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Bacterial mutualists generate major fitness benefits for eukaryotes, reshaping
the host phenotype and its interactions with the environment. Yet, microbial
mutualist populations are predicted to generate mutants that defect from
providing costly services to hosts while maintaining the capacity to exploit
host resources. Here, we examined the mutualist service of symbiotic nitro-
gen fixation in a metapopulation of root-nodulating Bradyrhizobium spp. that
associate with the native legume Acmispon strigosus. We quantified mutual-
ism traits of 85 Bradyrhizobium isolates gathered from a 700 km transect in
California spanning 10 sampled A. strigosus populations. We clonally inocu-
lated each Bradyrhizobium isolate onto A. strigosus hosts and quantified
nodulation capacity and net effects of infection, including host growth and
isotopic nitrogen concentration. Six Bradyrhizobium isolates from five popu-
lations were categorized as ineffective because they formed nodules but
did not enhance host growth via nitrogen fixation. Six additional isolates
from three populations failed to form root nodules. Phylogenetic reconstruc-
tion inferred two types of mutualism breakdown, including three to four
independent losses of effectiveness and five losses of nodulation capacity
on A. strigosus. The evolutionary and genomic drivers of these mutualism
breakdown events remain poorly understood.

1. Introduction
Bacterial mutualists offer an array of fitness-enhancing services to plants, animals
and other multicellular hosts [1], including antibiotic protection [2], accelerated
host growth [3], enhanced immune defence [4], and improved outcomes from
host interactions with predators, pathogens and competitors [5]. However,
bacteria have a tremendous evolutionary advantage over hosts in terms of popu-
lation size and generation time [6], and natural selection is predicted to favour the
evolution of mutants that defect from providing services to hosts [7]. Consistent
with evolutionary instability, bacterial populations display immense diversity
in mutualist effects [8], often encompassing beneficial genotypes as well as geno-
types that provide negligible benefit to the host [3,8–11]. However, convincing
evidence for mutualism breakdown—the evolution of uncooperative mutants
from mutualist ancestors [12]—has been scant [12–14], suggesting to some
biologists that mutualism instability has little ecological relevance [15,16].

The legume–rhizobia symbiosis is an ideal system to investigate the evolution
of symbiotic effectiveness (i.e.microbial capacity to enhance host fitness). Rhizobia
encompass soil-dwelling proteobacteria [17] that instigate nodule formation on
legume roots and fix nitrogen [18]. Rhizobia vary genotypically in symbiotic effec-
tiveness [6], ranging from beneficial genotypes that enhance host growth through
nitrogen fixation to ineffective rhizobia that nodulate the host but fix no nitrogen
[10]. Legumes exhibit host control traits that can constrain infection and in planta
proliferation of ineffective rhizobia [19–25], and are predicted to impose selection
against rhizobia that exploit hosts [26–29]. Nonetheless, ineffective rhizobia have

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2019.2549&domain=pdf&date_stamp=2020-01-29
mailto:joel.sachs@ucr.edu
https://doi.org/10.6084/m9.figshare.c.4808979
https://doi.org/10.6084/m9.figshare.c.4808979
http://orcid.org/
http://orcid.org/0000-0002-0221-9247


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20192549

2
been recovered from agricultural [30–38] and unmanaged
soils [3,10,39–41], suggesting that nitrogen fixation might be
recurrently lost in populations.

Here, we investigated symbiotic effectiveness in a
metapopulation of Bradyrhizobium on the host plant Acmispon
strigosus. Acmispon strigosus (formally Lotus strigosus) is an
annual legume native to California [42] nodulated by
Bradyrhizobium spp. [43–45]. Acmispon legumes regulate
nodule growth dependent upon the net benefits gained from
specific rhizobia strains [21,46,47] and ‘sanction’ rhizobia by
arresting in planta proliferation of ineffective strains [22,23,48].
However, the degree to which these control mechanisms are
independent remains unknown. Two ineffectiveBradyrhizobium
strains were isolated from geographically distant A. strigosus
hosts, suggesting independent origins of non-fixing rhizobia
[3,40]. The present study investigated 85 Bradyrhizobium
isolates originating from 10 native A. strigosus populations
across a 700 km transect in California, ranging from mesic
coastal sites in northernCalifornia todesert sites in southeastern
California [43–45]. To quantify Bradyrhizobium effectiveness,
we performed clonal inoculations onto A. strigosus seedlings.
We estimated the capacity of each clonal inoculum to
induce nodule formation, to affect host growth and to fix nitro-
gen on A. strigosus. We used four loci distributed across the
Bradyrhizobium genome to reconstruct phylogenetic relation-
ships among our isolates, and also inferred relationships to
Bradyrhizobium that associate with other host legumes. Our
first goal was to examine the frequency and spatial distribution
of ineffective Bradyrhizobium in natural populations of hosts, to
assess how common ineffective rhizobia are and whether they
are more prevalent in certain regions of the host range. Our
second goal was to reconstruct the evolutionary history of inef-
fective Bradyrhizobium to resolve whether ineffective strains
represent a single evolutionary origin or if they are unrelated
and have evolved recurrently from independent ancestors.
2. Material and methods
(a) Bradyrhizobium isolates
Bradyrhizobium were previously isolated from the nodules of
A. strigosus, its root surface and from surrounding bulk soil at 10
natural sites along a greater than 700 km transect, encompassing
1292 isolates [43–45]. For nodule and root surface isolates, whole
plants were excavated, brought to the laboratory and roots
were washed with tap water to remove all soil particles. Whole
nodules were dissected, surface sterilized in bleach (5% sodium
hypochlorite), rinsed in sterile water and individually cultured
by crushing with a sterile glass rod and plating nodule contents
onto plates of modified arabinose gluconate (MAG, 1.8% w/v
agar) [43]. A single colony was archived from each nodule,
whichwas assumed to contain a single genotype of Bradyrhizobium
[24]. For root surface isolates, rinsed plant roots were dissected into
approximately 1 cm sections, vortexed in sterile water and the
wash solution was plated on a glucose-based rhizobia defined
medium (GRDM) [49]). Bradyrhizobium were selected from the
resultant colonies based upon growth on selective media and
genotyping [43,44]. For bulk soil isolates, soils immediately adja-
cent to A. strigosus were collected from three southern California
A. strigosus populations (electronic supplementary material,
table S1) and prepared into slurries before being inoculated onto
axenic A. strigosus seedlings. Soil cores were collected in August
2014, sieved to 2 mm, saturated with sterile water, filtered through
eight layers of sterile cheesecloth and the supernatant was inocu-
lated onto axenic A. strigosus seedlings originating from the same
sites as the soil cores (14 August 2014). Plants were raised six
weeks in a growth room, fertilized weekly with nitrogen-free
Jensen’s solution [50], and de-potted. Nodules were cultured
ontoMAGplates and a single colony from each platewas archived.
Soil isolates were only cultured from white or yellow nodules
(i.e. those that are lacking apparent plant expression of leghaemo-
globin associatedwith symbiotic nitrogen fixation [51]) to improve
chances of isolating ineffective rhizobial genotypes.

(b) Bradyrhizobium genotyping and phylogenetic
reconstruction

Nodule and root surface isolates were previously sequenced for
glnII and recA on the Bradyrhizobium chromosome (CHR), and
nodZ and nolL on the symbiosis island (SI) [44,45]. The SI can be
integrated on the CHR or exist as a plasmid [52] and can be trans-
ferred horizontally among CHR lineages [44,45]. Sequences from
each genome region (CHR, SI) were aligned separately using
CLUSTAL OMEGA [53] (electronic supplementary material, table S1).

Phylogenetic trees of the 85 isolates were reconstructed separ-
ately for the concatenated nucleotides of the CHR and SI loci with
Mesorhizobium loti (MAFF303099) as an outgroup taxon. Sequences
were aligned using default parameters. The GTR+ I +G model of
evolution was selected from the Akaike information criterion in
JMODELTEST2 [54]. Phylogenetic trees were reconstructed with
MRBAYES 3.1.2 [55] using 5 × 106 generations, a heating temperature
of 0.01, a ‘burnin’ of the first 10 000 trees and two parallel runs
starting with random trees, each with four simultaneous chains.
A plot of log-likelihood scores of sampling points (sample fre-
quency = 500) against generation number was observed in each
case to ensure that stationarity had been reached during the
‘burnin’ period. We sampled approximately 105 post-burnin
trees for phylogenetic reconstruction.

To examine evolutionary relationships with Bradyrhizobium
from other studies, a single gene from each locus was also used
as a query sequence in BLASTN searches against the NCBI refseq_
genomic database masked to Bradyrhizobium with an e-value
cut-off of 10−5. Nucleotide sequences were aligned using MAFFT
v. 7.402 [56] and IQ-TREE v. 1.6.12 with the options ‘-m TEST
-bb 1000 -alrt 1000’ was used to select evolutionary models for
each dataset and generate separate phylogenetic trees for each
gene (100 tree searches, 1000 ultrafast bootstrap replicates, 1000
aLRT test replicates) [57].

(c) Selection of isolates for analysis
Eighty-five Bradyrhizobium isolates were chosen for this study fol-
lowing criteria of (i) sampling from the 10 A. strigosus field sites
(mean = 8.5 isolates per site, range, 4–18; electronic supplementary
material, table S1), (ii) including all 12 previously identified
species-like clades of Bradyrhizobium isolated from A. strigosus
[44], and (iii) including all isolation methods (62 nodule isolates,
8 root surface isolates, 15 bulk soil isolates).

(d) Inoculation experiments
Bradyrhizobium cultures were plated from clonal stocks and incu-
bated until lawns formed (29°C, approx. 8 days), then washed
from plates and resuspended in liquid MAG to estimate con-
centration via optical density [3]. Washed cells were centrifuged
(4000g, 20 min) to remove media and resuspended in sterile
water to a concentration of 108 cellsml−1. Inoculated plants received
5 × 108 rhizobial cells in 5 ml of sterile water and uninoculated
control plants received 5 ml of sterile water.

Acmispon strigosus is a permissive host that forms noduleswith
diverse Bradyrhizobium spp. [44,45]. Previous inoculation studies of
A. strigosus and Bradyrhizobium found relatively consistent effects
of rhizobial genotypes upon different host genotypes [46,58].
Thus, a single inbred A. strigosus host line from the Claremont
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population was used for the experiment (AcS049.Cla.m01.g1.r02;
[46]). Seeds were surface sterilized, nick scarified and germinated
in sterile nitrogen-free Jensen’s solution [50]. Seedlings were
planted into sterilized Cone-tainers (Steuwe and Sons, Corvallis,
OR) filled with sterilized quartzite sand, incubated in a growth
chamber for two weeks, and moved to the greenhouse under
approximately 50% shade for hardening (4 days, 1 × aily misting).
One week after planting, seedlings were fertilized with 1 ml sterile
nitrogen-free Jensen’s solution, which was increased to 3 ml per
plant at two weeks after planting. Beginning three weeks after
planting (approx. 2 days before inoculation), plants were fertilized
weeklywith 4.5 ml Jensen’s solution supplementedwith a low con-
centration of 15N-enriched potassium nitrate (KNO3; 0.05 g l−1;
5 atm%15N). The KNO3 treatment represents approximately 10%
of the nitrogen concentration needed to maximize A. strigosus
shoot growth in the absence of rhizobial infection [42].

Size-matched groups of axenic seedlings were randomly
assigned to inoculation treatments and blocks. Rhizobial treatments
were separated into four groups to be inoculated on separate days
(electronic supplementary material, table S1), each with separate
uninoculated control plants. All plants that were treated with the
same Bradyrhizobium isolate were inoculated on the same day.
Each inoculation treatment was replicated on 10 plants separated
into individual blocks, except for treatments in the last inoculation
group which had five replicate plants in one separate block, due
to poor germination (85 inoculation + 4 control treatments (separate
controls in each block) × 10 replicates per treatment, except for
inoculation group 4 which had 5 replicates = 805 plants total).
Plants were harvested approximately eight weeks after inoculation.

During harvest, plants were de-potted, soil was washed from
roots and plants were wrapped and stored at 4°C until dissection.
Shoots were separated from roots to measure dry shoot biomass.
Noduleswere removed from the roots, counted and photographed.
Roots, shoots and nodules were separated and oven-dried (60°C,
greater than or equal to 4 days) prior toweighing. Because root dis-
section is time-intensive when plants are nodulated, only a subset
of replicates had their roots and nodules dissected for analysis.
For treatments with consistent presence of root nodules, four repli-
cate plants per treatment were de-potted, washed and dissected.
For the remaining plant replicates in each treatment, shoots were
removed at the root–shoot junction and roots were not analysed.
For treatments in which plants exhibited inconsistent nodulation
or the absence of nodules, all replicates were dissected.

(e) Leaf atm%15N assays
Subsequent to biomass measurement of shoots, leaflets from four
replicate plants per inoculation and control treatment were
removed from dried shoots and ground to a fine powder. Samples
were analysed for atom per cent 15N (atm%15N) at UC Santa Cruz
Stable Isotope Laboratory. We compared leaf atm%15N between
inoculated and control plants for each Bradyrhizobium isolate.
Since we fertilized with 15N-enriched KNO3 (5%), plants infected
with symbiotically effective strains are expected to exhibit signifi-
cant reductions in 15N/14N relative to uninfected plants,
consistentwith substantial assimilation of 14N from the atmosphere
via biological nitrogen fixation.

( f ) Data analysis
Bradyrhizobium traits were analysed using general linear mixed
models (GLMMs) in JMP Pro 13.0. Data were log-transformed as
needed to improve normality. GLMMs were used to analyse vari-
ation among collection sites (fixed effect: collection site, random
effect: isolate). Variation in symbiotic effectiveness among isolates
and within each population was also analysed using ANOVAs.
Symbiotic effectiveness was estimated as the host’s growth
response (HGR) to Bradyrhizobium inoculation relative to uninocu-
lated controls (i.e. HGR= ((shoot mass of inoculated plant – shoot
mass of control plant)/shoot mass of control plant) × 100 [3]).
Bradyrhizobium isolates were considered effective only if they (i)
consistently formed nodules on inoculated hosts, (ii) significantly
improved host growth, and (iii) fixed significant amounts of nitro-
gen for the hosts such that they could be differentiated from
uninoculated controls in terms of atm%15N (i.e. independent
samples t-test, inoculated treatments compared to uninoculated
controls). We quantified in planta fitness proxies for nodulating Bra-
dyrhizobium including themean number of nodules formed and the
mean individual biomass of nodules. Nodules are typically
initiated by one or a few rhizobial cells [24,59], so nodule number
and size can quantify the progeny of founding cells in clonal inocu-
lations [60]. Nodule size also takes into account the proliferation of
rhizobia that occurs within the nodule [3,60] and is often positively
correlated with rhizobial population sizes in nodules ofA. strigosus
[3],Medicago truncatula [61,62],Glycine max [19], Lotus japonicus [47]
and Lupinus arboreus [24].

(g) Phylogenetic trait analyses
Bradyrhizobium traits were tested for phylogenetic signal (a prere-
quisite for ancestral state reconstruction [63]) on the CHR and SI
trees, and a tree that used all four loci. The same parameters
were used as stated above, except a ‘burnin’ of 12 000 trees was
used in the four-locus tree. In cases where a single Bradyrhizobium
genotype included multiple isolates, a representative isolate was
randomly selected to include in analyses. This approach eliminates
polytomies (a prerequisite to analyse phylogenetic signal).We esti-
mated Blomberg’s K, which is ideal for continuous variables (i.e.
host growth response, atm%15N) using the ‘phylosignal’ function
in the ‘picante’ R package [64], where K compares the observed
signal in a trait to the signal under a Brownian motion model
[63]. K values close to 1 indicate a Brownian motion process and
suggest some degree of phylogenetic signal, whereas K values
close to 0 correspond to a random pattern of trait evolution. We
tested if K was significantly greater than 0 (i.e. phylogenetic
signal) with 999 randomizations and report the mean ± standard
error of K and average p-values calculated across 200 randomly
selected post-burnin trees to account for phylogenetic uncertainty.

Ancestral states of nodulation and nitrogen fixation on
A. strigosus were inferred using a consensus reconstruction of the
post-burnin Bayesian trees, and were inferred with maximum like-
lihood and parsimony. Losses of nodulation or nitrogen fixation on
A. strigosus were inferred by estimating a range of minimum to
maximum values. For the minimum value of loss events, we only
included monophyletic clades with Bayesian posterior support
values greater than 0.80 that contain taxa that exhibit lack of nodu-
lation or nitrogen fixation, derived from ancestors with a positive
proportional likelihood of nodulation or nitrogen fixation status
(i.e. greater than 0.90). For themaximumvalue,we used relaxed cri-
teria, including all genetically and spatially diverged taxa that
exhibit lack nodulation or nitrogen fixation derived from ancestors
with a high proportional likelihood of nodulation or nitrogen fix-
ation status (i.e. greater than 0.90). Sequences queried from NCBI
were used to examine whether Bradyrhizobium from other studies
are intermixed on the phylogeny with isolates from A. strigosus.
Using genetic distance, we tested whether ineffective isolates were
more closely related to Bradyrhizobium isolated from other legume
species, suggesting adaptation to other hosts. Bradyrhizobium SI
loci typically cluster phylogenetically with host species, whereas
CHR loci are less informative of host origin [65,66].
3. Results
(a) Categorical analysis of Bradyrhizobium symbiotic

effectiveness
Seventy-nine of the 85 Bradyrhizobium isolates nodulated all
inoculated plants. Among the remaining isolates, five failed
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(nos 40, 44, 53, 61, 199) to nodulate any inoculated plant and
no. 149 formed a single nodule on one plant replicate. Four
of these isolates, nos 40, 44, 53 and 61, were cultured from
the root surface. Isolate no. 199 was originally cultured
from an A. strigosus nodule, suggesting that it co-infected the
original host with a nodulating isolate [67].

Seventy-three of the 85 isolates were effective on A. strigosus
because they (i) consistently induced nodules, (ii) caused
significant increases in host growth, and (iii) caused signifi-
cant uptake of 14N from the atmosphere via biological nitrogen
fixation. Conversely, six isolates (nos 2, 155, 186, 187, 200, CW1)
from five collection sites were categorized as ineffective on
A. strigosus because they consistently formed nodules but did
not cause enhanced host growth via nitrogen fixation (figure 1).

Among the six isolates that did not instigate nodule
formation on A. strigosus, isolates nos 44 and 61 caused
modest but significant increases in host growth but did not exhi-
bit evidence for nitrogen fixation. The remaining isolates, nos 40,
53, 149 and 199, did not have any significant effects on hosts
during inoculation (electronic supplementarymaterial, table S1).

(b) Phylogenetic reconstruction
Phylogenetic reconstruction of the CHR loci recovered four
species-level clades (i.e. monophyletic lineages encompassing
one previously identified species, posterior support greater
than or equal to 0.9, greater than or equal to 3 isolates; [44])
including B. canariense [68] and three unnamed species [44]
(figure 2; electronic supplementary material, figure S2 and
table S3). The remaining isolates shared genetic similarity to a
diversity of reference strains and unnamed species [44] (elec-
tronic supplementary material, table S1). Reconstruction of the
SI loci recovered a tree with four clades (pp > 0.80, descending
fromnodes 2, 11, 12 and 14) encompassing all but three isolates,
which were derived on unresolved branches (i.e. nos 157, 187,
195; electronic supplementary material, figures S4 and S5,
table S3). For the nodulating isolates—including the ineffective
ones—wewere always able to amplify and sequence at least one
of the nodulation loci. We were unable to successfully amplify
nodZ for isolate nos 170, 189, 190, 200 and nolL for no. 182. Con-
versely, we were unable to PCR amplify any SI loci on isolates
that failed to nodulate A. strigosus (electronic supplementary
material, table S1). Previous work in Bradyrhizobium found
that no SI locus could be amplified in non-nodulating strains,
suggesting the degradation or absence of the SI [44].

(c) Trait analysis of Bradyrhizobium isolates
Blomberg’s K values for host growth response were
significantly different than zero on the CHR (K = 0.031,
p = 0.012) and SI trees (K = 0.070, p = 0.017), but not for the
four-locus phylogeny (K = 0.044, p = 0.126; table 1; electronic
supplementary material, figure S6). The same pattern
was true for nitrogen fixation (CHR: K = 0.031, p = 0.007; SI:
K = 0.205, p = 0.016; four-locus: K = 0.078, p = 0.070).

The six isolates that were categorized as non-nodulating on
A. strigosus were distributed in three independently derived
clades (i.e. pp≥ 0.80) and two long unresolved branches on
the CHR phylogeny (figure 2; electronic supplementary
material, figure S2, table S3). One B. canariense clade encom-
passed two closely related non-nodulating isolates (pp = 1.00;
nos 40, 44). Both the maximum likelihood and parsi-
mony reconstruction of ancestral states inferred five losses of
nodulation on A. strigosus.

The six isolates that were categorized as ineffective on
A. strigosuswere independently derived in fourwell-supported
clades (pp≥ 0.80) and one long unresolved branch on the CHR
phylogeny (pp≥ 0.50; figure 2; electronic supplementary
material, figure S2, table S3). One of the B. canariense clades
encompassed two of the ineffective isolates that were closely
related (i.e. pp > 0.80; no. 187, CW1, but were isolated greater
than 350 km apart). Maximum likelihood and parsimony



56_G
03_R

01

76_G107_R02

198_G106_R65

87_G
03_R

01

154_G
40_R

38

17
5_

G73
_R

31

17
6_

G
03

_R
01

17
8_

G03
_R

01

15
3_

G
62

_R
19

156_G
03_R

01

CW1_G03_R01

193_G11_R07

19
9_

G
19

_R
57

166_G01_R03

16
3_

G
03

_R
01

CW
13_G03_R03

149_G59_R21

186_G210_R201

160_G
58_R

222

17
7_

G03
_R

01

16
2_

G
03

_R
01

14
3_

G
71

_R
32

44_G07_R02

134_G05_R02

197_G102_R04144_G03_R34

196_G235_R07

49_G
03_R

01

190_G231_R61

38_G106_R04

CW
16_G03_R03

CW7_G03_R03

17
2_

G
03

_R
01

CW3_G11_R07

18
3_

G03
_R

01

185_G70_R31

170_G212_R204

135_G02_R98

53_G
245_R

01

184_G03_R01

155_G11_R07

157_G223_R213

CW10_G11_R07

CW15_G03_R01

C
W

17
_G

40
_R

38

200_G232_R232

MAFF

14
1_

G23
0_

R22
7

132_G106_R04

187_G03_R01

CW
14_G03_R03

18_G
117_R

01

137_G
40_R

19

40_G08_R02

CW12_G11_R07

138_G91_R225

169_G11_R01

194_G
40_R

19
2_

G
14

_R
14

18
2_

G
40

_R
38

CW11_G11_R01

147_G
58_R34

CW5_G03_R03

131_G11_R07

191_G74_R230

C
W

4_G
03_R

07

C
W

9_G
244_R

01

181_G
40_R

38

16
7_

G
03

_R
01

13
9_

G
22

9_
R

22
6

17
1_

G
03

_R
01

159_G62_R03

16
5_

G
03

_R
01

189_G74_R219

150_G
03_R07

17
4_

G
03

_R
01

19
2_

G
97

_R
91

164_G
40_R

19

188_G03_R01

CW
8_G03_R03

17
3_

G
03

_R
01

168_G11_R198

19
5_

G24
3_

R35

179_G
90_R

27 61
_G

14
_R

14
180_G

40_R
19

1

2

3

4

5

6

8
7

9 10 11

12 13

14

15

17

24
23

2221
18

19

20

25

B.
 c

an
ar

ie
ns

e

B. sp
p. nov. I 

B. spp. nov. II

B
. s

pp
. n

ov
. X

ancestral state reconstruction 
proportional likelihood of N fixation 

nodes with pp > 0.8 are numbered

>0.950

0.900 Æ 0.949

0.600 Æ 0.899

<0.600

taxon phenotypes 

inner circle: nodulation status 
= nodulating
= non-nodulating

outer circle: nitrogen fixation status 
= nitrogen fixing
= non-fixing
= no data

16

Figure 2. Bayesian cladogram inferred with glnII and recA. Four previously identified species-like clades are indicated with the outermost curved bars [44]. Symbiotic
phenotypes are indicated on the tips of the tree with concentric circles, the outer indicating nitrogen fixation (red squares, significant nitrogen fixation; grey, no
significant nitrogen fixation; dotted square, no data) and the inner indicating nodulation. Numbers identify clades with Bayesian posterior probabilities≥0.80 (i.e.
pp, Bayesian support value). Ancestral states for nitrogen fixation are estimated for all well-supported internal nodes using maximum likelihood. Proportional like-
lihood of the nitrogen fixation is reported via the colour of the node labels. In the parsimony analysis, all 20 well-supported ancestral nodes were inferred to be
nitrogen fixing except for no. 17, which was ambiguous (electronic supplementary material, table S3). (Online version in colour.)

Table 1. Phylogenetic signal estimated with Blomberg’s K. Mean ± s.e. of K and average p-values are calculated across 200 trees to account for phylogenetic
uncertainty.

trait

genomea chromosome symbiosis island

K p-value K p-value K p-value

HGRb 0.04353235 0.126 0.03059187 0.012 0.06993263 0.017

atm%15N 0.07843186 0.07 0.03094816 0.007 0.2053341 0.016

nodule massc 0.2301758 0.203 0.02789672 0.004 0.0730706 0.005
aGenome refers to trees reconstructed with all four loci.
bHGR refers to host growth response.
cMean individual nodule mass.
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reconstructions of ancestral states using the CHR tree inferred a
minimum of three or four independent losses of nitrogen fix-
ation capacity on A. strigosus, respectively. The six isolates
that were ineffective on A. strigosus were independently
derived in three clades (pp≥ 0.80) and one long unresolved
branch (pp≥ 0.50, no. 187) on the SI phylogeny (electronic sup-
plementary material, figures S4 and S5). The maximum
likelihood and parsimony reconstructions of ancestral states
both inferred a minimum of three losses of nitrogen fixation
on A. strigosus on the SI tree.

Bradyrhizobium isolated from Lupinus and other legume
genera were intermixed with isolates from A. strigosus on the
CHR trees (electronic supplementary material, figures S7 and
S8, table S9). Conversely, the A. strigosus Bradyrhizobium iso-
lates formed monophyletic clades on the SI trees that
excluded isolates from other species—except for one nodule
isolate from Syrmatium glabrum with a nodZ genotype shared
with several of our isolates (including ineffective strains no.
155, CW1; electronic supplementary material, figures S10 and
S11). Genetic distance matrices of CHR loci showed that
ineffective strains were sometimes more closely related to iso-
lates from other legume species than to beneficial strains
from A. strigosus. However, this was never the case for the SI
loci or when taking all four loci into account (electronic
supplementary material, table S12).
(d) Variation among populations in symbiosis traits
Host growth response to the Bradyrhizobium isolates varied
significantly among the sampled populations (F9,66.12 = 3.0575,
p = 0.0040; figure 3; electronic supplementary material, table
S13) but nitrogen fixation did not (F9,69 = 1.0685, p = 0.3969).
The number of nodules formed and the mean individual
nodulemass ofBradyrhizobium isolates both varied significantly
among the sampled populations (nodules formed: F9,77.18 =
3.1087, p = 0.0031; mean individual nodule mass: F9,70.86 =
2.0310, p = 0.0481; figure 3). Bradyrhizobium from the bulk soil
isolates (which were cultured only from white or yellow
nodules of plants that were inoculated with these soils) slightly
increased host growth response compared to the remainder of
the isolates, inconsistent with white or yellow nodules being
more likely to be ineffective (F1,92.85 = 4.4699, p = 0.0372).

Host growth response and nitrogen fixation (atm%15N)
were positively correlated (ρ = 0.6876, p < 0.0001, n = 79), con-
sistent with nitrogen fixation being the main benefit of
nodulation. Host growth response and mean individual
nodule mass were also positively correlated (ρ = 0.4953, p <
0.0001, n = 79), suggesting that the plants invest more resources
into nodules as the benefit of symbiotic nitrogen fixation
increases [21,47]. We did not find any correlation between host
growth response and the numberof nodules formed (ρ = 0.0816,
p = 0.4745, n = 79).
4. Discussion
Our study uncovered multiple, independent evolutionary
losses of beneficial mutualism in a metapopulation of rhizo-
bia interacting with a widespread host. Previous studies of
microbial mutualist services uncovered broad genotypic vari-
ation in the magnitude of benefits that symbionts provide to
hosts [8,10,11,69–71] consistent with evolutionary lability in
these traits. Moreover, phylogenetic analyses have occasion-
ally found that microbial mutualist taxa are closely related
to uncooperative strains or species, allowing inference of
transitions between mutualism and parasitism [12–14].
We inferred multiple transitions leading either to the loss of
Bradyrhizobium nitrogen fixation or nodulation on A. strigosus
in separated populations (figure 2; electronic supplementary
material, figure S4). No other study that we are aware of has
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recovered multiple independent mutualism breakdown
events occurring within a host-symbiont metapopulation.
The dataset suggests that these transitions are occurring
frequently, rapidly and at multiple local sites.

There is intense debate over mutualism stability. Selection
for selfish traits is predicted to overcome the benefits of mutu-
alism [72] leading its breakdown [12]; however, this might
often depend on costs of cooperation or competition for part-
ners [73,74]. We uncovered uncooperative Bradyrhizobium
distributed only at the tips of the evolutionary tree, consistent
with recurrent origins but no long-term fitness advantage
[75]. Given the recurrent evolution of Bradyrhizobium that fail
to benefit the host, what is preventing the uncooperative rhizo-
bia from displacing beneficial strains? A null hypothesis is
mutation–selection balance, wherein non-fixing rhizobia
are recurrently introduced into populations via deleterious
mutation and are purged at a similar rate by low fitness,
either in hosts (due to host defence [6]) or in the soil environ-
ment [76]. There are conflicting data about the relative fitness
of ineffective rhizobia. Our analysis here uncovered a positive
correlation between symbiotic effectiveness and mean nodule
mass, suggesting that cooperative strains have higher fitness
in planta. However, a previous study including some of
the same strains did not find a correlation [40], and instead
uncovered ineffective Bradyrhizobium that achieved higher gen-
otype frequencies than beneficial strains within populations,
suggesting that cheating was favoured in those settings [40].
Evidence for rhizobial cheating has also been uncovered
using nodule mass and seed mass data in theMedicago–Ensifer
symbiosis [60]. It remains an open question of how often
ineffective rhizobia are superior in fitness to cooperative
strains, and thus can be defined as cheaters [70,77].

Bacterial mutualists can transition in their capacity to
provide fitness benefits to hosts through mutation, acqui-
sition or deletion of loci that encode symbiosis functions
[3,6,13,14,78,79]. The data here are consistent with previous
work, suggesting that deletion of part or all of the SI is a
main driver causing rhizobia to lose capacity to nodulate
hosts [3,80,81]. The evidence is less clear for rhizobia that
do not fix nitrogen for a host. Losses of effectiveness on a
host legume could occur if rhizobia become adapted to
a novel host, and in the process lose the capacity to fix nitro-
gen on the initial host (i.e. G ×G interactions) [10,61,80,82].
We found that some of our rhizobia were related to
Bradyrhizobium isolated from other legume species, including
Lupinus spp., Lablab purpureus, Syrmatium glabrum and others
(electronic supplementary material, table S9), suggesting
that some of these isolates might be adapted to other host
species. However, for the symbiosis loci—which control
host-symbiont specificity—the ineffective isolates were
never more closely related to isolates from other species (elec-
tronic supplementary material, table S12). Thus, evidence is
currently lacking that adaptation to a novel host drove the
losses of mutualism with A. strigosus.

Ineffective rhizobiacouldalso arise throughacquisition of an
SI in a genome lacking these loci [3]. A recent study of these
Bradyrhizobium populations inferred recurrent evolutionary
gain and loss of nodulation capacity and hypothesized that
these transitions were driven by acquisition and deletion of the
SI [44]. Mapping the ineffective genotypes uncovered in the
current study onto a CHR tree from that larger dataset suggests
that as many as three of our ineffective isolates (i.e. 2, 187, CW1)
recently acquired an SI in ancestors that were non-nodulating
[44]. Even with these ambiguous taxa, we still uncovered three
mutualism breakdown events, independent origins of ineffec-
tive rhizobia from beneficial nodulating ancestors (i.e. 155, 186,
200). This complex evolutionary history suggests that origins
of ineffective rhizobia might have multiple drivers including
adaptation to other hosts, to free-living conditions in the soil,
or might be due to negative epistasis caused by acquisition of
novel SIs. Whole-genome datasets that deeply sample these
populations are needed to better examine the mechanisms
that drive these transitions and to resolve the frequency,
directionality and genomic drivers of these events.

We uncovered recurrent mutualism breakdown events in a
legume rhizobia metapopulation, including both the loss of
nitrogen fixation and nodulation on a focal host. Parallel
examples of mutualism breakdown might be expected to
occur inother symbiont taxawith similar lifestyles.Vibrio fischeri
is one such candidate. These marine bacteria provide the meta-
bolically costly service of bioluminescence to diverse animal
hosts, have an evolutionary advantage over hosts and also
spend time in the environment between rounds of host infection
[83]. However, in the well-studied bobtail squid system, host
mechanismsappear to efficiently select against non-biolumines-
centVibrio [84]. Another candidate is the clade of dinoflagellate
algae that provides nutrients to diverse marine hosts including
corals [85], as theyalso share the sameset of features. Itwouldbe
fascinating to examine the strain and population-level variation
in mutualism services in these and other taxa. More work is
needed to examine the fine-scale strain-level population geno-
mics of other microbial mutualists, to uncover shifts and
losses of mutualist traits and the genomic and ecological
mechanisms that drive these changes.
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