn,q,χ to LWRn,q,p. The fundamental intuition of
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this section is the following “meta” statement: all statistics of the LWR distribution and the

output distribution of f (given LWE samples as input) must be the same. The reason for this

is that any statistic which differs can be used to build a “pathological solver” which solves

LWR but which will be useless for solving LWE via f . The solver simply draws enough

samples to approximate the statistic, aborting if it decides it is being fed with mapped LWE

samples, solving if it decides it is being fed with true LWR samples.

3.4.1 Non-Degeneracy

We prove that the distribution which draws (a, b) ∼ Znq × Zq and outputs a′ ∈ Znq

cannot give non-negligible weight to any set T ⊂ Znq with negligible density.

Definition 6 Let ζ, ρ > 0 be such that ζ > ρ, and let f : Znq ×Zq → Znq ×Zp be a function.

We say f is (ζ, ρ)−degenerate if there exists T ⊂ Znq of density |T |/qn = ρ such that

Pr(a,b)∼Znq×Zq
[
a′ ∈ T

]
≥ ζ, where (a′, b′) = f(a, b). We say that f is (ζ, ρ)−non-degenerate

if it is not (ζ, ρ)−degenerate.

Claim 10 (Non-Degeneracy) Let n, q, p ∈ N such that p < q and χ be a distribution on

Zq. Suppose f : Znq ×Zq → Znq ×Zp is part of a pointwise reduction (f,B) from LWEn,q,χ to

LWRn,q,p. Suppose f is (ρ + ε, ρ)−degenerate for ρ, ε > 0 with ε non-negligible. Then B is

an (ε,m)−solver of LWEn,q,χ for m = max
{
qn(1 + log q), ρn/ε2

}
.

Proof. Let ε > 0 be non-negligible and suppose (f,B) is a pointwise reduction from

LWEn,q,χ to LWRn,q,p which is (ρ+ ε, ρ)−degenerate. Let D be the distribution on Znq which

draws (a, b) ∼ Znq × Zq and outputs a′. By definition, there exists T ⊂ Znq of density ρ

such that PrD
[
a′ ∈ T

]
≥ ρ + ε. Let S be the pathological (1 − 2−Ω(n),m′)−solver for
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LWRn,q,p which, on input {(a′i, b′i)}m
′

i=1 ⊂ Znq × Zp, computes t := #{i : a′i ∈ T} and outputs

⊥ if t ≥
(
ρ + ε/2

)
m′; otherwise if t <

(
ρ + ε/2

)
m′, S outputs the unique s′ ∈ Znq such

that b′i =
⌊
〈a′i, s′〉

⌉
p

for all i = 1, . . . ,m′ (if no such s′ exists or if more than one such s′

exists, S outputs ⊥). Note that when S is fed with LWR samples t = ρm′ in expectation

as the a′i ∼ Znq are uniform. By the Chernoff-Hoeffding inequality, t <
(
ρ + ε/2

)
m′ holds

with probability 1 − 2−Ω(n) (since m′ ≥ ρn/ε2). As m′ ≥ nq(1 + log q), with probability

at least 1 − 2−Ω(n), there exists exactly one s′ ∈ Znq such that b′i =
⌊
〈a′i, s′〉

⌉
p

for all

i = 1, . . . ,m′. Therefore, when S is fed with LWR samples it outputs the LWR secret s′

with high probability.

On the other hand, when m ≥ 2m′/ν LWE samples are chosen and S is fed with{
f(ai, bi)

}
, t ≥ (ρ + ε)m′ in expectation, and so by the Chernoff-Hoeffding inequality,

t ≥
(
ρ + ε/2

)
m′ holds with probability 1 − 2−Ω(n). Therefore, S outputs ⊥ with high

probability when fed with mapped LWE samples. As (f,B) is a pointwise reduction from

LWEn,q,χ to LWRn,q,p, B outputs the LWE secret with non-negligible probability when fed

with
(
{(ai, bi)},⊥

)
, where the (ai, bi) are LWE samples and the ⊥ is the output of S on

their images under f . Thus B solves LWEn,q,m,χ with non-negligible probability.

3.4.2 Good LWE Secrets

We now identify a non-negligible subset G ⊂ Znq of good LWE secrets, where s ∈ G

guarantees some good behavior from f when fed with samples from LWEn,q,s,χ.

The Secret Graph. The secret graph is a weighted complete bipartite graph whose

left and right vertex sets (X and Y , respectively) are both Znq , and where the weight of
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the edge (s, s′) ∈ X × Y is p(s,s′) := Pr(a,b)∼LWEs

[
b′ = b〈a′, s′〉ep

]
. We write Yε(s) =

{s′ ∈ Y : p(s,s′) ≥ 1 − ε} for s ∈ X and ε > 0. Likewise, given s′ ∈ Y and ε > 0,

Xε(s
′) = {s ∈ X : p(s,s′) ≥ 1 − ε}. So intuitively, Yε(s) is the subset of s’s neighborhood

which is connected to s by an edge with weight at least 1− ε; and similarly for Xε(s
′).

Parameters. In addition to the parameters mentioned above, the good secrets are defined

in terms of three non-negligible values δ, η, σ > 0. The quantity δ is defined using the error

loss function `err of the pointwise reduction (f,B). Specifically, 2δ = `err(1/3), so that if S is

a 1
3−solver for LWRn,q,p, BS is a 2δ−solver for LWEn,q,χ. Given δ, we set σ = δ/2nq(1+log q)

and η ≤ min
{
σ,
(
1/3nq

)3}
. The reader is encouraged on a first pass to think of δ, η, σ all

as arbitrarily small, but non-negligible, quantities.

Definition 7 (Good LWE Secrets) With the above notation and conventions, we say

that s ∈ Znq is good, and write s ∈ G, if the following three conditions hold:

(1) |Yη(s)| ≥ 1; (2) |Yσ(s)| ≤ 1; (3) |Xη(s
′)| = 1.

In point (3), s′ ∈ Znq is the LWR secret for which Yη(s) = {s′}.

Note that as η ≤ σ, points (1) and (2) combine to imply that for every s ∈ G there is a

unique s′ ∈ Znq such that p(s,s′) ≥ 1 − η. Thus, point (3) additionally says that the edges

in the secret graph with weight above 1− η induce a matching between good LWE secrets

and (a subset of) LWR secrets.

Claim 11 Suppose (f,B) is a pointwise reduction from LWEn,q,χ to LWRn,q,p. Then either

|G| ≥ δ · qn, or B is a (δ,m)−solver for LWEn,q,χ for m = 2n(1 + log q)/η.
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Proof. Let m = n(1 + log q)/η, and let S be the pathological solver for LWRn,q,p which, on

input
{

(a′i, b
′
i)
}m
i=1

, does the following:

(i) it looks at the first nq(1+log q) samples (this is less than m since η ≤ 1/q) and checks

whether there exist distinct s′, s′′ ∈ Znq such that
⌊
〈a′i, s′〉

⌉
p

= b′i =
⌊
〈a′i, s′′〉

⌉
p

holds

for all i = 1, . . . , nq(1 + log q); if so, S outputs ⊥;

(ii) S computes the unique s′ ∈ Znq such that b′i =
⌊
〈a′i, s′〉

⌉
p

holds for all i = 1, . . . ,m, if

no such s′ exists, S outputs ⊥;

(iii) using the s′ ∈ Znq just computed, S checks if #{s ∈ Znq : |Yη(s)| = 1 & p(s,s′) ≥ 1−η} ≥

2; if so S outputs ⊥;

(iv) if it has not already aborted, S outputs s′ ∈ Znq recovered in Step (ii).

Assume |G| < δ · qn. We will prove the following two points.

1. if S is called on {(a′i, b′i)} ∼ LWRn,q,m,p, then S outputs the secret s′ with probability

at least 1/3;

2. if S is called on {(a′i, b′i)} for {(ai, bi)} ∼ LWEn,q,m,χ and (a′i, b
′
i) = f(ai, bi), then S

outputs ⊥ with probability at least 1− δ.

Just as in Claim 10, these two points suffice. Point 1 says that S is a
(

1
3 ,m

)
−solver for

LWRn,q,m,p. As (f,B) is a pointwise reduction, with probability at least 2δ = `err(1/3) over

{(ai, bi)} ∼ LWEn,q,m,χ, B outputs the LWE secret given {(ai, bi)} and S
(
{(a′i, b′i)}

)
. By

point 2, the probability that B recovers the LWE secret without the second argument is at

least δ. It remains to establish the two points.
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Point 1 − S on LWR samples: If S is fed with LWR instances, then certainly there

exists s′ ∈ Znq such that b′i =
⌊
〈a′i, s′〉

⌉
p

for all i (namely, the LWR secret). So S will solve

LWR in step (ii) and give correct output as long as it does not abort in steps (i) or (iii).

Just as in the proof of Claim 10, the probability that S outputs ⊥ in Step (i) because it finds

distinct s′ 6= s′′ such that
⌊
〈a′i, s′〉

⌉
p

= b′i =
⌊
〈a′i, s′′〉

⌉
p

for i = 1, . . . ,m is 2−Ω(n). Moreover,

note that

#{s ∈ Znq : |Yη(s)| = 1 & p(s,s′) ≥ 1− η} ≥ 2

holds for at most half of the s′ ∈ Znq . Therefore S aborts given LWR samples with probability

at most 1/2 + 2−Ω(n) ≤ 2/3, and otherwise solves LWR.

Point 2 − S on mapped LWE samples: If S is fed with mapped LWE instances, then

some s ∼ Znq is chosen, {(ai, bi)}mi=1 ∼ LWEn,q,s,χ are drawn, and (a′i, b
′
i) = f(ai, bi) are

computed and fed to S. With probability at least 1 − δ, s /∈ G in which case one of the

properties (1), (2) and (3) does not hold. If (1) does not hold, then p(s,s′) < 1 − η for all

s′ ∈ Znq and so

Pr{(ai,bi)}mi=1∼LWEn,q,s,χ

[
∃ s′ ∈ Znq st b′i =

⌊
〈a′i, s′〉

⌉
p
∀ i = 1, . . . ,m

]
< qn ·

(
1− η

)m ≤ 2−n,

(since m = n(1 + log q)/η) and so S outputs ⊥ in Step (ii) with high probability 1 − 2−n.

On the other hand, if (2) does not hold then there exist distinct s′, s′′ ∈ Znq such that

p(s,s′), p(s,s′′) ≥ 1− σ both hold. In this case,

Pr{(ai,bi)}mi=1∼LWEn,q,s,χ

[⌊
〈a′i, s′〉

⌉
p

= b′i =
⌊
〈a′i, s′′〉

⌉
p
∀ i
]
≥ 1− 2nq(1 + log q)σ ≥ 1− δ,

(using σ ≤ δ/2nq(1 + log q)) and so S outputs ⊥ in Step (i) with probability 1− δ. Finally,

suppose that (1) and (2) both hold and that S does not abort in Steps (i) or (ii) but that
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(3) does not hold. Note that |Xη(s
′)| ≥ 1 since s ∈ Xη(s

′), thus if (3) does not hold then it

must be that |Xη(s
′)| ≥ 2. In this case S simply outputs ⊥ in Step (iii). So we have shown

that when s /∈ G, S outputs ⊥ with probability at least 1− δ, as desired.

3.4.3 Proof of Lemma 11

Claim 11 imposes quite a lot of structure on a pointwise reduction. We will refer to

Claim 11 repeatedly throughout the remainder of the paper. Additionally, we can already

derive Lemma 11 as a corollary.

Lemma 11 (Restated). Assume (f,B) is a pointwise reduction from LWEn,q,χ to LWRn,q,p.

If there exists s′ ∈ Znq such that

Pr(a,b)∼Znq×Zq

[
b′ = b〈a′, s′〉ep

]
≥ 1− η

2
,

then B is a (δ,m)−solver for LWEn,q,χ for m = n(1 + log q)/η.

Proof. Suppose there exists s′ ∈ Znq such that Pr(a,b)∼Znq×Zq
[
b′ = b〈a′, s′〉ep

]
≥ 1 − η/2.

Then by Corollary 1, Pr(a,b)∼LWEs

[
b′ = b〈a′, s′〉ep

]
≥ 1 − η/2 − q−n/4 ≥ 1 − η holds for all

but a q−Ω(n)−fraction of s ∈ Znq . In other words, |Xη(s
′)| ≥ (1− q−Ω(n)) · qn, so the degree

of s′ is way too high to have any neighbors in G. However, this means that G ⊂ Znq \Xη(s
′),

and so |G| ≤ q−Ω(n) · qn and so by Claim 11, B is a (δ,m)−solver for LWEn,q,χ.

3.5 Outline of the Rest of the Paper

At this point we have reduced our main result (Theorem 3) to proving Lemma 10;

namely we must design an algorithm which, given oracle access to LWEs for some uniform
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secret s ∼ Znq , reconstructs the LWR secret s′ ∈ Znq of the mapped LWE pairs. We have

also already proved a key claim, Claim 11, which specifies a notion of “good” behavior from

an LWE secret s and proves that the set of good secrets G ⊂ Znq comprises a non-negligible

fraction of the entire space. Intuitively, s ∈ G if there exists a unique s′ ∈ Znq such that

p(s,s′) := Pr(a,b)∼LWEs

[
b′ =

⌊
〈a′, s′〉

⌉
p

]
≥ 1− η,

and, moreover, if this s′ is unique to s (i.e., so p(s∗,s′) < 1− η for all s∗ 6= s). The algorithm

of Lemma 10 will aim to recover s′ whenever s ∈ G.

The bulk of the technical work of the remainder of the paper will go into proving

the following lemma. Recall the notation of Lemma 10: n, p, q ∈ N are integers such that q

is prime and q2/3+c < p < q; ν = ν(n) > 0 is non-negligible and f : Znq × Zq → Znq × Zp is

part of a pointwise reduction from LWEn,q,χ to LWRn,q,p. Recall also that we inherited the

non-negligible parameters δ, η, σ > 0 from Claim 11.

Lemma 12 Assume the above setup. There exists an efficient algorithm AAffRec which takes

no input, gets oracle access to f , and outputs a pair (H,V) where H ∈ Zn×nq and V ⊂ Znq

is a constant dimensional vector space such that with non-negligible probability (over the

random coins of AAffRec) the following holds:

Pr(a,b)∼Znq×Zq

[
a′ ∈ Span(Ha) + V

]
≥ 1− τ,

where τ = 8q2n4η1/3t, and t ∈ N minimal such that t ≥ logq(1/δ)+2

3c holds.

Using Lemma 12 to Prove Lemma 10. Once we know that a′ has good agreement with

Ha, we can recover s′ using a Goldreich-Levin-type argument. Let us assume for simplicity
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in this discussion that a′ = Ha occurs with good probability, rather than a′ ∈ Span(Ha)+V.

The key point is that when s ∈ G is good,

b′ =
⌊
〈a′, s′〉

⌉
p

=
⌊
〈a,Hts′〉

⌉
p

occurs with high probability. Thus, if we simply output a random x ∼ Zq such that

bxep = b′ we will be predicting the inner product 〈a,Hts′〉 with non-negligible advantage

over guessing. The Goldreich-Levin machinery can then be used to recover Hts′, and this

will be good enough to prove Lemma 10.

Proving Lemma 12. The proof of Lemma 12 is broken into two parts. In the first part

of the proof of Lemma 12, we prove that for any pointwise reduction from LWEn,q,χ to

LWRn,q,p, there exists a constant dimensional V ⊂ Znq such that the following property test

accepts with good probability:

− choose (a0, b0), (a1, b1) ∼ Znq × Zq and non-zero α, β ∼ Zq \ {0};

− compute (a′0, b
′
0) = f(a0, b0), (a′1, b

′
1) = f(a1, b1), and (a′2, b

′
2) = f(αa0 + βa1, αb0 +

βb1);

− output 1 if a′2 ∈ Span
(
{a′0,a′1}

)
+ V; output 0 if not.

The logic behind this property test is the following. Let us pretend for this discussion that

V = {0}, in which case the property tests whether {a′0,a′1,a′2} is linearly independent or

not. If {a′0,a′1,a′2} were linearly independent, then {b′0, b′1, b′2} would represent three different

linear relations about the LWR secret s′. Since {a0,a1,a2} is linearly dependent (writing

a2 = αa0+βa1), {b0, b1, b2} represents only two linear relations about the LWE secret s. The
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key point is that a pointwise reduction cannot allow you to generate many linear relations

about s′ using only a few linear relations about a good s ∈ G, since otherwise it would

mean that there would be many good s ∈ G which correspond to the same LWR secret s′,

contradicting that good LWE secrets form a perfect matching with their corresponding LWR

secrets. It is here that we need the bound q2/3+c < p, since each b′i does not decrease the

number of possible secrets by 1/q, but rather by 1/p, since there are q/p different possibilities

for 〈a′, s′〉 which satisfy b′ =
⌊
〈a′, s′〉

⌉
p
. Thus, when {a′0,a′1,a′2} is linearly independent, only

p−3−fraction of the LWR secrets will satisfy the linear constraints, whereas q−2−fraction of

the LWE secrets will satisfy the linear constraints corresponding to {a0,a1,a2}. We need

p−3 � q−2 to ensure that the set of remaining LWR secrets is shrinking faster than the set

of remaining LWE secrets.

The final part of the proof of Lemma 12 involves proving that any function which

passes the above property test with good probability must have good agreement with a

linear function. This part of the proof follows the proof of the fundamental theorem of

projective geometry (see e.g. Section 2.10 of [Art57]).

Proposition 1 (Fundamental Theorem of Projective Geometry) Let q be a prime

and f : Znq → Znq be a function such that for any one-dimensional line ` ⊂ Znq , the set

f(`) :=
{
f(x) : x ∈ `

}
⊂ Znq is also a line. Then f is affine.

In our case, the hypothesis that f(`) ⊂ Znq is a line for all lines ` ⊂ Znq is replaced by the

property test passing with good probability over (a0, b0), (a1, b1), (a2, b2) ∼ Znq × Zq, and

α, β ∼ Zq \ {0}. Likewise, the conclusion is replaced by a′ ∈ Span(Ha) + V with high

probability over (a, b) ∼ Znq × Zq.
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3.6 Recovering the LWR Secret via Goldreich-Levin

Inversion

In this section we show how to use the Goldreich-Levin (GL) inversion tech-

nique [GL89] to recover the LWR secret. We begin by recalling the parameters and notations

which we will use in this section.

Notations. We have integers n, p, q ∈ N such that q is prime and q2/3+c < p < q for some

small constant c > 0. Additionally, f : Znq × Zq → Znq × Zp is part of a pointwise reduction

from LWEn,q,χ to LWRn,q,p. We have non-negligible parameters δ, η, σ > 0 from Claim 11,

and a set of “good” LWE secrets G ⊂ Znq from Section 3.4.2. Additionally, we have an

additional non-negligible τ > 0 and (H,V) where H ∈ Zn×nq and V ⊂ Znq is a constant

dimensional subspace such that

P(H,V) := Pr(a,b)∼Znq×Zq
[
a′ ∈ Span(Ha) + V

]
≥ 1− τ.

For s ∈ Znq and e ∈ Zq, let us define Ps,e(H,V) := Pra∼Znq
[
a′ ∈ Span(Ha) + V

]
, where

(a′, b′) = f(a, 〈a, s〉 + e). It follows immediately from Corollary 1 that for at most a

q−Ω(n)−fraction of s ∈ Znq , there exists an e ∈ Zq such that Ps,e(H,V) < 1 − 2τ . So

let us remove all such s from G; G will still comprise a non-negligible fraction of Znq . At this

point what we will need from s ∈ G is that the following points both hold:

(1) ∃ unique s′ ∈ Znq st p(s,s′) ≥ 1− η; (2) Ps,e(H,V) ≥ 1− 2τ ∀ e.
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3.6.1 A Goldreich-Levin Theorem for LWE Samples

In this section, we state and prove a Goldreich-Levin-type theorem which will allow

us to recover Hts′ given oracle access to LWEs for unknown s.

Lemma 13 (A Goldreich-Levin Theorem for LWE Samples) Let n, q ∈ N be such

that q = poly(n) is prime, ζ ∈ (0, 1). For a function Pred : Znq × Zq → Zq, and quantities

(s, e, s̄, γ) ∈ Znq × Zq × Znq × Zq, let

Ps,e(s̄, γ) := Pra∼Znq
[
Pred(a, 〈a, s〉+e) = 〈a, s̄〉+γ

]
; Ps(s̄, γ) := Pr(a,b)∼LWEs

[
Pred(a, b) = 〈a, s̄〉+γ

]
.

Then there exists a randomized algorithm Inv which takes {(ai, bi)}mi=1 ∈ (Znq × Zq)m as

input, outputs s̄∗ ∈ Znq , runs in time poly(n, q, 1/ζ,TPred) where TPred is the running time

of Pred, and has the following correctness guarantee.

• Correctness: Suppose that s, s̄ ∈ Znq are such that both of the following hold:

· for all e ∈ Zq such that Pr
[
χ = e

]
≥ 4ζ

5qn2 , and non-zero γ ∈ Z∗q, Ps,e(s̄, 0) ≥

Ps,e(s̄, γ)− ζ;

· for all non-zero γ ∈ Z∗q, Ps(s̄, 0) ≥ Ps(s̄, γ) + 10ζ.

Then

Pr{(ai,bi)}mi=1∼LWEs,χ

[
Inv
(
{(ai, bi)}

)
= s̄
]
≥ 8ζ6

9n4q6
.

Remark 14 Intuitively, the requirement Ps(s̄, 0) ≥ Ps(s̄, γ) + 10ζ means that the most

likely output of the predictor on samples from LWEs is s̄. The additional requirement that

Ps,e(s̄, 0) ≥ Ps,e(s̄, γ) − ζ means that the predictor performs pretty well regardless of the

LWE error. Note that the most likely output of the “trivial” predictor Pred(a, b) = b is
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〈a, s〉 (assuming e = 0 is the most likely LWE error, which is standard). However, as

soon as e 6= 0, the trivial predictor starts performing extremely badly, always outputting the

wrong value. Clearly if s could be recovered from the trivial predictor then LWE would be

efficiently solvable. Thus the requirement that the predictor perform well for all errors is a

critical hypothesis for the above lemma.

Proof. Let m = n2/4ζ and k = 1 + dlogq(3mq/ζ
2)e; Inv works as follows.

Input: Inv gets input {(ai, bi)}mi=1 ∈ (Znq × Zq)m and uses an algorithm for Pred as a

subroutine.

Output: Inv outputs s̄∗ ∈ Znq .

1. Choose x1, . . . ,xk ∼ Znq , g1, h1, . . . , gk, hk ∼ Zq. For all u = (u1, . . . , uk) ∈ Zkq , let

xu :=
k∑
j=1

ujxj ∈ Znq ; gu :=
k∑
j=1

ujgj ∈ Zq; and hu :=
k∑
j=1

ujhj ∈ Zq.

2. For all i = 1, . . . ,m, do the following:

· for each β ∈ Zq, compute p̂i(β) := Pru∼Zkq\{0}

[
Pred(ai + xu, bi + gu)− hu = β

]
;

· if there exists β ∈ Zq such that p̂i(β) ≥ p̂i(β
′) + 3ζ for all β′ 6= β, set wi = β;

otherwise set wi = ⊥.

3. Finally, let W =
{
i ∈ {1, . . . ,m} : wi 6= ⊥

}
, and let {i1, . . . , in} ⊂ W be such

that {ai1 , . . . ,ain} is linearly independent (if no such subset exists, output the failure

symbol ⊥). Let (A,w) ∈ Zn×nq ×Znq be such that the t−th row (resp., coordinate) of

A (resp., w) is ait (resp., wit). Output s̄∗ = A−1w ∈ Znq .
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It is clear that Inv runs in time poly(n, q, 1/ζ,TPred). Assume that s, s̄ ∈ Znq are

such that both correctness hypotheses hold. We will show that Inv outputs s̄∗ = s̄ with

probability at least 1/2q2k. Consider first the random choices (xj , gj , hj) ∼ Znq × Zq × Zq

drawn during Step 1. Let us say that these random choices are correct if:

gj = 〈xj , s〉 and hj = 〈xj , s̄〉 ∀ j = 1, . . . , k.

Note these random choices are correct with probability q−2k. When the random choices are

correct, we have gu = 〈xu, s〉 and hu = 〈xu, s̄〉 for all u ∈ Zkq . Consider now the values p̂i(β)

for β ∈ Zq and i ∈ {1, . . . ,m} computed in Step 2, and let us interpret the p̂i(β) as random

variables over xj ∼ Znq . Note that if the choices are correct, then (ai+xu, bi+gu) is a random

LWEs pair with the same error as (ai, bi); thus the expectation of p̂i(〈ai, s̄〉+γ) is Ps,ei(s̄, γ)

for all γ ∈ Zq and i ∈ {1, . . . ,m}, where ei = bi−〈ai, s〉. We will prove a concentration bound

using the pairwise independence of (xu,xu′) for u 6= u′ ∈ Zkq which will guarantee that with

probability at least 2/3 (conditioned on correctness),
∣∣p̂i(〈ai, s̄〉+ γ)−Ps,ei(s̄, γ)

∣∣ < ζ holds

for all i = 1, . . . ,m and γ ∈ Zq. Let us first show how this completes the analysis of Inv.

Assume that the error term ei is such that Pr
[
χ = ei

]
≥ 1

5qm ; by the union bound

the probability that this holds for all i = 1, . . . ,m is at least 4/5. The first observation is

that for all i ∈ {1, . . . ,m} and non-zero γ ∈ Z∗q , we have

p̂i(〈ai, s̄〉) > Ps,ei(s̄, 0)− ζ ≥ Ps,ei(s̄, γ)− 2ζ > p̂i(〈ai, s̄〉+ γ)− 3ζ.

This means that Step 2 never sets wi to be any value other than 〈ai, s̄〉. Likewise, we

have the bound Ps(s̄, 0) − Ps(s̄, γ) ≥ 10ζ for non-zero γ ∈ Z∗q means that Ps,e(s̄, 0) −

Ps,e(s̄, γ) ≥ 5ζ holds with probability at least 5ζ over e ∼ χ. By Chernoff, the probability
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that Ps,ei(s̄, 0) − Ps,ei(s̄, γ) ≥ 5ζ holds for at least 4ζm = n2 of the input LWE pairs

(ai, bi) is 1− 2−Ω(n). The probability that n2 random vectors in Znq span a proper subspace

is at most q−Ω(n); thus with probability at least 1 − 2−Ω(n), there exist n input samples

(ai1 , bi1), . . . , (ain , bin) such that Span
(
{ai1 , . . . ,ain}

)
= Znq and such that each error term

e satisfies Ps,e(s̄, 0)− Ps,e(s̄, γ) ≥ 5ζ for all non-zero γ ∈ Z∗q . For each i ∈ {i1, . . . , in},

p̂i(〈ai, s〉) > Ps,ei(s̄, 0)− ζ ≥ Ps,ei(s̄, γ) + 4ζ > p̂i(〈ai, s〉+ γ) + 3ζ,

and so Inv sets wi = 〈ai, s̄〉 during Step 2. So we have shown that, conditioned on the

random choices in Step 1 being correct, Inv never sets wi equal to anything but 〈ai, s̄〉 in

Step 2, and furthermore, with probability at least 4/5− 2−Ω(n) ≥ 3/4, Inv sets wi = 〈ai, s̄〉

for at least n values of i ∈ {1, . . . ,m} such that the corresponding ai’s span Znq . Thus, once

we show that
∣∣p̂i(〈ai, s̄〉+ γ)− Ps,ei(s̄, γ)

∣∣ < ζ holds simultaneously for all i = 1, . . . ,m and

γ ∈ Zq with probability at least 2/3, we will have shown that Inv recovers s̄ with probability

at least q−2k/2, as desired.

So fix an LWE sample (a, b) and γ ∈ Zq, and let 11(u) be the 0/1 random variable

which outputs 1 if Pred(a + xu, b + gu) − hu = 〈a, s̄〉 + γ and 0 otherwise. Let Q :=

Pr
[
|p̂(〈a, s̄〉+ γ)− Ps,e(s̄, γ)| > ζ

]
be shorthand. We have

ζ2Q ≤ E
[
p̂(〈a, s̄〉+ γ)2

]
− Ps,e(s̄, γ)2

=
1

(qk − 1)2
·

∑
u6=u′∈Zkq\{0}

E
[
11(u) · 11(u′)

]
− Ps,e(s̄, γ)2 +

1

(qk − 1)

≤ 1

(qk − 1)
,

and so Q ≤ 1
ζ2(qk−1)

≤ 1
3mq . So the concentration bound holds simultaneously for all

i ∈ {1, . . . ,m} and q ∈ Zq with probability at least 2/3 by the union bound.
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3.6.2 The Natural Predictor

Let notations be as specified at the beginning of this section. So, f : Znq × Zq →

Znq ×Zp is part of a pointise reduction, and (H,V) are such that H ∈ Zn×nq and V ⊂ Znq is

a constant dimensional vector space such that P(H,V) ≥ 1− τ . Let {v1, . . . ,vd} be a basis

for V. Given such setup, we now describe the “natural predictor”, which given samples

(a, b) ∼ LWEs for sufficiently good s ∈ G, predicts the inner product 〈a,Hts′〉 well enough

so that it is possible to use Lemma 13 to recover Hts′.

The Natural Predictor. The predictor function Pred : Znq × Zq → Zq works as follows.

• The natural predictor is parametrized by α1, . . . , αd ∈ Zq.

• Given (a, b) ∈ Znq × Zq, Pred computes (a′, b′) = f(a, b); if a′ = αHa + v for α ∈ Z∗q

and v =
∑d

i=1 civi ∈ V, then output α−1
(
x −

∑d
i=1 ciαi

)
where x ∼ Zq is random

such that bxep = b′.

• If a′ /∈ Span(Ha) + V, output a random x ∼ Zq.

Note that whenever b′ =
⌊
〈a′, s′〉

⌉
p

and a′ = αHta+v both hold, b′ =
⌊
α〈a,Hts′〉+〈v, s′〉

⌉
p

also holds; so when the natural predictor draws x, a random rounding preimage of b′ and

outputs α−1
(
x−

∑
i ciαi

)
, it has probability roughly p/q � 1/q of outputting 〈a,Hts′〉 as

long as αi = 〈vi, s′〉 for all i = 1, . . . , d. The following claim proves that this predictor

satisfies the hypotheses of Lemma 13, and so can be used to recover Hts′.
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Claim 12 Let notations be as above. Suppose that the natural predictor is fed with inputs

from an LWEs−oracle for some unknown s ∈ G such that for all β ∈ Zq, Pr
[
Ds = β

]
≥ 1

q2
,

where Ds is the distribution which draws (a, b) ∼ LWEs such that a′ ∈ Span(Ha) + V, and

outputs 〈a,Hts′〉. Assume furthermore that the parameters of the predictor are αi = 〈vi, s′〉

for all i = 1, . . . , d. Then both of the correctness hypotheses of Lemma 13 are satisfied for

s̄ = Hts′.

Proof. Fix ζ = 1−2τ−q2η
10q3

. We must show two points:

· for all e ∈ Zq with Pr
[
χ = e

]
≥ 4ζ

5qn2 and all non-zero γ ∈ Z∗q , Ps,e(H
ts′, 0) ≥

Ps,e(H
ts′, γ)− ζ;

· for all non-zero γ ∈ Z∗q , Ps(H
ts′, 0)− Ps(H

ts′, γ) ≥ 10ζ;

where Ps,e(H
ts′, γ) and Ps(H

ts′, γ) are the notations from Lemma 13:

Ps,e(H
ts′, γ) := Pra∼Znq

[
Pred(a, 〈a, s〉+ e) = 〈a,Hts′〉+ γ

]
,

and Ps(H
ts′, γ) is the same except the probability is over (a, b) ∼ LWEs. Let us simplify

the shorthand by writing P
(1)
e (γ) and P(1)(γ) instead of Ps,e(H

ts′, γ) and Ps(H
ts′, γ). Note

P(1)
e (γ) =

(
1−Ps,e(H,V)

)
·1
q

+Pra∼Znq
[
Pred(a, 〈a, s〉+e) = 〈a,Hts′〉+γ & a′ ∈ Span(Ha)+V

]
.

So if we shorthand the second term by P
(2)
e (γ), then P

(1)
e (0) − P

(1)
e (γ) = P

(2)
e (0) − P

(2)
e (γ).

Now let

P(3)
e (γ) := Pra∼Znq

[
Pred(a, 〈a, s〉+e) = 〈a,Hts′〉+γ & b′ =

⌊
〈a′, s′〉

⌉
p

& a′ ∈ Span(Ha)+V
]
.

Note that when e ∈ Zq is such that Pr
[
χ = e

]
≥ 4ζ

5qn2 , P
(2)
3 −

5qn2η
4ζ ≤ P

(3)
e (γ) ≤ P

(2)
e (γ),

since s ∈ G and so p(s,s′) ≥ 1− η. Therefore, P
(2)
e (0)−P

(2)
e (γ) ≥ P

(3)
e (0)−P

(3)
e (γ)− ζ, using
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η ≤ 4ζ2

5qn2 . To bound the P(3) terms, recall that when a′ = αHa + v for v =
∑

i civi ∈ V,

Pred outputs α−1
(
x−

∑
i ciαi

)
for a random x ∼ Zq such that bxep = b′. Therefore, when

b′ =
⌊
〈a′, s′〉

⌉
p

=
⌊
α〈a,Hts′〉+ 〈v, s′〉

⌉
p
, Pred outputs 〈a,Hts′〉 with probability roughly p/q

when
⌊
α(〈a,Hts′〉+γ)+〈v, s′〉

⌉
p

=
⌊
α〈a,Hts′〉+〈v, s′〉

⌉
p
, and with probability 0 otherwise.

It follows that P
(3)
e (0)− P

(3)
e (γ) is roughly

p

q
·Pra∼Znq

[⌊
α(〈a,Hts′〉+γ)+ 〈v, s′〉

⌉
p
6=
⌊
α〈a,Hts′〉+ 〈v, s′〉

⌉
p

& a′ ∈ Span(Ha)+V
]
≥ 0.

Thus, Pe(0) ≥ Pe(γ)− ζ for all non-zero γ ∈ Z∗q , which establishes the first point.

For the second point, we can define P(2)(γ) analogously to how we defined P
(2)
e (γ)

(except probability is over (a, b) ∼ LWEs) and we get P(1)(0)− P(1)(γ) = P(2)(0)− P(2)(γ).

Now, let us write P(2)(γ) =
∑

β∈Zq Sβ(γ) where each Sβ(γ) is the product of the following

four terms:

• Pr(a,b)∼LWEs

[
a′ ∈ Span(Ha) + V

]
=: Ps(H,V);

• Pr(a,b)∼LWEs

[
〈a,Hts′〉 = β

∣∣a′ ∈ Span(Ha) + V
]
;

• Pr(a,b)∼LWEs

[
b′ =

⌊
〈a′, s′〉

⌉
p

∣∣〈a,Hts′〉 = β & a′ ∈ Span(Ha) + V
]
;

• Pr(a,b)∼LWEs

[
Pred(a, b) = 〈a,Hts′〉+γ

∣∣b′ = ⌊〈a′, s′〉⌉
p

& 〈a,Hts′〉 = β & a′ ∈ Span(Ha)+

V
]
.

Let Qβ(γ) be shorthand for the fourth term; as noted above, Qβ(γ) is roughly equal to

p
q · 11(β, γ) where 11(β, γ) = 1 if

⌊
α(β + γ) +

∑
i ciαi

⌉
p

=
⌊
αβ +

∑
i ciαi

⌉
p
, and is zero

otherwise. The second term is Pr
[
Ds = β

]
, where Ds is the distribution defined in the

claim statement. Finally, note that the third term is at least 1 − q2η
Ps(H,V) . Thus, for non-
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zero γ ∈ Z∗q ,

P(2)(0)− P(2)(γ) ≥
(
Ps(H,V)− q2η

)
·
∑
β∈Zq

Pr
[
Ds = β

]
·
(
Qβ(0)− Qβ(γ)

)
≥

(
Ps(H,V)

q2
− η
)
·

∑
β:11(β,γ)=0

1

q
≥
(

1− 2τ − q2η

q3

)
= 10ζ,

where the second inequality on the second line holds since when γ 6= 0 there exists at least

one β such that 11(β, γ) = 0. The second point follows.

3.6.3 Proving Lemma 10 Assuming Lemma 12

Lemma 10 (Restated). Assume the notations described in the beginning of the section.

So specifically, f : Znq × Zq → Znq × Zp is part of a pointwise reduction and (H,V) are

such that P(H,V) ≥ 1− τ . Then there exists an algorithm which, given oracle access to an

LWEs−oracle for a random s ∼ G, outputs Hts′ with non-negligible probability over s ∼ G

and the random coins.

Proof. By Claim 12 and Lemma 13, it suffices simply to show that for an overwhelming

fraction of the s ∈ G have Pr
[
Ds = β

]
≥ 1

q2
for all β ∈ Zq where Ds is the distribution

which draws (a, b) ∼ LWEs such that a′ ∈ Span(Ha) + V and outputs 〈a,Hts′〉. Since

Ps(H,V) ≥ 1− 2τ , Ds is within statistical distance 2τ of the distribution D̂s which simply

draws a ∼ Znq and outputs 〈a,Hts′〉. For β ∈ Zq, define the sets:

Xβ :=
{
s ∈ G : Pra∼Znq [〈a,Hts′〉 = β] < q−2

}
; and Yβ :=

{
Hts′ : s ∈ Xβ

}
,

and consider the distribution Dβ, which draws a ∼ Znq , s ∼ Xβ and outputs 〈a,Hts′〉. We

have

1

q
− 1

q2
− 2τ < ∆

(
Dβ,Unif(Zq)

)
≤ qc∆

(
〈Unif(Znq ),Unif(Yβ)〉,Unif(Zq)

)
≤
√

q

4|Yβ|
.
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The first inequality used the definition of Xβ; the second used that H has rank n−c for some

constant c (since otherwise f would be degenerate), and that G induces a perfect matching

between LWE secrets and LWR secrets; and the last inequality is Fact 1. It follows that

|Yβ| = qO(1), and thus so are |Xβ|, and
⋃
β Xβ. Therefore, Pr

[
Ds = β

]
≥ 1

q2
holds for all

β ∈ Zq for an overwhelming fraction of the s ∈ G. Lemma 10 follows.

3.7 Proving Lemma 12

Notations. Recall we have integers n, p, q ∈ N such that q is prime and q2/3+c < p < q

for some small constant c > 0. Additionally, f : Znq × Zq → Znq × Zp is part of a pointwise

reduction from LWEn,q,χ to LWRn,q,p. Recall from Section 3.4.2, we have a set G ⊂ Znq of

“good secrets”; this set has size at least |G| ≥ δqn for non-negligible δ > 0 and for each s ∈ G

there exists a unique s′ ∈ Znq such that p(s,s′) ≥ 1− η for non-negligible η > 0. It was also

shown in Claim 10 that for all subset S ⊂ Znq of size |S| = ρqn, and non-negligible ν > 0,

Pr(a,b)∼Znq×Zq
[
a′ ∈ S

]
≤ ρ+ ν. We have been calling this the “non-degenerate” property of

f ; this will play a major role in this section. Our goal in this section is to algorithmically

recover (H,V) such that H ∈ Zn×nq and V ⊂ Znq is a constant dimensional vector subspace

such that

P(H,V) := Pr(a,b)∼Znq×Zq
[
a′ ∈ Span(Ha) + V

]
≥ 1− τ,

for τ = 8n4q2η1/3t, where t ∈ N is a new parameter; it is the minimal integer such that

t ≥ logq(1/δ)+2

3c holds. Note t = O(1).
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The Function h. We introduce the function h : Znq → Znq which is derived from f as

follows. Most of the time, if given a ∈ Znq , h simply draws b ∼ Zq uniformly, computes

(a′, b′) = f(a, b) and outputs a′. However, we will occasionally need to assume that h uses

previously drawn values of b to produce a new b, rather than drawing b ∼ Zq fresh each

time. For example, in this section we will be interested in the experiment which draws

a0,a1 ∼ Znq , (α0, α1) ∼ Z2
q \ {(0, 0)}, then sets a2 = α0a0 + α1a1 and computes a′j = h(aj)

for j = 0, 1, 2. The computations of h in this context will draw b0, b1 ∼ Zq and then set

b2 = α0b0 + α1b1, rather than drawing b2 ∼ Zq. It will be considerably simpler to work

with h rather than f . The non-degeneracy property for h says that for all S ⊂ Znq of size

|S| = ρqn, and non-negligible ν > 0, Pra∼Zq
[
h(a) ∈ S

]
≤ ρ+ ν.

3.7.1 Recovering V

The Algorithm to Recover V. Let notations be as above. We recover V as follows.

1. Initialize V = {0}; choose r ∼ {1, . . . , t}; for i = 1, . . . , r, do the following:

· choose ai,0,ai,1 ∼ Znq and (αi,0, αi,1) ∼ Z2
q \ {(0, 0)};

· compute a′i,j = h(ai,j) for j = 0, 1, 2, where ai,2 = αi,0ai,0 + αi,1ai,1;

· update V := V + Span
(
{a′i,0,a′i,1,a′i,2}

)
.

2. Output V.
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Claim 13 Let Dr denote the random procedure used to generate the vectors{
a′i,0,a

′
i,1,a

′
i,2}i=1,...,r. Suppose the function h : Znq → Znq is such that

PrDt
[
dim

(
Span

(
{a′i,j}i,j

))
= 3t

]
< η1/3. Then with non-negligible probability, the vector

space V output above satisfies P(V) ≥ 1− 4η1/3t, where

P(V) := Pr a1,a2∼Znq
(α1,α2)∼Z2

q\{(0,0)}

[
h(α1a1 + α2a2) ∈ Span

(
{h(a1), h(a2)}

)
+ V

]
.

Proof. Let ν > 0 be such that ν3t = η. Consider an execution of Dt; for i = 0, . . . , t, let

Vi denote the vector space V after the i−th iteration, and let di = dim(Vi). We are given

that Pr
[
dt = 3t

]
< νt; let r ∈ {1, . . . , t − 1} be maximal such that Pr

[
dr = 3r

]
≥ νr. We

have

νr+1 > Pr
[
dr+1 = 3(r + 1)

]
= Pr

[
dr+1 = 3(r + 1)

∣∣dr = 3r
]
· Pr

[
dr = 3r

]
≥ Pr

[
dr+1 = 3(r + 1)

∣∣dr = 3r
]
· νr,

and so Pr
[
dr+1 < 3(r+ 1)

∣∣dr = 3r
]
≥ 1− ν. Let a0,a1 ∈ Znq and (α0, α1) ∈ Z2

q \ {(0, 0)} be

the vectors and scalars drawn during the (r + 1)−th round of Dt. Note if dr+1 < 3(r + 1)

then it must be that at least one of the following occurs:

(1) a′0 ∈ Vr; (2) a′1 ∈ Vr + Span(a′0); (3) a′2 ∈ Vr + Span
(
{a′0,a′1}

)
.

By non-degeneracy, the first two points happen with probability at most ν + q−Ω(n). Thus,

the third point holds with probability at least 1− 3ν − q−Ω(n) ≥ 1− 4ν, and so

P(Vr) = Pr a0,a1∼Znq
(α0,α1)∼Z2

q\{(0,0)}

[
h(α0a0 + α1a1) ∈ Span

(
{h(a0), h(a1)}

)
+ Vr

]
≥ 1− 4ν.

The probability that the above algorithm chooses this r is 1/t. The claim follows.
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Claim 14 Let notations be as above. Then PrDt
[
dim(V) = 3t

]
< η1/3.

Remark 15 This is the only place in the paper where we need to use the assumption that

q2/3+c < p < q.

Proof. Let D be the distribution which runs the same random procedure as in Dt except

which also outputs the {ai,j}, and additionally which outputs the {bi,j} and {b′i,j} used to

compute h. So specifically, D outputs

{
(ai,j , bi,j), (a

′
i,j , b

′
i,j)
}
i=1,...,t
j=0,1,2

⊂
(
Znq × Zq

)3 × (Znq × Zp
)3

where for all i = 1, . . . , t:

• (ai,0, bi,0), (ai,1, bi,1) ∼ Znq × Zq;

• (αi,0, αi,1) ∼ Z2
q \ {(0, 0)} and (ai,2, bi,2) = (αi,0ai,0 + αi,1ai,1, αi,0bi,0 + αi,1bi,1);

• (a′i,j , b
′
i,j) = f(ai,j , bi,j).

Consider a draw
(
{(ai,j , bi,j)}, {(a′i,j , b′i,j)}

)
∼ D, let d := dim

(
Span

(
{a′i,j}

))
, and let S, S′ ⊂

Znq be the following subsets of LWE and LWR secrets:

S :=
{
s ∈ G : bi,j = 〈ai,j , s〉 ∀ i, j

}
; and S′ :=

{
s′ ∈ Znq : b′i,j =

⌊
〈a′i,j , s′〉

⌉
p
∀ i, j

}
.

Consider the following three events:

• E1: d = 3t;

• E2: |S| ≥ q−2t−1 · |G|;

• E3: Prs∼S
[
s′ ∈ S′

]
≥ 1−

√
3tqη, where s′ ∈ Znq is the unique LWR secret st p(s,s′) ≥ 1−η.
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Note that all three events cannot occur simultaneously. Indeed, the events E2 and E3

together imply that #{s ∈ S : s′ ∈ S′} ≥ (1 −
√

3tqη) · q−2t−1 · |G| ≥ 1
2 · q

−2t−1 · |G|, while

E1 implies that |S′| =
(
q/p
)3t · q−3t · qn = p−3t · qn. If all three hold then

#{s ∈ S : s′ ∈ S′}
|S′|

≥ q−2t−1 · δ
2 · p−3t

>
q3tc−1 · δ

2
> 1,

which violates property 3 of G since it means some s′ ∈ S′ has #{s ∈ S : p(s,s′) ≥ 1−η} ≥ 2.

We finish by showing that both E2 and E3 occur with high probability. Specifically, we

show that PrD
[
E2 & E3

]
> 1 − η1/3. Since all three events cannot occur simultaneously,

PrD
[
E1

]
< η1/3 must hold. So, the following two claims complete the proof.

Claim 15 PrD
[
E2

]
> 1− q−n/3.

Proof. Recall E2 is the event that |S| ≥ q−2t−1 · |G|. In this proof, it will be more

convenient to label the 2t pairs in Znq × Zq drawn during D as (a1, b1), . . . , (a2t, b2t), rather

than (ai,j , bi,j), i = 1, . . . , t and j = 0, 1. Given a draw {(ai, bi)}2ti=1 during D, let Gr = {s ∈

G : bi = 〈ai, s〉 ∀ i = 1, . . . , r}. So G = G0 and S = G2t. We have

PrD
[
E2

]
= PrD

[
|S| ≥ q−2t−1 · |G|

]
≥ PrD

[
|Gr| ≥ q−1−1/2t · |Gr−1| ∀ r = 1, . . . , 2t

]
=

2t∏
r=1

PrD

[
|Gr| ≥ q−1−1/2t · |Gr−1|

∣∣∣|Gi| ≥ q−1−1/2t · |Gi−1| ∀ i = 1, . . . , r − 1
]
.

We will show that for all r = 1, . . . , 2t, as long as |Gr−1| ≥ q−r · |G|, then

Pr(a,b)∼Znq×Zq

[
Prs∼Gr−1

[
b = 〈a, s〉

]
≥ q−1−1/2t

]
≥ 1− q−n/2 (3.4)

holds. This proves the claim as it gives PrD
[
E2

]
≥
(
1− q−n/2

)2t
> 1− q−n/3, so it remains

to prove (3.4). For b ∈ Zq, let

Xb :=
{
a ∈ Znq : Prs∼Gr−1 [〈a, s〉 = b] < q−1−1/2t

}
.
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Clearly ∆
(
〈Xb,Gr−1〉,Unif(Zq)

)
> q−1 · (1− q−1/2t) ≥ q−2. Therefore, by Fact 1,

|Xb| ≤
qn+1

|Gr−1| · q−4
≤ qn+5

q−r · |G|
≤ qn+5+2t

δ · qn
= q2t+5 · δ−1.

We have

Pr(a,b)∼Znq×Zq

[
Prs∼Gr−1

[
b = 〈a, s〉

]
< q−1−1/2t

]
≤ Pra∼Znq

[
∃ b ∈ Zq st a ∈ Xb

]
≤ q2t+6 · δ−1 · q−n < q−n/2,

proving (3.4).

Claim 16 PrD
[
E3

]
≥ 1−

√
3tqη.

Proof. Recall E3 is the event that Prs∼S
[
s′ ∈ S′

]
≥ 1−

√
3tqη, where s′ ∈ Znq is the unique

s′ ∈ Znq such that p(s,s′) ≥ 1 − η. We prove PrD,s∼S
[
s′ ∈ S′

]
≥ 1 − 3tqη; the claim then

follows by averaging. Note that Pr(a,b)∼LWEs

[
b′ =

⌊
〈a′, s′〉

⌉
p

∣∣b = 〈a, s〉
]
≥ 1 − qη, since χ

outputs e = 0 with probability at least 1/q. It follows that

PrD,s∼S
[
s′ ∈ S′

]
= PrD,s∼G

[
b′i,j =

⌊
〈a′i,j , s′〉

⌉
p
∀ i, j

∣∣∣bi,j = 〈ai,j , s〉 ∀ i, j
]

= Prs∼G,{(ai,j ,bi,j)}∼LWEs

[
b′i,j =

⌊
〈a′i,j , s′〉

⌉
p
∀ i, j

∣∣∣bi,j = 〈ai,j , s〉 ∀ i, j
]
≥ 1− 3tqη,

by the union bound.

3.7.2 Recovering H.

In the previous section we showed how to recover a constant dimensional subspace

V ⊂ Znq such that P(V) ≥ 1 − 4ν, where ν = η1/3t. Here, we show how to use h such

that P(V) ≥ 1 − 4ν holds, to recover H ∈ Zn×nq such that P(H,V) ≥ 1 − τ holds where

τ = 8n4q2ν. This completes the proof of Lemma 12, and thus also the proof of Theorem 3.
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Rather than directly recovering H ∈ Zn×nq , our algorithm will recover vectors {ai,a′i}ni=1 ⊂

Znq such that {ai}i is linearly independent and such that

Prα1,...,αn∼Zq

[
h(α1a1 + · · ·+ αnan) ∈ Span(α1a

′
1 + · · ·+ αna

′
n) + V

]
≥ 1− τ. (3.5)

Given such {ai,a′i}i, we let H ∈ Zn×nq be the linear map which sends ai to a′i for all

i = 1, . . . , n; P(H,V) ≥ 1− τ follows from (3.5).

The Algorithm to Recover {ai,a′i}i. Let notations be as above. We recover {ai,a′i}i

as follows.

1. Choose a1, . . . ,an ∼ Znq uniformly such that {a1, . . . ,an} is linearly independent.

2. For i = 1, . . . , n, set a′i = λih(ai) for scalars {λi}ni=1 computed as follows:

· set λ1 = 1;

· for i ≥ 2, let λi ∈ Zq be the unique scalar such that h(a1 + ai) ∈ Span
(
a′1 +

λih(ai)
)

+ V; if no such λi exists, or if more than one such λi exists, halt and

give no output.

3. Output {ai,a′i}ni=1.

Note that h(a1 +ai) ∈ Span
(
{a′1, h(ai)}

)
+V holds for all i ∈ {2, . . . , n} with probability at

least 1− 4(n− 1)q2ν, since P(V) ≥ 1− 4ν. In this case, for all i, there exist scalars (β1, βi)

such that h(a1 + ai) ∈ β1a
′
1 + βih(ai) + V. If β1 = 0 then h(a1 + ai) ∈ Span

(
h(ai)

)
+ V;

this happens only with negligible probability since h is non-degenerate. If β1 6= 0 then there

exists some scalar λi ∈ Zq such that h(a1 + ai) ∈ Span
(
a′1 + λih(ai)

)
+ V. Note, it is only
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possible for there to exist two such scalars, λi 6= λ′i such that

h(a1 + ai) ∈
(

Span
(
a′1 + λih(ai)

)
+ V

)
∩
(

Span
(
a′1 + λ′ih(ai)

)
+ V

)
,

if h(ai) ∈ Span(a′1) + V. This also occurs with negligible probability since h is non-

degenerate. Thus, the above algorithm completes and gives output without aborting with

probability at least 1− 4nq2ν.

Establishing (3.5). Given {ai}ni=1 which are linearly independent, define the quantities

Pr
(
{ai}

)
for r = 3, . . . , n as

Pr
(
{ai}

)
:= Prα1,...,αr∼Zq

[
h(α1a1 + · · ·+ αrar) ∈ Span(α1a

′
1 + · · ·+ αra

′
r) + V

]
.

It remains to show that with good probability over {ai}, Pn
(
{ai}

)
≥ 1− τ holds. We will

prove this using induction on r. The following claim is key to this argument; it gives us our

base case and will also be crucial to our induction step. We prove this claim in Section 3.7.3.

Claim 17 For all distinct i, j ∈ {2, . . . , n}, and (α1, αi, αj) ∈ Z3
q \ {0},

h(α1a1 + αiai + αjaj) ∈ Span
(
{α1a

′
1 + αia

′
i + αja

′
j}
)

+ V,

holds with probability at least 1− 4q2n2ν over {ai}ni=1.

Let us now see how to use Claim 17 to establish (3.5). We will show that Pr ≥ 1− 8r2n2q2

for all r = 3, . . . , n. We use induction; the base case of r = 3 follows immediately from

Claim 17, so fix r > 3 and assume that Pr−1 ≥ 1−8(r−1)2n2q2ν. Draw linearly independent

{ai}ni=1 from Znq . Additionally, draw a non-zero ~α = (α1, . . . , αr) ∼ Zrq \ {0}. We group the

sum α1a1 + · · ·+ αnan in two ways:

(α1a1 + · · ·+ αr−1ar−1) + αrar = (α1a1 + αrar) + (α2a2 + · · ·+ αr−1ar−1).

71



Consider what happens if the following things occur:

· h(α1a1 + · · ·+ αr−1ar−1) ∈ Span(α1a
′
1 + · · ·+ αr−1a

′
r−1) + V;

· h(α1a1 + αrar) ∈ Span(α1a
′
1 + αra

′
r) + V.

· h(αrar) ∈ Span(αra
′
r) + V;

· h(α2a2 + · · ·+ αr−1ar−1) ∈ Span(α2a
′
2 + · · ·+ αr−1a

′
r−1) + V.

Note the first and last events occur with probability Pr−1

(
{ai}

)
and Pr−2

(
{ai}

)
by the

induction hypothesis; the middle two events occur with probability 1−8q2n2ν by Claim 17.

Moreover, note that when all four of these events occur h(α1a1 + · · ·+αrar) is contained in

(
Span

({
α1a

′
1 + · · ·+ αr−1a

′
r−1, αra

′
r

})
+ V

)
∩
(

Span
({
α1a

′
1 + αra

′
r, z
})

+ V

)
,

where z = h(α2a2 + · · · + αr−1ar−1). It follows that there exist scalars A,B,A′, B′ ∈ Zq

such that

A ·
(
α1a

′
1 + · · ·+ αr−1a

′
r−1) +B · αra′r ∈ A′ · (α1a

′
1 + αra

′
r) +B′ · z + V.

Thus either A′ = A or else a′1 ∈ Span
({
α2a

′
2 + · · ·+ αr−1a

′
r−1,a

′
r, z
})

+ V, which happens

only with negligible probability by non-degeneracy. Similarly, A′ = B except with negligible

probability. It follows that except with probability 1− 8rq2n4ν, A = B and so

h(α1a1 + · · ·+ αrar) ∈ Span
(
{α1a

′
1 + · · ·+ αra

′
r}
)

+ V

as desired.
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3.7.3 Proof of Claim 17

Proof. We must show that for all distinct i, j ∈ {2, . . . , n} and (α1, αi, αj) ∈ Z3
q \ {0},

h(α1a1 + αiai + αjaj) ∈ Span
(
{α1a

′
1 + αia

′
i + αja

′
j}
)

+ V

holds with good probability over {ai}. We will build up to analyzing h(α1a1 +αiai+αjaj).

To start out, we know that h(a1) = a′1 and h(a1 + ai) = a′1 + a′i for all i ∈ {2, . . . , n}; these

are due to the algorithm specifications. So now consider h(a1 + αiai) for αi 6= 0, 1. Note

a1 + αiai = (1− αi)a1 + αi(a1 + ai), and so

h(a1 + αiai) ∈ Span
(
{a′1,a′i}

)
+ V

holds for all i ∈ {2, . . . , n} and αi ∈ Zq with probability at least 1 − 4nqν (since P(V) ≥

1− 4ν). Now, if h(a1 + αiai) ∈ Span
(
{a′1,a′i}

)
+ V holds for all (i, αi), then we can define

maps πi : Zq → Zq so that h(a1 + αiai) ∈ Span
(
a′1 + πi(αi)a

′
i

)
+ V always holds. Note

πi(0) = 0 and πi(1) = 1 for all i. We complete the proof of Claim 17 by showing the

following both occur with good probability over {ai}

Point 1: for all (α1, αi, αj) ∈ Z3
q \ {0}, and for all i, j ∈ {2, . . . , n},

h(α1a1 + αiai + αjaj) ∈ Span
(
{α1a

′
1 + πi(αi)a

′
i + πj(αj)a

′
j}
)

+ V;

Point 2: every πi is the identity function.

Point 1 when α1 = αj = 0. Note αiai = −a1+(a1+αiai), and so h(αiai) ∈ Span
(
{a′1,a′i}

)
+

V holds with probability 1− 4ν. This means that either

h(αiai) ∈ Span(a′i) + V; or a′1 ∈ Span
({
h(αiai),a

′
i

})
+ V.
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The latter happens with negligible probability since h is non-degenerate. Thus, h(αiai) ∈

Span(a′i) + V holds simultaneously for all i ∈ {2, . . . , n} and αi ∈ Zq with probability at

least 1− 4qnν over {ai}.

Point 1 when α1 = 1. Note αjaj + (a1 + αiai) = a1 + αiai + αjaj = αiai + (a1 + αjaj),

and so

h(a1 +αiai+αjaj) ∈
(

Span
(
{a′i,a′1 +πj(αj)a

′
j}
)

+V

)
∩
(

Span
(
{a′j ,a′1 +πi(αi)a

′
i}
)

+V

)
holds with probability 1− 8ν. In case h(a1 +αiai +αjaj) is in the intersection, there exist

scalars A,B,A′, B′ ∈ Zq such that

Aa′i +B ·
(
a′1 + πj(αj)a

′
j

)
∈ A′a′j +B′ · (a′1 + πi(αi)a

′
i

)
+ V.

As we have seen a few times by now, either B = B′ or else a′1 ∈ Span
(
{a′i,a′j}

)
+ V

and the latter happens with negligible probability by non-degeneracy. Therefore, B = B′

except with negligible probability. Similarly, A = πi(αi)B, and so h(a1 + αiai + αjaj) ∈

Span(a′1 + πi(αi)a
′
i + πj(αj)a

′
j) + V holds for all i, j ∈ {2, . . . , n} and αi, αj ∈ Z with

probability at least 1− 8q2n2ν over {ai}.

Point 1 when α1 = 0. Note h(αiai +αjaj) ∈ Span
(
{a′i,a′j}

)
+ V with probability 1− 4ν

over {ai}. Additionally, we can write αiai + αjaj = −a1 + (a1 + αiai + αjaj) and so

h(αiai + αjaj) ∈ Span
(
{a′1,a′1 + πi(αi)a

′
i + πj(αj)a

′
j}
)

+ V

holds with probability 1− 8ν by the previous part. Thus, with probability at least 1− 12ν,

there exist scalars A,B,A′, B′ ∈ Zq such that

Aa′i +Ba′j = A′a′1 +B′(a′1 + πi(αi)a
′
i + πj(αj)a

′
j).
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By non-degeneracy, A′ = −B′, A = B′πi(αi), and B = B′πj(αj) hold except with negligible

probability. So h(αiai + αjaj) ∈ Span
(
{πi(αi)a′i + πj(αj)a

′
j}
)

+ V holds for all i, j ∈

{2, . . . , n} and αi, αj ∈ Zq with probability 1− 12q2n2ν over {ai}.

Point 2. We prove that πi(αi) = αi for all i = 2, . . . , n and αi ∈ Zq by induction on αi.

We have already seen that πi(0) = 0 and πi(1) = 1 for all i. So assume πi(αi − 1) = αi − 1,

and write a1 + αiai + aj in three different ways:

(a1 + ai) + ((αi − 1)ai + aj) = aj + (a1 + αiai) = (a1 + aj) + αiai.

With probability 1− 12ν over {ai}, h(a1 + αiai + aj) is contained in:

(
Span

(
{a′1 + a′i, (αi − 1)a′i + a′j}

)
∩ Span

(
{a′j ,a′1 + πi(αi)a

′
i}
)
∩ Span

(
{a′1 + a′j ,a

′
i}
))

+ V,

in which case there exist scalars A,B,A′, B′, A′′, B′′ ∈ Zq such that h(a1 + αiai + aj) is

equal to

A(a′1 + a′i) +B((αi − 1)a′i + a′j) = A′a′j +B′(a′1 + πi(αi)a
′
i) = A′′(a′1 + a′j) +B′′a′i.

Solving for a′1 gives A′′ = B′ = A. Solving for a′j gives A′′ = A′ = B. In particular,

A = B = B′. Solving for a′i gives πi(αi) = αi, as desired. We incurred a loss of 12ν to take

a single step in the induction. Therefore, πi(αi) = αi for all i ∈ {2, . . . , n} and αi ∈ Zq

occurs with probability at least 1− 12nqν.

Point 1. Assume α1 6= 0 since we have already handled this case above. Writing

α1a1 + αiai + αjaj = α1(a1 + α−1
1 αiai + α−1

1 αjaj),
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we see that with probability at least 1− 12ν over {ai}, h(α1a1 + αiai + αjaj) is contained

in

Span
(
h(a1 + α−1

1 αiai + α−1
1 αjaj)

)
+ V = Span

(
a′1 + α−1

1 αia
′
i + α−1

1 αja
′
j

)
+ V,

as desired. We have used point 2.
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Chapter 4

A High Dimensional

Goldreich-Levin Theorem with

Low Agreement

In this work we prove a high dimensional analogue of the celebrated Goldreich-

Levin Theorem (STOC’89). We consider the following algorithmic problem: given oracle

access to a function f : Zmq → Znq (m,n, q ∈ N such that q is prime) such that Prx∼Zmq
[
f(x) =

Ax
]
≥ ε for some matrix A ∈ Zn×mq and ε > 0, recover A. We focus is on the case when

ε ≤ 1/q since when ε ≥ 1/q + δ, the problem is solved by the original Goldreich-Levin

Theorem. As stated, this problem cannot be efficiently solved when ε ≤ 1/q since the set of

A with good agreement with f might be exponentially large. However, in this work we give

an algorithm which efficiently recovers an approximation of A; that is, a matrix A′ ∈ Zn×mq

such that Prx∼Zmq
[
Ax = A′x

]
≥ q−O(1). Our result extends a line of work relating to
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list-decoding group homomorphism codes, and also has applications to approximate list-

decodable codes and effective algebraic property testing; we elaborate more in the next

section.

4.1 Introduction

The celebrated Goldreich-Levin Theorem ([GL89]) is a cornerstone theorem in

theoretical computer science. It yielded fundamental applications in cryptography ([Blu83],

[HILL99]), led to the development of new categories of error-correcting codes ([Sud97a],[KT00]),

and launched boolean learning theory ([KM93]). The technical core of the Goldreich-

Levin theorem is the “prediction implies inversion” lemma which states that a function

f : {0, 1}n → {0, 1} which predicts random inner products with a secret y ∈ {0, 1}n, with

any advantage at all over guessing randomly, must “know” y, in the sense that y can be

recovered efficiently given oracle access to f . This lemma has been generalized in many

different ways. One line of follow up work proves prediction implies inversion lemmas for

general group homomorphisms f : G → H ([GKS06],[DGKS08],[BBW18]). Another work

proves a degree 2 analogue using quadratic Fourier analysis ([TW14]). In this work we

generalize the Goldreich-Levin theorem to higher dimensions.

4.1.1 Our Contributions

We consider a function f : Zmq → Znq for integers n,m, q ∈ N with q prime which

has the following linear agreement guarantee:

Prx∼Zmq
[
f(x) = Ax

]
≥ ε, (4.1)
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for some ε > 0 and matrix A ∈ Zn×mq . We ask whether, given oracle access to such a

function, it is possible to efficiently recover A. More precisely, and in the list decoding

spirit of [GL89], we ask whether it is possible to efficiently output a list L = {A1, . . . ,A`}

such that any A ∈ Zn×mq which has good agreement with f is in L. When ε ≥ 1/q + δ,

list decoding algorithms from prior work ([GL89, DGKS08]), indeed recover such a list.

However, these algorithms fail when ε ≤ 1/q. Actually, when ε ≤ 1/q, the problem is not

possible as stated, since the list might be exponentially large (and so cannot be efficiently

recovered). For example, suppose that f always outputs Ax except for the first coordinate,

which it chooses randomly. In other words,

f(x)i =


$ ∼ Zq, i = 1

(Ax)i, i ≥ 2

where (Ax)i denotes the i−th coordinate of Ax. Clearly, in this case f(x) = Ax occurs

with probability 1/q. However, f(x) = A′x also holds with probability 1/q for any A′

whose final n − 1 rows are the same as those in A. Indeed, the function f possesses no

information about the first row of A, so any matrix which equals A outside of the first row

(there are qm such matrices) will have just as good agreement with f as A does.

So to summarize, the algorithmic question above is solved by prior work when

ε > 1/q and is impossible when ε ≤ 1/q. This is unfortunate because the setup is very

natural when ε ≤ 1/q. When n = 1, the barrier of 1/q + δ makes sense conceptually

since a random function (from which no secret can be extracted) will have agreement 1/q.

So the original (one-dimensional) Goldreich-Levin theorem promises that a secret can be

extracted from any function which has a prediction advantage over guessing randomly. In

higher dimension, a random function will agree with a linear function with probability
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q−n � 1/q and so one might hope that some information about A would be recoverable

from a function with agreement probability ε > q−n.

The problem is that we have asked the wrong question. Rather than aiming to

recover a matrix A which is guaranteed to have good agreement with f , we should try to

approximately recover A; that is, recover a matrix A′ such that Prx∼Zmq
[
A′x = Ax

]
≥

q−O(1) when Prx∼Zmq
[
f(x) = Ax

]
≥ ε (q−n < ε ≤ q−1). In this work, we give an algorithm

which recovers such an approximation of a matrix A that has low agreement with f , and

characterize the conditions under which our algorithm fails. We informally state our main

theorem below.

Theorem 3 (Informal) Let m,n, q ∈ N be parameters with q prime. Let ε > 0 be such

that ε ≥ q−c for a constant c > 0. Let f : Zmq → Znq be a function. There exists a

randomized oracle algorithm A which runs in time poly
(
m,n, q, 1/ε

)
and with probability

poly(1/m, 1/n, 1/q, ε) outputs a matrix A′ ∈ Zn×mq such that Prx∼Zmq
[
A′x = Ax

]
≥ q−O(1),

unless f satisfies a conditional affine linearity test.

For ease of exposition, we have not described the conditional affine linearity test

described above in the informal theorem statement (see Theorem 4 for the formal theorem

statement). In slightly more detail, we’ll show that the only way in which our algorithm fails

to recover an approximation of the matrix A is if there exists a subset S ⊂ Zmq of density

|S|q−m ≥ ε and a subspace W ⊂ Znq of dimension d = O(1) such that Prx∼Zmq
[
f(x) ∈

Ax + W
∣∣ x ∈ S

]
> 1/q and

Prx,y∼Zmq
[
φ(x + y) = φ(x) + φ(y)

∣∣ x,y,x + y ∈ T
]
≥ 1− poly(1/m, 1/n, 1/q, ε),
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where T = {x ∈ S : f(x) ∈ Ax+W} and φ : Zmq → Zdq is a function which, when restricted

to T , is the projection of f(T ) onto W ∼= Zdq . Again, for the purpose of this introduction we

have presented an oversimplified narrative of this condition; see Theorem 4 for the formal

theorem statement.

4.1.2 Applications

Approximate List Decodable Codes. Code amplification schemes are coding schemes

which, when concatenated with an error-correcting code, yield a new code with better

parameters. Code amplification schemes are relaxations of standard ECCs because they

assume that their message space has a notion of distance (since the messages are codewords

from the original ECC). Code amplification is an extremely useful technique; many of the

best codes we have today are built in this way ([ABN+92],[Ta-17]). Similarly, approximate

list decoding assumes a notion of distance for the message space and given a corrupted

codeword, an algorithm can recover a list of messages such that any valid codeword which

is close to the corrupted codeword is encoding a message which is close to something in the

list.

Approximate LDCs were introduced explicitly in [IJK09] and [IJKW10], where it

is shown how to use an approximate list decoding algorithm for a direct product code to

prove hardness amplification theorems. Our work falls under the jurisdiction of approximate

LDCs, with our message space being Zn×mq and the codeword being the truth table encoding.

Effective Algebraic Property Testing. Our work fits into the research landscape on

effective property testing. The linearity tests of [BLR93] and [BCH+96] promise that if
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f : {0, 1}n → {0, 1} satisfies f(x+y) = f(x)+f(y) with good probability over x,y ∼ {0, 1}n

then there exists a linear map ϕ : {0, 1}n → {0, 1} such that f has good agreement with

ϕ. In the high dimensional and large modulus setting, linearity tests are much harder to

prove. Samorodnitsky ([Sam07]) showed using methods from additive combinatorics that

if f : Zmq → Znq passes this linearity test with probability ε then it is ε′−close to a linear

function where ε′ depends exponentially on n. A breakthrough result of Sanders ([San12])

obtains a better (quasi-logarithmic) relationship between ε′ and ε. The holy grail of this

area would be a proof that ε′ depends polynomially on ε. This is known to follow from the

polynomial Freiman-Ruzsa conjecture in additive combinatorics. Our work makes any high

dimensional linearity testing theorem effective by offering an algorithm which would recover

the linear map which is close to f (whose existence would be ensured by the linearity testing

theorem).

4.2 Preliminaries

Basic Notation. If n ∈ N, then we denote by [n] the set {1, . . . , n}. For a prime q ∈ N,

we denote by Zq the field of integers modulo q. We will denote scalars, vectors and matrices

with lowercase italic, lowercase bold, and uppercase bold respectively (e.g., z ∈ Zq, z ∈ Znq

and Z ∈ Zn×mq ). For a distribution D (resp. set D), we write r ∼ D (resp. r ∼ D) to

indicate that the random variable r is drawn according to D (resp. the uniform distribution

on D). For an event E, we denote by 11E the indicator random variable corresponding to

E. Namely, 11E = 1 (resp. 11E = 0) when E occurs (resp. does not occur).
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Linear Algebra. Unless otherwise specified, every vector space in this work is over the

field Zq, for a prime q ∈ N. If W ⊂ Znq is a subspace, then we denote by W⊥ ⊂ Znq the set

{z ∈ Znq : 〈z,w〉 = 0 ∀ w ∈ W}, where 〈z,w〉 = z1w1 + · · · + znwn is the dot product. It

is known that W⊥ ⊂ Znq is a subspace of dimension n − d, where d = dim(W). Given a

matrix Z ∈ Zn×mq , we denote by Zt ∈ Zm×nq its transpose.

Roots of Unity. Let q ∈ N be prime. A qth root of unity in C is a complex root of the

monic degree q polynomial f(X) = Xq − 1. It is a well known fact that there exist exactly

q roots of f , which are the elements {e−2πik/q}q−1
k=0, where i is the imaginary unit. The qth

roots of unity in C form a multiplicative cyclic group of order q, which is isomorphic to Zq.

A generator of the group is called a primitive qth root of unity in C. The subset of primitive

qth roots of unity in C form a subgroup of order q − 1, which is isomorphic to Z∗q .

Recall that if ω ∈ C is a primitive qth root of unity, then
q−1∑
k=0

ωk = 0. Also, it is a

well-known fact that for any subspace W ⊂ Znq , Ez∼W⊥
[
ω〈z,w〉

]
= 11w∈W.

Discrete Fourier Analysis on Finite Abelian Groups. Here we briefly summarize

several key results in discrete Fourier analysis on finite abelian groups. Actually, we special-

ize our results to the group Zmq (m, q ∈ N such that q is prime), which is also a vector space

over Zq of dimension n. See [Luo09] for a complete treatment on general finite abelian

groups. Let F = {f : Zmq → C} be the set of all functions f : Zmq → C, which is a

C−vector space. A character of Zmq is a group homomorphism χ : Zmq → C∗. It turns

out that each character χ of Zmq is characterized by an element u ∈ Zmq , and is defined

by χu(x) = ω〈u,x〉, where ω ∈ C is a primitive qth root of unity in C. Moreover, the set
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{χu : u ∈ Zmq } ⊂ F of characters of Zmq form a C−basis for F , hence F is a C−vector

space of finite dimension qm. If f ∈ F and u ∈ Zmq , then we define the Fourier coefficient

of f at u as f̂(u) := Ex∼Zmq
[
f(x)χ̄u(x)

]
= Ex∼Zmq

[
f(x)ω−〈u,x〉

]
. It turns out that for every

f ∈ F , f can be expressed as a unique linear combination of the characters of Zmq over C

of the form f =
∑

u∈Zmq
f̂(u)χu. Parseval’s identity, an extremely useful tool in application,

relates the expectation of the norm of |f(·)|2 to the sum over its Fourier coefficients of their

squared norm:

Ex∼Zmq

[∣∣f(x)
∣∣2] =

∑
u∈Zmq

∣∣f̂(u)
∣∣2.

4.2.1 The Goldreich-Levin Theorem

The Goldreich-Levin Theorem [GL89] gives an algorithmic procedure to efficiently

recover a secret vector y ∈ Zmq given oracle access to a function which predicts random

inner products of y with probability noticeably better than guessing. The original result of

[GL89] was proved in characteristic 2. Indeed, the result holds for prime characteristic q as

well. In our work, we require the characteristic q version, stated below; see Appendix A for

a proof.

Lemma 16 (Goldreich-Levin Theorem) Let q,m ∈ N such that q is prime, and let

s ∈ Zmq a secret vector. Suppose there exists a function Pred : Zmq → Zq such that

Prx∼Zmq
[
Pred(x) = 〈s,x〉

]
≥ 1/q + ε, for ε > 0. Then, there exists an algorithm Inv,

running in time poly(m, q, 1/ε), which gets oracle access to Pred and outputs s∗ ∈ Zmq such

that

Prs∗∼InvPred

[
s∗ = s

]
≥ ε2

8m3q5
.
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4.2.2 Statistical Sampling

Here we show that for a high fraction of r−planes V ⊂ Zmq , choosing a random

point v ∼ V is statistically close to choosing a random vector v ∼ Zmq .

Lemma 17 (Plane-vs-Point Sampler) Let r,m, q ∈ N be integers with q prime, and let

V be the set of r−dimensional subspaces of Zmq . Then, for every subset S ⊂ Zmq of size

|S| = λqm and ε1 > 0 such that ε1 < λ,

PrV∼V

[∣∣∣Prv∼V
[
v ∈ S

]
− λ

∣∣∣ > ε1

]
≤ 2ε−2

1 q−(r−1).

Proof. We have

PrV∼V

[∣∣∣Prx∼V
[
x ∈ S

]
− λ

∣∣∣ ≥ ε1

]
≤ 1

ε2
1

·
[
EV∼V

[
Prx∼V

[
x ∈ S

]2]− λ2

]
,

by Markov’s inequality, since λ = EV∼V
[
Prx∼V[x ∈ S]

]
. We complete the proof by showing

that E := EV∼V
[
Prx∼V[x ∈ V]2

]
≤ λ2 + 2q−(r−1) using a pairwise independence argument.

Let 11S denote the indicator function for S. We have

E = E V∼V
x1,x2∼V

[
11S(x1) · 11S(x2)

]
≤ Ex1,x2∼Zmq

[
11S(x1) · 11S(x2)

]
+ 2q−(r−1) = λ2 + 2q−(r−1),

since 2q−(r−1) is an upper bound on the probability that two randomly selected vectors

from an r−plane are linearly dependent.
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Finally, we show that if S ⊂ Zmq is a subset of density λ, then when we sample a ran-

dom basis {x1, . . . ,xr} ⊂ Zmq for an r−plane and a random point v ∼ Span({x1, . . . ,xr}),

then {x1, . . . ,xr,v} ⊂ S with probability close to λr+1.

Corollary 2 Let r,m, q ∈ N such that q is prime, and let S ⊂ Zmq be a subset of density λ.

Then,

Prx1,...,xr∼Zmq
α1,...,αr∼Zq

[
x1, . . . ,xr,

∑
i

αixi ∈ S
]
≥ λr+1

2
−
( 4

λqr−1
+ 2−Ω(m)

)
.

Proof. We’ll say that a subset {x1, . . . ,xr} ⊂ Zmq is good if the following properties hold:

1. {x1, . . . ,xr} is linearly independent.

2. {x1, . . . ,xr} ⊂ S.

3. Prα1,...,αr∼Zq

[∑
i
αixi ∈ S

]
≥ λ/2.

By Lemma 17, it follows that

Prx1,...,xr∼Zmq
[
{x1, . . . ,xr} good

]
≥ λr −

( 4

λqr−1
+ 2−Ω(m)

)
.

Thus

Prx1,...,xr∼Zmq
α1,...,αr∼Zq

[
x1, . . . ,xr,

∑
i

αixi ∈ S
]
≥
(
λr −

( 4

λqr−1
+ 2−Ω(m)

))
· λ

2

≥ λr+1

2
−
( 4

λqr−1
+ 2−Ω(m)

)
,

as desired.
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4.2.3 Computing a Linearly Independent Subset with a Property

Here we show how to algorithmically compute a linearly independent subset of Zmq

(m, q ∈ N such that q is prime) with high probability.

Lemma 18 Let m, q ∈ N such that q is prime, S ⊂ Zmq an efficiently recognizable1 subset

of density λ := |S|q−m ≥ q−c (c ∈ N), and k ∈ N such that k ≤ m− (2c+ 1). Then, there

exists an algorithm running in time poly(m, q) which with probability 1 − 2−Ω(m) over its

randomness outputs a linearly independent subset B ⊂ Zmq of size |B| = k. Furthermore, if

T ⊂ S is a subset of density 1− ε, for ε > 0, then B ⊂ T with probability 1− k(2ε+ λ/2).

Proof. The algorithm AS of the lemma works as follows:

1. Initialize B := ∅.

2. While |B| < k, choose x ∼ Zmq ; if x ∈ S and x /∈ Span(B), then update B := B
⋃
{x};

otherwise continue.

3. Output B.

We’ll show that AS outputs linearly independent B ⊂ S with probability 1 − 2−Ω(m).

First, note that PS,B := Prx∼Zmq
[
x ∈ S and x /∈ Span(B)

]
≥ λ − q−(m−k) ≥ λ/2. Let

N = 108m/λ2. By the Chernoff Bound, we have that with probability 1 − 2−Ω(m) over

x1, . . . ,xN ∼ Zmq , #{i ∈ [N ] : xi ∈ S\Span(B)} ≥ (2N/3)PS,B ≥ 1.

1By efficiently recognizable, we mean membership to the subset can be tested in time poly(m, q).
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Let B be the set output by AS . We have

Prx1,...,xk∼Zmq
[
{x1, . . . ,xk} ⊂ T

∣∣ {x1, . . . ,xk} ⊂ S L.I.
]

≥
Prx1,...,xk∼Zmq

[
{x1, . . . ,xk} ⊂ T L.I.

∣∣ {x1, . . . ,xk} ⊂ S
]

Prx1,...,xk∼Zmq
[
{x1, . . . ,xk} L.I.

∣∣ {x1, . . . ,xk} ⊂ S
]

≥ (1− kε) ·
Prx1,...,xk∼Zmq

[
{x1, . . . ,xk} L.I.

∣∣ {x1, . . . ,xk} ⊂ T
]

Prx1,...,xk∼Zmq
[
{x1, . . . ,xk} L.I.

∣∣ {x1, . . . ,xk} ⊂ S
]

≥ (1− kε) ·

k∏
i=1

(λ(1− ε)− q−(m−(i−1)))

k∏
i=1

(λ− q−(m−(i−1)))

= (1− kε) ·

∏
i

(1− ε− q−(m−(i−1))/λ)∏
i

(1− q−(m−(i−1))/λ)

≥ (1− kε) · (1− (ε+ λ/2))k ≥ (1− kε)(1− k(ε+ λ/2)) ≥ 1− k(2ε+ λ/2),

where the first inequality on the final line follows from q−(m−(i−1))/λ ≤ q−(m−k)/λ ≤ λ/2 ≤

1.
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4.3 Main Theorem and Proof Overview

Here we outline our main theorem, which provides a high dimensional approximate

version of the Goldreich-Levin Theorem with low agreement.

Theorem 4 Let m,n, q ∈ N, such that q = poly(m,n) is prime, and let A ∈ Zn×mq be a

matrix. Suppose there exists a function f : Zmq → Znq such that

Prx∼Zmq
[
f(x) = Ax

]
≥ ε,

where ε > 0 such that q−c ≤ ε ≤ q−1, for a constant c ∈ N. Then, there exists an algorithm

A running in time poly(m,n, q, 1/ε,Tf ), where Tf is the running time of f , which gets

oracle access to f and outputs with probability poly(1/m, 1/n, 1/q, ε) over its randomness

either:

• a matrix A′ ∈ Zn×mq such that Prx∼Zmq
[
A′x = Ax

]
≥ q−O(1);

• or (the description of) a subset S ⊂ Zmq of density |S|q−m ≥ ε and a subspace W ⊂ Znq

of constant dimension s ∈ N for which there exists a superspace W∗ ⊃W of constant

dimension d ∈ N such that Prx∼Zmq
[
f(x) ∈ Ax + W∗ ∣∣ x ∈ S

]
> 1/q and

Prx1,...,xr∼Zmq
α1,...,αr∼Zq

[
φ
(∑

i

αixi

)
=
∑
i

αiφ(xi)

∣∣∣∣ x1, . . . ,xr,
∑
i

αixi ∈ T
]
≥ 1− γ,

where T ⊂ S is the set of x ∈ S such that f(x) ∈ Ax + W∗, φ : Zmq → Zd−sq is a

function which, when restricted to T , is the projection of f(T ) onto W∗/W ∼= Zd−sq ,

r ∈ N is a constant, and γ = poly(1/m, 1/n, 1/q, ε).

Remark. Theorem 4 states that if a function f : Zmq → Znq has low agreement with

a matrix A ∈ Zn×mq , then there exists an algorithm which recovers an approximation
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of A, unless f admits a function φ : Zmq → Zd−sq which satisfies the conditional affine

linearity test of Theorem 8 in Chapter 2 Section 2.3. Let us further decompose this

conclusion. First, let {w1, . . . ,ws} ⊂ W be a basis for W, and extend this to a basis

{w1, . . . ,ws,ws+1, . . . ,wd} ⊂W∗ for W∗, where ws+1, . . . ,wd ∈W∗\W. Reindex

{ws+1, . . . ,wd} as {w∗1, . . . ,w∗d−s}. Clearly, {w∗1 + W, . . . ,w∗d−s + W} ⊂W∗/W is a ba-

sis for W∗/W. Define φ : Zmq → Znq as a function which, when restricted to T = {x ∈

S : f(x) ∈ Ax + W∗}, is the projection of f(T ) onto W∗/W. Let M ∈ Zn×(d−s)
q be

the matrix whose ith column is w∗i . Observe that if x ∈ T , then we can write f(x) ∈

Ax + M · φ(x) + W. If φ agreed with an affine map (A′,b′) ∈ Z(d−s)×m
q × Zd−sq , then we

could write f(x) ∈ (A −MA′)x + b′ + W. Moreover if this agreement held with proba-

bility at least 1/q conditioned on x ∈ S, then we claim this would effectively eliminate the

second point of the conclusion of Theorem 4 (see Lemma 19 below). However, Theorem 8

concludes that this agreement is at least q−d, which is too small in our case. If we could

reduce our argument to the case in which d = 1, though, then this would suffice. The

main barrier in currently achieving this is a restriction imposed on the parameters by our

statistical sampling argument, which is further detailed in the proof of Lemma 19. An in-

teresting follow-up question would be if there exists a method to circumvent this parameter

restriction, or the sampling argument altogether, and allow us to reduce our argument to

the case in which d = 1.

Our proof of Theorem 4 is divided into two main parts. First, suppose that

f : Zmq → Znq and A ∈ Zn×mq are such that Prx∼Zmq
[
f(x) = Ax

]
≥ ε. The first part

constructs a subset S ⊂ Zmq and a subspace W ⊂ Znq such that Prx∼Zmq
[
f(x) − Ax ∈
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W
∣∣ x ∈ S

]
≥ 1/q + ε′, for some ε′ > 0. Then, the second part utilizes Goldreich-Levin

prediction-implies-inversion arguments together with standard linear algebraic techniques

to recover an approximation of the matrix A (i.e., a matrix A′ ∈ Zn×mq which has good

agreement with A). More concretely, the proof of Theorem 4 follows immediately from

Lemmas 19 and 20 below by simply composing the algorithms A1 and A2 of the respective

lemmas.

Lemma 19 Let m,n, q ∈ N, such that q = poly(m,n) is prime, and let A ∈ Zn×mq be a

matrix. Suppose there exists a function f : Zmq → Znq such that

Prx∼Zmq
[
f(x) = Ax

]
≥ ε,

where ε > 0 such that q−c ≤ ε ≤ q−1, for a constant c ∈ N. Then, there exists an algorithm

A1 running in time poly(m,n, q, 1/ε,Tf ), where Tf is the running time of f , which gets

oracle access to f and outputs with probability poly(1/m, 1/n, 1/q, ε) over its randomness

matrices (Z,Y) ∈ Zn×`q × Zm×`q and a subspace W ⊂ Znq of dimension d, for constants

`, d,∈ N, such that either:

• Prx∼Zmq
[
f(x) ∈ Ax + W

∣∣ Z · f(x) = Yx
]
≥ q−1/3;

• or there exists a superspace W∗ ⊃ W of constant dimension d′ ∈ N such that

Prx∼Zmq
[
f(x) ∈ Ax + W∗ ∣∣ Z · f(x) = Yx

]
> 1/q and

Prx1,...,xr∼Zmq
α1,...,αr∼Zq

[
φ
(∑

i

αixi

)
=
∑
i

αiφ(xi)

∣∣∣∣ x1, . . . ,xr,
∑
i

αixi ∈ T
]
≥ 1− γ,

where T ⊂ Zmq is the set of x ∈ Zmq such that Z · f(x) = Yx and f(x) ∈ Ax + W∗,

φ : Zmq → Zd′−dq is a function which, when restricted to T , is the projection of f(T )

onto W∗/W ∼= Zd′−dq , r ∈ N is a constant, and γ = poly(1/m, 1/n, 1/q, ε).
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Lemma 20 Let m,n, q ∈ N, such that q = poly(m,n) is prime, and let A ∈ Zn×mq be a

matrix. Let f : Zmq → Znq be a function such that

Prx∼Zmq
[
f(x) = Ax

]
≥ ε,

where ε > 0 such that q−c ≤ ε ≤ q−1, for a constant c ∈ N. Suppose there exist matrices

(Z,Y) ∈ Zn×`q ×Zm×`q and a subspace W ⊂ Znq of dimension d, for constants `, d,∈ N, such

that Prx∼Zmq
[
f(x) ∈ Ax + W

∣∣ Z · f(x) = Yx
]
≥ q−1/3. Then, there exists an algorithm

A2 running in time poly(m,n, q, 1/ε,Tf ), where Tf is the running time of f , which takes as

input (Z,Y,W), gets oracle access to f , and outputs with probability poly(1/m, 1/n, 1/q, ε)

over its randomness a matrix A′ ∈ Zn×mq such that Prx∼Zmq
[
A′x = Ax

]
≥ q−O(1).

Note that Theorem 4 follows immediately from Lemmas 19 and 20. The remainder of this

work is therefore devoted to proving Lemmas 19 and 20. First, we outline their proofs in

the next section.

4.3.1 Proof Overview

Here we give an overview of the proofs of Lemmas 19 and 20. Let f : Zmq → Znq

be a function and A ∈ Zn×mq a matrix such that Prx∼Zmq
[
f(x) = Ax

]
≥ ε, for ε > 0. The

goal is to use f to recover an approximation A′ ∈ Zn×mq of A. Initialize empty matrices

(Z,Y) ∈ Z0×n
q × Z0×m

q and the trivial subspace W := {0} ⊂ Znq . We define the following

quantities:

• PZ,Y,W := Prx∼Zmq
[
f(x)−Ax ∈W

∣∣ Z · f(x) = Yx
]
.

• QZ,Y(z) := Prx∼Zmq
[
〈f(x), z〉 = 〈Atz,x〉

∣∣ Z · f(x) = Yx
]
, for z ∈ Znq .
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Ensuring Progress by Conditional Agreement with A. Observe that initially,

PZ,Y,W ≥ ε, while

Ez∼W⊥
[
QZ,Y(z)

]
= PZ,Y,W + (1− PZ,Y,W)·

Ex∼Zmq

[
Prz∼W⊥

[
〈f(x)−Ax, z〉 = 0

] ∣∣∣ Z · f(x) = Yx, f(x)−Ax /∈W
]

=PZ,Y,W + (1− PZ,Y,W)/q ≥ 1/q + PZ,Y,W/2.

Thus, with probability PZ,Y,W/4 over z ∼W⊥, we have that QZ,Y(z) ≥ 1/q + PZ,Y,W/4.

We can then use the Goldreich-Levin Theorem to recover y = Atz ∈ Zmq with good

probability as follows. Construct the predictor Predz(x) which checks if Z · f(x) = Yx,

and if so outputs 〈f(x), z〉 ∈ Zq, and otherwise outputs a random guess α ∼ Zq. If

QZ,Y(z) ≥ 1/q + PZ,Y,W/4, then Prx∼Zmq
[
Predz(x) = 〈Atz,x〉

]
is at least

Prx∼Zmq
[
Z · f(x) = Yx

]
(1/q + PZ,Y,W/4) + (1− Prx∼Zmq

[
Z · f(x) = Yx

]
)/q

= 1/q + Prx∼Zmq
[
Z · f(x) = Yx

]
· (PZ,Y,W/4),

and so the Goldreich-Levin Theorem recovers y = Atz ∈ Zmq with good probability. Suppose

it additionally held for our choice of z that QZ,Y(z) ≤ ∆ := 4q−1/3. Then, we would have

Prx∼Zmq
[
f(x)−Ax ∈W

∣∣ Z · f(x) = Yx && 〈f(x), z〉 = 〈y,x〉
]

= Prx∼Zmq
[
f(x)−Ax ∈W && 〈f(x), z〉 = 〈y,x〉

∣∣ Z · f(x) = Yx
]
/QZ,Y(z)

= PZ,Y,W · Prx∼Zmq
[
〈f(x), z〉 = 〈y,x〉

∣∣ Z · f(x) = Yx && f(x)−Ax ∈W
]
/QZ,Y(z)

= PZ,Y,W/QZ,Y(z) ≥ ε/∆.

Thus, after updating Z and Y by adding to them the rows z and y, respectively, we have

that PZ,Y,W ≥ ε/∆ and Prx∼Zmq
[
Z·f(x) = Yx

]
≥ ε. We can easily see that after continuing

this process k times, it holds that PZ,Y,W ≥ ε/∆k ≥ ∆/4 > 1/q, for a constant k ∈ N.

93



However, note that in the above analysis we have assumed that for each choice

of z ∼W⊥, it holds that 1/q + PZ,Y,W/4 ≤ QZ,Y(z) ≤ ∆. We saw that with probability

PZ,Y,W/4 over z ∼ W⊥, QZ,Y(z) ≥ 1/q + PZ,Y,W/4. So, for each choice of z ∼ W⊥,

exactly one of the following conditions must hold:

• Prz∼W⊥
[
QZ,Y(z) > ∆

]
≥ PZ,Y,W/8,

• or Prz∼W⊥
[
1/q + PZ,Y,W/4 ≤ QZ,Y(z) ≤ ∆

]
≥ PZ,Y,W/8.

The above analysis handles the case in which the second condition always holds. However,

if the second condition ceases to hold before the end of k consecutive iterations of our

procedure, then we must ensure progress under the first condition.

Ensuring Progress by Trading Agreement with A for a Dimension of W. Sup-

pose that Prz∼W⊥
[
QZ,Y(z) > ∆

]
≥ PZ,Y,W/8. In this case, it follows that the function

QZ,Y : Zmq → C defined above has high variance. We’ll perform Fourier analysis on QZ,Y

to extract a heavy Fourier coefficient w ∈ Znq \{0} from the variance of QZ,Y. Finally, we’ll

show that such a heavy Fourier coefficient Q̂Z,Y,W(w) is equivalent to

Prx∼Zmq
[
f(x)−Ax ∈

(
W + Span(w)

)∖
W
∣∣ Z · f(x) = Yx

]
. In all, this argument implies

that there exists some w ∈ Znq \{0} such that

Prx∼Zmq
[
f(x)−Ax ∈

(
W + Span(w)

)∖
W
∣∣ Z · f(x) = Yx

]
≥ PZ,Y,W/∆.

We’ll show that iterating this argument constructs a subspace W ⊂ Znq of constant dimen-

sion such that eventually PZ,Y,W ≥ ∆/4 > 1/q.

In slightly more detail, first let us denote dim(W) by d. Initially, d = 0. Define the

function Q∗Z,Y : Zmq → C by Q∗Z,Y(z) = QZ,Y(z) if z ∈ W⊥, and Q∗Z,Y(z) = 0 otherwise.
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It can be shown that ∀w ∈ Znq , Q̂∗Z,Y,W(w) = q−d · Ez∼W⊥
[
QZ,Y(z)

]
, if w ∈ W, and

Q̂∗Z,Y,W(w) = q−(d+1) ·Prx∼Zmq
[
f(x)−Ax ∈

(
W+Span(w)

)∖
W
∣∣ Z·f(x) = Yx

]
otherwise.

We can employ a Fourier analytic argument to bound the variance of Q∗Z,Y(z) on a uniformly

random z ∼W⊥ by a quantity proportional to Q̂∗Z,Y,W(w∗) := maxw∈Znq \W{Q̂
∗
Z,Y,W(w)}.

By applying the hypothesis that Prz∼W⊥
[
Q∗Z,Y(z) > ∆

]
≥ PZ,Y,W/8 and Chebyshev’s

inequality, one can show that Q̂∗Z,Y,W(w∗) ≥ PZ,Y,W/∆. By updating W := W+Span(w∗)

and iterating this procedure a constant number of times, it follows that eventually PZ,Y,W ≥

∆/4 > 1/q.

The previous paragraph outlines a method for proving the existence of a constant

dimensional subspace W ⊂ Znq such that PZ,Y,W > 1/q. However, in order to use this in

any meaningful way, we must provide a method to algorithmically compute W. At each

step in the previous procedure, we have computed an explicit subspace W ⊂ Znq , and have

the guarantee that ∃w∗ ∈ Znq \{W} such that Prx∼Zmq
[
f(x)−Ax ∈

(
W + Span(w∗)

)∖
W
∣∣

Z · f(x) = Yx
]
≥ PZ,Y,W/∆. Now, let r ∈ N be a constant and define the set S =

{x ∈ Zmq : Z · f(x) = Yx}. Consider the random process which chooses x1, . . . ,xr ∼

Zmq , α1, . . . , αr ∼ Zq such that x1, . . . ,xr,
∑
i
αixi ∈ S, chooses w′ ∼ W, and outputs

f(
∑
i
αixi) −

∑
i
αif(xi) − w′ ∈ Znq . It can be shown by a statistical sampling argument

that f(u)−Au ∈
(
W + Span(w∗)

)∖
W,∀u ∈ {x1, . . . ,xr,

∑
i
αixi}, with good probability.

Moreover, for each xi, we can write f(xi) = Axi + wi + βiw
∗, for wi ∈ W, βi ∈ Zq\{0},

and we can write f(
∑
i
αixi) = A(

∑
i
αixi) + w + βw∗, for w ∈ W, β ∈ Zq\{0}. It thus

follows that f(
∑
i
αixi)−

∑
i
αif(xi) = (w−

∑
i
αiwi)+(β−

∑
i
αiβi)w

∗. Assuming our guess

w′ for w −
∑
i
αiwi ∈ W is correct, then our random process outputs γw∗ (γ ∈ Zq). If
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γ ∈ Z∗q , then Span(γw∗) = Span(w∗) and we can update W := W + Span(γw∗). However,

if γw∗ = 0, then this procedure fails. In particular, consider the example function f which

is completely linear (i.e., f(x) = Ax,∀x ∈ Zmq ). In this case, our random process will

always output 0. However, it turns out that if our random process outputs 0, then f passes

type of conditional linearity test. In this case, we’ll apply Theorem 8 from Chapter 2 to

conclude that f agrees conditionally with an affine map.

Putting it all Together. Now that we have computed (Z,Y,W) such that PZ,Y,W >

1/q, we can apply standard Goldreich-Levin “prediction-implies-inversion” and linear alge-

braic techniques to efficiently recover an approximation of the matrix A. This process is

quite straightforward and uses techniques described above; see the proof of Lemma 20.

4.4 Proofs of Lemmas 19 and 20

In this section, we prove Lemmas 19 and 20.

4.4.1 Proof of Lemma 19

In the course of proving Lemma 19, we continue with the notation established in our main

theorem’s proof overview (Section 4.3.1).

Proof of Lemma 19. The algorithm A1 of Lemma 19 is described in Figure 4.1. A1 first

initializes empty matrices (Z,Y) ∈ Z0×n
q ×Z0×n

q and sets W ⊂ Znq to be the trivial subspace

(W = {0}). Let ∆ = 4q−1/3, k ∈ N a constant such that ∆k+1 ≤ ε, and η = ε/(8qk). Since

Ez∼Znq
[
QZ,Y(z)

]
≥ 1/q + PZ,Y,W/2 implies that Prz∼Znq

[
QZ,Y(z) ≥ 1/q + PZ,Y,W/4

]
≥
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Parameters and Subroutines: Let r ∈ N be a constant. A1 will call the

Goldreich-Levin algorithm AGL of Lemma 16 as a subroutine.

Inputs and Oracle Access: A1 takes no input, and gets oracle access to

f : Zm
q → Zn

q .

1. The First Loop: Initialize Z ∈ Z0×n
q and Y ∈ Z0×m

q to empty matrices,

and W ⊂ Zn
q to the trivial subspace W = {0}. Draw ` ∼ {0, . . . , n}, and do

the following ` times.

· Draw z ∼ Zn
q and y ∼ APred

GL where Pred : Zm
q → Zq is the function

Pred(x) =


〈z, f(x)〉, Z · f(x) = Yx

α ∼ Zq, otherwise

· Update Z and Y by adding the new rows z and y, respectively.

2. The Second Loop: Draw d ∼ {0, . . . , n}. For all j ∈ [d], choose linearly

independent x1, . . . ,xr ∼ Zm
q and α1, . . . , αr ∼ Zq such that Z · f(u) = Yu

holds for all u ∈
{
x1, . . . ,xr,

∑
i αixi

}
, and compute

wj := f
(∑

i αixi

)
−
∑

i αif(xi) ∈ Zn
q . Let W := Span(w1, . . . ,wd).

Output: (Z,Y,W).

Figure 4.1: The Matrix Recovery Algorithm A1
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PZ,Y,W/4, then it follows that exactly one of the following conditions must hold:

The Goldreich-Levin Condition (GLC): Prz∼Znq
[
1/q+ PZ,Y,W/4 ≤ QZ,Y(z) ≤ ∆

]
≥ η.

The High Variance Condition: Prz∼Znq
[
QZ,Y(z) > ∆

]
≥ PZ,Y,W − η.

Consider the first loop of A1. Either the GLC condition will hold for at least k iterations of

the first loop, in which case we’ll show the algorithm makes excellent progress in amplifying

the conditional agreement of f and A, or at some point before k iterations complete the GLC

will cease to hold. A1 chooses ` ∼ {0, 1, . . . , n} as a guess for the number t of consecutive

iterations for which the GLC will hold (this guess is correct with probability 1/(n+ 1)). For

each iteration in [`], the algorithm chooses a random z ∼ Znq (note that with probability

η of this random choice of z, it holds that 1/q + PZ,Y,W/4 ≤ QZ,Y(z) ≤ ∆). Then, A1

constructs the predictor as detailed in Figure 4.1. Note that

Prx∼Zmq
[
Pred(x) = 〈x,Atz〉

]
= Ez∼Znq

[
QZ,Y(z)

∣∣ GLC holds
]
≥ 1/q + ε2/4.

Then, by Lemma 16, APred
GL outputs y = Atz ∈ Zmq with probability ε4/O(m3q5). Again

since the GLC holds, it follows that after updating Z,Y with rows z,y, respectively, we have

that PZ,Y,W ≥ ε/∆ with probability ηε4/O(m3q5) over (z,y). In total, after ` iterations of

the first loop, it follows that PZ,Y,W ≥ ε/∆t =: ε′ with probability at least

(ηε4/O(m3q5))t/(n+ 1).

Now, let S = {x ∈ Zmq : Z · f(x) = Yx}, and note that |S|q−m ≥ ε. Before

entering the second loop, A1 chooses d ∼ {0, 1, . . . , n} as a guess for k − t (this guess is

correct with probability 1/(n + 1)). Since at this point we must have ε′ ≤ PZ,Y,W < ∆/4

and that the High Variance Condition holds, by Claim 18 there exists a subspace W∗ ⊂ Znq
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of dimension k − t such that PZ,Y,W∗ ≥ ∆/4 = q−1/3. Our goal in the second loop is then

to algorithmically recover W∗.

Let T = {x ∈ S : f(x) ∈ Ax + W∗}, and note that the density of T in S is

λ := |T |/|S| ≥ q−1/3. Let r ∈ N be a constant such that 4/(λqr−1) ≤ λr+1/8. For each

iteration j of the second loop, A1 chooses x1, . . . ,xr ∼ Zmq , α1, . . . , αr ∼ Zq such that

x1, . . . ,xr,
∑
i
αixi ∈ S. By Corollary 2, we have that x1, . . . ,xr,

∑
i
αixi ∈ T with probabil-

ity at least λr+1/4−2−Ω(m). So, we must have that ∀u ∈ {x1, . . . ,xr,
∑
i
αixi}, wj = f(u)−

Au ∈W∗, and thus f(
∑
i
αixi)−

∑
i
αif(xi) ∈W∗. Let γ = (q − 1)εr+1λr+1/(8q(r+1)k−r).

Either {w1, . . . ,wd} ⊂W∗ are linearly independent with probability γ, which implies that

we have recovered W := Span(w1, . . . ,wd) = W∗ with probability (λr+1/4− 2−Ω(m))γ, or

W ⊂W∗ is a proper subspace such that

Prx1,...,xr∼Zmq
α1,...,αr∼Zq

[
f
(∑

i

αixi
)
−
∑
i

αif(xi) ∈W
∣∣∣ x1, . . . ,xr,

∑
i

αixi ∈ T
]
≥ 1− γ.

In the latter case, let s = dim(W) and let us extend a basis {ŵ1, . . . , ŵs} ⊂ W

for W to a basis {ŵ1, . . . , ŵs, ŵs+1, . . . , ŵd} ⊂ W∗ for W∗, and reindex {ŵs+1, . . . , ŵd}

as {w∗1, . . . ,w∗d−s} ⊂W∗\W. Define the function φ : Zmq → Zd−sq by φ(x) = (β1, . . . , βd−s)

such that f(x) − Ax −
d−s∑
j=1

βjw
∗
j ∈ W, if x ∈ T , and φ(x) = 0 otherwise. For each

j ∈ [d − s], we denote the jth projection of φ by φj : Zmq → Zq. Note that if x1, . . . ,xr ∈

Zmq , α1, . . . , αr ∈ Zq such that x1, . . . ,xr,
∑
i
αixi ∈ T then we can write f(u) = Au +

d−s∑
j=1

φj(u)w∗j +w′i ∈ Znq , ∀u ∈ {x1, . . . ,xr} (each w′i ∈W), and f
( r∑
i=1

αixr
)

= A
( r∑
i=1

αixr
)
+

d−s∑
j=1

φj
( r∑
i=1

αixr
)
w∗i + w′ ∈ Znq (w′ ∈ W). If additionally it held that f

( r∑
i=1

αixr
)
−
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r∑
i=1

αif(xr) ∈W, then we’d have

W 3 A
(∑

i

αixi

)
+

d−s∑
j=1

φj

(∑
i

αixi

)
w∗i + w′ −

(∑
i

αi

(
Axi +

d−s∑
j=1

φj(xi)w
∗
j + w′j

))

=

d−s∑
j=1

(
φj

(∑
i

αixi

)
−

r∑
i=1

αiφj(xi)

)
w∗j +

(
w′ −

r∑
i=1

αiw
′
i

)
.

Hence
d−s∑
j=1

(
φj

(∑
i
αixi

)
−

r∑
i=1

αiφj(xi)

)
w∗j ∈W, which implies that φ

(∑
i
αixi

)
=
∑
i
αiφ(xi).

So, we have

Prx1,...,xr∼Zmq
α1,...,αr∼Zq

[
φ
(∑

i

αixi

)
=
∑
i

αiφ(xi)

∣∣∣∣ x1, . . . ,xr,
∑
i

αixi ∈ T
]
≥ 1− γ.

Claim 18 Continuing the notation established in Lemma 19, suppose that after the execu-

tion of the first loop of A1, PZ,Y,{0} < ∆/4 and the High Variance Condition holds. Then,

there exists a subspace W∗ ⊂ Znq of dimension k − t such that PZ,Y,W∗ ≥ ∆/4.

Proof. Initialize W∗ := {0} ⊂ Znq to be the trivial subspace. Define Q∗Z,Y,W∗ : Zmq → [0, 1]

by

Q∗Z,Y,W∗(z) =


QZ,Y(z), z ⊥W∗

0, otherwise

Note that Ez⊥W∗
[
Q∗Z,Y,W∗(z)

]
= 1/q+

(
1−1/q

)
·PZ,Y,W∗ . The following claim characterizes

the Fourier coefficients of Q∗Z,Y,W∗ ; we prove it below, outside the current proof.

Claim 19 Let d = dim(W∗). For all w ∈ Znq , qd · Q̂∗Z,Y,W∗(w) = Ez⊥W∗
[
Q∗Z,Y,W∗(z)

]
, if

w ∈W∗, and qd ·Q̂∗Z,Y,W∗(w) = q−1 ·Prx∼Zmq

[
f(x)−Ax ∈

(
W∗+Span(w)

)
\W∗

∣∣∣Z·f(x) =

Yx
]
, otherwise.
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In order to prove the claim, we must show that whenever PZ,Y,W∗ ≤ ∆/4 and the

High Variance Condition holds, letting d denote the current value of dim(W∗), ∃w∗ /∈W∗

such that qd+1 · Q̂∗Z,Y,W∗(w∗) ≥ PZ,Y,W∗/∆. It then follows that PZ,Y,(W∗+Span(w∗)) ≥

PZ,Y,W∗/∆, and so our procedure updates W∗ := W∗ + Span(w∗). Note that if the High

Variance Condition holds, then it will also hold for the next iteration. To see this, observe

that if Prz⊥W∗
[
1/q + ε/4 ≤ Q∗(z) ≤ ∆

]
< ν, then

Prz⊥(W∗+Span(w∗))

[
1/q + PZ,Y,(W∗+Span(w∗))/4 ≤ Q∗Z,Y,(W∗+Span(w∗))(z) ≤ ∆

]
≤ q · Prz⊥W∗

[
1/q + PZ,Y,W∗/4 ≤ Q∗Z,Y,W∗(z) ≤ ∆

]
< q · ν,

since Q∗Z,Y,(W∗+Span(w∗))(z) = Q∗Z,Y,W∗(z) for all z ⊥ W∗
i+1 and PZ,Y,(W∗+Span(w∗)) ≥

PZ,Y,W∗ . Hence Prz⊥(W∗+Span(w∗))

[
Q∗Z,Y,W∗(z) > ∆

]
≥ PZ,Y,W∗/4−qν. So, initially when

the High Variance Condition holds we have Prz⊥W∗
[
Q∗Z,Y,W∗(z) > ∆

]
≥ PZ,Y,W∗/4 − η,

and at the beginning of each iteration i ∈ [k − t] of our procedure we’ll have

Prz⊥W∗
[
Q∗Z,Y,W∗(z) > ∆

]
≥ PZ,Y,W∗/4− qi−1η ≥ PZ,Y,W∗/4− qkη = PZ,Y,W∗/4− ε/8 ≥

PZ,Y,W∗/8, since η = ε/(8qk). Therefore, after k− t consecutive iterations of our procedure

we have PZ,Y,W∗ ≥ ∆/4.
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Now, consider an iteration i of our procedure. We’ll show ∃w∗ /∈ W∗ such that

qd+1 · Q̂∗Z,Y,W∗(w∗) ≥ PZ,Y,W∗/∆. We have

PZ,Y,W∗

8
≤ Prz⊥W∗

[
Q∗Z,Y,W∗(z) > ∆

]
≤ Prz⊥W∗

[(
Q∗Z,Y,W∗(z)− qd · Q̂∗Z,Y,W∗(0)

)2 ≥ ∆2/4
]

≤ 4

∆2
·
[
Ez⊥W∗

[
Q∗Z,Y,W∗(z)2

]
− q2d · Q̂∗Z,Y,W∗(0)2

]
=

4qd

∆2
·
[
Ez∼Znq

[
Q∗Z,Y,W∗(z)2

]
−
∑

w∈W∗

Q̂∗Z,Y,W∗(w)2

]

=
4qd

∆2
·
∑

w/∈W∗

Q̂∗Z,Y,W∗(w)2 ≤ 4qd

∆2
· max
w∗ /∈W∗

{
Q̂∗Z,Y,W∗(w∗)

}
·
∑
w∈Znq

Q̂∗Z,Y,W∗(w)

=
4qd

∆2
· max
w∗ /∈W∗

{
Q̂∗Z,Y,W∗(w∗)

}
.

Thus, ∃w∗ /∈ W∗ such that qd+1 · Q̂∗Z,Y,W∗(w∗) ≥ PZ,Y,W∗ ·
(
q∆2/32

)
≥ PZ,Y,W∗/∆,

since ∆ = 4q−1/3. The computation above has used qd · Q̂∗Z,Y,W∗(0) = Ez⊥W∗
[
Q∗(z)

]
and

PZ,Y,W∗ ≤ ∆/4 for the second inequality; Markov’s inequality for the third; Q∗Z,Y,W∗(z) = 0

for z 6⊥ W∗, and Q̂∗Z,Y,W∗(w) = Q̂∗Z,Y,W∗(w) for w ∈ W∗ for the equality on the fourth

line; Parseval’s identity for the next equality; and
∑

w∈Znq
Q̂∗Z,Y,W∗(w) = QZ,Y,W∗(0) = 1 for

the final equality.
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Proof of Claim 19. For convenience we’ll denote the function Q∗Z,Y,W∗ by Q∗. Let

w ∈ Znq . We have

qd · Q̂∗(w) = qd · Ez∼Znq
[
Q∗(z) · ω−〈z,w〉

]
= Ez⊥W

[
Prx

[
f(x)−Ax ⊥ z

∣∣Z · f(x) = Yx
]
·

ω−〈z,w〉
]

= PZ,Y,W · Ez⊥W∗
[
ω−〈z,w〉

]
+

1

q
· (1− PZ,Y,W) · E z⊥W∗

f(x)−Ax⊥z

[
ω−〈z,w〉

]
,

where ω = e2πi/q is a complex q−th root of unity. Thus qd ·Q̂∗(w) = 1/q+
(
1−1/q) ·PZ,Y,W

whenever w ∈W∗, since the ω−〈z,w〉 quantities are all equal to 1 in this case. When w /∈W,

the first term is always zero, and the second term is zero unless f(x)−Ax ∈W+Span(w),

in which case the ω−〈z,w〉 quantities in the second term are all equal to 1. The claim follows.

4.4.2 Proof of Lemma 20

We first prove the following claim, which shows if PZ,Y,W > 1/q, then we can

repeat a modified version of the first loop of A1 to construct matrices (Z′,Y′) such that

PZ′,Y′,W ≥ 1− 1/q.

Claim 20 If PZ,Y,W ≥ q−1/3, then there exists an efficient algorithm running in time

poly(m,n, q) which with probability poly(1/m, 1/n, 1/q) over its randomness outputs matri-

ces (Z′,Y′) ∈ Z`+t×nq × Z`+t×mq , for a constant t ∈ N, such that PZ′,Y′,W ≥ 1− 1/q.

Proof. Let t ∈ N be a constant such that (1− 1/(4q))t+1 ≤ q−1/3. Suppose PZ,Y,W < 1−

1/q. Then, RZ,Y,W := 1−PZ,Y,W ≥ 1/q. Note that ∀z ∈W⊥, QZ,Y(z) ≥ PZ,Y,W ≥ q−1/3,
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while Ez⊥W
[
QZ,Y(z)

]
= 1− RZ,Y,W(1− 1/q). Then,

Prz⊥W
[
QZ,Y(z) > 1− 1/(4q)

]
≤

Ez⊥W
[
QZ,Y(z)

]
1− 1/(4q)

=
1− RZ,Y,W(1− 1/q)

1− 1/(4q)
≤ 1− 1/(2q)

1− 1/(4q)
,

since RZ,Y,W(1− 1/q) ≥ (1/q)(1/2). Thus

Prz⊥W
[
QZ,Y(z) ≤ 1− 1/(4q)

]
≥ 1− 1− 1/(2q)

1− 1/(4q)
≥ 1/(4q)

1− 1/(4q)
≥ 1

4q
,

Then, following the same analysis as the first loop of A1, we can choose a random z ⊥W,

construct the predictor algorithm detailed in Figure 4.1, and apply the Goldreich Levin The-

orem (Lemma 16) to compute y = Atz ∈ Zmq , all with probability (q−1/3− q−1)2/O(m3q6).

We then have

Prx∼Zmq
[
f(x) ∈ Ax + W

∣∣ Z · f(x) = Yx, 〈z, f(x)〉 = 〈x,y〉
]
≥

PZ,Y,W

1− 1/(4q)
,

and so we update (Z,Y) by adding the rows (z,y), respectively. After continuing this

process t times, the resulting matrices (Z′,Y′) are then such that

PZ′,Y′,W ≥
q−1/3

(1− 1/(4q))t
≥ 1− 1

4q
≥ 1− 1

q

with probability ((q−1/3 − q−1)2/O(m3q6))t.

Now, we may prove Lemma 20.

Proof of Lemma 20. Let t ∈ N be a constant such that q−t ≤ ε ≤ q−(t−1), where ε > 0

is the initial agreement of f with A, and c = 2t+ 1. Since Prx∼Zmq
[
f(x) ∈ Ax + W

∣∣ x ∈

S
]
≥ 1 − 1/q, where dim(W) = d = O(1), then by Lemma 18, we can compute a linearly

independent subset {x1, . . . ,xm−c} ⊂ T with probability (1− 2−Ω(m))(1−m(2/q+ ε/2)) ≥

(1 − 2−Ω(m))(1 − 5m/(2q)) ≥ 1 − 3m/q. For each i ∈ [m − c], write f(xi) = Ax + wi
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(wi ∈W). Also, since W⊥ is efficiently recognizable and has dimension n− d, then again

by Lemma 18 we can compute a linearly independent subset {z1, . . . , zn−d} ⊂ W⊥ with

probability 1− 2−Ω(m).

Extend {z1, . . . , zn−d} to a basis {z1, . . . , zn} for Znq . Let B ∈ Zn×nq be the matrix

whose ith row is zi. Note that ∀i ∈ [m−c], the first n−d components of B·f(xi)−BAxi ∈ Znq

are zero, and so we can use a routine linear algebraic argument to recover B′ ∈ Z(n−d)×m
q

such that rank
(
B′ − (BA)(n−d)

)
= O(1), where (BA)(n−d) denotes the (n− d)×m matrix

over Zq consisting of the first n − d rows of BA. Extend B′ to a matrix B̄ ∈ Zn×mq

where the last d rows are chosen uniformly at random. It follows that rank(B̄ − BA) ≤

rank(B′ − (BA)(n−d)) + d ≤ O(1), which implies that Prx∼Zmq
[
B̄x = BAx

]
≥ q−O(1). Our

algorithm then simply outputs B−1B′ ∈ Zn×mq .
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Chapter 5

Conclusions

In this dissertation, we have proven two novel high dimensional linearity testing

theorems. Both of our high dimensional linearity tests work in characteristic q, and can be

thought of as a “hybrid” between the high and low test acceptance parameter regimes. What

we mean by this is that while these linearity tests both have a high test acceptance, they

each have some property which allows us to view them through a certain lens as a low test

acceptance test (although these low test acceptance conditions are not sufficient for proving

the theorems). We demonstrate a concrete application of both linearity tests to lattice-based

cryptography and the Goldreich-Levin Theorem in high dimension, respectively.

Our first novel linearity tests shows that if there exists a function h : Znq → Znq

(n, q ∈ N such that q is prime) such that ∀α1, α2 ∈ Z2
q , Pra1,a2∼Znq

[
h(α1a1 + α2a2) ∈

Span(h(a1), h(a2))
]
≥ 1 − ε, for some ε > 0, then there exists a linear map H ∈ Zn×nq

such that Prx∼Znq
[
h(a) ∈ Span(Ha)

]
≥ 1 −O(n2q

√
qε). We remark that our linearity test

at first glance does not appear to fit into the general template of linearity tests. Note,
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however, that by averaging, our conclusion can be re-written as follows: Prx∼Znq
[
h(a) =

Ha
]
≥ (1 − O(n2q

√
qε))/q. Although this appears to indicate a traditional linearity test

with high test acceptance and low agreement, note that again by averaging our hypothesis,

we similarly obtain a low test acceptance. To be clear, this low test acceptance condition is

not sufficient for our conclusion, but rather supplies a data point on how we can view our

linearity test through a certain lens as a “hybrid” between the high and low test acceptance

parameter regimes. Finally, we emphasize that while all previous linearity testing theorems

we are aware of in the literature use combinatorial and Fourier analytic techniques, our

proof is purely algebraic, and follows the proof of the Fundamental Theorem of Projective

Geometry ([Art57]).

We demonstrate an application of our first linearity testing theorem to lattice-

based cryptography. Specifically we show that there cannot exist a certain type of reduc-

tion from Learning with Errors (LWE) to Learning with Rounding (LWR), unless LWE is

computationally tractable. Reductions from LWE to LWR are known when the modulus

q is super-polynomial in the lattice dimension n, and when q is polynomial in n with an

a priori bound on the number m of input samples to the reduction. Each prior reduction

from LWE to LWR in the literature conforms to a specific template, which we characterize

by a function f : Znq × Zq → Znq × Zp (n, q, p ∈ N such that q is prime and p < q) that

operates point-wise on the input samples to the reduction. Our result addresses the case of

polynomial q and unbounded m; we show that if there exists a reduction f from LWE to

LWR, then f satisfies our high dimensional linearity test, hence agrees with a linear map

with good probability. Then, we give an efficient algorithm which directly solves LWE given
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such a reduction function f which has good agreement with a linear map. Overall, our re-

sult does not suggest that LWR is computationally tractable, but rather that LWE cannot

be reduced to LWR, when q is polynomial in n and m is unbounded, using techniques from

the prior work.

Our second novel linearity test shows that if there exists a function f : Zmq → Zdq

(m, d, q ∈ N such that q is prime) and S ⊂ Zmq is a subset of sufficiently large density

λ := |S|q−m such that Prx,y∼Zmq
[
f(x + y) = f(x) + f(y)

∣∣ x,y ∈ S
]
≥ 1 − γ, for γ > 0,

then there exists an affine map (A,b) ∈ Zd×mq ×Zdq such that Prx∼Zmq
[
f(x) = Ax+b

∣∣ x ∈

S
]
≥ (1 + poly(λ, q−d))d. Again, we remark that our result is not a traditional linearity

test; indeed, it can be viewed as a high dimensional conditional version of [BLR93] in

characteristic q. Also while our linearity test appears to be a high test acceptance and

low agreement test, by removing the condition in the hypothesis, we obtain a low test

acceptance. We again remark that this low test acceptance condition is not sufficient for

our conclusion, but instead allows us to view our result as a “hybrid” between the high and

low test acceptance parameter regimes.

We apply our second novel linearity test to proving a high dimensional approxima-

tion version of the celebrated Goldreich-Levin Theorem ([GL89]) with low agreement. Let

m,n, q ∈ N such that q = poly(m,n) is prime, and suppose there exists a matrix A ∈ Zn×mq

and a function f : Zmq → Znq such that Prx∼Zmq
[
f(x) = Ax

]
≥ ε, where q−n < ε ≤ q−1.

Indeed, in this parameter regime, it turns out that one cannot hope to exactly recover A,

but instead we consider the problem of recovering an approximation of A (i.e., a matrix

A′ ∈ Zn×mq such that Prx∼Zmq
[
A′x = Ax

]
≥ q−O(1)). Such a high dimensional approximate
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Goldreich-Levin Theorem continues a line of work relating to list-decoding group homo-

morphism codes, and has applications to approximate list-decodable codes and effective

algebraic property testing. In our work, we construct an algorithm which uses f to recover

an approximation of A, and characterize the conditions under which our algorithm fails to

do so. Specifically, we first show that we can compute (the description of) a subset S ⊂ Zmq

and a subspace W ⊂ Znq such that Prx∼Zmq
[
f(x) ∈ Ax + W

∣∣ x ∈ S
]
> 1/q, and then use

standard Goldreich-Levin “prediction-implies-inversion” and linear algebraic techniques to

recover an approximation of A. Finally, we show that the only way in which our algorithm

fails to recover an approximation of A is if f satisfies our high dimensional conditional

linearity test.
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Rolim, and David Steurer, editors, Approximation, Randomization, and Combi-
natorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2018,
August 20-22, 2018 - Princeton, NJ, USA, volume 116 of LIPIcs, pages 29:1–
29:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[BCH+96] Mihir Bellare, Don Coppersmith, Johan H̊astad, Marcos A. Kiwi, and Madhu
Sudan. Linearity testing in characteristic two. IEEE Trans. Inf. Theory,
42(6):1781–1795, 1996.

[BCLR04] Michael Ben-Or, Don Coppersmith, Michael Luby, and Ronitt Rubinfeld.
Non-abelian homomorphism testing, and distributions close to their self-
convolutions. Electron. Colloquium Comput. Complex., (052), 2004.

[BGLR93] Mihir Bellare, Shafi Goldwasser, Carsten Lund, and A. Russeli. Efficient prob-
abilistically checkable proofs and applications to approximations. In S. Rao
Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings of the
Twenty-Fifth Annual ACM Symposium on Theory of Computing, May 16-18,
1993, San Diego, CA, USA, pages 294–304. ACM, 1993.

[BGM+16] Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon Rosen.
On the hardness of learning with rounding over small modulus. In Eyal Kushile-
vitz and Tal Malkin, editors, Theory of Cryptography - 13th International Con-
ference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part
I, volume 9562 of Lecture Notes in Computer Science, pages 209–224. Springer,
2016.

111



[BGS95] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, pcps and non-
approximability - towards tight results. In 36th Annual Symposium on Founda-
tions of Computer Science, Milwaukee, Wisconsin, USA, 23-25 October 1995,
pages 422–431. IEEE Computer Society, 1995.

[BGV11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic
encryption without bootstrapping. IACR Cryptol. ePrint Arch., 2011:277, 2011.

[BI01] Amos Beimel and Yuval Ishai. Information-theoretic private information re-
trieval: A unified construction. In ICALP, volume 2076 of Lecture Notes in
Computer Science, pages 912–926. Springer, 2001.

[BIM04] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers’ computa-
tion in private information retrieval: PIR with preprocessing. J. Cryptology,
17(2):125–151, 2004.

[BIPW] Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wooters. Can a database be
accessed privately and locally? submitted to these proceedings.

[BLL+15] Shi Bai, Adeline Langlois, Tancrède Lepoint, Damien Stehlé, and Ron Stein-
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Appendix A

The Goldreich-Levin Theorem in

Characteristic q

Here, we prove the Goldreich-Levin Theorem (Chapter 4 Lemma 16) in prime

characteristic q. For convenience, we restate the result below as a new theorem.

Theorem 21 (Goldreich-Levin Theorem in Characteristic q) Let q,m ∈ N such that

q is prime, and let s ∈ Zmq a secret vector. Suppose there exists a function Pred : Zmq → Zq

such that Prx∼Zmq
[
Pred(x) = 〈s,x〉

]
≥ 1/q + ε, for ε > 0. Then, there exists an algorithm

Inv, running in time poly(m, q, 1/ε), which gets oracle access to Pred and outputs s∗ ∈ Zmq

such that

Prs∗∼InvPred

[
s∗ = s

]
≥ ε2

8m3q5
.

Proof. Let k =
⌈

log(8m2/ε2)/ log(q)
⌉

+ 4 ∈ N; observe that ε2/(8m2q) ≤ q−(k−4) ≤

ε2/(8m2). Let {e1, . . . , em} ⊂ Zmq be the standard basis for Zmq .
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We now construct the algorithm Inv which gets oracle access to Pred, and works

as follows:

1. Choose x1, . . . ,xk ∼ Zmq , α1, . . . , αk ∼ Zq. For all z ∈ Zkq , let xz =
k∑
j=1

zjxj ∈ Zmq and

αz =
k∑
j=1

zjαj ∈ Zq.

2. For all i ∈ [m], compute yi = Pluralityz∈Zkq\{0}{Pred(ei + xz)− αz} ∈ Zq.

3. Output y := (yi)
m
i=1 ∈ Zmq .

It’s clear that the running time of Inv is poly(m, q, 1/ε). The high-level idea is

that each αj ∼ Zq is a guess for 〈xj , s〉 ∈ Zq that is correct with probability 1/q. So, with

probability q−k it holds that each αz = 〈xz, s〉 ∈ Zq (z ∈ Zkq ). Next, if ∀i ∈ [m], γ ∈ Z∗q ,

#{z : Pred(ei + xz) = 〈ei + xz, s〉} > #{z : Pred(ei + xz) = 〈ei + xz, s〉+ γ},

then each yi = 〈ei + xz∗ , s〉 − αz∗ = si, for some z∗ ∈ Zkq\{0}, as desired. We now proceed

formally.

LetD denote the distribution of the randomness of Inv; namely, D chooses x1, . . . ,xk ∼

Zmq , α1, . . . , αk ∼ Zq, and outputs ({xj}j , {αj}j). We begin by establishing the following

quantities, the last two of which implicitly are a function of the randomness ({xj}j , {αj}j) ∼

D.

• For all γ ∈ Zq, let P(γ) := Prx∼Zmq
[
Pred(x) = 〈x, s〉+ γ

]
.

• For all i ∈ [m], γ ∈ Zq, z ∈ Zkq , let Ei(z, γ) denote the event “Pred(ei + xz) =

〈ei + xz, s〉+ γ”.

• For all i ∈ [m], γ ∈ Zq, let Qi(γ) := Prz∼Zkq\{0}
[
Ei(z, γ)

]
.
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It suffices to show that ∀i ∈ [m], γ ∈ Z∗q , PrD
[
Qi(0) > Qi(γ)

]
≥ 1− 8q−(k−3)/ε2, since then

PrD
[
y = s

]
≥ PrD

[
Ea. αj = 〈xj , s〉 & Qi(0) > Qi(γ),∀i ∈ [m], γ ∈ Z∗q

]
≥ q−k(1− 8mq−(k−4)/ε2) ≥ (ε2m−2q−5/8)(1− 1/m) ≥ ε2m−3q−5/8.

The following two claims complete the proof.

Claim 21 For all γ ∈ Z∗q, P(0)− P(γ) > ε/q.

Proof. By hypothesis, we have that Prx∼Zmq
[
Pred(x) = 〈s,x〉

]
≥ 1/q+ ε. We’ll show there

exists another prediction algorithm Pred′ which has the guarantee that ∀γ ∈ Z∗q ,

Prx∼Zmq
[
Pred′(x) = 〈x, s〉

]
− Prx∼Zmq

[
Pred′(x) = 〈x, s〉+ γ

]
> ε/q.

Hence to complete the proof it suffices to redefine Pred as Pred′.

Now, define Pred′ : Zmq → Zq where Pred′(x) chooses α ∼ Z∗q , and outputs

α−1 · Pred(αx) ∈ Zq. First, it’s clear that Prx∼Zmq
[
Pred′(x) = 〈x, s〉

]
= P(0) ≥ 1/q + ε.

Next, let γ ∈ Z∗q . We have

Prx∼Zmq
[
Pred′(x) = 〈x, s〉+ γ

]
= Prx∼Zmq

[
γ−1 · Pred′(x) = 〈γ−1x, s〉+ 1

]
= Prx̄∼Zmq

[
γ−1 · Pred′(γx̄) = 〈x̄, s〉+ 1

]
= Prx̄∼Zmq ,α∼Z∗q

[
α−1γ−1 · Pred(αγx̄) = 〈x̄, s〉+ 1

]
= Prx̄∼Zmq ,ᾱ∼Z∗q

[
ᾱ−1 · Pred(ᾱx̄) = 〈x̄, s〉+ 1

]
= Prx̄∼Zmq

[
Pred′(x̄) = 〈x̄, s〉+ 1

]
.

Hence R := Prx∼Zmq
[
Pred′(x) = 〈x, s〉+1

]
= Prx∼Zmq

[
Pred′(x) = 〈x, s〉+γ

]
,∀γ ∈ Z∗q , and we

have 1 ≥ 1/q+ε+(q−1)R, which implies that R ≤ (1−1/q−ε)/(q−1) = 1/q−ε/(q−1) <

P(0)− ε/(q − 1). So P(0)− R > ε/(q − 1) ≥ ε/q.
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Claim 22 For all i ∈ [m], γ ∈ Z∗q, PrD
[
Qi(0) > Qi(γ)

]
≥ 1− 8q−(k−3)/ε2.

Proof. Let i ∈ [m] and γ ∈ Zq. We have

PrD

[∣∣∣Qi(γ)− ED
[
Qi(γ)

]∣∣∣ > ε

2q

]
≤ 4q2

ε2

(
ED
[
Qi(γ)2

]
− ED

[
Qi(γ)

]2)
=

4q2

ε2

(
ED
[
Prz,z′∼Zkq\{0}

[
Ei(z, γ) & Ei(z

′, γ)
]]
− P(γ)2

)
=

4q2

ε2

(
Prz,z′∼Zkq\{0}

[
z = z′

]
· P(γ) +

(
1− Prz,z′∼Zkq\{0}

[
z = z′

])
P(γ)2 − P(γ)2

)
=

4q2

ε2

(
1

qk − 1

(
P(γ)− P(γ)2

))
≤ 4

ε2qk−3
,

where the first inequality follows from Chebyshev’s inequality; the second line follows from

ED
[
Qi(γ)

]
= P(γ); and the third line follows from pairwise independence. Now, let γ ∈ Z∗q .

We have that

Qi(γ) ≤ P(γ) + ε/(2q) < P(0)− ε/(2q) ≤ Qi(0)

with probability 1− 8q−(k−3)/ε2 over D, by the above argument and Claim 21.
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