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ABSTRACT

. We héve applied'the~Faddeev equations to the calculation of

. resonances in a state of three pions with the quantum numbers of the

0

- w- . particle. Only>the kinematics 1s made relativistic and the pion-

pion scattering'amplitude vhich appears in the kernel of the equations
is approximated by the p-contribution alohé. Two resonances are found,

one of which has a mass and a width reasonably close to those of the
R : ! ./’) ’
0

@ . The second resonance has an approximate mass of 1600 MeV .
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In this Appendix, ve indicate how £0 separate pari ty 1n the Faddeev

eguati n

Let us consider a wave function of three momenta X(gl, pﬁ, Pu)e
: S

Ito Uroaectlon on a state of well defined anmular mementunm J is glven by

) = (8 73 g "\
o) = r e D P AR 1
sz<91’ Pe’ Pyl = ﬁdm( B, 7) %(3y, Py )R (1)
,where m is the nrOJecvlon of the tota' angular mOﬁen*“m on a space-fixed
axis while ¥ .is its projection onm an.-axis Oz normal to the plane of
- o = . e o
pl, pg, p (nl + p2 - p3,= C). R is the rotation, with Euler angles

(e, B)_y) Vhich brings the space-{ixed system of axis upon. & system linked

to the momenta. dR =.sin § dx d3 4y .

4

The action of parity upon X(E,, 52, 55) is ‘given by

wheréQ,RO is the rotation of an angle = - around the 0Oz axis and ¢

the quotient of the intrinsic parity of the thr..-particle system by the

™
10

product of the componient particles intrinsic parities. Using

T N MLT )

yl‘fﬂ‘fl(a) B.’ 7) }ju(Ro> = ("-L)l /9}1\,1("; 'a) 7) (D)
e gev :

J M J

» oyY - - { Yy

L Ab:im(pl’ pg: _'05) = ( l> € XI'-fm\pl’ P57 pB) . (Lf)

Ecuatlon (4) can be used to separate perity in any cqouation of the
type .

J V‘I Rl ! =

K = Nee M (z)

where the kernel K commutes with parity. In fact, it is sufficient to
keep M and M' even vhen € is positive and odd when € 1s negative.
We want to thank Dr. Meurice Jacch for a useful conversation on’

the. subject of this Appendix.

|
|
|
|
|
|
|
|
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'~ 1. INTRODUCTION -

:One.of the most important problems in strong interactien physiese
is to find a satiefactory_d&namieal_treatment-of three—bodyAsystems) Two
. fmethods seemjgromising, which we shéll discuss for the special case of the
wo-particle.- | . | |
~The first method consists in takingefullradvaﬁtége of "our under-
standing of the two-bodyvsystem to redece the three-body probiem to a |
two-body problem. The tﬁree-pion seattering amglithde has a pele whenvthe
mass of a two-plon system is equal to the p mass. The residue of the three-
.body scattering amplltude at such a pole is essentially,a. n=p ecatter;ng
‘amplitude to which one tries to apply the N/D technlque.l This methoa is
well adapted to a treatment of the exchange of partlcles, i.e., of the poles
'.1n a crossed channel. (From the. p01nt of view of a three-partlcle system,
such exchanges are three-body forces. ) ‘However, the three-body nature of the‘
problen reappears in two ways: | |
(a) There appear very important enomalous *thresholds owing to the fact that'f
one of the scattered particles is unstable.2 o, _ _.
(b) It is difficult to take into account the three-body cut ihithe uniterity
_reletion. ‘ o P A - |
The second methed is in meny instances complementary}%o the firséuone.
%t consists in using the Faddeev eqpatiens fer the three-body scattering amplrr
_tudes.B It is an off the- energy-shell method, whlcn means that one must
introduce form factors, not well-known nor well defined, which act as cutoffs.

. As a ccupensation; there is no anomalous threshold.. This method'takes an

'.-exact.account of the three~bedy unitarityol+ though it does not take crossing



) 1nto account,lit ms p0551ble, in prlnc1ple,.to 1ntrodnce the effect of
" exchanged particles as a three-body force. S
| One obvious drawback of the Faddeev equatione is:thet they are true .
only in-a nonrelativ1st1c approxxmatlon, ﬁoﬁever, it ieteasy to make the |
Kinematlcs relativistlc and to con31der the eouatlons,as a convenient
| device for satisfying three-body unltarity.5

) Accordlng to their complementary charactersy the two methoas will
presumably not apply with the same success to any glven problem.v For
instence, the three—partlcme channel of a baryon resonance, the overlepping
of two resonances in a three-body finel state can seemingly'be treated'by
~ the Feddeev equation method. . - o ,:p ‘ N _ ?L

The present paper reports a prellmlnary attempt at solv1ng

“the Faddeev equatlons. Our 1ntent10nffor dolng that work was twofold:
(l). The Faddeev equatlons, as orlglnally wrlt en»bijaddeev in the momentum
representatlon, ‘are very cumbersome. After separation ol the ‘total an-
gular momentum,E they contain an integration upon.tmo:energies while the
- inhomogeneous term contains delta-fnnctions,§ In this form the kernel
of the equation is not compietely continuous although its square is.
Unfdrtunateiy).when_iterated‘once, the separated Faddeev equations contain
a summation upon three energies which is practically beyond the poesibilqo
ities of & computer. We tried% thereﬂore;ito eolyeAthe‘noniterated
eqnations.vvv | | | |
(2). We wanted to lmow if the effect of three-perticle unitarity) as
emoodled in the Faddeev equatlons, was enough to generate a8 resonance

in elementary-particle 1nteract10ns. Clearly, the uimplest problem of .




B of the p-resonance, which is represented by a'Breit-Wigner_formula. ‘

isummations‘over a finite number of energies. - ’ . L,

' made also defines & cutoff and, in this flrst crude attempt, we have not

\_gbinding energy of the resonances.

: physical wo 3 and another having a higher mass.

-3-

~that type is provided by a three<pion system with the quantum numbers of -

ithe wo i -Owing‘to the peculiar symmétry'properties of this system, the.

number of amplitudes to be introduced is small and each amplitude has

gi symmetry propertles with respect to the partial energies which reduce ‘the '

i domain of integration.

We have therefore tried to solve the equations with the following

fjapproximations.

i'(a) The pion-pion scattering amplitude is approximated by the contribution

7

(v) Owing to limitations by the computer, the integrations are replaced by

i

i
i

(c) The range of integration being automatically'limited‘by approximation
(b), the off-the-energy-shell dependence of the pion-pion amplitude was

_neglected. ‘This means that our choice of energies where the summations are ',

. investigated the effect of this cutoff. Qualitativelyy it can be said -
;, that our range of'energies is so small that we certainly underestimate the

A ”fffattraction due to pion-pion.integration.and we -expect to underestimate’the'

(-

With these approXimations,'ue have solved the.homogeneous Faddeer~

,: equations and found two possible. resonances, one‘being very similar to the;"':

In Section 2, we give the equations which have been solved and in '

?l- Section.3 the_numerical-results, In the Appendix, we indicate how to: sep-'

. arate the homogeneous Faddeev eQuations according_to different values of parity.
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2. DER;[VATION OF 'I‘H'E INTEGRAL EQUATIONS
Owing to the relativistlc kinematics, the equationsg derived in .
Reference l will be slightly modified. It is convenient to take the
pion‘ mass as unity and define the total energies of the particles in the
- center of mass'by = . - - . ' - ' : ] ¢
e e
a')i '5"" (Pi . + l) . s .
o - (1)
where, as in Reference 6, p is the momentum of the ith particle in

. the t_ote.l center of‘mass'._ We dlso have

r\SQ
N
i

)-lq232 .'= 2‘(0)22 + w32) - c'n;.La -3 c,
" N | (2,,)‘
where q2} is the momentum of particle 2 relative to the center -of. mass o
~of particles 2 and 3 . The total energy of particles 2 and 3 in this center

. of mass is

(ltq,e3 +l+)1/2 (e(a) +a> )-a) +l)l/2 o

- As in Reference 6 we have, for the angle between the-momente 32 ,and 53 , -
- 2 2 ' IR -
b, +pP; ~D o : *
2 3 1
cos © =

25 . _

2P2P5. : :
o (l*_) L

s

We also need .,-'7'1. s the engie between Py e,nd q23 . We have

r— . e Bt T

“._




}’Finally) the inhomogeneous term of the Faddeev equation will be writtep'as

cos 7, - = '1;-""5!;- = > : ' 12 .
. 1 es ) - 1)1/2 [2(%2 M;;) - 6012 . 3].

(5)

Furthermore, the normalization coefficient. A of Eq. (2#) of Reference 6

. will be changed to

27 + 1 1/

8% wl “@ w3

(6)

.H
y
‘\

R 1T e e g,
1'Miu , S(wi - CDl)
R

Fé3(ay w', v, z -'El) e du ,

‘. (7)

o

_""with the z axis chosen along 31

For our. purposes here, it is more convenient to choose the zZ axis g

perpendicular to the plane of the trlangle defined by the three momenta
:'pl, PQ’ _p3 . Th;s can-be done by a rotatlon of gﬁ&i around the y axis,

~ vwhich has so far been chosen to be in the plane of the triangle.  We have -

3
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This "rotation brings the x axis along -ﬁl‘and the z axis perpendicﬁular

) X 1a . - e -
to the plane o Py p2, ;p3 .

instead of Eq. (7) ,

In this new coordinate system wé have, -

wl J! Mll(?f‘g}(r’-)lw ) Ml) (a) W ooz o ol )1/2

23123

L IZ (w,w,u,z-E)eiuudu

(wi = a)l )

St

(9)

- Now, writing the partial wave expansion of F23(d),,w', ﬁ, Z .- F._L) , and

keeping one term only, we have

F23(0.), (D',u,z bad El)

vhere £, is given by the Breit-Wigner formula. We ha{ve9

“where in terms of the phase

£

23

23

Correspondingly we have. -

Ly

0

23 L(cos ?L’ cos 71, sin: 71, ‘sin 71, ‘cos u)(2t + 1) ,

= =l 83

shifts we have

(x0)

(1)

52y .‘

e




-

r/2

& =
23T e E - Ey + 1T/2 o
S \ (13)
and . o
' ( f o Ly I‘/2,
e 2 g B, + /2 |
o ‘ ' (1k)
| ‘.W‘e identify v with _q2§ y  E with E:23 y EO and _1"} with the mass.
_and width of the resonance in the two-body amplitude. We then have .
PR b I ‘ l’
23 T - . 1/2 . l
2 2 2 i L
| [2 (" + ;") - oy - ] o EO +4r/f2.
| | ' - (15)
_,"Next we write E23 in terms of 2z , the total energy -of the system in
* the three-particle center of mass. We have
| - . O+ 1P 5 * -
o 2 1/2 22 o pER - e e N1/
. 323 = ‘(hq23 + 1) = [(z - wl? - D J = (25 - 2uw) + 1)_,., )
Therefore we hsve
f23 = . Lyt : S / 5 . ‘ I / .
B 2 2y . /2 .2 1/2 S
[2(0)2_ + 0y )_.,- @, - _5] R v.(z‘ - 2z + 1) -~ By ¥ ir/2 .
SO s L - S 17)
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Now, using Equations (9) and '(10), we have

§<w' 7 F (el 3 1) - .Wm(m . 1)}5 7

[ B T aclad s 2 e o P et e v e - i J——

5(0)‘ ‘ ' , -
jiu“ du AMlM AMlu (cos 71 cos 7'1 + sin 71 sin 71 cos u) , ;
: 8(w, . .
-Z&r W’)l/a/{%u AMl“ 1 Pl Y’:’“(y;,o)' YL’_u(yi;,o)_ -
| (18)
 with £, 23 given by, (17) .
. In our case, s:mce the twor‘body amplltude is approximated by the
p , we have L =1 and, since the three-body ampli‘bude is chosen to haf;e
- the_qugntuxﬁ ,;;umbers of the w , we have J=1. In Equation (18) .let us
";'c‘,on'sider.;'13hlé"'f‘a.‘cv‘co'z.'~ L I ' o - o
| %'(71’?:1) = % %Tu Af/‘[p Yz, “(71,0) Y&,u(yj'.’m : ;‘{:)
with J=1, &=1. - (9)
_"Using explicit values of Y ‘and % and summing over W ,. we obtain .
 .‘ %i('/y?’i) = i%f ’[f’s_in 7 sin-a-:’)’i (32 -4‘21\42 - 2M'2+ 2) R §
+ 2MM' sin 7, sin 7."L} = i%n- Lyt | :
o T . ! )
o S (20) | : ,

s e g v o




C s W™

- (m, J' Milzogj(z)l o J Ml) - -

' “"?'_?Z'_Awhere E‘p'-_- 5.4 and ‘T = 0.7 in pion mass units.

. '..'need not write the rest of the equations since, as we sha;l see, owing

o

Finally, using Eqs. (17), (18) , and (20) we obtain

61r (aJ].a),acojmlaoe'm3 )1/ 2% (a)i - @) ) PZleM]’_ (y 1 7 ]'_ )

. T R | |
o, Py [2(&2 '+a)5v)>-aa3 'fj} [z. -Emlz +1) - Ep+il"/2} P

L ()

Now the Faddeev equations will be (leaving out the inhomogeneous -term)

((.0' I M I&l] o J M ) - -63{2 I‘Z } | . . ‘l‘
. ‘ ‘ . Mn . . .

i o 1" " " 1/2 w"
dwy awl dwf (o) o) of of of af 3w - w )ZMM"(71’7

(D' PJ_ (Zm" - z) [2(41) +m3 2y -a) -3 ] 1/2 [ - éwl,z +l)l/2-EP + iI‘/QJ

: [(a)"vJ M"IZ’QI oJ M) + (o" J.-M’V'IKBI ®JIM )] ": -

L fKM!Mn(UJ ;o) " [(w" J M"]Z‘:’2| © I M)+ " T 2?31 @ J M}

(22 )

' ’)-_f'fwhere KM,M,,(t;b’,w") is given by the right-hand side of Eq. (21) . We

>,£o the 'symmetry of the iﬁrbblem, the matrix elements of ? 2 and. 2,3 a II"';‘i
. will e rewritten in terms of the matrlx elements of @ » and Eq. ,, (22)' 5

: ;'educes to an. equat-ion- involving E., h alone. i

. " . .




From the symmetry of ‘the problem we have

2

‘;; s 1wl o 7 1) _ (23" ; M"l@alaé 7 12)

(23)

where o _ ( 5 a.)B) and the state | o J ML) means the x axis

»i.s .chosen along ;pl . We go from o J Ml) to [ wdJ M'2) by a rbtation ;

RN

012 around the z axis. Therefore we have

b ]

SR : o M6, . ‘ : ~iMe_ . - :
Jomw) = (e ) i) = e e lowi) = e 12! gm),
| (21)
. : l
“and so K
[ 1{,0" M"lt lwl J M'l) + (1" J. M"l@Bl ' J le)}
e AM'ey, -iM"el
= [e 12(3" J M"l?gll 3' TNy +e 17 15
(
x ((%" J M"|lel('%' J M!)] . | |
(25)

' The state w is antisymmetrlc in the isospin space and therefore,

: owing to the Bose statistic, it should also be antisymmetric in ordlnary

- o =spa.ce._ This means that the states should'be antisymmetrized.according to

Aa)iwé wéJM_'.) _ la)’a) “ lmia% wi) + e (lm3 a)'a)

1 o
'... [a)' m' w! ))+ e 13(10)2’ cbé wi)'*. IC‘% @) (Di)) ’

o (e6)




S

~ Combining (28) with (25) and (22), we have

‘-f'(AaS J @Hmﬁ J M"}_ = =127

' 'x(m', J M Igoll At T M"Y .

. The kernel is given by

and so

: .' : , ~-iM'e! T
: o P 1i ‘ - ‘
Hhajapep = (07 P aajapepany

1)

E where P is a permutation operator and the fa.ctor e P means that

~iMIa!
i.MGl

whenever the permutatlon involves pa.rtlcle l and particle 41 the coor-

. l.-din:ate axes _are rotated by . 8., around the 0 axis. Therefore we. have

lip

>

;-iM"';e"" m'e ' L R
e Fe mnygo W = So"aet| B oranr) .

(28)

[Z (ofopgose .0, /2 8oy - w)) By (71 - 7i) Aoy Aoy d”%

Mf

1/ _ Ly
~121 P(w wewBa)lmea)j) E(wl - wi)z .(71,71) i

Kma’(‘“’_"? ) = T , AT /3

A

: “ﬁpl(zw'“z)[g (wg + wg).mi .:;.,3] % V‘Ze‘a‘*’lz - 1) ':. "Ep +11—\/2} _

llpl(Zw - 2) {2((1) + g 2) -a)o -5] [(Ze "20) ¢+ 1) i By + ir/e], :‘;

| ",'.(29)' o

o)
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~ } ‘ *
- This kernel should be symmetrized to ensure the symmetry of the solution
.due to the Bose statistics which has already been imposed.  Equation (30)

will then become

- . | ‘ 1/2
- ., : W, 0, 0, o o wl)
KMM,(O),' w') . = '-'lZ:tQI‘Z (-1):P L2 3 1 2. 0
- - ® Cop (To' -2)

-.-iM'ei. | >
- T ' . ip :
B(wl Rl)l) PZWI,(yl,y:’l) e

75

W) I /
2
[2 (@2.+ a)g) -(Di -3] [(z2 -?wl z + 1) “EP+ ir/2 ,

ig‘(}l)
- where it is now uncierstcod that the integration in Eq. (29) is restrict;ed '
t§ the condit‘ion p_{ < PE' 18 pé . We should also remember that the

momenta. pi P pé s pé a?e further restricted to form a triangle. 1In

Eq. (31) the permutation operator on A (’xl, 7i) is defined to exchange

the momenta defining 7] . From Egs. (31) and (29) we have an equation of

"the form

T = K(z) ™
(32)
- The solutions =z which make the above equation satisfied are discussed

in the next section.




~1l3a

III. NUMERICAL CALCULATIONS

In Eq. (29) we choose a finite mesh'size'and‘change‘the integration

© into a summation. In Eq. (32) K is then a matrix whichvie the direet
iproduct of the matrix in MM’ indices And a matrix in ., @' indices.

" For a general z , Eq. (32) is taken to be of the form

K(z) ' = Nz)T' . S
(33)
Our numerical solution consists of finding all possible values of (complex)

‘l .z for which “A(z) =1. Ve shalllthen_interpret the real and imaginary

v‘*parts of =z as the mass and width of the three-body resonance. Owing {o

the practical difficulties we are forced to use not too large a matrix (- of
“the order of lOO'by 100 ). This automatieally leads to' & cutoff and a

. fairly large step size of integration. The mesh size of integration over ¢

"fieach wi has been chosen to be 1/3 and a cutoff at 8/3 . Once all the . a‘ﬂ

. l .
matrix elements of K(z) are known for a given 2z , all the eigenvalues ‘

‘Vi,k(z). of Eq. (33). are calculated. For & small (real) z , say z = l‘,
. the eigenvalue with.smallest nonzero magnitude has a real pert which is
fvpositive, but it is considerably smaller than unity. This eigenvalue nas
| :}a fairly small imaginary part. When =z isfincreased to z 6 this

. eigenvalue moves close to unity but with a nonzero imaginary part. Next4g

'.-z_ is allowed to become complex and the value of z for which  A(z) is . .

~ close to unity is sought. We obtain the solutioni

i

S




SN

: ff This solution corresponds to a calculated mass of w particle about

- 870 Mev and a width of about 20 MeV . of all the other eigenvalues for ‘.L}f‘f“};

K Z.. in the renge of 1 ﬁo 6 ’ noneis close enough to unity.' As the value f;jf}> f

X
of Z, is further: increased another eigenvalue, which so0 far had & 1arge -ivif"f

“imaginary part, moves closer to unity and we obtain another solution,

= 9.5 and Z, = ~0,25 . Thie solution would correspond to a resonanee :

‘ i
~.at about 1400 MeV and a width of ebout 20 MeV o As Z 'is-further'

hd

’1increesed this. eigenvalue moves away - from unity. ‘We heve not increased the |

If;z ‘value beyond z. 12,.

Let us now make a few remarks about the sensitivity of the solution
_vf', . . . I|
.. to the imput data"

N
¢

. (a) Increasing Ep increases Z , the mass of the three-body resonance. .

."fﬁ This result is expected from the energy denominators. of the kernel in Eq. (31)

. (b) Increasing the width of the' p makes 2 decrease. This effect can
- be interpreted as an increase in the force and therby an'inorease in'the_ }.“
binding energy of the three-body system.-

" (¢) When a larger mesh size (1/2 instead of 1/3) , énd therby a 1afger{j'

- “cutoff (7/2 instead of 8/3) , is chosen, the solution for. 2, is also

| increased. We obtain Z_ & 7.25 instead of %, = 6.25 . This result

i ;iis in contrast with (b) and we believe that it is due‘to the crudeness of. .
epproximation (too large a mesh size) rather than the sensitivity to the
:'eutoff. | | o | | | | " "
a 'Alﬁhough the method-used in this paper is‘entirely’ofude,vwe.ﬁelieve_-n
ath%t:ﬁhe present.resulﬁs ere"verylenoouraging fo?”the ﬁse of.FaddeeV~eqpation

y

y
i
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.-

" to solve analogous problems. The next step will be to use better approx-

imation techniques, and particularly variational techniques, and to explore
- other channelgs of thee M~ M~ , K~X~1, and K - X - I systems.

Also a better understanding of the properties of the eigenvalues of the

Faddeev kernel will have to be gained.
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APPENDIX

In this Appendix we reduce the Faddeev equations according to the

.‘f: two parity states.. We shall calJ.f: the product of the parity of & bound o

,”t;jf;;state by the intrinsic parities of the three component particles. Let -

” ”~f_ ( )(Pl’Pé’p7) be the bound state or resonance wave.. functions. They

':satisfy the homogeneous Feddeev equations, the flrst of which is .

»

—o-—r»

X. "‘[x(2><5i,i>’é,§g) - XG)@iﬁ%@} R Ry

(A.l)‘

: .The reduction of angular momentum is made through an éigenfunction expansion,

-

‘ )&(511321 :55 = Zigi—;—u X‘I\J;}J-(Pl’ PQ’ p3) b ip(aﬁ ' BI 7) .

{

- Here (o, B, 7) are the Euler angles of the rotation which brings a space-

: fixed system of axis to the body-fixed sys»em. The 1ndex [T ,_which is the'f

. projection of the toial angular momentum upon & fixed axisg, is’ & dunmy index

" and we shall put it equal to O . In abstract form Eq. (A 2) reads

- => e _ | K

(A.3) .
Introducing Eq. (A.2) into (A.l), one gets the reduced Faddeev equation

(A 2)':‘
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2 (l)J
: (2;1 - zv) X (P) fA23 F23(p’P sHy 2 - El)

X { (Q)J(ﬁ) * xe)%p )]b (V) 05 df dn

| (A.4)
'.'{whére V is the rotation of Eq. (9) and A23‘ a kineﬁatical factor.
| In order to use parity conservation, let us write. s
J+M (K
Plg Moy = (-1) g, -M, 0) ,
I (A. 5)
;’(‘whefe P :is'the;parity operator., ' - f
3 When 'z is real EéB is & real function and so is X , therefore
' ' : TR —
(gmMolm) = €@Mmolx) = (-2) (7, -M o] *xy
L M S
- ('1) (I,- Mmofxy* . - o
(A.6)
For complex values of z , Eq. (A.6) reads
m J J*¥J )
W(z) = ()" e(21) 9%,
(A-7)

and it is indeed easy to verify that the right-hand member of Eq. (A 7)

satisfies Eq. (A. h)

Eqpation (A. 6) can be further reduced by 1ntroduc1ng the new function.

(1)J xﬁ? i Q;(-l)J Xy (z*) ‘s T
(a.8)

where 14;0..
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v

In fact, using the relation

(1

. J . ‘ .
B W o= (g SV

(A.9) -

Y

" one Age‘ts

(a) +w2 +w z) @(I)J(P) AQ}[ o3 p,p ,p.,z - El) du»dma,da;3

x %O R V) @‘”%p )] %[DM. W) + ()" £y M(v} -

: | 3 (A, 10)
.where'M}O,"ao=l/2‘, a,nd;'aM=1 for;M;lO.. -
Equation (A.10) can be further reduced when some of the particies

are identical as indicated in Section 2,
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