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Abstract 

In cognitive modeling, it is routine to report a goodness-of-fit 
index  (e.g., R2 or RMSE) between a putative model's 
predictions and an observed dataset. However, there exist no 
standard index values for what counts as “good” or “bad”, and 
most indices do not take into account the number of data 
points in an observed dataset. These limitations impair the 
interpretability of goodness-of-fit indices. We propose a 
generalized methodology, percentile analysis, which 
contextualizes goodness-of-fit measures in terms of 
performance that can be achieved by chance alone. A series of 
Monte Carlo simulations showed that the indices of 
randomized models systematically decrease as the number of 
data points to be fit increases, and that the relationship is 
nonlinear. We discuss the results of the simulation and how 
computational cognitive modelers can use them to place 
commonly used fit indices in context. 
 
Keywords: goodness-of-fit, computational cognitive 
modeling, percentile analysis 

Introduction 
A common methodological practice for cognitive science 

researchers is to assess the merits of a cognitive model by 
evaluating its ability to capture the dynamics of a relevant 
dataset. For example, an adequate model of list memory 
might be one that captures appropriate serial position effects 
as well as other related psychological phenomena (e.g., 
Anderson, Bothell, Lebiere, & Matessa, 1998). The 
predictions derived from such a model can themselves be 
tested experimentally. Thus, comparisons of theoretical 
predictions to empirical data reflect an alternating dialectic 
between theory building and experimentation (cf. 
McClelland, 2009). 

A common way of assessing the fit of a model to data is 
to employ statistical goodness-of-fit measures. One such 
measure is the coefficient of determination (R2), which is 
often interpreted as the proportion of variance explained by 
the model. Another is the root mean squared error (RMSE), 
a measure of the residuals between expected and observed 
values. Generally, R2 is used to characterize the precision of 
a model, and RMSE is used to characterize a model’s 
accuracy at accounting for a given dataset. They are often 
reported in concert with one another (Schunn & Wallach, 
2005) under the assumption that a good model must be both 
precise and accurate. The indices are used ubiquitously as a 
method of model evaluation in computational cognitive 
science research (Busemeyer & Diederich, 2010). Indeed, in 
the Proceedings the 35th Annual Conference of the 
Cognitive Science Society (CogSci 2013) alone, 51 out of 
171 papers (30%) self-identified as pertaining to 
computational modeling made use of at least one of the two 
indices to assess the fit of a cognitive model to empirical 
data. For instance, when Kachergis and Yu (2013) applied a 
computational model of cross-situational word learning 
(Kachergis, Yu, & Shiffrin, 2012) to an experiment they 
conducted, it revealed a high R2 value (= .98), and the 
authors noted that their model “achieved quite a good fit to 
the data” (p. 713) and that it “could account for individuals’ 
behavior in each of the conditions [of their experiment]” (p. 
715). On the assumption that a good model must account for 
a generous proportion of the variance in a given dataset, R2 
provides a readily interpretable metric with which to 
evaluate and optimize computational models. 

Our present analysis focuses on the limitations of using 
R2 and RMSE as model evaluation metrics. Consider the fit 
of two hypothetical cognitive models, Theory A and Theory 
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Figure 1. Hypothetical observed data (histograms and error bars) and hypothetical model predictions (circles) for two separate models, 
Theory A and Theory B. Errors bars reflect 95% confidence intervals. Black circles indicate when the predictions fell within the confidence 
interval of the observed proportion of correct responses, while red circles indicate deviations from the predictions and the observation.  
Theory A makes predictions of three separate problems, and Theory B makes predictions of thirty-two separate problems. 
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B, to hypothetical datasets as depicted in Figure 1. Theory A 
is conservative: it attempts to model the proportion of 
correct responses to three separate problems, and it accounts 
for 93% of the empirical variance. Theory B is more 
ambitious: it attempts to model the responses of thirty-two 
problems, but accounts for only 20% of the variance. Our 
intuitions might therefore suggest that Theory A provides a 
close match to the data, and Theory B, for all its ambition, 
provides a poor match to the data. The goal of the present 
article is to show how both intuitions can be incorrect: 
Theory B, we argue, reflects an excellent account of the 
data, and Theory A’s fit is not particularly impressive. To 
show how this is the case, we turn to address several 
limitations of common model fitting metrics and discuss 
those limitations in the context of developing computational 
cognitive models. We introduce a novel, theoretically 
motivated metric, percentile R2, which overcomes 
limitations of orthodox goodness-of-fit measures. We then 
describe a simulation study that reveals the dynamics of the 
percentile R2 metric relative to different sorts of 
hypothetical datasets. Finally, we conclude by addressing 
constraints of the percentile R2 metric and prescribe its use 
in computational cognitive modeling. 

The limitations of goodness-of-fit 
The use of goodness-of-fit measures like R2 and RMSE is 

controversial: some researchers argue that they are 
uninformative and should not be used (Roberts & Pashler, 
2000) while others suggest that the metrics themselves are 
informative, but they are often misused (Schunn & Wallach, 
2005; Stewart, 2006). Both sides agree that a major problem 
with goodness-of-fit metrics is that there exist no 
established measures for how to interpret them (Estes, 
2002): researchers often rely on conventions, such as that an 
R2 > .90 reflects a “good” fit, and these conventions can be 
misleading. Furthermore, Schunn and Wallach acknowledge 
several other factors that affect the quality of a fit, including 
the noise in the data and its information-theoretic 
complexity. 

One of the primary reasons that the conventions for good 
and bad fits are misleading is because R2 does not reflect the 
number of data points (N) that a model attempts to fit. In 
other words, we might intuitively believe that a model that 
accounts for 95% of the variance amongst twenty data 
points is stronger than an alternative model that accounts for 
the same mount of variance amongst only five data points, 
provided that the data points are distributed in a non-trivial 
way, e.g., in a non-linear fashion. However, there is nothing 
inherent about the goodness-of-fit metrics themselves that 
rewards the fitting of more points (or penalizes the fitting of 
fewer points). There exist metrics for model selection that 
combine goodness-of-fit and model complexity measures, 
such as minimum description length (Grünwald, 2001), the 
Akaike information criterion (AIC; Akaike, 1973; 
Bozdogan, 2000), and the Bayesian information criterion 
(BIC; Schwarz, 1978; Wasserman, 2000), but these metrics 
generally take into account a model’s free parameters in 

assessing its complexity, and not the number of data points 
it attempts to fit. 

The insensitivity of goodness-of-fit metrics to the number 
of data points being fit may appear innocuous at first blush. 
After all, a model that accounts for 90% of the variance 
intuitively strikes us as an adequate account of the data 
regardless of how many points it fits. However, the 
established conventions for what is considered a “good” 
model, combined with the insensitivity to the number of 
data points under consideration, may discourage cognitive 
modelers to fit their model at the level of individual items 
and problems. If a computational model makes quantitative 
predictions for twenty separate items, but those individual 
items can be collapsed into four-item sets, the modeler may 
be tempted to optimize the model’s fit to the set-wise 
analysis (five separate data points) and to ignore or else not 
report the item-wise analysis (twenty separate data points). 
Indeed, we would venture that many cognitive modelers 
would reject our hypothetical Theory B (see Figure 1) on 
the basis of how low the R2 is, disregarding how many 
points the theory attempts to fit. To do so would be a failure 
to recognize that the number of data points is negatively 
correlated with the chance probability of obtaining a high 
R2. 

One solution to the problem is to consider a metric that is 
both sensitive to the number of data points under 
investigation as well as uniformly interpretable and 
meaningful. The next section introduces such a metric. 

Percentile analysis 
We posit a general methodology of model evaluation, 

percentile analysis, which contextualizes goodness-of-fit 
indices in terms of performance that can be achieved by 
chance alone. It is sensitive to the number of data points 
under investigation, as well as interpretable. The 
methodology is designed to take into account the strengths 
of orthodox goodness-of-fit metrics like R2, which are often 
used under the assumption that a model is “good” whenever 
its predictions explain a large proportion of the data. The 
term  “large” is usually taken to mean upwards of 90%, but 
it is merely a convention, and many studies attribute good 
fits to models whose R2 values are lower (e.g., Lassiter & 
Goodman, 2012; Salvucci, 2005) depending on the 
particular dataset. The threshold for evaluating R2 is 
therefore ambiguous. A less ambiguous assumption of 
model fitness can be achieved by comparing the model to 
hypothetical alternatives. That is, the metric we propose, 
percentile R2, assumes that an acceptable model is one that 
accounts for more variance than a set of predictions 
produced by chance alone, and it can be scaled and 
interpreted based on the probability that the results could 
occur by chance. 

As an illustration, consider an observed dataset, 
DOBSERVED, that consists of N data points that one wishes to 
model, and a set of predictions as derived from a putative 
model, DPREDICTED. Our goal is to describe how well the 
predicted data fits the observed data. We do this by 
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exploring the space of possible models as produced by 
chance by generating randomized models, i.e., sets of N data 
points at random, D1 to D100. We then calculate the 
proportion of explained variance, R2, for D1…D100 and for 
DPREDICTED relative to DOBSERVED. Finally, we examine the 
percentile rank of our putative dataset, DPREDICTED, relative 
to the 100 randomized models. The percentile rank is what 
is reported as the percentile R2, and we accordingly define it 
as follows: 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒  𝑅!   =   
𝑓!"#$% +

1
2 𝑓!"#!!"
𝑁

∗ 100 

 
where: 
 

𝑓!"#$%   is the frequency of random models whose R2 
values are less than the R2 value of the putative 
model 

𝑓!"#!!"   is the frequency of random models whose R2 
values are the same as the R2 value of the 
putative model 

𝑁  is the number of random models. 
 
Thus, a percentile R2 of .93 means that the putative model’s 
R2 value is higher than 93% of the R2 values of the random 
models. Clearly, the fidelity of the percentile R2 measure 
depends on the number and quality of the datasets generated 
by the random exploration of the data space. Nevertheless, 
the law of large numbers guarantees convergence on a stable 
percentile R2 as the sample size of random models 
increases. 

The percentile R2 is advantageous because it allows 
researchers to uniformly evaluate theories that differ in the 
number of predictions they make on their ability to account 
for a given data set. Suppose one model (Model A) makes 
fewer predictions than another model (Model B). 
Employing percentile R2 as a metric in concert with R2 to 
evaluate Model A and Model B has four potential outcomes: 
 
1. Model A has a higher R2 value than Model B, and also 

has a higher percentile R2 than Model B. In this 
uncontroversial case, Model A is universally preferred 
over Model B. Assuming that the model’s R2 is high 
enough to account for an large proportion of the data 
relative to the standards set by other researchers, it is 
declared to have a fit that is both sufficiently high and 
sufficiently ambitious, i.e., it fits that data better than its 
competitor. 
 

2. Model A has a higher R2 value than Model B, but the 
two models have identical percentile R2 values. In many 
cases, this scenario is uncontroversial: in the event that 
percentile R2 values between two theories match, the 
model with the higher R2 is interpreted as fitting the 
most data. However, it is possible that Model A has 
only a marginally higher R2 value relative to Model B 

(e.g., .95 vs. .92). In this event, the two models have 
comparable accounts of the data, i.e., they cannot be 
distinguished on the virtue of model fits alone. 
 

3. Model A has a higher R2 value than Model B, but a 
lower percentile R2 value than Model B. In this 
controversial case, if R2 is used as the only goodness-
of-fit metric, then Model A will be deemed to have a 
closer fit to the data than Model B, disregarding the fact 
that Model B makes more predictions and is susceptible 
to a lower fit by virtue of chance alone. In contrast, 
taking percentile R2s into account yields one of two 
separate conclusions: either Model A is deemed to be 
not sufficiently ambitious, i.e., not able to account for 
as many data points as Model B, or else Model B is 
deemed to have poor descriptive power (although it 
may be more generalizable than Model A; see 
Cavagnaro, Myung & Pitt, 2013). The key insight of 
this controversial scenario is that a cognitive modeler is 
not justified in dismissing Model B on account of its 
inability to account for enough variance, and must 
direct criticisms to other facets of the model (e.g., its 
parsimony, breath, and ability; see Cassimatis, Bello, & 
Langley, 2008). 
 

4. Model A and Model B have identical R2 values relative 
to the datasets they attempt to fit. In this case, Model B 
is guaranteed to have a higher percentile R2 value than 
Model A, and is therefore deemed to have a closer fit to 
the data than its competitor.  

 
In the first case, the use of percentile R2 reinforces the 
results of employing the orthodox goodness-of-fit metric, 
R2, alone. The latter cases, however, are those that pose a 
challenge for metrics that disregard the number of data 
points being fit. In those cases, percentile R2 provides 
meaningful, contextually relevant interpretations of model 
fits, and allows a modeler to adjudicate between putative 
models. 

To explore these latter two cases, we conducted a Monte 
Carlo simulation of observed datasets (DOBSERVED) of 
varying numbers of items in the dataset (N), and calculated 
the R2 and RMSE values at informative percentiles. We 
expected that R2 would drop and RMSE would rise relative 
to N. Our goal, however, was to examine these patterns as 
well as the raw goodness-of-fit values that achieve relatively 
low and relatively high percentile R2s. 

Monte Carlo simulation study 
We conducted a series of Monte Carlo simulations to 

explore the distribution of percentile R2 values as a function 
of the number of items in the dataset. Random samples were 
drawn to numerically investigate the properties of the 
unknown probability distribution defining percentile R2 
values. 
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Method and procedure. 127 separate Monte Carlo 
simulations were conducted for values of N ranging from 2 
to 128. Each of the simulations was run 10,000 times. Every 
run comprised three operations: 
 
1. First, an observation sample, DOBSERVED, is defined by 

drawing N samples from a standard uniform probability 
distribution, U(0, 1). 
 

2. A model sample, Di, is then constructed by again 
drawing N samples from U(0, 1). 

 
3. Goodness-of-fit statistics, i.e., R2 and RMSE, are 

calculated between Di and DOBSERVED. 
 
The simulations drew samples from the uniform probability 
distribution, which ranges from 0 to 1. Such a distribution 
can be used to model proportions, e.g., accuracy data. We 
performed an analogous simulation study by drawing 
samples from a unit normal distribution, but as its results 
were largely similar to those of the analysis performed over 
the uniform distribution, we omit them for brevity. 
However, the second simulation made evident that the 
distribution from which samples are drawn makes a 
substantive difference in the analysis of RMSE and other 
metrics of deviation from exact location. 

After the simulation was carried out for a given value of 
N, the system calculated the values of R2 and RMSE at four 
separate percentiles of salience. Three of the percentiles, the 
90th, 95th, and 99th, represent those that correspond to 
orthodox alpha values in inferential statistics, i.e., they 
represent percentiles that could potentially be deemed a 
“good” fit. Values of R2 and RMSE at the 99th percentile, 
for example, indicate that of 100 random guesses, on 
average only one will match or exceed it. A fourth 
percentile value, the 70th percentile, provided a value of 
what would unequivocally be considered a “poor” fit. In 
other words, it described the values of R2 and RMSE that 
could be achieved (or surpassed) 30% of the time if a theory 
structured its predictions at random. 

Results of the simulation 
The Monte Carlo simulation provided a numerical 
exploration of the multivariate probability distribution that 
defines percentile R2 values. Figure 2 plots average R2 and 
RMSE values as a function of the four percentiles analysed 
for values of N that range from 2 to 100. Table 1 provides 
mean R2 and RMSE numerical values at the four percentiles 
of interest for values of N at powers of 2. The results of the 
simulations reveal the predicted monotonic trends: R2 values 
drop as the number of data points in a model increases while 
RMSE values increase proportionally to the number of data 
points in a model. These results serve as manipulation 
checks and validate the fidelity of the simulation. 

As Figure 2 shows, the simulations revealed that when 
fitting low numbers of data points, a set of random 
predictions could achieve high R2 values. For instance, 

when fitting 4 data points, around 10% of random 
predictions (i.e., those at the 90th percentile or higher) yield 
R2s ≥ .97. That is, one in ten random guesses can capture 
nearly all of the variance among 4 data points. Increasing 
the number of data points to 8 makes it progressively more 
difficult to achieve a high R2 value by chance alone: the 
model at the 99th percentile yielded an R2 = .71. By the time 
a modeler attempts to fit 100 data points, the probability of 
achieving a high R2 by guessing randomly is astronomically 
low, and the model at the 99th percentile yielded a paltry R2 
of .06. 

The results of the simulation study provide the basis of a 
new measure of goodness-of-fit that is imminently 
interpretable. They yield a systemized account of what can 
be considered an acceptable fit of the data. For example, a 

  
Figure 2. Mean R2 (top panel) and RMSE (bottom panel) values 
at the 70th, 90th, 95th, and 99th percentiles of R2 values where the 
number of data points in the model (N) ranges from 2 to 100 
(truncated from 128). 
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model’s alleged “good fit” (R2 = .95, RMSE = .30) can be 
corroborated or contravened depending on whether its 
percentile R2 is .80 or .99. We conclude by discussing the 
broader use of percentile analysis in computational 
cognitive modeling. 

General Discussion 
A good fit of a model to data can promote refinement; a 

bad fit can encourage correction or dismissal. The analytical 
technique we propose and implement, percentile analysis, 
augments traditional goodness-of-fit measures with 
information regarding how well a model performs relative 
to what can be achieved by chance alone. A series of Monte 
Carlo simulations provide the numerical basis for novel 
metrics that can be used to place model fits in context. For 
example, consider the fits of the two theories we introduced 
at the beginning of the paper, Theory A and Theory B (see 
Figure 1). Theory A appears to have a closer fit to the data 
(R2 = .93), and despite the fact Theory B makes more 
predictions, it appears to achieve a poor fit to the data (R2 = 
.20). Percentile analysis provides the full context: the 
percentile R2s of Theory A and Theory B are .81 and .99 
respectively. That is, on average, roughly one in five 
random predictions can achieve a fit that matches or exceeds 
Theory A’s performance, whereas less than one in a 
hundred random predictions can exceed Theory B’s 
performance. 

The preceding example demonstrates how percentile 
analysis can promote better computational modeling 
practices. Because fit indices are guaranteed to drop as the 
number of data points increases, we suspect that many 
computational modelers are susceptible to Type II error: 
they disregard models of potential value because they 
understand that an R2 of .20 is unlikely to impress 
reviewers. Percentile analysis provides a more thorough 
perspective for evaluating models: a model whose R2 is .20 
may be worth considering on the basis of how difficult it 
would be to account for 20% of the variance by chance 
alone. 

Perhaps a more pressing concern is that modelers are 
susceptible to Type I error as well: a purported “good” fit 
(e.g., R2 = .93) might be a result of a random allocation of 
predictions. In this case too, percentile analysis allows for a 
motivated rejection of the model: if the percentile R2 value 
is low, then its predictions may be dubious. 

In either event, the use of percentile R2 in computational 
modeling promotes the analysis of detailed model fits. 
Cognitive modelers often fit their models at the level of sets 
of data points by aggregating individual problems and items 
in some theoretically meaningful way. They rarely fit their 
models at the level of individual items, and it is no surprise: 
modelers who do so are often guaranteed to yield what 
orthodox goodness-of-fit metrics would consider a “poor” 
fit. Nevertheless, a good model should be able to fit the data 
at both the set-wise level and the level of individual items 
(provided that the data collection methodology is robust). 
Percentile analysis is a tool that allows for the development 
of such models. 

Percentile analysis can also aid in more common 
computational modeling practices, such as parameter 
optimization. R2s and percentile R2s are separate measures, 
i.e., the latter is a function of the number of items in a 
dataset, whereas the former is not. As a result, percentile R2s 
may prove to be a better index of fitness with which to tune 
parameter settings, and optimizing for percentile R2s can 
potentially find parameters that avoid overfitting. That is 
because, for sufficiently large values of N, the parameter 
space that yields percentile R2s > .90 is larger than the space 
that yields R2s > .90, and the additional parameter settings 
may allow for more generalizability. The end result could be 
a parameterization of a model that yields a relatively “low” 
R2 value (< .90), a high percentile R2 value, and better 
cross-validation potential. 

Are there disadvantages to employing percentile analysis 
in computational modeling? Critics may wonder if the 
introduction of yet another index of model fit is worthwhile: 
they might hold that present methodologies suffice to 
quantify how much variability a models accounts for, and 

 R2  RMSE 

 Poor  Good  Poor  Good 

N 70th  90th 95th 99th  70th  90th 95th 99th 

2 1.00  1.00 1.00 1.00  0.22  0.12 0.09 0.04 
4 0.49  0.85 0.93 0.99  0.38  0.26 0.21 0.13 
8 0.17  0.39 0.51 0.72  0.34  0.27 0.24 0.18 
16 0.08  0.18 0.25 0.39  0.38  0.33 0.31 0.27 
32 0.04  0.09 0.12 0.20  0.37  0.34 0.33 0.30 
64 0.02  0.04 0.06 0.10  0.41  0.39 0.38 0.36 

128 0.01  0.02 0.03 0.05  0.40  0.38 0.38 0.36 
 

Table 1. Mean R2 and RMSE numerical values at the four percentiles of interest for values of N at powers of 2. 
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that metric alone serves as a sufficient metric for evaluating 
models. However, metrics such as R2 and RMSE suffer 
from many limitations as reviewed above, not the least of 
which is that they are difficult to interpret. As a poor model 
fit is regarded in such disdain as to present an impediment 
to publication, we argue that percentile analysis is an 
indispensible tool for interpreting goodness-of-fit indices 
and placing them in an appropriate context. Percentile 
analysis is not a methodology meant to supplant orthodox 
goodness-of-fit measures, but rather one that should be used 
to make them more comprehensible. The same points hold 
mutatis mutandis for model selection metrics like minimum 
description length, AIC, and Bayesian non-parametric 
approaches (Karabatsos, 2006): the advantage of these 
metrics is that they take into account model complexity, but 
their disadvantage is that they are hard to interpret and to 
compare across datasets. 

Dissenters may also hold that percentile analysis is a 
vindication for poor modeling: it allows for the publication 
of models that account for relatively little variance in the 
data (e.g., R2 = .20). Far from the dissenting position, 
however, we believe percentile analysis promotes better 
computational modeling practices, because it contextualizes 
previous methodologies and allows modelers to reasonably 
examine detailed model fits across individual items. 
Therefore, a modeler’s focus needn’t rest on maximizing R2 
values alone; they can also try to build models that are 
flexible enough to make detailed process predictions. 

In summary, we developed percentile analysis as a 
methodology for evaluating and interpreting a model’s fit to 
observed data. It is sensitive to the number of data points in 
the data, and it operates by comparing a putative model 
against hypothetical ones generated by pure noise. We argue 
that percentile analysis should be an essential component of 
a cognitive modeler’s toolkit. 
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