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FRET biosensor to visualize Lck kinase activity during TCR activation 
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On the molecular level, the immune response begins in T-cells where lymphocyte-
specific protein tyrosine kinase p56-Lck (Lck), a Src family kinase (SFK), is one of the 
first molecules involved in early T-cell activation at T-cell receptors (TCRs). A biosensor 
utilizing fluorescence resonance energy transfer (FRET) was designed to better understand 
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and monitor Lck kinase activity during TCR activation by undergoing FRET change when 
an active Lck phosphorylates the biosensor. According to the in vitro data, the Lck FRET 
biosensor can also report proto-oncogene tyrosine-protein kinase p59-Fyn (Fyn) activity 
faster than to Lck activity, implying that the Fyn kinase has a higher activity level than the 
Lck kinase. However, mammalian HeLa cell data showed that the biosensor is more 
specific to Lck in a physiological setting where kinase-dead Lck(K273R) and Lck(Y394F) 
can induce a higher FRET change than Lck(WT). In J.CaM1.6 cells, Lck-deficit T-cells, 
kinase-dead Lck(K273R) did not elicit a FRET change, but kinase-dead Lck(Y394F) 
continued to elicit a higher biosensor response than Lck(WT). This suggests that Lck may 
have an adaptor function to recruit other Src family kinases (SFKs) for continuous 
phosphorylation on the biosensor. 
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Chapter 1: Background 
T-cell Activation 

Understanding T -cell development and activation, key activities during an 
immunological response, allows for better insight into how the body fights off diseases, 
how immune-related diseases arise, and ultimately provide a basis for how to fight against 
or even prevent such diseases. Activation begins with coupling the major 
histocompatibility complexes (MHCs) on antigen presenting cells (APCs) to T-cell 
receptors (TCRs) on T-cells creating immunological synapses (ISs), which initiates a 
signaling cascade that leads to T-cell activities such as proliferation, differentiation, gene 
expression, etc.[2] Following the formation of the ISs, lymphocyte-specific protein 
tyrosine kinase p56-Lck (Lck), a Src family kinase (SFK), is one of the earliest molecules 
to continue the signal cascade.[1, 2] Although whether Lck activation and recruitment 
occur before or after the MHCs dock with TCRs is still under debate, roughly 20  40% of 
Lck is constitutively active in naive T cells.[1-5] Maintained at this basal level of 
phosphorylation in clusters at the plasma membrane, Lck anchors to the membrane by 
myristoylated and palmitoylated residues on its N-terminus.[5, 6] A unique region in this 
domain contains a di-cysteine motif that tethers Lck to the cytoplasmic domains of CD4 
and CD8 co-receptors integrated in T- transmembrane.[7, 8] Following this region is 
a Src-homology 3 (SH3), a Src homology 2 (SH2) domain, and the catalytic tyrosine kinase 
domain that include the positive regulatory tyrosine residue Y394, and negative regulatory 
Y505 at the C-terminus.[1, 2, 9] 
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Phosphorylation at the Y505 residue inhibits kinase function by inducing a 
conformational change that folds the kinase domain onto its SH2 domain, causing the 
protein to adopt a closed conformation further stabilized by interactions between the SH3 
domain and SH2-kinase linker region.[1, 2, 10] PAG/Cbp, a transmembrane 
phosphoprotein associated with a glyco-sphingolipid-rich SH2 domain, recruits C-terminal 
Src kinase (Csk) to phosphorylate Y505, but proto-oncogene tyrosine-protein kinase 
p59-Fyn (Fyn) can dephosphorylate PAG, which releases Csk to bind with PTPN22 and 
inhibits Csk from phosphorylating Y505.[2, 5, 11] Fyn, a SFK also found in T-cells, shares 
overlapping common substrates with Lck, thereby allowing Fyn to compensate for many 

signaling pathways in T-cell development.[12, 13] Moreover, Fyn can also 
phosphorylate Lck at Y394, the activating residue, which otherwise autophosphorylates 
thereby activating Lck by inducing an open conformation that separates the kinase domain 

Figure 1: In T-cells, Lck can be dephosphorylated (inactive), phosphorylated on Y505 (inactive), 
phosphorylated on Y394 (active), or doubly 

regulating Y505 is phosphorylated by Csk and dephosphorylated by CD45. The activating Y394 is 
autophosphorylated or phosphorylated by Fyn while dephosphorylated by CD45, PTPN22 or PTPN6.[2] 
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from the SH2 domain. This exposes  while dephosphorylation by CD45 
at Y394 will cause Lck to readopt the closed conformation.[1, 14] Figure 1 depicts a 
graphical Figure 2 
shows the inactive and active forms. 

Upon activation and recruitment to the activated TCR, Lck phosphorylates two 
tyrosine residues on separate CD3 chains along the immunoreceptor tyrosine-based 
activation motifs (ITAMs) with a D/ExxYxxI/Lx(6-12)YxxI/L peptide sequence.[15-17] 
ITAMs occur once on the CD3 , CD3 , and CD3  chains and three times on the CD3  
chains, where Lck phosphorylation on the  chains has the highest tendency to recruit zeta-
chain associated protein of 70kDa (Zap70), a Syk family kinase, to continue the signaling 
process.[16, 18] Zap70 adopts similar active and inactive conformations to Src kinases 
involving interactions between the regulatory segment and the linker to the kinase domains 
that reduces flexibility. A doubly phosphorylated ITAM recruits Zap70 through its tandem-

Figure 2: (A) Csk phosphorylation of the Y505 results in an intra-molecular association between the SH2 
domain and C-terminal tail further stabilized by additional interactions between the SH3 domain and a 

polyproline sequence in the SH2-kinase linker region. (B) CD45 dephosphorylation of Y505 results in an 
open conformation and exposes the activation loop (A-loop) containing the activating Y394 residue, which 

then undergoes trans-phosphorylation to promote enzymatic activity.[1] 
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SH2 domains, bringing Zap70 closer to the plasma membrane where Lck then 
phosphorylates Y315 and Y319, which induces a more flexible conformation by disrupting 
the interaction between the regulatory segment and linker region. The new conformation 

93 phosphorylation, which activates ZAP-
70.[19, 20] The activated Zap70 then phosphorylates the key adapter protein linker for 
activation of T cells (LAT) that eventually leads to actin reorganization, cell adhesion, gene 
expression, etc. as summarized in Figure 3. 

Fluorescence Resonance Energy Transfer Biosensor Design 
Most notable in T-cell activation of the immune system is Lck, the kinase that 

essentially drives most of the upstream signaling process; hence, tracking that molecule 
will provide fundamental information into the dynamics of TCR activation. By utilizing 
fluorescence resonance energy transfer (FRET) technology, a Lck FRET biosensor can be 
designed to monitor Lck kinase activity. 

Figure 3: Lck, the first molecule recruited to the TCR CD3 complex, can phosphorylate the ITAMs of the 
 chains. Phosphorylation of the chains recruits ZAP70, which 

is then activated by Lck phosphorylation. Activated ZAP70 recruits and phosphorylates a multi-protein 
complex termed the LAT signalosome that initiates other downstream signal pathways.[2] 
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Exciting fluorophores or fluorescent proteins at specific wavelengths in the 
electromagnetic spectrum will cause them to emit a different wavelength of light when they 
return to their original energy state. FRET is the phenomenon that occurs when the 
emission spectrum of a donor fluorophore overlaps the excitation spectrum of an acceptor 
fluorophore, thus allowing energy transfer that manifest as a measurable visual signal of 
the FRET ratio, the acceptor/donor emission ratio, which depends on the proximity of the 
two fluorophores. The biosensor changes orientation by adopting a different conformation 
when a molecule of interest binds to or interacts with its substrate region, which can bring 
two fluorophores closer or further in proximity. The Lck FRET biosensor  
orientations are shown in Figure 4 where the two fluorophores are in close proximity 
initially at its basal state and exhibit FRET. The substrate is designed to become 
phosphorylated by an activated Lck upon TCR activation, which then interacts with the 
SH2 domain by folding on itself, blocking the two fluorophores from each other and 
disrupting FRET. The specified SH
C185A mutation that has shown to have increased sensitivity to a phosphorylated substrate 
thereby inducing a FRET change at even low kinase activity. (data not published yet) The 
fluorophores used for the FRET pair are cyan fluorescent protein (ECFP) with an excitation 
at a peak of 433nm and emission of 475nm, and yellow fluorescent protein (YPet) with an 
excitation peak of 517nm and emission of 530nm.[21] 
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As detailed in Chapter 1: Background, potential substrates to implement into the 
biosensor includes  tyrosine sites, the tyrosine sites on the 
CD3  ITAMs, and  all of which are sites that endogenous Lck 
readily phosphorylates. For Zap70, since Y493 is much further away from the TCR where 
Lck docks, the tyrosine site is speculated to be nonspecific to Lck; moreover, Zap70 with 
a point mutation on Y493 can still interact with Lck and be phosphorylated.[22, 23] For 
the remaining up-regulation tyrosine sites on Zap70, one substrate design combines the 
Y315 and Y319 sites with a second alternative substrate design that mutates Y319F to 
prevent competitive binding problems; in addition, the mutation on the Y315 has shown to 
have minimal inhibitory effects on TCR activation.[22] Of the three ITAMs located on the 
CD3  chains, the last motif has shown to be the ITAM that is mostly likely to recruit Zap70 
and therefore may have the greatest affinity for Lck phosphorylation.[18, 24] Due to the 
length of the ITAM, two separate substrate designs encompassing the first and second 
tyrosine sites respectively were created. Since Lck can autophosphorylate itself on Y394 
in trans, the last substrate design includes that region of Lck. [1, 2, 14, 25] Figure 5 
summarizes the different substrate designs. 

Figure 4: Generalized graphic representation of the FRET biosensor showing (A) the initial orientation of 
the two fluorophores in close proximity inducing FRET. (B) Upon phosphorylation on the substrate, the 

biosensor reorients and blocks the two fluorophores from inducing FRET. 
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Original Polypeptide Substrate Sequence 
Zap70 MDTSVY(315)ESPY(319)SDPEE 
Zap70 MDTSVF(315)ESPY(319)SDPEE 
CD3  3rd ITAM (first tyrosine site) GHDGLYQGLST 
CD3  3rd ITAM (second tyrosine site) ATKDTYDALHM 
Lck IEDNEY(394)TAREG 

Figure 5: The proposed substrate designs for the Lck FRET biosensors are (1) Zap70Y315-Y319, (2) 
Zap70Y315-Y319F, (3) CD3 (4) CD3

the second tyrosine site, and (5) LckY394 (top to bottom). 
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Chapter 2: Results 
in vitro Kinase Assay 

The purified biosensors were subjected to an in vitro kinase assay for a specificity 
check with different SFKs. Given the similarities between Fyn and Lck, both of which are 
SFKs, the initial specificity check includes the Src, Fyn, and Lck kinases. The Fyn 
biosensor created by Dr. Mingxing Ouyang in Dr.  (Wang Lab) 
proven to have a robust response to the Fyn kinase is also included to ensure Fyn 
activeness. (data not published yet) Figure 13 (Appendix) displays all the different test 
conditions for the in vitro kinase assay and their resulting normalized absorbance response 
at the ECFP emission wavelength (476nm) divided by the YPet emission wavelength 
(528nm). Figure 6 removed all other data except for the  Lck and 
Fyn for direct comparison. depicted in Figure 14 
(Appendix) where the absorbance peaks at 530nm,  
that the biosensor undergoes FRET at the basal state before kinase or ATP addition to 
initiate phosphorylation as designed. 
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The in vitro data shows that the Lck FRET biosensors response to Src is similar to 
the negative control of no kinase, namely no response. For the remaining Lck and Fyn 
kinases, each Lck FRET biosensor, regardless of the substrate, displayed an overall 
tendency to react quicker to Fyn, thereby indicating a greater specificity between Fyn and 
the substrate. However, increasing the Lck kinase amount until the specified activity level 
of the Lck kinase matches the activity level of Fyn kinase according to their datasheets 
resulted in a near identical response as shown in Figure 15 (Appendix). The Zap70YY 
substrate showed the quickest response within ten minutes of adding ATP followed by the 
ITAM1 and Zap70FY substrates that have a very similar response strength within ten 
minutes of each other. The LckY394 substrate shows the slowest and weakest change in 
FRET response, indicating a lower specificity between the kinases to the substrate design 
so it will not be further pursued as a candidate for the Lck FRET biosensor. 

0.9
1.1
1.3
1.5
1.7
1.9

-20 30 80 130 180
Time (minutes)

in vitro Kinase Assay: Lck FRET Biosensors Reponse to Lck & Fyn
Zap70YY + Lck
Zap70FY + Lck
ITAM1 + Lck
ITAM2 + Lck
LckY394 + Lck
Zap70YY + Fyn
Zap70FY + Fyn
ITAM1 + Fyn
ITAM2 + Fyn
LckY394 + Fyn

Figure 6: in vitro responses of all Lck FRET biosensors with the substrates: Zap70YY, Zap70FY, ITAM1, 
ITAM2, and LckY394 to Lck and Fyn kinase. 
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Mammalian Cell Characterization 
Initial cellular imaging in SYF(-/-) cells, shown in Figure 16 (Appendix), displayed 

contradicting results where the control group, co-transfection of the biosensor with an 
empty mammalian vector in place of a kinase plasmid, displayed a robust biosensor 
response. From this data, ITAM2 displayed the lowest response consistent with the in vitro 
data, which led to the cessation of using that substrate design. However, the same imaging 
data also establishes that the Lck FRET biosensors are comparatively less sensitive to Fyn 
and Src as shown in Figure 16 (Appendix). To determine if the biosensor may be reacting 
to the platelet-derived growth factor (PDGF) used to stimulate the cells, PDGF receptor 
(PDGFR) and epidermal growth factor receptor (EGFR) was added to the purified 
biosensors in a second in vitro assay. As depicted in Figure 17 (Appendix), the biosensors 
response to PDGFR is quicker and stronger than the responses to Lck or Fyn kinase as 
compared to in Figure 6, reporting a FRET change in less than ten minutes with over a 2-
fold change. This does not pose an issue since the Lck FRET biosensor shall be utilized in 
T-cells, which do not express PDGFR endogenously and will be stimulated by CD3 
antibodies for physiological relevance. However, SYF(-/-) cells will no longer be used for 
mammalian characterization in favor of HeLa cells that use EGF for stimulation, which has 
shown to not elicit a false response from the biosensors as noted in Figure 17 (Appendix). 

Imaging data for HeLa cells after EGF stimulation continued to show a robust 
FRET response as seen in Figure 7 across all the different co-transfection conditions. Co-
transfection agents include an empty vector for control, Lck(WT), Fyn(WT), kinase-dead 
Lck(K273R), kinase-dead Lck(Y394F), and kinase-dead Fyn(K299M). Research has 
shown that the latter kinase-dead versions exhibit low phosphorylation in downstream 
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substrates.[26-28] In both the Zap70YY and ITAM1 substrate designs, co-transfection with 
Lck(WT) displayed a pre-activated biosensor that showed no further change after 
stimulation. In both the Zap70YY and Zap70FY substrate designs, kinase-dead 
Fyn(K299M) produced a delayed response ranging from 10  20 minutes after stimulation 
that ended in a FRET change similar in level to the different WT or kinase-dead kinases. 
Both of these designs also showed a stronger basal response between the biosensor to 
Lck(WT) and Fyn(WT) as opposed to the other kinases, although the Zap70FY does 
display a stronger FRET change for Lck(WT) than Fyn(WT). For the Zap70YY design, 
the control shared a similar response to the kinase-dead Lck(K273R) and Lck(Y394F) in 
both the basal FRET ratio and FRET change after stimulation. Zap70FY on the other hand 
showed a clearer distinction between the control and kinase-dead Lck in both cases. All 
biosensor designs that were pretreated with PP1, a SFK inhibitor, exhibited a lowered basal 
FRET ratio and stunted FRET change or no response at all when EGF was added. However, 
due to the relative lower basal FRET ratio and FRET change for the ITAM1 substrate 
design, the design was determined to be unsuitable for continued testing. Moreover, since 
the Zap70FY substrate is able to show a more distinct differentiation between the different 
kinases and had an overall stronger FRET change than the Zap70YY substrate, ongoing 
biosensor testing will be conducted on the Zap70FY substrate design. 
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Figure 7: Real (left) and normalized (right) FRET responses in HeLa cells co-transfected with the Lck 
FRET biosensors of different substrate designs and specified kinases for (A) Zap70YY, (B) Zap70FY, and 

(C) ITAM1 upon EGF stimulation at 0 minutes for all conditions. 
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To confirm that the FRET response from the imaging data is strictly from 
phosphorylation on the biosensor, HeLa cells were co-transfected with the negative 
Zap70FF (Y315F,Y319F) Lck FRET biosensor or negative Zap70FF biosensor with the 
doubly mutated SH2 domain (R175V, C185A) in addition to the different kinases as shown 
in Figure 8. Due to the highly sensitive nature of the mutated SH2 domain (C185A) to 
kinase-like peptides, conformation change on the FRET biosensor can still be induced even 
without direct phosphorylation albeit only at a minimal level. Mutating the R175V residue 
can remove potential non-specific interactions between the SH2 domain and kinase-like 
peptides without interfering with the affinity between the domain and a phosphorylated 
tyrosine residue on the substrate. [29] Figure 18 (Appendix) depicts a representative set of 
FRET images with the subtracted background for the different co-transfection conditions 
in HeLa cells. FRET images for the doubly mutated SH2 domain are not shown. 
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Figure 8: Negative Lck FRET biosesnor, Zap70FF, (left) and Zap70FF biosensor with doubly mutated SH2 
domain (R175V, C185A) (right) in response to the specified co-transfected kinases upon EGF stimulation  

added at 0 minutes for all conditions. 
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T-Cell Response 
Functionality of the Lck FRET biosensor in the T-cell model was confirmed by 

transfection of the normal biosensor into Jurkat cells, an immortal T-cell line, as shown in 
Figure 9. The FRET change from the biosensor response comes from kinase activity as 
seen by the decrease in FRET ratio upon PP1 addition. Another group of Jurkat cells were 
transfected with the negative biosensor, Zap70FF, to show that the FRET change is induced 
by phosphorylation as seen by the lack of response even after adding the stimulant. 

J.CaM1.6, a derivative mutant of the Jurkat cell line deficit in Lck, was co-
transfected with the Lck FRET biosensor along with an empty vector, Lck(WT), kinase-
dead Lck(K273R), or kinase-dead Lck(Y394). As expected from Figure 10 the empty 
vector serves as a control to show that the Lck FRET biosensor does not respond in a Lck-
deficit environment. Lck(WT) co-transfection was able to restore some kinase activity as 
compared to responses in the Jurkat cells. As opposed to both kinase-dead Lck kinases 
causing a biosensor response as seen in HeLa cells, only Lck(Y394F) triggered a FRET 

-10 0 10 20 30 40 50 60 70 800.24
0.26
0.28

0.3
0.32
0.34
0.36
0.38

0.4

Time (min)
 

 
Zap70FY-PP1
Zap70FF

-10 0 10 20 30 40 50 60 70 800.9
0.95

1
1.05

1.1
1.15

1.2
1.25

1.3

Time (min)
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Figure 9: Real (left) and normalized (right) FRET responses in Jurkat cells transfected with the 
Zap70FY Lck FRET biosensor (n = 19) or Zap70FF negative biosensor (n = 10). Stimulant and PP1 

inhibitor was added at 0 and 45 minutes respectively. 
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change that is not only greater than the change exhibited in the cells co-transfected with 
Lck(WT), but also matches closer to the response in Jurkat cells. 

The Zap70FY Lck FRET biosensor response is due to SFK activity as confirmed 
by the decrease in the FRET ratio after adding PP1 as seen in Figure 11. The negative 
Zap70FF biosensor co-transfection with Lck(Y394F) in J.CaM1.6 cells also shows no 
response upon stimulation further validating that the recorded response is due to a real 
phosphorylation event. Representative FRET images for both Jurkat and J.CaM1.6 cells in 
the different specified conditions are displayed in Figure 19 and Figure 20 (Appendix) 
respectively for reference. 
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J.CaM1.6 - Lck(Y394F)

Figure 10: Real (left) and normalized (right) FRET responses in Jurkat cells transfected with the 
Zap70FY Lck FRET biosensor along with J.CaM1.6 cells co-transfected with the same biosensor and 

specified kinases. 8 out of the 12 imaged Jurkat cells, 12 out of the 26 imaged J.CaM1.6 cells co-
transfected with Lck(WT), and 7 out of the 25 imaged J.CaM1.6 cells co-transfected with Lck(Y394F) 

exhibited the FRET change. None of the 26 J.CaM1.6 cells co-transfected with the control or 14 
J.CaM1.6 cells co-transfected with Lck(K273R) exhibited any change. Stimulant was added at 0 minutes 

for all conditions. 
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Figure 11: Real (left) and normalized (right) FRET responses in J.CaM1.6 cells co-transfected with the 
Zap70FY Lck FRET biosensor and negative Zap70FF biosensor with kinase-dead Lck(Y394F). 4 out of 
the 12 imaged J.CaM1.6 cells co-transfected with Zap70FY exhibited the FRET change and none of the 
10 imaged J.CaM1.6 cells co-transfected with Zap70FF showed change. Stimulant and PP1 inhibitor 

was added at 0 and 45 minutes respectively. 
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Chapter 3: Discussion 
In the in vitro kinase assay, the designed Lck FRET biosensor shows specificity 

towards both Lck and Fyn, but not Src, which follows the trend of Lck and Fyn having 
redundant functionality in T-cells.[1, 2, 9, 12] Research has shown that Lck(-/-) T-cells 
showed partially impaired T-cell differentiation, Fyn(-/-) T-cells showed no significant 
impairment, and Lck(-/-) + Fyn(-/-) T-cells showed a complete lack of differentiated T-
cells, thus, providing evidence that Fyn can compensate for Lck during early stages of T-
cell differentiation.[13, 30, 31] Regardless of the substrate design, the biosensors showed 
a consistent tendency of reacting quicker with the Fyn kinase than with the Lck kinase. 
This alludes to the fact that while Lck may play a greater role in initiating many of the 
signal pathways in T-
the same early signaling events in downstream pathways.[12]  

In the mammalian HeLa cell model, the biosensor shows a greater response towards 
the co-transfected Lck as opposed to the co-transfected Fyn kinase, which establishes that 
the biosensor has greater specificity towards Lck in a more physiological setting. A notable 
phenomena that occurred during the characterization was that the kinase-dead versions of 
Lck were able to elicit a stronger biosensor response than Lck(WT). The kinase-dead Lck 
Lck(K273R) has lost the ability to transfer the phosphate group from ATP to phosphorylate 
downstream peptides and kinase-dead Lck(Y394F) is rendered constitutively inactive due 
to the mutation on its activation residue.[26, 27] Control testing with PP1 treatment and 
the negative Zap70FF Lck FRET biosensor confirms that the FRET change is due to a real 
phosphorylation event that occurs from an SFK. This indicates that although the kinase-
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dead Lck can no longer phosphorylate downstream peptides, the kinase is still able to 
recruit other SFKs to initiate phosphorylation. Since Fyn is similar to Lck with overlapping 
substrates, Fyn was also studied to determine if kinase-dead Fyn shares any adaptor-like 
function by co-transfecting HeLa with kinase-dead Fyn (K299M) whose phosphorylation 
function is impaired similarly to Lck(K273R).[28] Although Fyn(K299M) transfection was 
able to show a robust FRET change that is comparable to the kinase-dead Lck kinases in 
terms of magnitude, the response is noticeably delayed. This indicates that although kinase-
dead Fyn(K299M) can adopt some adaptor-like function, the function is not primary and 
appears to encounter preliminary interference. Although the biosensor can also react to Fyn 
as seen in the in vitro data, the biosensor is not as sensitive to Fyn since the substrate design 
is specific to Lck. Hence, although a Fyn kinase can intermittently interact with the Lck 
FRET biosensor, lower affinity means the Fyn kinase is not likely to remain long on the 
biosensor. Within that small window of interaction, if Fyn does not quickly phosphorylate 
the substrate, the biosensor will not undergo any FRET change, thus explaining why 
Fyn(K299M) does not immediately elicit a response upon stimulation. 

In the Jurkat T-cell line, the only place where Lck is endogenously found in the 
human body, the Lck FRET biosensor reported a FRET change and performed as expected 
establishing physiological significance. Additionally, in J.CaM1.6 cells, the biosensor 
reported a phenomena where kinase-dead Lck(Y394F) co-transfection displayed greater 
kinase activity than Lck(WT) co-tranfection similarly to the trend displayed in HeLa cells. 
Although unlike the HeLa cell model, the other kinase-dead Lck(K273R) did not report a 
similar increased biosensor response. Since the Zap70FY Lck FRET biosensor design uses 
a section of the Zap70 from M310  E324, mutated at Y315F, where Y319 is known to 
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undergo autophosphorylation, the FRET change may be due to Zap70 activity and not 
Lck.[19, 20, 22, 32] Further control testing showed that the biosensor response is solely 
due to phosphorylation and related to SFKs activity as noted by the lack of or decreased 
response in the negative biosensor transfection and PP1 inhibition in Jurkat cells and 
J.CaM1.6 cells co-transfected with Lck(Y394F). Since Lck(Y394F) has lost its 
phosphorylation ability, the proposed mechanism behind why a kinase-dead co-

Lck clusters are usually found in varying size, locations, and states before, during, and after 
/opened or inactive/closed 

conformations.[3, 4, 6] Given that the regulatory C-terminal tail interacts with the SH2 
domain, which in turn affects how the SH2 domain interacts with the SH3 domains of other 

[33, 
34] In fact, a phosphorylated Y505 not 
but also folds Lck in such a way that Lck can potentially dimerizes with other Lck kinases 
in a head-to-tail orientation that further discourages autophosphorylation between 
them.[35] Moreover, upon phosphorylation on Y394, the kinase domain reorients itself to 
interact with the SH2 domain to expose the catalytic center around K273 where ATP is 
anchored and the phosphate group is transferred for phosphorylation activity.[33, 36] This 
suggests that in addition to the regulatory C-
may also play a part in how Lck interacts with other Lck or similar SFKs during clustering. 
Instead of clustering only with other Lck kinases, the mutated Lck(Y394F) may potentially 
recruit other SFKs, which is not uncommon given that endogenous Lck can interact with 
Fyn upon TCR stimulation. [37, 38] 
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Since the kinase-dead Lck(Y394F) appears to induce a higher FRET change in the 
biosensor, the mutation may possibly be (1) lowering 
Lck and/or (2) increasing the affinity between kinase-dead Lck with active SFKs. In 
scenario (1), although Lck is more likely to cluster with other Lck in the endogenous 
setting, the kinase-dead Lck(Y394F) may have a lower tendency to cluster with itself, 
thereby allowing active SFKs to cluster instead. In addition to having a lower affinity with 
itself, for scenario (2), kinase-dead Lck(Y394F) may also increase the affinity between 
kinase-dead Lck and active SFKs such that the SFKs remain near the biosensors 
continuously phosphorylating them. In short, even though mutation of Y394F on Lck can 
lead to the loss of the exposing the catalytic region for ATP anchorage, the potential 
recruitment of other SFKs, especially Fyn who shares similar substrates to Lck in T-cells, 
can still phosphorylate the biosensor. Figure 12 displays the proposed mechanism of how 
the Lck FRET biosensor can still report a FRET change when the kinase-dead Lck(Y394F) 
recruits a SFK, potentially Fyn, to phosphorylate the biosensor. 

Figure 12: Proposed mechanism of how the Lck FRET biosensor can still report a FRET change in a Lck-
deficit environment with the kinase-dead Lck(Y394F), which may potentially be recruiting other SFKs, 

most likely Fyn to phosphorylate the biosensor. 
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Chapter 4: Materials & Methods 
Plasmids 

pRSET-B bacterial expression constructs of the different Lck substrates were 
designed using a Src biosensor created in Wang Lab as the template. (data not published 
yet) The fluorophores and mutated SH2 domain (C185A) from Src were conserved while 
the Src-specific substrate is replaced with the Lck-specific substrates. The constructs were 
transformed into DH2  competent E. coli cells for DNA amplification. Mammalian 
expression constructs were constructed in a similar manner, but using the pRSET-B 
bacterial constructs as the template into a modified pCAGGS mammalian vector named 
pCB1.[39, 40] The biosensor with the ITAM2 substrate was constructed into a pcDNA3.1 
vector using Gibson Assembly (New England Labs) due to difficulties in constructing a 
pCB1 version. The negative Zap70FF biosensor was constructed with site-directed 
mutagenesis from the pRSET-B version and then constructed into a pcDNA3.1 vector with 
Gibson Assembly. The biosensor with the doubly mutated SH2 (R175V, C185A) domain 
to further discourage conformational change was constructed with site-directed 
mutagenesis from the negative Zap70FF biosensor. 

Lck(WT)-CFP, Lck(K273R)-CFP, and Lck(Y392F)-CFP were gifts from the 
Centre for Vascular Research and Australian Centre for Nanomedicine, University of New 
South Wales, Sydney, Australia. The CFP tags were removed from Lck(WT), 
Lck(K273R), and Lck(Y394F) by introducing a stop codon at the end of the kinase and 
before the CFP sequences. Src, Fyn, and Fyn(K299M) plasmids were from the Wang Lab. 
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All plasmids were purified with the QIAquick Gel Extraction Kit and QIAprep Spin 
Miniprep Kit (Qiagen). 
in vitro Assay 

Biosensor plasmids were transformed into BL21 competent cells for protein 
amplification and purified with the Kimble-Chase protein purification kit (Fisher 
Scientific). Active Lck, Fyn, Src, PDGFR, and EGFR proteins (Sigma-Aldrich) were pre-
mixed with the purified biosensor in a 96-well microplate in the in vitro assay with 2mM 
DTT diluted with kinase buffer and stimulated with 1mM ATP. Absorbance data was 
collected with Tecan infinite M1000 PRO using the i-control 1. 10. software 

Cell Preparation 
SYF (-/-) and HeLa cells were cultured in Advanced DMEM media (Gibco) added 

with 10%.FBS, penicillin-streptomycin, and L-glutamine, transfected in transfection media 
(no penicillin-streptomycin added), and starved in starvation media (no FBS or penicillin-
streptomycin add). Cells were cultured at 37°C in a 5%-CO2 and 95%-humidified 
incubator. Transfection was conducted with the Lipofectamine 3000 kit (Sigma-Aldrich) 
48 hours before imaging in transfection media. Cells were then plated onto glass-bottom 
dishes (Cell  E&G) coated overnight with fibronectin at 10µg/mL concentration in 
starvation media 24 hours before imaging. During imaging, cells were stimulated with 
PDGF or EGF at 100ng/mL and inhibited by PP1 for half an hour at 10µM before imaging 
for the PP1 pre-treatment. 

Jurkat E6.1 and J.CaM1.6 cells (ATCC) were cultured in RPMI medium (Gibco) 
added with 10%.FBS, penicillin-streptomycin, and sodium pyruvate, transfected in 
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transfection media (no penicillin-streptomycin added), and starved in starvation media (no 
FBS or penicillin-streptomycin add). Cells were cultured at 37°C in a 5%-CO2 and 95%-
humidified incubator. Transfection was conducted by electroporation 24 hours before 
imaging in starvation media and plated onto glass-bottom dishes (Cell  E&G) coated 
overnight with nonspecific IgG secondary antibodies at 10µg/mL ten minutes before 
imaging. During imaging, cells were stimulated with a mixture of CD3 and co-stimulatory 
CD28 antibodies at 10µg/mL and 5µg/mL respectively that were pre-clustered with IgG 
conjugated with biotin and further clustered with strepavidin. Cells were inhibited by PP1 
at 10µM 45 minutes after stimulation was added. 

Image Acquisition and Analysis 
A Nikon Eclipse Ti inverted microscope installed with a 300 W Xenon lamp (Atlas 

Speialty Lighting), an electron multiplying (EM) CCD camera (QuantEM:512SC, 
Photometrics), and a 100x DIC Nikon microscope objective (NA 1.4) was used to capture 
all imaging data with the MetaMorph 7.8.8.0 software (Molecular  Devices). The 
microscope is further equipped with a 420DF20 excitation filter, 455DCXRU dichroic 
mirror, and two emission filters controlled by a filter changer (480DF40 for ECFP and 
535DF25 YPet) (Chroma Technology). Image analysis for all the acquired images was 
conducted on Fluocell, an image analysis software tool developed in the Wang Lab. (data 
not published yet) 
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Figure 14: Fluorescence spectrum of the Lck FRET biosensors with the specified substrate designs at the 
wavelength, showing that the biosensor undergoes FRET at the basal state. 
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Figure 16: Real (left) and normalized (right) FRET responses in SYF(-/-) cells co-transfected with 
the Lck biosensors with different substrate designs and corresponding kinases for (A) Zap70YY, (B) 

Zap70FY, (C) ITAM1, and (D) ITAM2 upon PDGF stimulation at 0 minutes. 
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Figure 17: Normalized in vitro responses of Lck FRET biosensors with substrates: Zap70YY, Zap70FY, 
and ITAM1 to PDGFR and EGFR. 
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Figure 18: A representative set of FRET images with the subtracted background for HeLa cells transfected 
with the Zap70FY Lck FRET biosensor (left) or Zap70FF negative Lck FRET biosensor (right) in different 

co-transfection conditions as specified: control (empty pcDNA3.1 vector), Lck(WT), Lck(K273R), 
Lck(Y394F), Fyn(WT), and Fyn(K299M) (top to bottom). The FRET ratio in the images ranges from 0.2  

0.5 (EGF stimulation) or 0.2  0.3 (PP1 inhibition) as shown by the respective color bar. 
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Figure 19: A representative set of FRET images with the subtracted background for Jurkat cells transfected 
with the Zap70FY (top) and Zap70FF (bottom) Lck FRET biosensor treated with the stimulant (left) or PP1 

(right). The FRET ratio in the images ranges from 0.2  0.4 as shown by the color bar. 
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Figure 20: A representative set of FRET images with the subtracted background for J.CaM1.6 cells co-

transfected with the Zap70FY Lck FRET biosensor or Zap70FF negative Lck FRET biosensor in different 
co-transfection conditions as specified: control (empty pcDNA3.1 vector), Lck(WT), Lck(K273R), and 

Lck(Y394F) treated with the stimulant (left) or PP1 (right). The FRET ratio in the images ranges from 0.2 
 0.4 as shown by the color bar.
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