
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Efficient Policy Learning for Robust Robot Grasping

Permalink
https://escholarship.org/uc/item/21f0t7pd

Author
Mahler, Jeffrey Brian

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/21f0t7pd
https://escholarship.org
http://www.cdlib.org/

Efficient Policy Learning for Robust Robot Grasping

by

Jeffrey Brian Mahler

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Ken Goldberg, Chair
Professor John Canny

Assistant Professor Paul Grigas

Summer 2018

Efficient Policy Learning for Robust Robot Grasping

Copyright 2018
by

Jeffrey Brian Mahler

1

Abstract

Efficient Policy Learning for Robust Robot Grasping

by

Jeffrey Brian Mahler

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ken Goldberg, Chair

While humans can grasp and manipulate novel objects with ease, rapid and reliable robot
grasping of a wide variety of objects is highly challenging due to sensor noise, partial observ-
ability, imprecise control, and hardware limitations. Analytic approaches to robot grasping
use models from physics to predict grasp success but require precise knowledge of the robot
and objects in the environment, making them well-suited for controlled industrial appli-
cations but difficult to scale to many objects. On the other hand, deep neural networks
trained on large datasets of grasps labeled with empirical successes and failures can rapidly
plan grasps across a diverse set of objects, but data collection is tedious, robot-specific, and
prone to mislabeling.

To improve the efficiency of learning deep grasping policies, we propose a hybrid method
to automate dataset collection by generating millions of synthetic 3D point clouds, robot
grasps, and success metrics using analytic models of contact, collision geometry, and image
formation. We present the Dexterity-Network (Dex-Net), a framework for generating train-
ing datasets by analyzing mechanical models of contact forces and torques under stochastic
perturbations across thousands of 3D object CAD models. We describe dataset generation
models for training policies to lift and transport novel objects from a tabletop or cluttered bin
using a 3D depth sensor and a parallel-jaw (two-finger) or suction cup gripper. To study the
effects of learning from massive amounts of training data, we generate datasets containing
millions of training examples using distributed Cloud computing, simulations, and parallel
GPU processing. We use these datasets to train robust grasping policies based on Grasp
Quality Convolutional Neural Networks (GQ-CNNs) that take as input a depth image and
a candidate grasp with up to five degrees of freedom and predict the probability of grasp
success on an object in the image. To transfer from simulation to reality, we develop novel
analytic grasp success metrics based on resisting disturbing forces and torques under stochas-
tic perturbations and bounding an object’s mobility under an energy field such as gravity.
In addition, we study techniques in algorithmic supervision to guide dataset collection using
full knowledge of the object geometry and pose in simulation. We explore extensions to

2

learning policies that sequentially pick novel objects from dense clutter in a bin and that
can rapidly decide which gripper hardware is best in a particular scenario.

To substantiate the method, we describe thousands of experimental trials on a physical
robot which suggest that deep learning on synthetic Dex-Net datasets can be used to rapidly
and reliably plan grasps across a diverse set of novel objects for a variety of depth sensors,
robot grippers, and robot arms. Results suggest that policies trained on Dex-Net datasets
can achieve up to 95% success in picking novel objects from densely cluttered bins at a rate
of over 310 mean picks per hour with no additional training or tuning on the physical system.
Code, datasets, videos, and supplemental material for research related to this thesis can be
found at https://berkeleyautomation.github.io/dex-net.

i

To my parents, Cheryl Thalmann and Ken Mahler

ii

Contents

Contents ii

List of Figures vii

List of Tables xx

I Introduction and Background 1

1 Introduction 3
1.1 Robot Grasping . 3
1.2 Grasp Analysis . 3
1.3 Deep Learning . 4
1.4 Grasp Planning in Practice . 5
1.5 Thesis Goals and Contributions . 6
1.6 Thesis Outline . 7

2 Robust Grasp Planning 10
2.1 Problem Statement . 10

2.1.1 Definitions . 11
2.1.2 Objective . 12
2.1.3 Extensions . 14

2.2 Solution Approaches . 16
2.2.1 Gripper Hardware Design . 17
2.2.2 Heuristic Methods . 17
2.2.3 Analytic Methods . 18
2.2.4 Empirical (Data-Driven) Methods . 21
2.2.5 Hybrid Methods: Model-Based Dataset Generation 23

II End-to-End Large Scale Dataset Generation 27

3 Robust Analytic Grasp Planning for Large Datasets of 3D Objects 29

iii

3.1 Problem Statement . 30
3.1.1 Definitions . 30
3.1.2 Objective . 32

3.2 The Dexterity Network 1.0 Dataset . 32
3.2.1 Object Mesh Data . 32
3.2.2 Grasp Sampling . 33

3.3 Features for Grasp and Object Similarity . 34
3.3.1 Depthmap Gradient Features for Grasp Similarity 34
3.3.2 Multi-View Convolutional Neural Networks for Object Similarity . . . 35

3.4 Correlated Multi-Armed Bandit Algorithm 35
3.4.1 Model of Correlated Rewards . 36
3.4.2 Predicting Grasp Quality Using Prior Data 37
3.4.3 Grasp Selection Policy . 38

3.5 Experiments on Large-Scale Grasp Analysis 38
3.5.1 Scaling of Average Convergence Rate 40
3.5.2 Sensitivity to Object Shape . 41
3.5.3 Sensitivity to Similarity and Uncertainty 42

3.6 Experiments on a Physical Robot . 42
3.6.1 Experimental Setup . 42
3.6.2 Perception System . 44
3.6.3 Evaluation of Robust Analytic Grasp Metrics 45

3.7 Discussion . 48

4 Learning to Plan Grasps from Synthetic Point Clouds and Analytic Metrics 49
4.1 Problem Statement . 50

4.1.1 Definitions . 50
4.1.2 Objective . 53

4.2 Learning a Grasp Quality Function . 53
4.2.1 Supervised Learning . 53
4.2.2 Dataset Generation . 53
4.2.3 Grasp Quality Convolutional Neural Network 55

4.3 Grasp Planning . 56
4.3.1 Antipodal Grasp Candidate Generation 56
4.3.2 Derivative Free Optimization . 58

4.4 Experiments . 58
4.4.1 Physical Benchmark Description . 59
4.4.2 Datasets . 61
4.4.3 Grasp Planning Methods Used for Comparison 62
4.4.4 Classification of Synthetic Data . 63
4.4.5 Performance Comparison on Known Objects 65
4.4.6 Performance Comparison on Novel Objects 66
4.4.7 Generalization Ability of the Dex-Net 2.0 Grasp Planner 66

iv

4.4.8 Application: Order Fulfillment . 67
4.4.9 Failure Modes . 67
4.4.10 Feature Analysis . 68

4.5 Discussion . 70

5 Sequential Grasp Planning for Bin Picking 71
5.1 Problem Statement . 72

5.1.1 Definitions . 72
5.1.2 Policy . 75
5.1.3 Objective . 75

5.2 Imitation Learning from an Algorithmic Supervisor 75
5.2.1 Robust Grasping Algorithmic Supervisor 76
5.2.2 Learning a Bin Picking Policy . 76

5.3 Experiments . 77
5.3.1 Synthetic Training . 77
5.3.2 Bin Picking on an ABB YuMi . 78
5.3.3 t-SNE Embedding . 82
5.3.4 Qualitative Differences Between Policies 82
5.3.5 Details of POMDP Parameters . 83

5.4 Discussion . 86

III Physics-Based Reward Design 87

6 Synthesis of Energy-Bounded Caging Grasps with Persistent Homology 89
6.1 Problem Statement . 91

6.1.1 Complete Caging and Energy-Bounded Caging 91
6.1.2 Energy Functions . 91
6.1.3 Configuration Spaces and α-Complexes 93
6.1.4 Persistent Second Homology . 94

6.2 The EBCS-2D Synthesis Algorithm . 94
6.2.1 Filtrations and Persistence from Energy Functions 95
6.2.2 Correctness . 96
6.2.3 Extension to Pushing . 96

6.3 Experiments . 97
6.3.1 Energy Bounded Cages Under Linear Push Energy 98
6.3.2 Sample and Time Complexity . 98
6.3.3 Persistence Diagrams . 100
6.3.4 Physical Experiments . 101

6.4 Proof of Correctness for the EBCS-2D Algorithm 103
6.5 Energy Function for Constant Velocity Quasi-Static Planar Pushing 104
6.6 Numeric Issues in Implementation . 106

v

6.7 Discussion . 106

7 Computing Vacuum Suction Grasps with Compliant Contact Modeling 107
7.1 Problem Statement . 108

7.1.1 Assumptions . 108
7.1.2 Definitions . 109
7.1.3 Objective . 111

7.2 Compliant Suction Contact Model . 111
7.2.1 Seal Formation . 111
7.2.2 Wrench Space Analysis . 113
7.2.3 Robust Wrench Resistance . 115

7.3 Dex-Net 3.0 Dataset . 115
7.3.1 Dataset Generation Distribution . 115
7.3.2 Computational Pipeline . 117

7.4 Learning a Deep Robust Grasping Policy . 117
7.4.1 Architecture . 117
7.4.2 Policy . 118
7.4.3 Performance . 118

7.5 Experiments . 118
7.5.1 Object Classes . 120
7.5.2 Experimental Protocol . 120
7.5.3 Performance Metrics . 120
7.5.4 Performance on Known Objects . 121
7.5.5 Performance on Novel Objects . 123
7.5.6 Classification Performance on Known Objects 124
7.5.7 Failure Modes . 125

7.6 Details of Quasi-Static Spring Seal Formation Model 126
7.7 Derivation of Compliant Suction Contact Model 127

7.7.1 Computing Wrench Resistance with Quadratic Programming 128
7.7.2 Limits of the Soft Finger Suction Contact Model 132
7.7.3 Details of Environment Model . 133
7.7.4 Implementation Details . 134

7.8 Discussion . 134

8 Learning Deep Composite Policies with Analytic Supervision 135
8.1 Problem Statement . 136

8.1.1 Objective . 136
8.2 Dataset Generation . 137

8.2.1 Assumptions . 137
8.2.2 Definitions . 137
8.2.3 Environment Distribution . 139
8.2.4 Action Candidate Distribution . 140

vi

8.3 Learning a Composite Policy . 142
8.3.1 Learning Objective . 142
8.3.2 Dex-Net 4.0 Training Dataset . 142
8.3.3 Optimization . 143
8.3.4 Policy Deployment . 144

8.4 Experiments . 145
8.4.1 Hardware Setup . 145
8.4.2 Test Object Datasets . 145
8.4.3 Experiment Protocol . 146
8.4.4 Description of Baselines . 147
8.4.5 Bin Picking on Novel Objects . 147
8.4.6 Sensitivity to Amount of Clutter . 148
8.4.7 Sensitivity to Training Dataset Diversity 148
8.4.8 Sensitivity to Neural Network Architecture 150
8.4.9 Effects of Training on Physical Grasp Outcomes 151
8.4.10 Effects of Memory . 152
8.4.11 Pathological Objects . 153

8.5 Discussion . 154

IV Conclusion 156

9 Discussion 158
9.1 Overview . 158
9.2 Takeaways . 158

9.2.1 Relevance of Analytic Grasp Quality Metrics 159
9.2.2 Bias-Variance Tradeoff in Dataset Collection 159
9.2.3 Visual Grasp Affordances Derived from Physics 160
9.2.4 Abstractions for Reliable Robot Learning 160

9.3 Opportunities for Future Research . 161
9.3.1 Extensions to the Grasping Environment 161
9.3.2 Extensions to New Tasks . 162
9.3.3 Extensions to the Learning Method 163

9.4 The Broader Picture . 164

A Gaussian Process Implicit Surfaces 166
A.0.1 Gaussian Process Regression (GPR) 166
A.0.2 GPIS Construction from Point Clouds 167

Bibliography 169

vii

List of Figures

2.1 Graphical model illustrating the robust grasp planning problem. A robot policy
π plans a grasp action u based on a noisy observation of a set of objects in state
x and receives a reward R based on the result of executing the grasp. The goal is
to learn a policy that achieves high expected reward on a distribution of states,
observations, and rewards (e.g. a particular set of objects). 11

2.2 Grasping environment for lifting a single object in a randomized pose on a table-
top with a single depth camera. 13

2.3 Graphical model illustrating the sequential robust grasp planning problem. An
initial state x0 is sampled from the initial state distribution. On each timestep
robot policy π plans a grasp action ut based on a noisy observation of a set of
objects in state xt and receives a reward Rt based on the result of executing the
grasp. The goal is to learn a policy that achieves high expected reward for up to
T consecutive grasp attempts. 15

3.1 Grasp parameterization and contact model. (Left) We parameterize parallel-jaw
grasps by the centroid of the jaws p ∈ R3 and approach direction, or direction
along which the jaws close, v ∈ S2. The parameters x and v are specified with
respect to a coordinate frame at the object center of mass z and oriented along the
principal directions of the object. (Right) The jaws are closed until contacting
the object surface at locations c1, c2 ∈ R3, at which the surface has normals
n1,n2 ∈ S2. The contacts are used to compute the moment arms ρi = ci − z. . 33

3.2 Local surface depth map features for measuring grasp similarity for three grasp
contact locations on a teapot. Each depthmap is “rendered” along the grasp
axis vi at contact ci and oriented by the directions of maximum variation in the
depthmap. We use gradients of the depthmaps for similarity between grasps in
Dex-Net. 34

viii

3.3 Multi-View Convolutional Neural Network (MV-CNN) deep learning architecture
for embedding 3D object models in a Euclidean vector space to compute global
shape similarity. We pass a set of 50 virtually rendered camera viewpoints dis-
cretized around a sphere through a deep Convolutional Neural Network (CNN)
with the AlexNet [88] architecture. Finally, we take the maximum fc7 response
across each of the 50 views for each dimension and run PCA to reduce dimen-
sionality. 36

3.4 Comparison of MV-CNN with the winner of the SHREC 2014 challenge on the
SHREC 2014 benchmark. 37

3.5 Average normalized grasp quality versus iteration over 45 test objects and 25 trials
per object for the Dex-Net 1.0 algorithm with 1,000 and 10,000 prior 3D objects
from Dex-Net. We measure quality by the PF for the best grasp predicted by the
algorithm on each iteration and compare with Thompson sampling without priors
and uniform allocation. The algorithm converges faster with 10,000 models, never
dropping below approximately 90% of the grasp with highest PF from a set of
250 candidate grasps. 40

3.6 Average normalized grasp quality versus iteration for 25 trials for the Dex-Net 1.0
Algorithm with 1,000 and 10,000 prior 3D objects from Dex-Net (bottom) and
illustrations of five nearest neighbors in Dex-Net (top) for a spray bottle (left) and
drill (right). We measure quality by the probability of force closure of the best
grasp predicted by the algorithm on each iteration and compare with Thompson
sampling without priors [94] and uniform allocation [79, 178]. (Top) The spray
bottle has no similar neighbors with 1,000 objects, but two other spray bottles are
found by the MV-CNN in the 10,000 object set. The drill, which is relatively rare
in the dataset, has no geometrically similar neighbors even with 10,000 objects.
(Bottom) For the spray bottle the Dex-Net 1.0 algorithm quickly converges to
the optimal grasp with 10,000 prior objects, but for the drill the lack of similar
objects leads to no significant performance increase over Thompson sampling
without priors. 41

3.7 Example grasps predicted to have the highest PF on the spray bottle after only 100
iterations by Thompson sampling without priors and the Dex-Net 1.0 algorithm
with 1,000 and 10,000 prior objects. Thompson sampling without priors chooses
a grasp near the edge of the object, while the Dex-Net algorithm selects grasps
closer to the object center-of-mass. For reference, the highest quality grasp for
the spray bottle was PF = 0.81. 42

ix

3.8 Sensitivity to similarity kernel (top) and pose and friction uncertainty (bottom)
for the normalized grasp quality versus iteration averaged over 25 trials per ob-
ject for the Dex-Net algorithm with 1,000 and 10,000 prior 3D objects. (Top-left)
Using a higher inverse bandwidth causes the algorithm to measure false simi-
larities between grasps, leading to performance on par with uniform allocation.
(Top-right) A lower inverse bandwith decreases the convergence rate, but on av-
erage the Dex-Net algorithm still selects a grasp within approximately 85% of
the grasp with highest PF for all iterations. (Bottom-left) Lower uncertainty in-
creases the quality for all methods, (bottom-right) higher uncertainty decreases
the quality for all methods, and the Dex-Net algorithm with 10,000 prior objects
still converges approximately 2× faster than Thompson sampling without priors. 43

3.9 Experimental setup used to evaluate the correlation between robust analytic grasp
quality metrics and the empirical outcomes of grasp attempts on a physical sys-
tem. The robot consisted of a Zymark Zymate 2 arm (right) with four degrees
of freedom and a parallel-jaw pincer gripper as well as a rotating turntable to
augment the system for five controllable degrees of freedom. On each grasp at-
tempt, a single 3D printed object was placed in the center of the table in a known
stable resting pose using an automatic hardware reset mechanism. Then a grasp
was executed by registering a depth image from a Primesense Carmine RGB-D
camera to a known 3D CAD model of the object and indexing a pre-computed
grasp from Dex-Net 1.0. 44

3.10 Set of 13 adversarial 3D printed objects used to evaluate robust analytic grasp
quality metrics on a physical robot. 45

3.11 Perception system used to estimate the 3D pose of known objects from depth im-
ages in experiments on a physical robot. In the object pose recognition phase, a
segmentation mask for the object was matched to a set of pre-rendered segmenta-
tion masks of the object CAD model in various orientations using CNN features.
Then the pose of the CAD model corresponding to the most similar pre-rendered
segmentation mask was used to seed the geometric alignment phase, in which the
CAD model was iteratively aligned to the segmented point cloud using point-to-
plane Iterated Closest Point. 46

3.12 Planar pose error histograms for the known object pose registration system used
to evaluate robust analytic grasp quality metrics. 46

3.13 Performance of probability of partial closure, the highest precision robust analytic
grasp quality metric, on predicting the outcomes of grasp attempts on a physical
robot (empirical quality). (Left) A scatter plot of the predicted versus empirical
quality for a set of 156 grasps suggests that the analytic quality metric has few
false positives. The majority of classification errors are due to false negatives,
suggesting that robust analytic metrics are overly conservative in predicting the
outcomes of empirical grasps. This may be due to unmodeled affordances such as
dynamically pushing the object into alignment. (Right) The lone false positive is
a grasp for which the object dynamically rotates out of the gripper due to gravity. 47

x

4.1 Graphical model for robust parallel-jaw grasping of objects on a table surface
based on point clouds. Object shapes O are uniformly distributed over a discrete
set of object models and object poses To are distributed over the object’s stable
poses and a bounded region of a planar surface. Grasps u = (p, ϕ) are sampled
uniformly from the object surface using antipodality constraints. Given a coef-
ficient of friction γ, we evaluate an analytic reward metric R for a grasp on an
object. A synthetic 2.5D point cloud y is generated from 3D meshes based on the
camera C in pose Tc and is corrupted with multiplicative and Gaussian Process
noise. 51

4.2 Dex-Net 2.0 pipeline for training dataset generation. (Left) The database contains
1,500 3D object mesh models. (Top) For each object, we sample hundreds of
parallel-jaw grasps to cover the surface and evaluate robust analytic grasp metrics
using sampling. For each stable pose of the object we associate a set of grasps
that are perpendicular to the table and collision-free for a given gripper model.
(Bottom) We also render point clouds of each object in each stable pose, with the
planar object pose and camera pose sampled uniformly at random. Every grasp
for a given stable pose is associated with a pixel location and orientation in the
rendered image. (Right) Each image is rotated, translated, cropped, and scaled
to align the grasp pixel location with the image center and the grasp axis with
the middle row of the image, creating a 32 × 32 grasp image. The full dataset
contains over 6.7 million grasp images. 52

4.3 Architecture of the Grasp Quality Convolutional Neural Network (GQ-CNN).
(Left) Planar grasp candidates u = (i, j, ϕ, z) are generated from a depth image
and transformed to align the image with the grasp center pixel (i, j) and ori-
entation ϕ. The architecture contains four convolutional layers in pairs of two
separated by ReLU nonlinearities followed by 3 fully connected layers and a sep-
arate input layer for the z, the distance of the gripper from the camera. The use
of convolutional layers was motivated by the relevance of depth edges as features
for learning in previous research [10, 96, 104] and the use of ReLUs was moti-
vated by image classification results [88]. The network estimates the probability
of grasp success (robustness) Qθ ∈ [0, 1], which can be used to rank grasp candi-
dates. (Right) The first layer of convolutional filters learned by the GQ-CNN on
Dex-Net 2.0. The filters appear to compute oriented image gradients at various
scales, which may be useful for inferring contact normals and collisions between
the gripper and object. 54

xi

4.4 Dex-Net 2.0 Architecture. (Center) The Grasp Quality Convolutional Neural
Network (GQ-CNN) is trained offline to predict the robustness candidate grasps
from depth images using a dataset of 6.7 million synthetic point clouds, grasps,
and associated robust grasp metrics computed with Dex-Net 1.0. (Left) When
an object is presented to the robot, a depth camera returns a 3D point cloud,
where pairs of antipodal points identify a set of several hundred grasp candidates.
(Right) The GQ-CNN rapidly determines the most robust grasp candidate, which
is executed with the ABB YuMi robot. 56

4.5 Grasp robustness predicted by a Grasp Quality Convolutional Neural Network
(GQ-CNN) trained with Dex-Net 2.0 over the space of depth images and grasps
for a single point cloud collected with a Primesense Carmine. (Left) As the center
of the gripper moves from the top to the bottom of the image the GQ-CNN
prediction stays near zero and spikes on the most robust grasp (Right), for which
the gripper fits into a small opening on the object surface. This suggests that the
GQ-CNN has learned a detailed representation of the collision space between the
object and gripper. Furthermore, the sharp spike suggests that it may be difficult
to plan robust grasps by randomly sampling grasps in image space. We consider
planning the most robust grasp using the cross-entropy method on the GQ-CNN
response. 59

4.6 Example input color images and maps of the grasp robust estimated by the GQ-
CNN over grasp centers for a constant grasp axis angle in image space and height
above the table, with the grasp planned by our CEM-based robust grasping policy
shown in black. CEM is able to find precise robust grasping locations encoded by
the GQ-CNN that are very close to the global maximum for the given grasp axis
and height. The GQ-CNN also appears to assign non-zero robustness to several
grasps that completely miss the object. This is likely because no such grasps are
in the training set, and future work could augment the training dataset to avoid
these grasps. 60

4.7 Experimental setup for benchmarking grasping with the ABB YuMi. (Left) In
each trial a human operator sampled an object pose by shaking the object in a
box and placing it upside down in the workspace. Then RGB-D image was taken
with a Primsense Carmine 1.08, the image was processed using inpainting [70],
and the object was segmented using color background subtraction. The grasp
planner under evaluation then planned a gripper pose and the YuMi executed
the grasp. Grasps were considered successful if the gripper held the object after
lifting, transporting, and shaking the object. (Top-Right) The training set of 8
objects with adversarial geometric features such as smooth curved surfaces and
narrow openings for grasping known objects. (Bottom-Right) The test set of
10 household objects not seen during training. The dataset was selected to test
performance on challenging objects of varying material, geometry, and surface
reflectance properties. 61

xii

4.8 Receiver operating characteristic comparing the performance of learning models
on Adv-Synth. The GQ-CNN models all perform similarly and have a significantly
higher true positive rate when compared to ML-RF and ML-SVM. 65

4.9 Experimental setup for evaluating the Dex-Net 2.0 in novel scenarios. (Left) The
test set of 40 household objects used for evaluating the generalization performance
of the Dex-Net 2.0 grasp planner. The dataset contains rigid, articulated, and
deformable objects. (Right) The experimental setup for order fulfillment with the
ABB YuMi. The goal is to grasp and transport three target objects to a shipping
container (box on right). 67

4.10 Examples of failed grasps planned using the GQ-CNN from Dex-Net 2.0. The
most common failure modes were related to: (left) missing sensor data for an
important part of the object geometry, such as thin parts of the object surface,
and (right) collisions with the object that are misclassified as robust. 68

4.11 Visualization of t-SNE for the GQ-CNN on the Dex-Net 2.0 validation set il-
lustrating the separation of positive (blue) and negative (red) examples. The
network appears to start separating the positive and negative grasps and images
in the fc4 layer. 68

4.13 Visualization of the maximum activations from the Dex-Net 2.0 validation set
for a selection of three neurons from the conv2 2 layer of GQ-CNN. The neurons
appear to respond to oriented parallel lines and circular patterns. 69

4.12 Visualization of t-SNE for the fc4 response of GQ-CNN to a set of 200 synthetic
datapoints (yellow) and 200 datapoints collected from a physical robot system
(green). 69

5.1 Overview of the Dex-Net 2.1 POMDP model and simulator. We sample from the
initial state distribution ρ0 by uniformly sampling m 3D CAD object models from
a dataset and dropping them in random poses in the pybullet dynamic simula-
tor [26] to form a heap. The state xt includes object shapes and poses in the heap.
We generate demonstrations of robot grasping using an algorithmic supervisor Ω
from Dex-Net 2.0 [105] that indexes the most robust collision-free parallel-jaw
grasp ut from a pre-planned grasp database using knowledge of the full state. We
aggregate synthetic point cloud observations yt and collected rewards Rt to form
a labeled dataset for training a policy that classifies the supervisor’s actions on
the partial observations using imitation learning. We preprocess training data by
transforming the point clouds to align the grasp center and axis with the center
pixel and middle row to improve GQ-CNN classification performance [96, 105]. . 73

5.2 Precision-recall curve for the top four machine learning models on a fixed vali-
dation subset of the Dex-Net 2.1 ε = 0.9 dataset containing approximately 20k
datapoints. 78

xiii

5.3 Experimental setup for benchmarking bin picking policies. (Left) For each exper-
iment, a subset of N validation objects are randomly dropped into a bin (green
rim, center), at which point the YuMi iteratively plans grasps from point clouds
and attempts to lift and transport the objects to a packing box (blue rim, right
side).(Middle) A set of 50 test objects with various shapes, sizes, and material
properties. A subset of 25 are rigid and opaque, and 25 others have transparency
(e.g. goggles), moving parts (e.g. can opener), or deformable material (e.g.
cloth). (Right) Example color and depth images from the physical setup with
example grasp planned with the Dex-Net 2.1 ε = 0.9 policy. 79

5.4 Example of grasp planning with the Dex-Net 2.1 ε = 0.9 robust grasping policy
on a heap of novel objects from the test set. The iterations (left to right) show
the set of grasps sampled during the progression of the Cross Entropy Method
for grasp optimization. 82

5.5 t-SNE embedding of the first 100 principal components of fc4 features for the val-
idation subset of the Dex-Net 2.1 (ε = 0.9) dataset (best viewed in color). (Left)
The embedding for features from the original Dex-Net 2.0 GQ-CNN. (Right) The
GQ-CNN fine-tuned on Dex-Net 2.1 (ε = 0.9). Each datapoint shows the rotated
and translated depth image that is input to the to GQ-CNN (see [105]). Images
corresponding to actions taken by the algorithmic supervisor are outlined in green
while images corresponding to failed random actions are outlined in red. 83

5.6 Comparison of grasps planned by the Dex-Net 2.0 (singulated object) and Dex-
Net 2.1 (bin picking) grasping policies. 84

6.1 Complete and energy-bounded cages. Left: a complete cage. The blue object is
constrained to a bounded component of the free configuration space by the rigid
arrangement of the two gripper fingers (black). Middle and right figure: Two
energy-bounded cages with respect to a force direction f e.g. from gravity or
constant velocity pushing with Coulomb friction. The blue object is constrained
by both the gripper and the force field. The rightmost configuration requires
more energy to escape than the middle configuration. 90

6.2 Definition of caging and energy-bounded caging. The top row depicts gripper
jaws G (in black) and an object O (in blue) in three configurations. The bot-
tom row illustrates conceptually the corresponding point q0 ∈ SE(2) in config-
uration space. While a complete cage corresponds to an initial pose q0 com-
pletely enclosed by forbidden space Z, the energy-bounded cage on the right
instead correpsonds to a case where q0 is enclosed by Zu = Z ∪ U(q0, u) where
U(q0, u) = {q ∈ C : U(q,q0) > u} for U that is strictly increasing with increasing
vertical coordinate. The smallest value of u such that q0 is not enclosed is called
the minimum escape energy, u∗. 92

xiv

6.3 Simplicial complex approximation of configuration space. (Left) We sample a
set of poses Q and their penetration depth. (Right) An approximation of the
forbidden space Z ⊂ SE(2) from Fig. 6.2 by unions of balls around sampled
points Q results in an α-shape simplicial complex A(X) (gray triangles) that is
a subset of Z. The triangles of the weighted Delaunay triangulation D(X) that
are not in A(X) approximate the free space (red triangles). 93

6.4 Persistence diagram for ranking energy-bounded cages. Left: polygonal part and
gripper polygons serve as input. We sample object poses X in collision and
generate an α-shape representation (shown in gray in the three middle figures).
Given an energy potential, we insert simplices in D(X)−A(X) in decreasing order
of energy potential, creating a filtration of simplicial complexes. Voids (yellow
and orange) are born with the addition of edges σi and σj (red) at threshold
potential levels pi and pj respectively, and die with the additions of the last
triangle in each void at potential pk (red). The associated second persistence
diagram reveals voids corresponding to energy-bounded cages. In particular,
configuration q1 is persistent for a larger energy difference than configuration q2
(right figure). The escape energy of each configuration is equal to the difference
in potentials: u1 = pk − pi and u2 = pk − pj, and by the filtration ordering this
implies that q1 has higher escape energy than q2. 95

6.5 Highest energy configurations and push directions synthesized using EBCS-2D
ranked from left to right for seven example polygonal objects (blue) and grippers
(black) under a linear planar pushing energy field with a push force bound of
Fp = 1.0. Displayed are three objects for each of the following grippers: (left-to-
right, top-to-bottom) parallel-jaw grippers with rectangular jaws, a Barrett hand
with fixed preshape, a Zymark Zymate gripper with fixed opening width, and
a four finger disc gripper. Below each object the escape energy û estimated by
EBCS-2D using s = 200, 000 pose samples, which is the distance the object would
have to travel against the pushing direction, and to the right is the synthesized
push energy direction f . For each test case we searched over 5 energy directions
from −π

4 to π
4 and checked push reachability as described in Section 6.2.3 except

for the four finger gripper, for which we ran only EBCS-2D to illustrate complete
cages. EBCA-2D synthesizes several complete cages for the four finger gripper. 99

xv

6.6 Sensitivity analysis of EBCS-2D. (Middle) The sample complexity of EBCS-2D.
Plotted is the ratio of the highest minimum escape energy out of the energy-
bounded cages synthesized by EBCS-2D, û∗, for the number of pose samples
s = {12.5, 25, 50, 100, 200, 400}×103 on the object and gripper test cases displayed
on the left. Performance is broken down by the polygonal gripper model used:
parallel-jaw grippers (Top) and a Zymark Zymate gripper (Bottom). (Right)
The mean runtime of EBCS-2D in seconds is broken down by component of the
algorithm for varying numbers of pose samples s = {12.5, 25, 50, 100, 200, 400} ×
103. Each datapoint is averaged over five independent runs for each of the object
and gripper configurations on the left. Despite the theoretical worst case s3

runtime, the algorithm runtime is approximately linear in s, and is dominated by
sampling time. 100

6.7 Persistence diagram for the second homology persistence pairs (corresponding to
“voids”) in the filtration K identified during a run of EBCS-2D with s = 200, 000
pose samples for a part (blue) and gripper configuration (black) with a vertical
push force. The (i, j) coordinate for each point corresponds to the birth and
death indices of the voids. Points in red were pruned by our algorithm. The
three points in blue were identified by EBCS-2D as energy-bounded cages, and
their corresponding workspace configurations are illustrated next to the points.
Note that the magnitude of differences between indices may not be indicative of
the magnitude of energy differences between configurations. 101

6.8 Experimental setups for executing energy-bounded cages synthesized with EBCS-
2D on a Zymark Zymate robot (Top) and ABB YuMi robot (Bottom). The Zy-
mate was used to test performance when exact object pose was known and the
YuMi was used to test performance when planning based on object segmentation
masks in images. (Left) The synthesized planar configuration for each manipu-
lator. (Right) The object remains in the gripper as it is pushed along a planar
worksurface. 102

7.1 Quasi-static spring model used for determining when seal formation is feasible.
The model contains three types of springs – perimeter, flexion, and cone springs.
An initial state for C is chosen given a target point p and an approach direction
v. Then, a contact state for C is computed so that C’s perimeter springs form
a complete seal against object mesh M . Seal formation is deemed feasible if the
energy required to maintain this contact state is sufficiently low in every spring. 109

xvi

7.2 Graphical model for robust vacuum suction grasping of objects on a table surface
based on point clouds. Object shapes O are uniformly distributed over a discrete
set of object models and object poses To are distributed over the object’s stable
poses and a bounded region of a planar surface. Grasps u = (p,v) are sampled
uniformly from the object surface. Given a coefficient of friction γ and a per-
turbing force and torque vector w (e.g. due to gravity or inertia), we evaluate
an analytic reward metric R based on the ability of the grasp to resist w. A
synthetic 2.5D point cloud y is generated from 3D meshes based on the camera
C in pose Tc. 110

7.3 Compliant suction contact model. (Left) The quasi-static spring model used
in seal formation computations. This suction cup is approximated by n = 8
components. Here, r is equal to the radius of the cup and h is equal to the height
of the cup. {c1, . . . , cn} are the base contact vertices and a is the apex. (Right)
Wrench basis for the suction ring contact model. The contact exerts a constant
pulling force on the object of magnitude V and additionally can push or pull the
object along the contact z axis with force fz. The suction cup material exerts a
normal force fN = fz + V on the object through a linear pressure distribution
(force per unit length) on the ring. This pressure distribution induces a friction
limit surface bounding the set of possible frictional forces in the tangent plane
ft = (fx, fy) and the torsional moment τz, and also induces torques τx and τy
about the contact x and y axes due to elastic restoring forces in the suction cup
material. 112

7.4 Dex-Net 3.0 dataset. (Left) The Dex-Net 3.0 object dataset contains approxi-
mately 350k unique suction target points across the surfaces of 1,500 3D models
from the KIT object database [78] and 3DNet [180]. Each suction grasp is clas-
sified as robust (green) or non-robust (red). Robust grasps are often above the
object center-of-mass on flat surfaces of the object. (Right) The Dex-Net 3.0
point cloud dataset contains 2.8 million tuples of point clouds and suction grasps
with reward labels, with approximately 11.8% positive examples. 116

7.5 Computational pipeline for generating the Dex-Net 3.0 dataset (left to right). We
first sample a candidate suction grasp from the object surface and evaluate the
ability to form a seal and resist gravity over perturbations in object pose, gripper
pose, and friction. The samples are used to estimate the probability of success, or
robustness, for candidate grasps on the object surface. We render a point cloud
for each object and associate the candidate grasp with a pixel and orientation in
the depth image through perspective projection. Training datapoints are centered
on the suction target pixel and rotated to align with the approach axis to encode
the invariance of the robustness to image locations. 116

xvii

7.6 Performance of the Dex-Net 3.0 GQ-CNN. (Left) Precision-recall curve for the
GQ-CNN trained on Dex-Net 3.0 on the validation set of 552,000 pairs of grasps
and images. (Right) The 64 conv1 1 filters of the GQ-CNN. Each is 7×7. We see
that the network learns circular filters which may be used to assess the surface
curvature about the ring of contact between the suction cup and object. 118

7.7 Example grasps planned with the Dex-Net 3.0 GQ-CNN-based policy on RGB-
D point clouds. (Left) The robot is presented an object in isolation. (Middle)
Initial candidate suction target points colored by the predicted probability of
success from zero (red) to one (green). Robust grasps tend to concentrate around
the object centroid. (Right) The policy optimizes for the grasp with the highest
probability of success using the Cross Entropy Method. 119

7.8 Physical benchmark used to evaluate the suction grasping policy. (Left) The
experimental setup with an ABB YuMi equipped with a suction gripper. (Right)
The 55 objects used to evaluate suction grasping performance. The objects are
divided into three categories to characterize performance: Basic (e.g. prismatic
objects), Typical, and Adversarial. 120

7.9 Success rate vs Attempt Rate for grasp quality metrics on known 3D objects in
known poses. 123

7.10 Success vs Attempt Rate for 125 trials on each of the Basic and Typical object
datasets and 100 trials each on the Adversarial object dataset. The GQ-CNN
trained on Dex-Net 3.0 has near 100% precision on the Basic and Typical classes
for a significant portion of attempts, suggesting that the GQ-CNN is able to
predict when it is likely to fail on novel objects. The GQ-CNN trained on the
Adversarial objects has a significantly higher precision on the Adversarial class
but does not perform as well on the other objects. 124

7.11 Two categories of objects that cannot be handled by any of the point-cloud based
suction grasping policies. (Left) Imperceptible objects, which cannot be handled
by the system due to small surface variations that cannot be detected by the
low-resolution depth sensor but do prevent seal formation. (Right) Impossible
objects, which cannot be handled by the system due to non-porosity or lack of
an available surface to form a seal. 126

8.1 Gripper-Independent reward distribution for generating the Dex-Net 4.0 training
dataset. 140

8.2 Subset of the 1,600 3D object models used to generate the Dex-Net 4.0 training
dataset. (Left) The source meshes consist of approximately 800 3D triangular
meshes selected from the set of freely available watertight and manifold meshes
available on Thingiverse. (Right) The dataset is augmented with synthetic “skin-
pack” meshes to reflect cardboard-backed products encountered in retail applica-
tions. 143

xviii

8.3 Example training image from Dex-Net 4.0 with associated labeled grasps for each
gripper. Each grasp is colored by the robust wrench resistance metric reflecting
the probability of successfully lifting and transporting a single object under dis-
turbances due to gravity and random perturbations. Green indicates high proba-
bility while red indicates low probability. The binary grasp rewards are computed
by thresholding the metric by 50%. 144

8.4 Physical benchmark used for evaluating composite bin picking policies. The goal
was for the robot to iteratively transport each object from the picking bin (green
highlight) to a receptacle (blue highlight) by planning a grasping pose for either
the suction cup or parallel-jaw gripper based on a point cloud from an overhead
Photoneo PhoXi S industrial depth sensor. 146

8.5 Results on bin picking benchmark across three object datasets for the Dex-Net
4.0 policy compared with the performance of the three baseline methods: (1) a
heuristic for only the suction cup based on planarity and the distance to an esti-
mated object centroid, (2) a heuristic for selecting between the suction heuristic
and a parallel-jaw heuristic based on antipodality, and (3) a composite policy
based on ranking grasps from GQ-CNNs fine-tuned from the Dex-Net 2.0 and 3.0
base networks using the method of [103]. (Middle Row) The overall success rates
suggest that the Dex-Net 4.0 policy significantly outperforms the baselines on the
Typical and Adversarial object datasets. (Bottom Row) The average number of
objects picked versus the number of attempts suggest that the Dex-Net 4.0 policy
makes fewer mistakes on the last few objects in the bin. For reference, the best
possible performance (succeeding on every pick) is illustrated with a black-dotted
line. 149

8.6 Bin picking benchmark results on a large dataset of 50 novel test objects combin-
ing the Basic and Typical datasets for the Dex-Net 4.0 policy and two heursistic
baselines. The Dex-Net 4.0 policy has reduced performance than with 25 objects,
but still significantly outperforms the baselines with over 290 mean picks per hour. 150

8.7 Bin picking benchmark results for variants of the Dex-Net 4.0 policy trained with
less diverse training datasets on the Basic and Typical datasets. Lack of train-
ing dataset diversity appears to lead to reduced performance on more complex
objects, and reducing the number of unique heaps appears to affect performance
more than the number of unique objects. 150

8.8 Bin picking benchmark results for two alternative Dex-Net 4.0 policies: the high-
est performing network fine-tuned on a dataset of 13k labeled grasp attempts on
a physical robot and a Dex-Net 4.0 policy trained with the Improved GQ-CNN
architecture [68]. The architectural variant maintains similar performance. Sur-
prisingly, the empirically trained network does not lead to significant performance
gains. This may be due to the relatively small size of the dataset or the skewed
distribution of positive and negative examples between the synthetic Dex-Net 4.0
dataset and grasp attempts collected from experiments, which have many more
successes. 152

xix

8.9 Results on the bin picking benchmark using a variant of the Dex-Net 4.0 policy
augmented with memory and the ability to push objects to adapt to failures. The
memory-based policy achieves 80% success on the Adversarial objects at over 250
mean picks per hour and does not leave any objects behind in the bin. 153

8.10 Several objects that cause failures across composite policies that plan grasps for
suction and parallel-jaw grippers based on point cloud geometry alone. 154

xx

List of Tables

4.1 Details of the distributions used in the Dex-Net 2.0 graphical model for generating
the Dex-Net training dataset. 52

4.3 Performance of grasp planning methods on the Train dataset with 95% confidence
intervals for the success rate. Each method was tested for 80 trials (10 trials per
object). Details on the methods used for comparison can be found in Section 4.4.3.
We see that REG (point cloud registration) has the highest success rate at 95%
but the GQ-L-Adv performs comparably at 93% and is 3× faster. Performance
of the GQ-CNN drops to 80% when trained on the Empirical dataset (GQ-Emp),
likely due to the small number of training examples, and drops to 78% when no
noise is added to the images during training (GQ-Adv-LowU). 65

4.4 Performance of grasp planning methods on our grasping benchmark with the test
dataset of 10 household objects with 95% confidence intervals for the success
rate. Each method was tested for 50 trials, and details on the methods used for
comparison can be found in Section 4.4.3. GQ performs best in terms of success
rate and precision, with 100% precision (zero false positives among 29 positive
classifications). Performance decreases with smaller training datasets, but the
GQ-CNN methods outperform the image-based grasp quality metrics (IGQ) and
point cloud registration (REG). 66

4.2 Classification accuracy of models on Adv-Synth. The GQ-CNNs have less than
2.5% test error while ML-RF and ML-SVM are closer to 10% error. Pre-training
does significantly affect performance. 66

5.1 Performance of bin picking policies on rollouts in the simulator as a function of
the level of noise injection. 78

5.2 Performance of grasping policies on the Basic dataset containing 25 opaque and
rigid test objects with heaps of size N = {5, 10} averaged over 20 and 10 inde-
pendent trials, respectively. Human performance is approximately 600 PPH. . . 81

5.3 Generalization performance of grasping policies on the Typical dataset containing
50 test objects with hinged parts, deformability, and some material transparency
on heaps of size 10 and 20 with 5 independent trials of each. 81

xxi

6.1 Performance of energy-bounded cages planned by EBCS-2D for capturing, push-
ing, and grasping six planar test objects with an ABB YuMi with parallel-jaw
grippers using image-based registration to determine the object pose. We com-
pare with a random baseline that selects random gripper orientations and target
gripper positions uniformly at random from the object bounding box. We exe-
cuted 14 planned pushes for each method, each for 4 trials. 103

7.1 Details of the distributions used in the graphical model for generating the Dex-
Net 3.0 training dataset. 117

7.2 Performance of robust grasping policies with known state (3D object shape and
pose) across 75 physical trials per policy on the Adversarial object dataset. The
policies differ by the metric used to rank grasps, and each metric is computed
using the known 3D object geometry. The robust wrench resistance metric, which
considers the ability of a suction cup to form a seal and resist gravity under
perturbations, has very high precision. In comparison, the Planarity-Centroid
heuristic achieves only 88% precision and 80% success. 122

7.3 Performance of image-based grasping policies for 125 trials each on the Basic
and Typical datasets and 100 trials each on the Adversarial datasets. We see
that the GQ-CNN trained on Dex-Net 3.0 has the highest average precision on
the Basic and Typical objects but has lower precision on the adversarial objects,
which are very different than common objects in the training dataset. A GQ-
CNN trained on the Adversarial dataset significantly outperforms all methods on
these objects, suggesting that our model is able to capture complex geometries
when the training dataset contains a large proportion of such objects. 124

7.4 Performance of classification and correlation with successful object lifts and trans-
ports for various metrics of grasp quality based on 3D object meshes. The metrics
SS, WR, and RWR all use our compliant suction contact model, and RWR uses
our entire proposed method: checking seal formation, analyzing wrench resis-
tance using the suction ring model, and computing robustness with Monte-Carlo
sampling. 125

xxii

Acknowledgments

This thesis has been shaped by interactions with an incredible group of people. First and
foremost, I must thank my advisor Ken Goldberg for encouraging me to pursue the topic
of robot grasping and for many influential discussions on research direction and presenta-
tion. Ken gave me countless advice on research and career, encouraging me to aim high
and continue to improve my communication skills. Thanks to Pieter Abbeel for serving as
a research mentor to me early in my graduate studies, inspiring me to study machine learn-
ing for robotics and sharing some great track workouts and basketball games. My interest
in analytic models was greatly influenced by Ruzena Bajcsy, who pushed me to be a bet-
ter teacher and included me in the design of a new undergraduate course on the subject,
EE106B: Robot Manipulation and Interaction. Ruzena also always provided me with valu-
able guidance and countless stories on the history of robotics and science over the years. I
am also grateful for discussions with Sergey Levine, who inspired several key ideas in this
thesis such as algorithmic supervision, architectures, and data collection systems.

I also received valuable advice from a number of other faculty members at Berkeley.
I owe thanks to my dissertation committee members John Canny and Paul Grigas, who
provided fresh insights and ideas about network analysis and problem formulation later in
my graduate studies. Anca Dragan and Shankar Sastry influenced me to think of connections
with imitation learning, motion planning, and geometric modeling. Ron Fearing, Jonathan
Schewchuk, and Trevor Darrell also provided helpful discussions related to this work.

For the first three years of my thesis I also worked part time for my startup company
on 3D scanning, Lynx Laboratories, and its acquirer, Occipital Inc. I am extremely grateful
to have worked with Chris Slaughter, Dustin Hopper, and Nick Shelton who inspired me to
find problems on the line between research and real-world applications. I must also thank
my undergraduate advisor and co-founder Sriram Vishawanath, who provided endless career
advice to me over the years. Jeff Powers supervised my work with Occipital and influenced
me to find applications of Convolutional Neural Networks trained on depth images.

Developing the software and hardware for experiments in this thesis depended on rela-
tionships with several industrial partners who provided useful insights and resources. Thanks
to Jan Ziska of Photoneo, Peter Puchwein and the team at Knapp, Juan Aparicio Ojea of
Siemens, Eric Tondelli and Cristina Cristialli of Loccioni, Inc., Tom Fuhlbrigge, Greg Cole,
and the team at ABB, Tye Brady of Amazon, Nuttapong Chentanez of NVIDIA, Mike Haley
of Autodesk, and James Kuffner and Kai Kohlhoff of Google (at the time).

The National Defense Science and Engineering (NDSEG) fellowship supported me in
the last three years of my research. I am deeply appreciative of the NDSEG program, as
the fellowship gave me the freedom to explore and consider high-risk, high-reward research
on deep learning from synthetic training data. I am also grateful for receiving a one year
fellowship from the EECS department at UC Berkeley during my graduate studies.

My research was also influenced by discussions with many members of the international
robotics community that I was fortunate to meet over the years. While naming everyone
would be tremendously difficult, I wish to acknowledge several individuals in particular who

xxiii

provided useful insights and feedback on my research: Alberto Rodriguez, Russ Tedrake,
Matei Ciocarlie, Rob Platt, Frank van der Stappen, Lerrel Pinto, Andreas ten Pas, Marcus
Gualtieri, Maria Bauza, Francois Hogan, Nikhil Chavan Dafle, Nima Fazeli, Lucas Manuelli,
Pete Florence, Doug Morrison, Jiaji Zhou, Anastasiia Varava, Ed Johns, Marek Cygan, and
Jingyi Xu.

I was extremely lucky to work with several highly talented undergraduate researchers that
contributed to the research in this thesis over the years: Sidd Sen, Adithya Murali, Brian
Hou, Melrose Roderick, Raul Puri, Sahanna Suri, Sherdil Niyaz, Jacky Liang, Brenton Chu,
Richard Doan, Xinyu Liu, Alan (Pusong) Li, Vishal Satish, Chris Correa, Andrew Lee, and
Andrew Li. Their excitement and passion for research inspired me to be a better teacher,
mentor, and communicator.

Interactions with other brilliant researchers from the Berkeley robotics, machine learning,
and computer vision communities influenced this thesis: John Schulman, Kevin Jameison,
Phillip Moritz, Saurabh Gupta, Pulkit Agarwal, and Mathieu Aubry.

I owe a huge thanks to Shirley Salanio of the EECS department for guiding me through
the Berkeley degree requirements and providing helpful advice along the way.

My colleagues at the Berkeley AUTOLAB had tremendous influence on my graduate
experience. Thanks to Sachin Patil, Florian Pokorny, and Ben Kehoe for their mentorship
early in my graduate studies. I owe a huge thanks to Michael Laskey, Sanjay Krishnan, Ani-
mesh Garg, and Zoe McCarthy for sharing countless debates, big dreams, and unforgettable
experiences. Many of the experiments in this thesis would not have been possible without
collaboration with Stephen McKinley, David Gealy, and Menglong Guo, who helped develop
the robot hardware systems. I appreciate their inspiration to take risks, find adventure, and
build incredible systems. Similarly, the software systems required to implement this thesis
were only possible with the help of Matthew Matl and my undergraduate mentees above,
who pushed my research to new heights, providing key computational insights and making
it possible to share with the broader research community. I am also grateful to have worked
alongside Lauren Miller, Daniel Seita, Sammy Staszak, Carolyn Chen, Aimee Goncalves,
Mike Danielczuk, and Bill DeRose.

Thanks to my friends for support and fun throughout my graduate experience: Anish
Mittal, Robert Nishihara, Esther Rolf, Alyssa Morrow, Lucy Stephenson, Jonathan McKin-
ley, Mark Nyman, Jessica Lee, Trevor Crum, Lee Barnett, the EECS Jazz Group, the IHT
softball team, and the BAIR ballers. Thanks in particular to Yelena and the Kulik family
for encouraging me to pursue a PhD.

Last but not least, I must acknowledge the love, support, and encouragement of my
family. I’m especially grateful for my brother Tim Mahler for being there through the good
times and bad, my brother Ian Pelkey for reminding me that anything is possible, and my
parents Cheryl Thalmann and Ken Mahler for instilling in me a belief that I can always
achieve something greater.

1

Part I

Introduction and Background

2

In general, we're least aware of what our minds do best.
We're more aware of simple processes that don’t work well
than of complex ones that work flawlessly.

MARVIN MINSKY

3

Chapter 1

Introduction

1.1 Robot Grasping
Humans can grasp and manipulate novel objects with ease, quickly moving dishes from a
sink to a dishwasher, picking items off of a grocery shelf, and packing objects into bags or
boxes. Robots with a similar ability to reliably grasp a wide variety of objects can benefit
applications such as warehousing, logistics, manufacturing, medicine, retail, and assistance
for the elderly and disabled, where the set of possible objects is constantly growing and
changing. Nonetheless, grasping is highly challenging for robots due to limitations in per-
ception and control. Sensor noise and occlusions obscure the exact shape and position of
objects in the environment. Quantities such as contact forces, center of mass, and friction
cannot be directly observed and must be inferred based on interaction. Imprecise actuation
and calibration make it difficult to reach target arm configurations exactly. Robot grippers
have either limited degrees of freedom, control imprecision, or short lifetimes. As a conse-
quence, a robot’s policy for planning a grasping strategy based on sensor data such as images
cannot assume precise knowledge or control of its arm, grippers, sensors, or objects in the
environment. Despite over 40 years of research, reliable robot grasp planning across objects
spanning a diverse range of shapes, sizes, and material properties remains unsolved, and cur-
rent industry applications of robot grasping are limited to highly controlled environments
where target objects are exactly known a priori.

1.2 Grasp Analysis
Historically, the primary focus of robot grasping research has been methods for planning
and evaluating grasps using model-based analyses based on physics and geometry. Analytic
methods have primarily considered the ability of a grasp to achieve a mechanical quasi-static
equilibrium or high mechanical advantage in the presence of disturbing forces and torques
(e.g. due to gravity) [136], the ability to bound an object’s mobility geometrically [144],
or the ability to achieve dynamic stability evaluated through Lyapunov analysis [154] or

CHAPTER 1. INTRODUCTION 4

simulation [82]. Given an analytic measure of grasp success, analytic grasp planners aim to
find a configuration (e.g. joint angles, gripper pose) to maximize the measure.

These approaches assume precise knowledge of properties such as object shape, pose,
and friction, and therefore require a separate perception system that can estimate the state
of objects and the gripper. To plan grasps for a physical robot, a common approach is to
precompute a database of known 3D objects labeled with grasps and analytic grasp quality
metrics such as GraspIt! [51] or OpenGRASP [97]. Pre-computed grasps are indexed using
a perception system based on instance recognition and point cloud registration: geometri-
cally matching point clouds to known 3D object models in the database using visual and
geometric similarity [14, 24, 50, 63, 186]. Then, the highest quality grasp for the estimated
object instance is executed on the physical robot. To model errors in the perception system
and imprecision in control, a number of robust analytic grasp planning methods have been
developed to analyze grasps under stochastic perturbations by using statistical sampling over
known distributions on object shape [35], object pose [81, 82, 178], or gripper pose [94].

Analytic methods can be used to efficiently generate large datasets of labeled grasps across
thousands of 3D objects [50] using recent advances in distributed Cloud Computing [81] and
parallel GPU processing. However, developing reliable perception systems to register sensor
data to known objects and grasps in the dataset remains an open problem [52, 186]. In
practice, registration-based perception systems are prone to errors [5], may not generalize well
to new objects, and can be slow to match point clouds to known models during execution [50].

1.3 Deep Learning
A promising recent approach to grasp planning is to formulate it as a machine learning
problem, where the goal is to train a function to approximate a desired set of outputs from
a desired set of inputs based on a dataset of examples [11]. Deep neural networks are
a class of particularly expressive functions that have been shown to achieve state-of-the-
art performance on benchmarks for image classification [88], object detection [47], speech
recognition [56], and machine translation [165] when trained on massive datasets such as
ImageNet [31], outperforming decades of previous research. Since deep learning can, in
principle, be applied to any dataset defining desired inputs and outputs, grasping can be
also posed as a deep learning problem: train the weights of a neural network to map directly
from robot sensor data to a grasp configuration for the robot arm. Thus, recent research
has explored the question: can deep learning be used for grasp planning that generalizes to
a diverse set of novel objects?

In contrast to vision and speech, where large-scale benchmarks such as ImageNet have
been developed over decades [31], robot grasping does not have standardized training datasets.
Thus, a research on deep learning for robot grasping has largely explored methods for col-
lecting massive labeled training datasets containing millions of example images and grasps.
A number of empirical results suggest that deep learning from large datasets of human grasp

CHAPTER 1. INTRODUCTION 5

labels [96] or physical grasp outcomes [98, 131] can be used to plan grasps directly from
images or point clouds that are successful across a wide variety of objects.

Research on human-labeled grasping has largely focused on defining interfaces and sys-
tems for humans to label graspable regions in RGB-D images [96] or point clouds [32, 62, 77].
While human labels offer the benefit of high empirical correlation with physical success [5]
without requiring execution on a physical robot, labels may be expensive to acquire for large
datasets and human labeling errors may reduce performance.

Another approach is to use self-supervision, in which a physical robot automatically
collects datasets by attempting grasps on a set of training objects and labeling grasps with
the success or failure of each attempt [98, 131]. This approach is particularly appealing
because the data is unbiased: labels reflect performance on the same physical robot system
that will be used for testing. Research on self-supervision has largely focused on methods for
dataset collection that iteratively concentrate sampling on more promising grasps. One class
of techniques uses dataset aggregation, in which batches of data are collected on continuously
operating robot arms using the network trained on all of the data collected so far [98,
131]. Another class of techniques has focused on active grasp acquisition with Multi-Armed
Bandits [89, 119, 125] or Reinforcement Learning [74]. Empirical results suggest that deep
neural networks can generalize well to novel objects after approximately one robot year of
continuous data collection.

While research on deep learning from empirical grasping datasets is promising, it has
highlighted one property of robot grasping that makes it difficult to apply standard deep
learning techniques: collecting massive empirical training datasets is extremely expensive.
Dataset collection requires tedious hand-labeling [77, 96] or months of continuous execu-
tion on a physical system [98, 131] and performance appears to plateau as the dataset size
grows [98]. The datasets may contain mislabeled data due to human errors, hardware fail-
ures, drifting calibration, imprecision in sensors used to automatically detect grasp successes
and failures. Futhermore, training datasets are specific to the robot arm, gripper, cameras,
and environment conditions such as lighting and may need to be re-collected for each new
environment.

1.4 Grasp Planning in Practice
Due to the limitations of both analytic methods and empirical deep learning methods, prac-
tical applications of robot grasping either operate under highly controlled conditions where
exact object shape and pose [55] are known or use hand-coded heuristics to plan grasps for
point cloud and image data [40]. One application of grasp planning is in industrial picking
systems, where the goal is to iteratively grasp and transport a known object from a bin or
conveyor to a receptacle. Current systems handle one known part at a time, using exact
CAD models of the known object to accurately estimate the object shape and pose to index
a pre-computed grasp to execute [55, 66]. In less structured applications such as home de-

CHAPTER 1. INTRODUCTION 6

cluttering, grasp planning for unknown objects is often based on geometric heuristics such
as aligning the gripper with the object principal axis [5, 24].

Recently, the Amazon Robotics Challenge (ARC) highlighted the gap between grasp
planning theory and practice for robot picking and stowing for warehouse automation. In
all three years, the winning team’s approach was based on planning grasps for a custom
high-flow vacuum suction gripper using point cloud heuristics [40, 60, 120] such as targeting
planar surfaces along the inward pointing surface normal. Several teams attempted to build
3D object registration systems which required complicated systems to collect datasets of
known objects in known poses on cluttered shelves [141, 186]. In 2016 and 2017, a number of
teams began to explore the use of deep neural networks for rapidly predicting grasp success
from images [187] by tediously hand-labeling training datasets.

While considerable progress has been made over the past several years, applications such
as the ARC have highlighted a clear gap between theory and practice. Empirical dataset
collection for training deep grasping policies is impractical due to the high cost of data, and
analytic methods do not scale to many diverse objects.

1.5 Thesis Goals and Contributions
The goal of this thesis is to explore algorithmic approaches to robot grasp planning that
combine the scalability and interpretability of analytic methods with the generalization abil-
ity of empirical deep learning methods. Building upon recent advances in deep learning,
parallel computing, high-resolution 3D sensing, and theory from geometric modeling, grasp
mechanics, noise models, and stochastic sampling, we propose a novel hybrid approach to
grasp planning that uses analytic models to generate massive synthetic training datasets for
learning deep grasping policies that plan grasps directly from images.

Key to our hybrid approach is constructing an end-to-end probabilistic generative model
for synthetic training data that is computationally efficient and transfers well from simulation
to reality. In this thesis, we develop generative models of training data for grasping a wide
variety of objects with parallel-jaw and suction cup grippers. To increase learning efficiency,
we introduce algorithmic supervision techniques that use the fully known state of objects in
simulation to guide data collection toward more promising grasps. We implement the hybrid
approach in the Dexterity Network (Dex-Net), a research project including code, datasets,
and algorithms for generating datasets of synthetic point clouds, robot grasps, and grasp
quality metrics by analyzing models of geometry, physics, and optics across thousands of
3D object models. To evaluate the method, we perform tens of thousands of experimental
trials on a physical robot which suggest that deep learning from massive synthetic training
datasets generated with Dex-Net over several days of computation can be used to rapidly and
reliably plan grasps across a wide variety of novel objects, outperforming existing heuristics
and analytic methods. Code, datasets, videos, and supplemental material for research related
to this thesis can be found at https://berkeleyautomation.github.io/dex-net.

CHAPTER 1. INTRODUCTION 7

The primary contributions of this thesis are:

• We formalize the robust grasp planning problem in a framework that relates analytic,
empirical, and hybrid approaches.

• We develop a common structure for dataset generation distributions in terms of a state
distribution, reward distribution, observation function, and algorithmic supervisor.

• We present a hybrid approach to grasp planning that aims to automate the generation
of training datasets for learning deep grasping policies that plan grasps directly from
image by using computer implementations of end-to-end analytic models for grasp
success and synthetic depth images.

• We propose models for generating datasets to train policies to lift and transport objects
from a tabletop or cluttered bin using a parallel-jaw (two-finger) or suction cup gripper.

• We derive new robust grasp quality metrics based on resisting target forces and torques
under perturbations and bounding the mobility of an object under an energy field such
as gravity.

• We develop algorithms for rapid grasp analysis in the Cloud.

• We introduce Grasp Quality Convolutional Neural Network (GQ-CNN) architectures
for learning to predict the quality of candidate grasps from depth images.

• We present the Dexterity Network (Dex-Net), a system for generating datasets by ana-
lyzing mechanical models of contact forces and torques under stochastic perturbations
across thousands of 3D object CAD models, and present five version of massive training
datasets generated with Dex-Net.

• We explore methods for learning robust policies that transfer from simulation to reality
and that can decide between a set of hardware gripper alternatives to use for grasping
a particular object.

• We present the results of tens of thousands of experimental trials on physical robots
benchmarking analytic, empirical, heuristic, and hybrid grasp planning methods on a
diverse set of objects suggesting that this approach can achieve a grasp success rate
of over 95% for lifting and transporting common novel objects from dense clutter in a
bin.

1.6 Thesis Outline
This thesis is organized in four parts. Part I provides background on the robust grasp
planning problem and introduces the hybrid approach based on synthetic dataset generation.

CHAPTER 1. INTRODUCTION 8

• Chapter 2 formalizes the robust grasp planning problem, categorizing methods based
on their solution approach.

Part II develops an end-to-end model for for generating datasets to train a parallel-jaw
grasping policy to lift, transport, and hold an object under perturbations (e.g. shaking)
based on geometric 3D point cloud data of the object of interest.

• Chapter 3 introduces Dex-Net 1.0, develops a generative model for grasps and rewards
computed across thousands of 3D objects, explores its application to rapid grasp com-
putation for novel 3D objects in the Cloud by learning for prior data, and evaluates
quality metrics proposed by the model on a physical robot with a millimeter-accurate
registration system. This contains research previously published as [104].

• Chapter 4 extends this generative model to include synthetic point clouds generated
by rendering depth images of 3D object models in randomized poses on a tabletop,
and demonstrates that the model can be used to train a Grasp Quality Convolutional
Neural Network (GQ-CNN) that can rapidly plan grasps for a diverse set of objects on
a physical robot. This contains research previously published as [105].

• Chapter 5 further extends the model to a time sequence of grasps for iteratively re-
moving a novel object from a clutter bin to a receptacle, and introduces an imitation
learning method based on sampling grasps from and algorithmic grasping supervisor
that indexes pre-computed grasps using the known state of objects in simulation. This
contains research previously published as [103].

Part III explores extensions of the hybrid method to new grippers and tasks by developing
novel physics-based reward functions and algorithmic supervisors that guide data collection
by planning optimal grasps given full knowledge of the state of the environment:

• Chapter 6 considers the problem of bounding the mobility of an object under energy
fields such as gravity or friction during constant-velocity pushing, and develops an
algorithmic supervisor that can compute energy-bounded caging configurations using
techniques from computational topology. This contains research previously published
as [110].

• Chapter 7 extends the dataset generation distribution for parallel-jaw grippers to vac-
uum suction grippers, developing the suction ring contact model, a new model of
compliant contact for suction cup grippers and wrench resistance, a new reward func-
tion for assessing the ability of a grasp to lift and transport objects. This contains
research previously published as [106].

• Chapter 8 explores learning composite policies that decide between a parallel-jaw and
suction gripper for bin picking based on sub-policies for each gripper, and develops
a gripper-agnostic reward model and efficient algorithmic supervisor for large scale
dataset generation. Research in this section is previously unpublished.

CHAPTER 1. INTRODUCTION 9

Part IV discusses limitations of the method uncovered by the work in this thesis and
highlights opportunities for future research on efficient learning of robust robot grasping
policies.

10

Chapter 2

Robust Grasp Planning

Robot grasp planning considers the problem of determining a set of control parameters to
grasp an object based on imprecise sensor data such as images. Approaches to this prob-
lem span a wide spectrum from analysis of physics-based models, to machine learning on
empirically-collected training datasets, to design of specialized robot gripper hardware. In
this chapter, we formalize a unified objective for robust grasp planning and highlight the
problem of generalization across objects, the core topic of this thesis. We classify past re-
search into two approaches to the robust grasp planning problem: analytic and empirical
methods. Finally, we introduce a hybrid dataset generation approach for synthesizing mas-
sive training datasets of images, grasps, and labels for the success and failure of each grasp.

We wish to emphasize that the goal of formalism in this chapter is not to provide theoret-
ical guarantees. In fact, theoretical guarantees are rarely considered in this thesis due to the
difficulty of relating theory to physical robot systems. The aim of this chapter is to provide
a common language for describing algorithmic approaches to grasp planning. Through the
abstractions discussed in Section 2.1, we identify key relationships between variables in order
to understand the tradeoffs of using different methods. This formalism has been crucial to
the design of experiments in this thesis and we hope that it can inform comparisons between
grasp planning methods in future benchmarks.

2.1 Problem Statement
We formalize robust grasp planning as a Partially Observable Markov Decision Process
(POMDP) [72] in which a robot plans grasps for objects in the environment in order to max-
imize expected reward (e.g. probability of a successful grasp) given imperfect observations
of the state of the environment.

CHAPTER 2. ROBUST GRASP PLANNING 11

State

Observation Reward

Rπ

x

Robot
Policy

Figure 2.1: Graphical model illustrating the robust grasp planning problem. A robot policy π plans a grasp
action u based on a noisy observation of a set of objects in state x and receives a reward R based on the result
of executing the grasp. The goal is to learn a policy that achieves high expected reward on a distribution of
states, observations, and rewards (e.g. a particular set of objects).

2.1.1 Definitions
The robust grasping problem, illustrated in Fig. 2.1 is defined by:

• States. Let x ∈ X be the state of a set objects and sensors in the environment.
The state of each object O includes object geometry, pose and other variables (e.g.
frictional properties, and center of mass). The state of each sensor C includes the pose
and parameters of the sensor (e.g. focal length of a camera).

• Observations. Let y ∈ Y be a sensor observation (e.g. an image) that the robot
acquires with a sensor in a given state. An observation typically depends on the state
by the observation function y = f(x). In general the function f is not invertible due
to occlusions.

• Grasp Actions. Let u ∈ U define a robot grasp action (e.g. gripper pose) from a set
of possible grasps. In general, a grasp consists of a minimal set of control parameters to
achieve a desired motion. Throughout this thesis, a grasp u is defined as a robot gripper
G consisting of the geometry and physical parameters (e.g. friction) of the gripper, and
a pose for the robot gripper relative to a world reference frame Tg consisting of a 3D
rotation and translation Tg = (Rg, tg) ∈ SE(3), unless otherwise specified.

CHAPTER 2. ROBUST GRASP PLANNING 12

• Reward. Let R(x,u) ∈ {0, 1} be the binary reward for a given state and grasp, based
on whether grasp u successfully establishes contact with one or more objects in x to
accomplish a given goal, such as lifting and transporting the object to another location.

• Robot Policy. Let π : Y → U be a robot grasping policy that takes as input an
observation and returns a grasp for the robot to execute: uπ = π(y).

• State Distribution. Let p(x) be a distribution over possible states. For example,
this could be a uniform distribution over a set of possible 3D objects and their poses
resting on a tabletop or a Gaussian Process Implicit Surface distributio over possible
object states (Appendix A)

• Observation Distribution. Let p(y | x) be a distribution over observations given a
state modeling sensor noise.

• Reward Distribution. Let p(R | x,u) be a distribution over rewards for a given
state and action due to imprecision in control.

Definition 1 (Environment). A grasping environment is a joint distribution on states, ob-
servations, and rewards given a grasp action:

p(R,x,y | u) = p(x)p(R | x,u)p(y | x)

Example: Grasping a Single Object from a Depth Image

For concreteness, consider the problem of grasping a single object in a randomized pose on a
tabletop based on images from a depth camera as illustrated in Fig. 2.2. The state x consists
of the object state O (geometry and pose) and camera state C (pose). Sampling the initial
state distribution p(x) places the camera directly above the table with a randomized view
angle and places the object in a random stable resting pose on the tabletop. Observations
y consist of depth images from the camera viewpoint. The policy plans a grasp action u
consisting of the pose of a parallel-jaw gripper and is rewarded for successfully lifting the
object from the tabletop. We consider this environment in detail in Chapter 4.

2.1.2 Objective
The objective is to learn a grasping policy π to maximize the expected reward, or success rate,
for a given environment:

π∗ = argmax
π∈Π

E [R(x, π(y))] (2.1.1)

where the expectation is taken with respect to the environment p(R,x,y | u) and Π is the
set of candidate policies.

Many approaches to robust grasping focus on computing a grasp quality function to rank
grasp candidates by their expected reward.

CHAPTER 2. ROBUST GRASP PLANNING 13

O

y

Camera

u

C
x = (O, C)

Figure 2.2: Grasping environment for lifting a single object in a randomized pose on a tabletop with a single
depth camera.

Definition 2 (Grasp Quality). Let Q be the quality of a grasp given an observation:

Q(y,u) = ER,x [R(x,u) | y]

Note that unlike R which is a binary function, Q is a continuous function with values in the
range [0, 1].

An optimal robust grasping policy computes the grasp that maximizes grasp quality given
an observation:

π∗(y) = argmax
u∈U

Q(y,u)

This follows from the equivalence of the problem statement to a single timestep Partially
Observable Markov Decision Process (POMDP) [17, 156].

The success rate for a grasping policy over a distribution of states, observations, and
rewards can alternatively be defined as:

Φ(π) = Ey[Q(y, π(y))]. (2.1.2)

This follows from the law of iterated expectations. Using this definition, the grasp planning
problem can be written concisely as:

π∗ = argmax
π∈Π

Φ(π) (2.1.3)

CHAPTER 2. ROBUST GRASP PLANNING 14

2.1.3 Extensions
In practice, a robot grasping policy is part of a larger system to perform a task that involves
a sequence of actions as quickly as possible. For example, robots fulfilling customer orders
in warehouses may grasp products from bins or shelves as a first step to packing them in
a shipping box. We briefly discuss two extensions to put the robust grasp planning into a
broader context: sequential grasp planning and industrial picking.

Sequential Grasping

The goal of sequential grasping is to maximize the success rate of a policy over a sequence
of grasp attempts. This is an instance of a Partially Observable Markov Decision Process
(POMDP) [72]. In addition to the definitions of Section 2.1.1, sequential grasp planning
includes:

• Horizon. Let T be an integer representing the maximum allowed number of attempts.

• Transition Function. Let p(xt+1 | xt,ut) be a distribution over next states given the
current state and action modeling the physics of the problem. For example, a transition
function could model the probability that a grasp successfully moves an object to a
new position or removes the object from a heap.

Furthermore, in the sequential setting a reward function R(xt,ut,xt+1) is also a function of
the next state. The graphical model for sequential grasp planning is illustrated in Fig. 2.3

The objective of sequential robust grasp planning is to maximize the success rate over a
series of grasp attempts:

π∗ = argmax
π∈Π

E
[

1
T

T−1∑
t=0

R(xt, π(yt),xt+1)
]

(2.1.4)

where the expectation is taken with respect to the joint distribution

p(R0,x0,y0, ...,xT ,yT | π) = p(x0)
T−1∏
t=0

p(yt | xt)p(Rt | xt, π(yt),xt+1)p(xt+1 | xt, π(yt))

This joint distribution specified the grasp environment for a sequential grasp planning prob-
lem.

An optimal robust grasping policy for the sequential grasping problem depends on the
history of all past actions and observations up to time t: ht = (y0,u0...,yt−1,ut−1) where
h0 = ∅ [156]. This is because the sequence of observations is non-Markovian – the proba-
bility of the current state of objects in the environment is informed by all past actions and
observations.

CHAPTER 2. ROBUST GRASP PLANNING 15

π
Robot
Policy

State

x0

Observation
y0

Reward

R0

x1

y1

R1

π
Robot
Policy

State

Observation

Reward

R2

π
Robot
Policy

State

Observation

Reward

x2

y2

...

Figure 2.3: Graphical model illustrating the sequential robust grasp planning problem. An initial state x0 is
sampled from the initial state distribution. On each timestep robot policy π plans a grasp action ut based
on a noisy observation of a set of objects in state xt and receives a reward Rt based on the result of executing
the grasp. The goal is to learn a policy that achieves high expected reward for up to T consecutive grasp
attempts.

We can define an optimal grasping policy in terms of grasp quality by including the
policy, history, and future rewards in the definition:

Qπ(yt,ut,ht) = E
[
T−1∑
s=t

R(xs,us,xs+1) | yt,ht, π
]

An optimal policy is given by:

π∗(yt) = argmax
u∈U

Q∗(yt,ut,ht)

where Q∗ is the quality function that satisfies the Bellman equation [166].
Computing Q∗ is challenging due to the sample complexity of Q-function estimation [73]

and the large number of possible states. We discuss practical approximations in Chapters 5
and 8.

CHAPTER 2. ROBUST GRASP PLANNING 16

Industrial Picking

The goal of industrial robot picking is to find a robot policy that maximizes Mean Picks Per
Hour (MPPH), or the number of objects that are successfully grasped per hour. This has
applications in bin picking, where the goal is to grasp and transport a set of objects from a
bin to a container as quickly as possible.

Definition 3 (Mean Picks Per Hour). The mean picks per hour (MPPH) of a policy π is
defined by:

ρ(π) = E

T∑
t=0

R(xt, π(yt))
T∑
t=0

∆(π(yt))

 (2.1.5)

where T is the number of grasp attempts and ∆(u) is the duration of grasp attempt u as a
fraction of an hour. This expectation is with respect to the joint distributions of states p(x),
observations p(y | x), and rewards p(R | x,u).

Note that ρ is a problem-dependent quantity and therefore values of ρ cannot be directly
compared across different sets of objects or different sensors.

Note that the time duration per grasp includes the time required for sensing, computation,
and physical motion of the robot. We can divide ∆ into elements to reflect the mean time
per grasp required for sensing ts, computation tc, and physical motion of the robot tr:

∆ = ts + tc + tr,

where times are expressed as fractions of an hour.
If we consider the time per grasp to be a constant ∆ for all t, then we can define the

mean grasp rate (grasps attempted per hour) as:

ν = 1/∆. (2.1.6)

Under these assumptions, MPPH is equivalent to:

ρ(π) = νΦ. (2.1.7)

where Φ is defined in Equation 2.1.2.
This suggests that in industrial picking, there is a fundamental tradeoff between achieving

a high success rate and executing grasps faster. In practice it is common to first select robot
and sensor hardware that meets a predefined computational budget and then find a robust
grasping policy (Equation 3.1.1) under these constraints to achieve a higher success rate.

2.2 Solution Approaches
In this section, we formalize each approach to the robust grasping problem. We characterize
methods in terms of two phases:

CHAPTER 2. ROBUST GRASP PLANNING 17

1. Training Phase. Learn an estimated quality function Q̂ over a dataset of states,
observations, grasps, and rewards defining the success or failure of each grasp.

2. Test Phase. Compute a grasp given an observation by evaluating a robust grasping
policy based on the estimated quality function:

û = π̂(y) = argmax
u∈U

Q̂(y,u). (2.2.1)

We first discuss hardware-centric and heuristic methods before describing algorithmic ap-
proaches in detail.

2.2.1 Gripper Hardware Design
A large body of research in grasping has focused on the design of robot grippers to facilitate
grasping. Research has considered a number of designs, including underactuated grippers [23,
126], compliant fingertips [27, 53], high friction fingertips [58], tactile sensing [71, 159], and
soft hands [15, 30, 146]. In the robust grasp planning framework, hardware-based methods
can be interpreted as optimizing the reward distribution p(R | x,u) by expanding the set of
grasp actions that lead to high reward.

While advances in gripper design are promising, hardware-design is not a complete ap-
proach to grasp planning – hardware-centric methods still require a policy that plans robust
grasps for a given gripper. Since soft and underactuated grippers are difficult to model,
heuristic grasp planning methods such as aligning with the object principal axis, are com-
mon in practice.

2.2.2 Heuristic Methods
A number of grasp planning methods in practice are based on geometric heuristics. Most
methods are based on ranking a set of candidate grasps by hand-designed grasp quality
functions.

Training Phase

In the training phase, a person typically tunes a hand-coded grasp quality metric Q̂ until a
sufficient level of performance is reached. Heuristic quality functions typically differ based
on the gripper. For vacuum suction cup grippers, common heuristic quality metrics include
alignment with the inward-pointing surface normal [120], targeting planar surfaces [184], and
targeting surfaces near the object centroid [60]. For parallel-jaw and multifinger grippers,
the most common heuristic is to align the gripper with object principal axes after segmenting
the object from the background [5].

CHAPTER 2. ROBUST GRASP PLANNING 18

Test Phase

To deploy a heuristic grasping policy, a set of grasp candidates are sampled based on the
sensor data and scored using the heuristic grasp quality function. The robot then executes
the highest-quality grasp that is kinematically feasible and collision-free.

Discussion

Heuristic grasp planning methods may work well in practice and have been used by the win-
ning teams of the Amazon Robotics Challenge in all three years [40, 60, 120] However, these
methods have several significant shortcomings. First, they are often tuned for a particular
object set, camera, or environment and require expert knowledge to tune for a new scenario.
Second, heuristics cannot be related to the robust grasp planning objective of Equation 3.1.1,
making it difficult to analyze performance and understand the limitations of when they can
or cannot be used. Third, many heuristic require an approximate segmentation of the target
object in images, which is very difficult in unstructured environments such as cluttered bins.

2.2.3 Analytic Methods
The majority of research in robot grasping over the past 40 years [136] is based on analytic
methods. Analytic methods assume a separate perception system that provides a state
estimate x̂ for a set of objects. The estimate used to index pre-computed quality metrics for
a set of pre-computed grasps on CAD models of similar objects which can then be executed
directly on the robot.

Analytic approaches fall into two categories based on the training method: classical
methods that evaluate Q̂ deterministically assuming perfect state knowledge and control
precision and stochastic methods that evaluate Q̂ via statistical sampling using a distribution
over possible states and grasps due to imprecision in perception and actuation. In both cases
the estimated quality function Q̂ is associated with a pre-computed grasps defined relative
to the object, so that in the test phase grasps can be executed by indexing the grasp and
pose from a database [116].

Training Phase: Classical Analytic Methods

Classical analytic grasp planning methods assume perfect, fully-observed state information
(e.g. x̂ = x) from a perception system and that the reward for a given grasp can be
determined using an analytic formula based on physics or geometry. To plan a grasp, classical
methods find a grasp (not necessarily unique) to maximize the analytic grasp reward metric
using exact knowledge of the object and contact locations:

u∗ = π(x) ∈ argmax
u∈U

R(x,u). (2.2.2)

CHAPTER 2. ROBUST GRASP PLANNING 19

An extensive body of research explores methods to evaluate R(x,u). Reward functions
are typically based on three types of criteria: mechanical analysis of quasi-static equilib-
ria [164], geometric constraints on object mobility [144], and analysis of dynamic stabil-
ity [154].

Methods based on mechanical analysis typically consider the feasibility of a quasi-static
equilibrium between a contact forces exerted by the robot fingers and a set of disturbing
wrenches (forces and torques) on the object e.g. due to gravity. A grasp is in force closure
if a quasi-static equilibrium exists for any possible disturbing wrench, assuming that the
gripper can exert infinite contact forces. When a quasi-static equilibrium exists, several
metrics have been proposed to provide a relative ranking between grasps. One class of
metrics measures the ratio of the magnitude of actuated contact forces to the magnitude of
a disturbing wrench that the grasp is resisting. The most widely known metric is the epsilon
grasp quality [41], which computes the worst-case ratio over all possible disturbing wrenches.
Another class of metrics measures the ability of the grasp to exert task-specific wrenches,
often modeled as an ellipsoid in wrench space [100].

Reward functions based on constraining object mobility analyze whether or not the object
mobility is bounded by rigid placement of the robot gripper. A grasp that completely
immobilizes the object is in form closure [136]. When the object can move but the grasp
constrains the object motion to a bounded region of the state space, then the grasp cages the
object [142]. These conditions are usually evaluated by analyzing the configuration space
between the object and gripper.

A third class of analytic reward functions consider whether or not a grasp is dynami-
cally stable under the presence of disturbing wrenches. Stability-based methods typically
model each finger contact as a spring-mass damper system attached to the object and use
Lyapunov analysis to determie stability [154]. Several methods have also been proposed
to construct stable compliance matrices for fingertips of a force closure grasp [123]. These
analysis methods are relatively uncommon, perhaps due to the computational complexity of
stability analysis when contact modes can change (e.g. from sticking to slipping).

Training Phase: Robust Analytic Methods

In practice, perfect state information is not available, nor is it possible to perfectly control
a robot to achieve a desired grasp. Robust analytic methods evaluate classical analytic
reward functions under stochastic perturbations in the object state and grasp action to
model imprecision in sensing and control.

Robust methods define a state with a random variable x̃ = x̂ + ε, where x̂ = g(y) is a
nominal state estimate from a perception system g and ε models errors in state estimation
due to sensor imprecision. For example, ε might model errors in a 6-DOF pose estimate
for a known rigid object from a geometric alignment algorithm such as Iterated Closest
Point (ICP). Often this distribution models either Gaussian error in object pose [82, 178] or
shape [35]. Similarly, grasp commands may be defined by a random variable ũ = u+δ where
u is the command sent to the robot and δ models imprecision in control [94]. Typically the

CHAPTER 2. ROBUST GRASP PLANNING 20

uncertainty ε and δ are modeled with zero-mean Gaussian distributions, although in practice
parametric models may not be appropriate due to asymmetries in sensing and control (eg,
cable hysteresis).

Robust analytic grasp planning methods maximize the expected reward under the mod-
eled distributions on state and action:

π(y) = argmax
u∈U

Q(y,u)

= argmax
u∈U

E [R(x̃, ũ) | x̂,u]

= argmax
u∈U

∫
R(x̃, ũ) p(x̃ | x̂) p(ũ | u) dx̃ dũ

(2.2.3)

To estimate the robustness Q for an object and grasp, a common approach is to use
Monte-Carlo integration with N samples of object state and grasp perturbation samples
drawn from p(x̃ | x̂) and p(ũ | u):

Q̂(x̂,u) = 1
N

N∑
i=1

R(xi,ui) (2.2.4)

This estimate can then be associated with an object in a database. The Monte-Carlo ap-
proach is popular because it is straightforward to implement and highly parallelizable. How-
ever, this approach may require a large number of samples to evaluate quality for each grasp
on each object.

An alternative approach is to use adaptive sampling methods to allocate samples on
more promising grasps. Several approaches have been proposed based on Bayesian Opti-
mization [89] and Multi-armed Bandits [94]. These approaches may significantly reduce the
number of samples required to identify the highest quality grasp on an object by an order
of magnitude. However, one drawback is that lower-quality grasps will have poor quality
estimates because they have been allocated fewer samples. This may be problematic when
grasping an object from clutter, where only a small number of grasps may be available.

Test Phase

To deploy an analytic grasping policy in practice, the state estimate x̂ from perception is
used to index a database of precomputed objects, grasps, and quality estimates. The robot
executes the highest-quality grasp that is kinematically feasible and collision-free.

Discussion

Analytic methods can be used to rapidly evaluate the quality of a large number of known
grasps and objects and may be useful on a physical robot for grasping a small number of
known objects in a controlled environment. However, in practice it is often not realistic
to assume a perception system that can accurately estimate state up to a known error

CHAPTER 2. ROBUST GRASP PLANNING 21

distribution for a wide variety of possible objects in varied environments. Object registration
systems are prone to errors [5], may not generalize well to new objects, and can be slow to
match point clouds to known models during execution [50]. Furthermore, object instance
recognition remains a highly challenging problem in computer vision [52] and in practice it
is difficult to reliably categorize and estimate the pose for a large number of novel objects.
In Chapter 3 we discuss experimental results that suggest that these approaches do not scale
well to a large number of objects.

2.2.4 Empirical (Data-Driven) Methods
Empirical methods are a more recent approach to grasping developed in the computer vision
and machine learning communities. The fundamental idea behind empirical methods is that
the quality function can be approximated using machine learning over a large dataset of
images, grasps, and rewards. Since the quality function does not depend on a state esti-
mates for known objects, it is straightforward to evaluate the learned quality function on
novel objects. Furthermore, if the training dataset is collected from humans or physical
experiments, then the dataset would, in theory, reflect ground truth grasp success on a phys-
ical system. Optimizing performance on these large and unbiased datasets would therefore
directly optimize for performance on a physical robot.

Training Phase: Dataset Collection

Empirical methods attempt to learn a robustness function directly from observations using
a training dataset:

D = {(yi,ui, Ri)}Ni=1 (2.2.5)
with N triples including an observation yi, grasp ui, and binary success label Ri for each
obtained from humans [96] or physically executing each grasp on a robot and recording the
result [98]. The first step of empirical methods is to collect such a dataset.

Human-labeled datasets are popular due to empirical correlation with physical success [5].
Research on collecting datasets from humans has largely focused on associating human labels
with graspable regions in color images [150], RGB-D images [96] or point clouds [32, 62, 77].
Notably, Lenz et al. [96] created a dataset of over 1k RGB-D images with human labels of
successful and unsuccessful grasping regions, which has been used to train fast CNN-based
detection models [140]. However, it may be expensive to collect hand-labeled examples.

Self-supervised techniques use the outcomes of physical trials to label training datasets.
Due to the high cost of collecting training datasets on a physical robot, early research in this
area studied active methods for acquiring grasping experiences such as Multi-Armed Bandits
using Correlated Beta Processes [119] or Prior Confidence Bounds [124]. Recent research has
scaled up dataset collection by continuously running one or more robot arms and iteratively
aggregating training datasets [98, 131].

CHAPTER 2. ROBUST GRASP PLANNING 22

Training Phase: Policy Learning

The second step is to learn a quality function by optimizing performance on the training
dataset. The quality function Qθ is defined by a set of parameters θ ∈ Θ such as the weights
of a neural network. Early empirical methods parameterized Qθ using weights for a set of
predefined features such as the outputs of a filter bank [150]. Recently it has become popular
to use hyperparametric function approximators such as Deep Neural Networks to learn an
“end-to-end” policy directly from observations (depth maps or pixels) to grasp actions (or
torques) [98].

The most common approach to training is supervised learning, in which the quality
function parameters are optimized to minimize a loss function penalizing deviations from
the reward label Ri:

θ∗ = min
θ∈Θ

N∑
i=1
L(Ri, Qθ(yi,ui)) (2.2.6)

This objective is motivated by that fact that for certain choices of loss function (e.g. binary
cross entropy), Qθ∗ = Q for all possible grasps and images as long as there exists some θ ∈ Θ
such that Qθ = Q [117].

Another approach to training is reinforcement learning [166], which attempts to directly
optimize:

π∗ = argmax
π∈Π

E [R(x, π(y))]

to continuously learn from grasp attempts on a physical system Solving this objective directly
requires a tradeoff between exploration and exploitation since actions proposed by the policy
affect the distribution of rewards that the policy receives.

Empirical reinforcement learning techniques for grasping were first considered by Salgo-
nicoff et al. [148] who attempted to use algorithms based on Multi-Armed Bandits [3] to
actively acquire grasp experiences on a physical system. To generalize to novel objects, sev-
eral extensions of the Multi-Armed Bandit approach have been proposed such as Correlated
Beta Processes [119] or Prior Confidence Bounds [124]. Reinforcement learning to reason
about grasp sequences has only recently been attempted at significant scale on physical
robots. Initial results show promise for picking a wide variety of objects [74], but policies
may not generalize to other robots without months of additional data collection [98]. While
reinforcement learning techniques mitigate bias in the dataset sampling distribution, they
may require a very large number of samples to learn as initial exploratory grasp attempts
may receive little reward.

Test Phase

Once function Qθ is learned, empirical methods plan the grasp that maximizes the learned
quality function:

π(y) = argmax
u∈U

Qθ(y,u). (2.2.7)

CHAPTER 2. ROBUST GRASP PLANNING 23

Note that Qθ can be computed very rapidly for many machine learning models as it typically
requires only basic mathematical operations such as matrix multiplication.

One approach is to sample a fixed set of grasp candidates U and rank them according
to Qθ∗ . Another method is to iteratively re-sample and re-rank the list of grasps using a
derivative-free optimization technique such the Cross Entropy Method (CEM) [145].

Discussion

Given sufficient data, empirical methods can work well in practice and can yield Φ ≈ 90%
with relatively fast compute and execution time ν. However, they require a very time-
consuming dataset collection on a physical robot and the system is specific to the sensor
and robot configuration it was trained on. Training datasets may need to be re-collected
whenever there are changes to the robot, objects, sensors, calibration, or environment (e.g.
lighting, background objects).

An additional complication is that empirical dataset collection may produce corrupt
training examples. Human labelers can make errors, hardware can break during dataset
collection, and sensors can drift or become mis-calibrated. A separate system for data
cleaning [87] in post-processing may be required to achieve desired learning performance.

A third challenge with empirical methods is the difficulty of diagnosing failures. For
example, when an empirically-trained policy fails to grasp a novel object it is difficult to
understand whether the failure is due to (a) a corrupt reward value for similar example from
the training dataset, (b) changes to the environment (e.g. lighting, hardware calibration)
from the training setting, or (c) too few training examples. While in theory failures may
be alleviated by reinforcement learning with additional data collection, current reinforce-
ment learning methods have high sample complexity and may require millions of additional
examples to learn [73].

2.2.5 Hybrid Methods: Model-Based Dataset Generation
In this thesis we propose a third, hybrid approach to robust grasp planning that aims to com-
bine the scalability and interpretability of analytic methods with the generalization ability
of empirical methods. The key idea is to automate training dataset collection by construct-
ing a probabilistic generative model that can efficiently sample observations, grasps, and
rewards using analytic models from physics, geometry, and optics. A quality function can
be trained on a dataset sampled from a computer implementation of the generative model
in identical fashion to empirical policy learning, in which a function approximator is trained
with supervised or reinforcement learning.

Training Phase: Dataset Generation

Hybrid methods require the definition of a dataset generation environment q(R,x,y | u)
based on analytic models that can be used to sample datasets of observations and rewards

CHAPTER 2. ROBUST GRASP PLANNING 24

based on a set of candidate grasps. The dataset generation environment can be implemented
on a computer and used to rapidly sample millions of examples.

The environment distribution factors according to the graphical model defining the robust
grasping problem (Fig. 2.1):

q(R,x,y | u) = q(x)︸ ︷︷ ︸
states

q(R | x,u)︸ ︷︷ ︸
rewards

q(y | x)︸ ︷︷ ︸
observations

The factors model the following quantities:

1. States q(x): Models variations on objects and sensors. Object variations consist of
geometries (e.g. 3D CAD models), poses, frictional properties, center of masses, etc.,
and may include static objects in the scene such as bins or shelves. Sensor variations
may consist of perturbations in the position, orientation, lighting, and camera optical
parameters.

2. Rewards q(R | x,u): Models the results of executing a grasp action using mod-
els of contact and wrench mechanics with uncertainty in the grasp outcome due to
imprecision in control.

3. Observations q(y | x): Models a observations for a given state under sensing noise
based on rendering (e.g. noisy synthetic point clouds).

To produce a set of candidate grasps to evaluate, hybrid methods also define an explicit
action candidate distribution q(u | x,y). This can be a uniform distribution over the action
set U or concentrated on more promising grasps using the current trained policy or an
algorithmic supervisor that pre-computes robust grasps:

Definition 4 (Algorithmic Supervisor). An algorithmic supervisor is a function Ω : X → U
that takes as input a fully observed state and returns a grasp for the robot to execute in a
synthetic environment: uΩ = Ω(x).

An algorithmic supervisor can act as an oracle that produces high-quality grasps with full
state knowledge. This is particularly useful in environments where successful grasps are rare,
such as grasping objects from cluttered heaps.

Early approaches to synthetic dataset generation for grasping have considered labeling
a dataset of point clouds collected from the real robot using antipodality [129], a geomet-
ric condition that indicates that a parallel-jaw grasp is in force closure, and using dynamic
simulation and depth image rendering to evaluate grasps for a parallel-jaw [70] or multi-
finger [175] gripper. The dataset generation distribution often includes significant variation
in parameters of physics, such as friction and mass, parameters of sensing, such as lighting
and camera intrinsic parameters, and configurations of objects to reflect uncertainty about
physics, sensing, and control. This technique is sometimes referred to as Domain Random-
ization for simulation to reality transfer, and it has been shown to improve performance on
physical systems for learning grasping policies [70, 129, 169] and navigation policies [147,
191] from synthetic data.

CHAPTER 2. ROBUST GRASP PLANNING 25

Training Phase: Policy Learning

Once a generative model for datasets has been defined, a quality function can be learned with
the same techniques used by empirical methods. Recent research suggesting that synthetic
training datasets can be used to train policies that perform well on physical robots for
grasping [129, 70] and navigation [147, 191].

Supervised learning techniques may be used to minimize the loss between the reward and
predicted quality for a fixed dataset sampled from the dataset generation distribution:

θ∗ = min
θ∈Θ

N∑
i=1
L(Ri, Qθ(yi,ui)) Ri,xi,yi,ui ∼ q(R,x,y,u)

where q(R,x,y,u) = q(R,x,y | u)q(u | x,y) is the dataset generation distribution, the prod-
uct of the dataset generation environment and candidate action distribution. Reinforcement
learning techniques can be used to iteratively optimize a policy on its own distribution of
actions by adaptively sampling from the dataset generation distribution:

π∗ = argmax
π∈Π

Eq [R(x, π(y))]

where we have specifically noted that the expectation is with respect to the dataset generation
distribution q. See Section 2.2.4 for a more detailed description of learning techniques.

Test Phase

Similar to empirical methods, once a quality function Qθ is learned, hybrid methods plan
the grasp that maximizes the learned quality function:

π(y) = argmax
u∈U

Qθ(y,u).

Discussion

Hybrid grasp planning methods offer several potential benefits. First, synthetic dataset
generation can be scalable. Training datasets containing millions of examples can be sam-
pled from efficient computer-implemented generative models in a matter of hours instead of
months or years. Second, synthetic datasets can be guaranteed to have clean data. Analytic
models can be validated with unit tests to ensure that every datapoint is correct with respect
to the model. Third, dataset generation is interpretable. Generated observations, grasps,
and rewards that are inconsistent with reality can be traced to a factor of the generative
model that makes an incorrect assumption, and the model can be updated accordingly to
achieve a desired behavior.

Nonetheless, a key question remains: given a grasp planning problem, how do we design
a dataset generation distribution q such that policies learned from q perform well on a
physical robot system? Is it even possible to design such a distribution for arbitrary grasp

CHAPTER 2. ROBUST GRASP PLANNING 26

planning problems? Certainly it seems unreasonable to expect that we can construct dataset
generation distributions that exactly reflect performance on a physical system.

This thesis explores these questions by focusing on five properties of dataset generation
distributions that are important for using hybrid methods in practical applications:

• Diversity: Randomization over a wide variety of objects, sensors, and grasps.

• Efficiency: The ability to rapidly sample millions of examples.

• Precision: Rewarding only grasps that would be successful when executed on a phys-
ical robot.

• Robustness: Modeling noise and perturbations to be robust to differences between
simulation and reality.

• Flexibility: The ability to exchange objects, sensors, and grippers without having to
re-define the model from scratch.

To explore these topics, this thesis formalizes the hybrid approach to robust grasp plan-
ning and explores its application to specific grasping problems including grasping with a
parallel-jaw and suction cup gripper, industrial bin picking, and constant-velocity planar
pushing. In each chapter, we modify the dataset generation distribution to extend the
method to new sensors, objects, grippers, and grasp reward functions and highlight modifi-
cations to the policy learning method to utilize the generative model. The methods developed
in each chapter are evaluated through large-scale simulated and physical robot experiments
to assess performance and provide understanding of the limitations of the method.

The remainder of this thesis details the approach. Part II develops a full sequential
dataset generation model q for parallel-jaw grasping to lift, transport, and hold and object
under perturbations (e.g. shaking). Part III explores adapting the hybrid method to new
problem settings by developing novel reward distributions q(R | x,u) and action candidate
distributions q(u | x,y) based on algorithmic supervisors that guide dataset collection by
planing optimal grasps given full knowledge of the state of objects and sensors in the en-
vironment. Finally, Part IV discusses the strengths and weaknesses of the approach and
highlights opportunities for future research on the topic.

27

Part II

End-to-End Large Scale Dataset
Generation

28

There is no need to ask the question “Is the model true?”.
If “truth” is to be the “whole truth” the answer must be “No”.
The only question of interest is:
“Is the model illuminating and useful?”

GEORGE BOX

29

Chapter 3

Robust Analytic Grasp Planning for
Large Datasets of 3D Objects

In this part of the thesis, we develop an stochastic end-to-end generative model to auto-
matically synthesize training datasets for learning robust grasping policies for a parallel-jaw
gripper. We first consider the fully-observed setting, in which the robot has knowledge of
physical parameters (e.g. friction) and object state, such as industrial CAD model registra-
tion systems. We then analyze the partially-observed setting, in which the robot must plan
grasps for unknown objects based on sensor data, and use deep learning to train a robust
grasping policy on depth images. Finally, we extend the model to the sequential setting, in
which the robot must plan a series of grasps over time, and use imitation learning to learn
a robust grasping policy for bin picking. In each chapter, we detail the unique attributes
of the graphical model and then present a learning-based method for robust grasp planning
based on a training dataset sampled from the model.

We begin by presenting the model for computing stochastic analytic grasp quality metrics
(rewards) assuming a separate perception system that estimates distributions on state vari-
ables such as object shape, pose, and friction from sensor data. This research in this chapter
is motivated by stochastic analytic grasp planning using Cloud-based Robotics and Automa-
tion systems that exchange grasp data and perform computation via networks instead of
operating in isolation with limited computation and memory. Potential advantages to using
the Cloud include Big Data: access to updated libraries of images, maps, and object/product
data; and Parallel Computation: access to grid computing for statistical analysis, machine
learning, and planning [80]. We explore these benefits in the context of machine learning for
rapidly planning robust grasps using stochastic analytic methods by developing a “network”
measuring similarity between objects and grasps based on deep learned features.

In this chapter we derive a model for computing the quality of parallel-jaw grasps under
imprecision in sensing and control over a distribution over possible object shapes. We also
develop a Multi-Armed Bandit (MAB) algorithm that models correlated rewards between
similar grasps on similar objects, where similarity is defined by a novel distance in feature
space based on Multi-View Convolutional Neural Networks (MV-CNNs). We use the model

CHAPTER 3. ROBUST ANALYTIC GRASP PLANNING FOR LARGE DATASETS
OF 3D OBJECTS 30

and learning method to generate the Dexterity Network (Dex-Net) 1.0, a dataset containing
over ten thousand 3D object models and 2.5 million parallel-jaw grasps with associated
robust grasp quality metrics. We implement the Dex-Net algorithm in the Cloud and present
experiments suggesting that the MAB algorithm can accelerate robust grasp planning for
novel 3D object models by leveraging correlations with pre-computed grasps and objects
in Dex-Net 1.0. In particular, we examine the effects of using larger, more diverse object
datasets on the number of samples required for the Dex-Net 1.0 algorithm to plan the most
robust grasp and find that orders of magnitudes of additional data can lead to a 2× reduction
in the number of samples required for grasp planning. This suggests that large datasets of
3D object geometries can aid in robust grasp planning across a diverse set of objects.

The model developed in this chapter may be relevant for robot grasp planning in con-
strained settings with a small number of possible objects with exactly known CAD models,
and is an important building block of the models we use for training dataset generation later
in this thesis.

3.1 Problem Statement
We consider accelerating the Training Phase of stochastic analytic grasp planning methods
described in Section 2.2.3). In particular, we focus on the problem of pre-computing a large
set of robust grasps for each object in a massive dataset of 3D CAD models. When the
object is encountered on a physical robot, the set of grasps can be downloaded such that at
least one grasp is achievable in the presence of clutter and occlusions.

Formally, our goal is to plan a parallel-jaw grasp that maximizes expected reward for
a given 3D object model in as few samples as possible under perturbations in object pose,
gripper pose, and friction coefficient.

Assumptions

We assume the exact object shape is given as a triangular 3D mesh. We assume the object
is specified in units of meters with given center of mass z ∈ R3. Furthermore, we assume
soft-finger point contacts with a Coulomb friction model [190]. We also assume that the
gripper jaws are always opened to their maximal width w ∈ R before closing.

3.1.1 Definitions
This section uses the following definitions:

• States. Let x ∈ X consist of the state of a single object O = {M,To, µ, z} whereM
is a 3D triangular mesh representing the geometry of the object, To is the pose of the
object geometry, µ is the Coulomb friction coefficient, and z is the 3D center of mass.
An alternative representation of the geometry if a Gaussian Process Implicit Surface
(GPIS). See Appendix A for a detailed description.

CHAPTER 3. ROBUST ANALYTIC GRASP PLANNING FOR LARGE DATASETS
OF 3D OBJECTS 31

• Grasp Actions. Let u = (p,v) ∈ U consist of a grasp center in 3D space p ∈ R3 and
a grasp axis defining the line between the fingertips in 3D space v ∈ S2. This leave
one extra degree of freedom, the approach angle defining rotation about the grasp axis,
to decide when executing grasps in 3D space. The approach angle could be resolved
by evaluating kinematic feasibility or collisions. The nominal grasp pose Tg is set
defined by the grasp center and axis with the approach angle equal to zero. The grasp
parameters are illustrated in Fig. 3.1.

• Reward. Let R(x,u) ∈ {0, 1} be a binary grasp reward. Let F (x,u) ∈ {0, 1} denote
force closure, or the ability of a grasp to resist arbitrary wrenches. Let PF = E [F | x,u]
be the probability of force closure under uncertainty in object pose, gripper pose, and
friction. We refer to the expected reward as the probability of success, PS(x,u) =
E[R(x,u)].

• State Distribution. The state is sampled by selecting an object geometry from a
large dataset of 3D CAD models and setting the pose to a reference frame centered at
the object center of mass z and oriented along the principal axes of S, setting the center
of mass to the center of the mesh bounding box, and setting the friction coefficient to
the nominal value γ = 0.5.

Reward Distribution

In this chapter we evaluate grasp quality using the probability of force closure (PF), or the
ability to resist external force and torques in arbitrary directions [108]. PF allows us to study
the effects of large amounts of data on approximate solutions to the robust grasp planning
objective of Equation because it is relatively inexpensive to evaluate, and PF has also shown
promise in physical experiments [83, 178].

Let F ∈ {0, 1} denote the occurrence of force closure. For a grasp u on an object in
state x under uncertainty in gripper pose Tg, object pose To, and friction coefficient γ, the
probability of force closure PF (x,u) = P (F = 1 | x, µ,Tg,To, γ). To compute force closure
for a grasp u on an object in state x, we compute a set of possible contact wrenches W
using a soft finger contact model [190] based on the sampled values of the grasp pose, object
pose, and friction coefficient. A grasp is in force closure (F = 1) if 0 is in the convex hull of
W [178].

Let ci ∈ R3 denote the 3D contact location between the i-th jaw and surface as shown
in Fig. 3.1. Let ni denote the surface normal of O at ci and let ti,1, ti,2 ∈ S2 be its tangent
vectors. To compute the forces that each soft contact can apply to the object for friction
coefficient µ̂, we discretize the friction cone at ci [135] into a set of l facets with vertices:

Fi =
{
ni + γ̂ cos

(2πj
l

)
ti,1 + γ̂ sin

(2πj
l

)
ti,2
∣∣∣j = 1, ..., l

}
Thus the set of wrenches that u can apply to O is:

W =
{
wi,j = (fi,j, ρi × fi,j×)

∣∣∣i = 1, 2 and fi,j ∈ Fi
}

CHAPTER 3. ROBUST ANALYTIC GRASP PLANNING FOR LARGE DATASETS
OF 3D OBJECTS 32

where ρi = (ci − z) is the moment arm at ci.
When computing grasp quality PF (x,u) we assume Gaussian distributions on the grasp

pose, object pose, and friction coefficient to model errors in registration, robot calibration, or
classification of material properties. Let υ ∼ N (0,Συ) denote a zero-mean Gaussian on R6

modeling imprecision in control. We define the grasp pose random variable T̃g = exp (υ∧) Tg,
where the ∧ operator maps from R6 to the Lie algebra se(3) [6]. Let ν ∼ N (0,Σν) denote a
zero-mean Gaussian modeling object pose uncertainty due to registration errors. We define
the object pose random variable T̃o = exp (υ∧) To Let εγ ∼ N (0,Σγ) denote a Gaussian
distribution on the friction coefficient and let γ̃ = γ + εγ. We denote by x̂ and û samples of
the object state and grasp action based on samples of the pose and friction random variables.

We can evaluate grasp quality by generating M samples of grasp poses, object poses, and
friction coefficients and taking the average reward:

P̂F = Q̂(x,u) = 1
M

M∑
i=1

R(x̂i, ûi).

3.1.2 Objective
The objective of the Dex-Net 1.0 algorithm is, for a given object state x, to find a grasp
u∗ that maximizes an expected binary grasp quality metric R(x,u) ∈ {0, 1} such as force
closure [83, 94, 108, 178] subject to uncertainty in the state of the object, environment,
or robot. Since sampling in high-dimensional spaces can be computationally expensive, we
attempt to solve for u∗ within T samples by maximizing over the sum of PS(x,ut) for grasps
sampled at times t = 1, ..., T [94, 160]:

maximize
u1,..,uT∈U

∑T
t=1PS(x,ut). (3.1.1)

Past research has solved this objective by evaluating and ranking a discrete set of K
candidate grasps Γ = {u1, ...,uK} using Monte-Carlo integration [79, 178] or Multi-Armed
Bandits (MAB) [94]. In this chapter, we extend the 2D MAB model of [94] to leverage
similarities between prior grasps and 3D objects in Dex-Net to reduce the number of sam-
ples [64].

3.2 The Dexterity Network 1.0 Dataset
The Dexterity Network (Dex-Net) 1.0 dataset includes over 10,000 unique 3D object models
annotated with 2.5 million parallel-jaw grasps.

3.2.1 Object Mesh Data
Dex-Net 1.0 contains 13,252 3D mesh models: 8,987 from the SHREC 2014 challenge
dataset [99], 2,539 from ModelNet40 [181], 1,371 from 3DNet [180], 129 from the KIT object

CHAPTER 3. ROBUST ANALYTIC GRASP PLANNING FOR LARGE DATASETS
OF 3D OBJECTS 33

x
y

z

z z

c1 c2n1 n2

ρ2ρ1

p v

Figure 3.1: Grasp parameterization and contact model. (Left) We parameterize parallel-jaw grasps by the
centroid of the jaws p ∈ R3 and approach direction, or direction along which the jaws close, v ∈ S2. The
parameters x and v are specified with respect to a coordinate frame at the object center of mass z and
oriented along the principal directions of the object. (Right) The jaws are closed until contacting the object
surface at locations c1, c2 ∈ R3, at which the surface has normals n1,n2 ∈ S2. The contacts are used to
compute the moment arms ρi = ci − z.

database∗ [78], 120 from BigBIRD∗ [155], 80 from the Yale-CMU-Berkeley dataset∗ [16],
and 26 from the Amazon Picking Challenge∗ scans (∗ indicates laser-scanner data). We
preprocess each mesh by removing unreferenced vertices, computing a reference frame with
Principal Component Analysis (PCA) on the mesh vertices, setting the mesh center of mass
z to the center of the mesh bounding box, and rescaling the synthetic meshes to fit the
smallest dimension of the bounding box within w = 0.1m. To resolve orientation ambiguity
in the reference frame, we orient the positive z-axis toward the side of the xy plane with
more vertices. We also convert each mesh to an SDF using SDFGen [7].

3.2.2 Grasp Sampling
Each 3D object Oi in Dex-Net is labeled with up to 250 parallel-jaw grasps and their PF .
We generate K grasps for each object using a modification of the 2D algorithm presented in
Smith et al. [157] to concentrate samples on grasps that are antipodal [108]. To sample a

CHAPTER 3. ROBUST ANALYTIC GRASP PLANNING FOR LARGE DATASETS
OF 3D OBJECTS 34

Depthmap

Depth (m)

c1 c2

c3

Depthmap

Depthmap

v1
v2

v3

0.2 0.0 -0.20.1 -0.1

d1 d2

d3

Figure 3.2: Local surface depth map features for measuring grasp similarity for three grasp contact locations
on a teapot. Each depthmap is “rendered” along the grasp axis vi at contact ci and oriented by the directions
of maximum variation in the depthmap. We use gradients of the depthmaps for similarity between grasps
in Dex-Net.

single grasp, we generate a contact point c1 by sampling uniformly from the object surface
S, sampling a direction v ∈ S2 uniformly at random from the friction cone, and finding an
antipodal contact c2 on the line c1 +tv where t > 0. We add the grasp ui,k = (0.5(c1 +c2),v)
to the candidate set if the contacts are antipodal [108]. We evaluated PF (ui,k) using Monte-
Carlo integration [79, 178] by sampling the object pose, gripper pose, and friction random
variables N = 500 times and recording Zi,k, the number of samples for which ui,k achieved
force closure (F = 1).

3.3 Features for Grasp and Object Similarity

3.3.1 Depthmap Gradient Features for Grasp Similarity
To measure grasp similarity in the Dex-Net 1.0 algorithm, we embed each grasp u of object
O in Dex-Net in a feature space based on a 2D map of the local surface orientation at the
contacts, inspired by grasp heightmaps [62, 77]. We generate a depthmap di for contact ci
by orthogonally projecting the local object surface onto an m ×m grid centered at ci and
oriented along the line to the object center of mass, ai = z− ci. Since F only depends on ci
and its surface normal, rotations of di about ai correspond to grasps of equivalent quality.
We therefore make each di rotation-invariant by orienting its axes along the eigenvectors of
a weighted covariance matrix of the 3D surface points that generate di as described in [149].
Fig. 3.2 illustrates local surface patches extracted by this procedure. We finally take the x-
and y-image gradients of di to form depthmap gradients ∇di = (∇xdi,∇ydi), motivated by
the dependence of F on surface normals [135], and we store each in Dex-Net 1.0.

CHAPTER 3. ROBUST ANALYTIC GRASP PLANNING FOR LARGE DATASETS
OF 3D OBJECTS 35

3.3.2 Multi-View Convolutional Neural Networks for Object
Similarity

We use Multi-View Convolutional Neural Networks (MV-CNNs) [162] to efficiently index
prior 3D object and grasp data from Dex-Net by embedding each object in a vector space
where distance represents object similarity, as shown in Fig. 3.3. We first render every object
on a white background in a total of C = 50 virtual camera views oriented toward the object
center and spaced on a grid of angle increments δθ = 2π

5 and δϕ = 2π
5 on a viewing sphere with

radii r = R, 2R, where R is the maximum dimension of the object bounding box. Then we
train a CNN with the architecture of AlexNet [88] to predict the 3D object class label for the
rendered images on a training set of models. We initialize the weights of the network with
the weights learned on ImageNet by Krizhevsky et al. [88] and optimize using Stochastic
Gradient Descent (SGD). Next, we pass each of the C views of each object through the
optimized CNN and max-pool the output of the fc7 layer, the highest layer of the network
before the class label prediction. Finally, we use Principal Component Analysis (PCA) to
reduce the max-pooled output from 4,096 dimensions to a 100 dimensional feature vector
ψ(O).

Given the MV-CNN object representation, we measure the dissimilarity between two
objects Oi and Oj by the Euclidean distance ‖ψ(Oi) − ψ(Oj)‖2. For efficient lookups of
similar objects, Dex-Net contains a KD-Tree nearest neighbor query structure with the
feature vectors of all prior objects. In our implementation, we trained the MV-CNN using the
Caffe library [69] on rendered images from a training set of approximately 6,000 3D models
sampled from the SHREC 2014 [99] portion of Dex-Net, which has 171 unique categories, for
500,000 iterations of SGD. To validate the implementation, we tested on the SHREC 2014
challenge dataset and achieved a 1-NN accuracy of 86.7%, compared to 86.8% achieved by
the winner of SHREC 2014 [99]. See Fig. 3.4 for a detailed analysis of performance.

3.4 Correlated Multi-Armed Bandit Algorithm
The Dex-Net 1.0 algorithm (see pseudocode below) optimizes the probability of success PS
(Equation 3.1.1) for a binary quality metric such as force closure over a discrete set of
candidate grasps Γ on an object O using a Bayesian Multi-Armed Bandit (MAB) model [94,
160] with correlated rewards [64] and priors computed from Dex-Net 1.0. We first generate
the set of K candidate grasps using the antipodal grasp sampling described in Section 3.2.2
and treat the grasps as “arms” in the MAB model. Next, we predict PS for each grasp
using the M most similar objects from the Dex-Net 1.0 dataset and estimate a Bayesian
posterior distribution on our prediction. Then, for iterations t = 1, ..., T we use Thompson
sampling [94, 124] to select a grasp ut,k ∈ Γ to evaluate, sample the force closure reward
R(x,ut,k), and update a posterior belief distribution on PS for each grasp. Finally, we rank Γ
by the q-lower confidence bound on PS for each grasp and store the ranking in the database.

To illustrate convergence of the algorithm, we use force closure [190] as our binary quality

CHAPTER 3. ROBUST ANALYTIC GRASP PLANNING FOR LARGE DATASETS
OF 3D OBJECTS 36

Deep CNN

Deep CNN

Deep CNN

Max Pooling

fc7

response

fc7

response

PCA

Object O

ψ(O)

Rendered View

Rendered View

C1

C2

C3

Figure 3.3: Multi-View Convolutional Neural Network (MV-CNN) deep learning architecture for embedding
3D object models in a Euclidean vector space to compute global shape similarity. We pass a set of 50
virtually rendered camera viewpoints discretized around a sphere through a deep Convolutional Neural
Network (CNN) with the AlexNet [88] architecture. Finally, we take the maximum fc7 response across each
of the 50 views for each dimension and run PCA to reduce dimensionality.

metric. We plan to study other quality metrics such as success on physical trials [89, 119] and
alternate MAB methods based on upper confidence bounds [89, 124] or Gittins indices [94]
in future work.

3.4.1 Model of Correlated Rewards
Let Rj ∼ p(R | x,uj) ∈ {0, 1} be a random binary quality metric evaluated on grasp uj ∈ Γ.
For example, Rj might model force closure under uncertainty in object pose, gripper pose,
or friction. Each Rj is a Bernoulli random variable with probability of success θj = PS(uj).

We use Continuous Correlated Beta Processes (CCBPs) [48, 119] to model a joint pos-
terior belief distribution over the θj for all grasps in Dex-Net, which enables us to predict θj
from prior grasp and object data in Dex-Net 1.0 using a closed-form posterior update. The
joint distribution models pairwise correlations of θ between grasp-object pairs P = (u,O)

CHAPTER 3. ROBUST ANALYTIC GRASP PLANNING FOR LARGE DATASETS
OF 3D OBJECTS 37

Figure 3.4: Comparison of MV-CNN with the winner of the SHREC 2014 challenge on the SHREC 2014
benchmark.

(points in a Grasp Moduli Space [133]) measured using a normalized kernel function k(Pi,Pj)
that approaches 1 as the arguments become increasingly similar and approaches 0 as the ar-
guments become dissimilar.

Dex-Net 1.0 measures similarity using a set of feature maps ϕm ∈ Rdm for m = 1, ..., 3,
where dm is the dimension of the feature space for each. The first feature map ϕ1(P) =
(x,v, ‖ρ1‖2, ‖ρ2‖2) captures similarity in the grasp parameters, where x ∈ R3 is the grasp
center, v ∈ S2 is the approach axis, and ρi ∈ R3 is the i-th moment arm. The second feature
map ϕ2(P) = (∇d1,∇d2) uses the depthmap gradients described in Section 3.3.1. Our third
feature map ϕ3(P) = ψ(O) is the object similarity map described in Section 3.3.2 to capture
global shape similarity.

Given the feature maps, we use the squared exponential kernel

k(Pp,Pq) = exp
(
−1

2

3∑
m=1
‖ϕm(Pp)− ϕm(Pq)‖2

Cm

)
.

where Cm ∈ Rdm×dm is the bandwidth for ϕm and ‖y‖Cm = yTC−1
m y. The bandwidths are

set by maximizing the log-likelihood [48] of the true θ on a set of training data.

3.4.2 Predicting Grasp Quality Using Prior Data
Before evaluating any grasps in Γ, the Dex-Net 1.0 algorithm predicts θj for each candidate
grasp uj based on its kernel similarity to all grasps and objects from the Dex-Net 1.0 dataset
D. In particular, we estimate a Bayesian posterior density p(θj) by treating D as prior

CHAPTER 3. ROBUST ANALYTIC GRASP PLANNING FOR LARGE DATASETS
OF 3D OBJECTS 38

observations and using the closed form posterior update for CCBPs [48]:

p(θj | αj,0, βj,0) ∝ θ
αj,0−1
j (1− θj)βj,0−1 (3.4.1)

αj,0 = α0 +
|D|∑
i=1

K∑
k=1

k(Pj,Pi,k)Zi,k (3.4.2)

βj,0 = β0 +
|D|∑
i=1

K∑
k=1

k(Pj,Pi,k)(N − Zi,k) (3.4.3)

where α0 and β0 are prior parameters for the Beta distribution [94], N is the number of times
each grasp gi,k ∈ D was sampled to estimate θi, and Zi,k is the number of observed successes
for ui,k. Intuitively, the prior dataset contributes fractional observations of successes and
failures for the grasp candidates Γ proportional to the kernel similarity. We estimate the
above sums using the M nearest neighbors to the object in the object similarity KD-Tree
described in Section 3.3.2.

3.4.3 Grasp Selection Policy
On iteration t we select the next grasp to sample uj ∈ Γ using Thompson Sampling. In
Thompson Sampling we draw a sample θ̂` ∼ p(θ` | α`,t, β`,t) for each grasp u` ∈ Γ, then
choose the grasp uj with the highest θ̂j [94]. After observing Rj, we update the belief for all
grasps u` ∈ Γ by updating a running count of the fractional successes and failures [48]:

α`,t = α`,t−1 + k(P`,Pj)Rj (3.4.4)
β`,t = β`,t−1 + k(P`,Pj)(1−Rj). (3.4.5)

3.5 Experiments on Large-Scale Grasp Analysis
We evaluate the performance of the Dex-Net 1.0 algorithm on robust grasp planning for
varying sizes of prior data used from Dex-Net using force closure as our binary quality
metric, and we explore the sensitivity of the convergence rate to object shape, the similarity
kernel bandwidths, and uncertainty. We created two training sets of 1,000, and 10,000 objects
by uniformly sampling objects from Dex-Net. We uniformly sampled a set of 300 validation
objects for selecting algorithm hyperparameters and selected a set of 45 test objects from
the remaining objects. We ran the algorithm for T = 2, 000 iterations with M = 10 nearest
neighbors, α0 = β0 = 1 [94], and a lower confidence bound containing q = 75% of the belief
distribution. We used isotropic Gaussian uncertainty with object and gripper translation
variance σt = 0.005, object and gripper rotation variance σr = 0.1, and friction variance
σγ = 0.1. For each experiment we compare the Dex-Net algorithm to Thompson sampling
without priors (TS) [94], a state-of-the-art method for robust grasp planning, and uniform

CHAPTER 3. ROBUST ANALYTIC GRASP PLANNING FOR LARGE DATASETS
OF 3D OBJECTS 39

1 Input: Object O, Number of Candidate Grasps K, Number of Nearest Neighbors M ,
Dex-Net 1.0 Dataset D, Feature maps ϕ, Maximum Iterations T , Prior beta shape α0, β0,
Lower Bound Confidence q, Reward Function R

Result: Estimate of the grasp with highest PF , ĝ∗
// Generate candidate grasps and priors

2 Γ = AntipodalGraspSample(O,K) ;
3 A0 = ∅,B0 = ∅;
4 for gk ∈ Γ do

// Equations 3.4.2 and 3.4.3
5 αk,0, βk,0 = ComputePriors(O,uk,D,M, ϕ, α0, β0);
6 A0 = A0 ∪ {αk,0},B0 = B0 ∪ {βk,0};
7 end

// Run MAB to Evaluate Grasps
8 for t = 1, .., T do
9 j = ThompsonSample(At−1,Bt−1);

10 Sj = SampleQuality(uj ,O, S);
// Equations 3.4.4 and 3.4.5

11 At,Bt = UpdateBeta(j, Rj ,Γ);
12 g∗t =MaxLowerConfidence(q,At,Bt);
13 end
14 return u∗T ;
15 Dex-Net 1.0 Algorithm: Robust Grasp Planning Using Multi-Armed Bandits with

Correlated Rewards

allocation (UA), a widely-used method for robust grasp planning that selects the next grasp
to evaluate uniformly at random [79, 83, 178].

The inverse kernel bandwidths were selected by maximizing the log-likelihood of the true
PF under the CCBP model [48] on the validation set using a grid search over hyperparame-
ters. The inverse bandwidths of the similarity kernel were Cg = diag(0, 0, 3× 10−5, 3× 10−5)
for the grasp parameter features, an isotropic Gaussian mask Cd with mean µd = 500.0 and
σd = 0.33 for the differential depthmaps, and Cs = 106 ∗ I for the shape similarity features.

To scale experiments, we developed a Cloud-based system on top of Google Cloud Plat-
form. We used Google Compute Engine (GCE) to construct the Dex-Net 1.0 dataset and to
distribute subsets of objects to virtual machines for MAB experiments, and we used Google
Cloud Storage to store Dex-Net. The system launched up to 1,500 GCE virtual instances
at once for experiments, reducing the runtime by an estimated three orders of magnitude to
approximately 315 seconds per object for both loading the dataset and running the Dex-Net
1.0 algorithm. Each virtual instance ran Ubuntu 12.04 on a single core with 3.75 GB of
RAM.

CHAPTER 3. ROBUST ANALYTIC GRASP PLANNING FOR LARGE DATASETS
OF 3D OBJECTS 40

Uniform Allocation

Thompson Sampling

Dex-Net 1.0 (N=1,000)

Dex-Net 1.0 (N=10,000)

1.0

0.9

0.8

0.7

0.6
0 500 1000 1500 2000

Iteration

N
o
rm

al
iz

ed
 Q

u
al

it
y

Figure 3.5: Average normalized grasp quality versus iteration over 45 test objects and 25 trials per object for
the Dex-Net 1.0 algorithm with 1,000 and 10,000 prior 3D objects from Dex-Net. We measure quality by the
PF for the best grasp predicted by the algorithm on each iteration and compare with Thompson sampling
without priors and uniform allocation. The algorithm converges faster with 10,000 models, never dropping
below approximately 90% of the grasp with highest PF from a set of 250 candidate grasps.

3.5.1 Scaling of Average Convergence Rate
To examine the effects of orders of magnitude of prior data on convergence to a grasp with
high PF , we ran the Dex-Net 1.0 algorithm on the test objects with priors computed from
1,000 and 10,000 objects from Dex-Net. Fig. 3.5 shows the normalized PF (the ratio of the
PF for the best grasp predicted by the algorithm to the highest PF of the candidate grasps)
versus iteration averaged over 25 trials for each of the 45 test objects to facilitate comparison
across objects. The average runtime per iteration was 16 ms for UA, 17 ms for TS, and 22 ms
for Dex-Net 1.0. The algorithm with 10,000 objects takes approximately 2× fewer iterations
to reach the maximum normalized PF value reached by TS, which is particularly promising
for binary success metrics that are expensive to evaluate such as detailed physics simulations,
human labels, or physical grasping trials. Furthermore, the 10,000 object curve does not fall
below approximately 90% of the best grasp in the set across all iterations, suggesting that
a grasp with high PF is found using prior data alone. The maximum standard error of the
mean over all iterations was 2× 10−3 for UA, 2× 10−3 for TS, and 1× 10−3 for Dex-Net 1.0
with 1,000 and 10,000 objects.

CHAPTER 3. ROBUST ANALYTIC GRASP PLANNING FOR LARGE DATASETS
OF 3D OBJECTS 41

Uniform Allocation

Thompson Sampling

Dex-Net 1.0 (N=1,000)

Dex-Net 1.0 (N=10,000)

1.0

0.9

0.8

0.7

0.6
0 500 1000 1500 2000 2500 3000 3500 4000

Iteration

N
o

rm
al

iz
ed

 Q
u

al
it

y

Uniform Allocation

Thompson Sampling

Dex-Net 1.0 (N=1,000)

Dex-Net 1.0 (N=10,000)

1.0

0.9

0.8

0.7

0.6
500 1000 1500 2000 2500 3000 3500 4000

Iteration

N
o

rm
al

iz
ed

 Q
u

al
it

y

00

Query Object 1,000 10,000

Network Size (# Objects)

In
creasin

g
 S

im
ilarity

Network Size (# Objects)
Query Object 1,000 10,000

In
creasin

g
 S

im
ilarity

Figure 3.6: Average normalized grasp quality versus iteration for 25 trials for the Dex-Net 1.0 Algorithm
with 1,000 and 10,000 prior 3D objects from Dex-Net (bottom) and illustrations of five nearest neighbors
in Dex-Net (top) for a spray bottle (left) and drill (right). We measure quality by the probability of force
closure of the best grasp predicted by the algorithm on each iteration and compare with Thompson sampling
without priors [94] and uniform allocation [79, 178]. (Top) The spray bottle has no similar neighbors with
1,000 objects, but two other spray bottles are found by the MV-CNN in the 10,000 object set. The drill,
which is relatively rare in the dataset, has no geometrically similar neighbors even with 10,000 objects.
(Bottom) For the spray bottle the Dex-Net 1.0 algorithm quickly converges to the optimal grasp with 10,000
prior objects, but for the drill the lack of similar objects leads to no significant performance increase over
Thompson sampling without priors.

3.5.2 Sensitivity to Object Shape
To understand the behavior of the Dex-Net 1.0 algorithm on individual 3D objects, we
examined performance on a drill and spray bottle from the test set, both uncommon object
categories in Dex-Net 1.0. Fig. 3.6 show the normalized PF versus iteration averaged over
25 trials for 2,000 iterations on the spray bottle and drill, respectively. We see that the
spray bottle converges very quickly when using a prior dataset of 10,000 objects, finding the
optimal grasp in the set in about 1,500 iterations. This convergence may be explained by the
two similar spray bottles retrieved by the MV-CNN from the 10,000 object dataset. Fig. 3.7
illustrates the grasps predicted to have the highest PF on the spray bottle by the different
algorithms after 100 iterations. On the other hand, performance on the drill does not improve
using either 1,000 or 10,000 objects, perhaps because the closest model in Dex-Net according
to the similarity metric is a phone.

CHAPTER 3. ROBUST ANALYTIC GRASP PLANNING FOR LARGE DATASETS
OF 3D OBJECTS 42

PF = 0.60 PF = 0.67 PF = 0.78

Thompson Sampling Dex-Net 1.0 (N=1,000) Dex-Net 1.0 (N=10,000)

Figure 3.7: Example grasps predicted to have the highest PF on the spray bottle after only 100 iterations
by Thompson sampling without priors and the Dex-Net 1.0 algorithm with 1,000 and 10,000 prior objects.
Thompson sampling without priors chooses a grasp near the edge of the object, while the Dex-Net algorithm
selects grasps closer to the object center-of-mass. For reference, the highest quality grasp for the spray bottle
was PF = 0.81.

3.5.3 Sensitivity to Similarity and Uncertainty
We also studied the sensitivity of the Dex-Net algorithm to the similarity kernel bandwidths
described in Section 3.4 and the levels of pose and friction uncertainty for the test object.
We varied the inverse bandwidths of the kernel for the grasp parameters and depthmap
gradients to the lower values Cg = diag(0, 0, 15, 15), µd = 350.0, and σd = 3.0 as well as
the higher values Cg = diag(0, 0, 300, 300), µd = 750.0, and σd = 1.75. We also tested
low uncertainty with variances (σt, σr, σγ) = (0.0025, 0.05, 0.05) and high uncertainty with
variances (σt, σr, σγ) = (0.01, 0.2, 0.2). Fig. 3.8 shows the normalized PF versus iteration
averaged over 25 trials for 2,000 iterations on the 45 test objects. The results suggest that
a conservative setting of similarity kernel bandwidth is important for convergence and that
the algorithm is not sensitive to uncertainty levels.

3.6 Experiments on a Physical Robot
We performed addition experiments to compare the predictions of robust grasp quality met-
rics with the results of executing grasps on a physical system.

3.6.1 Experimental Setup
Grasping trials were run on a Zymark Zymate 2 robot with 4 degrees of freedom plus gripper
control and a rotating turntable for 5 total controllable degrees of freedom (Fig. 3.9). The

CHAPTER 3. ROBUST ANALYTIC GRASP PLANNING FOR LARGE DATASETS
OF 3D OBJECTS 43

Uniform Allocation

Thompson Sampling

Dex-Net 1.0 (N=1,000)

Dex-Net 1.0 (N=10,000)

1.0

0.9

0.8

0.7

0.6
0 500 1000 1500 2000

Iteration

N
o

rm
al

iz
ed

 Q
u

al
it

y

Uniform Allocation

Thompson Sampling

Dex-Net 1.0 (N=1,000)

Dex-Net 1.0 (N=10,000)

1.0

0.9

0.8

0.7

0.6
0 500 1000 1500 2000

Iteration

N
o

rm
al

iz
ed

 Q
u

al
it

y

Uniform Allocation

Thompson Sampling

Dex-Net 1.0 (N=1,000)

Dex-Net 1.0 (N=10,000)

1.0

0.9

0.8

0.7

0.6
0 500 1000 1500 2000

Iteration

N
o

rm
al

iz
ed

 Q
u

al
it

y

Uniform Allocation

Thompson Sampling

Dex-Net 1.0 (N=1,000)

Dex-Net 1.0 (N=10,000)

1.0

0.9

0.8

0.7

0.6
0 500 1000 1500 2000

Iteration

N
o

rm
al

iz
ed

 Q
u

al
it

y

Overestimated Similarity Underestimated Similarity

Lower Uncertainty Higher Uncertainty

Figure 3.8: Sensitivity to similarity kernel (top) and pose and friction uncertainty (bottom) for the normalized
grasp quality versus iteration averaged over 25 trials per object for the Dex-Net algorithm with 1,000 and
10,000 prior 3D objects. (Top-left) Using a higher inverse bandwidth causes the algorithm to measure false
similarities between grasps, leading to performance on par with uniform allocation. (Top-right) A lower
inverse bandwith decreases the convergence rate, but on average the Dex-Net algorithm still selects a grasp
within approximately 85% of the grasp with highest PF for all iterations. (Bottom-left) Lower uncertainty
increases the quality for all methods, (bottom-right) higher uncertainty decreases the quality for all methods,
and the Dex-Net algorithm with 10,000 prior objects still converges approximately 2× faster than Thompson
sampling without priors.

parallel-jaw gripper consisted of two pincer fingers with rubber fingertips.
We evaluated performance across 13 unique 3D printed objects pictured in Fig. 3.10,

and attempted 12 unique grasps for each object. The objects were chosen to be difficult to
grasp with a parallel-jaw gripper due to smooth, curved surfaces, and challenging collision
geometries.

On each grasp attempt, a single 3D printed object was placed in the center of the table
in a known stable resting pose using an automatic hardware reset mechanism, which lifted
the object using a pulley and damper system and slowly lowering the object to rest on the
table. Then a grasp was executed by registering a depth image from a Primesense Carmine
RGB-D camera to a known 3D CAD model of the object and indexing a pre-computed grasp
from Dex-Net 1.0.

CHAPTER 3. ROBUST ANALYTIC GRASP PLANNING FOR LARGE DATASETS
OF 3D OBJECTS 44

Figure 3.9: Experimental setup used to evaluate the correlation between robust analytic grasp quality metrics
and the empirical outcomes of grasp attempts on a physical system. The robot consisted of a Zymark Zymate
2 arm (right) with four degrees of freedom and a parallel-jaw pincer gripper as well as a rotating turntable
to augment the system for five controllable degrees of freedom. On each grasp attempt, a single 3D printed
object was placed in the center of the table in a known stable resting pose using an automatic hardware reset
mechanism. Then a grasp was executed by registering a depth image from a Primesense Carmine RGB-D
camera to a known 3D CAD model of the object and indexing a pre-computed grasp from Dex-Net 1.0.

3.6.2 Perception System
In order to execute pre-computed grasps on the physical robot, we designed and implemented
a novel perception system for registering the global 3D pose of a known 3D object based on
Multi-View Convolutional Neural Networks (MV-CNNs). The perception system, illustrated
in Fig. 3.11, consisted of two phases: object pose recognition and geometric alignment. First
a database of known images for each object was created by rendering a set of a synthetic

CHAPTER 3. ROBUST ANALYTIC GRASP PLANNING FOR LARGE DATASETS
OF 3D OBJECTS 45

Figure 3.10: Set of 13 adversarial 3D printed objects used to evaluate robust analytic grasp quality metrics
on a physical robot.

segmentation masks for each object in various orientations. Each synthetic segmentation
mask was featurized using the fc7 output of the trained MV-CNN of Section 3.3.2 and the
feature vectorse were stored in a database At runtime, the object was segmented from the
background in a depth image using the known pose of the RGB-D camera and featurized us-
ing the MV-CNN. Then the features were matched to the database of pre-computed features
for the known object and the pose corresponding to the closest feature match was used as
an initial estimate of the object pose. Finally, the pose was refined by geometrically aligning
the segmented object point cloud with the known 3D CAD model of the object using the
point-to-plane Iterated Closest Point algorithm [122].

To validate our registration system, we ran over 1,000 trials of registration over the 13
3D printed test objects in known poses and compared the estimated pose to ground truth.
First, we placed each object in a known pose on the turntable using templates. Then, the
system estimated the object pose for ten unique images and updated the object pose by
rotating the turntable by 30◦. After rotating a full 360◦, the object was changed.

Fig. 3.12 displays the pose error histograms for the x and y position and orientation of
the object on the turntable. The median absolute translation error was 4.5mm and the mean
absolute orientation error was 3.5◦.

3.6.3 Evaluation of Robust Analytic Grasp Metrics
To evaluate the robust analytic grasp quality metrics on the physical robot, we iteratively
executed grasps for each of the 3D printed test objects and compared the predictions with
the outcomes on the physical system. For each object, we hand-selected 12 unique grasps
to attempt that covered the surface of the object. Each grasp was evaluated over 10 trials.
In each trial, the object was placed on the turntable in a known stable resting pose using
the hardware reset mechanism, the perception system estimated the object pose, the pre-
computed grasp was converted to a 3D pose for the physical robot gripper using the pose
estimate, and the robot executed the grasp by moving linearly to the grasp pose and lifting

CHAPTER 3. ROBUST ANALYTIC GRASP PLANNING FOR LARGE DATASETS
OF 3D OBJECTS 46

Figure 3.11: Perception system used to estimate the 3D pose of known objects from depth images in exper-
iments on a physical robot. In the object pose recognition phase, a segmentation mask for the object was
matched to a set of pre-rendered segmentation masks of the object CAD model in various orientations using
CNN features. Then the pose of the CAD model corresponding to the most similar pre-rendered segmenta-
tion mask was used to seed the geometric alignment phase, in which the CAD model was iteratively aligned
to the segmented point cloud using point-to-plane Iterated Closest Point.

X Translation Y Translation Planar Orientation

Figure 3.12: Planar pose error histograms for the known object pose registration system used to evaluate
robust analytic grasp quality metrics.

the object. This resulted in 1,560 total grasp attempts.
Grasps were labeled with binary success of failure by a human operator. A grasp was

considered successful if it was lifted above the table surface and was held firmly by the
robot fingertips (not other parts of the gripper geometry). The successes for each grasp
were converted to an empirical quality estimate by taking the fraction of successes over the
number of total attempts.

We computed a number of robust analytic grasp quality metrics for each grasp to under-
stand performance over a range of parameter values. The metrics considered were: proba-

CHAPTER 3. ROBUST ANALYTIC GRASP PLANNING FOR LARGE DATASETS
OF 3D OBJECTS 47

Empirical Quality

A
na

ly
tic

 Q
ua

lit
y

False Positive

Figure 3.13: Performance of probability of partial closure, the highest precision robust analytic grasp quality
metric, on predicting the outcomes of grasp attempts on a physical robot (empirical quality). (Left) A
scatter plot of the predicted versus empirical quality for a set of 156 grasps suggests that the analytic quality
metric has few false positives. The majority of classification errors are due to false negatives, suggesting that
robust analytic metrics are overly conservative in predicting the outcomes of empirical grasps. This may be
due to unmodeled affordances such as dynamically pushing the object into alignment. (Right) The lone false
positive is a grasp for which the object dynamically rotates out of the gripper due to gravity.

bility of force closure [178], expected epsilon quality [77], and probability of partial closure
with respect to forces and torques due to gravity [91]. Each metric was considered over
a range of uncertainty parameters: none, low, medium, and high. We then evaluated the
predictive value of the metrics by considering the binary classification performance of the
robust analytic grasp quality metrics on the empirical quality thresholded by 50% success.

None of the robust analytic metrics performed well in terms of classification accuracy.
The highest performing metric was the expected epsilon quality with an accuracy of 63%.
However, several of the metrics had over 90% precision (percent of predicted successful grasps
that were actually successful). This is important because it indicates that grasps with high
robust analytic quality are highly likely to succeed on a physical robot, and in practice a
robot could plan grasps by maximizing robust analytic quality.

Fig. 3.13 displays the results for the probability of partial closure with medium uncer-
tainty, the best performing metric with 93% precision. We see that the classification accuracy
is low because there are a large number of grasps that are predicted to fail by the robust
analytic metrics that actually succeed on the physical system. In practice, these grasps suc-
ceed due to dynamic effects that are unmodeled by the metrics such as pushing the object
into alignment. The single false positive is a grasp for which the object dynamically rotates
out of the jaws due to gravity.

CHAPTER 3. ROBUST ANALYTIC GRASP PLANNING FOR LARGE DATASETS
OF 3D OBJECTS 48

3.7 Discussion
In this chapter, we presented the Dexterity Network (Dex-Net) 1.0, a new dataset and
associated algorithm to study the scaling effects of Big Data and Cloud Computation on
stochastic analytic grasp planning with binary grasp rewards. The algorithm uses a Multi-
Armed Bandit model with correlated rewards to leverage prior grasps and 3D object models.
Experiments using the Google Cloud Platform suggest that prior data can speed robust
grasp planning by a factor of 2 and that average grasp quality increases with the number of
similar objects in the dataset.

Experiments using Dex-Net 1.0 on a physical robot uncovered several benefits and draw-
backs of the approach presented in this chapter. First, experiments suggest that robust grasp
quality metrics defined by the reward and state distribution in this chapter may have high
precision on a physical robot. Given appropriate parameter settings, robust grasp quality
metrics may underestimate the expected reward for grasping on a physical system. When
a grasp has high quality according to these metrics, the grasp is likely to succeed on the
physical system. However, experiments also revealed that force closure is not a particularly
useful metric – more complex grasp metrics based on disturbing wrenches are necessary to
accurately predict outcomes on a physical system. Furthermore, the instance recognition and
pose-registration perception system necessary for estimating object identity and pose does
not scale beyond a very small number of objects. This raises the question: can robust grasps
according to analytic quality metrics be identified directly from images without estimating
exact object shape and pose?

49

Chapter 4

Learning to Plan Grasps from
Synthetic Point Clouds and Analytic
Metrics

Reliable grasping across a wide variety of objects is challenging due to imprecision in sensing
and actuation, which makes it difficult to estimate object shape, pose, material properties,
and mass. Empirical results suggest that deep neural networks trained on large datasets of
human grasp labels [96] or physical grasp outcomes [131] can be used to plan grasps that
are successful across a wide variety of objects directly from images or point clouds, similar
to generalization results in computer vision [88]. However, data collection requires either
tedious human labeling [77] or months of execution time on a physical system [98].

An alternative approach is to plan grasps using physics-based analyses such as caging [144],
wrench space analysis [136], robust wrench space analysis [178], or simulation [77], which
can be rapidly computed using Cloud Computing [81]. However, these methods assume a
separate perception system that estimates state perfectly [136] or according to known Gaus-
sian distributions [104]. This is prone to errors [5], may not generalize well to new objects,
and can be slow to match point clouds to known models during execution [50].

In this chapter, we build upon the state and reward model of Dex-Net 1.0 to develop
an end-to-end generative model for training datasets of synthetic point clouds, grasps, and
analytic rewards using analytic models of robust grasping and image formation [57, 111].
We learn a grasp quality function to predict the value of analytic grasp metrics directly from
depth images by training a deep Convolutional Neural Network (CNN) on a massive synthetic
training dataset, building upon recent research on classifying force closure grasps [129, 152]
and the outcomes of dynamic grasping simulations [70, 77, 175].

The contributions of this chapter are:

1. The Dexterity Network (Dex-Net) 2.0, a dataset associating 6.7 million point clouds
and analytic grasp quality metrics with parallel-jaw grasps planned using robust quasi-
static GWS analysis on a dataset of 1,500 3D object models.

CHAPTER 4. LEARNING TO PLAN GRASPS FROM SYNTHETIC POINT CLOUDS
AND ANALYTIC METRICS 50

2. A Grasp Quality Convolutional Neural Network (GQ-CNN) model trained to classify
robust grasps in depth images using expected epsilon quality as supervision, where
each grasp is specified as a planar pose and depth relative to a camera.

3. A grasp planning method that samples antipodal grasp candidates and ranks them
with a GQ-CNN.

In over 1,000 physical trials of grasping single objects on a tabletop with an ABB YuMi
robot, we compare Dex-Net 2.0 to image-based grasp heuristics, a random forest [152], an
SVM [129], and a baseline that recognizes objects, registers their 3D pose [50], and indexes
Dex-Net 1.0 [104] for the most robust grasp to execute. We find that the Dex-Net 2.0 grasp
planner is 3× faster than the registration-based method, 93% successful on objects seen in
training (the highest of learning-based methods), and is the best performing method on novel
objects, achieving 99% precision on a dataset of 40 household objects despite being trained
entirely on synthetic data.

4.1 Problem Statement
We consider the problem of planning a robust planar parallel-jaw grasp for a singulated rigid
object resting on a table based on point clouds from a depth camera. We learn a quality
function that takes as input a candidate grasp and a depth image and outputs an estimate
of robust grasp quality [81, 178], or the expected reward of a grasp under uncertainty in
sensing and control.

Assumptions

We assume a parallel-jaw gripper, rigid objects singulated on a planar worksurface, and
single-view (2.5D) point clouds taken with a depth camera. For generating datasets, we
assume a known gripper geometry and a single overhead depth camera with known intrinsics.

4.1.1 Definitions
Fig. 4.1 illustrates our variables and the dataset generation distribution for Dex-Net 2.0. We
use the following definitions:

• States. Let x = (O, C) denote a state describing the variable properties of environment
consisting of a single overhead depth camera and a single object in stable resting pose on
a tabletop. The object state O specifies the geometry M, pose To, friction coefficient
γ, and center of mass z. The camera state C specifies the intrinsic parameters I and
pose Tc.

• Grasp Actions. Let u = (p, ϕ) ∈ R3 × S1 denote a parallel-jaw grasp in 3D space
specified by a center p = (x, y, z) ∈ R3 and an angle in the table plane ϕ ∈ S1.

CHAPTER 4. LEARNING TO PLAN GRASPS FROM SYNTHETIC POINT CLOUDS
AND ANALYTIC METRICS 51

O

y

Camera

C
x = (O, C)

p
ϕ

State

Grasp
Point
Cloud Reward

Object

R

Camera

C

Figure 4.1: Graphical model for robust parallel-jaw grasping of objects on a table surface based on point
clouds. Object shapes O are uniformly distributed over a discrete set of object models and object poses To

are distributed over the object’s stable poses and a bounded region of a planar surface. Grasps u = (p, ϕ)
are sampled uniformly from the object surface using antipodality constraints. Given a coefficient of friction
γ, we evaluate an analytic reward metric R for a grasp on an object. A synthetic 2.5D point cloud y is
generated from 3D meshes based on the camera C in pose Tc and is corrupted with multiplicative and
Gaussian Process noise.

• Point Clouds. Let y = RH×W
+ be a 2.5D point cloud represented as a depth image

with height H and width W taken by a camera with known intrinsics [57].

• Reward Distribution. Let R(x,u) ∈ {0, 1} be a binary-valued grasp reward metric,
such as force closure or physical lifting. Let q(R | x,u) model probabilistic grasp out-
comes due to a distribution over contact locations resulting from control imprecision.

Let q(R,x,y | u) be the dataset generation environment defining a distribution on rewards,
states, and point clouds modeling imprecision in sensing and control. For example, q could
be defined by noisy sensor readings of a known set of industrial parts coming down a conveyor
belt in arbitrary poses. Let the robust grasp quality of a grasp given an observation [14, 178]
be the expected value of the metric, or probability of success under uncertainty in sensing
and control: Q(y,u) = E [R | y,u,] .

Details of Graphical Model

Our graphical model is illustrated in Fig. 4.1 and models q(R,x,y,u) as the product of a
state distribution q(x), an observation model q(y|x), a grasp candidate model q(u|x), and
a reward distribution based on analytic grasp metrics q(R|x,u).

We model the state distribution as

q(x) = q(γ)q(M)q(To|M)q(Tc)

CHAPTER 4. LEARNING TO PLAN GRASPS FROM SYNTHETIC POINT CLOUDS
AND ANALYTIC METRICS 52

Figure 4.2: Dex-Net 2.0 pipeline for training dataset generation. (Left) The database contains 1,500 3D
object mesh models. (Top) For each object, we sample hundreds of parallel-jaw grasps to cover the surface
and evaluate robust analytic grasp metrics using sampling. For each stable pose of the object we associate
a set of grasps that are perpendicular to the table and collision-free for a given gripper model. (Bottom)
We also render point clouds of each object in each stable pose, with the planar object pose and camera pose
sampled uniformly at random. Every grasp for a given stable pose is associated with a pixel location and
orientation in the rendered image. (Right) Each image is rotated, translated, cropped, and scaled to align
the grasp pixel location with the image center and the grasp axis with the middle row of the image, creating
a 32× 32 grasp image. The full dataset contains over 6.7 million grasp images.

Distribution Description
q(γ) truncated Gaussian distribution over friction coefficients
q(O) discrete uniform distribution over 3D object geometries (triangular meshes)

q(To|M) continuous uniform distribution over the discrete set of
object stable poses and planar poses on the table surface

q(Tc)
continuous uniform distribution over spherical coordinates

for radial bounds [r`, ru] and polar angle in [0, δ]

Table 4.1: Details of the distributions used in the Dex-Net 2.0 graphical model for generating the Dex-Net
training dataset.

where the distributions are detailed in Table 4.1. The grasp candidate model q(u | x) is a
uniform distribution over pairs of antipodal contact points on the object surface that form
a grasp axis parallel to the table plane. The observation model is y = αŷ + ε where ŷ is
a rendered depth image for a given object in a given pose, α is a Gamma random variable
modeling depth-proportional noise, and ε is zero-mean Gaussian Process noise over pixel
coordinates with bandwidth ` and measurement noise σ modeling additive noise [111]. The
grasp candidate model samples antipodal grasps [20] from the object mesh uniformly at
random. We model grasp reward as:

R(x,u) =
{

1 EQ > δ and collfree(x,u)
0 otherwise

where EQ is the robust epsilon quality defined in [152], a variant of the pose error robust met-
ric [178] that includes uncertainty in friction and gripper pose, and collfree(x,u) indicates

CHAPTER 4. LEARNING TO PLAN GRASPS FROM SYNTHETIC POINT CLOUDS
AND ANALYTIC METRICS 53

that the gripper does not collide with the object or table.

4.1.2 Objective
Our goal is to learn a robustness function Qθ∗(y,u) ∈ [0, 1] over many possible grasps,
objects, and images that classifies grasps according to the binary success metric:

θ∗ = argmin
θ∈Θ

Eq(R,x,y,u) [L(R,Qθ(y,u))] (4.1.1)

where L is the cross-entropy loss function and Θ defines the parameters of the Grasp Quality
Convolutional Network (GQ-CNN) described in Section 4.2.3. The estimated robustness
function can be used in a grasping policy that maximizes Qθ∗ over a set of candidate grasps:
πθ(y) = argmaxu∈UQθ(y,u), where U specifies constraints on the set of available grasps,
such as collisions or kinematic feasibility. Learning Q rather than directly learning the
policy allows us to enforce task-specific constraints without having to update the learned
model.

4.2 Learning a Grasp Quality Function
Solving for the grasp robustness function in objective 7.1.1 is challenging for several reasons.
First, we may need a huge number of samples to approximate the expectation over a large
number of possible objects. We address this by generating Dex-Net 2.0, a training dataset
of 6.7 million synthetic point clouds, parallel-jaw grasps, and robust analytic grasp metrics
across 1,500 3D models sampled from the graphical model in Fig. 4.1. Second, the rela-
tionship between point clouds, grasps, and metrics over a large dataset of objects may be
complex and difficult to learn with linear or kernelized models. Consequently, we develop a
Grasp Quality Convolutional Neural Network (GQ-CNN) model that classifies robust grasp
poses in depth images and train the model on data from Dex-Net 2.0.

4.2.1 Supervised Learning
We estimate Qθ∗ using a sample approximation [44] of the objective in Equation 7.1.1 using
i.i.d samples (R1,x1,y1,u1), ..., (RN ,xN ,yN ,uN) ∼ q(R,x,y,u) from our generative graph-
ical model for images, grasps, and rewards:

θ̂ = argmin
θ∈Θ

N∑
i=1
L(Ri, Qθ(yi,ui)).

4.2.2 Dataset Generation
Dex-Net 2.0 contains 6.7 million datapoints generated using the pipeline of Fig. 4.2.

CHAPTER 4. LEARNING TO PLAN GRASPS FROM SYNTHETIC POINT CLOUDS
AND ANALYTIC METRICS 54

Aligned Image

+
Grasp Candidate

y
(i, j)

Grasp Quality CNN

Conv 7x7
64 Filters

Conv 5x5
64 Filters

Conv 3x3
64 Filters

Conv 3x3
64 Filters

Fully Connected
1024 Outputs

Fully Connected
1024 Outputs

Fully Connected
2 Outputs

Fully Connected
16 Outputs

Gripper Depth

ReLU
LRN

ReLU ReLU ReLU
LRN

ReLU

ReLU

ReLU

Max Pool
2x2

SoftMax

z

Learned Conv Filters

(x, y, z)

Qθ
ϕ

Figure 4.3: Architecture of the Grasp Quality Convolutional Neural Network (GQ-CNN). (Left) Planar
grasp candidates u = (i, j, ϕ, z) are generated from a depth image and transformed to align the image with
the grasp center pixel (i, j) and orientation ϕ. The architecture contains four convolutional layers in pairs
of two separated by ReLU nonlinearities followed by 3 fully connected layers and a separate input layer for
the z, the distance of the gripper from the camera. The use of convolutional layers was motivated by the
relevance of depth edges as features for learning in previous research [10, 96, 104] and the use of ReLUs
was motivated by image classification results [88]. The network estimates the probability of grasp success
(robustness) Qθ ∈ [0, 1], which can be used to rank grasp candidates. (Right) The first layer of convolutional
filters learned by the GQ-CNN on Dex-Net 2.0. The filters appear to compute oriented image gradients
at various scales, which may be useful for inferring contact normals and collisions between the gripper and
object.

3D Models. The dataset contains a subset of 1,500 mesh models from Dex-Net 1.0: 1,371
synthetic models from 3DNet [180] and 129 laser scans from the KIT object database [78].
Each mesh is aligned to a standard frame of reference using the principal axes, rescaled to fit
within a gripper width of 5.0cm (the opening width of an ABB YuMi gripper), and assigned
a mass of 1.0kg centered in the object bounding box since some meshes are non-closed.
For each object we also compute a set of stable poses [49] and store all stable poses with
probability of occurrence above a threshold.

Parallel-Jaw Grasps. Each object is labeled with a set of up to 100 parallel-jaw grasps.
The grasps are sampled using the rejection sampling method for antipodal point pairs de-
veloped in Dex-Net 1.0 [104] with constraints to ensure coverage of the object surface [109].
For each grasp we evaluate the expected epsilon quality EQ [134] under object pose, gripper
pose, and friction coefficient uncertainty using Monte-Carlo sampling [152],

Rendered Point Clouds. Every object is also paired with a set of 2.5D point clouds (depth
images) for each object stable pose, with camera poses and planar object poses sampled
according to the graphical model described in Section 4.1.1. Images are rendered using a
pinhole camera model and perspective projection with known camera intrinsics, and each
rendered image is centered on the object of interest using pixel transformations. Noise is
added to the images during training as described in Section 4.2.3.

CHAPTER 4. LEARNING TO PLAN GRASPS FROM SYNTHETIC POINT CLOUDS
AND ANALYTIC METRICS 55

4.2.3 Grasp Quality Convolutional Neural Network
Architecture

The Grasp Quality Convolutional Neural Network (GQ-CNN) architecture, illustrated in
Fig. 4.3 and detailed in the caption, defines the set of parameters Θ used to represent the
grasp robustness function Qθ. The GQ-CNN takes as input the gripper depth from the cam-
era z and a depth image centered on the grasp center pixel v = (i, j) and aligned with the
grasp axis orientation ϕ. The image-gripper alignment removes the need to learn rotational
invariances that can be modeled by known, computationally-efficient image transformations
(similar to spatial transformer networks [67]) and allows the network to evaluate any grasp
orientation in the image rather than a predefined discrete set as in [70, 131]. Following stan-
dard preprocessing conventions, we normalize the input data by subtracting the mean and
dividing by the standard deviation of the training data and then pass the image and gripper
depth through the network to estimate grasp robustness. The GQ-CNN has approximately
18 million parameters.

Training Dataset

GQ-CNN training datasets are generated by associating grasps with a pixel v, orientation
ϕ, and depth z relative to rendered depth images as illustrated in Fig. 4.2. We compute
these parameters by transforming grasps into the camera frame of reference using the camera
pose Tc and projecting the 3D grasp position and orientation onto the imaging plane of the
camera [57]. We then transform all pairs of images and grasp configurations to a single
image centered on v and oriented along ϕ (see the left panel of Fig. 4.3 for an illustration).
The Dex-Net 2.0 training dataset contains 6.7 million datapoints and approximately 21.2%
positive examples for the thresholded robust epsilon quality with threshold δ = 0.002 [77]
and a custom YuMi gripper.

Optimization

We optimize the parameters of the GQ-CNN using backpropagation with stochastic gradient
descent and momentum [88]. We initialize the weights of the model by sampling from a zero
mean Gaussian with variance 2

ni
, where ni is the number of inputs to the i-th network

layer [59]. To augment the dataset, we reflect the image about its vertical and horizontal
axes and rotate each image by 180◦ since these lead to equivalent grasps. We also adaptively
sample image noise from our noise model (see Section 4.1.1) before computing the batch
gradient for new samples during training to model imaging noise without explicitly storing
multiple versions of each image. To speed up noise sampling we approximate the Gaussian
Process noise by upsampling an array of uncorrelated zero-mean Gaussian noise using bilinear
interpolation. We set hyperparameters based on the performance on a randomize synthetic
validation set as described in Section 4.4.3.

CHAPTER 4. LEARNING TO PLAN GRASPS FROM SYNTHETIC POINT CLOUDS
AND ANALYTIC METRICS 56

R
an

k
in

g

Most

Robust

Grasp

Input Depth Image

Grasp

Candidates

GQ-CNN

Dex-Net 2.0

Trained Model of

Grasp Robustness

Initial State Executed Grasp

Figure 4.4: Dex-Net 2.0 Architecture. (Center) The Grasp Quality Convolutional Neural Network (GQ-
CNN) is trained offline to predict the robustness candidate grasps from depth images using a dataset of
6.7 million synthetic point clouds, grasps, and associated robust grasp metrics computed with Dex-Net 1.0.
(Left) When an object is presented to the robot, a depth camera returns a 3D point cloud, where pairs of
antipodal points identify a set of several hundred grasp candidates. (Right) The GQ-CNN rapidly determines
the most robust grasp candidate, which is executed with the ABB YuMi robot.

4.3 Grasp Planning
The Dex-Net 2.0 grasp planner uses the robust grasping policy πθ(y) = argmaxu∈C(y)Qθ(u,y)
illustrated in Fig. 4.4. The set C(y) is a discrete set of antipodal candidate grasps [20]
sampled uniformly at random in image space for surface normals defined by the depth image
gradients. Each grasp candidate is evaluated by the GQ-CNN, and the most robust grasp
that is (a) kinematically reachable and (b) not in collision with the table is executed. We
explore two implementations of the robust grasping policy: (1) sampling a large, fixed set of
antipodal grasps and choosing the most robust one and (2) optimizing for the most robust
grasp using derivative free optimization.

4.3.1 Antipodal Grasp Candidate Generation
The antipodal grasp sampling method used in the paper is designed to sample antipodal
grasps specified as a planar pose, angle, and height with respect to a table. The algorithm is
detailed in Algorithm 1. We first threshold the depth image to find areas of high gradient.
Then, we use rejection sampling over pairs of pixels to generate a set of candidate antipodal
grasps, incrementally increasing the friction coefficient until a desired number of grasps is
reached in case the desired number cannot be achieved with a smaller friction coefficient. We
convert antipodal grasps in image space to 3D by assigning discretizing the gripper height
between the height of the grasp center pixel relative and the height of the table surface itself.

This grasp sampling method is used for all image based grasp planners in the paper. We
used M = 1000, K set to the intrinsics of a Primesense Carmine 1.08, Tc determined by
chessboard registration, g = 0.0025m, µ` = 0.4, δµ = 0.2, N = 1000, and δh = 0.01m.

CHAPTER 4. LEARNING TO PLAN GRASPS FROM SYNTHETIC POINT CLOUDS
AND ANALYTIC METRICS 57

1 Input: Depth image y, Number of grasps M , Camera Intrinsics Matrix K, Camera pose Tc,
Depth gradient threshold g, Min friction coef γ`, Friction coef increment δγ , Max samples
per friction coef N , Gripper height resolution δh

Result: G, set of candidate grasps
// Compute depth edges

2 Gx = ∇xy, Gy = ∇yy;
3 E = {u ∈ R2 : Gx(u)2 +Gy(u)2 > g};

// Find antipodal pairs
4 G = {}, γ = γ`, i = 0, j = 0;
5 while |G| < M and γ <= 1.0 do
6 u,v =UniformRandom(E , 2);
7 if Antipodal(u,v, µ) then

// Compute point in world coordinates
8 c = 0.5 ∗ (u + v);
9 pc =Deproject(K,y, c);

10 p = Tc ∗ pc;
11 h = p.z;

// Add all heights
12 while h > 0 do
13 G = G ∪ {g(u,v, h)};
14 h = h− δh;
15 end
16 end
17 i = i+ 1, j = j + 1;

// Update friction coef
18 if j >= N then
19 γ = γ + δγ ;
20 j = 0;
21 end
22 end
23 return G;

Algorithm 1: Antipodal Grasp Sampling from a Depth Image

CHAPTER 4. LEARNING TO PLAN GRASPS FROM SYNTHETIC POINT CLOUDS
AND ANALYTIC METRICS 58

4.3.2 Derivative Free Optimization
One problem with choosing a grasp from a fixed set of candidates is that the set of candidates
may all have a low probability of success. This can be difficult when an object can only be
grasped in a small set of precise configurations, such as the example in Fig. 4.5. Some of
these failures can be seen in the right panel of the failure modes figure in the original paper.

In our second generalization study we addressed this problem using the cross entropy
method (CEM) [98, 145], a form of derivative-free optimization, to optimize for the most
robust grasp by iteratively resampling grasps from a learned distribution over robust grasps
and updating the distribution. The method, illustrated in Algorithm 2, models the distribu-
tion on promising grasps using a Gaussian Mixture Model (GMM) and seeds the initial set of
grasps with antipodal point pairs using Algorithm 1 with no iterative friction coefficient up-
dates. The algorithm takes as input the number of CEM iterations m, the number of initial
grasps to sample n, the number of grasps to resample from the model c, the number of GMM
mixture components k, a friction coefficient µ, and elite percentage γ, and the GQ-CNN Qθ,
and returns an estimate of the most robust grasp u. In our generalization experiment we
used m = 3, n = 100, c = 50, µ = 0.8, k = 3, and γ = 25%. The qualitative performance of
our method on several examples from our experiments is illustrated in Fig. 4.6.

1 Input: Num rounds m, Num initial samples n, Num CEM samples c, Num GMM mixture
k, Friction coef γ, Elite percentage ν, Robustness function Qθ

Result: u, most robust grasp
2 U ←uniform set of n antipodal grasps with friction coef γ;
3 for i = 1, ..., m do
4 E ←top ν−percentile of grasps ranked by Qθ;
5 M ←GMM fit to E with k mixtures;
6 G← c iid samples from M ;
7 end
8 return argmax

u∈U
Qθ(u,y);

Algorithm 2: Robust Grasping Policy using the Cross Entropy Method on a Learned
GQ-CNN

4.4 Experiments
We evaluated classification performance on both real and synthetic data and performed
extensive physical evaluations on an ABB YuMi with custom silicone gripper tips designed
by Guo et al. [53] to benchmark the performance of grasping a single object. All experiments
ran on a Desktop running Ubuntu 16.04 with a 3.4 GHz Intel Core i7-6700 Quad-Core CPU
and an NVIDIA GeForce 980, and we used an NVIDIA GeForce GTX 1080 for training large
models.

CHAPTER 4. LEARNING TO PLAN GRASPS FROM SYNTHETIC POINT CLOUDS
AND ANALYTIC METRICS 59

Figure 4.5: Grasp robustness predicted by a Grasp Quality Convolutional Neural Network (GQ-CNN) trained
with Dex-Net 2.0 over the space of depth images and grasps for a single point cloud collected with a
Primesense Carmine. (Left) As the center of the gripper moves from the top to the bottom of the image
the GQ-CNN prediction stays near zero and spikes on the most robust grasp (Right), for which the gripper
fits into a small opening on the object surface. This suggests that the GQ-CNN has learned a detailed
representation of the collision space between the object and gripper. Furthermore, the sharp spike suggests
that it may be difficult to plan robust grasps by randomly sampling grasps in image space. We consider
planning the most robust grasp using the cross-entropy method on the GQ-CNN response.

4.4.1 Physical Benchmark Description
We created a benchmark for grasping single objects on a tabletop to compare grasp planning
methods. The setup is illustrated in Fig. 4.7 and the experimental procedure is described in
the caption and shown in the supplemental video1. Each grasp planner received as input a
color image, depth image, bounding box containing the object, and camera intrinsics, and
output a target grasping pose for the gripper. A human operator was required to reset the
object in the workspace on each trial, and therefore blinded operators from which grasp
planning method was being tested in order to remove bias.

We compared performance on this benchmark with the following metrics:

1. Success Rate: The percentage of grasps that were able to lift, transport, and hold a
desired object after shaking.

2. Precision: The success rate on grasps that are have an estimated robustness higher
than 50%. This measures performance when the robot can decide not to grasp an

1https://youtu.be/9eqAxk95I3Y

CHAPTER 4. LEARNING TO PLAN GRASPS FROM SYNTHETIC POINT CLOUDS
AND ANALYTIC METRICS 60

Figure 4.6: Example input color images and maps of the grasp robust estimated by the GQ-CNN over grasp
centers for a constant grasp axis angle in image space and height above the table, with the grasp planned by
our CEM-based robust grasping policy shown in black. CEM is able to find precise robust grasping locations
encoded by the GQ-CNN that are very close to the global maximum for the given grasp axis and height.
The GQ-CNN also appears to assign non-zero robustness to several grasps that completely miss the object.
This is likely because no such grasps are in the training set, and future work could augment the training
dataset to avoid these grasps.

CHAPTER 4. LEARNING TO PLAN GRASPS FROM SYNTHETIC POINT CLOUDS
AND ANALYTIC METRICS 61

Figure 4.7: Experimental setup for benchmarking grasping with the ABB YuMi. (Left) In each trial a
human operator sampled an object pose by shaking the object in a box and placing it upside down in the
workspace. Then RGB-D image was taken with a Primsense Carmine 1.08, the image was processed using
inpainting [70], and the object was segmented using color background subtraction. The grasp planner under
evaluation then planned a gripper pose and the YuMi executed the grasp. Grasps were considered successful
if the gripper held the object after lifting, transporting, and shaking the object. (Top-Right) The training
set of 8 objects with adversarial geometric features such as smooth curved surfaces and narrow openings for
grasping known objects. (Bottom-Right) The test set of 10 household objects not seen during training. The
dataset was selected to test performance on challenging objects of varying material, geometry, and surface
reflectance properties.

object, which could be useful when the robot has other actions (e.g. pushing) available.

3. Robust Grasp Rate: The percentage of planned grasps with an estimated robustness
higher than 50%.

4. Planning Time: The time in seconds between receiving an image and returning a
planned grasp.

4.4.2 Datasets
Fig. 4.7 illustrates the physical object datasets used in the benchmark:

1. Train: A validation set of 8 3D-printed objects with adversarial geometric features
such as smooth, curved surfaces. This is used to set model parameters and to evaluate
performance on known objects.

CHAPTER 4. LEARNING TO PLAN GRASPS FROM SYNTHETIC POINT CLOUDS
AND ANALYTIC METRICS 62

2. Test: A set of 10 household objects similar to models in Dex-Net 2.0 with various
material, geometric, and specular properties. This is used to evaluate generalization
to unknown objects.

We chose objects based on geometric features under three constraints: (a) small enough to fit
within the workspace, (b) weight less than 0.25kg, the payload of the YuMi, and (c) height
from the table greater than 1.0cm due to a limitation of the silicone gripper fingertips.

We used four different GQ-CNN training datasets to study the effect on performance,
each with a 80-20 image-wise training and validation split:

1. Adv-Synth: Synthetic images and grasps for the adversarial objects in Train (189k
datapoints).

2. Emp: Outcomes of executing random antipodal grasps with random gripper height
and friction coefficient of µ = 0.5 in 50 physical trials per object in Train (400 data-
points).

3. Dex-Net-Small: A subset of data from 150 models sampled uniformly from Dex-Net
2.0 (670k datapoints).

4. Dex-Net-Large: Data from all 1500 models in Dex-Net 2.0 (6.7m datapoints).

4.4.3 Grasp Planning Methods Used for Comparison
We compared a number of grasp planning methods on simulated and real data. We tuned
the parameters of each method based on synthetic classification performance and physical
performance on the training objects. All methods other than point cloud registration used the
antipodal grasp sampling method described in Section 4.3 with the same set of parameters
to generate candidate grasps, and each planner executes the highest-ranked grasp according
to the method. Additional details on the methods and their parameters can be found in the
supplemental file.

Image-based Grasp Quality Metrics (IGQ). We sampled a set of force closure grasp
candidates by finding antipodal points on the object boundary [20] using edge detection and
ranked grasps by the distance from the center of the jaws to the centroid of the object
segmentation mask. We set the gripper depth using a fixed offset from the depth of the
grasp center pixel.

Point-Cloud Registration (REG). We also compared with grasp planning based on
point cloud registration, a state-of-the-art method for using precomputed grasps [50, 60]. We
first coarsely estimated the object instance and pose based on the top 3 most similar synthetic
images from Dex-Net 2.0, where similarity is measured as distance between AlexNet conv5
features [50, 104]. After coarse matching, we fine-tuned the pose of the object in the table
plane using Iterated Closest Point [54, 81] with a point-to-plane cost. Finally, we retrieved
the most robust gripper pose from Dex-Net 2.0 for the estimated object. We constrained

CHAPTER 4. LEARNING TO PLAN GRASPS FROM SYNTHETIC POINT CLOUDS
AND ANALYTIC METRICS 63

gripper poses to the same four degrees of freedom as the learning-based methods. The
system had a median translational error of 4.5mm a median rotational error of 3.5◦ in the
table plane for known objects.

Alternative Machine Learning Models (ML). We also compared the performance of
a Random Forest with 200 trees of depth up to 10 (ML-RF) motivated by the results of [152]
and a Support Vector Machine with the RBF kernel and a regularization parameter of 1 (ML-
SVM) motivated by the results of [10, 150, 129]. For the RF we used the raw transformed
images and gripper depths normalized by the mean and standard deviation across all pixels
as features. For the SVM we used a Histogram of Oriented Gradients (HOG) [28] feature
representation. Both methods were trained using scikit-learn on the Adv-Synth dataset.

Grasp Quality CNNs (GQ). We trained the GQ-CNN (abbrev. GQ) using the thresh-
olded robust epsilon metric with δ = 0.002 [77] for 5 epochs on Dex-Net-Large (all of Dex-
Net 2.0) using Gaussian process image noise with standard deviation σ = 0.005. We used
TensorFlow [1] with a batch size of 128, a momentum term of 0.9, and an exponentially
decaying learning rate with step size 0.95. Training took approximately 48 hours on an
NVIDIA GeForce 1080. The first layer of 7 × 7 convolution filters are shown in the right
panel of Fig. 4.3, and suggest that the network learned fine-grained vertical edge detectors
and coarse oriented gradients. We hypothesize that vertical filters help to detect antipodal
contact normals and the coarse oriented gradients estimate collisions.

To benchmark the architecture outside of our datasets, we trained on the Cornell Grasp-
ing Dataset [96] (containing 8,019 examples) and achieved a 93.0% recognition rate using
grayscale images and an 80 − 20 imagewise training-validation split compared to 93.7% on
RGB-D images in the original paper. We also trained several variants to evaluate sensitivity
to several parameters:

Dataset Size. We trained a GQ-CNN on Dex-Net-Small for 15 epochs (GQ-S).
Amount of Pre-training We trained three GQ-CNNs on the synthetic dataset of adversar-

ial training objects (Adv-Synth) to study the effect of pre-training with Dex-Net for a new,
known set of objects. The model GQ-Adv was trained on only Adv-Synth for 25 epochs.
The models GQ-L-Adv and GQ-S-Adv were initialized with the weights of GQ and GQ-S,
respectively, and fine-tuned for 5 epochs on Adv-Synth.

Success Metric. We trained a GQ-CNN using probability of force closure thresholded at
25% (GQ-Adv-FC), which is a robust version of the antipodality metric of [129], and and
labels for 400 random grasp attempts on the Train objects using a physical robot [98, 131]
(GQ-Emp).

Noise Levels. We trained a GQ-CNN with zero noise σ = 0 (GQ-Adv-LowU) and high
noise with σ = 0.01 (GQ-Adv-HighU).

4.4.4 Classification of Synthetic Data
The GQ-CNN trained on all of Dex-Net 2.0 had an accuracy of 85.7% on a held out valida-
tion set of approximately 1.3 million datapoints. Due to the memory and time requirements
of training SVMs, we compared synthetic classification performance across methods on the

CHAPTER 4. LEARNING TO PLAN GRASPS FROM SYNTHETIC POINT CLOUDS
AND ANALYTIC METRICS 64

smaller Adv-Synth dataset. Fig. 4.8 shows the receiver operating characteristic curve com-
paring the performance of GQ-L-Adv, GQ-S-Adv, GQ-Adv, ML-SVM, and ML-RF on a
held-out validation set and Table 4.2 details the classification accuracy for the various meth-
ods. The GQ-CNNs outperformed ML-RF and ML-SVM, achieving near-perfect validation
accuracy.

CHAPTER 4. LEARNING TO PLAN GRASPS FROM SYNTHETIC POINT CLOUDS
AND ANALYTIC METRICS 65

Figure 4.8: Receiver operating characteristic comparing the performance of learning models on Adv-Synth.
The GQ-CNN models all perform similarly and have a significantly higher true positive rate when compared
to ML-RF and ML-SVM.

Comparisons of Methods GQ-CNN Parameter Sensitivity

Random IGQ ML-RF ML-SVM REG GQ-L-Adv GQ-S-Adv GQ-Adv GQ-Emp GQ-Adv-FC GQ-Adv-LowU GQ-Adv-HighU

Success Rate (%) 58±11 70±10 75±9 80±9 95±5 93±6 85±8 83±8 80±9 83±8 78±9 86±8
Precision (%) N/A N/A 100 100 N/A 94 90 91 80 89 90 92

Robust Grasp Rate (%) N/A N/A 5 0 N/A 43 60 44 100 89 53 64
Planning Time (sec) N/A 1.9 0.8 0.9 2.6 0.8 0.9 0.8 0.8 0.7 0.8 0.9

Table 4.3: Performance of grasp planning methods on the Train dataset with 95% confidence intervals for
the success rate. Each method was tested for 80 trials (10 trials per object). Details on the methods used
for comparison can be found in Section 4.4.3. We see that REG (point cloud registration) has the highest
success rate at 95% but the GQ-L-Adv performs comparably at 93% and is 3× faster. Performance of the
GQ-CNN drops to 80% when trained on the Empirical dataset (GQ-Emp), likely due to the small number of
training examples, and drops to 78% when no noise is added to the images during training (GQ-Adv-LowU).

4.4.5 Performance Comparison on Known Objects
We evaluated the performance of the grasp planning methods on known objects from Train.
Each grasp planner had 80 trials (10 per object). The left half of Table 4.3 compares the
performance with other grasp planning methods and the right half compares the performance
of the GQ-CNN varations. We found that GQ planned grasps 3× faster than REG and
achieved a high 93% success rate and 94% precision. The results also suggest that training
on the full Dex-Net 2.0 dataset was necessary to achieve higher than 90% success.

CHAPTER 4. LEARNING TO PLAN GRASPS FROM SYNTHETIC POINT CLOUDS
AND ANALYTIC METRICS 66

IGQ REG GQ-Emp GQ-Adv GQ-S GQ

Success Rate (%) 60±13 52±14 68±13 74±12 72±12 80±11
Precision (%) N/A N/A 68 87 92 100

Robust Grasp Rate (%) N/A N/A 100 30 48 58
Planning Time (sec) 1.8 3.4 0.7 0.7 0.8 0.8

Table 4.4: Performance of grasp planning methods on our grasping benchmark with the test dataset of 10
household objects with 95% confidence intervals for the success rate. Each method was tested for 50 trials,
and details on the methods used for comparison can be found in Section 4.4.3. GQ performs best in terms
of success rate and precision, with 100% precision (zero false positives among 29 positive classifications).
Performance decreases with smaller training datasets, but the GQ-CNN methods outperform the image-based
grasp quality metrics (IGQ) and point cloud registration (REG).

4.4.6 Performance Comparison on Novel Objects

Model Accuracy (%)
ML-SVM 89.7

ML-RF 90.5
GQ-S-Adv 97.8
GQ-L-Adv 97.8

GQ-Adv 98.1

Table 4.2: Classification accuracy of models on Adv-
Synth. The GQ-CNNs have less than 2.5% test error
while ML-RF and ML-SVM are closer to 10% error.
Pre-training does significantly affect performance.

We also compared the performance of the
methods on the ten novel test objects from
Test to evaluate generalization to novel ob-
jects. Each method was run for 50 trials (5
per object). The parameters of each method
were set based on Train object performance
without knowledge of the performance on
Test. Table 4.4 details the results. GQ per-
formed best with an 80% success rate and
100% precision (zero false positives over 29
grasps classified as robust).

4.4.7 Generalization Ability of
the Dex-Net 2.0 Grasp Planner
We evaluated the generalization performance of GQ in 100 grasping trials on the 40 object
test set illustrated in Fig. 4.9, which contains articulated (e.g. can opener) and deformable
(e.g. washcloth) objects. We used the cross entropy method (CEM) [98], which iteratively
samples a set of candidate grasps and re-fits the candidate grasp distribution to the grasps
with the highest predicted robustness, in order to find better maxima of the robust grasping
policy. More details can be found in the supplemental file. The CEM-augmented Dex-Net
2.0 grasp planner achieved 94% success and 99% precision (68 successes out of 69 grasps
classified as robust), and it took an average of 2.5s to plan grasps.

CHAPTER 4. LEARNING TO PLAN GRASPS FROM SYNTHETIC POINT CLOUDS
AND ANALYTIC METRICS 67

Figure 4.9: Experimental setup for evaluating the Dex-Net 2.0 in novel scenarios. (Left) The test set of
40 household objects used for evaluating the generalization performance of the Dex-Net 2.0 grasp planner.
The dataset contains rigid, articulated, and deformable objects. (Right) The experimental setup for order
fulfillment with the ABB YuMi. The goal is to grasp and transport three target objects to a shipping
container (box on right).

4.4.8 Application: Order Fulfillment
To demonstrate the modularity of the Dex-Net 2.0 grasp planner, we used it in an order
fulfillment application with the ABB YuMi. The goal was to grasp and transport a set
of three target objects to a shipping box in the presence of three distractor objects when
starting with the objects in a pile on a planar worksurface, illustrated in Fig. 4.9. Since
the Dex-Net 2.0 grasp planner assumes singulated objects, the YuMi first separated the
objects using a policy learned from human demonstrations mapping binary images to push
locations [92]. When the robot detected an object with sufficient clearance from the pile, it
identified the object based on color and used GQ-L-Adv to plan a robust grasp. The robot
then transported the object to either the shipping box or a reject box, depending on whether
or not the object was a distractor. The system successfully placed the correct objects in the
box on 4 out of 5 attempts and was successful in grasping on 93% of 27 total attempts.

4.4.9 Failure Modes
Fig. 4.10 displays some common failures of the GQ-CNN grasp planner. One failure mode
occured when the RGB-D sensor failed to measure thin parts of the object geometry, making
these regions seem accessible. A second type of failure occured due to collisions with the
object. It appears that the network was not able to fully distinguish collision-free grasps
in narrow parts of the object geometry. This suggests that performance could be improved
with more accurate depth sensing and using analytic methods to prune grasps in collision.

CHAPTER 4. LEARNING TO PLAN GRASPS FROM SYNTHETIC POINT CLOUDS
AND ANALYTIC METRICS 68

Figure 4.10: Examples of failed grasps planned using the GQ-CNN from Dex-Net 2.0. The most common
failure modes were related to: (left) missing sensor data for an important part of the object geometry, such
as thin parts of the object surface, and (right) collisions with the object that are misclassified as robust.

Figure 4.11: Visualization of t-SNE for the GQ-CNN on the Dex-Net 2.0 validation set illustrating the
separation of positive (blue) and negative (red) examples. The network appears to start separating the
positive and negative grasps and images in the fc4 layer.

4.4.10 Feature Analysis
To better understand the representation learned by the Dex-Net 2.0 GQ-CNN, we analyzed
the outputs of individual network layers to varying sets of input grasps and depth images.

Fig. 4.11 displays a t-Stochastic Neighbor Embedding (t-SNE) [102] for the outputs of the
conv2 2, fc3, and fc4 layers of the GQ-CNN trained on Dex-Net 2.0 for the set of synthetic
validation datapoints. We see that the positive (blue) and negative (red) examples are not
well-separated until the fc4 layer. This suggests that the GQ-CNN does may not discriminate

CHAPTER 4. LEARNING TO PLAN GRASPS FROM SYNTHETIC POINT CLOUDS
AND ANALYTIC METRICS 69

Neuron A Neuron B Neuron C

Figure 4.13: Visualization of the maximum activations from the Dex-Net 2.0 validation set for a selection of
three neurons from the conv2 2 layer of GQ-CNN. The neurons appear to respond to oriented parallel lines
and circular patterns.

between positive and negative examples for the majority of layers in the network.

20 10 0 10 20
T-SNE Dim 0

10

5

0

5

10

T-
SN

E
Di

m
 1

T-SNE for fc4
Real
Sim

Figure 4.12: Visualization of t-SNE for the fc4 re-
sponse of GQ-CNN to a set of 200 synthetic datapoints
(yellow) and 200 datapoints collected from a physical
robot system (green).

In order to evaluate whether or not
the network discriminates between simu-
lated and real data, we computed a t-SNE
for the fc4 response on a set of 200 data-
points subsampled randomly from the set of
grasps and images collected in experiments
and 200 datapoints from the Dex-Net 2.0
validation set. Fig. 4.12 displays the embed-
ding. We see that there is no clear separation
between the simulated and real datapoints,
suggesting that the GQ-CNN has learned a
representation that is robust to the differ-
ences between synthetic and real depth im-
ages. This may explain the high success rate
observed when using GQ-CNN directly on
a physical system with no explicit transfer
learning.

We also analyze the synthetic validation
datapoints that maximize activations of neu-
rons in the conv2 2 layer using the method of [47]. Fig. 4.13 displays a set of the activations
for three neurons. Interestingly, some neurons appear to respond strongly to primitive shapes
such as oriented bars and circles. This may be because oriented parallel vertical lines corre-
late well with high grasp quality due to the input image rotation and translation.

CHAPTER 4. LEARNING TO PLAN GRASPS FROM SYNTHETIC POINT CLOUDS
AND ANALYTIC METRICS 70

4.5 Discussion
In this chapter, we introduced a generative model for synthesizing massive training datasets
of point clouds, parallel-jaw grasps, and robust analytic grasp metrics and presented Dex-
Net 2.0, a dataset of 6.7 million examples generated from the model. We developed a Grasp
Quality Convolutional Neural Network (GQ-CNN) architecture that predicts grasp robust-
ness from a point cloud and trained it on Dex-Net 2.0, a dataset containing 6.7 million point
clouds, parallel-jaw grasps, and robust grasp metrics. In over 1,000 physical evaluations, we
found that the Dex-Net 2.0 grasp planner is as reliable and 3× faster a method based on
point cloud registration, and had 99% precision on a test set of 40 novel objects.

The results of Dex-Net 2.0 suggest that is possible to train a robust grasping policy
that generalizes to a wide variety of novel objects entirely on synthetic data, without any
explicit sim-to-real transfer. However, the results also raise an important question: does
this generalize beyond the problem setting considered in this chapter? Variations in the
robot (e.g. different grippers), sensing (e.g. different modalities such as color), and object
configurations (e.g. clutter) may affect performance. The subsequent chapters study a
subset of these variations in order to evaluate the scope of problems for which the hybrid
grasp planning method is applicable.

71

Chapter 5

Sequential Grasp Planning for Bin
Picking

The results of the previous chapter suggest that deep learning from massive synthetic training
datasets of point clouds, grasps, and analytic metrics can lift and transport a wide variety
of rigid objects on a physical robot when objects are singulated (sufficiently clear from
obstacles). However, objects are often in disorganized heaps in applications such as industrial
bin picking, which is challenging due to sensor noise, obstructions, and occlusions that make
it difficult to infer object shapes and poses from point clouds [34]. A robot must consider
collisions with adjacent objects and cannot assume a finite set of stable resting poses for each
object [49]. Furthermore, the task of clearing all objects from the bin is sequential: grasp
attempts affect the state of objects in the bin for future grasp attempts.

Recent research suggests that it is possible to grasp a diverse set of objects from disor-
ganized heaps using deep Convolutional Neural Networks (CNNs) trained using empirical
dataset collection on a physical robot [12, 98]. However, the time cost of collecting physical
data makes it difficult to collect clean and sufficiently large datasets to train different robots
in different environments. An alternative is to train on synthetic datasets of grasps and
point clouds labeled using geometric conditions related to grasp stability such as antipodal-
ity [129], but current methods require dense 3D point clouds from multiple viewpoints to
mitigate occlusions [129, 176].

In this chapter, we extend the dataset generation model for learning to grasp a single
object from a tabletop to grasping a sequence of objects from clutter in order to learn a robust
policy for rapid bin picking from a single viewpoint. We formulate a discrete-time Partially
Observed Markov Decision Process (POMDP) modeling bin picking as a sequence of 3D
object poses in a heap with noisy point cloud observations and rewards for removing objects.
Due to the difficulty of training POMDPs with continuous states and observations [153], we
use imitation learning based on an algorithmic supervisor that synthesizes robust collision-
free grasps using robust wrench space analysis and full knowledge of object shapes and poses
in the environment [136].

This chapter makes four contributions:

CHAPTER 5. SEQUENTIAL GRASP PLANNING FOR BIN PICKING 72

1. Formulating bin picking as a Partially Observable Markov Decision Process (POMDP)
modeling the process of iteratively grasping and removing objects from a heap based
on point clouds. This extends the single-object non-sequential robust grasping model
from Dex-Net 2.0.

2. Dex-Net 2.1: A dataset of 10,000 rollouts in an implementation of the POMDP col-
lected using noise injection on an algorithmic robust grasping supervisor that plans
robust grasps with full state knowledge.

3. A study of transfer learning to learn a bin picking policy from pre-trained weights of
a GQ-CNN policy for grasping singulated objects.

4. Experiments evaluating performance of the bin picking policies on heaps of up to 20
novel objects on an ABB YuMi robot.

Experiments suggest that a greedy bin picking policy trained synthetic data from Dex-Net
2.1 can achieve up to 416 successful picks per hour with 96% average precision (very few
false positives). This suggests that modeling the sequential structure may not be necessary
to achieve high success rates in bin picking.

5.1 Problem Statement
We consider the problem of bin picking: clearing a heap of objects on a table by iteratively
grasping a single object from the heap with a parallel-jaw gripper and transporting each
object to a receptacle. The goal of this chapter is to learn a policy that takes as input point
clouds from an overhead depth camera and outputs a robust grasp, or gripper pose to remove
an object from the heap, along with a confidence value for the grasp.

Assumptions

The model assumes quasi-static physics, where inertial effects are negligible, to compute
grasp robustness. The model also assumes a parallel-jaw gripper, rigid objects, a depth
sensor with bounds on the camera intrinsic parameters and pose relative to the robot, and
bounds on friction across objects and their surfaces. These assumptions are common in
industrial robotics [55]. We make the additional simplifying assumption that only one object
is be grasped at a time. The model also does not consider object identity when grasping.

5.1.1 Definitions
Due to the cost of learning a policy directly from data on a physical robot, we learn a
policy in simulation using a model of iteratively grasping objects from a heap on an infinite
planar worksurface based on models of quasi-static contact, image formation, and sensor
noise. Specifically, we model the task of bin picking as a Partially Observable Markov

CHAPTER 5. SEQUENTIAL GRASP PLANNING FOR BIN PICKING 73

Figure 5.1: Overview of the Dex-Net 2.1 POMDP model and simulator. We sample from the initial state
distribution ρ0 by uniformly sampling m 3D CAD object models from a dataset and dropping them in
random poses in the pybullet dynamic simulator [26] to form a heap. The state xt includes object shapes
and poses in the heap. We generate demonstrations of robot grasping using an algorithmic supervisor Ω from
Dex-Net 2.0 [105] that indexes the most robust collision-free parallel-jaw grasp ut from a pre-planned grasp
database using knowledge of the full state. We aggregate synthetic point cloud observations yt and collected
rewards Rt to form a labeled dataset for training a policy that classifies the supervisor’s actions on the
partial observations using imitation learning. We preprocess training data by transforming the point clouds
to align the grasp center and axis with the center pixel and middle row to improve GQ-CNN classification
performance [96, 105].

Decision Process (POMDP) (see Fig. 5.1) specified as a tuple (X ,U ,Y , R, q(x0), q(xt+1 |
xt,ut), q(y | x)) consisting of a set of states X (object shapes and poses), a set of actions
U (gripper poses), a set of observations Y (point clouds), a reward function R, an initial
state distribution q(x0) (object heaps), a transition distribution q(xt+1 | xt,ut), and a sensor
noise distribution q(yt | xt) [168]. Our POMDP uses a fixed maximum time horizon T . See
Section 5.3.5 for numeric values of parameters for each distribution.

Initial State Distribution (q(x0)). The initial state distribution q(x0) models the
position and shape of objects in a heap as well as the parameters of the camera and friction
which stay constant over an episode. We model q(x0) as the product of distributions on:

1. Object Count (m): Poisson distribution with mean λ.

CHAPTER 5. SEQUENTIAL GRASP PLANNING FOR BIN PICKING 74

2. Object Heap (O): Uniform distribution over a discrete set of m 3D triangular meshes
{M0, ...Mm−1} and the pose from which each mesh is dropped into the heap.

3. Depth Camera (C): Uniform distribution over the camera pose and intrinsic parame-
ters.

4. Coulomb Friction (α): Truncated Gaussian constrained to [0, 1].

The initial state is sampled by (1) sampling an object count m and a set of m 3D CAD
models, (2) sampling a planar pose for the heap center and planar pose offsets from the pile
center for each of the objects, and (3) dropping the objects one by one from a fixed height h0
above the table and running dynamic simulation until all objects come to rest (all velocities
are zero). Any objects that roll beyond a distance W from the world center are removed.

States (X). The state xt at time t consists of the current set of 3D object meshes Ot
and their poses.

Grasp Actions (U). The robot can attempt to grasp and remove an object from the
environment by executing an action ut specified as a 4-DOF gripper pose (p, θ, d) where p
is the grasp center pixel, θ is the orientation of the gripper in image space, and d is the
grasp depth, or distance of the 3D grasp center from the image plane [105]. The action is
related to a grasp center in 3D space c by the formula c = (1/d)K−1(px,py, 1)T [57]. The
robot executes an action by moving to the target 3D gripper pose along a linear approach
trajectory, closing the jaws with constant force, and lifting upwards.

Observations (Y). The robot observes a point cloud yt specified as real-valued H ×
W × 3 matrix representing a set of 3D points imaged with a depth camera with H × W
resolution.

Rewards. Binary rewards occur on transitions that remove a single object from the heap.
Let mt = |Ot| be the number of objects remaining in the heap. Then R(xt,ut,xt+1) = 1 if
mt+1 < mt.

Transition Distribution (q(xt+1 | xt,ut)). We use mechanical wrench space analy-
sis to determine whether or not an object can be lifted from the heap under quasi-static
conditions [136, 129], and we use multibody dynamic simulation with a velocity-based com-
plementarity formulation implemented in pybullet [26] to determine the next state of the
objects after an object is lifted.

Let Mi ∈ xt be the first object to be contacted by the gripper jaws when executing
action ut. Then we measure grasp success with a binary-valued metric S(xt,ut) ∈ {0, 1}
that measures whether or not ut is collision-free and can resist external wrenches on object
Mi under state perturbations using point contact models [178]. Specifically, S = 1 if the
robust epsilon metric is greater than a threshold δ = 0.002 [105] and the gripper does not
collide with the table or object along a linear approach trajectory [41, 178]. If S(xt,ut) = 1,
then xt+1 = f(xt,ut, i) where f returns the set of object meshes and poses resulting from
a dynamic simulation of object heap O as object Mi is lifted until the remaining objects
come to rest. Otherwise the state remains unchanged. If an object rolls beyond a distance
W from the world center then it is re-dropped in the pile.

CHAPTER 5. SEQUENTIAL GRASP PLANNING FOR BIN PICKING 75

Observation Distribution (q(yt | xt). We model depth-proportional noise with a
Gamma distribution modeling depth-proportional noise due to errors in disparity computa-
tion and a Gaussian Process to model correlated zero-mean noise in pixel space [105, 111].

5.1.2 Policy
A policy maps point cloud observations to actions πθ(yt) = ut, where policies are parametrized
by a vector of neural network weights θ. We consider policies of the form:

πθ(y) = argmax u∈UQθ(y,u)

where U specifies constraints on the set of available grasps such as collisions and Qθ(y,u) ∈
[0, 1] is a scoring function for actions given observations [70, 98, 105, 131]. A policy induces a
distribution over trajectories given the initial state, next state, and perceptual distributions of
the POMDP: p(τ | θ) = ρ0

∏T−1
t=0 p(xt+1 | xt, πθ(yt))q(yt | xt), where τ is a trajectory of length

T + 1 defined as a vector of states, actions, and observations: τ = (x0,u0,y0, ...xT ,uT ,yT).

5.1.3 Objective
The objective is to learn a policy πθ that maximizes the sum of undiscounted rewards (Sec-
tion 2.1.3):

θ∗ = argmax
θ∈Θ

Ep(τ |θ)
[
T−1∑
t=0

R(xt, πθ(yt),xt+1)
]
.

In this POMDP, the objective corresponds to maximizing the number of objects removed
from the heap.

5.2 Imitation Learning from an Algorithmic
Supervisor

Optimal solutions to POMDPs are known to be computationally intractable [128]. Many ap-
proximate solution methods exist, however many assume closed-form dynamics [72], discrete
or low-dimensional state spaces [153], or Gaussian distributions [132].

We explore the use of imitation learning (IL) [2] to learn the actions of an algorithmic
supervisor that computes actions based on full state knowledge from the simulator. IL has
been used to approximately solve POMDPs when there exists an algorithmic supervisor with
access to full state information [21]. We first compute an algorithmic supervisor using the
singulated object robust grasp planner from Dex-Net 2.0 [105] which computes grasps using
mechanical wrench space analysis given known object shape and pose. We then collect a
dataset of point clouds, actions, and rewards by rolling out the algorithmic supervisor with
noise injection [93] to balance the distribution of positive and negative examples. Finally, we

CHAPTER 5. SEQUENTIAL GRASP PLANNING FOR BIN PICKING 76

learn a CNN to classify the supervisor’s actions and use the trained CNN as action scoring
function [85, 139].

5.2.1 Robust Grasping Algorithmic Supervisor
The algorithmic supervisor Ω pre-computes a set of robust grasps for each 3D object in a
dataset using full state knowledge. For computational efficiency, the supervisor is imple-
mented by pre-computing a database of robust grasps (such as Dex-Net) for each 3D object
by evaluating the grasp success metric R(x,u) using Monte-Carlo sampling [105]. Given
a state xt, Ω plans a robust grasp by pruning the set of possible actions for every object
in the heap using collision checking and returning an action uniformly at random from the
remaining set of robust grasps, if one exists. We note that Ω maximizes reward for the only
current timestep and may not be optimal for the full time horizon.

5.2.2 Learning a Bin Picking Policy
We learn a bin picking policy by learning a classifier for the supervisor’s actions [85, 139] on
rollouts of Ω with noise injection [93]. Noise injection balances the distribution of positive
and negative examples for the classifier, as rolling out the algorithmic supervisor results in
all positive examples.

Our policy learning algorithm consists of two steps: (1) collect demonstrations by execut-
ing Ω with probability 1−ε and a random action from the grasp database with probability ε,
and (2) use supervised learning to classify actions taken by the supervisor with a Grasp Qual-
ity CNN (GQ-CNN). Specifically, given K demonstrations from the noise-injected supervisor
we optimize:

θ̂ = argmin
θ∈Θ

K∑
j=1

T∑
t=1
L (Qθ(yj,t,uj,t), Rj,t)

where Rj,t = 1 if the supervisor agrees with the action on timestep t in rollout j and L is
the cross entropy classification loss. Given a point cloud, we use the robust grasping policy
of Dex-Net 2.0 [105] that samples and ranks a set of antipodal grasp candidates according
to Qθ̂ using the Cross Entropy Method.

Transfer Learning

Research in computer vision suggests that features from deep CNNs performs well as generic
features when classifying images in new domains [22]. Since simulating object heaps is slower
than simulating singulated objects due to object interactions [26], we explore optimizing the
neural network weights of the bin picking policy by transfer learning from features of a GQ-
CNN trained to grasp singulated objects on millions of examples from Dex-Net 2.0 [105].
Specifically, we fine-tune features from the Dex-Net 2.0 GQ-CNN by using the weights as an

CHAPTER 5. SEQUENTIAL GRASP PLANNING FOR BIN PICKING 77

initialization for optimization with SGD and only updating the fully connected layers, leaving
the conv layers fixed. We update the network for 10 epochs using SGD with momentum
of 0.9, a base learning rate of 0.01, and a staircase exponential learning rate decay with a
decrease of 5% on each epoch.

5.3 Experiments
We evaluated classification performance on synthetic data from the simulator and performed
extensive physical evaluations on an ABB YuMi with a Primesense Carmine 1.08 depth
sensor and custom silicone gripper tips designed by Guo et al. [53]. All experiments ran on
a Desktop running Ubuntu 16.04 with a 3.4 GHz Intel Core i7-6700 Quad-Core CPU and
an NVIDIA GeForce 980, and we used an NVIDIA GeForce GTX 1080 for training large
models.

5.3.1 Synthetic Training
We generated three versions of the Dex-Net 2.1 training dataset with noise levels ε =
{0.1, 0.5, 0.9} using 10,000 rollouts of the noisy supervisor policy in our POMDP with an
average of λ = 5 objects per heap sampled from the 1,500 object models of Dex-Net 2.0 [105].
The dataset sizes were approximately: ε = 0.1: 16.5k, ε = 0.5: 34.8k, ε = 0.9: 102.6k.

We trained the following models with a 80-20 image-wise split on each of the ε = 0.1,
ε = 0.5, and ε = 0.9 datasets:

• SVM. A bagging classifier composed of 50 SVMs trained on the first 100 principal
components of the GQ-CNN fc4 feature space [105].

• Random Forest (RF). A set of 50 trees of max depth 10 trained on the first 100
principal components of the GQ-CNN fc4 feature space [105].

• Dex-Net 2.1 (Scratch). A GQ-CNN [105] trained only on Dex-Net 2.1 for 25 epochs.

• Dex-Net 2.1 (Fine-tuned). A GQ-CNN [105] initialized with pre-trained weights
from Dex-Net 2.0 and fine-tuned on Dex-Net 2.1 for 10 epochs with fixed conv layers.

Fig. 5.2 shows the precision-recall curve for the methods. The GQ-CNN-based policy
trained with transfer learning performs significantly better than the other methods with an
Average Precision of 64% compared to 59% for the next best method. The SVM used the
output of conv2 2 layer of the Dex-Net 2.0 GQ-CNN as input and the Random Forest used
the output of the fc4 layer of the Dex-Net 2.0 GQ-CNN as input.

Table 5.1 compares the classification accuracy, AP, and percentage of objects cleared
(successful grasps) from rolling out bin picking policies with various levels of noise injection
in the simulator. We see that the policy with high noise (ε = 0.9) has the highest classification
accuracy and the policy with low noise (ε = 0.1) level clears the most objects. This suggests

CHAPTER 5. SEQUENTIAL GRASP PLANNING FOR BIN PICKING 78

P
re

ci
si

o
n

Recall

SVM

Random Forest

GQ-CNN

GQ-CNN (Transfer)

Figure 5.2: Precision-recall curve for the top four machine learning models on a fixed validation subset of
the Dex-Net 2.1 ε = 0.9 dataset containing approximately 20k datapoints.

Noise (%) Acc.(%) AP (%) Cleared
0.1 5.4 0.8 62
0.5 5.3 0.3 43
0.9 13.8 0.8 44

Table 5.1: Performance of bin picking policies on rollouts in the simulator as a function of the level of noise
injection.

that the policy trained with low noise levels may be overly optimistic while the policy with
high noise tends to be pessimistic and fails to find successful grasps on many timesteps.

5.3.2 Bin Picking on an ABB YuMi
To study performance on a physical robot, we designed a bin picking benchmark where the
robot was presented a subset of objects from a dataset of 50 test objects in a bin and the goal
was to iteratively move objects from the bin to a receptacle as illustrated in Fig. 5.3. First,

CHAPTER 5. SEQUENTIAL GRASP PLANNING FOR BIN PICKING 79

Figure 5.3: Experimental setup for benchmarking bin picking policies. (Left) For each experiment, a subset
of N validation objects are randomly dropped into a bin (green rim, center), at which point the YuMi
iteratively plans grasps from point clouds and attempts to lift and transport the objects to a packing box
(blue rim, right side).(Middle) A set of 50 test objects with various shapes, sizes, and material properties.
A subset of 25 are rigid and opaque, and 25 others have transparency (e.g. goggles), moving parts (e.g. can
opener), or deformable material (e.g. cloth). (Right) Example color and depth images from the physical
setup with example grasp planned with the Dex-Net 2.1 ε = 0.9 policy.

we sampled N objects from the validation set sampled uniformly at random. Then, each of
the N objects was placed in a box and the box was shaken and placed upside-down in the
center of the bin to randomize object poses. On each timestep the grasping policy received as
input a depth image, bounding box containing the object, and camera intrinsics, and output
a target pose of the gripper in the robot’s coordinate frame. The robot then approached
the target grasp along a linear approach trajectory and closed the jaws. Grasp success was
defined by whether or not the grasp transported the target object to the receptacle. The
system iterated until either (a) no objects remain or (b) the robot has 5 consecutive failed
grasps on the same object.

Performance Metrics

We compared performance on this benchmark with the following metrics:

1. Success Rate: The percentage of grasp attempts that moved an object to the packing
box.

2. Average Precision (AP): The area under the precision-recall curve. In some ap-
plications a robot can decide whether or not to execute grasps based on a threshold
for the classifier confidence. AP measure the average success rate over all possible
thresholds for these scenarios.

3. Percent Cleared: The fraction of objects that were moved to the receptacle.

CHAPTER 5. SEQUENTIAL GRASP PLANNING FOR BIN PICKING 80

4. Picks per Hour (PPH): The estimated number of bin picks per hour of runtime
computed by multiplying the average number of grasp attempts per hour by the success
rate. Human performance is approximately 600 PPH.

Datasets

Fig. 5.3 illustrates the test set of physical objects used in the benchmark, which includes 50
objects of various sizes, shapes, and materials. The objects all satisfy three criteria to be
graspable by the YuMi: (1) the jaws can fit around the object in at least one configuration,
(2) the object weighs less than 0.25kg due to the YuMi payload, (3) some part of the object
is opaque and non-specular (can be sensed with a depth camera), and (4) the min diameter
of the object is greater than 1cm.

We break the test set up into two partitions:

• Basic. A subset of 25 test objects that are rigid, weigh less than 0.25kg (the payload
of the YuMi), and are fully visible with a depth camera, which tests generalization to
novel shapes when assumptions of the simulator are satisfied.

• Typical. The entire 50 object dataset, which additionally tests generalization to novel
object properties (e.g. transparency, deformation, moving parts).

Model Performance

Table 5.2 compares the performance of five policies on the bin picking benchmark with
N = {5, 10} test objects from the Basic subset for 20 and 10 trials, respectively. This
measures performance on a heap size and set of objects that match the assumptions of the
simulator. We compared the following policies:

1. Image-Based Force Closure. Executes a random planar force grasp with friction
coefficient µ = 0.8 computed from edge detection in depth images inspired by [129].

2. Dex-Net 2.0. Ranks grasps using the GQ-CNN model of [105] trained on Dex-Net-
Large.

3. Dex-Net 2.1 (ε = 0.1, ε = 0.5, ε = 0.9). Ranks grasps using the Dex-Net 2.1 (Fine-
tuned) classifier for varying levels of noise injection in the training dataset.

The Dex-Net 2.1 (ε = 0.9) variant performed best across all metrics. The increase in
performance over the other noise levels may be because the training dataset was heavily
skewed toward negative examples, encouraging the learned policy to predict grasp failure
when uncertain.

CHAPTER 5. SEQUENTIAL GRASP PLANNING FOR BIN PICKING 81

5 Objects 10 Objects

Policy Success (%) AP (%) % Cleared PPH Success (%) AP (%) % Cleared PPH

Force Closure 54 N/A 97 271 55 N/A 92 276
Dex-Net 2.0 92 96 100 407 83 84 98 367

Dex-Net 2.1 (ε = 0.1) 91 91 100 402 86 89 99 380
Dex-Net 2.1 (ε = 0.5) 85 89 98 376 66 69 96 292
Dex-Net 2.1 (ε = 0.9) 94 97 100 416 89 93 100 394

Table 5.2: Performance of grasping policies on the Basic dataset containing 25 opaque and rigid test objects
with heaps of size N = {5, 10} averaged over 20 and 10 independent trials, respectively. Human performance
is approximately 600 PPH.

10 Objects 20 Objects

Policy Success (%) AP (%) % Cleared PPH Success (%) AP (%) % Cleared PPH

Force Closure 64 N/A 98 321 50 N/A 77 251
Dex-Net 2.0 81 88 98 358 70 79 97 310

Dex-Net 2.1 (ε = 0.9) 85 93 100 376 78 86 97 345

Table 5.3: Generalization performance of grasping policies on the Typical dataset containing 50 test ob-
jects with hinged parts, deformability, and some material transparency on heaps of size 10 and 20 with 5
independent trials of each.

Generalization

We also evaluated the Dex-Net 2.1 ε = 0.9 policy on larger heaps of size N = {10, 20}
with all 50 test objects for 5 independent trials each to evaluate generalization to large piles
and different object properties that were not encountered in the simulator. The results are
detailed in Table 5.3. While performance decreases across all categories, the ε = 0.9 policy
outperforms the Dex-Net 2.0 and antipodal baseline across all metrics. The performance
appears to be more significantly affected by the heap size than the addition of deformable
objects. Qualitative failure modes of the Dex-Net 2.1 policy included collisions where the
gripper pressed into another object in the heap and an inability to find robust grasps on
thin, curved objects such as the measuring spoon and scissors.

Fig. 5.4 illustrates grasp planning with the ε = 0.9 policy on a heap of novel objects from
the test set.

Failure Modes

Common failure modes included collisions due to complex geometry, failure to sense object
geometry with the depth camera due to object material properties, thin objects that were
very close to the table surface, and grasps attempted on multiple objects at once.

CHAPTER 5. SEQUENTIAL GRASP PLANNING FOR BIN PICKING 82

Figure 5.4: Example of grasp planning with the Dex-Net 2.1 ε = 0.9 robust grasping policy on a heap of
novel objects from the test set. The iterations (left to right) show the set of grasps sampled during the
progression of the Cross Entropy Method for grasp optimization.

5.3.3 t-SNE Embedding
To gain insight into the feature space of the GQ-CNN fine-tuned on Dex-Net 2.0, we vi-
sualized a t-distributed Stochastic Neighbor (t-SNE) embedding [102] of the fc4 features.
Specifically, we projected the validation subset of the Dex-Net 2.1 (ε = 0.9) dataset on the
100 principal components of the fc4 features for the training subset of the data, using the
fc4 features of both the Dex-Net 2.0 GQ-CNN and Dex-Net 2.1 (ε = 0.9) GQ-CNN. Then
we ran the Barnes-Hut version of t-SNE with tree-based acceleration [174] to compute a
2-dimensional embedding.

Fig. 5.5 compares the t-SNE embedding for the Dex-Net 2.0 GQ-CNN trained on sin-
gulated objects and the Dex-Net 2.1 (ε = 0.9) GQ-CNN trained for bin picking. For each
datapoint we plot the transformed grasp image colored by whether or not grasps are from
the supervisor’s action set (green) or from the set failed grasps from the 90% random actions
(red). We see that in the original feature space some of the supervisor’s grasps are mixed in
with negative examples, and many of these examples have some level of clutter around the
target object. This suggests that some robust grasps in clutter cannot be discriminated from
failed grasps based on the GQ-CNN weights. There are also examples of false positives for
the Dex-Net 2.0 GQ-CNN, such as the top-leftmost red image which is not collision-free for
the gripper. However, after fine-tuning [183] we see that the supervisor’s actions are more
tightly clustered, with fewer negative examples mixed it.

5.3.4 Qualitative Differences Between Policies
We also looked into the failure modes across all methods to gain insights into the performance
gains for the Dex-Net 2.1 bin picking policy. Two examples are illustrated in Fig. 5.6.

The first demonstrates collision avoidance in piles. The Dex-Net 2.0 GQ-CNN predicts
grasp success for a grasp that will put the hand in collision with the pile. We hypothesize
that this is due to the GQ-CNN picking up on the edge between the objects as a graspable
area without considering collisions, as it has only seen single objects in training. However,
the Dex-Net 2.1 GQ-CNN plans a grasp that avoids the other objects in the pile, picking

CHAPTER 5. SEQUENTIAL GRASP PLANNING FOR BIN PICKING 83

Figure 5.5: t-SNE embedding of the first 100 principal components of fc4 features for the validation subset of
the Dex-Net 2.1 (ε = 0.9) dataset (best viewed in color). (Left) The embedding for features from the original
Dex-Net 2.0 GQ-CNN. (Right) The GQ-CNN fine-tuned on Dex-Net 2.1 (ε = 0.9). Each datapoint shows
the rotated and translated depth image that is input to the to GQ-CNN (see [105]). Images corresponding
to actions taken by the algorithmic supervisor are outlined in green while images corresponding to failed
random actions are outlined in red.

out a single one.
The second example demonstrates that the Dex-Net 2.1 policy can also find narrow

openings to place the fingers in a dense heap in order to achieve a robust grasp. The Dex-
Net 2.0 GQ-CNN falsely predicts that a grasp of the tip of the glue gun will be successful,
perhaps because it has seen no similar example in training. On the other hand, the Dex-Net
2.1 policy finds the frame of the goggles on the top left of the pile, where it can safely fit a
finger between the goggles and bottle of sauce.

5.3.5 Details of POMDP Parameters
For replicability, this section lists the numeric values of parameters used in our Partially
Observable Markov Decision Process (POMDP) model of bin picking. The maximum time
horizon used was 50 timesteps. If the heap was cleared before this time, then the rollout
ended immediately.

CHAPTER 5. SEQUENTIAL GRASP PLANNING FOR BIN PICKING 84

Figure 5.6: Comparison of grasps planned by the Dex-Net 2.0 (singulated object) and Dex-Net 2.1 (bin
picking) grasping policies.

Initial State Distribution q(x0)

The initial state distribution is a product of the following distributions:

1. Object Count (m): Poisson distribution with mean λ = 5.

2. Object Heap (O): Discrete uniform distribution over the 1, 500 3D triangular meshes
{M0, ...Mm−1} from the KIT [78] and 3DNet [180] datasets, as well as the pose from
which each mesh is dropped into the heap. The pose distribution consists of a fixed drop
height of 0.2m, a random planar translation above the table in [−0.1, 0.1]× [−0.1, 0.1]
(units of meters), and a random rotation sampled by first uniformly sampling spherical
coordinates, then sampling an angle in [0, 2pi) radians for the orientation in the table
plane.

3. Depth Camera (C): Uniform distribution over the camera pose using spherical coordi-
nates r, θ, ϕ ∼ U([0.65, 0.75]× [0, 2π)× [1◦, 10◦]), where the camera optical axis always
intersects the center of the table. The camera focal length was sampled uniformly from
[520, 530] pixels.

4. Coulomb Friction (α): Truncated Gaussian with mean 0.5 and variance 0.1, con-
strained to [0, 1].

The maximum distance that an object could translate or roll from the world center before
removal was W = 0.2.

CHAPTER 5. SEQUENTIAL GRASP PLANNING FOR BIN PICKING 85

Next State Distribution q(xt+1 | xt,ut)

The next state distribution used the parameters of [105] for the robust epsilon metric, which
consists of

1. Gripper Pose: An isotropic Gaussian with mean on the target gripper pose, a transla-
tional variance of 1.0mm, and a rotational variance of 0.001 in Lie Algebra coordinates.

2. Object Pose: An isotropic Gaussian with mean on the true object pose, a translational
variance of 5.0mm, and a rotational variance of 0.01 in Lie Algebra coordinates.

We used the wrench space norm of ‖w| =
√
‖f‖2

2 + ν‖τ‖2
2 [41] with ν = 1000. If an object

translated or rolled from the world center a distance greater than W = 0.2, then it was
re-dropped in the pile using the initial object pose distribution of ρ.

Observation Distribution q(yt | xt)

Our observation distribution follows [105]. We model images as y = α ∗ ŷ + ε where ŷ is a
rendered depth image created using OSMesa offscreen rendering. We model α as a Gamma
random variable with shape= 1000.0 and scale=0.001. We model ε as Gaussian Process
noise drawn with measurement noise σ = 0.005 and kernel bandwidth ` =

√
2px.

Parameters of Graphical Model

The graphical model specifies q(R,x,y,u) as the product of a state distribution q(x), an
observation model q(y|x), an algorithmic supervisor distribution q(u|x), and a grasp reward
distribution q(R|g,x).

We model the state distribution as q(x) = q(γ)q(O)q(To|O)q(Tc). We model q(γ) as a
Gaussian distribution N (0.5, 0.1) truncated to [0, 1]. We model q(O) as a discrete uniform
distribution over 3D objects in a given dataset. We model q(To|O) = p(To|Ts)p(Ts|O),
where is q(Ts|O) is a discrete uniform distribution over object stable poses and q(To|Ts) is
uniform distribution over 2D poses: U([−0.1, 0.1]× [−0.1, 0.1]× [0, 2π)). We compute stable
poses using the quasi-static algorithm given by Goldberg et al. [49]. We model q(Tc) as a
uniform distribution on spherical coordinates r, θ, ϕ ∼ U([0.65, 0.75]× [0, 2π)× [0.05π, 0.1π]),
where the camera optical axis always intersects the center of the table.

Our distribution over grasps is a uniform distribution over pairs of antipodal points on
the object surface that are parallel to the table plane. We sample from this distribution for a
fixed coefficient of friction µ = 0.6 and reject samples outside the friction cone or non-parallel
to the surface.

We model images as y = α ∗ ŷ + ε where ŷ is a rendered depth image created using
OSMesa offscreen rendering. We model α as a Gamma random variable with shape= 1000.0
and scale=0.001. We model ε as Gaussian Process noise drawn with measurement noise
σ = 0.005 and kernel bandwidth ` =

√
2px.

CHAPTER 5. SEQUENTIAL GRASP PLANNING FOR BIN PICKING 86

We compute grasp robustness metrics using the graphical model and noise parameters
of [152].

5.4 Discussion
In this chapter, we formulated bin picking as a POMDP and trained a GQ-CNN to predict
grasps with high reward using a simulator of robust grasping and dynamic object interactions
in a heap. We used the model to sample the Dex-Net 2.1 dataset of tens of thousands of
demonstrations across 1,500 3D object models from an algorithmic supervisor with noise
injection that used full state information to index precomputed robust grasps for 3D models
in the simulation.

Experiments suggest that a policy trained using behavior cloning with high levels of
noise injection (90% probability of selecting a random action) has the highest performance
across all metrics when transferred to a physical robot, suggesting that conservative policies
which favor false negatives over false positives may transfer better from simulation to reality.
Furthermore, the high average precision score of GQ-CNNs from Dex-Net 2.1 suggest that
performance could be improved by introducing alternative actions, such as probing or using
a suction cup [106], when the model does not have high confidence. The high success rate of
the greedy policy also suggests that the sequential structure is relatively weak in bin picking:
policies may not need to be trained with labels reflecting the long-term affects of actions.

Experiments also uncovered several shortcomings of the method presented in this chapter.
First, the policies exhibit repeated failures, which we believe may be a symptom of using
a greedy policy rather than a policy that uses history as suggested by the POMDP theory
(Section 2.1.3). Furthermore, fine-tuning appears to lead to peculiar failure modes such as
grasping at smooth angled surfaces, which may be the result of catastrophic forgetting [84].
Additionally, the current method is limited to grasping only the set of objects that can be
picked from clutter with a parallel-jaw gripper, which is a relatively small range due to dense
clutter and size constraints from the parallel-jaw gripper.

87

Part III

Physics-Based Reward Design

88

Whenever the Creator gives you something, don’t hesitate.
Grab it.

NATIVE AMERICAN ELDER

89

Chapter 6

Synthesis of Energy-Bounded Caging
Grasps with Persistent Homology

This part of the thesis considers extending the dataset generation distribution developed
in Part II to new grasp reward functions, new grippers, and policies composed of multiple
grasping sub-policies for different grippers. Chapter 6 considers a novel class of a reward
functions based on energy-bounded caging: using a gripper to geometrically constrain the
motion of an object under an energy field such as gravity. We develop an algorithmic
supervisor that can synthesize energy-bounded caging grasps given a polygonal gripper and
a novel polygonal object using techniques from computational topology. Chapter 7 explores
extending the model of Chapter 4 to a vacuum suction cup gripper, proposes a new compliant
contact model for suction cup grippers, and presents experiments suggesting that training
datasets generated using the novel contact model can train grasping policies that generalize
to a wide variety of objects on a physical robot. Chapter 8 studies dataset generation models
for training composite policies, policies that select an action from a set of a sub-policies for
different action types, and presents experiments suggesting that a gripper-agnostic reward
model can be used to train policies that can clear bins of up to 50 novel objects with 90% on
a physical robot by deciding between a suction cup and parallel-jaw gripper. Along the way
we refine the generative model structure to facilitate extensions to additional tasks, grippers,
or composite policies.

In this chapter, we focus on non-prehensile grasping, in which a robot can transport an
object without immobilizing the object. This is motivated by applications in manufacturing
where parts must be reliably grasped and moved without precise constraints on object pose
(for example in kitting or logistics). Caging configurations, in which an object’s mobility is
bounded by a set of obstacles, can provide robustness to perturbations in object pose.

The standard model of caging (complete caging) considers whether a set of obstacles
can be placed in a configuration such that the object cannot escape because its mobility is
restricted to a bounded set in the free configuration space F [143, 171] as illustrated in the
left part of Fig. 6.1. This chapter extends caging theory by defining energy-bounded cages
under a potential energy field U : C × C → R such as gravity based on the minimum energy

CHAPTER 6. SYNTHESIS OF ENERGY-BOUNDED CAGING GRASPS WITH
PERSISTENT HOMOLOGY 90

Complete Cage Energy-Bounded Cages

Figure 6.1: Complete and energy-bounded cages. Left: a complete cage. The blue object is constrained to
a bounded component of the free configuration space by the rigid arrangement of the two gripper fingers
(black). Middle and right figure: Two energy-bounded cages with respect to a force direction f e.g. from
gravity or constant velocity pushing with Coulomb friction. The blue object is constrained by both the
gripper and the force field. The rightmost configuration requires more energy to escape than the middle
configuration.

required to escape. The minimum escape energy can be used as a reward function for caging
grasps.

This chapter also presents Energy-Bounded-Cage-Synthesis-2D (EBCS-2D), a sampling-
based algorithm for synthesis of energy-bounded cages given a polygonal object and a rigid
configuration of polygonal obstacles under a concave energy field defined over object trans-
lations, such as gravity or planar pushing. EBCS-2D synthesizes an list of energy-bounded
cages ranked by escape energy using persistent homology, a tool from computational topol-
ogy that efficiently computes representatives for bounded components of the free configura-
tion over varying escape energy thresholds. EBCS-2D constructs a weighted α-shape from
samples of object poses and a lower-bound on their penetration depth [107], finds a set of
candidate energy bounded cages using persistence, and prunes the candidates based on col-
lisions and energy level. The escape energies returned by EBCS-2D provably lower bound
the true minimum escape energy for each returned cage. If the returned escape energy is
infinite then the object is completely caged.

We implement EBCS-2D using the Persistent Homology Algorithms Toolbox (PHAT) [8]
to efficiently identify the most robust energy bounded cages. We evaluate EBCS-2D on a set
of seven polygonal parts with parallel-jaw grippers using a push energy field and use it to
synthesize optimal push directions. In each case, RRT* optimal path planning was unable to
find an escape path with lower energy than the estimated lower bound within 120 seconds.
We also use EBCS-2D for planar pushing on a physical Zymark Zymate robot and ABB
YuMi with parallel-jaw grippers and confirm that configurations synthesized by EBCS-2D
successfully push objects on a planar worksurface.

CHAPTER 6. SYNTHESIS OF ENERGY-BOUNDED CAGING GRASPS WITH
PERSISTENT HOMOLOGY 91

6.1 Problem Statement
Given a rigid polygonal objectO, a rigid configuration of obstacles G on a planar worksurface,
and an energy function U , we consider the problem of finding and ranking the set of energy-
bounded cages of O by G.

6.1.1 Complete Caging and Energy-Bounded Caging
We consider a planar configuration space C ⊆ SE(2) of a compact polygonal planar object
O ⊂ R2 placed in a planar workspace with obstacles defined by fixed positions of a set of
k polygons G = P1 ∪ . . . ∪ Pk ⊂ R2, such as the jaws of a robot gripper. We assume the
center of mass is known for both the object and obstacles. We denote the object polygon in
pose q = (x, y, θ) ∈ SE(2) = R2× S1 relative to a reference pose q0 by O(q). We define the
collision space of O relative to G by Z = {q ∈ SE(2) : int(O(q)) ∩ G 6= ∅} and denote by
F = SE(2)−Z the free configuration space.

We define the energy required to move the object between poses by an energy function
U : SE(2) × SE(2) → R satisfying U(q,q) = 0, ∀q ∈ SE(2). This is consistent with [107],
in which the reference pose was implicit in the energy function. For a fixed threshold u ∈ R
and reference q0 ∈ SE(2) define the u-energy forbidden space by Zu(q0) = Z ∪ {q ∈ C :
U(q,q0) > u} and the u-energy admissible space Fu(q0) = SE(2)−Zu(q0). In this work we
use the following definitions of caging [107] (see Fig. 6.2):

Definition 5 (Complete and Energy-bounded caging). A configuration q0 ∈ F is completely
caged if q0 lies in a bounded path-component of F . We call q0 a u-energy-bounded cage of
O with respect to U if q0 lies in a bounded path-component of Fu(q0). Furthermore, the
minimum escape energy, u∗, for an object O and obstacle configuration G, is the infimum
over values of u such that q is not a u-energy-bounded cage of O, if a finite such u∗ exists.
Otherwise, we define u∗ =∞.

While energy-bounded cages can be defined for any energy function U , finding bounded
components of C for all possible pairs of poses in the energy function may be computationally
expensive. Thus, for synthesis, we require that the energy function can be derived from a
univariate potential function P : SE(2) → R: U(qi,qj) = P (qi) − P (qj). In this work, we
further assume that P depends only on the translational component R2 of SE(2) and that
P is concave on that space, which guarantees that the point of minumum potential within
any convex set is on the boundary of the set. Given such an energy field U , the objective is
to synthesize all energy-bounded cages qi ∈ SE(2) with nonzero minimum escape energy.

6.1.2 Energy Functions
We now derive energy functions for gravity in the vertical plane and constant force pushing
in the horizontal plane. We develop such functions based on the energy (mechanical work)

CHAPTER 6. SYNTHESIS OF ENERGY-BOUNDED CAGING GRASPS WITH
PERSISTENT HOMOLOGY 92

u∗
u∗

Complete Cage Energy-bounded Cages

Workspace

Configuration

Space
q0 q0q0

UU

Figure 6.2: Definition of caging and energy-bounded caging. The top row depicts gripper jaws G (in black)
and an object O (in blue) in three configurations. The bottom row illustrates conceptually the corresponding
point q0 ∈ SE(2) in configuration space. While a complete cage corresponds to an initial pose q0 completely
enclosed by forbidden space Z, the energy-bounded cage on the right instead correpsonds to a case where
q0 is enclosed by Zu = Z ∪ U(q0, u) where U(q0, u) = {q ∈ C : U(q,q0) > u} for U that is strictly
increasing with increasing vertical coordinate. The smallest value of u such that q0 is not enclosed is called
the minimum escape energy, u∗.

that wrenches must exert to transport the object between two poses under a nominal wrench
resulting from pushing or gravity.

Gravity in the Vertical Plane. Let m denote the mass of the object. Then the
energy required to move the object from a reference configuration qi to configuration qj
is U(qj,qi) = mg(yj − yi), where g = 9.81m/s2 is the acceleration due to gravity in the
y-direction [46, 107]. This corresponds to the potential P (q) = mgy.

Constant-Velocity Linear Pushing in the Horizontal Plane. Consider an ob-
ject being pushed along a fixed direction v̂ ∈ S1 by a gripper with a constant veloc-
ity on a horizontal worksurface under quasi-static conditions and Coulomb friction with
uniform coefficient of friction µ [114, 113, 130]. Then the energy function U(qj,qi) =
Fpv̂ · (xj − xi, yj − yi)− κ is a lower bound on the energy required to move the object from
pose qi to qj relative to G, where Fp ∈ R is a bound on the possible resultant force due to
contact between the object and gripper and κ ∈ R is a bound on the possible contact torques
and frictional wrenches depending on the object geometry O, the gripper geometry G, and

CHAPTER 6. SYNTHESIS OF ENERGY-BOUNDED CAGING GRASPS WITH
PERSISTENT HOMOLOGY 93

Figure 6.3: Simplicial complex approximation of configuration space. (Left) We sample a set of poses Q
and their penetration depth. (Right) An approximation of the forbidden space Z ⊂ SE(2) from Fig. 6.2
by unions of balls around sampled points Q results in an α-shape simplicial complex A(X) (gray triangles)
that is a subset of Z. The triangles of the weighted Delaunay triangulation D(X) that are not in A(X)
approximate the free space (red triangles).

the friction coefficient µ. A justification is given in Section 6.5. We use the linear potential
P (q) = Fpv̂ · (x, y) to lower bound the minimum energy required for the object to escape
under the nominal push wrench.

6.1.3 Configuration Spaces and α-Complexes
We utilize a family of simplicial complexes called α-complexes [37] to approximate the col-
lision space Z and u-energy forbidden space [107]. For this purpose, we first uniformly
sample a collection of s poses Q = {q1, . . . ,qs}, qi = (xi, yi, θi) in Z and determine the ra-
dius r(qi) > 0 for each qi, such that the metric ball B(qi) = {q ∈ SE(2) : d(q,qi) 6 r(qi)}
is completely contained in Z. These radii are computed using algorithms to lower bound
the penetration depth [189] using the standard metric d on SE(2); details can be found
in [107]. The union of these balls B(Q) = ∪si=1B(qi) forms a subset of the collision space
that approximates Z. See the left part of Fig. ?? for a conceptual illustration.

We can construct a cell-based approximation to Z using weighted α-shapes to guarantee
that the cells are a subset of Z. First, we follow the approach of [107] to lift samples from
Q to a set X ⊂ R3 for computational reasons (see [107] for details). We then construct a
weighted α-shape representation of B(X) [37, 38] since the shape of the union of balls is
difficult to analyze computationally.

Weighted α-shapes are a type of simplicial complex. A geometric k-simplex σ = [v0, . . . ,vk]
in Rd is a convex hull of k + 1 ordered affinely independent elements v0, . . . ,vk ∈ Rd and
a convex hull of an ordered subset of these elements is called a face τ of σ, indicated by
τ 6 σ. A finite simplicial complex K is a non-empty set of simplices such that if σ ∈ K and
τ 6 σ, then τ ∈ K and if σ, σ′ ∈ K then σ ∩ σ′ is empty or an element of K. In dimension
3, a simplicial complex K is a union of points, line-segments, triangles and tetrahedra whose
intersections are either empty or another simplex in K, thus generalizing the idea of both
a graph and a triangulation in R3. The α-shape simplicial complex A(X) corresponding to

CHAPTER 6. SYNTHESIS OF ENERGY-BOUNDED CAGING GRASPS WITH
PERSISTENT HOMOLOGY 94

B(X) lies strictly inside B(X) and is homotopy-equivalent to B(X), meaning that topologi-
cal properties of B(X) can be computed directly from A(X) [37]. Additionally, all simplices
in A(X) are contained in D(X), the weighted Delaunay triangulation of X, a data structure
that triangulates the convex hull of X. Fig. 6.3 provides a conceptual illustration.

6.1.4 Persistent Second Homology
Persistent Homology [36] studies the topological features (e.g. holes, voids) that are created
and destroyed over one parameter families of simplicial complexes called filtrations. Fig. 6.4
provides a conceptual visualization of 2D slices of “voids” found by persistence for a 3D
filtration and a qualitative persistence diagram. A simplex-wise filtration of a simplicial
complex K = ∪ni=1σi is a collection of simplicial complexes Ki such that Ki = ∪ii=1σi, so
that Ki+1 is the result of adding a single simplex σi+1 to Ki. We call i the filtration index.
Such a filtration can arise naturally when a function f : K → R is defined on the set simplices
of K and simplices are ordered in decreasing values of f : f(σi) > f(σj) for all i 6 j. Thus
persistence finds the topological features that emerge as the simplices are added in order of
decreasing f . Here, f(σi) is called the filtration value corresponding to filtration index i.
The j-th persistence diagram measures the dimension of the j-th homology group Hj(Ki)
that corresponds to a vector space (with finite field coefficients). The dimension of each of
these spaces is a topological invariant that does not vary under continuous deformations of
the underlying simplicial complex H(Ki). In this work, we are interested in sub-complexes
Ki of the weighted Delaunay triangulation D(X) ⊂ R3 and the second homology group
H2(Ki). Regions of space that are completely enclosed by Ki correspond to components of
H2(Ki) [39]. These voids in Ki can appear as we add new simplices with increasing i, or
they can disappear as voids are filled in. The persistent second homology diagram enables
us to visualize these topological changes. Each point (x, y) in the diagram corresponds to
a pair of filtration indices (i, j) recording the fact that a void has “appeared” at index i
and disappeared at index j. For a geometric simplicial complex, these index pairs (i, j)
correspond to simplices (σi, σj) where σj is a tetrahedron (a 3-simplex) which destroys or
“fills in” a void, while σi corresponds to a triangle (2-simplex) that corresponds to the last
complex needed to first create a fully enclosed void. The set of (i, j) pairs can be displayed in
the (index)-persistence diagram, or alternatively, when the filtration arises from a function
f , we may display the set of points (f(σi), f(σj)). By considering the vertical distance
|f(σi)− f(σj)| from the diagonal, we can read off the parameter range of f during which a
void exists in the evolution of the filtration.

6.2 The EBCS-2D Synthesis Algorithm
EBCS-2D (Algorithm 3) takes as input a polygonal object O, obstacle configuration G, and
continuous concave potential function P , and outputs a set of energy-bounded cages that
require nonzero energy to escape.

CHAPTER 6. SYNTHESIS OF ENERGY-BOUNDED CAGING GRASPS WITH
PERSISTENT HOMOLOGY 95

Birth Energy

D
ea

th
 E

n
er

g
y

Decreasing Energy Level

Gripper

Part

q1 q2 q1 q2 q2
q1

σi

σj
pi

pj

pk

pk

pi pj

Figure 6.4: Persistence diagram for ranking energy-bounded cages. Left: polygonal part and gripper polygons
serve as input. We sample object poses X in collision and generate an α-shape representation (shown in gray
in the three middle figures). Given an energy potential, we insert simplices in D(X) − A(X) in decreasing
order of energy potential, creating a filtration of simplicial complexes. Voids (yellow and orange) are born
with the addition of edges σi and σj (red) at threshold potential levels pi and pj respectively, and die with the
additions of the last triangle in each void at potential pk (red). The associated second persistence diagram
reveals voids corresponding to energy-bounded cages. In particular, configuration q1 is persistent for a larger
energy difference than configuration q2 (right figure). The escape energy of each configuration is equal to
the difference in potentials: u1 = pk − pi and u2 = pk − pj , and by the filtration ordering this implies that
q1 has higher escape energy than q2.

Using uniform sampling, the algorithm first generates s object poses in collision Q =
{q1, ...,qs} and their corresponding penetration depths R = {r1, ..., rs}. We lift the poses to
R3 and construct an α-shape approximation to the configuration space. Next, we construct
a filtration by sorting all simplices in the free space in order of decreasing energy level and
use persistent homology to identify path components that are bounded by the u-energy
forbidden space. Finally, we examine the simplices within each bounded component in order
of increasing energy to check for a collision-free object pose, and return the poses extracted
from each component. Fig. 6.4 illustrates the use of persistence in our algorithm.

6.2.1 Filtrations and Persistence from Energy Functions
To synthesize energy-bounded cages with persistence, we first order the simplices of the α-
shape approximation by decreasing energy level. We assumed that the potential P : SE(2)→
R3 depends only on the translational component R2 of SE(2) and is concave on that space.
In this case, for any k-simplex σ = Conv(v0, . . . ,vk) ∈ D(X)−A(X) the maximum principle
of convex optimization [13] implies that the minimum occurs on the boundary of the simplex,
which is a vertex of σ since R2 is unbounded:

min
x∈σ

P (π(x)) = min{P (π(v0)), . . . , P (π(vk))}

where π : R3 → SE(2) denotes the projection to SE(2). Using this fact, we construct a
function D(X)→ R:

f(σ) =
{

minx∈σ P (π(x)) σ ∈ D(X)− A(X)
∞ σ ∈ A(X)

CHAPTER 6. SYNTHESIS OF ENERGY-BOUNDED CAGING GRASPS WITH
PERSISTENT HOMOLOGY 96

This gives rise to a filtration K = K(X,U) : ∅ = K0 ⊂ K1 ⊂ . . . ⊂ Kn ⊂ D(X) of simplices
in D(X) with respect to P as described in Section 6.3.3, which we can use to find bounded
path components corresponding to energy-bounded cages.

EBCS-2D finds pairs of simplices σi, σj corresponding to the birth and death, respectively,
of a bounded path component C(X) ⊂ D(X) in the free configuration space using persistent
homology. All collision-free configurations within the bounded path component are energy-
bounded cages by definition. Therefore, EBCS-2D next searches for the configuration q ∈
C(X) ∩ F with the highest minimum escape energy by iterating over the set of centroids
of simplices in C(X). While the set of simplex centroids only approximates C(X) ∩ F ,
in practice the centroids cover the space well due to the large number of samples used to
construct the configuration space. The algorithm runs in O(s3 + sn2) time where s is the
number of samples and n is the total number of object and obstacle vertices, since α-shape
construction is O(s2 + sn2) [107, 115] and the matrix reduction used in persistent homology
is O(s3) in the worst case [19].

6.2.2 Correctness
EBCS-2D returns energy-bounded cages with a provable lower bound on the minimum escape
energy:

Theorem 1. Let Q̂ = {(q̂1, û1), ...(q̂n, ûn)} denote the energy bounded cages returned by
EBCS-2D. For each (q̂i, ûi) ∈ Q̂, q̂ is a û-energy bounded cage of O with respect to U .

A detailed proof is given in Section 6.4.

6.2.3 Extension to Pushing
EBCS-2D can be applied to push grasping in the horizontal plane. We use it to find push
directions that yield robust energy-bounded cages by running EBCS-2D for a set of sampled
push directions using the constant velocity linear push energy of Section 6.1.2. The extension
runs EBCS-2D using M push angles uniformly sampled from [π2 − ϕ,

π
2 + ϕ] and returns a

ranked list of push directions and energy-bounded cages that can be reached by a linear,
collision-free path along the push direction. While the potential changes for each such push
direction, the simplices only need to be re-sorted and therefore the sampling and α-complex
construction only need to be performed once.

CHAPTER 6. SYNTHESIS OF ENERGY-BOUNDED CAGING GRASPS WITH
PERSISTENT HOMOLOGY 97

1 Input: Polygonal robot gripper G, Polygonal object O, Potential function P , Number of
pose samples s

Result: Q̂, set of energy-bounded cages with estimated escape energies
// Sample poses in collision

2 Q = ∅, R = ∅, ` = diam(G) + diam(O);
3 W = [−`, `]× [−`, `]× [0, 2π);
4 for i ∈ {1, ..., s} do
5 qi = RejectionSample(W);
6 ri = LowerBoundPenDepth(qi,O,G);
7 if ri > 0 then
8 Q = Q ∪ {qi}, R = R ∪ {ri};
9 end

10 X = ConvertToEuclideanSpace(Q);
// Create alpha shape

11 D(X,R) = WeightedDelaunayTriangulation(X,R);
12 A(X,R) = WeightedAlphaShape(D(X,R), α = 0);

// Run Persistent Homology
13 K = Filtration(D(X,R), A(X,R));
14 ∆ = ComputeSecondHomologyPersistencePairs(K);

// Find Energy-Bounded Cages
15 for (i, j) ∈ ∆ do
16 C(Ki, σj) = PathComponent(σj , Ki);
17 if Bounded(C(Ki, σj)) then
18 for σ ∈Sorted(C(Ki, σj)), P) do
19 q =Centroid(σ);
20 u = P (σi)− P (q);
21 if CollisionFree(q) and u > 0 then
22 Q̂ = Q̂ ∪ {(q, u)};
23 end
24 end
25 end
26 end
27 return Q̂;

Algorithm 3: Energy-Bounded-Cage-Synthesis-2D

6.3 Experiments
We implemented EBCS-2D in C++ and evaluated its performance on a set of polygonal
objects under both gravitational and pushing energy fields. We used CGAL [167] to compute
α-shapes, the GJK-EPA algorithm of libccd [43] to compute penetration depth, and the twist
reduction algorithm implemented in PHAT [8] to compute the second persistence diagram.
Our dataset consisted of seven polygonal parts created by triangulating the projections of
models from YCB [16] and 3DNet [180] onto a plane. All experiments ran on an Intel Core
i7-4770K 350GHz processor with 6 cores.

CHAPTER 6. SYNTHESIS OF ENERGY-BOUNDED CAGING GRASPS WITH
PERSISTENT HOMOLOGY 98

6.3.1 Energy Bounded Cages Under Linear Push Energy
We consider a linear push energy field with a push force bound of Fp = 1.0 for the set of parts
with four grippers: rectangular parallel jaws, an overhead projection of a Zymark Zymate
gripper with parallel jaws [95], an overhead projection of a Barrett hand with a pre-grasping
shape inspired by [33], and a four finger disc gripper inspired by [163]. We ran the pushing
extension to EBCS-2D for the rectangular parallel jaws, Zymark gripper, and Barrett hand
with s = 200, 000 samples, an angle limit of ϕ = π

4 , and P = 5 push directions to sweep
from −π

4 to π
4 in intervals of π

8 , and pruned all pushes with û < 0.5 to ensure that our set of
pushes was robust. For the four finger gripper, we ran EBCS-2D with a fixed vertical push
direction to illustrate the ability of our algorithm to prove complete cages. EBCS-2D took
approximately 170 seconds to run on average for a single push direction. Fig. 6.5 illustrates
configurations synthesized by EBCS-2D with the estimated minimum escape energy û, which
is the distance against the linear push energy that the object must travel to escape. To
evaluate the lower bound of Theorem 1, we also used RRT* to attempt to plan an object
escape path over the set of collision-free poses with energy less than û, which was not able
to find an escape path with energy less than û in 120 seconds of planning [107].

6.3.2 Sample and Time Complexity
We also studied the sensitivity of the estimated escape energy for the highest energy config-
urations synthesized by EBCS-2D for a fixed push direction and the algorithm runtime to
the number of pose samples s.

The left panel of Fig. 6.6 shows the ratio of û for s ∈ {12.5, 25, 50, 100, 200, 400} ×103

pose samples to û at s = 400, 000 pose samples for each of the displayed objects and gripper
configurations. The top panel shows results using a parallel-jaw gripper and the bottom
panel shows results with a Zymark Zymate gripper to illustrate sensitivity to the complexity
of the polygonal gripper model. We averaged the ratios over 5 independent trials per value
of s. Case A is only within 80% of the value at s = 400, 000 after s = 200, 000 samples,
possibly because of the long thin portion of the configuration space as observed in [107].
Case B and C both converge to within 95% after about s = 200, 000 samples. For cases
D, E, and F with the complex Zymate gripper, all configurations require more samples to
converge, possibly due to the thin portions of the gripper tips. The sample complexity is
comparable to analysis of a single, fixed configuration with EBCA-2D.

The right panel of Fig. 6.6 shows the relationship between the runtime of EBCS-2D in
seconds versus the number of pose samples s over 5 independent runs of the algorithm for
the same objects. We broke down the run time by the section of the algorithm: sampling
poses, constructing the α-shape to approximate C, sorting the simplices for the filtration,
and computing and pruning candidate energy bounded cages with persistence. The runtime
is approximately linear in the number of pose samples, and the largest portion of runtime is
the time to sample poses and compute penetration depth. This suggests that the runtime
is considerably below the worst case s3 scaling in practice. The persistence diagram com-

CHAPTER 6. SYNTHESIS OF ENERGY-BOUNDED CAGING GRASPS WITH
PERSISTENT HOMOLOGY 99

Configuration 1 Configuration 2 Configuration 3

f

f

Configuration 1 Configuration 2 Configuration 3

f

Configuration 1 Configuration 2 Configuration 3

f

f

f

f

f

f

f

f

f

f

f

Configuration 1 Configuration 2 Configuration 3

f ff

∞ ∞

∞∞∞

∞ ∞

f

f ff

fff

ff

3.082.572.00

1.26 1.86 2.46

2.60 6.700.81

f

2.332.001.32

f

2.16 4.78

1.22

f f

0.54 2.05

1.32

1.87

1.82 4.58

3.73 4.292.33

f

0.97 1.32 2.74

f f f

Figure 6.5: Highest energy configurations and push directions synthesized using EBCS-2D ranked from left
to right for seven example polygonal objects (blue) and grippers (black) under a linear planar pushing energy
field with a push force bound of Fp = 1.0. Displayed are three objects for each of the following grippers:
(left-to-right, top-to-bottom) parallel-jaw grippers with rectangular jaws, a Barrett hand with fixed preshape,
a Zymark Zymate gripper with fixed opening width, and a four finger disc gripper. Below each object the
escape energy û estimated by EBCS-2D using s = 200, 000 pose samples, which is the distance the object
would have to travel against the pushing direction, and to the right is the synthesized push energy direction
f . For each test case we searched over 5 energy directions from −π4 to π

4 and checked push reachability as
described in Section 6.2.3 except for the four finger gripper, for which we ran only EBCS-2D to illustrate
complete cages. EBCA-2D synthesizes several complete cages for the four finger gripper.

CHAPTER 6. SYNTHESIS OF ENERGY-BOUNDED CAGING GRASPS WITH
PERSISTENT HOMOLOGY 100

Samples (x105)

M
ea

n
 R

u
n

ti
m

e
(s

ec
)

Sample Time

Space Approximation Time
Filtration Time
Persistence Time

Samples (x105)

N
o

rm
al

iz
ed

 Q
u

al
it

y
Case A

Case B

Case C

1 3 4
0

100

200

300

400

21 2 3 4
0

0.2

0.4

0.6

0.8

1

A

B

C

f

f

f

Samples (x105)

N
o

rm
al

iz
ed

 Q
u

al
it

y

Case D

Case E

Case F

1 2 3 4
0

0.2

0.4

0.6

0.8

1

D

E

F

f

f

f

Samples (x105)

M
ea

n
 R

u
n

ti
m

e
(s

ec
)

Sample Time

Space Approximation Time
Filtration Time
Persistence Time

1 3 4
0

100

300

500

700

2

Figure 6.6: Sensitivity analysis of EBCS-2D. (Middle) The sample complexity of EBCS-2D. Plotted is the
ratio of the highest minimum escape energy out of the energy-bounded cages synthesized by EBCS-2D, û∗, for
the number of pose samples s = {12.5, 25, 50, 100, 200, 400}×103 on the object and gripper test cases displayed
on the left. Performance is broken down by the polygonal gripper model used: parallel-jaw grippers (Top)
and a Zymark Zymate gripper (Bottom). (Right) The mean runtime of EBCS-2D in seconds is broken down
by component of the algorithm for varying numbers of pose samples s = {12.5, 25, 50, 100, 200, 400} × 103.
Each datapoint is averaged over five independent runs for each of the object and gripper configurations on
the left. Despite the theoretical worst case s3 runtime, the algorithm runtime is approximately linear in s,
and is dominated by sampling time.

putation in particular has been observed to commonly exhibit sub-quadratic runtime [19]
despite its worst-case cubic complexity. Runtime approximately doubles with the Zymate
gripper due to an increase in sampling time, consistent with the quadratic time complexity
of EBCS-2D with respect to the number of object and obstacle vertices.

6.3.3 Persistence Diagrams
To further illustrate the notion of persistence, we study the persistence diagrams of the
second homology group for a single object and the Zymark Zymate gripper in Fig. 6.7.
To generate the diagram we constructed the weighted Delauanay triangulation and α-shape
using s = 200, 000 pose samples and examined the list ∆ (generated on Line 14 of the EBCS-
2D pseudocode in Algorithm 3). We see that the three energy-bounded cages returned
by EBCS-2D correspond to the three most persistent pairs, which appear furthest from

CHAPTER 6. SYNTHESIS OF ENERGY-BOUNDED CAGING GRASPS WITH
PERSISTENT HOMOLOGY 101

7.5

7.0

6.5

6.0

5.5
5.5 6.0 6.5 7.0 7.5

D
e
a
th

 I
n
d

e
x

 (
x

 1
0

6
)

Birth Index (x 106)

f

Figure 6.7: Persistence diagram for the second homology persistence pairs (corresponding to “voids”) in the
filtration K identified during a run of EBCS-2D with s = 200, 000 pose samples for a part (blue) and gripper
configuration (black) with a vertical push force. The (i, j) coordinate for each point corresponds to the
birth and death indices of the voids. Points in red were pruned by our algorithm. The three points in blue
were identified by EBCS-2D as energy-bounded cages, and their corresponding workspace configurations are
illustrated next to the points. Note that the magnitude of differences between indices may not be indicative
of the magnitude of energy differences between configurations.

the diagonal. Furthermore, our algorithm correctly rejects the large number of candidate
configurations with very low persistence.

6.3.4 Physical Experiments
We evaluated the performance of energy-bounded cages synthesized by EBCS-2D in pushing
and grasping planar objects on two physical robots.

Known Object Pose

We evaluated the pushes synthesized by EBCS-2D for the three object configurations on a
Zymark Zymate robot with the Zymark gripper illustrated in Fig. 6.5 on a set of extruded
fiberboard polygonal parts [95] to evaluate performance when the exact object pose is known,
as is common in industrial automation. The top panel of Fig. 6.8 illustrates this experiment.
For each configuration, the object was placed in the center of a turntable on a template to
register the object pose, rotated to align the push direction with the arm’s major axis, and
pushed forward while the turntable oscillated with an amplitude of ±0.1 radians to simulate
external wrenches on the object. To test robustness we added zero-mean Gaussian noise with
standard deviation of 5mm to the gripper translation and 0.04 radians to the gripper rotation
in the plane. We then evaluated whether or not the object was captured and remained within

CHAPTER 6. SYNTHESIS OF ENERGY-BOUNDED CAGING GRASPS WITH
PERSISTENT HOMOLOGY 102

the gripper jaws after being pushed 150mm. Pushes planned by EBCS-2D had a success rate
of 100% versus 41% for a baseline of pushes planned by choosing gripper poses uniformly at
random from (x, y) in the object bounding box and θ in [0, 2π).

Image-Based Pose Registration

Planned Push Execution

f

f

Figure 6.8: Experimental setups for executing energy-
bounded cages synthesized with EBCS-2D on a Zy-
mark Zymate robot (Top) and ABB YuMi robot (Bot-
tom). The Zymate was used to test performance when
exact object pose was known and the YuMi was used to
test performance when planning based on object seg-
mentation masks in images. (Left) The synthesized
planar configuration for each manipulator. (Right)
The object remains in the gripper as it is pushed along
a planar worksurface.

We also evaluated planar pushing on a set of
six 3D objects using an ABB YuMi with a
parallel-jaw gripper using image-based reg-
istration to index a planned push from a
database of pushes synthesized with EBCS-
2D to evaluate performance when the ob-
ject pose is not known a priori. The bot-
tom panel of Fig. 6.8 illustrates our exper-
imental setup. First, we detected and seg-
mented the each object from the background
using color background subtraction with im-
ages from an overhead Primesense Carmine
1.08. We extruded and triangulated the seg-
mentation masks and used EBCS-2D to plan
energy-bounded push-cages. To execute a
planned push, the object was placed in the
center of the planar worksurface by a human
operator and the object was registered by
minimizing the pixel-wise difference between
the new and original segmentation mask over
all possible orientations. The robot then at-
tempted to push the object 10cm and lift
the object by closing the jaws on the ob-
ject after the attempted push. We added
zero-mean Gaussian noise with standard de-
viation of 2.5mm to the gripper translation
in the plane to test robustness to perturba-
tions.

Table 6.1 summarizes the performance of energy-bounded cages performed on the ABB
YuMi for capturing the object (keeping it between the jaws), pushing the object 10cm, and
grasping and lifting the object. We evaluated each for four trials with the object rotated by
π
2 on each trial, and we compared against the random baseline used in the Zymark Zymate
experiments. The most common failure mode occurred when the parallel jaws contacted the
object before reaching the target gripper configuration, suggesting that modeling uncertainty
in the gripper approach could improve performance.

CHAPTER 6. SYNTHESIS OF ENERGY-BOUNDED CAGING GRASPS WITH
PERSISTENT HOMOLOGY 103

Method Captures (%) Pushes (%) Grasps (%)
Random 36 66 18

EBCS-2D 98 79 86
Table 6.1: Performance of energy-bounded cages planned by EBCS-2D for capturing, pushing, and grasping
six planar test objects with an ABB YuMi with parallel-jaw grippers using image-based registration to
determine the object pose. We compare with a random baseline that selects random gripper orientations
and target gripper positions uniformly at random from the object bounding box. We executed 14 planned
pushes for each method, each for 4 trials.

6.4 Proof of Correctness for the EBCS-2D Algorithm
Energy-Bounded-Cage-Synthesis-2D (EBCS-2D) synthesizes energy-bounded cages of a polyg-
onal object O by a rigid configuration of polygonal obstacles G with respect to a continuous
energy function U : SE(2) × SE(2) → R. We require that the energy function U can be
derived from a univariate potential function P (q) : SE(2)→ R, U(qi,qj) = P (qi)− P (qj).
We refer to poses as q = (x, y, z) ∈ SE(2). See Algorithm 3 for the EBCS-2D pseudocode
or Section 6.1 for further definitions.

Theorem 2 (Correctness of EBCS-2D). Assume the object is specified as a compact polygon
O ⊂ R2 and the obstacles are defined a rigid configuration of a set of k polygons G =
P1 ∪ . . . ∪ Pk ⊂ R2. Furthermore, assume the energy function U : SE(2) × SE(2) → R
satisfies the following:

1. U(q,q) = 0 for all q ∈ SE(2).

2. U(qi,qj) = P (qi)−P (qj) for all q ∈ SE(2) and a potential function P : SE(2)→ R.

3. P is continuous.

4. P ((x, y, ·)) = c for some c ∈ R (P does not depend on the orientation).

5. P is concave on the translational component R2.

Let Q̂ = {(q̂i, ûi)}Ni=1 be the list of poses returned by EBCS-2D. For each (q̂, û) ∈ Q̂, q̂
is a û-energy bounded cage of O with respect to U .

Proof. It suffices to show that (q̂, û) will only be added to the solution set Q̂ if q̂ is a
û-energy bounded cage of O.

Lemma 1. Let D(X,R) denote the weighted Delaunay triangulation of the pose samples
X and penetration depths R (computed on Line 11). Let A(X,R) ⊂ D(X,R) denote the
weighted alpha shape of X and R at α = 0 (computed on Line 12). Let π be the covering map

CHAPTER 6. SYNTHESIS OF ENERGY-BOUNDED CAGING GRASPS WITH
PERSISTENT HOMOLOGY 104

defined in Section 4 of [107]. Given any p ∈ R, let Wp(X,R) = {σ ∈ D(X,R) | f(σ) > p}
denote the p-potential forbidden subcomplex of X, R, where:

f(σ) =
{

minx∈σ P (π(x)) σ ∈ D(X)− A(X)
∞ σ ∈ A(X)

For any pose q ∈ SE(2) and u ∈ R, let p(q) = u + P (q). Then if q ∈ F is in a bounded
path component of C − π(Wp(q)(X,R)), q is a u-energy bounded cage of O.

Proof. The p-potential forbidden subcomplex Wp(q)(X,R) ⊂ Vu(X,R)(q) the u-energy for-
bidden subcomplex of X, R with respect to q defined in [107]. This is because ∀σ ∈
Wp(q)(X,R), either σ ∈ A(X,R) ⇒ σ ∈ Vu(X,R)(q) or P (σ) > p(q) ⇔ P (qi) > p(q)
∀qi ∈ σ ⇔ P (qi) − P (q) = U(qi) > u. Recall that π(Vu(X,R)(q)) ⊂ Zu, the u-energy
forbidden space defined in [107], and therefore C − π(Wp(q)(X,R)) ⊃ Fu(q), the u-energy
admissible space defined in [107]. Therefore any path in C − π(Wp(q)(X,R)) can be re-
stricted to Fu(q) which implies that q lies in a bounded-path component of Fu(q). Thus,
by definition q is a u-energy-bounded cage.

Now define the filtration K(X,P) : ∅ = K0 ⊂ K1 ⊂ . . . ⊂ Kn ⊂ D(X,R) of simplices in
D(X,R) with respect to f . Let I = {(im, jm)}Mm=1 denote the set of k persistence pairs for
K(X,P) such that dim(σim) == 2. Then any pair (i, j) ∈ I corresponds to the birth and
death of a class of the second homology group H2. We take this as an indication that π(σk)
lies in a bounded path component π(C(Ki, σj)) ⊂ π(D(X,R)−Ki) and additionally verify
boundedness using a flood-fill algorithm [115, 107].

To verify that the component is bounded with respect to the û energy forbidden space,
let p = P (σi) and u(q) = P (σi)− P (q) for any q ∈ C(Ki, σj) ∩ F , if such a pose exists. By
the definition of the filtration, Ki = Wp(X,R). By Lemma 1 any q ∈ C(Ki, σj) ∩ F is in
a bounded path component and is therefore a u(q)-energy-bounded cage of O. EBCS-2D
only returns q, u for u = P (σi) − P (q) (Line 19) if q is collision free (Line 20) and in the
same bounded path component as σj (Line 16). Therefore q̂ is a û-energy-bounded cage of
O with respect to U .

6.5 Energy Function for Constant Velocity
Quasi-Static Planar Pushing

Consider a compact polygonal object O ⊂ R2 of mass mO and a rigid configuration of a set
of k polygonal obstacles G = P1 ∪ . . . ∪ Pk ⊂ R2 of total mass mG. Let m = mO + mG be
the total mass. Denote by q ∈ SE(2) the pose of O relative to the reference frame of G.
Assuming quasi-static conditions and a Coulomb friction model, let the object and gripper
rest on a horizontal worksurface under gravity with a uniform coefficient of friction between
the gripper, object, and surface: µ ∈ R. Assume a uniform pressure distribution for both O
and G and let the center of mass of each be located at the centroid of the respective pressure

CHAPTER 6. SYNTHESIS OF ENERGY-BOUNDED CAGING GRASPS WITH
PERSISTENT HOMOLOGY 105

distributions. Assume that the magnitude of any external wrench we = (fe, τe) on the object
is bounded by a constant λ.

Now let G move along a fixed direction v̂ ∈ S1 with constant translational velocity of
magnitude β ∈ R and zero angular velocity. Zero net force must be acting on G and O to
maintain this velocity, and therefore the force due to pushing fp is equal and opposite of
the forces due to friction ff and forces due to external perturbations fe. Thus the pushing
force is bounded by the maximum force due to friction and maximum magnitude of external
wrenches: ‖fp‖2 6 µMg + λ. This force may be applied to O through contact with G, and
therefore fp may exert a torque τp on O relative to G such that τp 6 ρfp, where ρ ∈ R is the
maximum moment arm of O [114, 113, 130].

To derive the energy function, consider the amount of energy (mechanical work) that the
time-varying external wrench we(t) = (fe(t), τe(t)) would have to exert to move O along a
continuous path γ : [0, 1] → SE(2) from pose qi to qj (e.g. γ(0) = qi, γ(1) = qj) with a
constant speed η under the pushing wrench wp = (fp, τp) and time-varying wrenches due to
friction wf (t) = (ff (t), τf (t)) [46]:

E(we) =
∫ 1

0
we(t) · γ̇(t)dt

By the constant speed assumption, the kinetic energy of the object does not change. There-
fore the net work done on the object over the path γ is zero due to conservation of energy:

E(we + wp + wf) =
∫ 1

0
(we(t) + wp + wf (t)) · γ̇(t)dt = 0

⇒ E(we) = −E(wp + wf)

We can upper bound the amount of work done by the constant pushing wrench wp and
time-dependent frictional wrench wf using Cauchy-Schwarz:

E(wp + wf) =
∫ 1

0
wp · γ̇(t)dt+

∫ 1

0
wf (t) · γ̇(t)dt

= wp ·
∫ 1

0
γ̇(t)dt+

∫ 1

0
wf (t) · γ̇(t)dt

6 (µMg + λ)v̂ · (xj − xi)
+ ρ(µMg + λ)(θj − θi)

+ µMg
∫ 1

0
‖γ̇(t)‖2dt (by Cauchy-Schwarz)

6 (µMg + λ)v̂ · (xj − xi)
+ 2πρ(µMg + λ) + ηµMg

And therefore under our assumptions we can lower bound the energy exerted by any external

CHAPTER 6. SYNTHESIS OF ENERGY-BOUNDED CAGING GRASPS WITH
PERSISTENT HOMOLOGY 106

wrenches by:

U(qj,qi) = Fpv̂ · (xj − xi)− κ(O,G, µ)
Fp = −(µMg + λ)

κ(O,G, µ) = 2πρ(µMg + λ) + ηµMg

This motivates our use of the linear, univariate potential P (q) = Fpv̂ · (xj − xi).

6.6 Numeric Issues in Implementation
In order for EBCS-2D to be correct, the computed penetration depth ri for a pose qi must
not be greater than the true 2D generalized penetration depth, ri 6 p(qi). This can be
theoretically achieved using the lower-bound algorithm given by Zhang et al. [188] by taking
the maximum of the exact penetration depth between pairs of convex pieces in a convex
decomposition of the object and obstacles, where the exact penetration depth can be com-
puted with the Gilbert-Johnson-Keerthi Expanding Polytope Algorithm (GJK-EPA) [173].
However, in practice GJK-EPA computes the exact penetration depth up to some tolerance
±ε. Thus to avoid mis-identifying a configuration as a complete or energy-bounded cage, in
practice we use ri = max(r̂i − ε, 0), where r̂i is the penetration depth computed using the
algorithm of Zhang et al. [188]. To avoid further numeric issues related to imprecision in
the convex decomposition, computation of the maximum moment arm, or the triangulation,
in practice it may be beneficial to additionally multiply the returned penetration depth by
some shrinkage factor 0 < ν < 1, ri = νmax(r̂i − ε, 0).

6.7 Discussion
This chapter developed EBCS-2D, a synthesis algorithm for energy-bounded cages of polyg-
onal objects and rigid configurations of obstacles under a 2D energy field, and use EBCS-2D
to synthesize constant velocity planar pushes under Coulomb friction. One shortcoming of
this work is that the extension to 3D is nontrivial; α-shape construction is exponential in
the dimensionality of the input points. As such, it remains to be seen whether or not caging
configurations can be used in practical applications on the physical robot.

In principle, methods developed in this section could be used to construct a dataset
generation distribution to sample various polygons and compute energy-bounded cages as
supervised training data for learning a caging policy that plans linear pushes from a segmen-
tation mask of objects on a tabletop. We leave this an open problem for future work.

107

Chapter 7

Computing Vacuum Suction Grasps
with Compliant Contact Modeling

While the majority of this thesis has focused on parallel jaw grippers, vacuum-based suction
grippers are widely-used for pick-and-place tasks in industry and warehouse order fulfillment.
As shown in the Amazon Picking Challenge, suction has an advantage over parallel-jaw or
multifinger grasping due to its ability to reach into narrow spaces and pick up objects with
a single point of contact. However, while a substantial body of research exists on parallel-
jaw and multifinger grasp planning [11], comparatively little research has been published on
planning suction grasps.

Grasp planning methods typically search for gripper configurations that maximize a
quality metric derived from mechanical wrench space analysis [121], human labels [150],
or self-supervised labels [98]. However, in practice suction grasps are often planned directly
on point clouds using heuristics such as grasping near the object centroid [60] or at the center
of planar surfaces [25, 34]. These heuristics work well for prismatic objects such as boxes
and cylinders but may fail on objects with non-planar surfaces near the object centroid,
which is common for industrial parts and household objects such as staplers or children’s
toys. Analytic models of suction cups for grasp planning exist, but they typically assume
that a vacuum seal has already been formed and that the state (e.g. shape and pose) of the
object is perfectly known [4, 86, 112]. A robot may need to form seals on non-planar surfaces
while being robust to external wrenches (e.g. gravity and disturbances), sensor noise, control
imprecision, and calibration errors, which are significant factors when planning grasps from
point clouds.

In this chapter, we propose a novel compliant suction contact model to measure grasp
rewards for rigid, non-porous objects that consists of two components: (1) a test for whether
a seal can be formed between a suction cup and a target object surface and (2) an analysis of
the ability of the suction contact to resist external wrenches. We use the model to evaluate
grasp robustness by analyzing seal formation and wrench resistance under perturbations in
object pose, suction tip pose, material properties, and disturbing wrenches using Monte-
Carlo sampling similar to that in the Dexterity Network (Dex-Net) 1.0 [104].

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 108

This chapter makes four contributions:

1. A compliant suction contact model that quantifies seal formation using a quasi-static
spring system and the ability to resist external wrenches (e.g. gravity) using a contact
wrench basis derived from the ring of contact between the cup and object surface.

2. Robust wrench resistance: a robust version of the above model under random disturb-
ing wrenches and perturbations in object pose, gripper pose, and friction.

3. Dex-Net 3.0, a dataset of 2.8 million synthetic point clouds annotated with suction
grasps and grasp robustness labels generated by analyzing robust wrench resistance
for approximately 375k grasps across 1,500 object models.

4. Physical robot experiments measuring the precision of robust wrench resistance both
with and without knowledge of the target object’s shape and pose.

We perform physical experiments using an ABB YuMi robot with a silicone suction cup
tip to compare the precision of a GQ-CNN-based grasping policy trained on Dex-Net 3.0
with several heuristics such as targeting planar surfaces near object centroids. We find that
the method achieves success rates of 98%, 82%, and 58% on datasets of Basic (prismatic or
cylindrical), Typical (more complex geometry), and Adversarial (with few available suction-
grasp points), respectively.

7.1 Problem Statement
Given a point cloud from a depth camera, the goal of this chapter is to find a robust suction
grasp (target point and approach direction) for a robot to lift an object in isolation on a
planar worksurface and transport it to a receptacle. A robust suction grasp maximizes the
probability that the robot can hold the object under gravity and perturbations sampled from
a distribution over sensor noise, control imprecision, and random disturbing wrenches.

7.1.1 Assumptions
The stochastic model is based on the following assumptions:

1. Quasi-static physics (e.g. inertial terms are negligible) with Coulomb friction.

2. Objects are rigid and made of non-porous material.

3. Each object is singulated on a planar worksurface in a stable resting pose [49].

4. A single overhead depth sensor with known intrinsics, position, and orientation relative
to the robot.

5. A vacuum-based end-effector with known geometry and a single disc-shaped suction
cup made of linear-elastic material.

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 109

Perimeter

Flexion

Cone

Initial State

Contact State

Figure 7.1: Quasi-static spring model used for determining when seal formation is feasible. The model
contains three types of springs – perimeter, flexion, and cone springs. An initial state for C is chosen given a
target point p and an approach direction v. Then, a contact state for C is computed so that C’s perimeter
springs form a complete seal against object mesh M . Seal formation is deemed feasible if the energy required
to maintain this contact state is sufficiently low in every spring.

7.1.2 Definitions
Fig. 7.2 illustrates our variables and the dataset generation distribution for Dex-Net 3.0. We
use the following definitions:

• States. Let x = (O, C,w) denote a state describing the variable properties of en-
vironment consisting of a single overhead depth camera and a single object in stable
resting pose on a tabletop. The object state O specifies the geometry M, pose To,
friction coefficient γ, and center of mass z. The camera state C specifies the intrinsic

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 110

State

Point
Cloud Reward

Object

Grasp

R

Camera

C
Perturbation

w

Figure 7.2: Graphical model for robust vacuum suction grasping of objects on a table surface based on point
clouds. Object shapes O are uniformly distributed over a discrete set of object models and object poses To

are distributed over the object’s stable poses and a bounded region of a planar surface. Grasps u = (p,v)
are sampled uniformly from the object surface. Given a coefficient of friction γ and a perturbing force and
torque vector w (e.g. due to gravity or inertia), we evaluate an analytic reward metric R based on the ability
of the grasp to resist w. A synthetic 2.5D point cloud y is generated from 3D meshes based on the camera
C in pose Tc.

parameters I and pose Tc. The perturbation w specifies a wrench, or force and torque
vector, applied to the object through its center of mass such as forces due to gravity.

• Grasp Actions. Let u = (p,v) ∈ R3×S2 denote a suction grasp in 3D space specified
by a center p = (x, y, z) ∈ R3 and an approach direction v ∈ S2.

• Point Clouds. Let y = RH×W
+ be a 2.5D point cloud represented as a depth image

with height H and width W taken by a camera with known intrinsics [57].

• Reward Distribution. Let R(x,u) ∈ {0, 1} be a binary-valued grasp reward metric
that indicates the feasibility of a quasi-static equilibrium between the perturbation
wrench w and forces applied actively and passively through contact between the suction

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 111

cup and object. This reward function is used a proxy for whether or not the grasp
can successfully lift and transport the object to a receptacle. Let q(R | x,u) model
probabilistic grasp outcomes due to control imprecision and uncertainty in the exact
parameters of the suction cup (e.g. radius, material elasticity).

• Environment Distribution. Let q(R,x,y | u) be the dataset generation environ-
ment defining a distribution on rewards, states, and point clouds modeling imprecision
in sensing and control.

Further details are given in Section 7.7.3.

7.1.3 Objective
The goal is to find a grasp that maximizes robustness given a point cloud:

π∗(y) = argmaxu∈UQ(y,u)

where U specifies constraints on the set of available grasps, such as collisions or kinematic
feasibility. We approximate π∗ by optimizing the weights θ of a deep Grasp Quality Con-
volutional Neural Network (GQ-CNN) Qθ(y,u) on a training dataset D = {(Ri,yi,ui)}Ni=1
consisting of reward values, point clouds, and suction grasps sampled from the dataset gen-
eration distribution. The optimization objective is to find weights θ that minimize the
cross-entropy loss L over D:

θ∗ = argmin
θ∈Θ

N∑
i=1
L(Ri, Qθ(yi,ui)). (7.1.1)

7.2 Compliant Suction Contact Model
To measure rewards for a suction cup gripper, we develop a quasi-static spring model of the
suction cup material and a model of contact wrenches that the suction cup can apply to the
object through a ring of contact on the suction cup perimeter. Under our model, the reward
R = 1 if:

1. A seal is formed between the perimeter of the suction cup and the object surface.

2. Given a seal, the suction cup is able to resist an external wrench on the object due to
gravity and disturbances.

7.2.1 Seal Formation
A suction cup can lift objects due to an air pressure differential induced across the membrane
of the cup by a vacuum generator that forces the object into the cup. If a gap exists between

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 112

Perimeter Flexion Cone

c1
c2 c3

c4

Figure 7.3: Compliant suction contact model. (Left) The quasi-static spring model used in seal formation
computations. This suction cup is approximated by n = 8 components. Here, r is equal to the radius of the
cup and h is equal to the height of the cup. {c1, . . . , cn} are the base contact vertices and a is the apex.
(Right) Wrench basis for the suction ring contact model. The contact exerts a constant pulling force on
the object of magnitude V and additionally can push or pull the object along the contact z axis with force
fz. The suction cup material exerts a normal force fN = fz + V on the object through a linear pressure
distribution (force per unit length) on the ring. This pressure distribution induces a friction limit surface
bounding the set of possible frictional forces in the tangent plane ft = (fx, fy) and the torsional moment
τz, and also induces torques τx and τy about the contact x and y axes due to elastic restoring forces in the
suction cup material.

the perimeter of the cup and the object, then air flowing into the gap may reduce the
differential and cause the grasp to fail. Therefore, a tight seal between the cup and the
target object is important for achieving a successful grasp.

To determine when seal formation is possible, we model circular suction cups as a conical
spring system C parameterized by real numbers (n, r, h), where n is the numer of vertices
along the contact ring, r is the radius of the cup, and h is the height of the cup. See see
Fig. 7.3 for an illustration.

Rather than performing a computationally expensive dynamic simulation with a spring-
mass model to determine when seal formation is feasible, we make simplifying assumptions
to evaluate seal formation geometrically. Specifically, we compute a configuration of C that
achieves a seal by projecting C onto the surface of the target object’s triangular mesh M
and evaluate the feasibility of that configuration under quasi-static conditions as a proxy for
the dynamic feasibility of seal formation.

In our model, C has two types of springs – structural springs that represent the physical
structure of the suction cup and flexion springs that do not correspond to physical structures
but instead are used to resist bending along the cup’s surface. Dynamic spring-mass systems
with similar structures have been used in prior work to model stiff sheets of rubber [137].
The undeformed structural springs of C form a right pyramid with height h and with a base

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 113

that is a regular n-gon with circumradius r. Let V = {c1, c2, . . . , cn, a} be the set of contact
vertices of the undeformed right pyramid, where each ci is a base contact vertex and a is
the pyramid’s apex. We define the model’s set of springs as follows:

• Perimeter (Structural) Springs – Springs linking vertex ci to vertex ci+1, ∀i ∈
{1, . . . , n}.

• Cone (Structural) Springs – Springs linking vertex ci to vertex a, ∀i ∈ {1, . . . , n}.

• Flexion Springs – Springs linking vertex ci to vertex ci+2, ∀i ∈ {1, . . . , n}.

In the model, a complete seal is formed between C and M if and only if each of the
perimeter springs of C lies entirely on the surface of M. Given a target mesh M with a
target grasp u = (p,v) for the gripper, we choose an initial configuration of C such that C is
undeformed and the approach line (p,v) passes through a and is orthogonal to the base of C.
Then, we make the following assumptions to determine a final static contact configuration
of C that forms a complete seal against M (see Fig. 7.1):

• The perimeter springs of C must not deviate from the original undeformed regular
n-gon when projected onto a plane orthogonal to v. This means that their locations
can be computed by projecting them along v from their original locations onto the
surface of M.

• The apex, a, of C must lie on the approach line (p,v) and, given the locations of
C’s base vertices, must also lie at a location that keeps the average distance along v
between a and the perimeter vertices equal to h.

See Section 7.6 for computational details.
Given this configuration, a seal is feasible if:

• The cone faces of C do not collide with M during approach or in the contact configu-
ration.

• The surface of M has no holes within the contact ring traced out by C’s perimeter
springs.

• The energy required in each spring to maintain the contact configuration of C is below a
real-valued threshold E modeling the maximum deformation of the suction cup material
against the object surface.

We threshold the energy in individual springs rather than the total energy for C because air
gaps are usually caused by local geometry.

7.2.2 Wrench Space Analysis
To determine the degree to which the suction cup can resist external wrenches such as gravity,
we analyze the set of wrenches that the suction cup can apply.

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 114

Wrench Resistance

The object wrench set for a grasp using a contact model with m basis wrenches is:

Λ = {w ∈ R6 | w = Gα for some α ∈ F}

where G ∈ R6×m is a set of basis wrenches in the object coordinate frame, and F ⊆ Rm is a
set of constraints on contact wrench magnitudes [121].

Definition 6. A grasp u achieves wrench resistance with respect to w if −w ∈ Λ [90, 121].

We encode wrench resistance as a binary variable W such that W = 0 if u resists w and
W = 0 otherwise.

Suction Contact Model

Many suction contact models acknowledge normal forces, vacuum forces, tangential friction,
and torsional friction [4, 86, 112, 161] similar to a point contact with friction or soft finger
model [121]. However, under this model, a single suction cup cannot resist torques about
axes in the contact tangent plane, implying that any torque about such axes would cause
the suction cup to drop an object (see Section 7.7 for a detailed proof). This defies our intu-
ition since empirical evidence suggests that a single point of suction can robustly transport
objects [40, 60].

We hypothesize that these torques are resisted through an asymmetric pressure distribu-
tion (force per unit length) on the ring of contact between the suction cup and object, which
occurs due to passive elastic restoring forces in the material. Fig. 7.3 illustrates the suction
ring contact model. The grasp map G is defined by the following basis wrenches:

1. Actuated Normal Force (fz): The force that the suction cup material applies by
pressing into the object along the contact z axis.

2. Vacuum Force (V): The magnitude of the constant force pulling the object into the
suction cup coming from the air pressure differential.

3. Frictional Force (ff = (fx, fy)): The force in the contact tangent plane due to the
normal force between the suction cup and object, fN = fz + V .

4. Torsional Friction (τz): The torque resulting from frictional forces in the ring of
contact.

5. Elastic Restoring Torque (τe = (τx, τy)): The torque about axes in the contact
tangent plane resulting from elastic restoring forces in the suction cup pushing on the
object along the boundary of the contact ring.

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 115

The magnitudes of the contact wrenches are constrained due to (a) the friction limit
surface [76], (b) limits on the elastic behavior of the suction cup material, and (c) limits on
the vacuum force. In the suction ring contact model, F is approximated by a set of linear
constraints for efficient computation of wrench resistance:

Friction:
√

3|fx| 6 γfN
√

3|fy| 6 γfN
√

3|τz| 6 rγfN

Material:
√

2|τx| 6 πrκ
√

2|τy| 6 πrκ

Suction: fz > −V

Here γ is the friction coefficient, r is the radius of the contact ring, and κ is a material-
dependent constant modeling the maximum stress for which the suction cup has linear-
elastic behavior. These constraints define a subset of the friction limit ellipsoid and cone
of admissible elastic torques under a linear pressure distribution about the ring of the cup.
Furthermore, we can compute wrench resistance using quadratic programming due to the
linearity of the constraints. See Section 7.7 detailed derivation and proof.

7.2.3 Robust Wrench Resistance
We evaluate the robustness of candidate suction grasps by evaluating seal formation and
wrench resistance over distributions on object pose, grasp pose, and disturbing wrenches:

Definition 7. The robust wrench resistance metric for u and x is λ(x,u) = P(W | x,u), the
probability of success under perturbations in object pose, gripper pose, friction, and disturbing
wrenches.

In practice, we evaluate robust wrench resistance by taking J samples, evaluating binary
wrench resistance for each, and computing the sample mean: 1

J

∑J
j=1Wj.

7.3 Dex-Net 3.0 Dataset
To learn to predict grasp quality from noisy point clouds, we generate the Dex-Net 3.0 train-
ing dataset of point clouds, grasps, and grasp reward labels by sampling tuples (Ri,ui,yi)
from a dataset generation distribution q(R,x,y,u).

7.3.1 Dataset Generation Distribution
We model q(R,x,y,u) as the product of the environment distribution q(R,x,y | u) described
in Section 7.1 and an action candidate distribution q(u | x) modeling a uniform random
distribution over contact points on the object surface. The details of each distribution
are listed in Table 7.1. The parameters of the sampling distributions and compliant suction
contact model (n, r, h, E, V, γ, κ, ε) (see Section 7.2) were set by maximizing average precision
of the Q values using grid search for a set of grasps attempted on an ABB YuMi robot on a
set of known 3D printed objects (see Section 7.5.1).

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 116

Figure 7.4: Dex-Net 3.0 dataset. (Left) The Dex-Net 3.0 object dataset contains approximately 350k
unique suction target points across the surfaces of 1,500 3D models from the KIT object database [78]
and 3DNet [180]. Each suction grasp is classified as robust (green) or non-robust (red). Robust grasps are
often above the object center-of-mass on flat surfaces of the object. (Right) The Dex-Net 3.0 point cloud
dataset contains 2.8 million tuples of point clouds and suction grasps with reward labels, with approximately
11.8% positive examples.

Figure 7.5: Computational pipeline for generating the Dex-Net 3.0 dataset (left to right). We first sample a
candidate suction grasp from the object surface and evaluate the ability to form a seal and resist gravity over
perturbations in object pose, gripper pose, and friction. The samples are used to estimate the probability of
success, or robustness, for candidate grasps on the object surface. We render a point cloud for each object and
associate the candidate grasp with a pixel and orientation in the depth image through perspective projection.
Training datapoints are centered on the suction target pixel and rotated to align with the approach axis to
encode the invariance of the robustness to image locations.

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 117

Distribution Description
q(γ) truncated Gaussian distribution over friction coefficients
q(O) discrete uniform distribution over 3D object models

q(To|O) continuous uniform distribution over the discrete set of
object stable poses and planar poses on the table surface

p(Tc)
continuous uniform distribution over spherical coordinates

for radial bounds [r`, ru] and polar angle in [0, δ]
Table 7.1: Details of the distributions used in the graphical model for generating the Dex-Net 3.0 training
dataset.

7.3.2 Computational Pipeline
The pipeline for generating training tuples is illustrated in Fig. 7.5. We first sample state by
selecting an object at random from a database of 3D CAD models and sampling a friction
coefficient, planar object pose, and camera pose relative to the worksurface. We generate a
set of grasp candidates for the object by sampling points and normals uniformly at random
from the surface of the object mesh. We then set the binary reward label R = 1 if a seal
is formed and robust wrench resistance (described in Section 7.2.3) is above a threshold
value ε. Finally, we sample a point cloud of the scene using rendering and a model of image
noise [104]. The grasp success labels are associated with pixel locations in images through
perspective projection [57].

7.4 Learning a Deep Robust Grasping Policy
We use the Dex-Net 3.0 dataset to train a GQ-CNN that takes as input a single-view point
cloud of an object resting on the table and a candidate suction grasp defined by a target
3D point and approach direction, and outputs the grasp quality, or estimated probability of
success, for the grasp on the visible object.

7.4.1 Architecture
The GQ-CNN architecture is identical to Dex-Net 2.0 [105] except that we modify the pose
input stream to include the angle between the approach direction and the table normal. The
point cloud stream takes a depth image centered on the target point and rotated to align
the middle column of pixels with the approach orientation similar to a spatial transforming
layer [67]. The end-effector depth from the camera and orientation are input to a fully
connected layer in a separate pose stream and concatenated with conv features in a fully
connected layer. We train the GQ-CNN using stochastic gradient descent with momentum
using an 80-20 training-to-validation image-wise split of the Dex-Net 3.0 dataset. Training

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 118

Recall

P
re
c
is
io
n

Figure 7.6: Performance of the Dex-Net 3.0 GQ-CNN. (Left) Precision-recall curve for the GQ-CNN trained
on Dex-Net 3.0 on the validation set of 552,000 pairs of grasps and images. (Right) The 64 conv1 1 filters
of the GQ-CNN. Each is 7×7. We see that the network learns circular filters which may be used to assess
the surface curvature about the ring of contact between the suction cup and object.

took approximately 12 hours on three NVIDIA Titan X GPUs. The learned GQ-CNN
achieves 93.5% classification accuracy on the held-out validation set.

7.4.2 Policy
We use the GQ-CNN in a deep robust grasping policy to plan suction target grasps from
point clouds on a physical robot. The policy uses the Cross Entropy Method (CEM) [98,
105, 145]. CEM samples a set of initial candidate grasps uniformly at random from the set
of surface points and inward-facing normals on a point cloud of the object, then iteratively
re-samples grasps from a Gaussian Mixture Model fit to the grasps with the highest predicted
probability of success.

7.4.3 Performance
The GQ-CNN trained on Dex-Net 3.0 had an accuracy of 93.5% on a held out validation
set of approximately 552,000 datapoints. Fig. 7.6 shows the precision-recall curve for the
GQ-CNN validation set and the optimized 64 conv1 1 filters, each of which is 7×7. Fig. 7.7
illustrates the probability of success predicted by the GQ-CNN on candidates grasps from
several real point clouds.

7.5 Experiments
We ran experiments to characterize the precision of robust wrench resistance when object
shape and pose are known and the precision of our deep robust grasping policy for planning
grasps from point clouds for three object classes.

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 119

Object
Predicted

Robustness

Most Robust

Grasp

Figure 7.7: Example grasps planned with the Dex-Net 3.0 GQ-CNN-based policy on RGB-D point clouds.
(Left) The robot is presented an object in isolation. (Middle) Initial candidate suction target points colored
by the predicted probability of success from zero (red) to one (green). Robust grasps tend to concentrate
around the object centroid. (Right) The policy optimizes for the grasp with the highest probability of success
using the Cross Entropy Method.

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 120

Basic Typical Adversarial

Workspace

Suction Cup

(Silicone, 15mm)

Primesense

Carmine 1.09

Arduino

Vacuum

Controller

Hardware

Figure 7.8: Physical benchmark used to evaluate the suction grasping policy. (Left) The experimental setup
with an ABB YuMi equipped with a suction gripper. (Right) The 55 objects used to evaluate suction
grasping performance. The objects are divided into three categories to characterize performance: Basic (e.g.
prismatic objects), Typical, and Adversarial.

7.5.1 Object Classes
We created a dataset of 55 rigid and non-porous objects including tools, groceries, office
supplies, toys, and 3D printed industrial parts. We separated objects into three categories,
illustrated in Fig. 7.8:

1. Basic: Prismatic solids (e.g. rectangular prisms, cylinders). Includes 25 objects.

2. Typical: Common objects with varied geometry and many accessible, approximately
planar surfaces. Includes 25 objects.

3. Adversarial: 3D-printed objects with complex geometry (e.g. curved or narrow sur-
faces) that are difficult to access. Includes 5 objects.

For object details, see http://bit.ly/2xMcx3x.

7.5.2 Experimental Protocol
We ran experiments with an ABB YuMi with a Primesense Carmine 1.09 and a suction
system with a 15mm diameter silicone single-bellow suction cup and a VM5-NC VacMotion
vacuum generator with a payload of approximately 0.9kg. The experimental workspace is
illustrated in the left panel of Fig. 7.8. In each experiment, the operator iteratively presented
a target object to the robot and the robot planned and executed a suction grasp on the
object. The operator labeled successes based on whether or not the robot was able to lift
and transport the object to the side of the workspace. All experiments ran on a Desktop
running Ubuntu 16.04 with a 3.4 GHz Intel Core i7-6700 Quad-Core CPU and an NVIDIA
GeForce 980 GPU.

7.5.3 Performance Metrics
For each method, we measured:

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 121

1. Average Precision (AP). The area under the precision-recall curve, which measures
precision over possible thresholds on the probability of success predicted by the policy.
This is useful for industrial applications where a robot may take an alternative action
(e.g. asking for help) if the planned grasp is predicted to fail.

2. Success Rate. The fraction of all grasps that were successful.

These metrics alone do not give a complete picture of how useful a suction grasp policy
would work in practice. Average Precision (AP) penalizes a policy for having poor recall
(a high rate of false negatives relative to true positives), and success rate penalizes a policy
with a high number of failures. However, not all failures should be treated equally: some
failures occur because a robust suction grasp cannot be found while others are the result of
an overconfident prediction.

In practice, a suction grasp policy would be part of a larger system (e.g. a state machine)
that could decide whether or not to execute a grasp based on the continuous probability of
success output by the GQ-CNN. As long as the policy is not overconfident, such as system
can detect failures before they occur and take an alternative action such as attempting to
turn the object over, asking a human for help, or leaving the object in the bin for error
handling. At the same time, if a policy is too conservative and never predicts successes, then
the system will handle be able to handle very few test cases.

We illustrate this tradeoff by also plotting a Success-Attempt Rate curve which plots:

1. Success Rate. The fraction of fraction of grasps that are successful if the system
only executes grasps have predicted probability of success greater than a confidence
threshold τ .

2. Attempt Rate. The fraction of all test cases for which the system attempts a grasp,
if the system only attempts grasps with predicted probability of success greater than
a confidence threshold τ .

over all possible values of the confidence threshold τ . There is typically an inverse relationship
between the two metrics: a higher confidence threshold will reduce false positives but will
also reduce the frequency of grasp attempts, increasing runtime and decreasing the diversity
of cases that the robot is able to successfully handle.

7.5.4 Performance on Known Objects
To assess performance of our robustness metric independent of the perception system, we
evaluated whether or not the metric was predictive of suction grasp success when object shape
and pose were known using the 3D printed Adversarial objects. The robot was presented
one of the five Adversarial objects in a known stable pose, selected from the top three
most probable stable poses. We hand-aligned the object to a template image generated by
rendering the object in a known pose on the table. Then, we indexed a database of grasps

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 122

Metric AP (%) Success Rate (%)

PC3D 88 80
SS 89 84

WR 93 80
RWR 100 92

Table 7.2: Performance of robust grasping policies with known state (3D object shape and pose) across 75
physical trials per policy on the Adversarial object dataset. The policies differ by the metric used to rank
grasps, and each metric is computed using the known 3D object geometry. The robust wrench resistance
metric, which considers the ability of a suction cup to form a seal and resist gravity under perturbations,
has very high precision. In comparison, the Planarity-Centroid heuristic achieves only 88% precision and
80% success.

precomputed on 3D models of the objects and executed the grasp with the highest metric
value for five trials. In total, there were 75 trials per experiment.

We compared the following metrics:

1. Planarity-Centroid (PC3D). The inverse distance to the object centroid for suffi-
ciently planar patches on the 3D object surface.

2. Spring Stretch (SS). The maximum stretch among virtual springs in the suction
contact model.

3. Wrench Resistance (WR).

4. Robust Wrench Resistance (RWR).

The results are detailed in Table 7.2 and the Success vs Attempt Rate curve is plotted in
Fig. 7.9. A policy based on the robust wrench resistance metric with our compliant suction
contact model had a 100% success rate for a large percentage of possible test cases, whereas
a heuristic based on planarity and the distance to the object center of mass had success
rates as low as 67%, indicating that the real-valued distance to the center of mass is not well
correlated with grasp success.

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 123

7.5.5 Performance on Novel Objects

S
u

cc
es

s
R

at
e

% Attempted

Figure 7.9: Success rate vs Attempt Rate
for grasp quality metrics on known 3D ob-
jects in known poses.

We also evaluated the performance of GQ-CNNs
trained on Dex-Net 3.0 for planning suction target
points from a single-view point cloud. In each ex-
periment, the robot was presented one object from
either the Basic, Typical, or Adversarial classes in a
pose randomized by shaking the object in a box and
placing it on the table. The object was imaged with
a depth sensor and segmented using 3D bounds on
the workspace. Then, the grasping policy executed
the most robust grasp according to a success metric.
In this experiment the human operators were blinded
from the method they were evaluating to remove bias
in human labels.

We compared policies that used the following met-
rics:

1. Planarity. The inverse sum of squared errors from an approach plane for points within
a disc with radius equal to that of the suction cup.

2. Centroid. The inverse distance to the object centroid.

3. Planarity-Centroid. The inverse distance to the centroid for sufficiently planar
patches on the 3D object surface.

4. GQ-CNN (ADV). A GQ-CNN trained on synthetic data from only the Adversarial
objects (to assess the ability of the model to fit complex objects).

5. GQ-CNN (DN3). A GQ-CNN trained on synthetic data from the 3DNet [180],
KIT [78], and Adversarial object datasets.

Table 7.3 details performance on the Basic, Typical, and Adversarial objects, and Fig. 7.10
illustrates the Success-Attempt Rate tradeoff. We see that the Dex-Net 3.0 policy has the
highest AP across the Basic and Typical classes. Also, the GQ-CNN trained on the Adver-
sarial objects significantly outperforms all methods on the Adversarial dataset, suggesting
that our model is able to exploit knowledge of complex 3D geometry to plan robust grasps.
Furthermore, the Success-Attempt Rate curve suggests that the continuous probability of
success output by the Dex-Net 3.0 policy is highly correlated with the true success label and
can be used to detect failures before they occur on the Basic and Typical object classes. The
Dex-Net 3.0 policy took an average of approximately 3 seconds to plan each grasp.

Interestingly, in all experiments the Dex-Net 3.0 GQ-CNN policy performs similarly to
the suction heuristic based on planarity and proximity to the object centroid. This suggests
that there may be a relationship between analytic grasp reward functions defined in 3D space

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 124

Basic Typical Adversarial

AP (%) Success Rate (%) AP (%) Success Rate (%) AP (%) Success Rate (%)

Planarity 81 74 69 67 48 47
Centroid 89 92 80 78 47 38

Planarity-Centroid 98 94 94 86 64 62
GQ-CNN (ADV) 83 77 75 67 86 81
GQ-CNN (DN3) 99 98 97 82 61 58

Table 7.3: Performance of image-based grasping policies for 125 trials each on the Basic and Typical datasets
and 100 trials each on the Adversarial datasets. We see that the GQ-CNN trained on Dex-Net 3.0 has the
highest average precision on the Basic and Typical objects but has lower precision on the adversarial objects,
which are very different than common objects in the training dataset. A GQ-CNN trained on the Adversarial
dataset significantly outperforms all methods on these objects, suggesting that our model is able to capture
complex geometries when the training dataset contains a large proportion of such objects.

Basic Typical Adversarial

S
u

cc
es

s
R

at
e

% Attempted % Attempted % Attempted

Figure 7.10: Success vs Attempt Rate for 125 trials on each of the Basic and Typical object datasets and 100
trials each on the Adversarial object dataset. The GQ-CNN trained on Dex-Net 3.0 has near 100% precision
on the Basic and Typical classes for a significant portion of attempts, suggesting that the GQ-CNN is able
to predict when it is likely to fail on novel objects. The GQ-CNN trained on the Adversarial objects has a
significantly higher precision on the Adversarial class but does not perform as well on the other objects.

and 2D image-based heuristics. Knowledge of the principles behind 3D prasp analysis could
perhaps inform the design of future, more robust heuristics.

7.5.6 Classification Performance on Known Objects
To assess performance of our robustness metric on classifying grasps as successful or unsuc-
cessful, we evaluated whether or not the metric was able to classify a set of grasps sampled
randomly from the 3D object surface using the known 3D object geometry and pose of the
Adversarial objects. First, we sampled a set of 1000 grasps uniformly at random from the
surface of the 3D object meshes. Then robot was presented one of the five Adversarial ob-

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 125

Metric AP (%) Accuracy (%) Rank Correlation

PC3D 71 68 0.36
SS 75 74 0.49

WR 78 77 0.52
RWR 80 75 0.62

Table 7.4: Performance of classification and correlation with successful object lifts and transports for various
metrics of grasp quality based on 3D object meshes. The metrics SS, WR, and RWR all use our compliant
suction contact model, and RWR uses our entire proposed method: checking seal formation, analyzing
wrench resistance using the suction ring model, and computing robustness with Monte-Carlo sampling.

jects in a known stable pose, selected from the top three most probable stable poses. We
hand-aligned the object to a template image generated by rendering the object in a known
pose on the table. Then, the robot executed a grasp uniformly at random from the set of
reachable grasps for the given stable pose. In total, there were 600 trials, 125 per object.

We compared the predictions made for those grasps by the following metrics:

1. Planarity-Centroid (PC3D). The inverse distance to the object centroid for suffi-
ciently planar patches on the 3D object surface.

2. Spring Stretch (SS). The maximum stretch among virtual springs in the suction
contact model.

3. Wrench Resistance (WR).

4. Robust Wrench Resistance (RWR).

We measured the Average Precision (AP), classification accuracy, and Spearman’s rank
correlation coefficient (which measures the correlation between the ranking of the metric
value and successes on the physical robot). Table 7.4 details the performance of each metric.
We see that the robust wrench resistance metric with our compliant spring contact model
has the highest average precision and correlation with successes on the physical robot.

7.5.7 Failure Modes
The system was not able to handle many objects due to material properties. We broke up
the failure objects into two categories:

1. Imperceptible Objects: Objects with (a) surface variations less than the spatial
resolution of our Primesense Carmine 1.09 depth camera or (b) specularities or trans-
parencies that prevent the depth camera from sensing the object geometry. Thus the
point-cloud-based grasping policies were not able to distinguish successes from failures.

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 126

Imperceptible Impossible

Figure 7.11: Two categories of objects that cannot be handled by any of the point-cloud based suction
grasping policies. (Left) Imperceptible objects, which cannot be handled by the system due to small surface
variations that cannot be detected by the low-resolution depth sensor but do prevent seal formation. (Right)
Impossible objects, which cannot be handled by the system due to non-porosity or lack of an available surface
to form a seal.

2. Impossible Objects: Objects for which a seal cannot be formed either because objects
are (a) non-porous or (b) lack a surface patch for which the suction cup can achieve a
seal due to size or texture.

A set of example objects within each of the failure modes are illustrated in Fig. 7.11.

7.6 Details of Quasi-Static Spring Seal Formation
Model

In this section, we derive a detailed process for statically determining a final configuration
of C that achieves a complete seal against mesh M. We assume that we are given a line of
approach ` parameterized by p, a target point on the surface ofM, and v, a vector pointing
towards P along the line of approach.

First, we choose an initial, undeformed configuration of C. In this undeformed config-
uration of C, all of the springs of C are in their resting positions, which means that the
structural springs of C form a right pyramid with a regular n-gon as its base. This perfectly
constrains the relative positions of the vertices of C, so all that remains is specifying the
position and orientation of C relative to the world frame.

We further constrain the position and orientation of C such that ` passes through a and
is orthogonal to the plane containing the base of C. This leaves only the position of a and a
rotation about ` as degrees of freedom. For our purposes, the position of a along ` does not
matter so long as C is not in collision with M and the base of C is closer to M than the
apex is. In general, we choose a such that ‖p − a‖ > x + h, where x is the largest extent
of the object’s vertices. For the rotation about `, we simply select a random initial angle.

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 127

Theoretically, the rotation could affect the outcome of our metric, but as long as n is chosen
to be sufficiently large, the result is not sensitive to the chosen rotation angle.

Next, given the initial configuration of C, we compute the final locations of the perimeter
springs on the surface of M under two main constraints:

• The perimeter springs of C must not deviate from their initial locations when projected
back onto the plane containing the base of C’s initial right pyramid.

• The perimeter springs of C must lie flush against the mesh M .

Essentially, this means that the perimeter springs will lie on the intersection of M with a
right prism K whose base is the base of the initial configuration’s right pyramid and whose
height is sufficient such that K passes all the way through M. The base vertices of C will
lie at the intersection ofM and K’s side edges, and the perimeter springs of C will lie along
the intersection of M and K’s side faces.

Finally, given a complete configuration of the perimeter vertices of C as well as the paths
of the perimeter springs along the surface of M, we compute the final location of the cup
apex a. We work with three main constraints:

• a must lie on `.

• a must not be below the surface of M (i.e. vT (a − p) 6 0).

• a should be chosen such that the average displacement between a and the perimeter
vertices along v remains equal to h.

Let a∗ = p− t∗v. Then, the solution distance t∗ is given by

t∗ = min
[1
n

n∑
i=1

(ci − p)Tv
]
− h, 0

.
When thresholding the energy in each spring, we use a per-spring threshold of a 10%

change in length, which was used as the spring stretch limit in [137].

7.7 Derivation of Compliant Suction Contact Model
The basis of contact wrenches for the suction ring model is illustrated in Fig. 7.3. The
contact wrenches are not independent due to the coupling of normal force and friction, and
they may be bounded due to material properties. In this section we prove that wrench
resistance can be computed with quadratic programming, we derive constraints between the
contact wrenches in the suction ring model, and we explain the limits of the soft finger
suction contact models for a single suction contact.

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 128

7.7.1 Computing Wrench Resistance with Quadratic
Programming

The object wrench set for a grasp using a contact model with m basis wrenches is Λ =
{w ∈ R6 | w = Gα for some α ∈ F}, where G ∈ R6×m is a set of m basis wrenches
in the object coordinate frame, and F ⊆ Rm is a set of constraints on contact wrench
magnitudes [121]. The grasp map G can be decomposed as G = AW where A ∈ R6×6 is the
adjoint transformation mapping wrenches from the contact to the object coordinate frame
and W ∈ 6×m is the contact wrench basis, a set of m orthonormal basis wrenches in the
contact coordinate frame [121].

Definition 8. A grasp u achieves wrench resistance with respect to w if −w ∈ Λ.

Proposition 1. Let G be the grasp map for a grasp u. Furthermore, let ε∗ = argminα∈F‖Gα+
w‖2

2. Then u can resist w iff ε∗ = 0.

Proof. (⇒). Assume u can resist w. Then −w ∈ Λ and therefore ∃α ∈ F such that
Gα = −w ⇒ Gα + w = 0. (⇐). Assume ε∗ = 0. Then ∃α ∈ F such that Gα + w = 0 ⇒
Gα = −w⇒ −w ∈ Λ.

When the set of admissible contact wrench magnitudes F is defined by linear equality
and inequality constraints, the minα∈F‖Gα + w‖2

2, is a Quadratic Program which can be
solved exactly by modern solvers.

Our suction contact model assumes the following:

1. Quasi-static physics (e.g. inertial terms are negligible).

2. The suction cup contacts the object along a circle of radius r (or “ring”) in the xy−plane
of the contact coordinate frame.

3. The suction cup material behaves as a ring of infinitesimal springs per unit length.
Specifically, we assume that the pressure along the z−axis in contact coordinate frame
satisfies p(θ) = kδz(θ) where δz is displacement along the z-axis and k ∈ R is a spring
constant (per unit length). The cup does not permit deformations along the x or y
axes.

4. The suction cup material is well approximated by a spring-mass system. Furthermore,
points on the contact ring are in static equilibrium with a linear displacement along
the z−axis from the equilibrium position: δz(θ) = δ0 + ar cos(θ) + br sin(θ). Together
with Assumption 3, this implies that:

p(θ) = p0 + px cos(θ) + py sin(θ)

for real numbers p0, px, and py.

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 129

5. The force on the object due to the vacuum is a constant −V along the z− axis of the
contact coordinate frame.

6. The object exerts a normal force on the object fN = fz + V where fz is the force
due to actuation. This assumption holds when analyzing the ability to resist disturb-
ing wrenches because the material can apply passive forces but may not hold when
considering target wrenches that can be actuated.

The magnitudes of the contact wrenches are constrained due to (a) the friction limit
surface [76], (b) limits on the elastic behavior of the suction cup material, and (c) limits on
the vacuum force.

Friction Limit Surface

The values of the tangential and torsional friction are coupled through the planar external
wrench and thus are jointly constrained. This constraint is known as the friction limit
surface [76]. We can approximate the friction limit surface by computing the maximum
friction force and torsional moment under a pure translation and a pure rotation about the
contact origin.

The tangential forces have maximum magnitude under a purely translational disturbing
wrench with unit vector v̂ in the direction of the velocity:

fx 6
2π∫
0

µv̂xp(θ)dθ

6
2π∫
0

µv̂x (p0 + px cos(θ) + py sin(θ)) dθ

6 2πµv̂xp0

fy 6 2πµv̂yp0

‖ff‖2
2 6 (2πµv̂xp0)2 + (2πµv̂yp0)2

= (2πµp0)2
(
v̂2
x + v̂2

y

)
= (2πµp0)2

= µfN

The torsional moment has a maximum moment under a purely rotational disturbing
wrench about the contact z− axis. This disturbing wrench can be described with a unit

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 130

vector v̂(θ) = (sin(θ),− cos(θ), 0). Thus the torsional moment is bounded by:

|τz| 6
2π∫
0

µrp(θ)dθ =
2π∫
0

µr (p0 + px cos(θ) + py sin(θ)) dθ

6 2πµrp0

6 rµfN

We can approximate the friction limit surface by the ellipsoid [75, 76]:

‖ft‖2
2

(µfN)2 + |τz|2

(rµfN)2 6 1

While this constraint is convex, in practice many solvers for Quadratically Constrained
Quadratic Programs (QCQPs) assume nonconvexity. We can turn this into a linear con-
straint by bounding tangential forces and torsional moments in a rectangular prism inscribed
within the ellipsoid:

|fx| 6
√

3
3 µfN

|fy| 6
√

3
3 µfN

|τz| 6
√

3
3 rµfN

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 131

Elastic Restoring Torques

The torques about the x and y axes are also bounded. Let w(θ) = (r cos(θ), r sin(θ), 0).
Then:

τt =
2π∫
0

(w(θ)× ez)p(θ)dθ

τx =
2π∫
0

r sin(θ)p(θ)dθ

=
2π∫
0

r sin(θ) (p0 + px cos(θ) + py sin(θ)) dθ

=
2π∫
0

rpy sin2(θ)dθ

= πrpy

τy = πrpx

‖τe‖2
2 = π2r2(p2

x + p2
y)

6 π2r2κ2

where κ is the elastic limit or yield strength of the suction cup material, defined as the stress
at which the material begins to deform plastically instead of linearly.

Vacuum Limits

The ring contact can exert forces fz on the object along the z axis through motor torques that
transmit forces to the object through the ring of the suction cup. Under these assumptions,
the normal force exerted on the object by the suction cup material is:

fN =
2π∫
0

p(θ)dθ =
2π∫
0

(p0 + px cos(θ) + py sin(θ)) dθ

= 2πp0

Note also that fN = fz + V , where fz is the z component of force on the object, since the
normal force must offset the force due to vacuum V even when no force is being applied on
the object.

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 132

Constraint Set

Taking all constraints into account, we can describe F with a set of linear constraints:

Friction:
√

3|fx| 6 µfN
√

3|fy| 6 µfN
√

3|τz| 6 rµfN

Material:
√

2|τx| 6 πrκ
√

2|τy| 6 πrκ

Suction: fz > −V

Since these constraints are linear, we can solve for wrench resistance in the our contact model
using Quadratic Programming. In this paper we set V = 250N and κ = 0.005.

7.7.2 Limits of the Soft Finger Suction Contact Model
The most common suction contact model in the literature [86, 112, 161, 172, 182] considers
normal forces from motor torques, suction forces from the pressure differential between inside
the cup and the air outside the object, and both tangential and torsional friction resulting
from the contact area between the cup and the object. Let ex, ey, and ez be unit basis
vectors along the x, y, and z axes. The contact model is specified by:

W =
[

ex ey ez 0
0 0 0 ez

]
α = (fx, fy, fz, τz) ∈ F if and only if:√

f 2
x + f 2

y 6 µfz

|τz| 6 γ|fz|

The first constraint enforces Coulomb friction with coefficient µ. The second constraint
ensures that the net torsion is bounded by the normal force, since torsion results from
the net frictional moment from a contact area. Unlike contact models for rigid multifinger
grasping, fz can be positive or negative due to the pulling force of suction.

Proposition 2. Under the soft suction contact model, a grasp with a single contact point
cannot resist torques about axes in the contact tangent plane.

Proof. The wrench w = (0, τe) is not in the range of W because it is orthogonal to every
basis wrench (column of W).

The null space of W is spanned by the wrenches w1 = (0, ex) and w2 = (0, ey), suggesting
that a single suction contact cannot resist torques in the tangent plane at the contact. This
contradicts empirical evidence suggesting that a single point of suction can reliably hold and
transport objects to a receptacle in applications such as the Amazon Picking Challenge [40,
60].

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 133

7.7.3 Details of Environment Model
We follow the state model of [105], which we repeat here for convenience. The parameters
of the sampling distributions were set by maximizing average precision of the Q values using
grid search for a set of grasps attempted on an ABB YuMi robot on a set of known 3D
printed objects (see Section 7.5.4).

We model the state distribution as q(x) = q(µ)q(O)q(To|O)q(Tc). We model q(µ) as a
Gaussian distribution N (0.5, 0.1) truncated to [0, 1]. We model q(O) as a discrete uniform
distribution over 3D objects in a given dataset. We model q(To|O) = q(To|Ts)p(Ts|O),
where is q(Ts|O) is a discrete uniform distribution over object stable poses and q(To|Ts) is
uniform distribution over 2D poses: U([−0.1, 0.1]× [−0.1, 0.1]× [0, 2π)). We compute stable
poses using the quasi-static algorithm given by Goldberg et al. [49]. We model q(Tc) as a
uniform distribution on spherical coordinates r, θ, ϕ ∼ U([0.5, 0.7] × [0, 2π) × [0.01π, 0.1π]),
where the camera optical axis always intersects the center of the table. The parameters of
the sampling distributions were set by maximizing average precision of the Q values using
grid search for a set of grasps attempted on an ABB YuMi robot on a set of known 3D
printed objects (see Section 7.5.4).

The grasp candidate model q(u | x) is a uniform distribution over points samples on the
object surface, with the approach direction defined by the inward-facing surface normal at
each point.

We follow the observation model of [105], which we repeat here for convenience. Our
observation model q(y | x) model images as y = α ∗ ŷ + ε where ŷ is a rendered depth
image created using OSMesa offscreen rendering. We model α as a Gamma random variable
with shape= 1000.0 and scale=0.001. We model ε as Gaussian Process noise drawn with
measurement noise σ = 0.005 and kernel bandwidth ` =

√
2px.

Our grasp reward model q(R | u,x) specifies a distribution over wrench resistance due
to perturbations in object pose, gripper pose, friction coefficient, and the disturbing wrench
to resist. Specifically, we model q(R | u,x) = q(R | x̂, û,w)q(x̂ | x)q(û | u)p(w). We
model q(w) as the wrench exerted by gravity on the object center-of-mass with zero-mean
Gaussian noise N (03, 0.01I3) assuming as mass of 1.0kg. We model q(û | u) as a grasp
perturbation distribution where the suction target point is perturbed by zero-mean Gaussian
noise N (03, 0.001I3) and the approach direction is perturbed by zero-mean Gaussian noise
in the rotational component of Lie algebra coordinates N (03, 0.1I3). We model q(x̂ | x) as
a state perturbation distribution where the pose To is perturbed by zero-mean Gaussian
noise in Lie algebra coordinates with translational component N (03, 0.001I3) and rotational
component N (03, 0.1I3) and the object center of mass is perturbed by zero-mean Gaussian
noise N (03, 0.0025I3). We model q(R | x̂, û,w) a Bernoulli with parameter 1 if û resists w
given the state x̂ and parameter 0 if not.

CHAPTER 7. COMPUTING VACUUM SUCTION GRASPS WITH COMPLIANT
CONTACT MODELING 134

7.7.4 Implementation Details
To efficiently implement sampling, we make several optimizations. First, we precompute the
set of grasps for every 3D object model in the database and take a fixed number of samples of
grasp success from q(R | x,u) using quadratic programming for wrench resistance evaluation.
We convert the samples to binary success labels by thresholding the sample mean by τ = 0.5.
We also render a fixed number of depth images for each stable pose independently of grasp
success evaluation. Finally, we sample a set of candidate grasps from the object in each
depth image and transform the image to generate a suction grasp thumbnail centered on the
target point and oriented to align the approach axis with the middle column of pixels for
GQ-CNN training.

7.8 Discussion
In this chapter we developed a dataset generation model for training policies that plan
grasps for a vacuum suction cup gripper from point clouds. Experiments suggest that this
method generalizes well to novel objects on a physical robot, similar to previous results
with a parallel-jaw gripper. This suggests that dataset generation methods can be generally
extended to other grippers by developing a gripper-specific reward distribution based on
the physics of the gripper. Furthermore, while this chapter considers only grasping a single
object from a tabletop, the method can be extended to sequential grasping in clutter using
the methods of Chapter 5.

The development of deep robust grasping policies for multiple grippers suggests a natural
next question: can policies for the individual grippers be combined into a single composite
policy that intelligently decides between the grippers based on observations of objects in the
environment?

135

Chapter 8

Learning Deep Composite Policies
with Analytic Supervision

Universal picking, the ability of robots to rapidly and reliably grasp a wide variety of objects,
can benefit applications where the set of objects is constantly growing and changing such
as e-commerce order fulfillment, flexible manufacturing, and home decluttering. This is
challenging due to sensor noise and partial observability which make it highly difficult to infer
the identity and pose of objects in the environment. Further complicating the problem are
limitations of individual robot grippers due to the size, shape, and actuation mechanism. In
practice, a single gripper may only be able to robustly grasp a subset of objects. For example,
vacuum-based suction cup grippers can easily grasp objects with large and flat surfaces like
boxes, but they cannot grasp objects smaller than the cup diameter (e.g. pencils), objects
with high surface variation (e.g. mesh pencil cup), or porous objects (e.g. cloth).

A common approach to handling a wide variety of objects is to equip robots with a set
of grippers and to use a high-level composite policy to select which gripper to use based on
the available objects [60, 120, 184]. However, this raises a new difficulty: how can a robot
reliably decide between grippers? Directly ranking grasps using heuristics or gripper-specific
quality metrics for each gripper may be difficult because the metrics measure fundamentally
different quantities. On the other hand, learning a composite policy from grasps rewards
using human labels [187] or reinforcement learning [185] requires expensive data collection
and may be prone to corrupt training examples.

In this chapter, we propose a hybrid method for learning composite policies by combining
the idea of gripper-agnostic reward functions from reinforcement learning with analytic grasp
quality metrics that can be scaled to rapidly generate millions of training examples. In
particular, we unify the gripper-specific dataset generation distributions of Chapter 5 and
Chapter 7 into a single model that uses a gripper-agnostic quality metric based on the grasp
wrench space [121], the set of forces and torques that the gripper can apply through contact
with an object. The metric can be evaluated for each gripper by computing the wrench set
using gripper-specific geometry and contact models. By differentiating between grippers at
the level of contact models, the grasp quality metrics are naturally calibrated to one another

CHAPTER 8. LEARNING DEEP COMPOSITE POLICIES WITH ANALYTIC
SUPERVISION 136

and can be directly compared to inform a decision between grippers. We use this model
to generate the Dex-Net 4.0 training dataset of approximately 5 million parallel-jaw and
suction cup grasps associated with synthetic point clouds and reward metrics computed over
simulated heaps containing over 1,600 unique object CAD models.

The contributions of this chapter are:

1. A sequential grasping environment for Universal Picking with a suction cup and parallel-
jaw gripper based on a gripper-agnostic reward metric.

2. Dex-Net 4.0, a dataset of approximately 5 million synthetic point clouds, grasps, and
reward labels collected from the Universal Picking environment. The dataset also
contains a new set of watertight and manifold 3D mesh models from Thingiverse aug-
mented with synthetic cardboard backings, to simulate common products.

3. A composite grasping policy trained on Dex-Net 4.0 that maximizes the predicted
grasp quality using a separate Grasp Quality CNN (GQ-CNN) for each gripper.

4. Experiments with bin picking on an ABB YuMi evaluating performance of the Dex-Net
4.0 composite policy on a physical robot, including comparisons with state-of-the-art
heuristics, naive ranking of grasps with the GQ-CNNs of Chapter 5 and Chapter 7,
and a policy fine-tuned on approximately 13k datapoints collected from physical grasp
attempts.

The experiments suggest that the Dex-Net 4.0 has the highest success rate on a physical
robot, with over 95% success and 310 mean picks per hour on heaps of 25 novel objects.

8.1 Problem Statement
We consider the problem of planning a sequence of grasps (Section 2.1.3) to iteratively move
a set of objects from a cluttered bin to a receptacle using a set of available robot grippers
such as a vacuum-based suction cup or parallel-jaws. A key subproblem is deciding which
gripper to use to execute each grasp.

8.1.1 Objective
The objective is to find a policy π to maximize the success rate for iteratively lifting and
transporting a single object from a cluttered bin up to a maximum of T grasp attempts, as
introduced in Section 2.1.3:

π∗ = argmax
π∈Π

E
[

1
T

T−1∑
t=0

R(xt, π(yt),xt+1)
]

(8.1.1)

CHAPTER 8. LEARNING DEEP COMPOSITE POLICIES WITH ANALYTIC
SUPERVISION 137

where xt denotes that state at time t, yt denotes the point cloud observation at time t, and
the expectation is taken with respect to the joint distribution:

p(R0,x0,y0, ...,xT ,yT | π) = p(x0)
T−1∏
t=0

p(yt | xt)p(Rt | xt, π(yt),xt+1)p(xt+1 | xt, π(yt))

In particular, in this chapter we consider learning a policy that generalizes over a diverse
distribution of possible initial object states p(x0) by selecting from a set of grippers with
different capabilities.

8.2 Dataset Generation
To learn a composite policy to plan grasps from point clouds, we automatically synthesize a
massive training dataset of point clouds, grasps, and reward labels. Rather than sampling
long time-sequences of grasps, we focus on increasing the diversity of the training dataset
by maximizing the computational efficiency of generating a single training datapoint. The
training dataset is generated by sampling tuples (Ri,ui,yi) from a dataset generation dis-
tribution q(R,x,y,u) using a one-timestep Monte-Carlo reward evaluation for a large set of
actions over a diverse set of object states in cluttered heaps. We model q(R,x,y,u) as the
product of and environment distribution q(R,x,y | u) and an action candidate distribution
q(u | x,y) based on an algorithmic supervisor to guide sampling toward actions that lead to
high reward. We generate millions of samples from q(R,x,y,u) to produce Dex-Net 4.0, a
large-scale supervised training dataset for learning composite robot policies for bin picking.

8.2.1 Assumptions
The stochastic model is based on the following assumptions:

1. Quasi-static physics (e.g. inertial terms are negligible) with Coulomb friction.

2. Objects are rigid and made of non-porous material.

3. The robot has a single overhead depth sensor with known intrinsics, position, and
orientation

4. The robot has two end-effectors with known geometry: a vacuum-based grippers with
a single disc-shaped linear elastic suction cup, and a parallel-jaw gripper with a soft-
finger contact model.

8.2.2 Definitions
States. Let x = (O1, ...Om, C,w1, ...wm) denote the state of the environment at time t
consisting of a single overhead depth camera, a set of objects, and a perturbation wrench

CHAPTER 8. LEARNING DEEP COMPOSITE POLICIES WITH ANALYTIC
SUPERVISION 138

on each object (e.g. gravity, disturbances). Each object state Oi specifies the geometryMi,
pose To,i, friction coefficient γi, and center of mass zi. The camera state C specifies the
intrinsic parameters I and pose Tc. Each wrench w is specified as a vector w ∈ R6.

Grasp Actions. Let us ∈ Us denote a suction grasp in 3D space defined by a suction
gripper Gs and a rigid pose of the gripper Ts = (Rs, ts) ∈ SE(3), where the rotation
Rs ∈ SO(3) defines the orientation of the suction tip and the translation ts ∈ R3 specifies the
target location for the center of the suction disc Let up ∈ Up denote a parallel-jaw grasp in 3D
space defined by a suction gripper Gs and a rigid pose of the gripper Tp = (Rp, tp) ∈ SE(3),
where the rotation Rp ∈ SO(3) defines the grasp axis and approach direction, and the
translation tp ∈ R3 specifies the target center point of the jaws. The set of all possible
grasps is U = Us

⋃Up.
Point Clouds. Let y = RH×W

+ be a 2.5D point cloud represented as a depth image with
height H and width W taken by a camera with known intrinsics [57].

State Distribution. The initial state distribution q(x) is equivalent to the model used
in Chapter 5, which we repeat here for completeness. We model q(x) as the product of
distributions on:

1. Object Count (m): Poisson distribution with mean λ.

2. Object Heap (O): Uniform distribution over a discrete set of m 3D triangular meshes
{M0, ...Mm−1} and the pose from which each mesh is dropped into the heap.

3. Depth Camera (C): Uniform distribution over the camera pose and intrinsic parame-
ters.

4. Coulomb Friction (α): Truncated Gaussian constrained to [0, 1].

The initial state is sampled by (1) sampling an object count m and a set of m 3D CAD
models, (2) sampling a planar pose for the heap center and planar pose offsets from the pile
center for each of the objects, and (3) dropping the objects one by one from a fixed height h0
above the table and running dynamic simulation until all objects come to rest (all velocities
are zero).

Reward Distribution. Binary rewards occur for grasps for which a quasi-static equi-
librium is feasible when the object is perturbed by an external wrench (e.g. due to gravity
or inertia). Let Oi ∈ xt be an object contacted by the gripper when executing action ut.
Then we measure grasp success with a binary-valued metric R(xt,ut) ∈ {0, 1} that measures
whether or not:

• The gripper geometry in the pose specified by ut is collision-free.

• The gripper contacts exactly one object Oi when executing the grasp parameterized
by ut.

CHAPTER 8. LEARNING DEEP COMPOSITE POLICIES WITH ANALYTIC
SUPERVISION 139

• The grasp can resist a random disturbing force and torque (wrench) wt = wg + εw
on the grasped object with over 50% probability, where wg is the fixed wrench due to
gravity and εg is a random wrench sampled from a zero-mean Gaussian N (0, σ2

wI).

8.2.3 Environment Distribution
A key advantage of hybrid grasp planning methods is the ability to rapidly generate training
datasets. However, as found in Chapter 5, forward simulating the state of the heap for
every grasp requires almost an order of magnitude more computation time per datapoint
than the direct indexing method of Chapter 4. In Chapter 5, we attempted to address this
by initializing the GQ-CNN with a set of pre-trained weights from training on millions of
datapoints in Dex-Net 2.0 and fine-tuning on a smaller set of datapoints collected in heaps.
However, fine-tuning is prone to effects such as catastrophic forgetting which can lead to
unpredictable failures of the grasping policy [84].

In this chapter, we explore action enumeration, a computationally efficient approximation
that performs a one-timestep Monte-Carlo evaluation of grasp quality for a large set of actions
on each state of the heap. The tradeoff is that the set of states used in training will not
reflect the effects of the policy’s actions, but the training dataset can be orders of magnitude
larger for the same computational budget. In theory this could lead to sequential learning
phenomena such as the covariate shift, but we do not observe such effects as detailed in
Section 8.4.

Therefore, the environment distribution used to generate the Dex-Net 4.0 dataset only
evaluates states, observations, and rewards from the initial state distribution:

q(R,x,y | π) = q(x)q(y | x)q(R | x, π).

Unified Reward Distribution

In previous chapters, the analytic grasp quality metric was fundamentally different for the
suction cup and parallel-jaw grippers. Suction cup grasps were measured by wrench re-
sistance, the ability to resist a specific random disturbance, while parallel-jaw grasps were
measured by epsilon quality, which analyzes the worst case ratio of contact forces applied
through the grasp to the magnitude of the wrench that the contact forces exert. This is
problematic because the metrics are not calibrated to one another. For example, the epsilon
quality analyzes worst-case behavior and therefore may be more pessimistic than wrench
resistance, which only considers a particular target wrench. Training a composite policy in
such an environment may lead to overuse of the gripper which is measured with the more
forgiving metric, and while this problem could be addressed with calibration, this could
require hand-tuning and domain expertise.

We address this with a reward distribution based on gripper-agnostic grasp quality met-
rics that use gripper-specific contact models to determine the set of wrenches that can be
applied to the object. Fig. 8.1 illustrates the reward distribution. Given an object consisting

CHAPTER 8. LEARNING DEEP COMPOSITE POLICIES WITH ANALYTIC
SUPERVISION 140

Reward

R

State

x
Grasp
Action

u

State
Object

Geometry

M
Object
Pose

To

Perturbation

w

Grasp Action
Gripper

G
Grasp
Pose

Tg

Contacts

c

Wrench
Space

Λ
Reward

R

Reward Structure Gripper-Agnostic Reward Model

Figure 8.1: Gripper-Independent reward distribution for generating the Dex-Net 4.0 training dataset.

of a geometryM in pose To, the gripper G (geometry and physical parameters such as fric-
tion) and grasp pose Tg are used to determine the contacts c, or set of points and normals
between the fingers and object. This is used to compute the set of wrenches Λ that the grasp
can apply to the object under quasi-static physics and a point contact model. Specifically,
the wrench set for grasp u using a contact model with m basis wrenches is:

Λ(u) = {w ∈ R6 | w = G(u)α for some α ∈ F(u)}

as defined in Chapter 7. To recap, the grasp matrix G(u) ∈ R6×m is a set of basis wrenches
in the object coordinate frame specifying the set of wrenches that the grasp can apply
through contact via active (e.g. joint torques) and passive (e.g. inertia) means. The wrench
constraint set F(u) ⊆ Rm limits contact wrench magnitudes based on the capabilities of
the gripper [121]. Finally, the grasp wrench set is used to measure grasp reward based on
wrench resistance, or the ability of the grasp to resist a perturbation wrench w (e.g. due to
gravity) as defined in Section 7.2.2 [90, 121]. The grasp reward R = 1 if the robust wrench
resistance (Section 7.2.3) is greater than 50% over M samples from the graphical model.

8.2.4 Action Candidate Distribution
Rather than sampling only pre-computed grasps as in Chapters 4, 5, 7, we sample either pre-
computed actions from the supervisor or actions generated from the point cloud observation
to better reflect the distribution of grasps that the policy will have to evaluate on the physical
robot. Formally, the supervisor-guided action candidate distribution is:

q(u | x,y) =
{

Ω(x) with prob. ε
Unif(C(y)) otherwise

where the C(y) is the set of all candidate actions sampled from the point cloud with equal
numbers of suction and parallel-jaw grasps. Note that we sample actions from the point

CHAPTER 8. LEARNING DEEP COMPOSITE POLICIES WITH ANALYTIC
SUPERVISION 141

cloud rather than the 3D object mesh surfaces as in past chapters. We found that this
can improve the robustness of the resulting policy because the set of actions in the training
dataset better reflects the set of actions that the policy evaluates when planning grasps based
on point clouds. We use ε = 0.1 to favor sampling grasps directly from the point clouds,
which we found to work well empirically in Chapter 7.

Composite Supervisor

To guide grasp evaluation toward more promising candidates, we pre-compute a stochastic
robust grasping supervisor Ω(x) that plans grasps using full knowledge of the state. An
optimal supervisor maximizes the long-term reward of taking a sequence of actions from the
current state. However, computing this policy is expensive due to long-term dependencies.
We compute a greedy composite supervisor that can be sampled efficiently online by pre-
computing a set of grasps for a set of known 3D objects in a database (such as Dex-Net [104])
that are robust to different possible orientations of each object. Since the state of each object
x in the heap is not known ahead of time, the supervisor computes quality by taking the
expectation with respect a surrogate reward distribution q̂(R | x,u) = q̂(R | x̃, ũ)q̂(x̃ |
x)q̂(ũ | u), where:

• The reward distribution q̂(R | x̃, ũ) deterministically computes the reward using ana-
lytic wrench resistance under gravity.

• The state distribution q̂(x̃ | x) samples an orientation of the object uniformly at
random and a disturbing wrench wt = wg + εw, where wg is the fixed wrench due to
gravity and εg is a random wrench sampled from a zero-mean Gaussian N (0, σ2

wI).

• The action distribution q̂(ũ | u) perturbs the grasp pose by a zero mean perturbation
according to the Lie Algebra method used in Chapter 3.

The supervisor is implemented by first sampling a set of grasps for each gripper on each
object Oi in the database. Suction grasps are sampled uniformly from the object mesh
surface as in Section 7.3 and parallel-jaw grasps are sampled from the set of antipodal
pairs on the object mesh as in Section 4.1.1. We denote by Us(Oi) and Up(Oi) the set
of precomputed grasps for the suction and parallel-jaw gripper, respectively. The sizes of
Us(Oi) and Up(Oi) are constrained to be equal to avoid biasing the training dataset toward
on gripper over another. Given this set, the supervisor computes the quality of each grasp
in U(Oi) = Us(Oi)

⋃Up(Oi) by setting the state to x = (Oi,w) and evaluating:

Q̂(Oi,u) = 1 (Eq̂ [R(x,u)] > τ)

using a sample approximation. We use a threshold τ = 0.75. A higher threshold increases
the probability that a supervisor grasp will be successful given a particular state of objects in
a heap, but reduces the number of supervisor grasps for each state, making positive examples
more rare in samples from q.

CHAPTER 8. LEARNING DEEP COMPOSITE POLICIES WITH ANALYTIC
SUPERVISION 142

Given a full state of the heap x, the supervisor plans grasps by first computing the set
of available robust grasps for each object in world reference frame:

U∗i (x) =
{
Toi

u | u ∈ U(Oi), Q̂(Oi,u) = 1, collfree(x,u)
}

and then sampling a grasp from the set of all robust candidates uniformly at random:

Ω(x) ∼ Unif

(
m⋃
i=1
U∗i (x)

)

8.3 Learning a Composite Policy
We learn a composite policy πθ(yt) = ut that is composed of separate quality functions for
each gripper Qθs and Qθp parameterized by Grasp Quality Convolutional Neural Networks
(GQ-CNNs), where the policy parameters are defined by θ = (θs, θp) [185, 187]. The policy
selects actions by maximizing quality over all available grippers:

πθ(yt) = argmax
(

max
us∈Us

Qθs(yt,us),max
up∈Up

Qθp(yt,up)
)

8.3.1 Learning Objective
We train the composite policy by optimizing the weights of Qθs and Qθp on a large su-
pervised training datset sampled from the composite grasp dataset generation distribution
described in Section 8.2. Specifically, we sample a training dataset D = {(Ri,yi,ui)}Ni=1
from q(R,x,y,u) and minimize the cross-entropy loss L over D separately for each gripper:

θ∗s = argmin
θs∈Θs

∑
us,i∈Ds

L(Ri, Qθ(yi,us,i)) (8.3.1)

θ∗p = argmin
θp∈Θp

∑
up,i∈Dp

L(Ri, Qθ(yi,up,i)) (8.3.2)

where Ds and Dp are the subsets of the training dataset D containing only the suction or
parallel-jaw grasps, respectively.

8.3.2 Dex-Net 4.0 Training Dataset
The Dex-Net 4.0 training dataset is generated by sampling from q (defined in Section 8.2 for
a large and diverse set of 3D object models.

The 3D object models, illustrated in Fig. 8.2, reflect a broad range of products that could
be encountered in applications such as warehousing, manufacturing, or home decluttering.
The dataset is augmented with synthetic “skinpack” meshes to reflect cardboard-backed
products encountered in retail applications. Augmentation was performed by placing each

CHAPTER 8. LEARNING DEEP COMPOSITE POLICIES WITH ANALYTIC
SUPERVISION 143

Figure 8.2: Subset of the 1,600 3D object models used to generate the Dex-Net 4.0 training dataset. (Left)
The source meshes consist of approximately 800 3D triangular meshes selected from the set of freely available
watertight and manifold meshes available on Thingiverse. (Right) The dataset is augmented with synthetic
“skinpack” meshes to reflect cardboard-backed products encountered in retail applications.

source mesh in a quasi-static stable resting pose [49]) on an infinite planar worksurface and
attaching a rectangular planar segment to the mesh at the triangle touching the worksurface.

To increase the computational efficiency of generating a single datapoint, the dataset
contains a large set of labeled actions for each point cloud. Every state sampled from
q(x) has 5 associated depth images in Dex-Net 4.0 representing 3D point clouds captured
from randomized camera poses and intrinsic optical parameters. Each image sampled from
q(y | x) has a set of labeled actions for each gripper with associated quality metrics. Fig. 8.3
illustrates a training depth image from Dex-Net 4.0 with the set of labeled grasps. The
intrinsic parameters for the virtual cameras are sampled around the nominal values for
a Photoneo PhoXi S industrial depth sensor. Images are converted to 96 × 96 training
thumbnails that are translated to move the grasp center to the thumbnail center pixel and
rotated to align the grasp approach direction or axis with the middle row of pixels for the
suction and parallel-jaw grippers, respectively.

In total, the Dex-Net 4.0 dataset contains approximately 5 million synthetic point clouds,
grasps, and reward labels generated from 2,500 unique object heaps, with approximately 2.5
million datapoints for each gripper.

8.3.3 Optimization
The GQ-CNN architectures are similar to those used in Dex-Net 2.0 [105] and Dex-Net
3.0 [106] with two primary changes. First, we remove local response normalization as exper-
iments suggest that it does not affect training performance. Second, we modify the sizes and
pooling of the following layers : conv1 1 (16 9×9 filters, 1× pooling), conv1 2 (16 5×5 filters,
2× pooling), conv2 1 (16 5×5 filters, 1× pooling), conv2 2 (16 5×5 filters, 2× pooling), fc3
(128 output neurons), pc1 (16 output neurons), and fc4 (128 output neurons).

CHAPTER 8. LEARNING DEEP COMPOSITE POLICIES WITH ANALYTIC
SUPERVISION 144

Figure 8.3: Example training image from Dex-Net 4.0 with associated labeled grasps for each gripper. Each
grasp is colored by the robust wrench resistance metric reflecting the probability of successfully lifting and
transporting a single object under disturbances due to gravity and random perturbations. Green indicates
high probability while red indicates low probability. The binary grasp rewards are computed by thresholding
the metric by 50%.

We train each GQ-CNN using stochastic gradient descent with momentum for 50 epochs
using an 80-20 training-to-validation image-wise split of the Dex-Net 4.0 dataset. We use a
learning rate of 0.01 with an exponential decay of 0.95 every 0.5 epochs, a momentum term
of 0.9, and an `2 weight regularization of 0.0005. We initialize the weights of the model by
sampling from a zero mean Gaussian with variance 2

ni
, where ni is the number of inputs to

the i-th network layer [59]. To augment the dataset during training, we reflect the image
about its vertical and horizontal axes and rotate each image by 180◦ since these lead to
equivalent grasps. We do not sample point cloud noise during training as in [104]. Training
took approximately 24 hours on a single NVIDIA Titan Xp GPU. The learned GQ-CNNs
achieves 96.2% and 97.5% classification accuracy for the suction and parallel-jaw grippers,
respectively, on the held-out validation set.

8.3.4 Policy Deployment
We use the trained GQ-CNNs to plan grasps from point clouds on a physical robot by using
derivative-free optimization to search for the highest quality grasp across both grippers. In
particular, the policy uses the Cross Entropy Method (CEM) [98, 105, 106, 145]. CEM
samples a set of initial candidate grasps uniformly at random from the set of surface points
and inward-facing normals on a point cloud of the object, then iteratively re-samples grasps
from a Gaussian Mixture Model fit to the grasps with the highest predicted probability of
success. We optimize for the highest quality grasp from each gripper separately using the
parameters of [106] for the suction gripper and the parameters of [105] for the parallel-jaw

CHAPTER 8. LEARNING DEEP COMPOSITE POLICIES WITH ANALYTIC
SUPERVISION 145

gripper, and then execute the grasp with the highest quality from the two planned grasps.

8.4 Experiments
We ran over 5,000 trials on a physical robot system to characterize the success rate of
the Dex-Net 4.0 policy for a bin picking task across a dataset of 75 novel test objects. Our
experiments aim to evaluate (1) the reliability of the Dex-Net 4.0 policy compared to previous
iterations of Dex-Net and advanced heuristic grasp planners used in picking challenges and
(2) the sensitivity of the Dex-Net 4.0 policy to the number of objects in the bin, the diversity
of the training dataset, the GQ-CNN architecture, the availability of a training dataset of
over 10k images collected empirically, and a memory system to avoid repeated failures.

8.4.1 Hardware Setup
The experimental setup is illustrated in Fig. 8.4. The benchmark hardware system consisted
of an ABB YuMi bimanual industrial collaborative robot with an overhead Photoneo PhoXi S
industrial 3D scanner, a custom suction gripper, and custom 3D printed parallel-jaw fingers
with silicone fingertips [53]. The suction gripper consisted of a 20mm diameter silicone
single-bellow suction cup seated in a 3D printed housing mounted to the end of the right
arm. The vacuum was created by supplying compressed air from a Jun Air 18-40 quiet air
compressor to a VacMotion MSV-35 vacuum generator. The payload of the suction system
was approximately 0.9kg and a vacuum flow of approximately 8 standard cubic feet per
minute. Objects were grasped from a picking bin mounted atop of a set of LoadStar load
cells that tracked the weight of the bin with a resolution of approximately 5g. Each gripper
had a separate receptacle in which to drop the objects, one on each side of the bin.

8.4.2 Test Object Datasets
We created a dataset of 75 objects including common retail products, groceries, tools, office
supplies, toys, and 3D printed industrial parts. We separated objects into three categories
of 25 objects each, illustrated in the top panel of Fig. 8.5:

1. Basic: Lightweight prismatic solids (e.g. rectangular prisms, cylinders).

2. Typical: Common objects with clear plastic covers (“skinpack”), varied geometry,
masses up to 500g, and accessible, approximately planar surfaces.

3. Adversarial: Objects with complex geometry (e.g. curved or narrow surfaces) that are
difficult to access or that do not satisfy the precise assumptions of the dataset gener-
ation distribution. For example, some objects have moving parts (e.g. can opener),
porous surfaces (e.g. plush duck toy), deformable materials (e.g. fake grapes) or trans-
parent surfaces (e.g. sink brush).

CHAPTER 8. LEARNING DEEP COMPOSITE POLICIES WITH ANALYTIC
SUPERVISION 146

Figure 8.4: Physical benchmark used for evaluating composite bin picking policies. The goal was for the robot
to iteratively transport each object from the picking bin (green highlight) to a receptacle (blue highlight) by
planning a grasping pose for either the suction cup or parallel-jaw gripper based on a point cloud from an
overhead Photoneo PhoXi S industrial depth sensor.

8.4.3 Experiment Protocol
Each experiment consisted of 5 independent trials in which the policy under evaluation
attempted to pick each object from a test object dataset from the source bin and transport
it to a receptacle. Before each experiment, the camera pose was registered to the robot
using a chessboard. In each trial, the operator set the full dataset of objects in the bin by
shaking the objects in a box, placing the box upside down in the bin, and mixing the bin by
hand, ensuring that the objects rested below the rim of the bin. Then the robot iteratively
attempted to pick objects from the bin. On each attempt, the grasping policy received as
input a point cloud of the objects in the bin and returned a grasp action for exactly one
of the grippers consisting of a pose for the gripper relative to the base of the robot. Then
a common motion planning method was used to approach the target grasping pose along
a linear end-effector trajectory and the robot moved to the pose, established contact with

CHAPTER 8. LEARNING DEEP COMPOSITE POLICIES WITH ANALYTIC
SUPERVISION 147

the object, and planned a motion to the receptacle. The operator labeled successes based
on whether or not the robot was able to lift and transport the object to the receptacle on
side of the workspace and also labeled the identity of each grasped object. If the object
crossed over the boundary of the bin and bounced out of the receptacle, the grasp was still
considered successful. A trial was considered complete after either all objects were removed,
75 total attempts, or 10 consecutive failures. All experiments ran on a Desktop running
Ubuntu 16.04 with a 3.4 GHz Intel Core i7-6700 Quad-Core CPU and an NVIDIA Titan Xp
GPU.

8.4.4 Description of Baselines
We compared performance with three baselines:

1. Heuristic (Suction). Ranks planar grasps based on the inverse distance to the
centroid of an object [120], where the object centroid was estimated as the mean
pixel of an object instance segmask from a tuned Euclidean Clustering segmentation
algorithm from the Point Cloud Library. Candidate grasps planarity was determined
by evaluating the mean squared error (MSE) of all 3D points within a sphere of radius
10mm (based on the suction cup size) to the best fit plane for the points. Then grasps
were considered planar if either (a) the MSE was less than an absolute threshold or (b)
the MSE was within the top 5% of all candidate grasps. The hyperparameters were
hand-tuned to optimize performance for bin picking.

2. Heuristic (Composite). Ranks grasps planned with both the suction heuristic above
and a parallel-jaw heuristic based on antipodality. The parallel-jaw heuristic was sim-
ilar to the suction heuristic, ranking antipodal grasps based on the inverse distance to
the estimated centroid of an object and determining antipodality based on estimated
point cloud surface normals. The height of the gripper above the bin was set using a
hand-coded formula to determine the offset from the point cloud withing the region of
the grasp. The decision policy for the grippers was based on which grasp was closer to
the estimated object centroid.

3. Dex-Net 2&3 Composite. Ranks grasps based on the estimated quality from sepa-
rate GQ-CNNs trained to estimate the quality of parallel-jaw and suction cup grasps in
clutter by fine-tuning the Dex-Net 2.0 and 3.0 base networks using the method of [103].

8.4.5 Bin Picking on Novel Objects
We evaluated the performance of the Dex-Net 4.0 policy versus the three baseline methods
across the three test object datasets. Fig. 8.5 shows the results. Dex-Net 4.0 achieved the
highest success rates across all object datasets with a success rate of 97%, 95%, and 63%
on the Basic, Typical, and, Adversarial object datasets, respectively, compared to a success
rate of 93%, 80%, and 50% for the next best baseline method. This corresponds to over 310

CHAPTER 8. LEARNING DEEP COMPOSITE POLICIES WITH ANALYTIC
SUPERVISION 148

mean picks per hour (Section 2.1.3) for the Basic and Typical object datasets. The composite
policy based on Dex-Net 2.0 and 3.0 does not perform as well. This may be attributed to the
fact that the base features were trained using simulated noise for a low resolution Primesense
Carmine sensor and evaluated on a high-resolution sensor.

To provide insight into the performance differences, we plot the mean cumulative reward,
or mean number of objects picked versus the number of total pick attempts. We see that the
baselines take longer to clear the last few objects from the bin, sometimes failing to clear
several of the objects. Many of the failures of the Dex-Net 4.0 policy on the adversarial
objects were due to consecutive failures. For example, it would repeatedly suction the plush
duck toy without reacting to the failure. This can be attributed to the fact that the policy
is greedy, failing to consider both the history of grasp attempts and the expected long-term
reward.

8.4.6 Sensitivity to Amount of Clutter
The high success rate of the Dex-Net 4.0 policy on the Basic and Typical objects raised the
question: is this performance maintained with larger amounts of clutter? To investigate this
question, we evaluated performance on a dataset of 50 test objects combining all objects from
both the Basic and Typical datasets. We evaluated the Dex-Net 4.0 policy on 5 independent
trials in which each policy was allowed up to 100 total attempts and compared with the
heuristics for a reference. Fig. 8.6 displays the results. We see that Dex-Net 4.0 has the
highest success rate at 90%. In comparison, the performance of the heuristics is relatively
unchanged with success rates near 80%. The cumulative reward plot suggests that the Dex-
Net 4.0 policy makes most mistakes when the bin is nearly full. This is due to failed attempts
to lift objects from underneath others. In comparison, the heuristics also fail when the bin
is ful, but also have a significant reduction in success rate as the bin becomes close to empty.

8.4.7 Sensitivity to Training Dataset Diversity
We also investigated the necessity of the full 1600 3D object models and 2500 unique object
heaps per gripper. We trained variants of the Dex-Net 4.0 policy on three variants of training
datasets:

1. Fewer Unique Objects. 5 million training datapoints generated from 100 unique 3D
objects in 2500 unique heaps.

2. Very Few Unique Heaps. 5 million training datapoints generated from 1600 unique
3D objects in 100 unique heaps.

3. Fewer Unique Heaps. 5 million training datapoints generated from 1600 unique 3D
objects in 500 unique heaps.

We evaluated performance on the Basic and Typical test object datasets using the same
experimental procedure as Section 8.4.5.

CHAPTER 8. LEARNING DEEP COMPOSITE POLICIES WITH ANALYTIC
SUPERVISION 149

Figure 8.5: Results on bin picking benchmark across three object datasets for the Dex-Net 4.0 policy com-
pared with the performance of the three baseline methods: (1) a heuristic for only the suction cup based on
planarity and the distance to an estimated object centroid, (2) a heuristic for selecting between the suction
heuristic and a parallel-jaw heuristic based on antipodality, and (3) a composite policy based on ranking
grasps from GQ-CNNs fine-tuned from the Dex-Net 2.0 and 3.0 base networks using the method of [103].
(Middle Row) The overall success rates suggest that the Dex-Net 4.0 policy significantly outperforms the
baselines on the Typical and Adversarial object datasets. (Bottom Row) The average number of objects
picked versus the number of attempts suggest that the Dex-Net 4.0 policy makes fewer mistakes on the last
few objects in the bin. For reference, the best possible performance (succeeding on every pick) is illustrated
with a black-dotted line.

Fig. 8.7 displays the results. All variants lead to reduced performance, with fewer unique
heaps leading to the greatest reduction in performance. This suggests that further increasing
the diversity of the training dataset could lead to improved performance.

CHAPTER 8. LEARNING DEEP COMPOSITE POLICIES WITH ANALYTIC
SUPERVISION 150

Su
cc

es
s R

at
e

O

bj
ec

ts
 P

ic
ke

d

Heuristic (Suction)
Heuristic (Composite)
Dex-Net 4.0

Figure 8.6: Bin picking benchmark results on a large dataset of 50 novel test objects combining the Basic
and Typical datasets for the Dex-Net 4.0 policy and two heursistic baselines. The Dex-Net 4.0 policy has
reduced performance than with 25 objects, but still significantly outperforms the baselines with over 290
mean picks per hour.

Su
cc

es
s R

at
e

 100 Objects, 2500 Heaps
1600 Objects, 100 Heaps
1600 Objects, 500 Heaps
1600 Objects, 2500 Heaps

Basic Typical

Figure 8.7: Bin picking benchmark results for variants of the Dex-Net 4.0 policy trained with less diverse
training datasets on the Basic and Typical datasets. Lack of training dataset diversity appears to lead to
reduced performance on more complex objects, and reducing the number of unique heaps appears to affect
performance more than the number of unique objects.

8.4.8 Sensitivity to Neural Network Architecture
We also studied whether or not changes to the neural network architecture affected the
performance of the resulting policy by training the Improved GQ-CNN model [68] on the
Dex-Net 4.0 dataset and evaluating performance on all three 25 object test datasets. Fig. 8.8
displays the results. We see that the architecture maintains high performance, with no

CHAPTER 8. LEARNING DEEP COMPOSITE POLICIES WITH ANALYTIC
SUPERVISION 151

statistically significant difference between the Improved GQ-CNN architecture and standard
GQ-CNN architecture across all datasets. This suggests that the high success rate may be
more related to the Dex-Net 4.0 dataset itself than the network architecture.

8.4.9 Effects of Training on Physical Grasp Outcomes
A longstanding question in robot grasping is: to what extent can performance be improved
from training on labeled grasp attempts on a physical system? We studied this question
using the Dex-Net 4.0 Empirical Dataset, a dataset of over 13k labeled grasp attempts
collected over the course of the Dex-Net 4.0 experiments and demonstrations of the Dex-
Net 4.0 system in 2018 over hundreds of unique objects, including all objects used in the
experiments. Approximately 5k datapoints were labeled by human operators in experiments
and the remaining datapoints were labeled automatically by thresholding weight differences
measured with high-precision load cells mounted underneath the bin.

The dataset collection policies were purely exploitative – every datapoint was the result
of the best possible grasp according to the policy running on the robot. The reasons for
this were twofold. First, in real industrial applications, exploration may lead to costly
performance reductions such as lower mean picks per hour. Second, as collecting data on a
physical system is expensive, we elected to use all data available from the hardware platform
which was collected during exploitative performance evaluations rather than collecting a
much smaller subset of data.

We trained ten variants of the Dex-Net 4.0 policy on varying amounts of empirical data:
training from scratch on empirical data and fine-tuning with a reinitialized layers after the
conv2 2 layer and after the fc4 layer on different ratios of real to synthetic data: 1-to-0, 1-to-1,
1-to-10, and 1-to-100. We tuned learning parameters to optimize performance on a fixed held-
out validation set of datapoints from the empirical dataset. We then evaluated each policy
on the Adversarial object dataset, since that was where the Dex-Net 4.0 network performed
most poorly. The best performing policy, referred to as “Dex-Net 4.0 (FT-Empirical)”,
was the fine-tuned network with layers after fc4 reinitialized and a 1-to-10 ratio of real to
synthetic data.

Fig. 8.8 shows the results. Surprisingly, the empirical network only achieved 65% success
on the Adversarial objects. This is not a statistically significant gain in performance over
the standard Dex-Net 4.0 policy. Furthermore, performance actually decreased on the Basic
and Typical objects to 93% and 89%, respectively.

We believe that there are several possible explanations. The first is that the relatively
small size of the dataset and exploitative dataset collection policy has caused the policy to fail
to generalize to the large number of candidate grasps it considers during evaluation. Since
the GQ-CNNs estimate the probability of success for 1,000 candidate grasps on every policy
evaluation, there are likely to be grasp candidates that are dissimilar to other empirical
datapoints. If the GQ-CNN is overconfident on any of these predictions as a result of
overfitting, then those grasps will be selected for execution. The second hypothesis is that
the GQ-CNN filters have learned a representation specific to synthetic data that cannot be

CHAPTER 8. LEARNING DEEP COMPOSITE POLICIES WITH ANALYTIC
SUPERVISION 152

Basic Typical Adversarial

Dex-Net 4.0 (FT-Empirical)
Dex-Net 4.0 (GQ-CNN++)
Dex-Net 4.0

Su
cc

es
s R

at
e

Figure 8.8: Bin picking benchmark results for two alternative Dex-Net 4.0 policies: the highest performing
network fine-tuned on a dataset of 13k labeled grasp attempts on a physical robot and a Dex-Net 4.0
policy trained with the Improved GQ-CNN architecture [68]. The architectural variant maintains similar
performance. Surprisingly, the empirically trained network does not lead to significant performance gains.
This may be due to the relatively small size of the dataset or the skewed distribution of positive and negative
examples between the synthetic Dex-Net 4.0 dataset and grasp attempts collected from experiments, which
have many more successes.

generalized to real datapoints with simple fine-tuning. This could in theory be remedied by
training on only empirical datapoints. However, our previous analyses in Chapter 4 suggest
that this is not the case.

We wish to note emphasize that these experiments should not discourage the use of em-
pirical data to improve performance in general. There are many other more sophisticated
transfer learning methods that could help such as domain adaptation [170] or Generative
Adversarial Networks [12]. Furthermore, collecting larger numbers of training examples or
using reinforcement learning to guide the dataset collection distribution could increase perfor-
mance. Further experiments will be necessary to understand this phenomenon. Nonetheless,
it is clear that learning from real data is nontrivial, and it simply may not be feasible when
data is collected from purely exploitative policies. A similar phenomenon was recently pub-
lished for the task of re-orienting a cube with a multifingered hand [127] in which training
on data from the physical Shadow Hand did not lead to increased performance, suggesting
that training on only synthetic data may have better reliability on a physical robot.

8.4.10 Effects of Memory
Since we observed that the majority of failures of the Dex-Net 4.0 policy on the Adversarial
objects were due to repeated failures, we studied the effect of using a simple memory-based
policy to avoid attempting near-identical grasps on the same object several times in a row.
We used an instance recognition system based on segmentation and matching objects in
feature space [185]. The memory system tracked failures by monitoring the weight of objects
in the bin using the load cells. A failure was marked when the change in weight was less
than 5g. When a failure occurred, the point cloud was segmented using Euclidean Clustering
from the PCL library and the segmentation was used to mask out the region of a grayscale

CHAPTER 8. LEARNING DEEP COMPOSITE POLICIES WITH ANALYTIC
SUPERVISION 153

Su
cc

es
s R

at
e

Dex-Net 4.0 (Memory)
Dex-Net 4.0

O

bj
ec

ts
 P

ic
ke

d
Figure 8.9: Results on the bin picking benchmark using a variant of the Dex-Net 4.0 policy augmented with
memory and the ability to push objects to adapt to failures. The memory-based policy achieves 80% success
on the Adversarial objects at over 250 mean picks per hour and does not leave any objects behind in the bin.

image of the objects in the bin corresponding the to the segmask containing the grasp center
pixel. The segmented image patch was featurized using the VGG-16 network and stored
in a failure database corresponding to the gripper.. On the next grasp attempt, the point
cloud was pre-segmented and each segment was featurized using VGG-16 and matched to
the failure database. If the distance in feature space was less than a threshold and the
segmentation mask was within X pixels of the object when the failure occurred, then the
matching region in the current image was converted to a constraint on the grasp sampler for
the Dex-Net 4.0 policy – no candidate grasps were allowed to be sampled from the failure
region. Furthermore, if greater than three consecutive failures occurred then the memory
system rejected the planned grasp and used the pushing policy of [29] to perturb the objects
in the bin. A detailed description and experimental characterization of this memory system
is left for future work.

Fig. 8.9 shows the results. The memory system increased the success rate on the Adversar-
ial to 80%, significantly higher than any other method. This suggests that a straightforward
memory-based policy can lead to performance gains on difficult objects that cause repeated
failures.

8.4.11 Pathological Objects
Over the course of experiments we noted that several classes of objects could not be reliably
handled with Dex-Net 4.0 but are possible to be handled with the combination of a suction
and parallel-jaw gripper. Fig. 8.10 displays a selected subset. One class of objects has
transparent surfaces that trigger the parallel-jaw policy to attempt a grasp that appears to

CHAPTER 8. LEARNING DEEP COMPOSITE POLICIES WITH ANALYTIC
SUPERVISION 154

Figure 8.10: Several objects that cause failures across composite policies that plan grasps for suction and
parallel-jaw grippers based on point cloud geometry alone.

have clearance when imaged with a depth sensor, but leads to a collision with the transparent
surface. Another class has very structured small variations in the surface, such as parallel
lines of stacked cups, buttons on a remote, or detailed embellishments of action figures, which
the suction network tends to ignore and attempt grasps on. This is likely due to the lack of
such objects in the training dataset of 3D object models. Other classes include (1) objects
with loose transparent packaging that cannot be sensed with structured light or suctioned
with the existing suction hardware, (2) porous objects that appear to have flat surfaces, and
(3) reflective objects.

8.5 Discussion
In this chapter, we presented a method for learning composite grasping policies that can
decide between a set of alternative grippers by training on synthetic datasets generated
with analytic supervision and a reward model that measures grasp success in a gripper-
independent manner. We implemented the method and used it to generate Dex-Net 4.0,
a dataset of approximate 5 million training datapoints for a suction cup and parallel-jaw
grippers. Thousands of experiments on a physical ABB YuMi suggest that policies trained
on Dex-Net 4.0 have very high success rates on novel objects on a physical robot, with a
success rate of over 95% on heaps of 25 novel Basic and Typical objects at over 310 mean
picks per hour. Furthermore, a memory system to avoid repeated failures can achieve 80%
on adversarial objects. Surprisingly, training on only synthetic data outperforms a many
variants of policies fine-tuned on a dataset of 13k real grasp attempts.

CHAPTER 8. LEARNING DEEP COMPOSITE POLICIES WITH ANALYTIC
SUPERVISION 155

Results suggest several areas for future work. Extending the model to evaluate grasp
reward based on all contacts between objects could reduce failures due to grasping objects
that are blocked by other objects in the heap. Extending the model to new grippers such
as suction cup arrays, underactuated two finger grippers, or soft hands could increase the
range of objects that hybrid composite policies can handle. Extending the model to syn-
thetic color images could enable the system to sense transparencies, specularities, or highly
textured surfaces. Extending the model to deformable and porous objects could help avoid
overconfident grasps with a suction cup gripper. Nonetheless, significant performance gains
on the task of bin picking with novel objects may require larger changes to the method:
taking into account the history and future expected rewards that we know are required to
achieve optimality in partially observed problems, training on empirically collected data to
reduce the simulation-to-reality gap, and using feedback policies that can react on the fly
using force and tactile sensing instead of executing grasps in open loop.

156

Part IV

Conclusion

157

I didn’t mean to take up all your sweet time,
I’ll give it right back one of these days.
If I don’t meet you no more in this world,
I’ll meet you in the next one, and don’t be late.

JIMI HENDRIX - VOODOO CHILD (SLIGHT RETURN)

158

Chapter 9

Discussion

9.1 Overview
This thesis studied a hybrid grasp planning method: to use physics-based analytic models of
robot grasping to supervise robust robot grasping policies that generalize to novel objects.
We showed that robust analytic models can be used to efficiently sample and evaluate mil-
lions of grasps across a diverse set of 3D object geometries using distributed computation
in the Cloud. Using these models, we constructed an end-to-end dataset generation distri-
bution to randomize training examples of images, grasps, and analytic rewards over sensor
parameter, physics parameters, and thousands of unique objects. To evaluate performance
we implemented this technique in the Dexterity Network (Dex-Net) project, which includes
code and datasets for hybrid grasp planning. We sampled massive training datasets from
Dex-Net and learned the weights of a deep neural network to predict grasp quality directly
from images.

On physical robot benchmarks for single object grasping and bin picking, we studied
performance across parallel-jaw and vacuum suction cup grippers when planning grasps for
a varying number of objects from depth images taken with an overhead RGB-D sensor.
Results demonstrate that robot policies that plan a grasp to maximize a quality function
learned from Dex-Net can transfer to a physical robot with no additional training, and the
policies achieve state-of-the-art success rates on the custom grasping benchmarks. This
suggests that hybrid grasp planning based on analytic supervision can be used to train fast
and reliable robot grasping policies that generalize across robots, gripper types, and picking
tasks.

9.2 Takeaways
While this thesis presented thousands of empirical results suggesting that the hybrid grasp
planning method works well, an important question has not yet been addressed: why does
the proposed method work? To confront this question, it is important to re-visit some of the

CHAPTER 9. DISCUSSION 159

unique assumptions and properties of the method for the specific grasping tasks considered
in this thesis.

9.2.1 Relevance of Analytic Grasp Quality Metrics
First, the results of this thesis suggest that analytic grasp quality metrics are relevant to
predicting grasp success on a physical robot Nonetheless, quasi-static wrench space metrics
have been criticized for making too strong of assumptions for considering only a necessary,
not sufficient, condition for dynamic grasp stability [11].

This thesis suggests that the assumptions of grasp quality metrics should not be conflated
with the assumptions of the grasp planner. Using full knowledge of the geometric, material,
and mass properties of objects can be useful when used as a means to generate data for
discriminative learning rather than requiring a state estimation system to estimate these
properties at runtime. Furthermore, it is known that grasps with a feasible quasi-static
equilibrium can be made stable by constructing a feedback controller composed of virtual
springs at the contact points [123]. The results of this thesis suggest that on a physical robot
with low acceleration, dynamic stability is often achieved. Where does the stability come
from? Perhaps this is solved in hardware, where compliance in the fingertips acts naturally
as a passive stability controller under some pre-loading of the fingers. Perhaps this is also
facilitated by area contacts which provide additional stability.

Regardless of the exact reason this thesis substantiates the claim that analytic metrics
based on unrealistic assumptions can still be useful when used in the right way. Under
certain parameter settings, this thesis found empirically that grasp quality metrics can act
as a useful proxy for sufficient conditions for grasp stability, rarely predicting false positives.
Despite the theoretical shortcomings, these simple and computationally efficient models from
physics and geometry can give us a principled way to design useful grasp reward functions.
By understanding the assumptions of grasping in new applications, it may be possible to
develop new computationally efficient task-specific reward functions.

9.2.2 Bias-Variance Tradeoff in Dataset Collection
Second, as described in Chapter 2 the hybrid grasp planning method is based on a key
hypothesis: that collecting a massive amount of consistent training data from a model can
lead to better generalization than collecting large dataset of unbiased sensor, robot, object,
and environment-specific data from a physical system or human labelers. This result may be
unsettling even after so many pages of experiments because it is obvious that the model used
to generate the data is not precisely modeling the behavior of the real world system. Clearly
there are limits, so it may be tempting to believe that training on only real data eventu-
ally will eventually outperform method and that long-term research should focus efforts on
efficient methods for unbiased dataset collection.

While reducing dataset collection time is clearly valuable in the near term, the results of
this thesis suggest that there may be a deeper reason for the reliability of the hybrid method.

CHAPTER 9. DISCUSSION 160

In particular, the findings bear similarity to a classic result in machine learning: the bias-
variance tradeoff. Although the tradeoff is typically analyzed in terms of the function class,
this thesis suggests that a similar result may hold with respect to the dataset used to collect
training data: using a biased model for automating data collection may improve the scale
and consistency of training datasets and lead to better performance on a physical system
in comparison to methods based on smaller, noisy training datasets. At least for the tasks
considered in this thesis, increasing dataset bias seems to lead to much higher reliability for
specific sets of objects, grippers, and cameras that are well-approximated by analytic models.
Perhaps decreasing dataset bias is not the only factor worth considering in robot learning
for manipulation. There is reason to believe that increasing bias by generating massive
synthetic training datasets with computationally efficient models from physics can actually
result increased reliability of learned grasping policies on a physical system. A theoretical
argument is left for future work.

9.2.3 Visual Grasp Affordances Derived from Physics
Third, the results of this thesis suggest that there is a deep connection between the idea of
grasp affordances and analytic grasp planning. A large body of research has considered how
to define affordances such as handles, boxes, and bars that facilitate grasping novel objects,
but much of the work has been based on heuristics or empirical learning from human labels.
This had been thought to be distinct from analytic grasp planners that compute the wrench
space based on exact object shape. By turning analytic metrics into a reward signal for
discriminative learning, this thesis suggests a re-interpretation of affordances: geometric
structures that are indicative of the ability to apply forces and torques to a given object.
These affordances are a natural outcome of generating a dataset of images, grasps, and
analytic reward labels from a collection of common 3D object geometries, and deep neural
networks are particularly good at learning to recognize them. In other words, the results of
this thesis suggest that certain geometric features of objects that facilitate grasping have a
very distinct appearances when considering the subset of shapes that are likely to be found
in common industrial and home environments.

9.2.4 Abstractions for Reliable Robot Learning
Fourth, efficient learning of robust robot grasping policies was only possible in this thesis
by carefully considering the design of a framework to use machine learning where it could
provide the most benefit. While one could approach the grasp planning problem by learning
an entire torque-controller to move an arm and gripper through contact with objects based
on vision, significant data could be needed to simply learn motions in free space that can
be executed reliably using established techniques from motion planning and control. In
contrast, the hybrid approach considered herein only planned a minimal parameterization
of a grasp as a gripper pose, and this parameterization could be used to define and entire
motion plan and controller to grasp and transport objects. By focusing learning on only

CHAPTER 9. DISCUSSION 161

generalizing planning of the final gripper pose to novel objects, every datapoint contributed
toward the aspect of grasping that could benefit from learning rather than re-learning known
capabilities. Furthermore, rather than using complex architectures or training methods
to regress directly to a grasp pose, we considered framing the problem as simple binary
classification which is well-understood in theory to the machine learning community and
well-understood in practice to the image classification community in computer vision. These
abstractions also reduced the complexity of sequential learning by reducing the frequency
and difficulty of learned decisions which are known to be important factors for reducing
phenomena such as the covariate shift. Overall, carefully designed abstractions may have
been a major contributor to the reliability and generalization ability of policies learned in
this thesis.

9.3 Opportunities for Future Research
This thesis revealed several limitations of the hybrid method and opportunities for future
work.

9.3.1 Extensions to the Grasping Environment
The grasping environments for synthetic dataset generation could be extended in a variety
of ways to model a wider range of possible grasping problems:

• Color Image Sensors. This thesis only considered depth images and segmentation
masks, but recent research on domain randomization [169] suggests that a very similar
stochastic synthetic dataset generation method could be used to generate training
datasets with color images. This can be applied to 3D models by randomizing the
texture of the object. To generalize to the complex texture on real objects (e.g. logos,
text), one possibility is to sample textures for the 3D CAD models from color images
of real world objects.

• Tactile Sensors. Recent developments in tactile sensing such as GelSight [71] give
higher resolution tactile data than was previously possible. Recent research suggests
that regrasping policies can be learned from this data to adapt to possible failures on
the fly [65]. Future research could study whether or not this tactile data could be
simulated to learn grasp quality functions for a regrasping policy.

• New Grippers. Recently, soft and underactuated robot grippers have become increas-
ingly popular due to their robustness to object shape and positioning error. Building
an analytic data generation distribution for such grippers may challenging due to the
lack of analytic models for the gripper. Computationally efficient models for simulating
these grippers, such as raytracing for fast evaluation of contact areas, could be useful
for implementing a hybrid approach. On the other hand, multifingered grippers are

CHAPTER 9. DISCUSSION 162

challenging due to the number of degrees of freedom. Recent research suggests that
the hybrid method could be extended to multifinger grippers by framing the problem
as probabilistic inference in a deep neural network [101]. Another possibility would be
learn a grasp quality function that evaluates grasps defined by a pre-grasping config-
uration of a multifingered hand and a fixed policy for closing the fingers (sometimes
referred to as a “grasp synergy”).

• Complex Actions. In this thesis, actions were parameterized by a gripper pose and
grasps were executed by controlling the robot to reach the desired pose, close the
gripper, and lift the object. To increase success rate, it may be fruitful to explore
continuous servoing methods. This has been studied by [98, 74, 176], but additional
research on 3D servoing with eye-in-hand cameras could be interesting to consider.
Another set of actions that may be interesting to consider are “multi-hand” grasps, in
which a robot uses more than one gripper to lift a large object.

• Inter-Object Contacts. This thesis only considered contacts between a single gripper
and object, but the high-level hybrid method generalizes to the case where reward
functions assess chains of contact between objects in clutter. A reward function that
considers the feasibility of quasi-static equilibria with the resultant wrench from all
objects resting on one another based on a static kinematic contact chain could be a
starting point. Modeling such phenomena could be useful to increase grasp success
rates in dense clutter or for extensions of the method to tasks that involve careful
placement amidst contact such as stacking.

• Kinematics. The environments presented in this thesis are agnostic to the robot
kinematics, assuming that a gripper pose can always be reached by controlling the
joints of the arm. In practice, this may not be true. Learning to represent the set
of kinematically feasible grasps may challenging. For example, the grasp pose is no
longer rotationally or translationally invariant. A starting point could be to equip the
grasping environments with kinematic models, but a complete solution may need to
consider new network architectures that leverage the structure of the kinematic chain
for efficient learning.

• Reactive Policies. The results of this thesis make heavy use of simple action parame-
terizations that specify an open loop grasping policy. For more complex manipulation
it may be important to use a policy that reacts to sensor inputs while executing a
grasp. Hybrid training of such fine-grained feedback policies raises several interesting
challenges such as making use of additional sensors that can, for example, measure slip
or shear, and optimizing for long-term reward.

9.3.2 Extensions to New Tasks
It may be fruitful to consider implementing the hybrid method for the following novel grasp
planning problems:

CHAPTER 9. DISCUSSION 163

• Mobile Picking. Applications of mobile robots in medicine and in the home will
require robots to lift and transport novel objects from human environments In theory,
these environments be modeled using techniques developed in this thesis. The camera
pose could be randomized about where the mobile robot camera is expected to be
mounted. The background objects could be randomized by placing objects in synthetic
scenes such as those considered in [191]. The object poses could be randomized by
selecting stables poses on flat surfaces in the static environment. Potential challenges
include: (1) handling sensor noise due to natural light and clutter and (2) being robust
to large uncertainties in the target gripper pose due to imprecision in the robot base.

• Regrasping. A fundamental problem in robot manipulation is regrasping [18], or
reconfiguring an object relative to a gripper. These problems could be approached by
framing the problem as planning a sequence of grasps, object placements, and pushes
to reach a goal pose of the object relative to the hand. For example, Dex-Net 2.0 could
be extended to rotate an object between stable poses by pick-and-place regrasping on
a tabletop.

• Mechanical Search. Another important problem in manipulation is searching for a
particular object among clutter and moving it to a target position. This may require the
definition of additional grasp primitives, such as rummaging, and additional perception
capabilities, such as object instance recognition. Also, as this task is sequential, it may
require reinforcement rather than supervised learning.

• Dynamic Tasks. This thesis only considered quasi-static tasks in which inertial effects
are negligible. An extension to dynamic grasping tasks such as throwing could be an
interesting direction for future work.

9.3.3 Extensions to the Learning Method
Purely supervised learning may not work for all tasks such as sequential problems for which
the choice of actions at the current timestep have a significant affect on the the reward
received later, or problems for which the action space is large and must be explored. The
following extensions may be fruitful:

• Reinforcement Learning. Any method from the diverse array of reinforcement
learning techniques such as policy gradients [151], deep Q learning [118], or meta-
learning [42] could be used to improve performance by learning directly in a sequential
grasping environment.

• Transfer Learning. This thesis considered fine-tuning but a number of transfer learn-
ing techniques such as domain adaptation [170] or Generative Adversarial Networks
(GANs) [12] could be considered. One possibility is to learn a generative model of
sensor noise to augment synthetic data.

CHAPTER 9. DISCUSSION 164

• Optimizing the Generative Model. The dataset generation distributions consid-
ered in this thesis all depend on a set of parameters. These parameters were “trained”
to maximize the likelihood of images, grasps, and rewards collected from a physical
robot under the synthetic model. A principled optimization approach to learning these
parameters could lead to better performance. Furthermore, active data collection to
jointly optimize the generative model and performance of the learned policy could
reduce the number of examples necessary to learn a robust policy.

• Continuous Learning. A final possibility is to continuously improve the performance
of the policy based on the results of grasp attempts on a physical system. A number of
questions arise. Should data be collected on policy, which maximizes task performance
but discourages exploration, or off policy, which will execute potentially failing and
dangerous grasps on occasion? How can we aggregate data from multiple robots with
different sensors, calibrations, objects, or even tasks? While it may be possible to
train one generic model, performance on each individual robot could be maximized
by tailoring training for that particular robot. Furthermore, how can we ensure data
privacy and integrity as massive amounts of data are collected from real robots deployed
in industrial applications?

9.4 The Broader Picture
Given the limited availability of hardware and lack of theory proving the correctness of
grasp planning algorithms, this thesis does not claim to validate the hybrid method beyond
the robots, grippers, objects, and grasping tasks considered in experiments. In fact, the
only way to evaluate this method on a new grasp planning problem is to build a dataset
generation distribution for that problem, which requires significant time, domain expertise,
and attention to detail. Implementing a similar method for a new manipulation task could
require years of research, and this may seem unnecessary in the midst of the deep learning
wave of artificial intelligence, where significant amounts of research are predicated on the
belief that robots can learn arbitrary new tasks by random exploration inspired by toddlers.

After the thousands and thousands of experiments in this thesis on the seemingly innocu-
ous task of lifting novel objects, such a purely empirical approach does not seem reasonable
for reliable operation in real-world tasks. Data collection on physical robots is difficult – so
difficult, in fact, that it takes a tremendous amount of engineering effort to even benchmark
grasp planning methods across a few hundred objects in academic research labs today. Often
grasping research degenerates to evaluation on a small dataset of hand-picked examples. If
simply evaluating a single policy on a physical robot is so difficult, how can we expect to
train policies on physical data to generalize across robots, grippers, sensors, and millions of
unique objects?

A general approach based on statistical machine learning can only take one approach:
to build a scalable system for collecting, maintaining, and analyzing data collected from a

CHAPTER 9. DISCUSSION 165

huge number of robots deployed in real applications. If no such system exists, then it will
not be possible to adequately benchmark methods to know whether or not they work in
the first place. Why not study models for benchmarking robot learning, which can be used
to simulate massive numbers of trials, to benchmark the performance of various learning
methods, and to understand the limitations of methods?

This thesis tells two lessons that may be more generally applicable to robot learning.
First, assumptions informed by real world applications can be used to design synthetic
environments based on stochastics, geometry, and physics for learning policies that transfer
to a physical robot without any real data. Second, diverse and clean training datasets are not
a given in robotics, unlike the fields of computer vision, speech, and reinforcement learning.
In robotics, we must establish data collection protocols for a given robot, sensor, and task
before we can even begin to think about using machine learning. The problem formulation
considered in this thesis suggests that protocols for data collection on a physical robot are
indistinguishable from models for dataset generation from the perspective of a robot grasping
policy. This suggests that by designing a benchmark we are, in some sense, designing a
model for a task. After all, most machine learning results in robotics to date involve careful
choices of tasks and reward signals that improve learning efficiency and reliability, such as
monochrome objects, planar manipulation without occlusions, and goal poses derived from
kinematics.

Learning algorithms are not the only important factor for training robot policies. The
results of this thesis suggest that the distribution of data used to train a policy is also a
fundamental component of robot learning systems. If nothing else, we hope that this inspires
future research on the design and optimization of dataset collection distributions for robot
learning.

166

Appendix A

Gaussian Process Implicit Surfaces

In this appendix we review Gaussian process implicit surfaces (GPISs). A signed distance
function (SDF) [122] describes the shape of an object by storing the signed distance from
every point in space to the nearest point on the surface. SDFs are defined as a real-valued
function f : Rd → R such that f(x) > 0 outside the object, f(x) = 0 on the object surface,
and f(x) < 0 inside the object. A GPIS is a Gaussian distribution over SDFs formed by
Gaussian process regression (GPR) on noisy observations of an SDF [179]. In this work we
will use d = 2 and restrict evaluations of the SDF f to an M ×M 2-dimensional grid with
square cells [9, 35]. In practice M might be set based on the resolution of the sensor used
to acquire measurements [122].

A.0.1 Gaussian Process Regression (GPR)
Gaussian process regression (GPR) is used in machine learning as a nonparametric regression
method for estimating continuous functions from sparse and noisy data [138]. For a GPIS,
a training set consists of a set of input spatial locations X = {x1, . . . ,xn}, xi ∈ Rd, and
signed distance observations y = {y1, . . . , yn}, yi ∈ R. In practice, y can be acquired using
KinectFusion, which uses ray tracing to compute an SDF from RGBD point clouds [122],
or by segmenting an object from the environment and performing a Euclidean distance
transformation [45, 177].

A GPIS is specified by a mean function m(·) and a covariance function k(·, ·), also referred
to as a kernel, which measures the similarity in signed distance between spatial locations.
Given a set of training data D = {X ,y}, mean m(·), kernel k(·, ·), and measurement noise
σm, the posterior distribution on SDF f∗ at a test location x∗ is [138]:

APPENDIX A. GAUSSIAN PROCESS IMPLICIT SURFACES 167

ap(f∗ | x∗,D) ∼ N
(
µ(x∗), σ2(x∗)

)
µ(x∗) = m(x∗)+

k(X ,x∗)ᵀ(K + σ2
mI)−1(y−m(X)) (A.0.1)

σ2(x∗) = k(x∗,x∗)−
k(X ,x∗)ᵀ(K + σ2

mI)−1k(X ,x∗) (A.0.2)

whereK ∈ Rn×n is a matrix with entriesKij = k(xi,xj). k(X ,x∗) = [k(x1,x∗), . . . , k(xn,x∗)]ᵀ,
and m(X) = [m(x1), ...,m(xn)]ᵀ. This derivation can also be used to predict the mean and
variance of the SDF gradient by differentiating the kernel function, which can be used to
obtain GPIS surface normals [35, 138, 158].

Following Dragiev et al. [35], we use the squared exponential kernel:

k(xi,xj) = C exp
(
−‖xi − xj‖2

2
2`2

)

which specifies the correlation of the signed distance between two spatial points. This kernel
depends on a scale C ∈ R and bandwidth ` ∈ R, which we set using maximum-likelihood
estimation [179]. Other common kernels relevant to GPIS are the thin-plate splines kernel
[179] and the Matern kernel [9].

A.0.2 GPIS Construction from Point Clouds
We review the construction of 2D GPIS models from RGBD point clouds from a single
viewpoint of a Primesense Carmine sensor [61]. The scenario we consider consists of objects
lying flat on a table imaged from above. Our method assumes that the object can be
identified in the point clouds and segmented from the background. Furthermore, we assume
that missing measurements in the point cloud are caused by surface properties of the object
instead of the environment, because in our scenario the table is measured accurately by the
Primesense. Thus, we use a constant negative mean function for the GPIS to bias areas of
missing measurements to be part of the object.

To construct a GPIS from point clouds, we first combine several point clouds by averag-
ing to remove the effects of small zero-mean noise in the depth values, similar to KinectFu-
sion [122]. Then we create a segmentation mask for the object in both the RGB and depth
point clouds. For the objects in Fig. ?? this segmentation is performed by hand, and in our
physical experiments we use RGB and depth thresholding. We also create a measurement
noise map, which specifies the variance of 0-mean measurement noise, based on a noise model
of the Primesense [61]. We then combine the two segmentation masks in an image with each
pixel weighted by its inverse variance to form an occupancy grid, and compute an SDF using
a Euclidean distance transformation of the occupancy map [61, 177]. Finally, we run GPR
on the SDF values and measurement noise map to construct a GPIS. Points with missing

APPENDIX A. GAUSSIAN PROCESS IMPLICIT SURFACES 168

measurements (e.g. NaN values in the depth map) are considered part of the object in the
occupancy map but are not used for the GPIS construction.

This construction procedure results in high uncertainty in (a) areas where the RGB and
depth segmentations disagree (e.g. Object A) and (b) areas with missing measurements (e.g.
Object B). GPIS could also be constructed directly from the SDF and confidence weights
used in KinectFusion [122].

169

Bibliography

[1] Mart́ın Abadi et al. “Tensorflow: Large-scale machine learning on heterogeneous dis-
tributed systems”. In: arXiv preprint arXiv:1603.04467 (2016).

[2] Brenna D Argall et al. “A survey of robot learning from demonstration”. In: Robotics
and autonomous systems 57.5 (2009), pp. 469–483.

[3] Jean-Yves Audibert and Sébastien Bubeck. “Best arm identification in multi-armed
bandits”. In: COLT-23th Conference on Learning Theory-2010. 2010, 13–p.

[4] B Bahr, Y Li, and M Najafi. “Design and suction cup analysis of a wall climbing
robot”. In: Computers & electrical engineering 22.3 (1996), pp. 193–209.

[5] Ravi Balasubramanian et al. “Physical human interactive guidance: Identifying grasp-
ing principles from human-planned grasps”. In: Robotics, IEEE Transactions on 28.4
(2012), pp. 899–910.

[6] Timothy D Barfoot and Paul T Furgale. “Associating uncertainty with three-
dimensional poses for use in estimation problems”. In: IEEE Trans. Robotics 30.3
(2014), pp. 679–693.

[7] Christopher Batty. SDFGen. https://github.com/christopherbatty/SDFGen.
[8] Ulrich Bauer, Michael Kerber, and Jan Reininghaus. PHAT - Persistent Homology

Algorithm Toolbox. 2013. url: https://code.google.com/p/phat/.
[9] Marten Bjorkman et al. “Enhancing visual perception of shape through tactile

glances”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS).
IEEE. 2013, pp. 3180–3186.

[10] Jeannette Bohg and Danica Kragic. “Learning grasping points with shape context”.
In: Robotics and Autonomous Systems 58.4 (2010), pp. 362–377.

[11] Jeannette Bohg et al. “Data-driven grasp synthesis: A survey”. In: IEEE Trans.
Robotics 30.2 (2014), pp. 289–309.

[12] Konstantinos Bousmalis et al. “Using Simulation and Domain Adaptation to Improve
Efficiency of Deep Robotic Grasping”. In: arXiv preprint arXiv:1709.07857 (2017).

[13] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

BIBLIOGRAPHY 170

[14] Peter Brook, Matei Ciocarlie, and Kaijen Hsiao. “Collaborative grasp planning with
multiple object representations”. In: Proc. IEEE Int. Conf. Robotics and Automation
(ICRA). IEEE. 2011, pp. 2851–2858.

[15] Eric Brown et al. “Universal robotic gripper based on the jamming of granular mate-
rial”. In: Proceedings of the National Academy of Sciences 107.44 (2010), pp. 18809–
18814.

[16] Berk Calli et al. “Benchmarking in Manipulation Research: The YCB Object and
Model Set and Benchmarking Protocols”. In: arXiv preprint arXiv:1502.03143 (2015).

[17] Anthony R Cassandra, Leslie Pack Kaelbling, and Michael L Littman. “Acting opti-
mally in partially observable stochastic domains”. In: AAAI. Vol. 94. 1994, pp. 1023–
1028.

[18] Nikhil Chavan-Dafle and Alberto Rodriguez. “Sampling-based planning of in-hand
manipulation with external pushes”. In: arXiv preprint arXiv:1707.00318 (2017).

[19] Chao Chen and Michael Kerber. “Persistent homology computation with a twist”. In:
Proceedings 27th European Workshop on Computational Geometry. Vol. 11. 2011.

[20] I-Ming Chen and Joel W Burdick. “Finding antipodal point grasps on irregularly
shaped objects”. In: IEEE Trans. Robotics and Automation 9.4 (1993), pp. 507–512.

[21] Sanjiban Choudhury et al. “Adaptive Information Gathering via Imitation Learning”.
In: Proc. Robotics: Science and Systems (RSS). 2017.

[22] Brian Chu et al. “Best practices for fine-tuning visual classifiers to new domains”. In:
Computer Vision–ECCV 2016 Workshops. Springer. 2016, pp. 435–442.

[23] Matei Ciocarlie et al. “The Velo gripper: A versatile single-actuator design for en-
veloping, parallel and fingertip grasps”. In: Int. Journal of Robotics Research (IJRR)
33.5 (2014), pp. 753–767.

[24] Matei Ciocarlie et al. “Towards reliable grasping and manipulation in household en-
vironments”. In: Experimental Robotics. Springer. 2014, pp. 241–252.

[25] Nikolaus Correll et al. “Analysis and observations from the first amazon picking chal-
lenge”. In: (2016).

[26] Erwin Coumans et al. “Bullet physics library”. In: Open source: bulletphysics. org
15.49 (2013), p. 5.

[27] Mark R Cutkosky and Paul K Wright. “Friction, stability and the design of robotic
fingers”. In: Int. Journal of Robotics Research (IJRR) 5.4 (1986), pp. 20–37.

[28] Navneet Dalal and Bill Triggs. “Histograms of oriented gradients for human detec-
tion”. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).
Vol. 1. IEEE. 2005, pp. 886–893.

[29] Michael Danielczuk et al. “Linear Push Policies to Increase Grasp Access for Robot
Bin Picking”. In: Proc. IEEE Conf. on Automation Science and Engineering (CASE).
2018.

BIBLIOGRAPHY 171

[30] Raphael Deimel and Oliver Brock. “A novel type of compliant and underactuated
robotic hand for dexterous grasping”. In: Int. Journal of Robotics Research (IJRR)
35.1-3 (2016), pp. 161–185.

[31] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE. 2009,
pp. 248–255.

[32] Renaud Detry et al. “Learning a dictionary of prototypical grasp-predicting parts from
grasping experience”. In: Robotics and Automation (ICRA), 2013 IEEE International
Conference on. IEEE. 2013, pp. 601–608.

[33] Mehmet Dogar and Siddhartha Srinivasa. “A framework for push-grasping in clutter”.
In: Robotics: Science and systems VII 1 (2011).

[34] Yukiyasu Domae et al. “Fast graspability evaluation on single depth maps for bin
picking with general grippers”. In: Proc. IEEE Int. Conf. Robotics and Automation
(ICRA). IEEE. 2014, pp. 1997–2004.

[35] Stanimir Dragiev, Marc Toussaint, and Michael Gienger. “Gaussian process implicit
surfaces for shape estimation and grasping”. In: Proc. IEEE Int. Conf. Robotics and
Automation (ICRA). 2011, pp. 2845–2850.

[36] H. Edelsbrunner and J. Harer. “Persistent homology-a survey”. In: Contemporary
mathematics 453 (2008), pp. 257–282.

[37] Herbert Edelsbrunner. Weighted alpha shapes. University of Illinois at Urbana-
Champaign, Department of Computer Science, 1992.

[38] Herbert Edelsbrunner and John Harer. Computational topology: an introduction.
American Mathematical Soc., 2010.

[39] Herbert Edelsbrunner and Dmitriy Morozov. Persistent homology: theory and prac-
tice. Tech. rep. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA
(US), 2012.

[40] Clemens Eppner et al. “Lessons from the Amazon Picking Challenge: Four Aspects
of Building Robotic Systems.” In: Proc. Robotics: Science and Systems (RSS). 2016.

[41] C. Ferrari and J. Canny. “Planning optimal grasps”. In: Proc. IEEE Int. Conf.
Robotics and Automation (ICRA). 1992, pp. 2290–2295.

[42] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-agnostic meta-learning for
fast adaptation of deep networks”. In: arXiv preprint arXiv:1703.03400 (2017).

[43] Daniel Fiser. libccd - Collision Detection Between Convex Shapes. http://libccd.
danfis.cz/.

[44] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical
learning. Vol. 1. Springer series in statistics Springer, Berlin, 2001.

BIBLIOGRAPHY 172

[45] Yasutaka Furukawa and Jean Ponce. “Carved visual hulls for image-based modeling”.
In: Europan Conference on Computer Vision (ECCV). Springer, 2006, pp. 564–577.

[46] Douglas C Giancoli. Physics: principles with applications. Pearson Education, 2005.
[47] Ross Girshick et al. “Rich feature hierarchies for accurate object detection and se-

mantic segmentation”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2014, pp. 580–587.

[48] Robby Goetschalckx, Pascal Poupart, and Jesse Hoey. “Continuous correlated beta
processes”. In: IJCAI Proceedings-International Joint Conference on Artificial Intel-
ligence. Vol. 22. 1. Citeseer. 2011, p. 1269.

[49] Ken Goldberg et al. “Part pose statistics: Estimators and experiments”. In: IEEE
Trans. Robotics and Automation 15.5 (1999), pp. 849–857.

[50] Corey Goldfeder and Peter K Allen. “Data-driven grasping”. In: Autonomous Robots
31.1 (2011), pp. 1–20.

[51] Corey Goldfeder et al. “The Columbia grasp database”. In: Robotics and Automation,
2009. ICRA’09. IEEE International Conference on. IEEE. 2009, pp. 1710–1716.

[52] Haiyun Guo et al. “Multi-view 3d object retrieval with deep embedding network”. In:
IEEE Transactions on Image Processing 25.12 (2016), pp. 5526–5537.

[53] Menglong Guo et al. “Design of parallel-jaw gripper tip surfaces for robust grasping”.
In: Robotics and Automation (ICRA), 2017 IEEE International Conference on. IEEE.
2017, pp. 2831–2838.

[54] Saurabh Gupta et al. “Aligning 3D models to RGB-D images of cluttered scenes”.
In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2015,
pp. 4731–4740.

[55] Martin Hägele et al. “Industrial robotics”. In: Springer handbook of robotics. Springer,
2016, pp. 1385–1422.

[56] Awni Hannun et al. “DeepSpeech: Scaling up end-to-end speech recognition”. In:
arXiv preprint arXiv:1412.5567 (2014).

[57] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision.
Cambridge university press, 2003.

[58] Elliot W Hawkes, Hao Jiang, and Mark R Cutkosky. “Three-dimensional dynamic
surface grasping with dry adhesion”. In: Int. Journal of Robotics Research (IJRR)
35.8 (2016), pp. 943–958.

[59] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level performance
on imagenet classification”. In: Proc. IEEE Int. Conf. on Computer Vision (ICCV).
2015, pp. 1026–1034.

[60] Carlos Hernandez et al. “Team Delft’s Robot Winner of the Amazon Picking Chal-
lenge 2016”. In: arXiv preprint arXiv:1610.05514 (2016).

BIBLIOGRAPHY 173

[61] C Herrera, Juho Kannala, Janne Heikkilä, et al. “Joint depth and color camera cal-
ibration with distortion correction”. In: IEEE Trans. Pattern Analysis and Machine
Intelligence 34.10 (2012), pp. 2058–2064.

[62] Alexander Herzog et al. “Learning of grasp selection based on shape-templates”. In:
Autonomous Robots 36.1-2 (2014), pp. 51–65.

[63] Stefan Hinterstoisser et al. “Multimodal templates for real-time detection of texture-
less objects in heavily cluttered scenes”. In: Proc. IEEE Int. Conf. on Computer
Vision (ICCV). IEEE. 2011, pp. 858–865.

[64] Matthew W Hoffman, Bobak Shahriari, and Nando de Freitas. “Exploiting correla-
tion and budget constraints in Bayesian multi-armed bandit optimization”. In: arXiv
preprint arXiv:1303.6746 (2013).

[65] Francois R Hogan et al. “Tactile Regrasp: Grasp Adjustments via Simulated Tactile
Transformations”. In: arXiv preprint arXiv:1803.01940 (2018).

[66] Katsushi Ikeuchi et al. Picking up an Object from a Pile of Objects. Tech. rep. DTIC
Document, 1983.

[67] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. “Spatial transformer net-
works”. In: Proc. Advances in Neural Information Processing Systems. 2015, pp. 2017–
2025.

[68] Maciej Jaśkowski et al. “Improved GQ-CNN: Deep Learning Model for Planning
Robust Grasps”. In: arXiv preprint arXiv:1802.05992 (2018).

[69] Yangqing Jia et al. “Caffe: Convolutional Architecture for Fast Feature Embedding”.
In: arXiv preprint arXiv:1408.5093 (2014).

[70] Edward Johns, Stefan Leutenegger, and Andrew J Davison. “Deep learning a grasp
function for grasping under gripper pose uncertainty”. In: Proc. IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS). IEEE. 2016, pp. 4461–4468.

[71] Micah K Johnson et al. “Microgeometry capture using an elastomeric sensor”. In:
ACM Transactions on Graphics (TOG). Vol. 30. 4. ACM. 2011, p. 46.

[72] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. “Planning and
acting in partially observable stochastic domains”. In: Artificial intelligence 101.1-2
(1998), pp. 99–134.

[73] Sham Machandranath Kakade et al. “On the sample complexity of reinforcement
learning”. PhD thesis. University of London London, England, 2003.

[74] Dmitry Kalashnikov et al. “QT-Opt: Scalable Deep Reinforcement Learning for
Vision-Based Robotic Manipulation”. In: arXiv preprint arXiv:1806.10293 (2018).

[75] Imin Kao and Mark R Cutkosky. “Quasistatic manipulation with compliance and
sliding”. In: Int. Journal of Robotics Research (IJRR) 11.1 (1992), pp. 20–40.

BIBLIOGRAPHY 174

[76] Imin Kao, Kevin Lynch, and Joel W Burdick. “Contact modeling and manipulation”.
In: Springer Handbook of Robotics. Springer, 2008, pp. 647–669.

[77] Daniel Kappler, Jeannette Bohg, and Stefan Schaal. “Leveraging big data for grasp
planning”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2015.

[78] Alexander Kasper, Zhixing Xue, and Rüdiger Dillmann. “The KIT object models
database: An object model database for object recognition, localization and manip-
ulation in service robotics”. In: The International Journal of Robotics Research 31.8
(2012), pp. 927–934.

[79] Ben Kehoe, Dmitry Berenson, and Ken Goldberg. “Toward cloud-based grasping with
uncertainty in shape: Estimating lower bounds on achieving force closure with zero-
slip push grasps”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). IEEE.
2012, pp. 576–583.

[80] Ben Kehoe et al. “A survey of research on cloud robotics and automation”. In: Au-
tomation Science and Engineering, IEEE Transactions on 12.2 (2015), pp. 398–409.

[81] Ben Kehoe et al. “Cloud-based robot grasping with the google object recognition
engine”. In: Robotics and Automation (ICRA), 2013 IEEE International Conference
on. IEEE. 2013, pp. 4263–4270.

[82] Junggon Kim et al. “Physically based grasp quality evaluation under pose uncer-
tainty”. In: Robotics, IEEE Transactions on 29.6 (2013), pp. 1424–1439.

[83] Junggon Kim et al. “Physically based grasp quality evaluation under pose uncer-
tainty”. In: IEEE Trans. Robotics 29.6 (2013), pp. 1424–1439.

[84] James Kirkpatrick et al. “Overcoming catastrophic forgetting in neural networks”.
In: Proceedings of the national academy of sciences (2017), p. 201611835.

[85] Edouard Klein et al. “Inverse reinforcement learning through structured classifica-
tion”. In: Proc. Advances in Neural Information Processing Systems. 2012, pp. 1007–
1015.

[86] Ramesh Kolluru, Kimon P Valavanis, and Timothy M Hebert. “Modeling, analysis,
and performance evaluation of a robotic gripper system for limp material handling”.
In: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 28.3
(1998), pp. 480–486.

[87] Sanjay Krishnan et al. “ActiveClean: interactive data cleaning for statistical model-
ing”. In: Proceedings of the VLDB Endowment 9.12 (2016), pp. 948–959.

[88] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Advances in neural information processing
systems. 2012, pp. 1097–1105.

[89] OB Kroemer et al. “Combining active learning and reactive control for robot grasp-
ing”. In: Robotics and Autonomous Systems 58.9 (2010), pp. 1105–1116.

BIBLIOGRAPHY 175

[90] Robert Krug, Yasemin Bekiroglu, and Máximo A Roa. “Grasp quality evaluation done
right: How assumed contact force bounds affect Wrench-based quality metrics”. In:
Proc. IEEE Int. Conf. Robotics and Automation (ICRA). IEEE. 2017, pp. 1595–1600.

[91] Heinrich Kruger et al. “Partial closure grasps: Metrics and computation”. In: Proc.
IEEE Int. Conf. Robotics and Automation (ICRA). IEEE. 2011, pp. 5024–5030.

[92] Michael Laskey et al. “Comparing Human-Centric and Robot-Centric Sampling for
Robot Deep Learning from Demonstrations”. In: Proc. IEEE Int. Conf. Robotics and
Automation (ICRA). IEEE. 2017.

[93] Michael Laskey et al. “DART: Noise Injection for Robust Imitation Learning”. In:
Conference on Robot Learning. 2017.

[94] Michael Laskey et al. “Multi-Armed Bandit Models for 2D Grasp Planning with
Uncertainty.” In: Proc. IEEE Conf. on Automation Science and Engineering (CASE).
IEEE. 2015.

[95] Michael Laskey et al. “Robot Grasping in Clutter: Using a Hierarchy of Supervisors
for Learning from Demonstrations”. In: Proc. IEEE Conf. on Automation Science
and Engineering (CASE). IEEE. 2016.

[96] Ian Lenz, Honglak Lee, and Ashutosh Saxena. “Deep learning for detecting robotic
grasps”. In: The International Journal of Robotics Research 34.4-5 (2015), pp. 705–
724.

[97] Beatriz León et al. “Opengrasp: a toolkit for robot grasping simulation”. In: Simula-
tion, Modeling, and Programming for Autonomous Robots. Springer, 2010, pp. 109–
120.

[98] Sergey Levine et al. “Learning hand-eye coordination for robotic grasping with deep
learning and large-scale data collection”. In: Int. Journal of Robotics Research (IJRR)
37.4-5 (2018), pp. 421–436.

[99] Bo Li et al. “A comparison of 3D shape retrieval methods based on a large-scale
benchmark supporting multimodal queries”. In: Computer Vision and Image Under-
standing 131 (2015), pp. 1–27.

[100] Zexiang Li and S Shankar Sastry. “Task-oriented optimal grasping by multifingered
robot hands”. In: Robotics and Automation, IEEE Journal of 4.1 (1988), pp. 32–44.

[101] Qingkai Lu et al. “Planning Multi-Fingered Grasps as Probabilistic Inference in a
Learned Deep Network”. In: arXiv preprint arXiv:1804.03289 (2018).

[102] Laurens van der Maaten and Geoffrey Hinton. “Visualizing data using t-SNE”. In:
Journal of Machine Learning Research 9.Nov (2008), pp. 2579–2605.

[103] Jeffrey Mahler and Ken Goldberg. “Learning deep policies for robot bin picking
by simulating robust grasping sequences”. In: Conference on Robot Learning. 2017,
pp. 515–524.

BIBLIOGRAPHY 176

[104] Jeffrey Mahler et al. “Dex-net 1.0: A cloud-based network of 3d objects for robust
grasp planning using a multi-armed bandit model with correlated rewards”. In: Proc.
IEEE Int. Conf. Robotics and Automation (ICRA). IEEE. 2016, pp. 1957–1964.

[105] Jeffrey Mahler et al. “Dex-net 2.0: Deep learning to plan robust grasps with synthetic
point clouds and analytic grasp metrics”. In: Proc. Robotics: Science and Systems
(RSS). 2017.

[106] Jeffrey Mahler et al. “Dex-Net 3.0: Computing Robust Vacuum Suction Grasp Targets
in Point Clouds using a New Analytic Model and Deep Learning”. In: Proc. IEEE
Int. Conf. Robotics and Automation (ICRA). 2018.

[107] Jeffrey Mahler et al. “Energy-Bounded Caging: Formal Definition and 2D Lower
Bound Algorithm Based on Weighted Alpha Shapes”. In: IEEE Robotics & Automa-
tion Letters. IEEE. 2016.

[108] Jeffrey Mahler et al. “Gp-gpis-opt: Grasp planning under shape uncertainty using
gaussian process implicit surfaces and sequential convex programming”. In: (2015).

[109] Jeffrey Mahler et al. “Privacy-preserving Grasp Planning in the Cloud”. In: Proc.
IEEE Conf. on Automation Science and Engineering (CASE). IEEE. 2016, pp. 468–
475.

[110] Jeffrey Mahler et al. “Synthesis of energy-bounded planar caging grasps using persis-
tent homology”. In: (2018).

[111] Tanwi Mallick, Partha Pratim Das, and Arun Kumar Majumdar. “Characterizations
of noise in Kinect depth images: A review”. In: IEEE Sensors Journal 14.6 (2014),
pp. 1731–1740.

[112] Giacomo Mantriota. “Theoretical model of the grasp with vacuum gripper”. In: Mech-
anism and machine theory 42.1 (2007), pp. 2–17.

[113] Matthew T Mason. “Mechanics and planning of manipulator pushing operations”. In:
The International Journal of Robotics Research 5.3 (1986), pp. 53–71.

[114] Matthew T. Mason. Mechanics of Robotic Manipulation. Cambridge, MA, USA: MIT
Press, 2001. isbn: 0-262-13396-2.

[115] Zoe McCarthy, Timothy Bretl, and Seth Hutchinson. “Proving path non-existence
using sampling and alpha shapes”. In: Robotics and Automation (ICRA), 2012 IEEE
International Conference on. IEEE. 2012, pp. 2563–2569.

[116] Andrew T Miller and Peter K Allen. “Graspit! a versatile simulator for robotic grasp-
ing”. In: Robotics & Automation Magazine, IEEE 11.4 (2004), pp. 110–122.

[117] John W Miller, Rod Goodman, and Padhraic Smyth. “On loss functions which min-
imize to conditional expected values and posterior probabilities”. In: IEEE Transac-
tions on Information Theory 39.4 (1993), pp. 1404–1408.

[118] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”.
In: Nature 518.7540 (2015), p. 529.

BIBLIOGRAPHY 177

[119] Luis Montesano and Manuel Lopes. “Active learning of visual descriptors for grasping
using non-parametric smoothed beta distributions”. In: Robotics and Autonomous
Systems 60.3 (2012), pp. 452–462.

[120] D Morrison et al. “Cartman: The low-cost cartesian manipulator that won the amazon
robotics challenge”. In: arXiv preprint arXiv:1709.06283 (2017).

[121] Richard M Murray, Zexiang Li, and S Shankar Sastry. A mathematical introduction
to robotic manipulation. CRC press, 1994.

[122] Richard A Newcombe et al. “KinectFusion: Real-time dense surface mapping and
tracking”. In: IEEE Int. Symposium on Mixed and augmented reality (ISMAR). IEEE.
2011, pp. 127–136.

[123] Van-Duc Nguyen. “Constructing stable grasps”. In: Int. Journal of Robotics Research
(IJRR) 8.1 (1989), pp. 26–37.

[124] John Oberlin and Stefanie Tellex. “Autonomously Acquiring Instance-Based Object
Models from Experience”. In: Int. S. Robotics Research (ISRR). 2015.

[125] John Oberlin et al. “Acquiring Object Experiences at Scale”. In: ().
[126] Lael U Odhner et al. “A compliant, underactuated hand for robust manipulation”.

In: Int. Journal of Robotics Research (IJRR) 33.5 (2014), pp. 736–752.
[127] OpenAI. “Learning Dextrous In-Hand Manipulation”. In: arXiv preprint

arXiv:1808.00177 (2018).
[128] Christos H Papadimitriou and John N Tsitsiklis. “The complexity of Markov decision

processes”. In: Mathematics of operations research 12.3 (1987), pp. 441–450.
[129] Andreas ten Pas et al. “Grasp pose detection in point clouds”. In: Int. Journal of

Robotics Research (IJRR) 36.13-14 (2017), pp. 1455–1473.
[130] Michael A Peshkin and Arthur C Sanderson. “The motion of a pushed, sliding work-

piece”. In: IEEE Journal on Robotics and Automation 4.6 (1988), pp. 569–598.
[131] Lerrel Pinto and Abhinav Gupta. “Supersizing Self-supervision: Learning to Grasp

from 50K Tries and 700 Robot Hours”. In: Proc. IEEE Int. Conf. Robotics and Au-
tomation (ICRA). 2016.

[132] Robert Platt Jr et al. “Belief space planning assuming maximum likelihood observa-
tions”. In: (2010).

[133] Florian T Pokorny, Kaiyu Hang, and Danica Kragic. “Grasp Moduli Spaces”. In:
Robotics: Science and Systems. 2013.

[134] Florian T Pokorny and Danica Kragic. “Classical grasp quality evaluation: New al-
gorithms and theory”. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on. IEEE. 2013, pp. 3493–3500.

BIBLIOGRAPHY 178

[135] Florian T. Pokorny and Danica Kragic. “Classical Grasp Quality Evaluation: New
Theory and Algorithms”. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2013.

[136] Domenico Prattichizzo and Jeffrey C Trinkle. “Grasping”. In: Springer handbook of
robotics. Springer, 2008, pp. 671–700.

[137] Xavier Provot et al. “Deformation constraints in a mass-spring model to describe rigid
cloth behaviour”. In: Graphics interface. Canadian Information Processing Society.
1995, pp. 147–147.

[138] Carl Edward Rasmussen. “Gaussian processes for machine learning”. In: (2006).
[139] Nathan Ratliff, J Andrew Bagnell, and Siddhartha S Srinivasa. “Imitation learning

for locomotion and manipulation”. In: Int’l Conf. on Humanoid Robots. IEEE. 2007,
pp. 392–397.

[140] Joseph Redmon and Anelia Angelova. “Real-time grasp detection using convolutional
neural networks”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). IEEE.
2015, pp. 1316–1322.

[141] Colin Rennie et al. “A dataset for improved rgbd-based object detection and pose
estimation for warehouse pick-and-place”. In: IEEE Robotics & Automation Letters
1.2 (2016), pp. 1179–1185.

[142] Elon Rimon and Andrew Blake. “Caging 2D bodies by 1-parameter two-fingered grip-
ping systems”. In: Robotics and Automation, 1996. Proceedings., 1996 IEEE Interna-
tional Conference on. Vol. 2. IEEE. 1996, pp. 1458–1464.

[143] Elon Rimon and Joel W. Burdick. “Mobility of bodies in contact. I. A 2nd-order
mobility index for multiple-finger grasps”. In: vol. 14. 5. 1998, pp. 696–708.

[144] Alberto Rodriguez, Matthew T Mason, and Steve Ferry. “From caging to grasping”.
In: Int. Journal of Robotics Research (IJRR) (2012), p. 0278364912442972.

[145] Reuven Y Rubinstein, Ad Ridder, and Radislav Vaisman. Fast sequential Monte Carlo
methods for counting and optimization. John Wiley & Sons, 2013.

[146] Daniela Rus and Michael T Tolley. “Design, fabrication and control of soft robots”.
In: Nature 521.7553 (2015), p. 467.

[147] Fereshteh Sadeghi and Sergey Levine. “CAD2RL: Real single-image flight without a
single real image”. In: Proc. Robotics: Science and Systems (RSS). 2017.

[148] Marcos Salganicoff, Lyle H Ungar, and Ruzena Bajcsy. “Active learning for vision-
based robot grasping”. In: Machine Learning 23.2-3 (1996), pp. 251–278.

[149] Samuele Salti, Federico Tombari, and Luigi Di Stefano. “SHOT: Unique signatures
of histograms for surface and texture description”. In: Computer Vision and Image
Understanding 125 (2014), pp. 251–264.

BIBLIOGRAPHY 179

[150] Ashutosh Saxena, Justin Driemeyer, and Andrew Y Ng. “Robotic grasping of novel
objects using vision”. In: The International Journal of Robotics Research 27.2 (2008),
pp. 157–173.

[151] John Schulman et al. “Trust region policy optimization”. In: International Conference
on Machine Learning. 2015, pp. 1889–1897.

[152] Daniel Seita et al. “Large-Scale Supervised Learning of the Grasp Robustness of
Surface Patch Pairs”. In: Proc. IEEE Int. Conf. on Simulation, Modeling, and Pro-
gramming of Autonomous Robots (SIMPAR). IEEE. 2016.

[153] Guy Shani, Joelle Pineau, and Robert Kaplow. “A survey of point-based POMDP
solvers”. In: Autonomous Agents and Multi-Agent Systems (2013), pp. 1–51.

[154] Karun B Shimoga. “Robot grasp synthesis algorithms: A survey”. In: The Interna-
tional Journal of Robotics Research 15.3 (1996), pp. 230–266.

[155] Ashutosh Singh et al. “Bigbird: A large-scale 3d database of object instances”. In:
Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2014.

[156] Satinder P Singh, Tommi Jaakkola, and Michael I Jordan. “Learning without state-
estimation in partially observable Markovian decision processes”. In: Machine Learn-
ing Proceedings 1994. Elsevier, 1994, pp. 284–292.

[157] Gordon Smith et al. “Computing parallel-jaw grips”. In: Proc. IEEE Int. Conf.
Robotics and Automation (ICRA). 1999.

[158] Ercan Solak et al. “Derivative observations in Gaussian process models of dynamic
systems”. In: (2003).

[159] Adam J Spiers et al. “Single-grasp object classification and feature extraction with
simple robot hands and tactile sensors”. In: IEEE Transactions on Haptics 9.2 (2016),
pp. 207–220.

[160] Niranjan Srinivas et al. “Gaussian Process Optimization in the Bandit Setting: No
Regret and Experimental Design”. In: Proc. International Conference on Machine
Learning (ICML). 2010.

[161] Hannah S Stuart et al. “Suction helps in a pinch: Improving underwater manipulation
with gentle suction flow”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS). IEEE. 2015, pp. 2279–2284.

[162] Hang Su et al. “Multi-view Convolutional Neural Networks for 3D Shape Recogni-
tion”. In: arXiv preprint arXiv:1505.00880 (2015).

[163] Jianhua Su et al. “Vision-based caging grasps of polyhedron-like workpieces with a
binary industrial gripper”. In: IEEE Transactions on Automation Science and Engi-
neering 12.3 (2015), pp. 1033–1046.

[164] Raúl Suárez, Jordi Cornella, and Máximo Roa Garzón. Grasp quality measures. In-
stitut d’Organització i Control de Sistemes Industrials Barcelona, Spain, 2006.

BIBLIOGRAPHY 180

[165] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence learning
with neural networks”. In: Advances in neural information processing systems. 2014,
pp. 3104–3112.

[166] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction.
MIT press, 1998.

[167] The CGAL Project. CGAL User and Reference Manual. 4.6.1. CGAL Editorial Board,
2015.

[168] Sebastian Thrun. “Monte carlo pomdps”. In: Proc. Advances in Neural Information
Processing Systems. 2000, pp. 1064–1070.

[169] Josh Tobin et al. “Domain randomization for transferring deep neural networks from
simulation to the real world”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS). IEEE. 2017, pp. 23–30.

[170] Eric Tzeng et al. “Adversarial discriminative domain adaptation”. In: Computer Vi-
sion and Pattern Recognition (CVPR). Vol. 1. 2. 2017, p. 4.

[171] Mostafa Vahedi and A Frank van der Stappen. “Caging polygons with two and three
fingers”. In: Int. Journal of Robotics Research (IJRR) 27.11-12 (2008), pp. 1308–1324.

[172] Angel J Valencia et al. “A 3D vision based approach for optimal grasp of vacuum
grippers”. In: Electronics, Control, Measurement, Signals and their Application to
Mechatronics (ECMSM), 2017 IEEE International Workshop of. IEEE. 2017, pp. 1–
6.

[173] Gino Van Den Bergen. “Proximity queries and penetration depth computation on 3d
game objects”. In: Game developers conference. Vol. 170. 2001.

[174] Laurens Van Der Maaten. “Accelerating t-SNE using tree-based algorithms.” In: Jour-
nal of machine learning research 15.1 (2014), pp. 3221–3245.

[175] Jacob Varley et al. “Generating multi-fingered robotic grasps via deep learning”. In:
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). IEEE. 2015,
pp. 4415–4420.

[176] Ulrich Viereck et al. “Learning a visuomotor controller for real world robotic grasping
using easily simulated depth images”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS). 2017.

[177] Jun Wang and Ying Tan. “Efficient Euclidean distance transform algorithm of binary
images in arbitrary dimensions”. In: Pattern Recognition 46.1 (2013), pp. 230–242.

[178] Jonathan Weisz and Peter K Allen. “Pose error robust grasping from contact wrench
space metrics”. In: Robotics and Automation (ICRA), 2012 IEEE International Con-
ference on. IEEE. 2012, pp. 557–562.

[179] Oliver Williams and Andrew Fitzgibbon. “Gaussian process implicit surfaces”. In:
Gaussian Proc. in Practice (2007).

BIBLIOGRAPHY 181

[180] Walter Wohlkinger et al. “3dnet: Large-scale object class recognition from cad mod-
els”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA). 2012.

[181] Zhirong Wu et al. “3D ShapeNets: A Deep Representation for Volumetric Shape
Modeling”. In: CVPR. Vol. 1. 2. 2015, p. 3.

[182] Yu Yoshida and Shugen Ma. “Design of a wall-climbing robot with passive suction
cups”. In: Robotics and Biomimetics (ROBIO), 2010 IEEE International Conference
on. IEEE. 2010, pp. 1513–1518.

[183] Jason Yosinski et al. “How transferable are features in deep neural networks?” In:
Advances in neural information processing systems. 2014, pp. 3320–3328.

[184] Kuan-Ting Yu et al. “A Summary of Team MIT’s Approach to the Amazon Picking
Challenge 2015”. In: arXiv preprint arXiv:1604.03639 (2016).

[185] Andy Zeng et al. “Learning Synergies between Pushing and Grasping with Self-
supervised Deep Reinforcement Learning”. In: Proc. IEEE/RSJ Int. Conf. on In-
telligent Robots and Systems (IROS). 2018.

[186] Andy Zeng et al. “Multi-view self-supervised deep learning for 6d pose estimation in
the amazon picking challenge”. In: Proc. IEEE Int. Conf. Robotics and Automation
(ICRA). IEEE. 2017, pp. 1386–1383.

[187] Andy Zeng et al. “Robotic Pick-and-Place of Novel Objects in Clutter with Multi-
Affordance Grasping and Cross-Domain Image Matching”. In: (2018).

[188] Liangjun Zhang, Young J Kim, and Dinesh Manocha. “Efficient cell labelling and path
non-existence computation using C-obstacle query”. In: The International Journal of
Robotics Research 27.11-12 (2008), pp. 1246–1257.

[189] Liangjun Zhang et al. “Generalized penetration depth computation”. In: Computer-
Aided Design 39.8 (2007), pp. 625–638.

[190] Yu Zheng and Wen-Han Qian. “Coping with the grasping uncertainties in force-closure
analysis”. In: Int. Journal of Robotics Research (IJRR) 24.4 (2005), pp. 311–327.

[191] Yuke Zhu et al. “Target-driven visual navigation in indoor scenes using deep rein-
forcement learning”. In: Proc. IEEE Int. Conf. Robotics and Automation (ICRA).
IEEE. 2017, pp. 3357–3364.

