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Abstract 

 
STRUCTURES OF RESPIRATORY SYNCYTIAL VIRUS G ANTIGEN 

BOUND TO BROADLY NEUTRALIZING ANTIBODIES FOR VACCINE 

AND THERAPEUTIC DESIGN 

By Stanislav O. Fedechkin 

 

Respiratory syncytial virus (RSV) is a top cause of severe lower respiratory 

tract disease and mortality in young children and the elderly. The viral envelope G 

glycoprotein contributes to pathogenesis through its roles in host cell attachment and 

modulation of host immunity. Although the G glycoprotein is a target of protective 

RSV-neutralizing antibodies, its development as a vaccine antigen has been hindered 

by its heterogeneous glycosylation and sequence variability outside a conserved 

central domain (CCD). We describe the cocrystal structures of three high-affinity 

broadly neutralizing human monoclonal antibodies bound to the RSV G CCD. All 

three antibodies bind to conformational epitopes that span a highly conserved and 

flexible surface, illuminating an important region of vulnerability. We further show 

that isolated RSV G CCD activates the chemokine receptor CX3CR1 and that 

antibodies block this activity. These studies provide a template for rational vaccine 

design targeting this key contributor to RSV disease. 
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RSV Field Overview 
 

Starting at the end 2015, we began a collaboration with Trellis Biosciences in 

hopes of understanding the molecular basis for respiratory syncytial virus (RSV) 

neutralization by antibodies targeting the RSV G glycoprotein. Trellis developed a 

proprietary technique called CellSpot™ to screen B-cell repertoires from healthy 

donor individuals, sort for B-cells that target specific antigens, and sequence the B-

cell antibodies, with the ultimate goal of developing therapeutic antibodies. One of 

the unique features of CellSpot™ is to isolate B cells directly from human blood, 

backed by the idea that humans can produce excellent affinity matured antibodies 

over the years of a lifetime, especially compared to standard immunization protocols 

which typically involve immunizing an animal over a short amount of time 8-12 

weeks. In addition, CellSpot™ allows for the isolation of antibodies with multiple 

parameters, such as cross-reactivity and high affinity, with the antibodies derived 

from the healthy donor’s immune system so they should have high safety as a 

therapeutic. Using CellSpot™, Trellis was able to isolate extremely tight binding 

antibodies (KD=1-500 pM) that were also cross reactive for subtypes A and B of RSV 

(1). Trellis provided our lab with these antibody reagents and sequences.  

The majority of the work done on RSV G was biological in nature, looking at 

the role of RSV G in cell attachment, immunity and immune modulation. There was 

virtually no structural information on G. It was well established that RSV G is one of 

the major immunogenic proteins on the RSV surface (Fig. A). At the start of the 
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project in 2016, there were virtually no effective and inexpensive treatments or 

preventatives for RSV. Palivizumab is an antibody prophylaxis used in infants to 

reduce morbidity, however it has limited use and target population due to its cost and 

delivery issues (2). Immunization to prevent RSV has long been a goal in the field, 

but challenges associated with immunizing infants (an ideal RSV vaccine would 

prevent disease in the first 6 month of life and give life long immunity) and creating a 

safe vaccine are still present. Specifically, there are major safety concerns for RSV 

vaccine, since a 1960’s vaccine trials with formalin-inactivated RSV (FI-RSV) was 

associated with enhanced disease. Today, we have a clearer understanding of why FI-

RSV failed (3). The F antigen conformation was altered to the less immunogenic and 

protective post-fusion form and no pre-fusion F was found on the surface (4). In 

addition, a number of studies have shown that the G antigen is associated with 

pathogenicity and can lead to severe immune response outcomes (eosinophilia) (5). 

Thus, the resulting immune response from FI-RSV vaccine produced a combination 

of low-affinity non-neutralizing antibodies and Th2-biased response.  

As of 2016, there are over 19 RSV vaccine candidates and therapeutics in 

development, ranging from structure-based subunit vaccines, particle based, live-

attenuated, nonreplicating and gene based vectors (6). In addition, the populations 

targeted have expanded to not only include immunization of infants and young 

children, but also immunization of pregnant women and older adults. The population 

which is at the highest risk of morbidity and severe disease outcomes for RSV is 

children <6 months of age. One approach to protect this population is through 
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immunizing pregnant women in hopes of producing and transferring maternal 

antibodies against RSV to the child. Maternal immunization has been gaining 

attention and several vaccines are in development.  

Since 2013, there have also been advancements in structure-based 

vaccinology and the field had several proof-of-principle and first in class studies 

showing the feasibility of such approaches. One of the prominent areas of study in 

this field also involved RSV, focusing on the fusion protein. In one study stable 

scaffolds of the palivizumab epitope on F were generated and inserted into virus like 

particles (VLPs) (7). These and additional constructs were tested in animals and 

showed to induce neutralizing antibodies in rodents and macaques. Another study 

produced the full-length RSV fusion protein ectodomain stabilized through cysteines 

and hydrophobic cavity filling mutations (8). Immunization with this construct 

produced a protective immune response in mice and macaques. Another area of 

structure based-vaccinology is focused on Influenza A HA protein. Two approaches 

were made to design a structure-based vaccine: one using a headless HA and another 

using a conserved HA stem chimera with heterologous heads with the goal of 

producing a universal influenza vaccine (9, 10). Both approaches produced a modest 

protective immune response in animals eliciting strain-independent neutralizing 

antibodies. Overall, these studies set the precedent in the field that using structurally 

designed immunogens can offer protection and the potential for lasting immunity.  

The RSV G sequence is highly variable and defines the RSV subgroups A and 

B. The G protein is heavily glycosylated with 30–40 O-linked glycans and 4–5 N-
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linked glycans (~60-65% of the entire protein mass), RSV G contains two highly 

glycosylated mucin-like domains (a study on a closely related virus, Human 

metapneumovirus (HMPV) showed that HMPV G attachment protein mucin domains 

are highly glycosylated and intrinsically disordered by SEC-MALLS-RI and SAXS) 

(11, 12). The G protein is typically 80-100 kDa when expressed in immortalized cell 

lines or ~180 kDa form in primary human airway epithelial cells (13).  

However there is a short, highly conserved sequence, which we later termed 

the Central Conserved Domain (CCD), spanning 48 residues that is devoid of 

glycosylation. The CCD contains 13 residues that are completely conserved in all 

RSV strains and a number of other highly conserved residues. The CCD contains a 

cysteine noose motif with 1–4, 2–3 disulfide connectivity that is believed to mediate 

attachment to cells during infection. Past the cysteine noose, on the C-terminus there 

is a heparin-binding domain (HBD) rich with lysines and positively charged residues 

that have been shown to be involved in binding to heparan sulfate proteoglycans and 

glycosaminoglycans (14-17). Studies using a peptide sequence of the HBD show that 

it inhibits RSV infection and binds to HEp-2 cells (18). However, there’s been some 

debate in the field whether heparan sulfate proteoglycans are relevant to RSV 

infection, as it has been shown to be absent in primary cells, such as human airway 

epithelial cells, whereas many of the studies showing the importance of the HDB and 

heparan sulfate were performed in immortalized cell lines.  

 At the start of the project, we had linear epitope peptide mapping data 

showing where several of the Trellis anti-G monoclonal antibodies bound. A number 
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of the antibodies did not bind to linear peptides, raising the possibility that these 

antibodies are binding to non-linear and/or conformational epitopes within G. We 

initially hypothesized that all of the antibodies would bind to the CCD (although it 

may be possible that some antibodies bind to glycans, however the high degree of 

sequence variability and high degree of glycosylation variability makes this 

possibility unlikely). Our hypothesis was based on that the antibodies had all sub-

nanomolar binding affinity and were cross-reactive across RSV strain A2 and B1. 

Thus, the antibodies were likely to bind to regions that had high sequence 

conservation and were accessible to antibodies, meaning regions outside the heavily 

glycosylated mucin-like regions, therefore the CCD. 

Early on in the project, Trellis was considering moving forward with initiating 

a vaccine study using linear epitope peptide sequences of G (immunizing animals 

with short sequences of the CCD). At the time, it was widely believed that the  G 

protein lacked defined structure or conformation outside of the two disulfides in the 

CCD. There were two minimal NMR structures solved in 1996 for bovine RSV G and 

another in 2002 for human RSV G (19, 20). These structures only showed ~19 

residues of the CCD, mostly involving the two disulfides. By examining the sequence 

of the CCD, we noted that linear epitope peptide sequences preceded the cysteine 

noose regions, and we anticipated that antibodies would bind to additional regions of 

the CCD outside of the linear epitope. Likewise, we hypothesized that immunizing 

with just linear epitopes would be unlikely to elicit high affinity neutralizing 

antibodies.  



 

6 

Our goal was to define and determine the antibody epitopes on G for the 

Trellis antibody suite. We were also interested in determining the structure of larger 

CCD construct in order to investigate its conformational character. We were also 

interested in extending these studies to better understand the RSV attachment process 

and potential interactions with receptors. After optimizing mAb digestion procedure 

to isolate Fab and developing a co-purification method for isolating Fab complexes 

bound to RSV G, we were able to determine our first structure with 3D3 antibody 

bound to the CCD. Surprisingly, in the structure RSV G CCD has conformational 

character and the 3D3 antibody actually binds to a larger, three-dimensional epitope 

beyond that which was predicted by linear peptide mapping. Since then, 5 structures 

of RSV G bound to antibodies have been solved and all structures show 

conformational epitopes with G CCD (21, 22). In addition, a renewed focus on G as a 

vaccine candidate has been made with a number of studies investigating the effects of 

immunizing with the CCD. Currently, studies into receptor binding and immune 

modulation by RSV G are underway.   
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Fig. A. Respiratory syncytial virus glycoprotein electron microscope.  

F and G glycoprotein are visible as projections on the surface. Courtesy of NIAID. 
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Fig. B. RSV G ectodomain model generated using steered molecular dynamics 

(NAMD).  

McLellan JS, Ray WC, Peeples ME. Structure and function of respiratory syncytial 
virus surface glycoproteins. Curr Top Microbiol Immunol. 2013;372:83-104. 
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Chapter I: 

Structures of respiratory syncytial virus G antigen bound to broadly neutralizing 

antibodies. 

  

INTRODUCTION 

Respiratory syncytial virus (RSV) infects most children by age 2 and is the 

leading cause of severe lower respiratory tract disease in children worldwide (1–4). 

RSV is a major cause of mortality, with an estimated 118,000 deaths per year in 

children under age 5 (3, 5). RSV is also a major cause of morbidity in the elderly and 

immunocompromised populations. No licensed RSV vaccine exists, and the only 

widely used intervention is palivizumab (Synagis), a monoclonal antibody (mAb) 

against the RSV F glycoprotein that reduces disease severity in premature birth 

infants (6). RSV F is required for infectivity, is less variable overall than RSV G, and 

is the target of most neutralizing antibodies (7). However, the recent failures of two 

prominent RSV F vaccines, a phase 3 clinical trial in older adults (Novavax) and a 

phase 2b trial in older adults (MedImmune), highlight the urgent need for new 

approaches. Because these vaccines contained RSV F immunogen in its postfusion 

conformation, one emerging approach is focused on the generation of RSV F 

immunogens that are stabilized in the prefusion conformation, as revealed by x-ray 

crystallographic studies (8). In addition, RSV G is increasingly recognized as a 
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critical target (9), yet its development as a vaccine antigen has been hindered by its 

dense and heterogeneous N- and O-glycosylation in the highly variable mucin-like 

regions and a paucity of information correlating specific molecular structure with 

biological activity. 

Although variable overall, RSV G (298 residues) contains a ~40–amino acid 

central conserved domain (CCD) that is devoid of glycosylation and plays key roles 

in both virus infection and viral pathogenesis (Fig. 1). Specifically, RSV G CCD 

contains a CX3C chemokine motif that facilitates binding to the human chemokine 

receptor CX3CR1, a critical step for RSV infection in human airway epithelial cells 

(10–13). Notably, a soluble form of RSV G is secreted from infected cells beginning 

~6 hours after infection, long before the appearance of RSV virions at 12 hours 

(14, 15). In vivo, this soluble G protein competes with the natural ligand CX3CL1 

(also known as fractalkine) for binding to CX3CR1, modulating signaling and 

trafficking of CX3CR1+ immune cells, contributing to airway congestion (13, 16–

18). RSV with the G gene deleted is highly attenuated in vivo (19). Moreover, RSV 

with an insertion in the CX3C motif of G (CX4C) that prevents CX3CR1 binding has 

markedly reduced disease severity in vivo (20). In a recent study, elevated 

concentrations of both anti-G and anti–prefusion-F antibodies were associated with 

lower clinical disease severity scores, despite the substantially lower absolute 

abundance of anti-G antibodies compared to anti-F antibodies (7). These results 

strongly support a renewed focus on RSV G as a target in vaccine and therapeutic 

antibody development. 
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Fig. 1.1. bnmAbs 3D3 and 2D10 bind RSV G161-197.  

(A) Schematic of the RSV G glycoprotein from RSV strain A2, including the 
transmembrane region (TM), central conserved region (CCD), and the cysteine noose 
(Cys noose). Met48 is the alternate initiation site for the production of soluble RSV 
G. Predicted N- and O-linked glycans are shown by black “N” and gray “O,” 
respectively. (B) Sequence alignment of RSV G CCD from diverse RSV strains. 
Amino acids 157 and 198 are predicted to be O-glycosylated in RSV strain A2 (gray 
“O”) and represent the boundaries. Secondary structure, disulfide bonds, and heparin 
binding domain (HBD) are displayed. Amino acids within bnmAb 3D3 and 2D10 
epitopes (antigenic sites γ1 and γ2) are labeled with blue and orange circles, 
respectively. (C) Coomassie-stained SDS-PAGE of RSV Gecto and RSV G161-197. (D) 
ELISA showing binding of bnmAbs 3D3 and 2D10 to RSV Gecto. (E) ELISA showing 
binding of bnmAbs 3D3 and 2D10 to RSV G161-197. ELISA experiments were 
performed in biological triplicates.   
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RESULTS 
 
Conformational antigenic site γ1 
 

We first investigated bnmAb 3D3, a native human antibody which binds RSV 

G with high affinity [Kd (dissociation constant)= 1.1 pM], shows broadly neutralizing 

activity across nearly all circulating strains and is in development as a post-infection 

therapeutic (22, 29). Purified antigen-binding fragment (Fab) 3D3 formed stable 

complexes with its linear epitope peptide (RSV G162-172) in solution (fig. S1), and we 

determined the crystal structure of the Fab 3D3-RSV G162-172 complex to 2.40 Å 

resolution (Fig. 2A, fig. S2, and table S1). The RSV G162-172 peptide contains a short 

helix and projects several hydrophobic residues, including Phe163, Phe165, Phe168, 

Phe170, and Pro172, into a ~700 Å2 groove formed by heavy-chain 

complementarity-determining regions (CDRs) 1, 2, and 3 and light-chain CDRs 1 and 

3. Surprisingly, the distal six amino acids of the extended heavy-chain CDR3 formed 

no molecular contacts with the linear epitope peptide (Fig. 2A), indicative of a larger 

epitope. 
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Fig. 1.2. Crystal structures of RSV G-antibody complexes.  

Overall view (top) and zoom-in view (bottom) of the (A) Fab 3D3-RSV G162-

172complex, (B) Fab 3D3-RSV G161-197 complex, and (C) the scFv 2D10-RSV G169-

198complex. In all panels, RSV G is colored cyan, bnmAb heavy chain is colored dark 
gray, and bnmAb light chain is colored light gray. Water molecules are shown in red. 
Hydrogen bonds are shown as dashes. Heavy-chain CDRs (HCDR1-3) and light-
chain CDRs (LCDR1-3) are labeled. 
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To examine whether bnmAb 3D3 interacts with a larger RSV G epitope, we 

produced in Escherichia coli a recombinant fragment of RSV G (strain A2) that 

includes the 3D3 linear epitope sequence and the following 25 amino acids spanning 

the CX3C chemokine motif (RSV G161-197). Antibody 3D3 binds to recombinant 

RSV G161-197 similarly to recombinant RSV G ectodomain (RSV Gecto) (strain 

A2) and forms a stable complex in solution (Fig. 1 and fig. S1). We determined the 

crystal structure of the Fab 3D3-RSV G161-197 complex to 2.40 Å resolution (Fig. 

2B, fig. S2, and table S1). The structure reveals additional interactions between 

bnmAb 3D3 and RSV G residues beyond the linear epitope, increasing the binding 

interface to ~1060 Å2. Specifically, heavy-chain CDR3 interacts with the RSV G 

cysteine noose (residues 173 to 186), which contains four cysteine residues in nested 

disulfide bonds (1-4 and 2-3), as observed previously in nuclear magnetic resonance 

structures of this ~15-residue region (fig. S2) (30, 31). Additional interactions were 

observed between heavy-chain CDRs 1 and 2 and RSV G residues 189 and 190. 

Together, we find that the high-affinity and protective bnmAb 3D3 binds to RSV G at 

a discontinuous conformational epitope, which we have named antigenic site γ1. 

Conformational antigenic site γ2 

We next investigated bnmAb 2D10, which also binds RSV G but whose 

epitope could not be characterized by linear epitope mapping (22, 29). We found that 

bnmAb 2D10 binds to recombinant RSV G161-197 similarly to recombinant RSV 

Gecto (Fig. 1), revealing that its epitope is also within the conserved, unglycosylated 
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region of RSV G. We then engineered a recombinant 2D10 single-chain variable 

fragment (scFv), which forms stable complexes with a synthetic RSV G peptide 

(RSV G169-198) in solution (fig. S1), and we determined the crystal structure of the scFv 

2D10-RSV G169-198 complex to 1.56 Å resolution (Fig. 2C, fig. S2, and table S1). 

Antibody 2D10 uses a twisted heavy-chain CDR3, heavy-chain CDR2, and light-

chain CDR3 to bind to a ~550 Å2epitope on the RSV G cysteine noose. The CX3C 

chemokine motif, which forms a short helix in the cysteine noose, is buried by 

bnmAb 2D10 binding. Although the 2D10 epitope is mostly continuous, composed 

mainly of residues 177 to 188, the two cysteines within the epitope form two disulfide 

bonds that induce strong conformational character to this epitope, which we have 

named antigenic site γ2. 

Functional significance of antigenic sites γ1 and γ2 

To understand the mechanism of virus neutralization and protection from 

disease by bnmAbs 3D3 and 2D10, we examined whether they inhibit RSV G 

modulation of CX3CR1+ cells in an in vitro chemotaxis assay (Fig. 3A). First, we 

tested recombinant RSV Gecto and found that it induces chemotaxis of human 

monocyte THP-1 cells, consistent with previous studies (13, 23). To determine if the 

RSV G CCD alone is sufficient to induce chemotaxis, we tested recombinant RSV 

G161-197 and found that it induces chemotaxis at levels equivalent to RSV Gecto. 

Preincubation of RSV G161-197 with bnmAbs 3D3 and 2D10 markedly inhibited RSV 

G161-197–induced chemotaxis, suggesting that the bnmAbs 3D3 and 2D10 block a 
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CX3CR1-binding site on RSV G. Control experiments show that the bnmAbs have no 

effect on chemotaxis induced by human CX3CL1, confirming the specificity of the 

bnmAbs (Fig. 3B). Last, to confirm that chemotaxis migration is induced by 

interactions with CX3CR1, we preincubated THP-1 cells with anti-CX3CR1 

polyclonal antibodies, which significantly inhibited RSV G161-197–induced chemotaxis 

(Fig. 3A) and CX3CL1-induced chemotaxis (Fig. 3B). Together, these studies 

establish that the 37–amino acid fragment RSV G161-197 is sufficient to modulate 

CX3CR1 and that bnmAbs 3D3 and 2D10 specifically block this activity. 
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Fig. 1.3 bnmAbs 3D3 and 2D10 specifically block RSV G161-197–induced 

chemotaxis. 

Chemotaxis assays were performed in a Transwell plate, with THP-1 cells added to 
the upper chamber and chemoattractant added to the lower chamber. (A) Serum-free 
media were used as negative control, 10% FBS as positive control, 5 nM RSV Gecto, or 
5 nM RSV G161-197. (B) Serum-free media containing BSA (1 mg/ml) were used as a 
negative control and 10 nM CX3CL1 (fractalkine) as a positive control. Chemotactic 
indices were determined by comparing the fold increase in cell migration toward the 
chemoattractant compared to cell migration toward serum-free media alone. Studies 
with bnmAbs (25 nM) were used to examine inhibition of RSV G161-197–induced and 
CX3CL1-induced chemotaxis. Studies with anti-CX3CR1 preincubated with THP-1 
cells in the upper chamber were used to examine antagonism of cell migration toward 
RSV G161-197 and CX3CL1 in the lower chamber. Student’s t test was performed. Black 
asterisks denote significance compared to negative control and gray asterisks denote 
significance compared to RSV G161-197 (A) or CX3CL1 (B); ***P < 0.001, ****P < 
0.0001. Chemotaxis experiments were performed in four biological replicates. Error 
bars indicate SEM. 
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Sequence conservation at antigenic sites γ1 and γ2 

Last, to understand the molecular basis for RSV G activation of CX3CR1, we 

aligned diverse RSV G sequences and mapped conservation level onto the RSV G 

structure (Figs. 1B and 4A). Despite the overall high variability of full-length RSV G 

(53% identity between subtypes RSV A and B), the 37–amino acid fragment RSV 

G161-197 that activates CX3CR1 contains 24 invariant residues (70% identity between 

subtypes RSV A and B). Notably, in the CX3C motif, only one of the three “X” 

amino acids, Ile185, is highly conserved, suggesting that this motif alone does not 

compose the CX3CR1-binding site (Fig. 4A). Rather, we find that the invariant 

cysteines in the CX3C motif stabilize a three-dimensional surface of highly conserved 

amino acids that form extensive atomic interactions across the entire region (Fig. 4B), 

consistent with bnmAb epitopes (Fig. 4A). Thus, the RSV G CCD forms a highly 

conserved three-dimensional surface poised for CX3CR1 binding (Fig. 4C and fig. 

S3). We note that the heparin-binding domain, which is immediately C-terminal to 

the cysteine noose, includes several conserved positively charged amino acids (Fig. 

1B) (32). Whereas RSV does not use heparan sulfate proteoglycans (HSPGs) to infect 

human airway epithelial cells, RSV may use HSPGs to infect other cell types, as 

observed for RSV infection in immortalized cells (10). HSPGs may also play a role in 

binding of soluble RSV G to other human cells (33). We observed no structural or 
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sequence similarities between RSV G and CX3CL1, the only known ligand for 

CX3CR1, besides the presence of a CX3C motif and its two disulfide bonds (fig. S4). 

This structural divergence despite similar functionality suggests an opportunity to 

selectively develop therapies blocking interaction between the RSV G CCR and 

CX3CR1, a strategy that led to the development of the HIV entry inhibitor Maraviroc, 

an antagonist of the HIV co-receptor CCR5 (34).  
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Fig. 1.4 Sequence conservation within antigenic sites γ1 and γ2, atomic interactions 

within the RSV G CCD, and model of RSV G glycoprotein. 

A) Top: Surface representation of RSV G with amino acids colored according to 
conservation. Atoms from the main chain and conserved side chains are red, similar 
side chains are pink, and nonconserved side chains are white. The five CX3C motif 
amino acids are outlined in green. Middle and bottom: The epitope footprints of 
antigenic site γ1 (bnmAb 3D3 epitope) and antigenic site γ2 (bnmAb 2D10 epitope), 
respectively. (B) Structure of RSV G161-197 with hydrogen bonds shown in purple dashes 
and representative side chain–side chain hydrophobic interactions (≤4.0 Å) shown in 
gray dashes. (C) Schematic of membrane-bound RSV G. N- and O-linked glycans are 
shown by black and gray discs, respectively. 
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DISCUSSION 

Our studies define RSV G amino acids 161 to 197 as a key region of 

vulnerability that is accessible to antibody binding. Nearly half of RSV-specific 

human memory B cells target the G glycoprotein (24), and more than half of the anti-

G antibodies in human serum target specifically the RSV G CCD (35). Consistent 

with these studies, 17 of 21 isolated human anti-G mAbs have linear epitopes that 

map to this region (fig. S5) (22, 24). Of the other four mAbs, we show that one 

(2D10) binds to an epitope adjacent to the epitope for 3D3 but largely nonoverlapping 

with it. A limitation of the present study is that definition of the epitopes for other 

mAbs has not yet been achieved nor have the epitopes been defined for bioactive anti-

G mAbs that are strain-specific. 

Overall, bnmAbs against this region of vulnerability exhibit high affinities and 

strain independence, neutralize RSV infection of human airway epithelial cells, 

inhibit soluble RSV G modulation of CX3CR1+ cells, and decrease pathogenesis in 

animal models, supporting their development as therapeutic agents to prevent and 

treat RSV infection. To address global needs, a vaccine may be a more cost-effective 

intervention, with the present studies providing a firm foundation for constructing an 

immunogen that induces protective broadly neutralizing antibodies targeting the RSV 

G CCD. To avoid side effects, such an immunogen should not itself activate 

CX3CR1, a limitation whose feasibility awaits further study. 
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Fig. S1. Co-elution of RSV G-antibody complexes in solution. 

 
(A, C, E) Superdex 200 size-exclusion chromatography purification traces of 
antibody-RSV G complexes. (B) Non-reducing SDS-PAGE of molecular weight 
markers in kD (MW), Fab 3D3 alone (lane 1), co-eluted Fab 3D3-RSV G162-172 
complex (lane 2), and RSV G162-172 alone (lane 3).  (D) Non-reducing SDS-PAGE of 
molecular weight markers in kD (MW) and co-eluted Fab 3D3-RSV G161-197 complex 
(lanes 1 and 2). (F) Reducing SDS-PAGE of molecular weight markers in kD (MW), 
co-eluted scFv 2D10-RSV G169-198 complex (lane 1), and RSV G169-198 alone (lane 2).   
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Fig. S2. Electron density maps (2Fo-Fc) for RSV G bound to antibodies.  

(A) RSV G162-172 when bound to Fab 3D3, (B) RSV G161-197 when bound to Fab 3D3. 
(C) RSV G169-198 when bound to scFv 2D10. In all cases, the electron density maps 
(2Fo-Fc) around RSV G are contoured at 1.0 σ. (D) Structural alignment of RSV G 
from all three structures. Note that in the Fab 3D3-RSV G162-172 complex and Fab 
3D3-RSV G161-197 complex structures, there are two molecules of RSV G in the 
asymmetric units. 
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Fig. S3. Schematic of RSV G interactions with anti-G antibodies.  

(A) Model of membrane-bound G glycoprotein on the surface of the RSV virion or 
the surface of RSV-infected cells alone (left) or bound by bnmAbs 3D3 and 2D10 
(right). (B) Model of soluble RSV G glycoprotein, which is secreted from RSV-
infected cells and modulates CX3CR1+ immune cells, alone (left) or bound by 
bnmAbs 3D3 and 2D10  (right). (C) Zoom-in of RSV G CCR bound by bnmAbs 3D3 
and 2D10. For clarity, only the variable regions of the bnmAbs are shown. 
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Fig. S4. Structural comparison of RSV G with fractalkine/CX3CL1.  

(A) Structure of fractalkine/CX3CL1 (red) bound to the human cytomegalovirus G-
protein coupled receptor US28 (grey) (PDB code 4XT1). US28 has 38% sequence 
identity with the human chemokine receptor CX3CR1. (B) Structure of 
fractalkine/CX3CL1 (red), in the same orientation as in panel a, with the amino acid 
side chains of the CX3C motif shown as sticks and colored yellow. (C) Structure of 
RSV G161-197 (cyan), with the amino acid side chains of the CX3C motif shown as 
sticks and colored yellow. 
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Fig. S5. Isolated human anti-G mAbs and epitope characterization.  

(A) Sequence alignment of RSV G CCR from diverse RSV strains, colored by linear 
epitope clustering in three regions. (B) Structure of RSV G161-197, colored as in panel 
a, revealing the overlap of linear epitopes in three-dimensional space. (C) Table of 21 
isolated human anti-G mAbs, their linear epitope sequences, and their RSV strain 
specificity. 
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MATERIALS AND METHODS 

Study design 

The overall objective of the study was to determine the molecular basis for antibody 

recognition of the RSV G glycoprotein. To enable this goal, we undertook 

experiments centered on protein chemistry, enzyme-linked immunosorbent assay 

(ELISA) binding studies, protein x-ray crystallography, and cellular chemotaxis 

assays. The number of independent experiments is outlined in figure legends and in 

Materials and Methods, where appropriate. 

Production of bnmAbs 3D3 and 2D10, Fab 3D3, and scFv 2D10 

Recombinant bnmAb 3D3 and bnmAb 2D10 were produced by transient transfection 

in Chinese hamster ovary (CHO) cells and purification by immobilized protein A, as 

described previously (22, 29). Fab 3D3 was generated by incubation of bnmAb 3D3 

with immobilized papain, followed by removal of the Fc fragment with immobilized 

protein A. Fab 3D3 was then purified by Superdex 200 size exclusion 

chromatography in 10 mM tris-HCl (pH 8.0) and 150 mM NaCl. For recombinant 

scFv 2D10, a synthetic gene codon-optimized for Drosophila melanogaster—

encoding the bnmAb 2D10 heavy-chain variable region, a (GGGGS)3GGG linker, 

and the bnmAb 2D10 light-chain variable region—was cloned into pMT-puro in-
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frame with an N-terminal BiP signal sequence and a C-terminal thrombin cleavage 

site followed by a Twin-Strep purification tag. The resulting scFv 2D10 expression 

plasmid was used to obtain stably transfected Schneider 2 (S2) insect cells. Secreted 

scFv 2D10 was affinity-purified on a StrepTrap column, digested with thrombin 

protease to remove the purification tag, and then purified by Superdex 200 size 

exclusion chromatography in 10 mM tris-HCl (pH 8.0) and 150 mM NaCl. 

Expression and purification of RSV Gecto 

A synthetic gene encoding RSV G (strain A2) amino acids 64 to 298 (UniProtKB 

entry P03423) was cloned into pCF in-frame with an N-terminal tissue plasminogen 

activator signal sequence and C-terminal tandem 6× histidine and Twin-Strep 

purification tags. Recombinant RSV Gectowas produced by transient transfection in 

CHO cells, and secreted RSV Gecto was affinity-purified on a StrepTrap column. 

Expression and purification of RSV G161-197 

A synthetic gene codon-optimized for E. coli encoding RSV G (strain A2) amino 

acids 161 to 197 (UniProtKB entry P03423) with a C-terminal 6× histidine 

purification tag was cloned into pET52b. Recombinant RSV G161-197 was expressed 

overnight in E. coli BL21(DE3) at 18°C. E. coli cells were lysed by ultrasonication in 

20 mM tris-HCl (pH 8.0), 150 mM NaCl, and 25 mM imidazole (buffer A) containing 

2 μM MgCl2, benzonase, and protease inhibitors. RSV G161-197 was purified from 

soluble lysates by HisTrap FF affinity chromatography and eluted with a gradient into 
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buffer B (buffer A containing 500 mM imidazole). The purification of soluble RSV 

G161-197 in the absence of reducing agents appears to be sufficient for spontaneous 

formation of the cysteine noose disulfide bonds (1-4, 2-3 connectivity), as observed in 

the crystal structure of the Fab 3D3-RSV G161-197 complex. 

Enzyme-linked immunosorbent assay 

Purified bnmAbs at a concentration of 5 μg/ml (150 μl total) were incubated 

overnight at room temperature in 96-well ELISA microtiter plates. Plates were then 

washed three times with PBS containing 0.05% Tween 20 (PBST). Wells were 

blocked by adding 150 μl of 5% bovine serum albumin (BSA) in PBS and incubating 

at room temperature for 1 hour followed by three PBST washes. Recombinant RSV 

Gecto at 5 μg/ml or RSV G161-197 at 20 μg/ml in 1% BSA in PBS was serially diluted 1:3 

with 1% BSA in PBS. Wells were incubated with 150 μl of RSV G protein for 1 hour 

at room temperature, and the plates were washed three times with PBST. The plates 

were then incubated for 1 hour at room temperature with 150 μl of horseradish 

peroxidase–conjugated HisProbe (Thermo Fisher Scientific) diluted 1:5000 in 1% 

BSA in PBS. Plates were washed three times with PBST and developed by adding 

peroxidase substrate o-phenylenediamine dihydrochloride in 0.05 M phosphate-citrate 

buffer (pH 5.0) and 1.5% hydrogen peroxide for 10 min at room temperature. The 

reactions were stopped by incubation with 2N sulfuric acid for 10 min at room 

temperature, and the absorbance was measured at 490 nm. ELISA experiments were 

performed in biological triplicates. 
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Formation and structure determination of the Fab 3D3-RSV G162-172 complex 

A synthetic peptide encoding RSV G amino acids 162 to 172 (UniProtKB entry 

P03423) was mixed in 5-molar excess with purified Fab 3D3 at 17.5 mg/ml in 10 mM 

tris-HCl (pH 8.0) and 150 mM NaCl. Crystals were grown by hanging drop vapor 

diffusion at 4°C with a well solution of 23% PEG 3350 and 0.05 M zinc acetate. 

Crystals were transferred into a cryoprotectant solution of 26% PEG 3350, 0.05 M 

zinc acetate, and 25% ethylene glycol and flash-frozen in liquid nitrogen. Diffraction 

data were collected at cryogenic temperature at the Advanced Light Source (ALS) on 

beamline 8.3.1 using a wavelength of 1.11503 Å. Diffraction data from a single 

crystal were processed with iMosflm (36) and Aimless (table S1) (37). The Fab 3D3-

RSV G162-172complex structure was solved by molecular replacement with a Fab 

homology model and the program PHASER (38), and the structure was refined and 

manually rebuilt using PHENIX (39) and Coot (40), respectively (table S1). 

Formation and structure determination of the Fab 3D3-RSV G161-197 complex 

Purified RSV G161-197 was mixed in 2-molar excess with purified Fab 3D3, dialyzed 

into 10 mM tris-HCl (pH 8.0) and 150 mM NaCl, and concentrated to 15 mg/ml. 

Crystals were grown by hanging drop vapor diffusion at 22°C with a well solution of 

21% PEG 3350 and 0.2 M ammonium citrate (pH 7.0). Crystals were transferred into 

a cryoprotectant solution of 25% PEG 3350, 0.2 M ammonium citrate (pH 7.0), and 

25% glycerol and flash-frozen in liquid nitrogen. Diffraction data were collected at 

cryogenic temperature at the ALS beamline 8.3.1 using a wavelength of 1.11582 Å. 
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Diffraction data were collected at cryogenic temperature at the ALS on beamline 

8.3.1 using a wavelength of 1.11503 Å. Diffraction data from a single crystal were 

processed with iMosflm (36) and Aimless (37) (table S1). The Fab 3D3-RSV G161-

197 complex structure was solved by molecular replacement with Fab 3D3 and the 

program PHASER (38), and the structure was refined and manually rebuilt using 

PHENIX (39) and Coot (40), respectively (table S1). 

Formation and structure determination of the scFv 2D10-RSV G169-198 complex 

A synthetic peptide encoding RSV G amino acids 169 to 198 (UniProtKB entry 

P03423) was mixed in 2-molar excess with purified scFv in 60 mM tris-HCl (pH 8.0) 

and 230 mM NaCl and concentrated to 15.0 mg/ml. Crystals were grown by hanging 

drop vapor diffusion at 22°C with a well solution of 24% PEG 4000, 0.17 M 

ammonium sulfate, 0.085 M sodium citrate (pH 5.6), and 15% glycerol. Crystals were 

transferred into a cryoprotectant solution of 28% PEG 4000, 0.17 M ammonium 

sulfate, 0.085 M sodium citrate (pH 5.6), 15% glycerol, and 25% glycerol and flash-

frozen in liquid nitrogen. Diffraction data were collected at cryogenic temperature at 

the Advanced Photon Source on beamline 23-ID-D using a wavelength of 1.033 Å. 

Diffraction data from a single crystal were processed with HKL2000 (table S1) (41). 

The scFv 2D10-RSV G169-198complex structure was solved by molecular 

replacement with a scFv homology model and the program PHASER (38), and the 

structure was refined and manually rebuilt using PHENIX (39) and Coot (40), 

respectively (table S1). 
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Chemotaxis assay 

The in vitro chemotaxis assay was performed using a Transwell insert plate with an 8-

μm pore size, following previously published methods (9, 23). Approximately 2 

million log-phase THP-1 cells (a human leukemia monocytic cell line) washed twice 

and suspended in serum-free RPMI 1640 media were added to the upper chamber of 

the insert plate. Negative controls were serum-free media alone or serum-free media 

containing 25 nM bnmAb 3D3 or bnmAb 2D10 was added to the lower chamber. As 

a positive control, media containing 10% fetal bovine serum (FBS) was added to the 

lower chamber. RSV Gecto or RSV G161-197 samples were added to the lower chamber at 

a final concentration of 5 nM in serum-free media. For samples with RSV G161-197and 

bnmAbs, RSV G161-197 was preincubated with 5-molar excess bnmAb for 20 min at 

room temperature and then added to serum-free media in the lower chamber for a 

final concentration of 5 nM RSV G161-197 and 25 nM bnmAb. For samples with anti-

CX3CR1 antibody, 2 μl anti-CX3CR1 rabbit polyclonal antibody (1 mg/ml) was 

incubated with THP-1 cells for 30 min in the upper chamber before being placed into 

the well. The anti-CX3CR1 rabbit polyclonal antibody (cat no. PA5-19910; Thermo 

Fisher Scientific) was generated by immunization of rabbits with a peptide 

corresponding to amino acids 2 to 21 of human CX3CR1 (UniProt ID P49238). The 

assembled plates were incubated in a CO2 incubator at 37°C for 5 hours. Cells 

migrated to the lower chamber were counted, and the chemotactic indices were 

determined by comparing the fold increase in cell migration toward the 
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chemoattractant to cell migration toward serum-free media alone. Experiments were 

performed in at least four biological replicates. 

For chemotaxis assays with CX3CL1 (fractalkine), THP-1 cells were washed and 

suspended in serum-free RPMI 1640 media containing BSA (1 mg/ml). Recombinant 

full-length human CX3CL1 (cat no. 365-FR; R&D Systems) was added to the lower 

chamber at a final concentration of 10 nM. For samples with bnmAbs, CX3CL1 was 

preincubated with 2.5 M excess bnmAb for 20 min at room temperature and then 

added to the lower chamber for a final concentration of 10 nM CX3CL1 and 25 nM 

bnmAb. For samples with anti-CX3CR1 antibody, 2 μl anti-CX3CR1 rabbit 

polyclonal antibody (1 mg/ml) was incubated with THP-1 cells for 30 min in the 

upper chamber before being placed into the well. Experiments were performed in four 

biological replicates. 
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Table S1.  Crystallographic data collection and refinement statistics  

 3D3-RSV G162-172 3D3-RSV G161-197 2D10-RSV 

G169-198 

PDB code 5WNB 5WNA 5WN9 
Data collectiona,b    
Space group P 21 21 21 P 1 21 1 P 21 21 21 
Cell dimensions      
    a, b, c (Å) 68.76, 105.43, 121.82 64.62, 135.01, 73.78  44.84, 56.39, 

126.15 
    α, β, γ  (°)  90.00, 90.00, 90.00 90.00, 107.45, 90.00 90.00, 90.00, 

90.00 
Resolution (Å) 48.38 - 2.40 (2.48 – 

2.40)  
48.72 - 2.40 (2.48 - 
2.40) 

50.00 - 1.55 
(1.58 – 1.55) 

Rsym or Rmerge 0.122 (0.838) 0.107 (0.763) 0.058 (0.930) 
I / σI 13.4 (3.1) 12.3 (2.2) 44.0 (1.4) 
Completeness (%) 99.9 (99.8) 99.5 (99.0) 99.9 (99.4) 
Redundancy 9.2 (8.3) 6.3 (5.6) 9.6 (6.2) 
CC1/2 0.997 (0.808) 0.996 (0.670) 0.998 (0.751) 
 

Refinement 

   

Resolution (Å) 48.38 - 2.40 48.72 - 2.40 50.00 - 1.55 
No. reflections 35,325 46,869 47,114 
Rwork / Rfree

c 0.218 / 0.280 0.192 / 0.246 0.169 / 0.185 
No. atoms    
    Protein 6,586 7,124 3,810 
    Ligand/ion 22 None None 
    Water 90 135 111 
B-factors    
    Protein 50.29 42.02 34.04 
    Ligand/ion 63.66 None None 
    Water 35.5 38.59 37.92 
R.m.s. deviations    
    Bond lengths (Å) 0.005 0.006 0.008 
    Bond angles (°) 0.864 0.935 0.968 
a For each structure, data from one crystal was used. 
b Values in parentheses are for highest-resolution shell. 
c Rfree was calculated using 5% of data excluded from refinement. 
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Chapter II 

Conformational flexibility in respiratory syncytial virus G neutralizing 

epitopes 

 

ABSTRACT 

Respiratory syncytial virus (RSV) is a top cause of severe lower respiratory 

tract disease and mortality in infants and the elderly. Currently, no vaccine or 

effective antiviral treatment exists for RSV. The RSV G glycoprotein mediates viral 

attachment to cells and contributes to pathogenesis by modulating host immunity 

through interactions with the human chemokine receptor CX3CR1. Antibodies 

targeting the RSV G central conserved domain are protective in both prophylactic and 

post-infection animal models. Here, we describe the crystal structure of the broadly-

neutralizing monoclonal antibody 3G12 bound to the RSV G central conserved 

domain. Antibody 3G12 binds to a conformational epitope comprised of highly 

conserved residues, explaining its broad neutralization activity. Surprisingly, RSV G 

complexed with 3G12 adopts a distinct conformation not observed in previously 

described RSV G–antibody structures. Comparison to other structures reveals that the 

RSV G central conserved domain is flexible and capable of adopting multiple 

conformations in the regions flanking the cysteine noose region. We also show that 

antibody 3G12 blocks RSV G-mediated cell chemotaxis, providing a mechanistic 

basis for its ability to protect against RSV infection and disease in vivo. Our studies 
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support the development of RSV G as a vaccine antigen. Moreover, our studies 

provide new insights for rational vaccine design, indicating the importance of 

preserving the global structural integrity of antigens, yet at the same time preserving 

local conformational flexibility at antigenic sites which may facilitate a more diverse 

antibody response and provide broader protection against infection and disease. 
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IMPORTANCE 

Respiratory syncytial virus (RSV) causes severe respiratory infections in 

infants, young children, and the elderly, and currently no licensed vaccine exists. In 

this study, we describe the crystal structure of the RSV surface glycoprotein G in 

complex with a broadly-neutralizing monoclonal antibody. The antibody binds to 

RSV G at a highly conserved region, which is stabilized by two disulfide bonds, but 

captures RSV G in a conformation not previously observed, revealing that this region 

is both structured and flexible. Importantly, our findings provide insight for the 

design of vaccines that elicit diverse antibodies that provide broad protection from 

infection and disease.  
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INTRODUCTION   

Respiratory syncytial virus (RSV) is a globally prevalent respiratory virus 

which affects the lungs and airways. Infants and young children are at the highest risk 

of severe outcome from RSV infection, with 33.1 million episodes of lower 

respiratory tract infection and approximately 3.2 million hospital visits and 118,200 

deaths per year worldwide in children under age 5 due to RSV (1). RSV is also a 

major cause of illness in adults older than 65 years and immunocompromised 

individuals, with an estimated 14,000 deaths per year in the United States (2). 

Hospitalization due to RSV is a major economic burden, especially in preterm infants 

and older adults (3).   

Currently, no licensed vaccine exists for the prevention of RSV infection, 

making RSV one of the highest burden diseases with no readily available preventative 

measure. The only FDA-approved therapy for RSV is passive prophylaxis with 

palivizumab (Synagis), a monoclonal antibody which reduces disease severity and 

hospitalization (4). Palivizumab’s approved use is limited to high-risk premature birth 

infants; due to the high cost, approximately $10,000 for a full course of therapy (5), it 

is not widely used in low-income countries. The need for widely available vaccines 

and therapies for RSV is evidenced from the 19 vaccine candidates and therapeutic 

monoclonal antibodies in clinical trials (6). 

RSV is a negative-sense single stranded RNA virus with two major 

glycoproteins on the virion surface: the attachment glycoprotein (G) and the fusion 

glycoprotein (F) (7). RSV G is responsible for cellular attachment to host cells and 
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RSV F causes the viral membrane to fuse with the target host cell membrane. While 

both RSV F and G are immunogenic and are targeted by neutralizing antibodies, the 

majority of neutralizing antibodies in human sera target RSV F (8, 9). As such, most 

RSV vaccine candidates and therapeutic antibodies currently in development focus on 

RSV F. However, RSV that does not express the G protein is highly attenuated in 

vivo (10), and monoclonal antibodies that target RSV G are protective in vivo (11-21). 

In humans, anti-G antibodies are associated with lower clinical disease severity 

scores, despite an abundance in sera more than 30 times lower than anti-F antibodies 

(8). Thus, the RSV G protein is increasingly recognized as an important target for 

RSV vaccine and therapeutic antibody development (22). 

 RSV G is a type II membrane protein containing two mucin-like 

regions coated with 30-40 O-linked glycans and 3-5 N-linked glycans (Fig. 1A) (7, 

23, 24). There are two forms of RSV G produced during infection. Membrane-bound 

RSV G is responsible for virus attachment to airway epithelial cells via the human 

chemokine receptor CX3CR1 (25-28). A secreted form of RSV G, derived from a 

second translation initiation site at Met48 and released from the membrane by 

proteolysis, is expressed early in the infection (first ~6 hours, prior to the release of 

virions at ~12 hours) (Fig. 1A) (29). Secreted RSV G modulates signaling and 

trafficking of CX3CR1+ immune cells, contributing to airway congestion and 

pathogenesis (26, 27, 30-33). Between the two mucin-like regions of RSV G is a 

central conserved domain (CCD) of ~40 highly conserved amino acids, including four 

invariant cysteines forming a cysteine noose motif with two disulfide bonds (1-4, 2-3 
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connectivity) (Fig. 1A) (34-36). While the C-terminus of the RSV G CCD possesses a 

heparin binding domain (Fig. 1A) (37, 38), initial RSV infection is thought to be 

mediated primarily by interaction between the RSV G CCD and CX3CR1 on ciliated 

lung cells (25-28), which do not have measurable heparan sulfate proteoglycans on 

their surfaces. 

 Broadly neutralizing monoclonal antibodies (bnmAbs) that target RSV 

G are able to neutralize RSV infectivity in cell culture, including in HAE cells, and 

significantly reduce RSV viral loads and disease in both prophylactic and post-

infection animal models (12, 14-16, 21, 25, 28, 39, 40). In addition to reducing viral 

loads, treatment with anti-RSV G mAbs reduces BAL cell influx including RSV G 

protein-induced leukocyte migration and eosinophilic inflammatory response, 

resulting in decreased airway congestion (15, 33, 41). Anti-G mAbs have also been 

shown to reduce mucus production and to restore beneficial antiviral IFN-α (18, 41-

43). Most of the anti-G bnmAbs that have been studied to date bind with high affinity 

to RSV G (KD (dissociation constant) = 1.1 pm - 3.3 nM) and bind to linear epitopes 

within the RSV G CCD, as determined by linear epitope mapping techniques (17, 21, 

39, 44). Recently, two studies elucidated four high-resolution crystal structures of 

antibody-RSV G CCD complexes (16, 45). Unexpectedly, all four antibodies were 

found to bind to conformational epitopes, revealing additional interactions beyond 

their linear epitopes and illuminating a previously unappreciated role of the disulfide-

stabilized cysteine noose in forming conformational epitopes and contributing to 

high-affinity antibody binding.  
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Here, we investigated the bnmAb 3G12, which reduces viral loads, airway 

hyper-responsiveness, and inflammation in both prophylactic and post-infection 

mouse models of RSV infection despite binding with ~100-fold weaker affinity than 

the previously studied bnmAbs (12, 21). Linear epitope mapping experiments have 

shown that bnmAb 3G12 binds to RSV G CCD residues 167-176, which is shifted 

downstream compared to other anti-G bnmAbs in the panel that bind primarily RSV 

G residues 162-169 (12, 21). We hypothesized that structural studies into the 3G12 

antigenic site might reveal additional information about the mechanisms of high-

affinity antibody binding and broad neutralization against RSV A and B strains. We 

present here the structure of antibody 3G12 bound to the RSV G CCD, which reveals 

a novel conformational epitope comprised of highly conserved residues. The structure 

reveals that the RSV G CCD is flexible and adopts several distinct conformations. We 

also show that antibody 3G12 blocks RSV G chemotactic activity, providing a 

mechanistic basis for its ability to protect against RSV infection and disease in vivo. 

Overall, these studies have broad implications for vaccine design, highlighting the 

importance of maintaining flexibility in vaccine antigen epitopes so as to elicit 

diverse antibody responses. 

RESULTS 

Fab 3G12-RSV G157-197 complex structure 

We investigated bnmAb 3G12, a native human antibody that binds RSV G 

with high affinity, KD = 579 pM. Antibody 3G12 shows broadly neutralizing activity 



 

56 

across diverse lab and clinical RSV strains (21). To understand the molecular basis 

for the broad reactivity of bnmAb 3G12 and to determine if it binds to a larger 

conformational epitope beyond that predicted by linear epitope mapping, we used X-

ray crystallographic studies to determine the structure of bnmAb 3G12 bound to the 

RSV G CCD (Fig. 1A). Purified antigen-binding fragment (Fab) 3G12 was mixed 

with recombinant RSV G157-197, which formed a stable complex in solution. We 

crystallized the Fab 3G12-RSV G157-197 complex and determined its crystal structure 

to 2.9 Å resolution (Fig. 1B, Fig 1C and Table 2).  

The Fab 3G12-RSV G157-197 complex structure reveals a 924 Å2 epitope on the 

RSV G CCD, with 3G12 heavy chain burying 697 Å2 and the light chain burying 227 

Å2 of the epitope (Fig. 1B). Similar to RSV G-antibody structures determined 

previously (16, 45), antibody 3G12 binds to a conformational epitope comprised of 

RSV G residues 160-179, 182 and 189, revealing additional interactions beyond the 

linear epitope residues 167-176 (Fig. 1). The linear epitope residues are invariant or 

highly conserved (Fig. 1A), explaining the broad reactivity of bnmAb 3G12 for 

diverse RSV strains. The 3G12 heavy chain complementarity-determining regions 

(HCDRs) account for the majority of the interactions and buried surface with the 

RSV G CCD, with the HCDR2 burying the largest portion with 315 Å2 and HCDR3 

accounting for 284 Å2 (Fig. 1C). On the light chain complementarity-determining 

regions (LCDRs), LCDR3 buries 169.5 Å2 on the N-terminal end of the RSV G CCD, 

while LCDR1 and the Fab 3G12 N-terminal residues form additional minor 

interactions (Fig. 1C). The 3G12 heavy chain CDR2 stabilizes residues 167-170 of 
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RSV G by several hydrogen bonds and van der Waals interactions. In addition, 

residues from all three of the HCDRs from bnmAb 3G12 stabilize hydrophobic 

interactions with RSV G residues F163, F165, F168, F170, P172, and I175, forming a 

hydrophobic core-like region within the antibody 3G12-RSV G complex. 

Interestingly, the helix on the C-terminal end of the cysteine noose, which 

encompasses the CX3C motif (residues 180-186) has almost no interactions with 

antibody 3G12, unlike other antibody-RSV G CCD structures, where this helix has a 

role in antibody binding (Fig.1C and Fig. 2).  

RSV G CCD epitopes and conformational flexibility 

To better understand the conformational flexibility in the RSV G CCD, all 

known structures of the CCD bound by antibodies were compared (Fig. 2). The 

structures were aligned at the cysteine noose region (~ residues 170-187), which has 

an RMSD of <0.6 Å across all structures. The region N-terminal to the cysteine noose 

(~ residues 160-169) adopts a different conformation in each structure (RMSD of 3-5 

Å) and varies in secondary structural elements (i.e. forms a helix when bound to 

antibody 3D3 and forms a strand when bound to antibody CB002.5)(Fig. 2). RSV G 

residue N169 appears to be flexible across all of the structures and may be one of the 

last semi-ordered residues in the N-terminal region of the CCD. Similarly, the C-

terminal region after K187 may be flexible and capable of adopting multiple 

conformations (Fig. 2). These C-terminal, non-interacting RSV G CCD residues are 

present in most of the complexes but do not have visible electron density, suggesting 
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that they are dynamic and flexible. Overall, the RSV G CCD cysteine noose is 

structurally conserved and forms an important structural element for antibody 

binding, however the N- and C-terminal regions of the CCD are flexible and adopt 

different conformations when captured by diverse antibodies.   

Biological relevance of the 3G12 epitope 

To understand the mechanism by which bnmAb 3G12 protects against RSV 

infection and disease in vivo, we performed an in vitro chemotaxis assay in human 

monocyte THP-1 cells. Previously, we showed that recombinant RSV G ectodomain 

(RSV Gecto) and RSV G CCD induce THP-1 cell chemotaxis, and anti-CX3CR1 

antibodies inhibited chemotaxis (45). Here, we confirmed that RSV Gecto stimulates 

chemotaxis ~5 times over background levels (Fig. 3). Preincubation of RSV Gecto 

with bnmAb 3G12 mAb suppresses the chemotactic activity to levels similar to 

negative control (Fig. 3). Control experiments show that bnmAb 3G12 alone has no 

effect on chemotaxis. These experiments demonstrate that bnmAb 3G12 blocks the 

chemotactic activity of RSV G, consistent with the activities of other bnmAbs 

targeting the CCD.   
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Fig. 2.1. Fab 3G12+RSV G157-197 complex structure 

Crystal structure of the Fab 3G12-RSV G157-197 complex. (A) Schematic of the RSV 
G glycoprotein from RSV strain A2, including the transmembrane region (TM), 
CCD, and the cysteine noose (Cys noose). Met48 is the alternate initiation site for the 
production of soluble RSV G. Predicted N- and O-linked glycans are shown by red 
“Y” and blue “O,” respectively. Below is a sequence logo of residues 160-197 of the 
RSV G CCD, revealing the sequence conservation across strains RSV A, RSV B, 
RSV L, and RSV 1-8. (B) Overall view of antibody 3G12 heavy chain (dark grey) 
and light chain (light grey) bound to RSV G157-197 (cyan, with disulfides in yellow). 
(C) Zoom-in view of interactions between antibody 3G12 with RSV G CCD. 
Hydrogen bonds are shown as dashes. Heavy-chain CDRs (HCDR1-3) and light-
chain CDRs (LCDR1 and 3) are labeled. 
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Fig. 2.2. All RSV G structures bound by antibodies and epitopes.  

Comparison of known RSV G CCD epitopes and structures. Top, epitopes on RSV G 
are colored as follows: 3G12 (blue), CB002.5 (gold), 3D3 (green), CB017.5 
(magenta), 2D10 (cyan). Bottom, 180 degree rotation around y-axis. Residues 
interacting with antibodies are written below each structure.  
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Fig. 2.3 bnmAbs 3G12 blocks RSV Gecto–induced chemotaxis. 

bnmAb 3G12 blocks RSV Gecto–induced chemotaxis. Serum-free media was used as 
negative control for the chemotaxis assay. Chemotactic indices were determined by 
comparing the fold increase in cell migration toward the chemoattractant compared to 
cell migration toward serum-free media alone. Studies with bnmAb 3G12 were used 
to examine inhibition of RSV Gecto–induced chemotaxis. A student’s t-test was 
performed. Black asterisks denote significance compared to negative control and gray 
asterisks denote significance compared to RSV Gecto (****P < 0.0001). Chemotaxis 
experiments were performed in three biological replicates. Error bars indicate SEM. 
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DISCUSSION 

Here, we describe the crystal structure of the human bnmAb 3G12 bound to 

the RSV G CCD, and we show that bnmAb 3G12 blocks RSV G-mediated cell 

chemotaxis. The antibody binds to a conformational epitope comprised of highly 

conserved residues, explaining its broad reactivity to diverse strains of RSV. The 

antibody interacts mainly with the RSV G CCD’s N-terminal region, which adopts a 

distinct conformation that differs from all other known CCD structures, suggesting 

that the RSV G CCD is flexible outside of its rigid disulfide bonded cysteine noose 

region. Residue N169 likely represents a ‘hinge’ residue, where the N-terminal region 

of the CCD preceding N169 appears to be flexible and capable of adopting multiple 

conformations and even secondary structures. Likewise, residues after K187 in the C-

terminal region of the CCD also appear to be flexible and capable of adopting 

multiple conformations.  

The observation of different conformations of RSV G CCD raises several 

important questions. Does RSV G move freely and randomly, and do our structures 

reveal momentary snapshots captured by antibody binding? Alternatively, do 

individual RSV G molecules adopt one of several distinct conformations on the RSV 

surface? What conformation does RSV G adopt when interacting with the human 

CX3CR1 receptor? We note that none of the conformations have any substantial 

tertiary structure stabilizing interactions within the CCD or clearly defined secondary 

structure. Therefore it is unlikely that RSV G assumes distinct conformations without 

additional external stabilizing interactions. One form of stabilization may come from 
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the oligomerization state of RSV G. It has been previously suggested that RSV G 

exists as a trimer or tetramer (46, 47). The extensive glycosylation of RSV G in the 

mucin-like regions flanking the CCD may also restrict RSV G flexibility. It is also 

possible that RSV G interacts with RSV F on the virus surface, creating a quaternary 

structure which may provide RSV G with the defined structures like those captured 

by the antibodies discussed in this paper. If any of these possibilities are the case, 

then this has important implications for vaccine design since immunizing with RSV G 

or RSV G CCD alone may not elicit a native-like anti-G antibody response (48). 

Our study also has important implications for vaccine antigen design in a 

broader sense. Recently, there has been a general trend in vaccine development for 

antigen stabilization. In HIV gp120, certain stabilizing mutations (SOSIP.v5.2 

S306L/R308L) improve the productive neutralizing immune response in rabbits while 

reducing the immunogenicity of non-neutralizing epitopes (49). For influenza HA, 

several stabilized immunogens have been designed that elicit universal (cross-

subtype) antibody responses and protection (50-54). In other cases, stabilization 

strategies have been key to locking viral membrane fusion protein antigens in the 

prefusion form, as was accomplished for Middle East respiratory syndrome 

coronavirus, human parainfluenza viruses, and RSV (55-57). In all cases, the pre-

fusion stabilized antigens elicited higher levels of neutralizing antibodies compared to 

the post-fusion antigens. However, despite the many reports that stabilizing strategies 

can provide an effective and improved immune response, we caution that antigen 

stabilization could limit the diversity of antibody responses. Our study and others (58, 
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59) illuminate how antigens can have flexible, dynamic epitopes, and that diverse 

antibodies can target these epitopes in distinct ways. Thus, we recommend balancing 

the needs to stabilize antigens with the benefits of preserving the native flexibility of 

epitopes, which may help elicit a broader and more diverse immune response that 

may in turn offer better protection against virus escape. Incorporating antibody 

repertoire sequencing technologies during vaccine development could provide 

opportunities to evaluate antibody diversity that is elicited by stabilized antigens. 

MATERIALS AND METHODS 

Production of bnmAb 3G12 and Fab 3G12. Recombinant bnmAb 3G12 was produced 

by transient-transfection in CHO cells and purification by immobilized protein A, as 

described previously (21, 44). Fab 3G12 was generated by incubation of bnmAb 

3G12 with immobilized papain, followed by removal of the Fc fragment with 

immobilized protein A. Fab 3G12 was then purified by Superdex 200 size-exclusion 

chromatography in 10 mM Tris-HCl pH 8.0 and 150 mM NaCl.  

 

Expression and purification of RSV G157-197. A synthetic gene codon-optimized for E. 

coli encoding RSV G (strain A2) amino acids 157 to 197 (UniProtKB entry P03423) 

with a C-terminal 6× histidine purification tag was cloned into pET52b. Recombinant 

RSV G157-197 was expressed overnight in E. coli BL21(DE3) at 18°C. E. coli cells 

were lysed by ultrasonication in 20 mM Tris-HCl (pH 8.0), 150 mM NaCl, and 25 

mM imidazole (buffer A) containing 2 μM MgCl2, benzonase, and protease 
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inhibitors. RSV G157-197 was purified from soluble lysates by HisTrap FF affinity 

chromatography and eluted with a gradient into buffer B (buffer A containing 500 

mM imidazole). 

 

Formation and structure determination of the Fab 3G12-RSV G157-197 complex. 

Purified RSV G157-197 was mixed in 2-molar excess with purified Fab 3G12, 

incubated for 1 hour at 4° C, and purified by Superdex 75 size-exclusion 

chromatography in 10 mM Tris-HCl pH 8.0 and 150 mM NaCl. The Fab 3G12-RSV 

G157-197 complex was concentrated to 15 mg/ml. Crystals were grown by hanging drop 

vapor diffusion at 22°C with a well solution of 1.8 M Ammonium Sulfate and 100 

mM Sodium acetate trihydrate (pH 4.4). Crystals were transferred into a 

cryoprotectant solution of 2.0 M Ammonium Sulfate, 100 mM Sodium acetate 

trihydrate (pH 4.4) and 25% glycerol and flash-frozen in liquid nitrogen. Diffraction 

data were collected at cryogenic temperature at the Advanced Light Source on 

beamline 8.3.1 using a wavelength of 1.11503 Å. Diffraction data from a single 

crystal were processed with iMosflm (60) and Aimless (61) (Table 2). The Fab 3G12-

RSV G157-197 complex structure was solved by molecular replacement with the Fab 

from PDB 5K59 and the program PHASER (62), and the structure was refined and 

manually rebuilt using PHENIX (63) and Coot (64), respectively (Table 2). 

 

Expression and purification of RSV Gecto. A synthetic gene encoding RSV G (strain 

A2) amino acids 64 to 298 (UniProtKB entry P03423) was cloned into pCF in-frame 



 

66 

with an N-terminal TPA signal sequence and Twin-Strep purification tags. 

Recombinant RSV Gecto was produced by transient-transfection in 293T cells with 

Fugene HD (Promega, Madison, WI). 6 μg of DNA were transfected with a 

FuGENE® HD Transfection Reagent:DNA ratio of 3:1. Cell media was 

supplemented with BioLock (IBA) and 100mM Tris-Cl pH 8.0 and 0.22um-filtered. 

RSV Gecto proteins were batch purified from media with Strep-Tactin resin (IBA), 

washed, and eluted with Strep-Tactin elution buffer (100 mM Tris pH 8.0, 150mM 

NaCl, 1mM EDTA, 2.5mM des-thiobiotin).  RSV Gecto proteins were concentrated 

using a 3kDa spin concentrator.  

 

Chemotaxis assay. The in vitro chemotaxis assay was performed using a Transwell 

insert plate with an 8-μm pore size, following previously published methods (17, 22, 

45). Approximately 2 million log-phase THP-1 cells (a human leukemia monocytic 

cell line) washed twice and suspended in serum-free RPMI 1640 media were added to 

the upper chamber of the insert plate. Negative controls were serum-free media alone 

or serum-free media containing 25 nM bnmAb 3G12 added to the lower chamber. As 

a positive control, media containing 10% fetal bovine serum (FBS) was added to the 

lower chamber (data not shown). RSV Gecto was added to the lower chamber at a final 

concentration of 5 nM in serum-free media. For samples with RSV Gecto and bnmAb 

3G12, RSV Gecto was preincubated with 5-molar excess bnmAb for 20 min at room 

temperature and then added to serum-free media in the lower chamber for a final 

concentration of 5 nM RSV Gecto and 25 nM bnmAb. The assembled plates were 
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incubated in a CO2 incubator at 37°C for 5 hours. Cells migrated to the lower 

chamber were counted, and the chemotactic indices were determined by comparing 

the fold increase in cell migration toward the chemoattractant to cell migration toward 

serum-free media alone. Experiments were performed in three biological replicates.  

 

Accession code. Coordinates and structure factors have been deposited in the Protein 

Data Bank under accession code 6MKC. 
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Table 2. Crystallographic data collection and refinement statistics 

 Fab 3G12-RSV G157-197 
PDB code 6MKC 
Data collectiona,b  
Space group P3121 
Cell dimensions  
    a, b, c (Å) 139.33 139.33 94.77 
(°)  90.00, 90.00, 120.00 
Resolution (Å) 74.53 - 2.90 (3.00 - 2.90) 
Total no. reflections 
No. unique reflections 
Rmerge

c 

93208 (14475) 
23682 (3763) 
0.097 (0.641) 

I / I) 9.4 (1.9) 
Completeness (%) 99.5 (99.5) 
Redundancy 3.9 (3.8) 
CC1/2

d 0.993 (0.601) 
 
Refinement 

 

Resolution (Å) 74.53 - 2.90 
No. reflections 23665  
Rwork / Rfree

e 0.1930/ 0.2088 
No. atoms  
    Protein 3,595 
    Ligand/ion 0 
    Water 0 
B-factors (Å2)  
    Protein: bnmAb 
    Protein: RSV G 

62.37 
76.04 

    Ligand/ion 0 
R.m.s. deviations  
    Bond lengths (Å) 0.015 
    Bond angles (°) 
Ramachandran (%) 
    Favored 
    Allowed 
    Outliers 

2.067 
 
95.7 
4.3 
0 

a Data from one crystal was used. 
b Values in parentheses are for highest-resolution shell. 
c Rmerge = Σ|(I - <I>)| / Σ(I), where I is the observed intensity. 
d CC1/2 = Pearson correlation coefficient between random half-datasets. 
e Rwork = Σ||Fo| - |Fc|| / Σ|Fo| for all data except 5%, which were used for Rfree calculation 
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Appendix I 

Structural characterization of human astrovirus acidic domain 

N-terminal GST-tagged Acidic Domain Helices construct (ADH) was set up 

in crystal trials (Figure II, Figure III, Figure IV). The construct did not crystallize. 

Produced spherulites but no diffraction after optimization of solutions (Figure V). N-

terminal 6xHis tag and Gb1 tagged ADH was set up in crystal trials, produced 

birefringent phase separation, but did not diffract (Figure V). No other crystal hits 

were observed, and optimization did not produce diffracting crystals.  

 GST-ADH was prescission protease cleaved, however ADH bound to GST 

and did not separate (Figure III). Attempted sizing chromatography, ion exchange 

chromatography, high salt, DTT, glycerol, buffers and pH, did not separate GST from 

ADH post prescission protease cleavage. 

Expressed full length HAstV-1 C-terminal acidic domain, trypsinized to 

isolate folded 10 kDa fragment (Figure IV). Fragment eluted in void volume, 

indicative of a disordered region. The isolated 15 kDa fragment degrades into 10 kDa 

fragment overtime, occurs overnight at 37° C or in ~1week at 4° C.  

Set up crystal trials with isolated and purified 10 kDa acidic domain protein 

post-trypsin (Figure V). Crystal trials produced spherulites, amorphous separation, 

microcrystalline phase separation. None of these were diffracting. Attempted 
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expansion grid and seeding, both self-seeding and cross-seeding, did not improve hits 

or produce diffraction.  

Expressed acidic domain helices construct with an N-terminal 6xHis tag and 

Gb1 solubility tag (Figure VI). After TEV cleavage and purifcation, ADH did not 

separate from Gb1. Puried intact pHisGb1-ADH sample by size exclusion and ion 

exchange chromatography and set up in crystal trials (Figure VII). 

Ran N15  labelled C-terminal acidic domain on size exclusion chromatography 

(S200), and isolated pure, homogeneous sample (Figure VIII). Performed circular 

dichroism, 60-65% random coil (unstructured) and 35-40% helical, distinct minima at 

222nm and 208 nm (Fig 3.8). 

Trypsinized C-terminal acidic domain, isolated a 10kDa and 5kDa fragments, 

purified on S200 (Figure IX). Ran HSQC, sample is disordered, broad peaks, 

clustered around 8-8.5ppm (Figure XII) (Figure XII).    
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Table 3. Human astrovirus-1acidic domain list of plasmids and construct descriptions.  

Plasmid Description 
pET52b_HAstV-
1_Capsid_CAD_helices 

C-term. 6xHis tag acidic domain 
helices construct (res. 292-380) 

pET52b_HAstV-1_Capsid_CAD C-term. 6xHis tag full length acidic 
domain (res 239-380) 

pGEX6p-3_HAstV-
1_Capsid_CAD_helices_Gibson 

N-term. GST-tag (res. 292-380) 

pHisGB1_ADH N-term. 6xHis Gb1 acidic domain 
helices construct (res. 292-380) 
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Figure I. Human astrovirus acidic domain project overview.  

Left: PSIPRED prediction of disorder, the acidic domain is largely predicted to be 
disordered with a short helical region. Middle: Rosetta prediction for acidic domain, 
showing three helices, agreeing with PSIPRED and other secondary structure 
predictions. Bottom: schematic overview of human astrovirus capsid domains.  

  

HAstV-1 Acidic Domain
• N-terminus pred. disordered

• Predicted to form 3 helix 
bundle

• CAD 18 kDa

• ADH 10 kDa

• Runs heavy on SDS, ~24 kDa

CAD

ADH
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Figure II. GST-acidic domain helices sizing purification. Top, GST-Acidic domain 

helices S75 purification. Bottom gel showing purity for sample set up in crystal trials.  
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Figure III. Left: GST-ADH prescission protease cleavage trial. Right, GST-ADH.  

 
Precission protease cleavage with optimized temperature, time, and buffer conditions.  
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Figure IV. HAstV-1 C-terminal acidic domain expression and trypsin digest.  

Left, expression and TALON purification. Middle, isolation of 15 kDa and 10 kDa 
band after trypsin digest. Right: degradation of 15 kDa protein into 10 kDa overtime; 
occurs overnight at 37° C or in ~1week at 4° C.  

  

  

Isolated10 kDa

CAD

15 kDa

10 kDa
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Figure V. C-terminal acidic domain 10 kDa product crystal trials.  

Representative spehrulites, birefringent phase separation, amorphous phase separation 
and other activity in drops. None of these produced diffraction.  

 

 

  

Crystal Trials

• Forms spherulites

• Amorphous 

• No diffraction

• Microcrystalline

• Expansion grid, seeding
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Figure VI. pHisGb1 Acidic domain helices construct expression, purification and 

TEV digest.  

After TEV digest, ADH bound to Gb1, isolated and purified intact pHisGb1-ADH 
construct for crystal trials 
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Figure VII. Trypsin digest and caspase-3 digest of intact C-terminal acidic domain 

construct.  

Isolated a 15 kDa fragment and a 5 kDa fragment.  
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Figure VIII. Large scale trypsin digest of 15N labelled CAD NMR sample to isolate 

15 kDa and 10 kDa fragments.  

Purified the trypsin digested samples on size exclusion chromatography and separated 
the15 kDa and 10 kDa fragments.  
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Figure IX Circular dichroism spectra of C-terminal acidic domain.  

Left, representative circular dichroism spectra of various secondary structures. Right, 
CAD is ~60-65% unstructured and 35-40% helical. Distinct minima are visible at 
222nm and 208nm.   
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Figure X. 15N labelled C-terminal acidic domain expression and purification on ion 
exchange.  
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Figure XI. C-terminal acidic domain 15N labelled for NMR studies.  

Isolated mostly pure full length CAD after S200 sizing purification for NMR studies.  

 

  



 

96 

 

Figure XII. HSQC spectrum of full length C-terminal acidic domain. 

Left: Full length C-terminal acidic domain HSQC. Right: representative HSQC of a 
disordered protein.  
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Appendix II 

Human astrovirus PS spike and capsid 

 

Goal: to determine the structure of Human astrovirus PS spike domain. Due to 

low sequence conservation and no clear domain boundaries past the core domain of 

astrovirus PS capsid, it’s difficult to identify where the domain boundaries for PS 

spike start and end (Figure XXX). The capsid N-terminus is strongly predicted to be 

disorder as is the large portion of the C-terminal acidic domain (Figure XIII). The 

core domain and spike domain region of the capsid is predicted to be mostly ordered, 

with short, sharp spikes indicative of loops and other flexible regions common in 

structured domains (Figure XIII). In order to determine the PS spike domain 

sequence, full length PS capsid was expressed and several digestion approaches and 

MS techniques used to isolate and identify the spike construct.  

Expressed HAstV-PS full length capsid in Sf9 cells, purified by TALON and 

isolated a full length HAstV-PS capsid band at 88kDa (Figure XXIX). Trypsin 

digested the sample and a new 25kDa appeared (Figure XXXI). Performed in gel 

trypsin digest and mass spec to identify band, exact mass of band is 25,954 Da and 

based on trypsin digest potential constructs that would match the mass within the 

HAstV-PS capsid are as follows: 351-581, 271-506, 292-526 (Figure XXXI Figure 

XXXII).  
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For PS-spike project, tried expressing the following constructs: PS1 394-655, 

PS2 394-737, PS3 394-615, PS4 394-660, PS5 res. 394-653, PS6 417-645, PS7 394-

680, PS8 394-645, PS9 433-678, PS10 417-640, PS11 417-689, PS12 417-678 

(Figure XIV, Figure XV, Figure XVI, Figure XVII, Figure XVIII, Figure XIX, Figure 

XX, Figure XXI, Figure XXII, Figure XXIII, Figure XXIV, Figure XXV, Figure 

XXVI, Figure XXVII, Figure XXVIII, Figure XXIX). Expressed constructs with 

6xHis tag, pHisGb1 solubility tag and GST tag. Most constructs did not express, 

expressed poorly or insolubly. Adding solubility tags such as GST and Gb1 helped 

with solubility, but most constructs degraded after expression (Figure XXIX).  
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Figure XIII. Disorder and secondary structure prediction for human astrovirus PS 

capsid.  

HAstV-PS Disopred
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Figure XIV. GST-PS2 expression and TEV cleavage. 

GST-PS2 is contaminated after GST purification and did not separate after TEV 
cleavage and flowthrough.  
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Figure XV. pET52b PS3 and pET52b PS4 expression and purification with TALON.  

Lane order, 1. Ladder, 2. Culture PS3, 3. lysate PS3, 4. pellet PS3, 5. TALON elution 
PS3, 6. TALON elution 2 PS3. 7. 8. Culture PS4, 9. lysate PS4, 10. pellet PS4, 11. 
TALON elution PS4, 6. TALON elution 2 PS4. Samples are heavily contaminated 
and poorly expressed.  
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Figure XVI. GST-PS2 PreScission protease (PP) cleavage and purification.  
 
PS2 did not separate from PP after cleavage and purification (lane 14 and 15) 
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Figure XVII. GST-PS2 expression and GST purification. 

1. MW Ladder 2. pre-IPTG 3. BL21 lysate 4. pellet 5. FT (after binding GST resin) 6. 
E1 7. E2 8. E3 9. E4 (added 5mM DTT in elution buffer) 10. 
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Figure XVIII. GST-PS1 and GST-PS2 expression.  

Lanes 6-7, GST-PS1 elutions after expression and GST purificaiton. Lanes 12-13, 
GST-PS2 elutions after expression and GST purification.  
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Figure XIX. pHisGb1 PS3 and pET52b His tagged PS3 expression.  

Both samples expressed but had heavy contamination post purification. Lane 
description: 1. MW Ladder 2. pHisGB1 PS3 lysate 3. pET52b PS3 lysate 4. pHisGB1 
PS3 pellet 5. pET52bPS3 pellet 6. pHisGB1 PS3 pre-IPTG 7. pET52bPS3 pre-IPTG 
8. pHisGB1 PS3 FT 9. pET52bPS3 FT 10. pHisGB1 PS3 W1 11. pET52bPS3 W1 12. 
pHisGB1 PS3 E1 13. pET52b PS3 E1 14. pHisGB1 PS3 E2 15. pET52b PS3 E2 
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Figure XX. HAstV-PS C4 construct, expression and purification.  

Expression looks moderate and yields were low after purification and sample was not 
pure.  
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Figure XXI. HAstV-PS PS5 construct, expression and purification.  

Expression looks moderate and yields were low after purification and sample was not 
pure. 
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C6 

 

Figure XXII. HAstV-PS PS6 construct, expression and purification.  

Expression looks moderate and yields were low after purification and sample was not 
pure. 
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Figure XXIII. HAstV-PS PS8 construct, expression and purification.  

Expression looks moderate and yields were low after purification and sample was not 
pure. 
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Figure XXIV. HAstV-PS PS9 construct, expression and purification.  

Expression looks moderate and yields were low after purification and sample was not 
pure. 
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Figure XXV. HAstV-PS PS10 construct, expression and purification.  

Expression looks moderate and yields were low after purification and sample was not 
pure. 
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Figure XXVI. Expression and purification of HAstV PS4, PS5, PS6, and PS8 

constructs.  

All constructs expressed at moderate level and had significant contamination after 
TALON purification.  
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Figure XXVII. TALON purification of HAstV PS4 and PS8 constructs.  

Both PS4 and PS8 samples had major contamination after performing TALON 
purification on FPLC.  
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Figure XXVIII. Representative Western Blot of C4 C8 constructs expressed in E.coli.  

Most of the protein is in the pellet with a very small amount in the soluble fraction of 
lysate. Optimizing expression and purification did not improve yields.  
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Figure XXIX. HAstV-PS capsid expression in Sf9 cells. 

Expression, TALON purification. Degradation bands are visible in the TALON 
elution .  
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Figure XXX. Alignment of PS capsid spike sequences.  

Rationale for designing constructs past PS1 and PS2. For PS3 res. 425-635 were 
chosen based on molecular weight, 25 kDa, which is close to the molecular weight 
HAstV-1 spike. The N-terminus starts after the predicted disordered core linker 
sequence and the C-terminus ends before acidic predicted intrinsically disordered 
region.   

 

   

Designing PS3

• Shortened C-terminal boundary, 25 
kDa, similar to HAstV-2 spike

• N-terminus starts after core linker

• C-terminus before acidic domain 
and IDR 

• Express with C-term. His or pHisGB1
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Figure XXXI.  Human astrovirus PS full length capsid trypsin digest.  

As trypsin concentration increases 88 kDa full length capsid band disappears and a 25 
kDa and 37 kDa bands appear.  
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Figure XXXII. FPLC MS/MS of trypsinized capsid fragments after gel extraction.  

Intact mass of the ~25 kDa band after gel extraction is 25,954 Da 
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Table 4. Human astrovirus PS spike construct boundaries, plasmids and expression 
system.  

List of PS spike constructs residues and tags and expression systems used to express 
the constructs.   

Plasmid Description 
pHisGB1_PS1 Residues: 394-655; moderate expression, ~1 

mg/L, largely insoluble, degraded 
pHisGB1_PS2 Residues: 394-737; Moderate expression, ~1 

mg/L, mostly insoluble, degraded 
pHisGB1 PS3 Residues: 394-615; Moderate expression, ~1 

mg/L, mostly insoluble, degraded 
pET52b PS1  Residues: 394-655; 6xHis tagged, poor 

expression <0.5mg/L, insoluble 
pET52b PS2  Residues: 394-737; 6xHis tagged, poor 

expression <0.5mg/L, insoluble 
pGEX PS1 Residues: 394-655; Moderate expression, ~1-2 

mg/L, low purity after GST purification, 
degraded 

pGEX PS2 Residues: 394-737; Moderate expression, ~1-2 
mg/L, low purity after GST purification, 
degraded 

pHisGB1 PS4 Residues: 394-660; Modest expression, ~1 mg/L, 
low purity after TALON, degraded 

pHisGB1 PS5 Residues: 394-653; Modest expression, ~1 mg/L, 
low purity after TALON, degraded, mostly 
insolubly expressed 

pHisGB1 PS6 Residues: 417-645; Modest expression, ~1 mg/L, 
low purity after TALON, degraded, mostly 
insolubly expressed 

pHisGB1 PS7 Was not cloned successfully 
pHisGB1 PS8 Residues: 394-645; Modest expression, ~1 mg/L, 

low purity after TALON, degraded, mostly 
insolubly expressed 

pHisGB1 PS9 Residues: 433-678; Modest expression, ~1 mg/L, 
low purity after TALON, degraded, mostly 
insolubly expressed 

pHisGB1 PS10 Residues: 417-640; Modest expression, ~1 mg/L, 
low purity after TALON, degraded, mostly 
insolubly expressed 

pfastBac PS11 Residues: 417-689; Expressed poorly in Sf9 cells 
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with N-terminal 6xHis, <0.5 mg/L, no expression 
(soluble or insoluble) 

pFastBac PS12 Residues: 417-678; Expressed poorly in Sf9 cells 
with N-terminal 6xHis, <0.5 mg/L, no expression 
(soluble or insoluble) 

pFastBac PS4 Residues: 394-660; Expressed poorly in Sf9 cells 
with N-terminal 6xHis, <0.5 mg/L, no expression 
(soluble or insoluble) 

 

  



 

121 

Appendix III 

Engineering pre-fusion form stabilized HPIV3 Fusion protein  

The project goal is to engineer the HPIV3 F protein in its pre-fusion form, and 

characterize the protein by structural, biophysical, and immunogenic studies. We 

propose a novel mutagenesis strategy that stabilizes recombinant F protein 

ectodomain in the pre-fusion form by replacing the inherently unstable residues in the 

trimeric coiled HRB region with ‘ideal’ residues (Ile) which form optimal hydrogen 

bonding and hydrophobic packing interactions along the length of the stalk Figure 

XXXIV). We hypothesize that our engineering strategy will allow structural and 

biophysical characterization of the F protein that will advance our understanding of 

protein- mediated membrane fusion, a mechanism fundamental to all enveloped 

viruses. We also hypothesize that our engineering strategy will yield a highly 

immunogenic pre-fusion F protein that will elicit a protective neutralizing antibody 

response in the cotton rat model. Furthermore, we hypothesize that the engineering 

strategy will be broadly applicable to related Fusion proteins such as Measles, 

Mumps and Hendra virus and will facilitate structural and antigenic studies on the 

pre-fusion F. Thus, our studies will advance understanding of paramyxovirus entry 

into human cells, and provide preliminary immunogenicity studies to validate the use 

of pre-fusion HPIV3 F protein as a vaccine candidate. 

By using the heptad repeat trimeric coiled coil idealization strategy 

isoleucines were placed at the a and d position (Figure XXXIV). The constructs and 
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expression systems are summarized in Table 5. The rationale for the constructs and 

mutations is summarized in Table 6. Yields did not scale up from small scale insect 

expression (Figure XXXVI). Observed multiple contanimants after strep purification 

(Figure XXXVI). Number of expression optimizations did not improve yieild or 

purity. Decided to consider alternative expression systems, such as mamallian cells. 

Expression in 293 had low yields (overall much better than S2 cells, ~0.5 mg/L) and 

purity was much higher than that from insect cells expressions (Figure XXXVII). 

Expressed HPIV3 F in Sf9 cells, 293 cells and Expi293 cells (Figure XXXV and 

Figure XXXVI). All constructs and expression systems had low yields, <0.5 mg/ml 

(Figure XXXVII, Figure XXXVIII, Figure XXXIX). Electron microscopy of HPIV3 

F1 construct with idealized coiled coil purified from transiently transfected 293 cells 

did not produce clear, consistent particles (Figure XL). HPIV3 F protein was purified 

on sizing and performed SAXS and observed aggregation (Figure XLI). For future 

directions, consider combining mutants, using stably transfected mammalian cells and 

using antibodies to stabilize prefusion conformation.  
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Table 5. HPIV3 F protein list of plasmids and construct descriptions (and RSV F 
constructs).  

Plasmid Description 
HPIV3 F wt insert in pUC57-
Kan.seq 

HPIV3 F wt in pUC57 for cloning 

pMT_Bip_HPIV3_F_R106Q,S164
P,HRBIdealized 

HPIV3 F with R106Q, S164P, and HRB 
Idealized 

pMT_Bip_HPIV3_F2_R106Q_H
RBIdealized 

HPIV3 F with R106Q, and HRB Idealized 

pMT_Bip_HPIV3_F3_HRBIdeali
zed  

HPIV3 F HRB Idealized 

pMT_Bip_HPIV3_F4_wt HPIV3 F wild type 
pMT_Bip_HPIV3_F4_wt_GCNt HPIV3 F with GCNt trimerization domain 
pcDNA3.1(+)_HPIV3_F2_R106Q
_TPA_ss 

HPIV3 F R106Q TPA secretion signal  

pcDNA3.1(+)_HPIV3_F2_R106Q
_WT_ss 

HPIV3 F R106Q wt HPIV3 secretion 
signal 

pCF_Intron_HPIV3_F_R109_GC
Nt_CO_TPA 

HPIV3 F R109 GCNt domain codon 
optimized for mammalian expression, 
TPA secretion signal 

pCF_Intron_HPIV3_F1_TPA_ss_
Gibson 

HPIV3 F with R106Q, S164P, and HRB 
Idealized, mammalian expression 
optimized, TPA secretion signal 

pCF_Intron_HPIV3_F2_TPA_ss HPIV3 F with R106Q, and HRB 
Idealized, mammalian expression 
optimized, TPA secretion signal 

pCF_Intron_HPIV3_F3_TPA_ss HPIV3 F HRB Idealized, mammalian 
expression optimized, TPA secretion 
signal 

pCF_Intron_HPIV3_F4_TPA_ss_
Gibson 

HPIV3 F wild type, mammalian 
expression optimized, TPA secretion 
signal 

pCF_Intron_HPIV3_F4wt_TPA_s
s_GCNt_10xHis 

HPIV3 F wild type with GCNt 
trimerization domain and C-terminal 
10xHis tag, mammalian expression 
optimized, TPA secretion signal 

pLEXm_RSV_F_DS-
Cav1_Annotated 

RSV F DS-Cav1 from McLellan lab 

pLEXm_RSV_F_sc9-10_DS-
Cav1 

RSV F sc9-10  construct 

pCF_RSV_F_Ile_TPA_ss_muta RSV F with idealized HRB, and TPA 
secretion signal in pCF plasmid 
(originally from pLEXm) 
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Figure XXXIII. HPIV3 F idealization strategy.  

Mutanting every d and a position of the heptad coiled coil to isoleucine to increase 
stabilizing interactions. 



 

126 

 

Figure XXXIV.HPIV3 F HRB Ile idealization strategy model and additional 

stabilizing mutations.  

A. Mutations S164P: stabilize turn of β-strands 5 and 6 in HRA, prevents spring-
loaded function during triggering, R109Q: cleavage inactive, prevents exposed fusion 
peptide, A137C, I267C: β–carbons are 4-5 Å apart in pre-fusion HPIV3 F model and 
over 110 Å apart in the post-fusion HPIV3 F crystal structure. B. View down HRB 
isoleucine idealized coiled coil.  
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Table 6. List of HPIV3 constructs and the role of the mutations. 

 

  



 

128 

 

Figure XXXV. Small scale expression in stably transfected S2 cells. 

HPIV3 F constructs expressed in ug quantities. Purified via strep and TALON. After 
tandem purification, a major contaminant BSA remained.   

  



 

129 

 

Figure XXXVI. Large scale S2 expression of HPIV3 F constructs.  

Yields were low microgram quanitties and purity was low with a number of 
contaminants.  
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Figure XXXVII. Small scale expression of HPIV3 F constructs in 293 cells using 

transient transfection. 

pCDNA and pCF plasmids with wild type secretion HPIV3 signal sequence or TPA 
secretion signal were used.  
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Figure XXXVIII. Expression of HPIV3 F protein constructs in 293 cells.  

 
TALON batch purification and representative gel showing purity of HPIV3 F 
constructs 
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Figure XXXIX. Expi293 expression and purification of RSV F dsCav1 and HPIV3 F 

constructs.  

After purification and quantification, yields were ~<0.5mg/ml.  
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Figure XL. Electron microscopy of HPIV3 F coiled coil idealizied construct. 

EM Image is incoclusive, with no distinct patter or consistent particles sizes or 
conformation.   
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Figure XLI. Small angle X-ray scattering of HPIV3 F1.  

The plot is indicative of an aggregated protein. Aggregates have high intensity 
relative to folded protein and thus can mask signal from folded protein.  
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Appendix IV 

RSV G and Trellis mAbs 

Table 7. RSV G plasmids and construct descriptions. 

Plasmid Description 

pMT_Bip_RSV_G_148_197 RSV G 148-197  

pMT_Bip_RSV_G_161_197 RSV G 161-197  

pMT_Bip_RSV_G_162_188 RSV G 162-188 

pMT_Bip_RSV_G_164_194 RSV G 164-194 

pMT_Bip_RSV_G_ecto_no_his RSV G ecto 64-298,  strep tag only 

pMT_Bip_RSV_G_Full RSV G ecto 64-298, his tag and strep tag 

pRSFDuet_PelB_RSV G 148-

197 5_31_18 

RSV G 148-197 with C-terminal 6xHis tag 

in pRSF_Duet plasmid 

pRSFDuet-RSV G 157-197 + 

CX3CR1 N term extended 

RSV G 157-197 in first MCS and CX3CR1 

N-terminal peptide res. 3-24 in second 

MCS 

pRSFDuet-pelB RSV G 157-

197 pelB 1G8 scFv 

RSV G 157-197 in first MCS and 1G8 N-

scFv in second MCS 

pRSFDuet-RSV G 157-197 RSV G 157-197 with C-terminal 6xHis tag 

in pRSF_Duet plasmid 

pRSFDuet-pelB RSV G 148-

197 mutagenesis 

Deleted first start codon with MCS in 

frame (this improved expression) 
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pET52b_RSV_G_164-

194_Gibson 

RSV G 164-197, C-terminal 6xHis tag 

pET52b_RSV_G_162-

188_Gibson 

RSV G 162-188, C-terminal 6xHis tag 

pET52b_RSV_G_161-197 RSV G 161-197, C-terminal 6xHis tag 

pET52b_RSV_G_161-

197+strep 

RSV G 161-197, C-terminal strep tag 

pET52b_RSV_G 148-

197_F160A_N161A_3_8_17 

RSV G 148-197, F160A N161A C-

terminal 6xHis tag 

pET52b_RSV_G 148-

197_F168A_N169A_3_8_17 

RSV G 148-197, F168A N169A C-

terminal 6xHis tag 

pET20b RSV G 157-197 RSV G 157-197 with pelB secretion signal 

pET52b RSV G 148-197 148-197 6xHis tag 

pET52b RSV G 157-197 157-197 6xHis tag 

pET52b_RSV_G 148-197 strep 148-197 6xHis and strep tag 
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Table 8. Trellis mAb suite constructs and plasmids 

pMT_puro_bip_2xStrep_3G12.strpMT_puro_bip_2D10.str 

Plasmid Description 
pET-52b(+)-3D3 3D3 scFv 6xHis 
pET20b_3D3_scFv 3D3 scFv pelB ss, 6xHis 
pMT_3D3_scFv 3D3 scFv Bip ss, 6xHis, Strep tag 
pMT_puro_bip_3G12 3G12 scFv, Bip ss, puro resistance, 6xHis, 

2xStrep 
pMT_puro_bip_3D3 3D3 scFv, Bip ss, puro resistance, 6xHis, 

2xStrep 
pMT_puro_bip_2D10 2D10 scFv, Bip ss, puro resistance, 6xHis, 

2xStrep 
pMT-puro-bip 6A12scFV 6A12 scFv, Bip ss, puro resistance, 2xStrep 
pMT-puro-bip 1G1scFV 1G1 scFv, Bip ss, puro resistance, 6xHis, 

2xStrep 
pMT-puro-bip 2B11scFV 2B11 scFv, Bip ss, puro resistance, 6xHis, 

2xStrep 
pMT_puro_bip_2xStrep Empty pMT puro plasmid, 2xStrep 
pMT_puro_bip_2xStrep_2D10.str 2D10 scFv, Bip ss, puro resistance, 2xStrep 
pMT_puro_bip_2xStrep_3D3 3D3 scFv, Bip ss, puro resistance, 2xStrep 
pMT_puro_bip_2xStrep_3G12.str 3G12 scFv, Bip ss, puro resistance, 2xStrep 
pET52b RSV G 
1G8_scFv_2_22_18 

1G8 6xHis tag 

pET52b RSV G 
2B11_scFv_2_22_18 

2B11 6xHis tag 

pMT-puro-bip 2B11scFV pMT puromycin selection, 2B11 scFv 
pCMV_mAb 1G1 heavy  1G1 heavy chain variable domain in 

VRC01 Mab heavy chain 
pCMV_mAb 1G1 Light  1G1 light chain variable domain in VRC01 

Mab light chain 
pCMV_mAb 1G8 heavy  1G8 heavy chain variable domain in 

VRC01 Mab heavy chain 
pCMV_mAb 1G8 VRC01 Light 
Chain CMV_R 

1G8 light chain variable domain in VRC01 
Mab light chain 

pCMV_mAb 2B11 heavy 2B11 heavy chain variable domain in 
VRC01 Mab heavy chain 

pCMV_mAb 2B11 Light 2B11 light chain variable domain in 
VRC01 Mab light chain 

pCMV_mAb 6A12 heavy  6A12 heavy chain variable domain in 
VRC01 Mab heavy chain 

pCMV_mAb 6A12 Light  6A12 light chain variable domain in 
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VRC01 Mab light chain 
pCMV_mAb 2D10 light  2D10 light chain variable domain in 

VRC01 Mab light chain 
pCMV_mAb 2D10 heavy  2D10 heavy chain variable domain in 

VRC01 Mab heavy chain 
pCMV_mAb 3D3 light  3D3 light chain variable domain in VRC01 

Mab light chain 
pCMV_mAb 3D3 heavy  3D3 heavy chain variable domain in 

VRC01 Mab heavy chain 
pCMV_mAb 3G12 heavy  3G12 heavy chain variable domain in 

VRC01 Mab heavy chain 
pCMV_mAb 3G12 light  3G12 light chain variable domain in 

VRC01 Mab light chain 
 

 

 

 




