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Supramolecular metal-organic frameworks that
display high homogeneous and heterogeneous
photocatalytic activity for H2 production
Jia Tian1, Zi-Yue Xu1, Dan-Wei Zhang1, Hui Wang1, Song-Hai Xie1, Da-Wen Xu1, Yuan-Hang Ren1, Hao Wang1,

Yi Liu2 & Zhan-Ting Li1

Self-assembly has a unique presence when it comes to creating complicated, ordered

supramolecular architectures from simple components under mild conditions. Here, we

describe a self-assembly strategy for the generation of the first homogeneous supramolecular

metal-organic framework (SMOF-1) in water at room temperature from a hexaarmed

[Ru(bpy)3]2þ -based precursor and cucurbit[8]uril (CB[8]). The solution-phase periodicity of

this cubic transition metal-cored supramolecular organic framework (MSOF) is confirmed by

small-angle X-ray scattering and diffraction experiments, which, as supported by TEM

imaging, is commensurate with the periodicity in the solid state. We further demonstrate that

SMOF-1 adsorbs anionic Wells�Dawson-type polyoxometalates (WD-POMs) in a

one-cage-one-guest manner to give WD-POM@SMOF-1 hybrid assemblies. Upon visible-

light (500 nm) irradiation, such hybrids enable fast multi-electron injection from photo-

sensitive [Ru(bpy)3]2þ units to redox-active WD-POM units, leading to efficient hydrogen

production in aqueous media and in organic media. The demonstrated strategy opens the

door for the development of new classes of liquid-phase and solid-phase ordered porous

materials.
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M
etal-organic frameworks (MOFs) are periodic porous
architectures that are made by linking inorganic and
organic units with strong bonds1–8. MOFs have many

potential applications in, such as, adsorption and separation9–12,
catalysis13–15, drug delivery and biomedical imaging16–19 and
optoelectronics20,21. Their solid nature, however, can impose
limitations such that nearly all function-related studies are
performed in a heterogeneous manner. For drug delivery and
biomedical imaging, this means the occurring of phase separation
in the body, which may lead to further harmful aggregation and/
or biological incompatibility4. On the other hand, with a handful
of exceptions22,23, most of the reported MOFs are prepared using
hydrothermal and solvothermal techniques that require high
temperature and long reaction time. These techniques allow for
slow growth of crystals for attaining periodicity, but may restrict
simultaneous introduction of many less stable functional
groups24. Self-assembly has been demonstrated to be a robust
and mild tool for the generation of advanced and complicated
architectures25,26, such as molecular capsules27,28, interlocked
superstructures29 and supramolecular polymers and gels30–37.
With this strategy, crystalline supramolecular and hydrogen-
bonded organic frameworks have been constructed as
porous materials for gas adsorption38,39. MOFs that integrate
heterogeneous supramolecular host-guest chemistry by
introducing macrocyclic hosts to the struts have also been
reported40. Recently, we and other groups have illustrated that
homogeneous supramolecular organic frameworks can be
realized in water in two-dimensional (2D) and three-
dimensional (3D) spaces41–45, which offer promise for the
creation of new water-soluble frameworks with the feature of
typical MOFs under mild conditions.

Herein, we report that self-assembly can be applied to fabricate
the first water-soluble supramolecular MOF, SMOF-1, from a
hexaarmed [Ru(bpy)3]2þ -based precursor and cucurbit[8]uril

(CB[8]). We reveal that SMOF-1 maintains its periodicity in both
water and the solid state. We further illustrate that this cubic
supramolecular MOF can adsorb anionic Wells–Dawson-type
polyoxometalate (WD-POM) clusters in a one-cage-one-guest
manner and, on 500 nm visible light excitation, the framework
facilitates fast multi-electron injection from the [Ru(bpy)3]2þ

units to the encapsulated WD-POM anions, leading to remark-
ably efficient hydrogen production in both aqueous and organic
medium.

Results
The design and synthesis of target and control compounds.
Previous studies established that CB[8] remarkably stabilizes the
homodimerization of the 4-phenylpyridin-1-ium (PhPy) unit
through hydrophobically driven encapsulation in water46,47.
We thus prepared hexaarmed [Ru(bpy)3]2þ complex 1 from
the reaction between 2 and Ru(DMSO)4Cl2 (Fig. 1). The
[Ru(bpy)3]2þ complex core was soluble and highly stable in
water, while its rigid octahedral nature was expected to facilitate
the formation of a cubic periodic framework through the 2:1
encapsulation of the appended PhPy units by CB[8].

1H NMR, DLS and mass spectrometric studies. To study the
binding motif between the PhPy units of 1 and controls 2 and 3
(Fig. 1) and CB[8], the 1H NMR spectra of the three mixed
solutions in D2O were first recorded by keeping (PhPy)/
(CB[8])¼ 2 (Supplementary Figs 1–3). In all the spectra, the
signals of the PhPy unit of compounds 1–3 shifted upfield con-
siderably, indicating that this aromatic unit was encapsulated by
CB[8]. Job plots obtained by fluorescence or absorption experi-
ments confirmed that, for all three mixtures, this encapsulation
occurred in a 2:1 stoichiometry (Supplementary Figs 4–6). The
1H NMR spectrum of the 2:1 solution of 3 (4.0 mM) and CB[8]
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Figure 1 | Compounds used in this study. The structures of compounds 1–3 and CB[8].
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displayed one set of signals, also suggesting the formation of a 2:1
complex (CP-a, Supplementary Fig. 7). This complexation motif
was further confirmed by the electrospray ionization mass spec-
trometry of the mixture solution, which exhibited an ion peak at
m/z¼ 1,030.8577 corresponding to [32þCB[8]� 2Cl]2þ

(calculated value: 1,030.8577; Supplementary Fig. 8). The 1H
NMR spectrum of the 1:1 solution of ditopic 2 (2.0 mM) and
CB[8] also exhibited one set of signals. Addition of more CB[8]
did not cause the signals of the aromatic protons of 2 to shift or
the appearance of new signals. We tentatively proposed that the
two compounds self-assembled into the macrocyclic 3þ 3
complex 23�CB[8]3 (CP-b, Supplementary Fig. 7), on account of
the size match between the model of this 3þ 3 complex and the
hydrodynamic diameter (DH) obtained from dynamic light scat-
tering (DLS) experiment (vide infra). The 1H NMR spectrum of
the 1:3 solution of 1 (1.0 mM) and CB[8] displayed broad signals,
which remained unchanged at higher temperature or on the
addition of more CB[8], implying that a more complicated
complex (CP-c) was produced. In CD3CO2Na-buffered D2O
(50 mM, pD¼ 4.74), the apparent association constant (Ka) of the
2:1 complex formed between the PhPy unit of compounds 1–3
and CB[8] was determined to be 3.1� 1014, 6.9� 1012 and
5.4� 1010, respectively48. From 3 to 2 and then to 1, the Ka value
increased significantly. This result suggested a positive
cooperativity for the cases of 3 and 2, thus excluding the
formation of linear disordered supramolecular polymers by 2
and, for 1, supporting the formation of highly ordered
supramolecular entities. 2D diffusion-ordered spectroscopic 1H
NMR experiments were also performed for the three mixture
solutions in D2O by keeping [PhPy]/[CB[8]]¼ 2 and
[PhPy]¼ 6.0 mM. For all the mixtures, the signals of
the two components exhibited a similar diffusion coefficient (D)
(1.9� 10� 10, 1.3� 10� 10 and 1.2� 10� 11 m2 s� 1 (Supple-
mentary Figs 9–11). The value of CP-c was considerably lower
than that of CP-a or CP-b, supporting that this mixture formed
larger supramolecular entities. DLS experiments were also
performed for the three mixtures in water. With [PhPy]/
[CB[8]]¼ 2 and [PhPy]¼ 12.0 mM, the three mixtures gave rise
to a DH value of 2.70, 3.62 or 164 nm, respectively
(Supplementary Fig. 12). The fact that the DH of CP-c was
445 and 60 times larger than that of CP-b and CP-a,
respectively, clearly confirmed that 1 and CB[8] self-assembled
into large supramolecular entities. Indeed the DH of CP-c showed
a monotonic rise in response to the increase of [PhPy]
(Supplementary Fig. 13). At [PhPy]¼ 36.0 mM, the DH of CP-c
increased to 250 nm and at higher concentrations, the complex
began to precipitate.

Characterization of 3D cubic framework. Compound 1 has a
rigid octahedral geometry. In an ideal situation, its binding with
CB[8] would produce 3D cubic supramolecular entities with
[Ru(bpy)3]2þ as the vertex of the net and CB[8] encapsulating
two PhPy units of neighbouring molecules of 1. The crystal
structure of such a 3D network was then simulated using Mate-
rials Studio 7.0 (Accelrys Materials Studio Release Notes, Release
7.0, Accelrys Software Inc., San Diego, USA) and shown in Fig. 2.
Although 1 is a racemate of two dynamically stable enantiomers
as a result of the bidentate nature of the bpy ligand, we chose to
simulate the 3D structure from only the L enantiomer, because
parameters that define the periodicity of the two resulting
frameworks should be identical.

To verify the possible periodicity of the new 3D supramole-
cular network formed in the aqueous solution of CP-c
([1]¼ 3.0 mM), synchrotron small-angle X-ray scattering (SAXS)
experiment was performed, which gave a strong peak related to

the d-space centred at around 3.1 nm (Fig. 3a). The value
matched well with the {100} spacing (3.0 nm) of the modelled
network. This peak persisted even at a low concentration of
0.6 mM (for 1; Supplementary Fig. 14). The broadness of the peak
may be due to the dynamic nature of the supramolecular
framework in solution. The solution-phase synchrotron X-ray
diffraction profile displayed two broad, but discernible peaks
around 3.0 and 2.1 nm (Fig. 3b), which can be assigned to the
spacing of the {100} and {110} (2.1 nm) faces. Both experiments
supported that CP-c formed soluble periodic supramolecular
MOF (SMOF-1) in water. Fluorescent experiments showed that
polycationic SMOF-1 adsorbed anionic aspartic acid-derived
dipeptides (L,L and D,D) or tripeptide (L,L,L; Supplementary
Fig. 15), as revealed for a previously reported SOF42. However,
the solution of SMOF-1 in water did not exhibit induced circular
dichroism signals within the range of 250–600 nm in the presence
of an excess of these chiral peptides (Supplementary Fig. 16),
indicating that no chirality bias was generated for SMOF-1.

On slow evaporation at ambient temperature, the solution of
SMOF-1 slowly solidified and finally formed microcrystals, as
evidenced by transmission electron microscope (TEM) with the
selected area electron diffraction (SAED) and scanning electron
microscope (SEM) images (Fig. 4a and Supplementary Fig. 17).
The X-ray diffraction profile of the microcrystals exhibited three
peaks centred at 3.0, 2.1 and 1.7 nm (Fig. 3d), respectively, which
matched well with the {100}, {110} and {111} (1.7 nm) spacings of
the modelled 3D framework. The SAXS profile displayed a strong,
sharp peak at 3.0 nm (Fig. 3c), which was also observed on the 2D
synchrotron X-ray scattering profile (Fig. 3g). Both peaks were
related to the {100} spacing of the modelled framework. Cryo-
TEM further revealed the periodicity of the microcrystals with the
3.0 and 2.1 nm lattice spacings (Fig. 4b,c and Supplementary
Fig. 18), which again matched exactly with the simulated value for
the lattice distance of {100} and {110} faces. These observations
collectively provided consistent evidences to support that
SMOF-1 maintained its periodicity in the solid state. Thermo-
gravimetric analysis showed that the solid-state SMOF-1 was
stable at a temperature above 300 �C (Supplementary Fig. 19).

On the basis of the X-ray diffraction and TEM results and the
reported crystal parameters of the 1:2 complex of CB[8] and
4-phenyl-1-pyridinium47, we could estimate the cubic unit-cell
metrics of SMOF-1 as: a¼ b¼ c¼ 29.8 Å, a¼b¼ g¼ 90�. SAED
patterns of the microcrystals with the reciprocal lattice observed
for the {100} facet showed high foursquare order (Fig. 4a insert),
which further confirmed the cubic unit cell of the microcrystals.
The SAED pattern, that is, 1.5 nm for the {200} lattice spacing,
was identical to the simulated data (1.5 nm). Elemental energy
dispersive X-Ray spectroscopy (EDX) mapping analysis for the
microcrystals also confirmed the compositions of the C, N, O, Ru
and Cl elements (Supplementary Fig. 20).

WD-POM encapsulation. From the modelled 3D framework, we
estimated the void volume of cubic SMOF-1 to be B80%. The
pore aperture, defined by the four CB[8] units in one self-
assembled macrocycle adopting a square-like conformation, was
calculated to be ca. 1.5 nm. The nitrogen gas absorption amount
of SMOF-1 microcrystals at 77 K was determined to be 17.3 cm3

(STP) g� 1 at P/P0¼ 1.0 (Supplementary Fig. 21), and the
Brunauer–Emmett–Teller (BET) surface area of the microcrystals
was estimated to be 36.4 m2 g� 1, and the carbon dioxide gas
absorption amount at 273 K was measured to be 3.86 cm3

(STP) g� 1 at 800 mm Hg (Supplementary Fig. 22). These
preliminary results showed that polycationic SMOF-1 exhibited
only weak ability of adsorbing gas, as revealed for other poly-
cationic frameworks42. As a new self-assembled cationic
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polyelectrolyte, SMOF-1 in water accommodated bulky
functional anionic species, such as redox-active WD-POM
[P2W18O62]6� , which has a width of about 1.1 nm. Such an
exchange may be rationalized by the formation of soft acid
([Ru(bpy)3]2þ )-soft base ([P2W18O62]6� ) ion pairs and hard
acid (Naþ )-hard base (Cl� ) ion pairs.

Adding WD-POM to the solution of SMOF-1 ([1]¼ 0.02 mM)
led to significant quenching of the fluorescence of the Ru(bpy)3

2þ

unit. Remarkably, addition of 1 equivalent of WD-POM (relative
to [1]) could reach maximum quenching (Fig. 5a), and further
addition of WD-POM did not affect the quenching anymore.
This observation indicated that the adsorption of WD-POM
by SMOF-1 occurred in a manner that one cubic cage of
SMOF-1 encapsulated one WD-POM unit. This one-cage-one-
guest formation was confirmed by the inductively coupled
plasma-atomic emission spectrometry (ICP-AES) analysis,
which revealed a Ru/W atomic ratio of 0.056 (calculated value:

0.056) for WD-POM@SMOF-1 after its aqueous solution
([1]¼ 3.0 mM) was dialysed for 3 days in a bag with apertures
of 1.5 nm diameter. This implied that every Ru(bpy)3

2þ or
encapsulated WD-POM cluster was mutually surrounded by
eight counterparts at the vertices of a cubic cage. Such an
encapsulation pattern is ideal for photo-initiated electron transfer
from excited Ru(bpy)3

2þ to redox-active WD-POM49. In
contrast, quenching of the fluorescence of 1 by WD-POM in
the absence of CB[8] under identical conditions was minimal.

The solution-phase synchrotron SAXS profile of the SMOF-1
solution containing 1 equivalent of WD-POM (relative to 1)
afforded a strong peak at 3.1 nm, which corresponded to the {100}
peak (Fig. 3e). DLS experiments showed that, after the addition
of WD-POM, the DH value of the solution of SMOF-1
([1]¼ 3.0 mM) in water was changed from 190 nm to 220 nm
(Supplementary Figs 13 and 23). These observations indicated
that SMOF-1 maintained its periodicity after adsorbing

+

CB[8]

WD-MOF

SMOF-1

WD-POM@SMOF-1

Figure 2 | Self-assembly of 3D cubic SMOF-1 and WD-POM loading. Formation of SMOF-1 and WD-POM@SMOF-1.The space-filling structural models

were obtained using Materials Studio 7.0. H, white; C, light grey; N, blue; O, red; Ru, cyan; WD-POM ([P2W18O62]6� ), purple polyhedron.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11580

4 NATURE COMMUNICATIONS | 7:11580 | DOI: 10.1038/ncomms11580 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


1.2 1.6 2.0 2.4 2.8
0

1,000

2,000

3,000

4,000

5,000

6,000

d = 3.1 nm 

d = 3.0 nm 

(dcalc(100) = 3.0 nm)

d = 3.0 nm 

(dcalc(100) = 3.0 nm)

(dcalc(100) = 3.0 nm)

d = 2.1 nm 
(dcalc(110) = 2.1 nm)In

te
ns

ity
 (

a.
u.

)
In

te
ns

ity
 (

a.
u.

)

q (nm–1)

q (nm–1)

3 4 5
0

2,500

5,000

7,500

10,000

In
te

ns
ity

 (
a.

u.
)

2� (degree)

2� (degree)

0.7
0

500

1,000

1,500

3 4 5 6
0

50,000

100,000

150,000

200,000

d = 1.7 nm

d = 3.0 nm 

(dcalc(100) = 3.0 nm)

d = 2.1 nm

(dcalc(110) = 2.1 nm)

In
te

ns
ity

 (
a.

u.
)

ba

c d

d = 3.1 nm 
(dcalc(100) = 3.0 nm)

d = 3.0 nm 

d = 2.1 nm 

d = 1.7 nm 

(dcalc(100) = 3.0 nm)

(dcalc(110) = 2.1 nm)

(dcalc(111) = 1.7 nm)In
te

ns
ity

 (
a.

u.
)

In
te

ns
ity

 (
a.

u.
)

q (nm–1) 2� (degree)

0.8 1.2 1.6 2.0 2.4 2.8
0

1,000

2,000

3,000

4 6

20,000

40,000

60,000

80,000fe

qy (A
–1)

–0.2 –0.1 0.0 0.1 0.2
–0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

–0.2 –0.1 0.0 0.1 0.2

–0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(100) 
3.0 nm

g

(dcalc(111) = 1.7 nm)

2.82.11.4

Figure 3 | SAXS and X-ray diffraction profiles of 3D SMOF-1. (a) Solution-phase synchrotron SAXS ([1]¼ 3.0 mM) in water. a.u., arbitrary unit.

(b) Solution-phase synchrotron X-ray diffraction ([1]¼ 3.0 mM) in water. (c) Solid-phase SAXS. (d) Solid-phase X-ray diffraction. (e) Solution-phase

synchrotron SAXS of the aqueous solution of WD-POM-encapsulated SMOF-1. [1]¼ 3.0 mM, [WD-POM]¼0.2 mM. (f) Solid-phase X-ray diffraction of

WD-POM@SMOF-1. The sample was obtained by slow evaporation of the aqueous solution. [1]¼ 3.0 mM, [WD-POM]¼0.2 mM. (g) 2D solid-phase

synchrotron X-ray scattering of SMOF-1. The peak values in a–f were attributed by choosing the position that was highest above the straight line defined by

the two saddle points of the broad peak.
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WD-POM in solution. Slow evaporation of the solvent led to the
formation of microcrystals. The X-ray diffraction profile of the
microcrystals exhibited three peaks at 3.0, 2.1, and 1.7 nm
(Fig. 3f). These peaks respectively corresponded to the {100},
{110} or {111} spacing, supporting the periodicity of WD-POM-
encapsulated SMOF-1 in the solid state. The peaks in Fig. 3e,f are
all notably stronger than the corresponding ones of the
WD-POM-free sample (Fig. 3a,d), suggesting an enhanced
periodicity in the WD-POM-encapsulated SMOF-1. After the
addition of WD-POM, the average crystallite size of SMOF-1
changed from 50 nm to 53 nm, which were estimated from the
X-ray diffraction experiments (Fig. 3d,f) using the Debye–
Scherrer equation. High-resolution TEM images revealed the
3.0 nm lattice spacing (Fig. 4d,e, and Supplementary Fig. 24) of
WD-POM-encapsulated SMOF-1 from the {100} and {110}
directions, which could be observed clearly under ambient
temperature without using the cryo conditions required for the
WD-POM-free SMOF-1 sample (Fig. 4b,c, and Supplementary
Fig. 18). The high-angle annular dark field scanning TEM image
also exhibited the 3.0 nm lattice spacing for the WD-POM-
encapsulated microcrystals (Fig. 4f). Composition analysis by
EDX mapping experiment indicated the presence of C, N, O, Ru,
P, W and Cl elements (Supplementary Fig. 25), which was
consistent with WD-POM encapsulation within SMOF-1. Taking
altogether, these observations further confirmed the periodicity of
WD-POM-encapsulated SMOF-1 in the solid state. The nitrogen
gas absorption amount of WD-POM@SMOF-1 microcrystals at
77 K was determined to be 4.48 cm3 (STP) g� 1 at P/P0¼ 1.0
(Supplementary Fig. 26), and the BET surface area of the
microcrystals was estimated to be 7.19 m2 g� 1.

Photo-driven hydrogen production. Efficient fluorescence
quenching reflected that the electron transfer from the photo-
excited state of the [Ru(bpy)3]2þ units to the encapsulated
neighbouring WD-POM anions was remarkably enhanced
through the unique one-cage-one-guest encapsulation pattern49.

The highest occupied molecular orbital energy of complex 1 and
the lowest unoccupied molecular orbital energy of WD-POM
were determined to be � 3.59 and � 4.78 eV, respectively
(Supplementary Table 3 and Supplementary Figs 27–29), also
supporting the possibility of using WD-POM@SMOF-1
assemblies for catalysing visible light-driven proton reduction.
A recent report illustrated that49, under the irradiation of visible
light at 450 nm, [Ru(bpy)3]2þ -bearing MOFs enabled fast multi-
electron injection from excited [Ru(bpy)3]2þ to encapsulated
WD-POM, which in turn catalysed water-splitting half-reactions
to produce H2. In the present study, the formation of SMOF-1
caused the visible range absorption of 1 to shift from 470 to
500 nm (Supplementary Fig. 30), which overlaps better with the
solar irradiance spectrum that peaks around 500 nm wavelength.
We thus selected the 500 nm visible light as the excitation to
investigate the efficiency of WD-POM@SMOF-1-catalysed
proton reduction for H2 production. The reactions were
performed in an acidic aqueous solution (pH¼ 1.8) using
methanol as the sacrificial electron donor49,50.

We first investigated the H2 production efficiency by keeping
[1]¼ 0.3 mM and changing the concentration of encapsulated
WD-POM from 0.002 to 0.6 mM. After irradiation for 12 h, it was
found that, at (WD-POM)¼ 0.002 mM, which corresponded to a
(1)/(WD-POM) ratio of 150, the turnover number (TON) for H2

production reached 392 (defined as n(1/2H2)/n(WD-POM);
(Fig. 5b), which corresponded to a H2 evolving rate, that is,
turnover frequency (TOF), of 3,553 mmol g� 1 h� 1 (based on
WD-POM). This level of H2 production is about four times
higher than that of a heterogeneous WD-POM@[Ru(bpy)3]2þ -
MOF system which bore the identical number of WD-POM
and [Ru(bpy)3]2þ units49. The high efficiency of the
WD-POM@SMOF-1 system may be attributed to its unique
one-cage-one-guest encapsulation pattern and homogeneity,
which not only allowed for quick diffusion and close contact of
hydronium and methanol molecules, but also facilitated the
electron transfer from excited [Ru(bpy)3]2þ to WD-POM. By
keeping [1]/[WD-POM]¼ 15 and irradiation for 7 h, the H2

a

d e f

(110)
2.1 nm

(010)
3.0 nm

(100)
3.0 nm

b c

Figure 4 | TEM images of the solid samples. (a) TEM images of SMOF-1. Scale bar, 10mm. Inset: SAED pattern showing the reciprocal lattice observed for

the {100} facet, which showed foursquare order. Scale bar, 2 nm. (b,c) High-resolution cryo-TEM images of SMOF-1 from different facets showing different

lattice spacings. (b) Scale bar, 20 nm. (c) Scale bar, 10 nm. (d) HR-TEM image of solid WD-POM@SMOF-1 from the {100} direction. The sample was

obtained by slowly evaporating the aqueous solution ([1]¼0.3 mM, [WD-POM]/[1]¼0.067). Scale bar, 100 nm. (e) High-resolution TEM image of solid

WD-POM@SMOF-1. Scale bar, 20 nm. (f) HAADF-STEM image of solid WD-POM@SMOF-1. Scale bar, 20 nm.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11580

6 NATURE COMMUNICATIONS | 7:11580 | DOI: 10.1038/ncomms11580 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


production efficiency was explored at different hybrid
concentrations ([1]¼ 0.003–6.0 mM). It was found that, with
the increase of the amount of the hybrid, TON monotonically
decreased due to continuously decreased excitation yield of the
[Ru(bpy)3]2þ units as a result of the fixed irradiation capacity
(Fig. 5c). However, the total H2 output increased gradually and
reached maximum at [1]¼ ca. 1 mM. Further increase of the
hybrid did not obviously increase the H2 output probably because
of the decrease of the light transmittance. Longer irradiation was
also implemented for the hybrid with [WD-POM]¼ 0.02 mM
and [1]¼ 0.3 mM (Fig. 5d). After 50 h, TON reached 214.
Nevertheless, the TOF was highest and remained unchanged
within the first 20 h and then started to decrease, probably due to
decomposition of the [Ru(bpy)3]2þ complex (Supplementary
Fig. 31)49. After irradiation for 20 h, the DH value of the
aqueous solution of WD-POM@SMOF-1 was not changed
(Supplementary Fig. 23). Control experiments showed that
irradiating the solution of SMOF-1, complex 1, WD-POM, or
the mixture of 1 and WD-POM for 10 h under the above
conditions did not lead to H2 production, confirming that the
framework of SMOF-1 played a crucial role in catalysing
the H2 production by encapsulating WD-POM. The new
WD-POM@SMOF-1 hybrid system could be recovered by
evaporating the solvent under reduced pressure and was used
for six times for hydrogen production. TON was reduced from 76
to 65 after being used for four times (Supplementary Table 1).

Heterogeneous photo-driven H2 production was also investi-
gated for WD-POM@SMOF-1 microcrystals (molar ratio: 1:15)
as catalysts in acetonitrile and N,N-dimethylformamide (3:7)
mixed medium (Supplementary Table 2), in which the micro-
crystals were insoluble. With methanol as the sacrificial electron

donor, TON reached 48 after irradiation for 12 h. Using
triethanolamine as the sacrificial electron donor, TON could
reach 1,820 after irradiation for 14 h, which is B5 times higher
than that of the heterogeneous WD-POM@[Ru(bpy)]3

2þ -MOF
hybrid49. When the amount of the loaded WD-POM was
increased, TON decreased, but the rate of H2 production was
increased. After irradiation for 14 h, the average crystallite size of
WD-POM@SMOF-1 changed from 53 to 60 nm (Supplementary
Fig. 32). Ultraviolet-visible experiments showed that, for both the
homogeneous and heterogeneous systems, WD-POM did not
escape from SMOF-1 to the solution after irradiation for 50 h.

Discussion
We have reported a self-assembly strategy for the generation of
the first supramolecular MOF (SMOF-1) or metal-cored
supramolecular organic framework in water at room temperature.
SMOF-1 represents a new class of self-assembled frameworks that
possess periodicity and porosity, the two key features of solid
MOFs, yet SMOF offers more advantages over MOF as the
former can exist in both solution and the solid state. Efficient
encapsulation of WD-POM in SMOF-1 enables the creation of
new efficient photo-catalysis system that exhibit a hydrogen
production activity higher than that of the reported hetero-
geneous MOF-based system. The new self-assembly strategy
alleviates the need for high temperature and long reaction time,
and the formation of the supramolecular framework proceeds
homogeneously. Thus, the work should open many possibilities
for the construction of other functional porous materials in the
future. For example, frameworks with enlarged apertures may be
attained by using rigid ligands with systematically elongated
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Figure 5 | Fluorescence quenching and photo-driven hydrogen production. (a) Normalized fluorescence (l¼ 640 nm, lex¼ 500 nm) quenching of

SMOF-1 ([1]¼0.02 mM) by WD-POM in water. Inset: quenched fluorescence spectra. [� ]/[þ ]¼0–1.74. [� ] and [þ ] represent the total charge molar

amount. (b) TONs of the solution of WD-POM@SMOF-1 ([1]¼0.3 mM]) after irradiating for 12 h. [WD-POM]/[1]¼0.0067–2. (c) TONs of the solution

of WD-POM@SMOF-1 and H2 production amount after irradiating for 7 h. [1]/[WD-POM]¼ 15, [1]¼0.03 to 6 mM. (d) Time-dependent TON and TOF of

the solution of WD-POM@SMOF-1. [1]¼0.3 mM, [WD-POM]¼0.02 mM. Methanol was used as the sacrificial electron donor.
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arms. Such new porous frameworks may be used to tune the
photophysical and photochemical properties of functionalized
nanoparticles through encapsulation. The mildness of the self-
assembly strategy may also allow for the introduction of different
functional groups and post-synthetic modifications for rationally
designed frameworks, which would lead to new properties and
applications.

Methods
Materials and measurements. All reagents were obtained from commercial
suppliers and used without further purification unless otherwise noted. All reac-
tions were carried out under a dry nitrogen atmosphere. All solvents were dried
before use following standard procedures. Column chromatography was performed
on silica gel (200–300 mesh), and thin-layer chromatography (TLC) was performed
on precoated silica gel plates (0.4–0.5 mm thick). 1H and 13C NMR spectra were
recorded with a 400 MHz spectrometer in the indicated solvents at 25 �C
(Supplementary Figs 33–42). 1H NMR diffusion-ordered spectroscopic experi-
ments were carried out with a 400 NMR spectrometer. Chemical shifts were
referenced to the residual solvent peaks. Mass spectra (ESI) were obtained on
Shimadzu LCMS-2010EV, IonSpec 4.7 Tesla FTMS and microTOF II spectro-
meters (Supplementary Fig. 43). DLS experiments were performed on a Malvern
Zetasizer Nano ZS90 light scattering Instrument. Powder X-ray diffraction mea-
surements were carried out on a Bruker D8 Advance diffractometer at 40 kV and
40 mA with Cu Ka radiation (l¼ 1.5406 Å). Scanning electron micrographs and
elemental distribution of the samples were obtained on a JSM-6330F Field Emis-
sion SEM combined with EDX analysis. Transmission electron micrographs were
recorded on a 2100F JEOL FETEM microscope at 120 kv aligned for low dose
(10 e Å� 2 s� 1) diffractive imaging. Luminescence measurements were performed
on a VARIAN CARY Eclipse Fluorescence Spectrophotometer. Ultraviolet-visible
spectra were performed on a Perkin-Elmer 750 s instrument. Inductively coupled
plasma-atomic emission spectroscopy (ICP-AES P-4010, Hitachi, Tokyo, Japan)
was used to determine the Ru and W contents. The synthesis and characterization,
and spectroscopic measurements, including DLS, thermogravimetric analysis, gas
adsorption experiments, visible light-driven hydrogen production experiments and
crystallite size calculations are summarized in the Supplementary Methods.
The Spectra/Por 6 Dialysis Tubing (10 kDa Molecular Weight Cut Off, 8 mm
Flat-width) was purchased from Spectrum Laboratories, Inc.

Solution-phase synchrotron X-ray diffraction data collection. The X-ray
diffraction data were obtained at beamline BL14B1 of the Shanghai Synchrotron
Radiation Facility (SSRF) at a wavelength of 1.2398 Å. BL14B1 is a beamline based
on bending magnet and a Si (111) double-crystal monochromator was used to
monochromatize the beam. The size of the focus spot is about 0.5 mm and the end
station is equipped with a Huber 5021 diffractometer. NaI scintillation detector was
used for data collection.

Solid-phase synchrotron X-ray scattering data collection. Synchrotron radia-
tion SAXS experiments were performed on the BL16B beamline of Shanghai
Synchrotron Radiation Facility (SSRF), using a fixed wavelength of 0.124 nm,
a sample-to-detector distance of 1.85 m and an exposure time of 600 s. The 2D
scattering pattern was collected on a charge coupled device camera, and the curve
intensities versus q were obtained by integrating the data from the pattern.

Solution-phase synchrotron SAXS data collection. The data were collected at
the SIBYLS Beamline 12.3.1 of the Advanced Light Source (ALS, Lawrence Berkeley
National Laboratory). The SMOF-1 ([1]¼ 3.0 mM) complex in water were exposed
for 0.5, 1 and 6 s, followed by a 1 s exposure to check for radiation damage, using a
MARCCD X-ray detector system located 1.6 m from the sample chamber to collect
data in the q-spacing 0.01–0.32 Å� 1, where q¼ 4psiny/l (2y is the scattering angle
and l is the wavelength). Filtrates resulting from the sample concentration process
were exposed for equivalent times and the intensities were subtracted from the
corresponding sample exposures. Data from the low- and high-resolution ranges of
the respective short and long exposures were scaled and merged to obtain the final
data sets.

Data availability. The authors declare that all relevant data are available from the
authors on request.
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