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Colorectal cancer (CRC) is the third most common cancer and second leading cause of
cancer-related death in the US. CRC frequently metastasizes to the liver and these
patients have a particularly poor prognosis. The infiltration of immune cells into CRC
tumors and liver metastases accurately predicts disease progression and patient survival.
Despite the evident influence of immune cells in the CRC tumor microenvironment (TME),
efforts to identify immunotherapies for CRC patients have been limited. Here, we argue
that preclinical model systems that recapitulate key features of the tumor
microenvironment—including tumor, stromal, and immune cells; the extracellular matrix;
and the vasculature—are crucial for studies of immunity in the CRC TME and the utility of
immunotherapies for CRC patients. We briefly review the discoveries, advantages, and
disadvantages of current in vitro and in vivo model systems, including 2D cell culture
models, 3D culture systems, murine models, and organ-on-a-chip technologies.

Keywords: colorectal cancer, tumor microenvironment, cancer immunology, tissue engineering, organ-on-a-
chip (OOC)
INTRODUCTION

In the US, colorectal cancer (CRC) is the third most common cancer and second leading cause of
cancer-related death (1). CRC is largely asymptomatic until it has progressed to advanced stages (2),
with 5 year survival rates of 90% and 14% for localized and metastatic cases, respectively (1).
Population-wide screening campaigns in the last two decades have led to earlier diagnoses and
boosted the overall 5 year survival rate to ~65% (1). Due to anatomical proximity, CRC often
metastasizes to the liver: 20%–25% of patients present with colorectal liver metastases (CRLM) at
initial diagnosis and 50-60% of CRC patients will develop CRLM at some point (2–4). Hepatectomy
is currently the best course of action for CRLM patients, offering a 5 year survival rate of up to 60%
(3–5). Unfortunately, only 20%–25% of CRLM patients are eligible for resection at time of diagnosis,
leaving a large majority of patients to succumb to progressive metastatic cancer (3, 5).

Recent research has demonstrated the role of immunity on CRC progression, prognosis, and
response to therapy. For example, immune cell infiltration into tumors correlates with clinical
outcomes: T cells (6–10), Tregs (11), and NK cells (10) in primary CRC or CRLM lesions correlate
org February 2021 | Volume 11 | Article 6143001
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with better prognoses, while the presence of tumor-associated
macrophages (TAMs) has been alternately associated with pro-
(12, 13) and anti-tumor (13–15) effects. In 2006, Galon and
colleagues introduced the ImmunoScore. This measure of the
density of immune cells in the invasive margin and core of a
lesion (9, 16–18) provides more accurate predictions of
recurrence, overall survival, and disease-free survival than
traditional TNM staging for both CRC (7, 16, 18) and CRLM
patients (6, 8, 11, 16).

Based on ImmunoScore’s prognostic success, clinicians are
actively pursuing immunotherapies for CRC and CRLM patients.
Checkpoint blockade therapies have shown particular promise
for mismatch repair deficient (dMMR)/microsatellite instability-
high (MSI-H) CRC tumors (19–21). In a 2015 Phase II clinical
trial, dMMR/MSI-H patients treated with pembrolizumab (PD-1
inhibitor) exhibited a 40% response rate and 78% 12-month
progression free survival (22); the FDA approved this course of
treatment in 2017 (19). More recent work has probed the utility
of combining nivolumab (PD-1 inhibitor) with ipilimumab
(CTLA-4 inhibitor) (23). Results from this Phase II trial are
still maturing, but preliminary results suggest a response rate as
high as 55% (19, 23). Unfortunately, only 15% of CRC tumors
are classified as dMMR/MSI-H (19), and there are currently no
immunotherapies available to the remaining 85% of CRC
Frontiers in Immunology | www.frontiersin.org 2
patients. Pre-clinical work addressing this gap is focused on
adoptive cell therapies, vaccines, immunostimulatory cytokines,
and combinations thereof, and early studies have produced
promising results (19–21).

The development of more efficacious cancer therapeutics is
hindered by the limitations of current preclinical model systems,
which do not recapitulate the whole tumor microenvironment
(TME) (Table 1) (24, 25). The TME is crucial for investigating
tumor-immune cell crosstalk, modeling tumor heterogeneity
within and between patients, recapitulating events in the
metastatic cascade, and simulating responses to therapeutics
(24–28). 2D in vitro models of cells growing in tissue culture
plates lend themselves to the study of tumor growth and cell
migration, but lack complex tissue features like the vasculature
and extracellular matrix (ECM) (24, 25, 28–31). In 3D in vitro
models, multiple cell types can be co-cultured in ECM scaffolds,
enabling the study of cell-cell interactions and nutrient/waste
transport over small distances; however, these models lack key
biomechanical features of the TME, including vascular and
interstitial perfusion (24, 25, 28–31). Animal models are
capable of simulating the dynamic, multi-cellular/organ nature
of the TME, but are expensive, difficult to manipulate, and
limited in their ability to recreate human immunobiology (24,
32–34).
TABLE 1 | Advances in modeling colorectal cancer.

Model Application Advantages Disadvantages

2D In vitro • Adhesion
• Gene expression
• Drug screening

• Simple
• Low cost
• High throughput

• Low predictive power
• Lack of native architecture
• Loss of tumor heterogeneity

Culture plate

Wound healing • Migration
3D In vitro • Proliferation

• Migration
• Gene expression
• Drug screening

• Retain native tumor geometry
• Cell-cell/ECM interaction
• Tumor heterogeneity

• Avascular
• High cost
• Low scalability
• Low reproducibility

Organoid/
Spheroid

Co-culture • Stromal crosstalk
• Immune crosstalk

In vivo
Patient-derived xenografts

• Proliferation
• Migration
• Invasion
• Angiogenesis
• Gene expression
• Drug screening

• Tumor heterogeneity • High cost
• Laborious
• Low predictive power
• Immunocompromised
• Limited metastasis

Humanized mice • Tumor microenvironment
• Tumor heterogeneity
• Immunocompetent

• High cost
• Laborious
• Incomplete immune function
• Engraftment difficulties

Genetically engineered mice • Tumor microenvironment
• Tumor heterogeneity
• Immunocompetent
• Natural disease progression

• High cost
• Laborious
• Time consuming

Organ-on-a-chip • Proliferation
Migration
• Intravasation
Extravasation
• Invasion
• Angiogenesis
• Stromal crosstalk
• Immune crosstalk
• Gene expression
• Drug screening

• Tumor microenvironment
• Tumor heterogeneity
• Vascular
• Hydrodynamic properties
• Biochemical gradient
• Precise control
• Easy visualization

• Lack of standardization
• High cost
• Laborious
• Low reproducibility
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Model systems that combine tissue engineering with
microfluidic technology represent a new frontier for the study of
cancer development, progression, immunity, and metastasis.
Dubbed “organ-on-a-chip” (OOC) systems, these models
incorporate many features of the TME, including multiple cell
types, matrix components, biochemical cues, spatiotemporal
distribution of soluble mediators and oxygen, and perfusable
vascular networks (24, 26, 35–37). Thus, OOC platforms offer
great potential as a preclinical tool for precision therapy. This
review will highlight recent advances in the utility of OOC
devices to model immunity in the CRC/CRLM TME and
compare this work with conventional model systems (Figure 1A).
TWO-DIMENSIONAL (2D) CULTURES

Cell cultures in 2D (Figure 1A) are a standard and well-established
model system because they are simple, inexpensive, and easy to
manipulate, and enable imaging with high spatiotemporal
resolution (Table 1) (24, 31). 2D cultures rely on cells adhering to
a flat surface—generally a flask or plate—which does not reflect the
natural 3D architecture of tissues or tumors. Furthermore, cells in
2D cultures receive relatively uniform and often excessive levels of
oxygen, nutrients, and growth factors, compromising their ability to
faithfully capture the in vivo TME (28–31). Despite these
drawbacks, 2D experiments have revealed multiple mechanisms
driving the behavior of epithelial sheets of cells (30) and epithelial-
derived tumors like CRC and CRLM (40–50).

2D cultures are conducive to studies of tumor-immune cell
crosstalk in the TME. For example, 2D in vitro systems have been
used to examine the role of the CRC TME’s atypically high
number of macrophages, a topic of active debate. These studies
show that macrophages differentiate towards an M2-like
phenotype in response to tumor cells or tumor cell-conditioned
media (51–55) and migrate towards tumor cells (54, 55). TAMs in
CRC have also been shown to modify the tumor cell response to
chemotherapy (56, 57); support tumor cell proliferation,
migration, and invasion (53–55); and limit tumor cell survival in
a cell contact-dependent manner (13). Additionally, Yu and co-
authors showed that mast cells migrate towards CRC tumor cell-
conditioned media in a Transwell assay and that co-culture of
mast and tumor cells increases tumor cell proliferation; the results
of these 2D culture experiments were verified in a 3D spheroid
model (58). Studies with primary patient samples have
demonstrated i) an HLA-mediated T cell response to the
survivin protein in CRC tumor cells (59), and ii) NK cell
cytotoxicity directed against CRC tumor cells following immune
cell activation or tumor cell priming (60).
THREE-DIMENSIONAL (3D) CULTURES

3D cell cultures (Figure 1A) are comprised of cells distributed in
synthetic or naturally-occurring scaffolds or hydrogels to mimic in
vivo tissue architecture and can be cultured under static or perfused
conditions (28–30). Compared to 2D cell culture systems, 3D in
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vitro systems more accurately model in vivo biochemical factor
distribution and transport (28, 30); cell morphology, polarity, and
gene expression (61–66); heterogeneity in cell types (62, 64, 67); and
sensitivity to cancer therapeutics (61, 64, 67, 68). This accuracy is
more pronounced under perfused culture conditions (61, 67–69)
(Table 1). The challenges facing 3D cell culture systems include: i)
uncertainty introduced by the underdefined, variable composition
of popular scaffold materials (including the gold standard Matrigel);
ii) the absence of vascular flow, which is responsible for cancer cell
dissemination, trafficking of some immune cells, and delivery of
therapeutics; iii) the inability to replicate the long-range interactions
between tumors and other organs in the body that govern
metastasis and the immune response (24, 29, 35, 70); and iv)
limited reproducibility, scalability, and ease of use.

A handful of recent reports demonstrate the utility of 3Dmodels
systems for the study of immunity in the CRC TME. In a 2018
paper, Dijkstra et al. co-cultured organoids from dMMR CRC
patients with autologous peripheral blood lymphocytes (71). In
this novel culture system, the team generated patient-specific,
cancer-reactive T cells from 4 of 8 patients, characterized the
specificity of T cells for tumor versus healthy tissue, and
measured the efficiency of T cell mediated tumor cell killing. A
2019 report by Courau and colleagues demonstrated that primary T
and NK cells infiltrate into cell line-derived CRC spheroids, where
they kill tumor cells and degrade the 3D structure of the spheroid,
and that these effects can be enhanced by stimulating the immune
response with IL-15 plus anti-NKG2D and/or anti-MICA/B
antibodies (72). The authors also showed that stimulation of the
immune response is necessary for infiltration of autologous T and
NK cells into patient-matched CRC spheroids. Another recent study
found that CAR-NK-92 cells engineered to recognize the universal
antigen EPCAM, the neoantigen EGFRvIII, or the tumor-associated
antigen FRIZZLED can identify and lyse cells in murine- and
patient-derived normal colon and CRC organoids, but the effects
are reduced by limited immune cell infiltration into organoids (73).
Further, a 2019 report showed that primary CRC samples cultured
under perfused conditions retained native tissue architecture, tumor
cell density, and immune and stromal cell viability better than
samples cultured under static conditions (69).
IN VIVO MODELS

In vivo models (Figure 1A) are integral tools in cancer research
because they recapitulate several features of the TME not available
in in vitro models, including vascular flow and communication
between the tumor and distant organs (74–79). There are five types
of mouse models of cancer: 1) xenograft, 2) allograft, 3) patient-
derived xenograft (PDX), 4) humanized, and 5) genetically modified
mouse (GEMM). Though murine models are labor intensive,
expensive, low-throughput, and susceptible to cross-species
incompatibilities, they have produced numerous insights into
CRC response to drug treatment (76, 77, 80–87) and metastasis
(85, 88–90) (Table 1).

Though transplant mouse models (xenograft, allograft,
and PDX) accurately replicate the response to therapeutics
February 2021 | Volume 11 | Article 614300
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FIGURE 1 | (A) Colorectal liver metastasis models. Bolded applications are particularly well suited for the model. Even in the same category of model, constituent
models can vary greatly, based on design, method, and study goals. (B, C) Colorectal cancer (CRC) “organ-on-a-chip” (OOC) platforms can model the immune
response to tumors. (B) CRC cells (red) and IFN-DCs (green) are cultured in an OOC device (see cartoon) to simulate immune crosstalk. IFN-DCs migrate towards
and phagocytose CRC cells following treatment with interferon-a and romidepsin. Images have been adapted from Parlato et al’s 2017 Scientific Reports article (38).
(C) M1 and M2 macrophages (red) cultured with CRC cell lines (not shown) in a vascularized OOC platform (vessels shown in green) display anti- and pro-tumor
effects, respectively. Figure was originally published in Bi et al’s 2020 Integrative Biology report (39).
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(76, 77, 80–84), they struggle to retain the genetic and cellular
features of native tumors (76, 79), recreate the metastatic
cascade (with the possible exception of orthotopic transplant
models) (89), and mimic the immune response to a tumor (note
that xenograft and PDX models are both necessarily
immunocompromised to enable inoculation with human cell
lines and primary human tumor cells, respectively) (76, 79).
Hence, humanized mouse models and GEMMs are more useful
for studies of immunity in the TME. Humanized mice are
generated by engrafting specific mouse strains with human
leukocytes (hematopoietic stem cells or peripheral blood
mononuclear cells). These mice produce a human immune
response and are available commercially (91, 92), but
sometimes suffer from xenoreactive complications and do not
mount a full humoral immune response (74). In the context of
CRC, humanized mouse models have been used to study tumor
response to checkpoint blockade therapies (93, 94). In a 2015
report, humanized mice engrafted with a CRC cell line and
treated with urelumab (CD137 inhibitor), nivolumab (PD-1
inhibitor), or a combination of the two demonstrated limited
tumor growth and high infiltration of tumors by lymphocytes
(93). Capasso and co-authors created humanized PDX mouse
models by implanting patient-derived MSI-H or microsatellite
stable (MSS) tumor cells and then treated the mice with
nivolumab (PD-1 inhibitor) (94). Mice bearing MSI-H
tumors showed high T cell infiltration into tumors and
inhibited tumor growth compared to mice bearing MSS
tumors; these results match clinical observations.

GEMMs are created by activating or deactivating specific
genes using genome editing technology (75, 89, 95). These
models retain a natural murine immune system; can simulate
the natural development of CRC tumors from adenoma to
carcinoma to metastasis (85, 88, 90); and can reproduce tumor
response to therapy (75, 85–87, 95). Drawbacks to GEMMs
include that they are time consuming and expensive to generate
and characterize, and have a long time course of disease
progression compared to other model systems (75, 89, 95).
Tauriello and colleagues reported a set of GEMMs with
mutations in one or more of the CRC-associated genes Apc,
Kras, Tgfbr2, and Trp53 (87); these models recreate many features
of the human TME, including well-differentiated cancer cells,
desmoplasia, and metastasis to the lung and liver. In subsequent
experiments, the research team transplanted organoids from
these CRC GEMMs into C57BL/6J mice to produce a model of
advanced disease characterized by immune cell exclusion,
increased TGFb activity, and metastasis. Treatment with
galunisertib (TGFBR1 inhibitor) reduced tumor growth and
metastasis, increased immune cell infiltration and activation,
and rendered tumors more responsive to anti-PD-L1
immunotherapy. Kostic et al. used a CRC GEMM model with a
mutation in one copy of the Apc gene to explore the idea that the
microbiome plays a role in CRC development (96). Mice were fed
either a Streptococcus species or Fusobacterium nucleatum. The
latter bacteria is found at higher levels in CRC tumor tissue than
healthy colon tissue; indeed, mice fed F. nucleatum developed
tumors more quickly and these tumors were infiltrated with high
Frontiers in Immunology | www.frontiersin.org 5
levels of pro-tumor immune cells, including myeloid-derived
suppressor cells, granulocytes, neutrophils, TAMs, and M2-like
macrophages. Some CRC cases are associated with colitis, a state
of constant inflammation in the colon; colitis can be modeled in
mice through treatment with azoxymethane and/or dextran
sodium sulfate. Through comparisons of wild-type and
knockout GEMM colitis mouse models, researchers have
demonstrated the critical role of p53 (97), IL-6 and Stat3 (98),
TLR4 (99), Pycard, Casp1, and Nlrp3 (100), and Nod1 (101) on
tumor formation and growth; all of these factors are implicated in
regulation of the immune response.
ORGAN-ON-A-CHIP MODELS

OOC models (Figure 1A) utilize microfluidic technology and
tissue engineering to mimic and monitor dynamic 3D tissue
microenvironments, including epithelial barriers, parenchymal
tissues, perfused microvasculature, multiple organ interactions,
and the immune response (24, 37). An OOC platform consists of
an interconnected series of 3D channels and chambers filled with
cells suspended in hydrogels. The geometry of these channels
and chambers can be precisely selected to match a variety of
tissue architectures and mechanical forces, has a scale of tens to
hundreds of microns, and is carved into an optically clear
polymer using microfabrication or 3D printing (24, 102).
Strengths of OOC systems include the ability to incorporate
multiple human cell types at physiologically-relevant ratios;
control hydrogel composition and spatial distribution;
customize the physiochemical properties of the tissue
microenvironment; and image tissues with high spatiotemporal
resolution. Drawbacks of this emerging technology include
difficulties transferring technology between labs, a lack of
standardized benchmarks of success, and low-throughput
experiments (Table 1).

Recent studies in CRC OOC models have successfully
reproduced disease progression (103–106), immunity (38, 107–
109), metastasis (110–112), and response to therapy (38, 103,
105–107, 110, 113). Biochemical gradients of growth factors,
cytokines, and chemokines influence cell migration, tissue
phenotype, and angiogenesis in the TME (114), and can be
established, monitored, and perturbed using OOC technologies
(24, 114–116). Emerging methods also enable the manipulation
of hypoxia in OOC devices (117, 118); this property regulates
gene transcription and alters physiological and pathological
immunity (119, 120). Our group has also pioneered methods
to vascularize tissues, including CRC, in OOC devices (39, 103,
106, 113, 121, 122). These blood vessel networks self-assemble
when endothelial cells and stromal cells are mixed, suspended in
hydrogels, and cultured under perfusion conditions. These
microvasculature models mimic transport of cells, nutrients,
waste, and therapies through tissues; and can be engineered
from autologous cell sources.

OOC platforms can mimic the immune-tumor cell crosstalk
found in the CRC TME. For example, Parlato et al. monitored
the interactions between untreated and treated CRC tumor cells
February 2021 | Volume 11 | Article 614300
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and interferon-a-conditioned dendritic cells (IFN-DCs)—a
potential cancer therapeutic with the ability to uptake cancer
antigens, stimulate a T cell response, and phagocytose tumor
cells—in a 3D microfluidic model (Figure 1B). They observed
that IFN-DCs preferentially migrate towards and phagocytose
tumor cells that have been treated with interferon-a and
romidepsin, thereby demonstrating the utility of the model
for tracking immune-tumor cell interactions in real time and
examining novel combination therapies. In a series of papers,
an interdisciplinary team reported that patient- and murine-
derived organotypic tumor spheroids cultured in microfluidic
devices retain the tumor, stromal, and immune cell populations
for multiple cancers, including CRC (107–109). The team also
demonstrated that this model system recreates the tumor
response to checkpoint blockade therapy more accurately
than 3D in vitro systems and can be used to screen novel
therapeutics for efficacy. A 2020 report from our group probed
the role of M1 and M2 macrophages in the TME using a
vascularized CRC OOC model (39) (Figure 1C). Our results
showed that M1 macrophages inhibit angiogenesis and tumor
cell growth and migration, while M2 macrophages have the
reverse effect. Further, we showed that these outcomes are
mediated by macrophage-derived soluble factors, suggesting
new therapeutic targets and demonstrating the utility of the
OOC platform to characterize the CRC TME.
FUTURE DIRECTIONS

Improvement of CRC and CRLM patient outcomes requires the
development of efficacious, targeted therapies. Immune-
mediated therapeutic strategies are particularly promising but
remain unrealized, which can be partially attributed to the
inability of current in vitro and in vivo models to fully
recapitulate immunity in the TME. 2D culture experiments
provide an informative picture of tumor-immune cell crosstalk,
but are limited in the number of cell types that can be examined
simultaneously and cannot mimic in vivo transport of cells and
secreted factors. 3D culture systems can support multiple cell
types, mimic transport of biochemical factors through tumor
tissue, and reproduce tumor response to immunotherapy, but
lack the vascular supply necessary to mimic in vivo transport of
immune cells to and through the tumor. Murine models have
been critical to characterizing the immunobiology of the CRC
TME, but these models struggle to accurately recapitulate
Frontiers in Immunology | www.frontiersin.org 6
metastasis; further, successful transition of therapeutics from
murine studies to clinical practice remains quite limited. OOC
platforms are capable of recapitulating the CRC TME,
characterizing tumor-immune cell crosstalk, and mimicking
patient-specific tumor response to therapy, but remain limited
in their ability to model metastasis.

In contrast to the extensively characterized and utilized 2D
culture, 3D culture, and mouse model systems, OOC platforms
remain in early-stage development with untapped potential.
Future work with OOC technology should focus on recreating
colon-specific biological and physiochemical features of the
primary CRC and metastatic CRLM TME. In particular, these
models should seek to: i) incorporate tumor, stromal, and
immune cells at the ratios found in the native TME; ii) mimic
both MSS and MSI-H tumors; iii) utilize patient-specific cell
sources; and iv) recreate the metastatic cascade by connecting
CRC tissue models to liver tissue models using microfluidics.
These advances in experimental modeling, especially when
coupled with unforeseen progress, will produce additional
knowledge regarding immunity in the CRC and CRLM TMEs
and tumor response to immunotherapies, which may inform
future clinical strategies and patient outcomes.
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31. Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V,
et al. 2D and 3D cell cultures - a comparison of different types of cancer cell
cultures. Arch Med Sci (2018) 14(4):910–9. doi: 10.5114/aoms.2016.63743

32. Mestas J, Hughes CC. Of mice and not men: differences between mouse and
human immunology. J Immunol (2004) 172(5):2731–8. doi: 10.4049/
jimmunol.172.5.2731

33. Frese KK, Tuveson DA. Maximizing mouse cancer models. Nat Rev Cancer
(2007) 7(9):645–58. doi: 10.1038/nrc2192

34. Guerin MV, Finisguerra V, Van den Eynde BJ, Bercovici N, Trautmann A.
Preclinical murine tumor models: a structural and functional perspective.
Elife (2020) 9:e50740. doi: 10.7554/eLife.50740

35. Caballero D, Kaushik S, Correlo VM, Oliveira JM, Reis RL, Kundu SC.
Organ-on-chip models of cancer metastasis for future personalized
medicine: From chip to the patient. Biomaterials (2017) 149:98–115. doi:
10.1016/j.biomaterials.2017.10.005

36. Huang YL, Segall JE, Wu M. Microfluidic modeling of the biophysical
microenvironment in tumor cell invasion. Lab Chip (2017) 17(19):3221–33.
doi: 10.1039/C7LC00623C

37. Heylman C, Sobrino A, Shirure VS, Hughes CC, George SC. A strategy for
integrating essential three-dimensional microphysiological systems of
human organs for realistic anticancer drug screening. Exp Biol Med
(Maywood) (2014) 239(9):1240–54. doi: 10.1177/1535370214525295

38. Parlato S, De Ninno A, Molfetta R, Toschi E, Salerno D, Mencattini A, et al.
3D Microfluidic model for evaluating immunotherapy efficacy by tracking
dendritic cell behaviour toward tumor cells. Sci Rep (2017) 7(1):1093. doi:
10.1038/s41598-017-01013-x

39. Bi Y, Shirure VS, Liu R, Cunningham C, Ding L, Meacham JM, et al. Tumor-
on-a-chip platform to interrogate the role of macrophages in tumor
progression. Integr Biol (Camb) (2020) 12(9):221–32. doi: 10.1101/
2020.05.27.119636

40. Pouliot N, Connolly LM, Moritz RL, Simpson RJ, Burgess AW. Colon cancer
cells adhesion and spreading on autocrine laminin-10 is mediated by
multiple integrin receptors and modulated by EGF receptor stimulation.
Exp Cell Res (2000) 261(2):360–71. doi: 10.1006/excr.2000.5065
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