
UCLA
Recent Work

Title
The Traveling Salesman Problem with Flexible Coloring

Permalink
https://escholarship.org/uc/item/21f905rc

Authors
Roemer, T. A.
Ahmadi, R.
Dasu, S.

Publication Date
2011-10-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/21f905rc
https://escholarship.org
http://www.cdlib.org/

The Traveling Salesman Problem with Flexible

Coloring

Thomas A. Roemer

The Rady School of Management

University of California, San Diego

troemer@rady.ucsd.edu

Reza Ahmadi

Anderson School of Management

University of California at Los Angeles

rahmadi@anderson.ucla.edu

Sriram Dasu

Marshall School of Business

University of Southern California

dasu@marshall.usc.edu

October 2011

Abstract

This paper introduces a new generalized version of the Traveling Sales-

man Problem () in which nodes belong to various color classes and

each color class must be visited as an entity. We distinguish the cases of

the problem for which the colors are either pre-assigned or can be selected

from a given subset of colors. We establish computational complexity and

provide concise formulations for the problems that lend themselves to de-

rive tight lower bounds. Exact solutions for special cases and a two-phase

heuristic for the general case are provided. Worst case performance and

asymptotic performance of the heuristic are analyzed and the effective-

ness of the proposed heuristic in solving large industrial size problems is

empirically demonstrated.

.

.

.

KEYWORDS: Traveling Salesman Problem, Complexity, Heuristics,

Probabilistic Analysis, Error Bounds

1

1 Introduction

We consider a weighted, complete graph,  (), in which the edge weights

satisfy the triangular inequality. Each vertex or node  ( = 1  ) must be

assigned one "color"  ∈  from its allowable color set . There are a total

of  colors, that is
¯̄̄S

=1

¯̄̄
= . A problem of some practical interest is to

find the shortest tour that visits all vertices, "paints" each vertex with one of its

allowable colors, and returns to the starting position, while visiting all vertices

of the same color consecutively. Note that if all nodes are completely flexible,

that is if they can be colored with any of the  colors (i.e., || =  ∀), then
the problem reduces to the standard Traveling Salesman Problem (). On

the other hand, if none of the nodes are flexible, such that each node must be

painted with a specific color (i.e., || = 1 ∀), then the problem becomes the

Clustered Traveling Salesman Problem (), first introduced by Chisman

(1975).

Ahmadi and Mamer (1999) provide a manufacturing example for  , in

which "pick and place" robots mount components on circuit boards. Due to the

high switch-over costs between component types, each type has to be mounted

consecutively and thus constitutes a cluster or color. This paper is motivated by

the latter example, however here we consider the case with additional flexibility.

In particular, when some components can be mounted by a variety of different

nozzles, then additional routing flexibility arises. The same problem structure

also arises during functional testing in the printed circuit card (PCB) assembly

environment. In functional testing of PCBs, test probes are brought in contact

with the test pads for input/output signal measurement. Two widely used

technologies are pin-through-hole and surface-mounted. Usually the set of pads

in the PCB are partitioned into subsets of electronically equivalent pads referred

to as nets. Typical PCBs have more than 1000 nets and 10,000 pads. The

problem that the test engineers face is the assignment of different size probes to

a set of pads to avoid creation of short circuits. Each pad could be tested with a

subset of probes and given the economics of testing, pads with similar test probes

are performed contiguously. In CNC-machining for example, some activities

can be performed by several different tools so that two distinct operations may

be performed consecutively without switching tools and incurring setup times.

Many testing operations in electronic circuitry require specialized equipment for

some areas and multipurpose tools for other regions. (Sequential) dispatching

of customer service representatives falls into this class of problems as well, if the

representatives have different skill sets and the customers differing needs.

Because it is convenient to think of the node properties as colors, we refer to

this problem as the Traveling Salesman Problem with Flexible Colors ().

We note, however, that the problem is not limited to this realm, but arises

frequently in the presence of switching costs between specialized and general

equipment.

Applications for the special case of the  are abundant and include

order filling in warehouses (Chisman, 1975) or emergency vehicle dispatching

2

(Weintraub, 1999). In addition to a number of applications in manufacturing

and vehicle routing, Laporte and Palekar (2002) discuss applications in areas as

varied as computer disk defragmentation, computer programming, examination

timetabling, and cytology.

In this paper, we will first formulate the  and then, based on this, the

 as well. The formulations are developed with the subsequent derivation

of lower bounds in mind. Section 3 establishes the computational complexity

of the  and Section 4 discusses special cases that can be solved effi-

ciently. In Section 5, we develop lower bounds on the optimal solutions based

on Lagrangian relaxation of the formulations from Section 2. Section 6 presents

heuristic procedures to solve the  and the  and Sections 7 and 8,

respectively, evaluate the quality of the heuristics and the lower bounds analyt-

ically and empirically.

2 Problem Formulation

The Traveling Salesman Problem with Flexible Colors () can formally

be expressed as follows:


X


X


 (1)

 X
 6=

 = 1 ∀ ∈  (2)

X
6=

 = 1 ∀ ∈  (3)

X
∈

X
∈

 ≤ ||− 1 ∀ ⊂   6=   6= {} (4)

X
∈

 = 1 ∀ (5)

 ≥  −  ∀   (6)

 ≤ 1−  +  ∀ 6=  (7)X
∈

 ≤ b (8)

 ∈ {0 1} (9)

 ∈ {0 1} (10)

 ∈ {0 1} (11)

 ∈ {0 1} (12)

Explanation of Variables:

3

 =

½
1 if nodes  and  are adjacent

0 otherwise

 =

½
1 if nodes  and  are adjacent and of different colors

0 otherwise

 =

½
1 if node  is of color 

0 otherwise

 =

½
1 if nodes  and  are of different colors

0 otherwise

Objective function (1) minimizes the total cost of the tour, in which  in-

dicates that the tour includes edge ( ) and  is the weight of this edge, (i.e.

the Euclidean distance, between the two corresponding nodes). Constraints (2)

and (3) warrant that each node "precedes" and "succeeds" exactly one other

node.1 The loop breaking constraints (4) warrant that the solution is a con-

nected graph, and therefore a tour. Constraints (5) assign exactly one color

to each node and Constraints (6) force indicator variable  = 1 if nodes 

and  are assigned a different color. The logical constraints (7) force  = 1 if

two nodes of a different color are joined by an edge in the solution. Constraint

(8) limits the number of color changes. Ideally the number of allowable color

changes, b is minimized, giving rise to the APX -hard set covering problem

(Arora and Lund, 1997). However, many heuristics exist that have been shown

to work well in practice (Chen et al., 2010). For the remainder of the paper,

we therefore assume that b is given. Notice that for the  , all  are

given and that, by Equation (6)  all  are given apriori and are thus no longer

decision variables. Given the values for the  , a formulation for  can

then be obtained by removing all constraints containing :


X


X




s.t. (2)− (4) and (7)− (10) 

3 Computational Complexity

Since the  is strongly  -hard and a special case of both, the 

and the  , it follows immediately that both problems are strongly  -

hard. Unfortunately, as will be shown in this section, for the  matters

are still worse. In contrast to the (Euclidean)  which can be polynomially

approximated (Arora, 1998), no such approximation can exist for the 

as it will be shown that it belongs to the class of −complete problems
(Papadimitriou and Yannakakis, 1991). Moreover as the proof will show, the

1 If  = 1, then we say that node  precedes node  or equivalently, that node  succeeds

node , even though the actual direction in the final tour might be in the reverse order.

4

5

6

3

7

4

1 2

Minimum Dominant Set

Figure 1: A Graph And Its Minimum Dominant Set

problem remains −complete, even if all nodes are on a line and if || ≤ 4
∀.

Theorem 1 The  is -complete.

The proof will be by an -reduction to the Minimum Dominating Set-3

Problem, which was shown to be -hard by Alimonti and Kann (1997).

Figure 1 shows a graph and its minimum set, defined as follows:

Definition 2 (Minimum Dominant Set-3 Problem) Given a graph,  =

()  with maximum vertex degree 3, find a subset  0 ∈  of smallest cardi-

nality | 0|, such that every vertex in  is also in  0 or adjacent to a vertex in
 0.

Notice that the (unique) minimum dominating set () in Figure 1 is set

 = {2 4}  as all nodes in the graph are either in  or are adjacent to a node

in . Before we formally prove Theorem 1, we will explain the intuition and

(the simplified) reduction. Consider again the graph in Figure 1. To create our

instance of the  we create two collinear line segments of length 1 and

place  = 7 nodes (the number of nodes in Figure 1) on each segment as in

Figure 2. Each of the nodes on the left-hand side can only be colored with one

color and all colors are distinct. For these nodes, denote the color assigned to

them by the number of the node.

The nodes on the right-hand side are clones of the former, and can be colored

in the node’s own color and that of all its neighbors. For example, node 2 in

Figure 1 requires color 2 and is adjacent to nodes 1, 3, and 5. Consequently, for

node 2’, the set of allowable colors is 20 = {2 1 3 5}. Our claim is that the

optimal tour passes the chasm of width  − 4 between the two line segments
exactly once for each member of the dominating set. Moreover, the elements of

the dominating set are the left-hand side nodes incident to the edges crossing the

chasm. Figure 2 shows the optimal path and identifies the dominating set  =

5

5’ 6’ 7’4’1’ 2’ 3’3 5 6 741 2

1 M-4 1

“Chasm”

Line Segment 1 Line Segment 2

Allowable Color Sets Ki
(assigned color in bold face)

K2 = {2} K5= {5} K2’ = {1,2,3,5} K5’= {2,5}

K3 = {3} K6= {6} K3’ = {2,3,4} K6’= {1,4,6}

K1 = {1} K4= {4} K7= {7} K1’= {1,2,6} K4’= {3,4,6,7} K7’= {4,7}

Figure 2: Reduction Instance

{2 4}. Now, since  can be chosen to be arbitrarily large, any approximation

of the optimal solution would also have to yield the dominating set. Matters

are a bit more complicated if the dominating set contains an odd number of

nodes because the chasm must be crossed an even number of times to yield a

tour. Therefore we will assume throughout the proof that the cardinality, || 
of the minimum dominating set  is even. There is no loss of generality in this

assumption as we can simply extend our search to two disconnected isomorphic

graphs, thus forcing the cardinality to be even.

Proof of Theorem 1. For a given instance of the  create two

collinear line segments of length 1 and let the distance between those line seg-

ments be−4 as depicted in Figure 2. On each of these line segments, align 
nodes equidistantly in increasing order of their indices. Let the color set for the

nodes on line segment 1 (i.e., nodes 1  ) be  = {}. Let  () be the
set of neighbors of node  in graph  The color sets for nodes +1  2
on line segment 2 are  = {−} ∪ (−) 
Denote the optimal solution value to this instance of the  by ∗

and let || = . Suppose (for now) that  is given. We can then construct

a feasible tour as follows and as shown in Figure 2. Starting for instance with

node  ∈ , we can visit all nodes on line segment 2 that can be painted with

color . Next, we can visit all nodes on line segment 2, that can be colored with

one of the colors of a node in  that has not yet been visited, say color . Then

only one node of color  remains to be visited, i.e. node  on line segment 1

It is easily seen that by visiting all nodes in  in this manner, all nodes on line

segment 2 are visited. Therefore only nodes on line segment 1 not in  remain

to be visited. Since these nodes are all of different colors, this can be done by

simply moving once up and down line segment 1. The large "chasm" in Figure 2

6

is therefore crossed exactly  times and, after each such crossing, line segments

1 and 2 must at most be traveled twice. It follows that

∗ ≤  (13)

Following the procedure outlined in Papadimitriou and Yannakakis (1991)

we show next that given a tour  with cost  we can find, in polynomial time,

a solution to the problem with cost at most +−∗, with  being the

optimal solution to the  problem, i.e. every -approximation algorithm

for  yields a ()-approximation algorithm for 3 −. Let  denote

the nodes on line segment  ∈ {1 2} and let  denote those nodes in 1 that

are adjacent to a node from set 2 on path . Notice that set  is a dominating

set of graph . Otherwise, there would have to be a node  ∈  not adjacent

to any node in . But, by the construction of line segment 2, this implies that

node  +  cannot be painted with any color  ∈  contradicting that  is a

feasible tour. Therefore, for a given tour  we can easily compute a solution to

the  problem with objective function value e = ||. It remains to show
that e ≤ +  − ∗. (14)

This is obviously true for e =  since  ≥ ∗. Thus suppose e =  + , in

which  is any strictly positive integer. Clearly

+  − ∗ ≥ + (+ ) ( − 4)− ∗ (15)

since path  covers at least e times distance  − 4. Since ∗ ≤  we also

have that

+  − ∗ ≥ +  − 4− 4 (16)

which for  = 4 + 5 yields

+  − ∗ ≥ + 4 − 4+   +  = e (17)

since the cardinality of a dominating set cannot exceed the number of nodes 

in a graph.

Notice that the reduction instance has a very simple structure, in which all

nodes are on a line. Moreover, the instance only requires limited flexibility;

that is, no node requires more than four color choices. The corollary follows

immediately.

Corollary 3 The  remains −complete, even if all nodes are on a
line and even if the color choices for each node are limited to at most four, that

is if || ≤ 4 ∀.

4 The Single Line Problem

Corollary 3 gives rise to the question of whether there are any single line ver-

sions of the  that can be solved efficiently, and in particular the single

7

line version of the  (henceforth referred to as −). Discussion of

this problem is also interesting as the solution we will introduce shortly, moti-

vates the general solution procedure presented later. Finally, two-dimensional

Euclidean spaces are often mapped onto one-dimensional spaces using space

filling curves and related procedures to facilitate simpler solution procedures

(Bartholdi and Platzman, 1988). In this section, we therefore investigate sev-

eral single line variations of the  and present efficient solutions. To do

this, we first establish a general property motivated by the  that all optimal

solutions must satisfy. In particular, one of the fundamental results from the

 for planar graphs shows that any tour with edge crossings is suboptimal

(Johnson and Papadimitriou, 1986). Unfortunately, as the example in Figure 3

shows, this result no longer holds in the  . However, we will show that

no two crossing edges can "share a color" and that at least one of the two edges

must be "monochromatic".

Definition 4 Let  () denote the color assigned to node . Set  ( ) ≡
 () ∪  () is said to be the colors of edge ( ). Edge ( ) is said to be

monochromatic if | ( )| = 1, that is if  () =  ().

Lemma 5 If in any optimal solution edges ( ) and (0 0) cross, then  ( )∩
 (0 0) = {} and at least one of the two edges is monochromatic.
Proof. Let there be an optimal tour ( 0 0  ) such that edges

( ) and edges (0 0) cross. Notice that ( 0  0 ) is also a tour as
it merely traverses path (0  ) in the opposite direction, while it replaces
edges ( ) and (0 0) with edges (0 ), and (0 ). It is a well known result
that this tour is no longer than the initial tour (Johnson and Papadimitriou,

1986). It remains to show that this exchange does not split up a path through

one color. First, suppose that neither edge is monochromatic. Clearly in that

case, no path through a color is interrupted and the resulting tour remains

feasible. Without loss of generality assume that  () =  (). Now suppose

that  ( )∩ (0 0) 6= {} and, without loss of generality, let  () =  (0).
Unless  () =  (0)  there must be a path of color  () from node  to 0.
Thus, after replacing edges ( ) and (0 0) with edges (0 ), and (0 ), the
nodes of color  (), that is  0 and  are still connected by a path of color

 (). If  () =  (0)  then all four nodes have the same color and must also
still be connected by a path of color  ().

4.1 The Single Line Problem for Deterministic Nodes (− )

We first note that the  −  is similar to the Rural Postman Problem

on a Line, which has been solved in polynomial time by van den Berg (1996)

and to the problem order execution of queries in linear storage proposed and

solved by Kollias et al. (1990). Here, we provide a shorter and perhaps more

intuitive alternative solution procedure. The proposed procedure serves also

as the intuitive building block for the general heuristic procedure developed in

Section 6.

8

a

c
c

a

b

a a

a

a

a
a

b

b
b

c
c

c

Figure 3: Example for Optimal Paths with a Crossing

Algorithm 6 (− ) Step 1: For each color determine the leftmost and

rightmost nodes. Delete all other nodes.

Step 2: Join each pair of nodes of the same color by an edge. Re-index the

nodes from left to right.

Step 3: Add edge (2−1 2) for  = 1 to 

Step 4: Connect the independent components (if any) by a set () of

edges with minimum total weight.

Step 5: Double the edges added in Step 4.

Step 6: Construct a Eulerian tour.

Step 7: Construct the optimal tour on the original graph with all  nodes:

Whenever the Eulerian tour visits two nodes of the same color consecutively,

visit all nodes of the same color in between. Otherwise, follow the route of the

Eulerian tour.

Figure 4 illustrates the procedure. Step 1 simplifies the problem by simply

ignoring all nodes of the same color, except for the two nodes on the extreme

sides of the line. As, per Lemma 5, each color will be visited in a straight line

it is sufficient to know the endpoints. Step 2 joins these pairs by an edge, the

solid lines in the upper half of Figure 4, and re-indexes the nodes from left to

right. Central to the algorithm is Step 3; it recognizes that in order to visit all

nodes in the graph and to return to the starting node, (i.e., to complete a tour)

each segment of the line has to be traversed an even number of times. Since,

in Step 2, exactly one edge terminates or originates at each node, every other

segment between two adjacent nodes is crossed by an odd number of edges.

Thus, the algorithm adds one edge to all "odd segments". Step 4 adds an

edge set with minimum total weight that connects all components of the graph

obtained in Steps 1 to 3, and Step 5 simply doubles the edges just obtained.

Step 6 constructs a Eulerian Path on the auxiliary graph constructed in Steps

1 through 5 and, based on this Eulerian Path, Step 7 creates the actual tour.

Proposition 7 The − Algorithm solves − optimally in  ( log)
time.

9

Step 2 Step 3 Step 5

A AB B ECC GFE F GD D

Region 1 Region 2

Step 4

Figure 4: Illustration of the −  Algorithm

Proof. Clearly, any feasible tour must contain the paths through the colors,

that is all the edges added in Step 2, say set 2. Since the optimal path must

be a tour, each segment between two consecutive nodes must be traversed an

even number of times. As Step 2 always has an odd number of edges traversing

segment 2−1 2, all edges added in Step 3, say set 3, must also be contained
in the optimal solution. If the resulting graph is not connected, then the shortest

way of traveling back and forth between the components must be at least twice

the length of the , that is the length of the edges added in Steps 4 and 5,

say set 4. It is easily seen that any edge in 3 ∪4 joins two adjacent nodes.
Therefore if 3∩4 = {}, then the length of the tour constructed in −
is a lower bound for the optimal solution. But if ( ) ∈ 3, then nodes 
and  must be in the same component and hence ( ) ∈ 4. Conversely,

if ( ) ∈ 4, then nodes  and  must be in independent components and

hence ( ) ∈ 3.

It remains to show that the algorithm yields a feasible tour. A tour is feasible

if it visits all colors without interruption and returns to the starting position.

Clearly this is the case for any tour based on a Eulerian Path and it remains to

show that the auxiliary graph created in Steps 1 to 4 of the − Solution
Algorithm is a Eulerian graph. After Step 2, each node has degree 1 as pairs

of nodes are connected. Step 3 adds one edge to each node, so that all vertex

degrees are even. Finally, Steps 4 and 5 add two edges to select pairs of nodes,

so that all vertex degrees remain even. Steps 1 and 7 can both be performed in

 () time, whereas Steps 3, 5, and 6 require only  () time. In Appendix

I, we provide a procedure to generate the edge set in Step 4 in  ( log)

time, such that the running time is  (max { log}). However as we need
 ( log) time to order the nodes on the line, the entire procedure will take

 ( log) time.

10

4.2 The Single Line Problem for Fully Flexible Nodes

(− )

The above algorithm extends in simple fashion to the special case ()

in which any node is either entirely flexible, (i.e., can be colored with any color)

or can only be colored with one specific color. For this case, the  − 

algorithm can be extended to the following  (max { log}) algorithm.

Algorithm 8 Step 1: Let , and  respectively be the leftmost and rightmost

fixed nodes. Delete all flexible nodes between , and .

Step 2: Run Steps 1 to 6 of the −  for the fixed nodes.

Step 3: Construct the optimal tour: If 1 6=  then start at node 1 coloring

all nodes up to  with  (). Follow the Eulerian tour  generated in Step 6

of the  −  Algorithm. For each edge ( ) ∈  visit all not yet visited

nodes on edge ( ) that are of color  () or that are flexible. Assign color  ()

to the latter. If  6= , then, upon reaching , visit all nodes up to  and

color them with  (). Return to  and keep following the Eulerian tour .

Upon reaching , return to 1.

Step 1 deletes all flexible nodes between the leftmost and rightmost fixed

nodes. Step 2 determines an Eulerian Path through all fixed nodes by applying

 −  . Step 3 constructs the optimal tour by painting all flexible nodes

in the beginning with  (), all flexible nodes at the end with  (), while

applying the  −  Heuristic to all nodes in between, picking up flexible

nodes whenever it encounters them.

Proposition 9 The − Algorithm solves the − problem

optimally in  ( log) time.

Proof. Notice that as before, each segment of the line needs to be traversed

at least twice. Thus segments 1  or   , to the extent that they exist, each

have to be traversed at least twice. Moreover, the − solution value, say
 is a lower bound for the nodes in interval , . Thus, the 

solution value, say  is bounded from below by

 ≥  + 2 (1 + )

but is easy to see that the  is the objective function value obtained in

the −  Algorithm. It remains to show that the solution is feasible.

Clearly, as node  is colored with color  (), it is feasible to paint all flexible

nodes to its left with  () as well. The same logic holds for . All other

flexible nodes can be painted with any color and as the entire line from 1 to 
has been traversed, no flexible node is left uncolored, whereas the application

of the  −  Heuristic warrants that all fixed nodes are properly colored

as well.

11

5 Lower Bounds

Before we introduce heuristic procedures to solve the  and the  ,

we will first provide two Lagrangian relaxations to generate lower bounds on

the optimal solutions for these two. Subsequently we will employ these bounds

to evaluate the quality of our proposed heuristics. To strengthen these bounds,

we add two additional redundant constraints to the  and the  :X


 ≤ 1 ∀ ∈  (18)

X


 ≤ 1 ∀ ∈  (19)

5.1 Lagrangian Relaxation for the 

In order to get a lower bound, we remove the subcycle elimination constraints

(4) and dualize the coupling constraints (6) and (7) by multiplying by  and

 , respectively.

 () = min
X


X


( + ) −
X


X




+
X


X


X


 ( − ) (20)

+
X


X




Ã
 −

X




!
−
X


X




s.t. (2), (3), (5)  (8)  (9), (10), (11), (18), and (19). The problem separates

into four subproblems as follows:

FCTSP− 1 (Lower Bound Problem 1):

1 () = min
X


X


( + ) (21)

s.t. (2), (3), and (9), which is a simple assignment problem that can be solved

by the Hungarian method in 
¡
3
¢
time (Kuhn, 1955; Lawler, 1976).

FCTSP− 2 (Lower Bound Problem 2):

2 () = max
X


X


 ·  (22)

s.t. (8)  (10), (18), and (19), which can be solved as a maximum weighted

flow problem. This flow problem consists of three layers:  supply nodes with

supply 1,  transshipment nodes, and one demand node with demand b. All
supply nodes are connected to all transshipment nodes, which in turn are all

12

1

2

N

4

3

.

.

.

1

2

N

4

3

.

.

.

S

1

1

1

1

1

1

1

1

1

1

1,1

nn,

K̂

Figure 5: Maximum Weighted Flow Problem

connected to the demand node as depicted in Figure 5. Edge ( ) between

supply node  and transshipment node  has cost  . Edges incident to the

demand node have capacity constraint 1.

FCTSP− 3 (Lower Bound Problem 3):

3 () = max
X


X


X


¡
 − 

¢
 (23)

s.t. (5) and (11)  whose optimal solution is

 =

⎧⎪⎪⎨⎪⎪⎩ 1

for one (arbitrarily chosen) 0 ∈ 

s.t.
X


¡
0 − 0

¢ ≥X


¡
 − 

¢ ∀ ∈ 

0 otherwise.



FCTSP− 4 (Lower Bound Problem 4):

4 ( ) = min
X


X




Ã
 −

X




!
 (24)

which is unconstrained and easily solved by inspection. The Lagrangian dual

problem () can be represented as

 = 1 () + 2 () + 3 () + 4 ( )−
X


X


 (25)

13

    ≥ 0
which can be solved by subgradient optimization (Geoffrion, 1974; Fisher 1981).

5.2 Lagrangian Relaxation for the 

In complete analogy, we can develop the following Lagrangian relaxation for



 () = min
X


X


( + )·−
X


X


+
X


X


( − ) (26a)

s.t. (2), (3), (8)  (9), (10), (18), and (19), which decomposes into subproblems

 − 1 and  − 2 as above with the minor modification, that for
the  ,  are no longer decision variables, but mere parameters known

apriori. The resulting Lagrangian dual problem ()

 = 1 () + 2 () +
X


X


( − ) (27)

  ≥ 0
can again be solved by subgradient optimization (Geoffrion, 1974, Fisher 1981).

6 Heuristics

Now that we have developed procedures to obtain lower bounds, we have the

means to evaluate the performance of heuristics to solve the  and the

 . Common to both problems is that two principal challenges must be

tackled: sequencing the colors and finding a path through each color. Since the

latter problem is the −hard problem of finding a Hamiltonian Path (Garey

and Johnson, 1979), we utilize well known results for this problem. In addition,

to solve the overall  , we will borrow from Christofides (1976), who utilizes

Minimum Matchings and Minimum Spanning Trees to derive good solutions to

the  .

6.1  Heuristic

In particular, we will first employ Hoogeveen’s (1991) heuristic to determine an

open-ended Hamiltonian path for each color. Next, we determine a Minimum

Spanning Tree () for the end nodes, match the even nodes in the 

and then find a Eulerian path on the resulting graph:

Algorithm 10 (−Heuristic) Step 1: Solve the open ended Hamil-

tonian path problem for each color using Hoogeveen’s (1991) procedure. Define

the two starting and ending nodes for each color. Call this set 2-Nodes.

14

a

a

a

a

a

a

a

b

b

b

b

b

b
b

bb

b

b

b b

d
d d d d d d

d

d

d

d

d

d

c
c

c

c

c c

c

a

a

d

b

d

b

Hamiltonian Path for Color a

Hamiltonian Path for Color b

Hamiltonian Path for Color c

Hamiltonian Path for Color d

MST for Set 2K‐Nodes

Minimum Matching for Even Nodes

Figure 6: Illustration of the  Heuristic

Step 2: Find the Minimum Spanning Tree () for the complete graph

spanned by the 2-Nodes set.

Step 3: Find a Minimum Matching for the even degree nodes in the

obtained in Step 2.

Step 4: Construct the graph,  consisting of all  nodes and the edges

determined in Steps 1 to 3.

Step 5: Determine a Eulerian Path through graph .

Step 6: Apply shortcuts.

Figure 6 illustrates the procedure for a problem with four distinct colors.

The Hamiltonian paths, as determined per Step 1 of the −Heuristic, are
represented by thin lines, the  from Step 2 by the fat solid line, and the

matching in Step 3 of the even nodes is represented by the fat dashed line. Notice

that in Step 3, contrary to Christofides algorithm, even nodes are matched. The

reason is simple, as in the underlying graph , which contains the edges from

the and from the Hamiltonian paths, each node in 2−Nodes has exactly
one additional edge incident to it from the Hamiltonian path as seen in Figure

6. The resulting graph is then a Eulerian graph and it is easy to see that any

Eulerian tour is a solution to the  .

As the following proposition demonstrates, the worst case performance of

the solution cannot exceed 300% of the optimal solution.

15

Proposition 11 The performance ratio  of the  Heuristic (i.e., the ra-

tio between the heuristic solution  and the optimal solution 
∗) is bounded

by  ≤ 3.

Proof. By definition, the shortest path through any given color is the

optimal Hamiltonian path and any optimal solution must at least have the total

costs of the Hamiltonian paths. Since Hoogeveen’s heuristic finds paths no

worse than 3
2
the optimal paths the total costs of the edges determined in Step

1 must necessarily be less than 3
2
the optimal solution. Step 2 finds a minimum

spanning tree for a subset of the nodes whose cost cannot exceed the cost of the

optimal tour. Finally, the matching in Step 4 cannot exceed the half the length

of the optimal tour, such that the total cost of the edges in  cannot exceed

the total cost of the optimal solution by a factor of 3. It remains to show that

 is Eulerian. Clearly, all nodes not in set 2-Nodes have degree 2. Those

nodes in set 2-Nodes that, after Step 2, are of even degree are matched and

will be of odd degree after Step 3. Step 4 adds one edge from the Hamiltonian

path to each node in set 2-Nodes so that all nodes are of even degree.

Clearly the tightness of this bound depends on Hoogeveen’s bound on Hamil-

tonian paths, which, to the best of our knowledge has not yet been shown to be

tight.

6.2  Heuristic

In addition to the challenges it shares with the  , any solution to the

 must assign colors to individual nodes. We expect this step to be

critical to the performance of the heuristic, as it turns the simple structure of

 −  into the −hard  −  . In our proposed heuristic, we

therefore try to pregroup nearby nodes into color classes and then apply the

−Heuristic to the resulting problem.

Algorithm 12 (−Heuristic) Step 1: Solve the  for all nodes

irrespective of color. Re-index the nodes according to the solution obtained.

Step 2: Let graph  = () be a graph such that  ∈  for  =

1  , if  ∈ , and ( +1) ∈  ∀ . Let the cost  ( +1) =©
0 if =
1 otherwise

. In addition, let  ∈  ( 1) ∈ , and  ( 1) = 1 ∀ ∈
1, as well as  ∈  ( ) ∈  ∀ ∈   and  ( ) = 0. Solve a

shortest path problem from  to  on  .

Step 3: If  is in the solution to the shortest path from Step 2 then

assign color  to node .

Step 4: Apply the −Heuristic to the resulting instance.

Step 1 performs any of the many heuristics that solve the  well in

practice. Step 2 creates a shortest path problem as depicted in Figure 7. For

example in the instance depicted, node 1 can be colored with color  or .

Similarly, node 5 can be colored with  or . Edges exist between two

consecutive nodes and their costs are 0 if the nodes are of the same color,

16

otherwise the costs are 1. Notice that any path from  to  will visit exactly

one color of each node in order of the  solution. The shortest path through

this network switches colors as few times as possible. The solution is used to

assign colors to nodes so that the structure of the  obtains. Due to the

special structure of graph  , the shortest path problem can be solved in linear

time by the simple greedy algorithm presented in Appendix II.

S

1 2 3 4 5 1 N‐2 N‐1 N

A

B

C

D

E

F

G

…

T

Nodes

Edge Cost =1 Edge Cost =0

…

…

…

C
o
l
o
r
s

Figure 7: Color Assignment Network

Proposition 13 When employing any  heuristic in the  -Heuristic

with performance ratio 1.5, the performance ratio  of the  Heuristic

(i.e., the ratio between the heuristic solution  and the optimal solution

∗) is bounded by  ≤ 2.

Proof. The heuristic solution consists of two parts: The Hamiltonian paths

 for color  and the links between colors  and  . With || and ||
as the length of the Hamiltonian paths and links, respectively, the heuristic

solution  can be expressed as

 =

X
=1

||+
X
=1

X
=1

||  (28)

Notice that finding a Hamiltonian path for a color is a subproblem to finding

a Hamiltonian path through all nodes, so that || ≤ 15∗ ∀ and that there
are at most  Hamiltonian paths. Also, because of the triangle inequality, the

distance between any two nodes cannot exceed the length of one half of any

17

3 2K-4 2K-3 2K-21 2

1
2K-2

… 2K+1 4K-3 4K-5 4K-42K-1 2K …

4K-5

Figure 8: Instance with Arbitrarily Bad Performance of the  Heuristic

tour, and || ≤ 05∗ ∀  follows. As there are at most  links, Equation

(28) yields

 ≤  · (15∗) + · (05∗) = 2∗ (29)

and the proposition follows.

Just as with Proposition 11, the tightness of the bound depends on the

tightness of the bound on the Hamiltonian paths, which is still an open prob-

lem. However, Proposition 13 allows for the possibility that the performance

becomes arbitrarily bad as the number of colors,  becomes large. The follow-

ing proposition shows that this is indeed the case.

Proposition 14 The worst case performance of the −Heuristic be-
comes arbitrarily bad as the number of colors becomes large.

Proof. Consider the following instance with  colors and  = 4 − 4
collinear nodes with distance 1 between two adjacent nodes. As depicted in

Figure 8 let the nodes be numbered from left to right and let color set  of

node  be

 =

½ {1} if  is odd

{2 } if  is even
 (30)

Notice that none of the odd indexed nodes are flexible (i.e., they all require

color 1) and that all even indexed nodes are almost completely flexible, (i.e., can

be painted with any color except with color 1). Notice further that assigning

color 2 to all nodes with even indices allows a solution of length 8 − 10, in
which all nodes of color 1 are visited first in increasing order of indices and then

all nodes of color 2 in decreasing order of indices. It is easy to see, but not

necessary for our proof, that this is indeed the optimal solution to this problem.

A possible, if not likely, outcome of Step 1 of the heuristic is that the nodes will

keep their initial indices. The resulting network structure, , from Step 2 in

the heuristic is depicted in Figure 9 and it is easy to see that any solution to

this network has length 4 − 3. In particular, the solution that assigns color 1
to all odd nodes and color  + 1 to nodes 2 and 2(+−1) ( = 1  − 1)
(indicated by bold arcs in Figure 9) is a shortest path through the network.

To visit all nodes of color 1, any tour must travel at least distance 4−6 as
that is the distance between node 1 and node 4−5. Moreover, the distance

18

between the  − 1 pairs of color   1 is 2 − 2, such that any tour must be
larger than  · (2 − 6). Consequently, we obtain for the performance ratio 
of the heuristic

 
 · (2 − 6)
8 − 10 (31)

which grows with .

S

1 2 3 4 5 4K‐1 4K‐2 4K‐3 4K‐4

1

2

3

4

.

.

.

K‐1

…

T

Nodes

…

…

…

C
o
l
o
r
s

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

Edge Cost =1 Edge Cost =0

K

Figure 9: Network  for the Problem Instance

7 Asymptotic Analysis

Based on the seminal paper by Karp and Steel (1986), in this section we develop

an asymptotic analysis of the heuristics when the location of the nodes is given

by a set of independent identically distributed uniform random variables in

(0 1) × (0 1). We derive the performance of the heuristic in the limit as the
number of nodes grows incrementally to infinity. Let  () and  () denote

the optimal and heuristic solutions, respectively.

7.1 Asymptotic Analysis of the  Heuristic

We consider two models for assigning colors to nodes. In model 1, colors are

randomly assigned to nodes; that is, a node is of color  with probability 

19

and
P

=1  = 1. Depending on the application, we can expect different col-

ors to have different spatial distributions. Accordingly, in model 2, we permit

clustering of colors by geographic region. Nodes of color  lie in  (), non-

overlapping sub-squares that lie inside (0 1)× (0 1). The same geography may
be shared by two or more colors.

Proposition 15 Both models for the  yield

lim
→∞

 ()

 ()
≤ 1 +

µ
1√


¶
 (32)

Proof. Let  () be the optimal length of the open ended Hamiltonian

path for color  when the total number of nodes of all colors is  . By the

Kolmogorov strong law of large numbers (Resnick, 2005) the number of nodes

with color  converges almost surely to  . In model 1, by Theorem 3 in Karp

and Steele (1986)

lim
→∞

 ()


p


→ 1 (33)

In model 2, for each color we first determine the Hamiltonian path in each

sub-square and patch them together. If lim→∞
()


→ 0 ∀, then by Theo-

rem 3 in Karp and Steele (1986) we get

lim
→∞

 ()


p


→ 1 (34)

in which  is the expected proportion of nodes that have color . The heuristic

connects the Hamiltonian paths for each color, hence for large 

 () ≤
X
=1

 () +
√
2 (35)

almost surely, since the length of any arc is bounded by
√
2. Note also that

 () ≥
X
=1

 ()  (36)

almost surely and hence

lim
→∞

 ()

 ()
≤
P

=1  () +
√
2P

=1  ()
= 1 +


√
2P

=1  ()
(37)

such that

lim
→∞

 ()

 ()
≤ 1 +

µ
1√


¶
 (38)

20

7.2 Asymptotic Analysis of the  Heuristic

In the  a set of colors is associated with each node . Let  be the set of

distinct choices, then  ∈  for all . Here too, we can either assume (model

1) that the nodes are randomly assigned to a color set, or (model 2) that each

color set is restricted to a set of rectangular regions, similar to the structure in

the  . In either case, let 0 correspond to the probability that a node is
assigned a color set  ∈  and

P
∈ 0 = 1. By assumption, the minimum

number of distinct colors needed is b. Assign to each color set  a color  ∈ ,

such that
P 

=1

p
 is minimized, where  is the probability that a node

is assigned color , with
P 

=1  = 1. Clearly,  will depend on the color

assigned to each set .

Proposition 16 Under both models, for  we get

lim
→∞

 ()

 ()
≤

pbP 
=1

p


+

µ
1√


¶
 (39)

Proof. By assumption, the minimum number of colors needed to cover all

nodes is b. For large , the optimal solution will include exactly b Hamiltonian

paths. By the Kolmogorov law of large numbers (Resnick, 2005) and theorem

3 in Karp and Steele (1986)

lim
→∞

 () ≥
X

=1


p


almost surely.

The heuristic also consist of b Hamiltonian paths. If the heuristic assigns

color  to  nodes, then

 () ≤
X

=1


p
 + b√2

Note that 1 ≤ P 
=1

√
 ≤

pb for  such that
P 

=1  = 1 yielding

lim
→∞

 ()

 ()
≤
P 

=1 
√
 + b√2P 

=1 
p


≤
pbP 
=1

p


+

µ
1√


¶


8 Computational Results

In this section, we evaluate the quality of the proposed heuristic and lower

bounding procedures. Initially, we do so by solving problems of a small size

21

P K N L(1)/OPT L(2)/OPT H(1)/OPT H(2)/OPT H(1)/L(1) H(2)/L(2)

1 10 0.9915 0.9894 1.0098 1.0108 1.0184 1.0216

2 15 0.9677 0.9911 1.0386 1.0196 1.0733 1.0288

3 20 0.9661 0.9922 1.0075 1.0113 1.0429 1.0192

4 10 0.9941 0.9756 1.0271 1.0239 1.0332 1.0496

5 15 0.9688 0.9916 1.0415 1.0032 1.0750 1.0117

6 20 0.9922 0.9753 1.0404 1.0137 1.0486 1.0394

7 10 0.9951 0.9786 1.0169 1.0178 1.0219 1.0400

8 15 0.9677 0.9832 1.0019 1.0238 1.0353 1.0413

9 20 0.9734 0.9924 1.0200 1.0204 1.0478 1.0282

10 10 0.9802 0.9925 1.0174 1.0084 1.0379 1.0160

11 15 0.9721 0.9873 1.0212 1.0017 1.0505 1.0146

12 20 0.9867 0.9860 1.0380 1.0187 1.0520 1.0332

Average 0.9796 0.9863 1.0233 1.0144 1.0447 1.0286

2

3

4

5

Figure 10: Performance for Small Problem Instances

(up to 20 nodes and 5 colors) to optimality, using general purpose solution

approaches. Afterwards, for large problem instances, we will show the quality

of the proposed procedures by evaluating the ratio of the heuristic solutions to

the lower bounds. Finally, we will compare our heuristic for  with some

of the well known heuristics suggested in the extant literature.

For all problem instances created, the ( ) positions of the nodes were

generated from two independent uniform distributions. For each node , the

number of assigned colors || was computed form a uniform distribution over

1 to and the colors themselves were then assigned from a uniform distributions

as well. Table 10 shows the performance of our procedures for small problem

instances that we could solve to optimality.  , () and() for  = 1 2 are,

respectively, the values for the optimal solutions, lower bounds, and heuristic

solutions obtained for problem , where  = 1 indicates the  and  = 2

indicates the  . The reported ratios are the average results for ten problem

instances. Table 10 indicates that the average lower bound was within 204%

(i.e., 1− 09796) of the optimal solution for the  and within only 137%

for the  . The error introduced by the heuristic for the  is 233%

(i.e., 10233− 1) and 1.44% for the  . The cumulative errors introduced

by the heuristics and lower bounding procedures are 447% for the  and

only 286% for the  .

For the large problem instances we generated problem instances in likewise

manner with up to 1000 Nodes and 100 Colors. Table 11, where each row repre-

sents the average of 20 experiments, shows performance results of the proposed

heuristic for the large problem set. Overall, the −Heuristic performs in
average within 4.3% of the lower bound and the −Heuristic within 4.2%,
whereas the worst case performances never exceeded 9%.

Finally, we have compared the performance of the −Heuristic with
some well known heuristics from literature. In particular, we used the algo-

rithms proposed by Arkin et al. (1996), Guttmann et al. (2000), and Ahmadi

22

P K N H(1)/L(1) H(2)/L(2) P K N H(1)/L(1) H(2)/L(2)

1 100 1.031 1.041 51 100 1.053 1.042

2 200 1.036 1.067 52 200 1.015 1.030

3 300 1.070 1.004 53 300 1.038 1.055

4 400 1.065 1.052 54 400 1.069 1.038

5 500 1.079 1.013 55 500 1.047 1.029

6 600 1.073 1.021 56 600 1.011 1.042

7 700 1.026 1.026 57 700 1.075 1.049

8 800 1.002 1.077 58 800 1.031 1.046

9 900 1.002 1.039 59 900 1.071 1.056

10 1000 1.034 1.047 60 1000 1.083 1.041

11 100 1.007 1.052 61 100 1.052 1.015

12 200 1.006 1.026 62 200 1.032 1.033

13 300 1.057 1.020 63 300 1.084 1.002

14 400 1.029 1.086 64 400 1.047 1.060

15 500 1.061 1.057 65 500 1.031 1.078

16 600 1.078 1.062 66 600 1.056 1.018

17 700 1.074 1.021 67 700 1.061 1.030

18 800 1.044 1.056 68 800 1.062 1.024

19 900 1.017 1.067 69 900 1.076 1.057

20 1000 1.059 1.089 70 1000 1.037 1.025

21 100 1.058 1.050 71 100 1.001 1.030

22 200 1.007 1.042 72 200 1.047 1.077

23 300 1.031 1.012 73 300 1.034 1.052

24 400 1.040 1.001 74 400 1.063 1.034

25 500 1.036 1.062 75 500 1.050 1.051

26 600 1.048 1.031 76 600 1.057 1.022

27 700 1.055 1.066 77 700 1.045 1.057

28 800 1.058 1.063 78 800 1.026 1.016

29 900 1.057 1.071 79 900 1.029 1.073

30 1000 1.016 1.067 80 1000 1.060 1.058

31 100 1.011 1.080 81 100 1.037 1.025

32 200 1.015 1.018 82 200 1.048 1.075

33 300 1.064 1.082 83 300 1.037 1.026

34 400 1.020 1.079 84 400 1.046 1.062

35 500 1.047 1.069 85 500 1.058 1.018

36 600 1.069 1.034 86 600 1.041 1.022

37 700 1.017 1.029 87 700 1.047 1.021

38 800 1.081 1.074 88 800 1.063 1.011

39 900 1.072 1.034 89 900 1.035 1.047

40 1000 1.004 1.085 90 1000 1.021 1.043

41 100 1.003 1.015 91 100 1.052 1.033

42 200 1.059 1.036 92 200 1.012 1.034

43 300 1.048 1.013 93 300 1.063 1.002

44 400 1.073 1.045 94 400 1.032 1.024

45 500 1.061 1.010 95 500 1.025 1.041

46 600 1.037 1.056 96 600 1.060 1.042

47 700 1.003 1.066 97 700 1.015 1.050

48 800 1.018 1.002 98 800 1.079 1.065

49 900 1.010 1.040 99 900 1.039 1.043

50 1000 1.048 1.033 100 1000 1.027 1.020

Average 1.043 1.042

40

50 100

90

80

10 60

7020

30

Figure 11: Performance for Large Problem Instances

23

and Mamer (1999), respectively referred to as   and  . In addi-

tion, by adding large penalties for switching between colors, we also investigate

the performances of Christofides’ algorithm () and the Farthest Insertion

algorithm (). Table 12 indicates that the −Heuristic tends to outper-
form the existing approaches. In particular, its average performance for this set

of experiments is with in 33% of the lower bound, compared to 4.7%, 5.9%,

5.4%, 8.9%, and 10.3% for , ,  , , and  respectively.

In 42% of all cases the −Heuristic found a solution superior to the other
approaches, compared to the 20% for runner up . Moreover, whenever

the −Heuristic did not yield the best result of the 6 heuristics, it was on
average within 1.4% of the best heuristic, compared to 2.4% for  Finally,

its worst performance never exceeded the best solution by 3.5%, compared to

6.2% for  In summary, the −Heuristic tends to solidly outperform
existing heuristics across a wide spectrum of problem instances across several

performance measures.

9 Conclusion

In this paper, we introduced a new class of  -based‘ problems that arise in a

variety of practical settings. Our initial interest was raised in the context of semi-

conductor manufacturing, but applications include chemistry, biology, schedul-

ing, transportation, and other problems. In particular, we discussed the gener-

alized version of the  , in which nodes need to be "colored" and all nodes of

a color have to be visited consecutively without interruption. We distinguished

two principal cases. In the more general case ()  each node must be

assigned a color, whereas in the more restricted problem ()  the color as-

signment is given. We provided a general formulation for both problems, which

lends itself to deriving strong lower bounds based on Lagrangian relaxation. We

established that, in contrast to the metric  , the  is −hard.
However, for the  we could only trivially establish −hardness, but
were neither able to provide a polynomial time approximation, nor could we

establish it to be −hard as well. We expect establishing a more definite
result for the  to be quite a formidable task.

Finally, we proposed and evaluated heuristics to solve both problems. We

provided analytical upper bounds and evaluated the heuristics and lower bounds

empirically. Overall, bounds and heuristics perform very well and are usually

well within 5% of each other, and within 3% of the optimal solution. Our results

also indicate that the procedures are robust to scaling of the problem instances.

9.1 Appendix I - Determining a Connecting Edge Set ()

of Minimum Total Weight

Algorithm 17 () Step 1: For each interval (2 2+1) determine if any

edges traverse it. If not, interval (2 2+1) is said to be a "gap". The  ≥ 0
gaps found in this manner give rise to + 1 "regions" of the graph.

24

P K N H(2)/L(2) AHK/L(2) GHKR/L(2) AM/L(2) CTFD/L(2) FI/L(2)

1 100 1.044 1.028 1.048 1.049 1.123 1.083

2 200 1.015 1.053 1.023 1.095 1.128 1.123

3 300 1.021 1.038 1.089 1.065 1.092 1.119

4 400 1.024 1.053 1.042 1.076 1.120 1.093

5 500 1.025 1.027 1.042 1.077 1.060 1.073

6 600 1.034 1.062 1.074 1.025 1.107 1.078

7 700 1.056 1.024 1.036 1.085 1.096 1.117

8 800 1.041 1.054 1.087 1.064 1.072 1.151

9 900 1.026 1.024 1.021 1.031 1.157 1.180

10 1000 1.050 1.042 1.033 1.032 1.147 1.163

11 100 1.045 1.054 1.097 1.034 1.102 1.073

12 200 1.014 1.041 1.035 1.065 1.136 1.166

13 300 1.051 1.038 1.047 1.049 1.089 1.108

14 400 1.071 1.035 1.068 1.042 1.056 1.098

15 500 1.032 1.021 1.037 1.042 1.106 1.178

16 600 1.030 1.028 1.039 1.052 1.082 1.037

17 700 1.055 1.073 1.036 1.048 1.091 1.170

18 800 1.045 1.028 1.037 1.042 1.060 1.020

19 900 1.015 1.038 1.074 1.042 1.075 1.128

20 1000 1.030 1.072 1.086 1.034 1.097 1.090

21 100 1.017 1.019 1.041 1.026 1.055 1.053

22 200 1.017 1.041 1.052 1.079 1.113 1.118

23 300 1.039 1.083 1.037 1.069 1.091 1.146

24 400 1.005 1.050 1.041 1.061 1.052 1.057

25 500 1.036 1.085 1.063 1.054 1.029 1.089

26 600 1.048 1.034 1.066 1.055 1.020 1.074

27 700 1.038 1.025 1.015 1.058 1.042 1.119

28 800 1.038 1.081 1.056 1.049 1.018 1.138

29 900 1.042 1.068 1.046 1.026 1.116 1.025

30 1000 1.039 1.060 1.040 1.079 1.122 1.076

31 100 1.058 1.054 1.065 1.074 1.094 1.082

32 200 1.023 1.054 1.085 1.068 1.059 1.067

33 300 1.039 1.061 1.030 1.033 1.120 1.115

34 400 1.021 1.049 1.073 1.071 1.036 1.052

35 500 1.054 1.042 1.049 1.078 1.047 1.076

36 600 1.031 1.074 1.037 1.024 1.128 1.158

37 700 1.031 1.006 1.046 1.050 1.115 1.072

38 800 1.062 1.082 1.079 1.058 1.057 1.129

39 900 1.035 1.035 1.041 1.037 1.049 1.111

40 1000 1.031 1.052 1.041 1.058 1.075 1.082

41 100 1.010 1.065 1.083 1.020 1.120 1.142

42 200 1.031 1.032 1.034 1.037 1.088 1.160

43 300 1.037 1.055 1.069 1.040 1.091 1.121

44 400 1.048 1.054 1.059 1.088 1.075 1.116

45 500 1.020 1.043 1.076 1.013 1.066 1.140

46 600 1.058 1.040 1.040 1.033 1.097 1.185

47 700 1.028 1.044 1.075 1.080 1.082 1.117

48 800 1.042 1.052 1.083 1.023 1.084 1.077

49 900 1.053 1.053 1.049 1.074 1.094 1.141

50 1000 1.039 1.050 1.058 1.036 1.119 1.125

Average 1.033 1.047 1.059 1.054 1.089 1.103

% Best Performance 42% 20% 12% 18% 8% 0%

% Outperformed by H(2) 68% 74% 70% 88% 96%

Average Ratio to Best 1.014 1.024 1.029 1.029 1.063 1.079

Worst Ratio to Best 1.035 1.062 1.073 1.079 1.133 1.156

20

40

60

80

100

Figure 12: The Performance of the  -Heuristic Compared to Existing

Heuristics

25

Step2: For each region with more than one component, find the shortest edge

connecting each component to another component. Add these edges to the edge

set of the region until the region has only one single component.

Step 3. Add edges across all gaps.

Proposition 18 The edges added in Steps 2 and 3 of the −Algorithm
connect the independent components from the −  algorithm with edges

of minimum total weight in  ( log) time.

Proof. Notice first that we only need to consider adding edges between

adjacent nodes (because any other edge could be replaced by a series of such

edges of equal length). As any  must connect the regions, it follows directly

that all edges added in Step 3 must be in the . Now suppose an edge added

in Step 2 is not in the . Then, there is either more than one component,

contradicting that the edges form an , or another edge in the  warrants

that the (formerly disconnected) components are still connected. As, by the

choice of the edge in Step 2, this edge cannot be shorter than the original, we

can replace it with the original.

Steps 1 and 3 are easily seen to run in  () time. To determine the running

time of Step 2, notice that it is sufficient to determine, for each of the 2 nodes,

if it is the nearest neighbor to a node from a different component. As each

component is joint to at least one other component, the number of components

is reduced by at least one half in each step, such that there are at most  (log)

loops with running time  () each.

10 Appendix II - Determining a Shortest Path

Algorithm 19 (Shortest Path) Step 0: The current node is source .

Step 1: From the current node, change to the color that allows to move as far

as possible towards sink  without a further color change (ties may be broken

arbitrarily). Make that node the current node and repeat until level  of the

network is reached.

The algorithm has a greedy structure, that starting with node  sweeps

forward on the longest continuous subpath of one color before switching to the

next longest continuous subpath.

Proposition 20 The Shortest Path algorithm finds the optimal solution for

graph  in Algorithm 12.

Proof. Denote the nodes on the heuristic solution by 0 and those of

the optimal solution by 00 . Suppose the heuristic solution is not optimal,

then there must be a smallest  such that 0 6= 00 . Let the next color

change in the optimal solution occur after node 00 . By choice of 
00 in the

heuristic, replacing nodes 00  +100   00 with nodes 0  +10   0

cannot increase the value of the optimal solution and the heuristic solution must

also be optimal.

26

References

[1] Ahmadi,R.H. and J.W. Mamer. "Routing Heuristics for Automated Pick

and Place Machines", European Journal of Operational Research, 117(3),

533-552, 1999.

[2] Alimonti, O. and V. Kann, "Hardness of approximating problems on cubic

graphs", in "Lecture Notes in Computer Science", Springer, Berlin, Volume

1203, 1997.

[3] Arkin, E. M. and R. Hassin, "Approximation algorithms for the geometric

covering salesman problem", Discrete Applied Mathematics, 55, 197-218,

1994.

[4] Arora, S. and C. Lund, "Hardness of Approximations", in "Approximation

Algorithms for NP-Hard Problems" by D. Hochbaum, ITP, Boston, 1997.

[5] Arora, S., "Polynomial time approximation schemes for (Euclidean) trav-

eling salesman and other geometric problems", Journal of the ACM, 45(5),

753—782, 1998.

[6] Bartholdi, J. and L.K. Platzman, "Heuristics Based on Spacefilling Curves

for Combinatorial Problems in Euclidean Space", Management Science, 34,

3, 291-305, 1988.

[7] Chen, D.-S., R.G. Batson, and Y. Dang, "Applied Integer Programming",

Wiley, Hoboken, NJ, 2010.

[8] Chisman, J., "The Clustered Traveling Salesman Problem", Computers

and Operations Research 2, 115-119, 1975.

[9] Christofides, N. , "Worst-case analysis of a new heuristic for the travelling

salesman problem", Report 388, Graduate School of Industrial Adminis-

tration, Carnegie-Mellon University,Pittsburgh, PA, 1976.

[10] Dumitrescu, A., and J.S.B. Mitchell, "Approximation algorithms for 

with neighborhoods in the plane", Journal of Algorithms, 48, 135-159, 2003.

[11] Arkin, E.M., R. Hassin, and L. Klein, " Restricted Delivery Problems on a

Network", Networks 29, 4, 205-216, 1997.

[12] Fisher, M.L., 1981, "The Lagrangian Relaxation Method for Solving Integer

Programming Problems," Management Science, 27, 1, 1-18.

[13] Garey, M.R. and D.S. Johnson, "Computers and intractability - A guide

to the theory of NP-Completeness", Freeman, New York, NY, 1979.

[14] Geoffrion, A.M., "Lagrangian Relaxation for integer programming," Math-

ematical Programming Study, 2, 82-114, 1974.

27

[15] N. Guttmann-Beck, R. Hassin, and B. Raghavachan, "Approximation Algo-

rithms with Bounded Performance Guarantees for the Clustered Traveling

Salesman Problem," Algorithmica, 28, 422-437, 2000.

[16] Hoogeveen, J.A., "Analysis of Christofides’ heuristic: Some paths are more

difficult than cycles", Operations Research Letters, 10, 291-295, 1991.

[17] Johnson, D.S. and C.H. Papadimitriou, "Performance guarantees for

heuristics", in "The Traveling Salesman Problem", by E.L. Lawler, J.K.

Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys (eds.), John Wiley, New

York, NY, 1986.

[18] Karp, R.M. and J.M. Steele, "Probabilistic Analysis of Heuristics" in "The

Traveling Salesman Problem" by E.L. Lawler, J.K. Lenstra, A.H.G. Rin-

nooy Kan, and D.B. Shmoys (eds.), John Wiley, New York, NY, 1986.

[19] Kollias, J.G., Y. Manolopoulos, and C.H. Papadimitriou, "The Optimum

Execution of Queries in Linear Storage", Information Processing Letters

36, 141-145, 1990.

[20] Kuhn, H.W., "The Hungarian Method for the assignment problem", Naval

Research Logistics Quarterly, 2, 83-97, 1955.

[21] Laporte, G., A. Asef-Vaziri, and C. Sriskandarajah, "Some applications of

the generalized travelling salesman problem", Journal of the Operational

Research Society, 47, 1461-1467, 1996.

[22] Laporte G. and U. Palekar, "Some applications of the clustered traveling

salesman problem", Journal of the Operational Research Society, 53, 972-

976, 2002.

[23] Lawler, E.L., "Combinatorial Optimization: Networks and Matroids",

Holt, Rinehart and Winston, New York, 1976.

[24] Papadimitriou C. and M. Yannakakis." Optimization, approximation, and

complexity classes", Journal of Computer and System Sciences, 43, 425—

440, 1991.

[25] Resnick, S.I., "A Probability Path," Birkhäuser, Boston, 2005.

[26] Van Den Berg, J.P., "Multiple Order Pick Sequencing in a Carousel Sys-

tem: A Solvable Case of the Rural Postman Problem", The Journal of the

Operational Research Society, 47,12, 1504-1515,1996.

[27] Weintraub, A., J. Aboud, C. Fernandez, G. Laporte, and E. Ramirez, "An

emergency vehicle dispatching system for an electric utility in Chile", Jour-

nal of the Operational Research Society 50, 690—696, 1999.

28

