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Flowing granular materials often abruptly arrest if not driven by sufficient applied stresses. Such
abrupt cessation of motion can be economically expensive in industrial materials handling and pro-
cessing, and is significantly consequential in intermittent geophysical phenomena such as landslides
and earthquakes. Using discrete element simulations, we calculate a flow-arrest state diagram for
granular materials under the conditions of constant applied pressure and shear stress, which are also
most relevant in practice. Here the material can dilate or compact, and flow or arrest, in response
to the applied stress. Our simulations highlight that under external stress, the intrinsic response of
granular materials is characterized by uniquely-defined nonequilibrium steady states of flow or ar-
rest, which are highly sensitive to interparticle friction. While the flowing states can be equivalently
characterized by volume fraction, coordination number or internal stress ratio, to characterize the
states of shear arrest, one needs to also consider the structural anisotropy in the contact network.
We highlight the role of dilation in the flow-arrest transition, and discuss our findings in the context
of shear jamming and discontinuous shear thickening.

INTRODUCTION

A remarkable property of granular materials is their
ability to exist in both solid-like and fluid-like states [1].
The fluid-like properties of these materials are commonly
utilized during their production, handling and trans-
portation in several industries such as pharmaceutical,
agriculture and construction, while flowing granular ma-
terials are also observed in important geophysical phe-
nomena such as flow of fault gouge in earthquakes [2]
and debris flow in landslides [3]. Frequently, however,
the flowing granular material abruptly arrests leading to
significant economic and geophysical consequences, such
as clogged flows [4] and cessation of sediment transport in
riverbeds [5]. Such flow-arrest transitions are not limited
to dry granular materials, but are also observed in dense
shered suspensions [6, 7], where the suspension viscos-
ity dramatically increases by several orders of magnitude
upon external stressing. Although the distinctions be-
tween solid-like and fluid-like states of granular materials
have been thoroughly studied [8], a unified understand-
ing of the nonequilibrium flow-arrest transition is still
lacking. Particularly, the role of external boundary con-
ditions on flow-arrest transitions, while crucial, has been
not been well-characterized.
A well-known jamming phase diagram for frictionless

particles predicts that a potentially flowing state can
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be arrested by increasing its solid volume fraction φ
or increasing its internal shear stress τ across an yield
stress line [9]. The scenario is more complicated for fric-
tional particles with the emergence of solid-like fragile
and shear-jammed states at low volume fractions [10].
In practice however, the volume fraction of granular ma-
terials is rarely controlled and the material responds to
external stresses by compacting under pressure and com-
pacting or dilating under shear [11]. The dynamics of
granular materials under controlled pressure p are better
understood through µ(I) and φ(I) constitutive relation-
ships, where µ = τ/p is a dimensionless stress ratio, and

I = γ̇d
√

ρ/p is a dimensionless inertial number [1]. Here
γ̇ is strain rate of flow, d is mean particle size and ρ is
particle density. Previous experiments [12, 13] and sim-
ulations [14, 15] have demonstrated that granular ma-
terials flow only when µ exceeds a critical value along
with the material attaining a critical φ. These critical
conditions depend significantly on interparticle friction,
as shown in previously in simulations [16] and also pre-
dicted by the critical state theory of soil mechanics [17].
However, these constitutive relationships do not predict
the state of flowing granular material that will eventu-
ally arrests when µ is reduced below the critical value.
Furthermore, these relationships are isotropic and do ac-
count for dominant microstructural features such as di-
rectional force chains that are observed in experiments
at the flow-arrest transition [10].

Boundary conditions play a crucial role in the rheolog-
ical behavior of granular materials. Under a constant ex-
ternal pressure and applied strain rate, µ increases mono-

http://arxiv.org/abs/2104.00787v1
mailto:isriva@lbl.gov


2

(a) (b)

sh
e
a
r 

o
w

shear arrest

shear arrest

shear �ow

dilute

(c)
shear �ow

shear arrest

FIG. 1. (a) Schematic of the simulation method. The left image depicts a starting state at a dilute volume fraction. The black
lines enclosing the particles denote triclinic periodic boundaries. The images on the right depict two possible nonequilibrium
states upon the application of external pressure and shear stress: shear arrest and steady shear flow. (b) A schematic of the
flow-arrest state diagram on the φ − µ axes. The red and blue regions represent states of shear arrest and steady shear flow
respectively. The boundary between the two regions is the critical state characterized by the pair (µc, φc). The green and blue
dots represent the critical state for frictionless and high friction particles respectively. The white region outside red and blue
regions is inaccessible in steady state. The y-axis at µ = 0 represents the µs-dependent isotropic jamming volume fraction
φJ . (c) Evolution of strain rate γ̇ (top) and volume fraction φ (bottom) with simulation time t for a case each of shear arrest
(dotted red) and steady shear flow (solid black). In the bottom panel of (c), the two curves are almost coincident.

tonically with I and saturates at a critical value µc as
I → 0 in the quasi-static regime, whereas the φ decreases
monotonically with increasing I reaching a critical value
φc as I → 0 [16]. The rheological response is significantly
different when the material is not allowed to dilate or
compact in response to shear flow at a constant volume
fraction. In this case below a critical φ, the material can
flow at all strain rates and it exhibits a continuous transi-
tion from inertial flow to plastic flow as the strain rate is
increased, whereas a solid-like yield behavior is observed
above this critical φ [18, 19]. However, the transition
from fluid-like to solid-like states is discontinuous, which
leads to chaotic dynamics [20] and a re-entrant jamming
transition near a critical φ [21]. The situation becomes
increasingly complex in some non-Brownian suspensions
where external stresses can drive a frictional transition
within the particle contact network [22] leading to a dis-
continuous increase in the suspension viscosity and shear
jamming [6, 7]. The nature of boundary conditions dom-
inantly governs the mechanics of such suspensions, as
demonstrated by intriguing flow phenomena such as neg-
ative dynamic compressibility [23] and vorticity banding
[24].

As such, a careful characterization of the flow-arrest
transition as an intrinsic bulk property of granular ma-
terials requires three key considerations of the boundary
conditions: (i) a constant external pressure as the nat-
ural boundary condition, where the material can dilate
or compact as it flows or arrests. In addition to being
the dominant boundary condition in practical applica-
tions of granular flows, constant pressure conditions are
particularly well-suited for exploring granular flow dy-
namics near the critical jamming volume fraction where
the magnitude of stress fluctuations can be quite large

[25, 26]; (ii) a constant external stress rather than strain
rate as the imposed driving force, which allows for a
seamless transition between flowing and arrested states of
granular materials [26, 27]; (iii) the avoidance of external
walls or boundaries that can complicate the rheological
response by flow localization [24, 28] and non-local effects
[29].

In this work, we use stress-controlled discrete element
simulations to analyze nonequilibrium states of steady
shear flow and shear arrest along with their dependence
on interparticle friction, by approaching the critical flow-
arrest transition along the paths of constant pressure and
shear stress. We propose state diagrams along φ − µ
and Z − µ axes that clearly distinguish between shear-
arrested and steady flowing states of granular materi-
als, where Z is the coordination number. We demon-
strate that although the internal state of steady granular
flow is uniquely represented by either µ, φ or Z, such
uniqueness is very weak for shear-arrested states, which
are better distinguished by a higher-order structural de-
scription of the particle contact network. We identify the
contact fabric tensor as an important higher-order struc-
tural descriptor that uniquely represent the nonequilib-
rium states of both shear arrest and steady shear flow
in granular materials. This finding has important conse-
quences for constitutive modeling of granular materials
across their fluid-like and solid-like states of existence.
Lastly we discuss our findings in the context of shear
jamming and highlight potential extensions of our simu-
lations towards understanding the role of boundary con-
ditions in discontinuous shear thickening of suspensions.
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RESULTS

We simulate flow-arrest transition in granular materi-
als by subjecting a dilute system of particles to constant
external pressure pa and shear stress τa (see Materials

and Methods). The particles are initially contained in
a cubic simulation cell that is periodic along all direc-
tions, as shown schematically in Fig. 1a. The simulation
method allows for the dynamical evolution of all the three
shear degrees of freedom along with the evolution of the
volume of the simulation cell in response to applied stress
and pressure. This deformation of the simulation cell
is tracked by the time evolution of its triclinic periodic
boundaries. Each simulation consists of N = 104 spher-
ical particles whose diameters are uniformly distributed
between 0.9d and 1.1d. The particles interact through
a linear spring-dashpot viscoelastic contact mechanical
model, along with tangential Coulomb friction that is
characterized by a coefficient of friction µs [16]. The tan-
gential spring stiffness is set equal to the normal spring
stiffness kn, which is set to unity. The normal velocity
damping constant is set as νn = 0.5, and the tangen-
tial velocity damping constant is set as νt = 0.25. In
the present simulations, time is normalized by the char-

acteristic timescale tc = π
(

2kn/ρd
3 − ν2n/4

)

−1/2
, which

is the characteristic collision time between two particles
[16]. The simulation time step is set to 0.02tc, and each
simulation is run for at least 106tc total time. The spring
constant sets the scale for stress in the system; therefore,
all stresses are scaled by kn/d.
The granular system initially responds to the applied

stress by rapid compaction under the action of pressure
along with significant shear straining, as shown by the
evolution of deviatoric strain rate γ̇ and volume fraction
φ in Fig. 1c. After initial transients the system enters
into a quasi-steady flow that is characterized by fluctua-
tions around a mean value of γ̇ and φ. At long times, the
dynamical evolution of granular system exhibits two dis-
tinct phenomena as shown in Fig. 1a: (i) for low values
of τa/pa, the system enters into a dynamically arrested
solid-like state resulting in a drop of γ̇ by several orders
of magnitude; (ii) for large enough values of τa/pa the
system continues to flow steadily around mean values of
γ̇ and φ.
Previously it was demonstrated that the dynamical ar-

rest of dense granular flows is highly stochastic and the
time for the flow to arrest exhibits a heavy-tailed distri-
bution whose statistics diverge at a critical value of stress
ratio µ [26]. However, the internal state of the granu-
lar material upon arrest is deterministic and depends on
both µ and µs [30]. Based on these observations, we pos-
tulate a flow-arrest state diagram where nonequilibrium
states of granular arrest exist at low µ and high φ, and
states of steady granular flows exist at high µ and low φ,
as also shown in a schematic in Fig. 1b. Under the action
of external pressure and shear stress, it is expected that
any state at high µ and high φ, or low µ and low φ are
forbidden. At high µ greater than a friction-dependent

critical µc, the system can not exist at arbitrarily high
φ and will necessarily dilate to a volume fraction lower
than a friction-dependent critical φc to achieve steady
flow. Similarly, at low µ smaller than a critical µc, the
shear stress is not large enough to drive steady granular
flow and the material will compact into a shear-arrested
solid under the action of external pressure. For the par-
ticular case of µ = 0 that corresponds to isotropic jam-
ming under external pressure and zero shear stress, the
friction dependent jamming volume fraction φJ (µs) [31]
is expected to be recovered, as indicated by the y-axis
of the proposed state diagram in Fig. 1b. In the present
simulations, the initial conditions correspond to µ = 0
and a very low φ. After the external pressure and shear
stress are switched on, the system will follow nonequilib-
rium paths to either granular flow or arrest depending
upon the magnitude of τa/pa, as shown in Fig. 1b. Al-
though the state diagrams calculated in this paper are
extracted from simulations starting from states with low
µ and low φ, we have verified that they are robust to
initial conditions by performing simulations with initial
states at higher volume fractions.

States of Flow and Arrest

Simulations were performed for a range of frictions
from µs = 0.0 for frictionless particles to µs = 0.3
that characterizes the high friction limit. Several applied
stresses ranging from τa/pa = 0.0 for isotropic jamming
to τa/pa = 1.0 were analyzed, and three simulations were
run for each case of µs and τa/pa. Although the results
presented in the main text are for pa = 10−5, which corre-
sponds to the hard-particle limit, no significant pressure
dependence was observed for pressures pa = 10−4 and
pa = 10−6 in accordance with similar previous observa-
tions [32] (see SI Appendix for state diagrams for these
two pressures).
Figure 2a shows nonequilibrium states of shear arrest

(open symbols) and steady shear flow (closed symbols)
on a φ−µ state diagram for various µs. The steady state
behavior for a given case of µs and τa/pa is treated as
shear arrest (flow) if all three simulations for that case
resulted in shear arrest (flow). In the vicinity of critical
transition between arrest and flow, often not all three
simulations resulted in shear arrest or flow within the
simulation run time; these cases have been marked with
an asterisk. This results from the stochastic nature of
shear arrest and depends significantly on simulation run
time and system size [26].
For steady flowing states, φ decreases rapidly and

monotonically with increase in µ for all µs, thus indicat-
ing the dilating nature of granular flows. Furthermore,
the one-to-one relationship between φ and µ implies that
µ uniquely sets φ in steady granular flows for all µs, which
has important consequences in constitutive modeling of
granular materials [33]. This is similar to the predictions
of the kinetic theory [34] and hydrodynamic models [35]
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(a)

(b)

FIG. 2. (a) Nonequilibrium states of shear arrest (open sym-
bols) and steady shear flow (closed symbols) on φ − µ axes
for different frictions µs (see the color legend in (b)). The
asterisk denote states in the vicinity of the flow-arrest tran-
sition for which some simulations arrested and some flowed
steadily at long times. (b) The state diagram in (a) shifted
and normalized by the friction-dependent critical values µc

and φc.

where such a relationship was determined between inter-
nal granular temperature and φ for granular flows. Unlike
states of steady flow, a strong one-to-one relationship be-
tween µ and φ does not exist for the states of shear arrest,
which all seem to possess nearly the same µs-dependent φ
irrespective of µ. A slight increase in φ with µ is observed
near the flow-arrest transition for particles with high fric-
tion, and this can possibly be attributed to rheological
hysteresis in frictional particles [36]. Therefore, another
internal variable beyond φ is required for a unique char-
acterization of the internal state of shear arrest.
Considering closely the region of arrested states from

our simulations, the isotropic jamming volume fraction
(at µ = 0) for frictionless particles φJ = 0.64 is equivalent
to the random closed packing fraction, whereas φJ = 0.59
is observed for high friction, similar to previous simula-
tions [31] and experiments [12, 13] on frictional particles.
The critical flow-arrest transition for frictionless particles

occurs at φc = 0.64 and µc = 0.1± 0.02 (denoted by the
green dot in the schematic in Fig. 1b), which is consis-
tent with previous simulations [15] and experiments [13]
on the rheology of frictionless particles. The equality
φJ = φc = 0.64 with the random closed packing fraction
for frictionless particles confirms previous observations
that frictionless particles do not need to dilate in order
to begin flowing [15]. For particles with high friction,
the critical flow-arrest transition occurs at φc = 0.59 and
µc = 0.34±0.01 (denoted by the blue dot in the schematic
in Fig. 1b), which is consistent with previous experiments
[12, 13], simulations [16, 37] and predictions from the the-
ory of critical state soil mechanics [17] for the onset of
granular flow. Although µc and φc were estimated from
the discrete data by demarcating the steady shear flow
and shear arrested nonequilibrium states, these estimates
match well with their more precisely calculated values in
ref. [26] from the power-law divergence of the time for
a flowing granular material before arrest. Using the es-
timated values of µc and φc, the shear arrest part of the
state diagram is collapsed on to a nearly horizontal mas-
ter curve for all µs by plotting (φ−φc)/φc vs. (µ−µc)/µc,
as shown in Fig. 2b. The very weak dependence of φ−φc

on µ−µc for shear-arrested states also demonstrates that
φJ ≈ φc, i.e., granular materials begin to dilate and flow
at volume fractions that are nearly equal to their friction
dependent isotropic jamming volume fractions.

Unlike shear arrest, the steady flowing part of the state
diagram is not collapsed onto a similar master curve be-
cause µ−µc and φ−φc scale differently with the inertial
number of flow, as shown in Fig. 3. Prior studies [16, 32]
have provided estimates on friction dependent power-law
scaling of µ− µc ∼ Iα and φc − φ ∼ Iβ , and the results
from our present simulations correspond well with the
previously determined power-law scaling exponents.

(a)

(b)

FIG. 3. Variation of (a) µ−µc and (b) φc−φ with the inertial
number I for nonequilibrium states of steady shear flow. The
different colors represent various frictions (see the color legend
in Fig. 2b).
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The Role of Coordination and Contact Fabric

The coordination of the grains in a granular system
plays a key role in their properties both during jamming
[38] and flow [39]. Previously, a constitutive model was
proposed that incorporated the coordination number as
an internal state variable in steady and unsteady quasi-
static granular flows [40]. In this work, we define a coor-
dination number Z = 2Nc/N , where Nc is the total num-
ber of contacts with non-zero normal forces. In Fig. 4a,
Z for flow and arrested states is plotted as a function of µ
for various µs. For frictionless particles, the coordination
number at isotropic jamming ZJ ≈ 6, whereas ZJ ≈ 4
for particles with high friction, which is consistent with
previous simulations [31, 41]. In a manner similar to φ,
all the arrested states possess the same µs-dependent Z
irrespective of µ. From the state diagram, critical val-
ues of friction-dependent Zc were extracted, and all the
shear-arrested states are collapsed on to a nearly hori-
zontal master curve for all µs by plotting (Z−Zc)/Zc vs.
(µ − µc)/µc, as shown in the inset of Fig. 4a. For flow-
ing states, Z decreases rapidly and monotonically with
µ for all µs, predominantly from the loss of contacts in
the extension direction of simple shear flow [42]. For all
steady flowing states, a unique one-to-one relationship
exists between Z and µ as shown in Fig. 4a, in a manner
similar to the relationship between φ and µ in Fig. 2a.
Therefore for a given friction, the steady shear flowing
state of a granular material can be uniquely identified by
either µ, φ or Z as there exists a one-to-one relationship
between these quantities.

Such a one-to-one relationship is very weak for
shear-arrested states that possess nearly the same µs-
dependent φ and Z regardless of µ, thus necessitating a
more microstructure-sensitive metric for their characteri-
zation. It is expected that the topological structure of the
particle contact network in an arrested granular system
would be increasingly anisotropic with an increase with µ,
resulting from directionally-dominant contact networks
that are required to support the external shear stress
[10, 30]. Therefore, a higher-order structural descriptor
beyond isotropic measures such as φ and Z is required to
distinguish such structural anisotropy in shear-arrested
states. We quantify the structural of the contact net-
work using a contact fabric tensor Ac [30, 43] whose sec-
ond invariant ac is a measure of the anisotropy in the
contact network (see Materials and Methods). Figure 4b
shows the dimensionless ratio ac/Z for flowing and ar-
rested states as a function of µ for various µs. Unlike φ
and Z, there exists a one-to-one relationship between ac
and µ for the states of shear arrest. Furthermore, a lin-
ear relationship ac ∼ µ emerges as Z is nearly constant
for all shear arrested states regardless of µ from Fig. 4a.
Interestingly, the linear relationship between ac/Z and µ
is independent of µs (see the collapse of ac/Z for all fric-
tions in Fig. 4b), thus indicating that the internal state of
a shear-arrested granular system containing weakly poly-
disperse spheres is uniquely characterized by its contact

(a)

(b)

FIG. 4. Nonequilibrium states of shear arrest (open symbols)
and steady shear flow (closed symbols) on Z − µ axes for
different frictions µs (see the color legend in Fig. 2b). The
asterisk denote states in the vicinity of the flow-arrest tran-
sition for which some simulations arrested and some flowed
steadily at long times. The inset shows the state diagram
shifted and normalized by the friction-dependent critical val-
ues Zc and µc. (b) Contact fabric anisotropy ac normalized
by Z for the states of steady flow and arrest as a function of
µ for different µs. The dotted line denotes a slope of unity.
The inset shows the state diagram shifted and normalized by
the friction-dependent critical values ac

c and µc.

anisotropy irrespective of the friction. A critical friction-
dependent fabric anisotropy acc at the flow-arrest tran-
sition is extracted from the state diagram. The unique
linear relationship between fabric anisotropy and stress
ratio for all shear-arrested states regardless of friction is
also seen by the collapse of (ac − acc)/a

c
c vs. (µ− µc)/µc

on to a linear master curve in the inset of Fig. 4b.

For steady flowing states above the critical flow-arrest
transition, the ratio ac/Z increases rapidly with µ as
shown in Fig. 4b, with an observed scaling of ac/Z ∼ µξ,
where ξ varies slightly with friction ranging from 3.8 for
frictionless particles to 4.0 for particles with high fric-
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tion. Unlike shear arrested states where there is no loss
of coordination upon increasing µ, the super-linear in-
crease in ac with µ in flowing states is a consequence
of directional alignment of the contacts along the com-
pression direction in addition to a loss of coordination in
the extension direction of shear flow [42]. As a result,
there is a discontinuity in the variation of ac/Z with µ
at the flow-arrest transition, as also seen in the inset of
Fig. 4b. Such a rapid increase of contact anisotropy
in high shear rate granular flows was also demonstrated
previously [39]. Therefore, while φ or Z can completely
characterize the state of shear flow in granular materials,
ac/Z is a key constitutive variable that uniquely char-
acterizes both shear-arrested and shear flowing states of
granular materials, and is remarkably insensitive to the
applied pressure (see SI Appendix ). These results pro-
vide crucial inputs towards the development of a unified
constitutive model of granular materials that is applica-
ble across its solid and fluid states of existence.

Critical States at the Flow-Arrest Transition

Simulations under controlled pressure and shear stress
facilitate a seamless transition between shear-arrested
and shear-flowing states of granular materials. Such sim-
ulations are well-suited for identifying the critical bound-
ary that separates these two nonequilibrium states. From
the state diagrams described above, we extract friction-
dependent critical values of volume fraction φc, stress
ratio µc, coordination Zc and contact anisotropy acc at
the flow-arrest transition. The critical stress ratio µc

varies monotonically with µs, and ranges from 0.1± 0.02
for frictionless particles to 0.34± 0.01 for particles with
high friction, as shown in Fig. 5a. The variation of µc

with µs also corresponds well with previous simulations
that more precisely characterized the critical transition
from the power-law divergence of the time to arrest [26].
The critical µc corresponds to the dynamical arrest of
granular flows, i.e., the minimum shear stress required
to continue flowing a granular material indefinitely. Al-
though this critical shear stress ratio is considered equal
to the value required to start a granular flow in standard
granular rheological models [1], recent experiments [44]
and simulations [36] have identified a mild hysteresis in
granular rheology that can result in different µc depend-
ing on whether the flow-arrest boundary is reached from
a flowing state or an arrested state (such as in start-up
shear tests).
The critical volume fraction φc at the flow-arrest tran-

sition decreases monotonically with friction, and ranges
from φc = 0.64 for frictionless particles to φc = 0.59 for
particles with high friction, as shown in Fig. 5b. Fric-
tionless particles can flow at their densest random closed
pack volume fraction, whereas the presence of friction
necessarily requires dilation for steady flow. If the dila-
tion of the granular material containing frictional parti-
cles is restricted and the material is forced to flow in a

(a) (b)

(c) (d)

FIG. 5. Critical values (a) µc, (b) φc, (c) ac

c and (d) Zc as a
function of friction µs. The jamming volume fraction φJ and
coordination number ZJ are also marked with crosses in (b)
and (d) respectively. The leftmost data points in (a) - (d) cor-
respond to the frictionless case. The vertical bars around data
points represent the error in estimating the critical boundary
between the steady shear flowing and shear arrested granular
states from the discrete simulation data in Figs. 2a and 4.

volume- and strain-controlled setup, as described in pre-
vious simulations [18, 45] and experiments [6], the flow
will be chaotic and prone to instabilities. Such frustrated
dilatancy effects have also been proposed to cause dis-
continuous shear thickening in dense suspensions [6]. As
shown in Fig. 5b, φc is nearly equal to the isotropic jam-
ming volume fraction φJ , thus demonstrating that shear
arrest of granular materials occurs at a well-defined vol-
ume fraction.
Unlike the volume fraction, a precise determination of

the critical Zc at the flow-arrest boundary is challenging
because the granular material loses a significant number
of contacts upon the beginning of flow. This is demon-
strated in Fig. 5d, where the critical coordination Zc is
consistently lower than the isotropic jamming coordina-
tion ZJ , and they both decrease with friction. For fric-
tionless particles ZJ = 5.94 and Zc = 5.6± 0.34 whereas
ZJ = 4.01 and Zc = 3.88 ± 0.33 for particles with high
friction. The large error bars associated with Zc indicate
that the loss of coordination during transition from ar-
rested states to flowing states has significant variability
across simulations, resulting from random breaking and
forming of contacts during steady shear flow.
The critical contact fabric anisotropy acc denotes the

maximum anisotropy—i.e., maximum structural align-
ment on the contact network in the shear direction—
that a granular material can sustain above which it will
necessarily flow. The critical anisotropy increases with
friction and ranges from acc = 0.14 ± 0.03 for friction-
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less particles to acc = 0.48 ± 0.08 for particles with high
friction, as shown in Fig. 5c. The increase of acc with
µs is expected as the tangential force of friction between
particles provides increased stability to a highly sheared
but static granular network. Furthermore, the mechani-
cal stability of such highly sheared systems has also been
recently demonstrated in experiments on shear jamming
where the application of shear strain introduces direc-
tional rigidity in frictional granular systems at volume
fractions below the isotropic frictionless jamming volume
fraction [10]. Shear jamming can not be observed in the
present simulations because the material is allowed to di-
late or contract under constant pressure conditions, and
a sheared granular material at low volume fractions will
necessarily compact towards a shear arrested state or di-
late towards steady shear flow depending on the applied
stress and pressure. However, it is expected that the phe-
nomenon of shear arrest at constant pressure simulated
in this work is intimately related to the phenomenon of
shear jamming at constant volume, which was also hy-
pothesized in shear jamming experiments [10].
The non-zero value of acc for frictionless particles, as

shown in Fig. 5c, highlights that even dense frictionless
granular systems can sustain a limited amount of struc-
tural anisotropy without yielding to flow. In the absence
of friction and in the limit of hard particle stiffness, the
origins of such non-zero yield stress are purely geomet-
rical in nature [46]. Furthermore, these results indicate
that the phenomenon of shear jamming can be observed
for frictionless particles as well. Recent computational
investigations have confirmed shear jamming like behav-
ior in frictionless systems [47] along with connections to
shear dilatancy [48] that is ubiquitous in frictional sys-
tems but can also occur in frictionless systems [49].

SUMMARY AND OUTLOOK

In summary, we have characterized nonequilibrium ar-
rested and flowing states of stressed granular materials
using a recently developed novel stress-controlled simu-
lation method. We have constructed a flow-arrest state
diagram for bulk granular materials under conditions of
constant external shear stress and pressure, and iden-
tified the critical boundary demarcating the flow-arrest
transition. We have demonstrated that while there exists
a unique one-to-one relationship between internal stress
ratio, volume fraction and coordination number for flow-
ing states, an additional high-order structural descrip-
tor in the form of contact fabric tensor is required to
characterize shear-arrested states. This finding has im-
portant implications towards the development of consti-
tutive models of granular materials that are applicable
across their solid-like and fluid-like state of existence.
We expect that contact fabric anisotropy is an important
state variable that needs to be included in such consti-
tutive modeling, and recent investigations on transient
granular flows confirm these expectations [50, 51]. An

important part of our future work involves the investi-
gation of transient evolution of granular states prior to
flow-arrest transition (such as shown in Fig. 1b) through
cyclic stress-controlled shearing simulations that will ex-
tend the current analysis to unsteady granular flow phe-
nomena.

Our work describes the conditions under which flow-
ing granular materials can arrest along with the struc-
tural and mechanical properties of shear-arrested gran-
ular states. An important implication of the flow-arrest
transition is observed in discontinuous shear thickening
of dense suspensions, where the dynamical arrest of a
flowing suspension is caused by frustrated dilatancy [6]
and frictional transition within the contact network [22].
Because this phenomenon is sensitive to boundary and
external stress conditions [6, 23, 24, 27], our simulation
method is particularly well-suited to disentangle the role
of boundaries from the bulk rheological instability in such
dense suspensions. Extending the simulation studies of
sheared dense suspensions [52, 53] to a fully-periodic and
stress-controlled framework described here will be illu-
minating in this regard, and it constitutes an important
part of our future work.

We have focused exclusively on granular materials in
which sliding friction is the sole frictional phenomena.
However, recent simulations have indicated that addi-
tional frictional modes such as rolling friction that are
ubiquitous in granular materials have a dominant im-
pact on their shear thickening [54] and jamming behav-
ior [41]. Investigating the impact of such additional fric-
tional modes on the flow-arrest transition is an important
future work that will provide better predictions in prac-
tical applications of granular materials.
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Appendix A: Materials and Methods

Stress-controlled simulation method

We use a stress-controlled simulation method where
the triclinic periodic simulation cell denoted by a ma-
trix H(t) and the positions and momenta of N particles
{rk(t),pk(t)} for 0 < k < N are evolved in time t as
a response to the action of external applied stress ten-
sor σa that is constrained by (i) (1/3)σa,ii = pa, (ii)
σa,ij = τa for i, j = 1, 2 and 2, 1, and (iii) σa,ij = 0 for
all other Einstein indices i 6= j. The triclinic periodic
cell H is a concatenation of the three unit cell vectors
that define the periodicity of the system. Under the ac-
tion of applied traction at the boundaries of the periodic
cell, it can dilate (or compact) and deform its shape in
all possible ways, thus simulating the true bulk response
of the granular material under external shear stress τa
and pressure pa. The reader is referred to ref. [16] for a
detailed description of the simulation method including
the equations of motion and the numerical method for
their solution. All the simulations are performed using
the large-scale molecular dynamics software LAMMPS
[55].
The motion of the triclinic periodic cell H(t) results

in a bulk velocity gradient ∇v(t) = Ḣ(t)H−1(t) from
which a symmetric strain rate tensor is computed as
D(t) = ∇v(t) + ∇vT (t). In steady state, D(t) is
traceless, and a deviatoric strain rate is computed as

γ̇(t) =
√

1

2
D(t) : D(t) [16].

The internal Cauchy stress of the system σ is computed
from the interparticle forces between two contacting par-
ticles with center-to-center contact vector rc and total
contact force fc as:

σ =
∑

Nc

fc ⊗ rc, (A1)

where the sum is over all the contacts. The kinetic contri-
butions to the internal stress are minimal in these dense
flows and ignored. The internal pressure is computed as
p = 1

3

∑

i σii, and the total internal shear stress is com-

puted as τ =
√

1

2
τ : τ , where τ = σ − pI, and I is the

identity matrix. During steady flow the Cauchy stress σ
is not necessarily equal to σa (which is the Piola-Kirchoff
measure of the stress) and the two are related by the bulk
deformation gradient tensor F as: σ = (1/J)FσaF ,
where the Jacobian J = det [F ] [16].

Contact fabric tensor

A second-rank contact fabric tensor Ac is defined such
that it provides a convenient description of the direc-
tional distribution of the particle contact network. It
can be expressed as the coefficient of the second-order

Fourier expansion of the orientational distribution func-
tion P (n) of unit vectors n connecting two contacting
particles:

P (n) =
1

4π
[1 +Ac : (n⊗ n)] . (A2)

Here, Ac is traceless and symmetric, and a scalar

anisotropy measure is defined as acc =
√

1

2
Ac : Ac. The

reader is referred to refs. [16, 30] for more details.

Appendix B: Flow-arrest state diagrams at different

pressures

The flow-arrest state diagrams in the main text corre-
spond to an external applied pressure of pa = 10−5. In
this Supporting Information we provide similar diagrams
for a higher and a lower applied pressure: pa = 10−4

and pa = 10−6. Additionally, we also extract the criti-
cal values at the flow-arrest transition boundary at these
applied pressures, which are shown in Fig. 8. In Figs.
6 and 7, we show the flow-arrest state diagrams along
various axes described in Figs. 2 and 3 of the main
text. Evidently the states of flow and arrest and the
boundary defining the flow-arrest transition remains sim-
ilar at all pressures, thus confirming our assumption that
the present results correspond to a hard-particle limit.
At lower pressures (corresponding to stiffer particles),
the stress-controlled simulation method requires substan-
tially longer simulation runs to achieve steady state and
to extract reasonable statistics concerning the material
microstructure. This is seen by the large error bars as-
sociated with identifying acc and Zc for the the case of
pa = 10−6 in Fig. 8. Furthermore, we note that although
the critical stress ratio µc and critical volume fraction φc

remain insensitive to the applied pressure, the coordina-
tion numbers, both at jamming Zc and at the flow-arrest
transition Zc, are more sensitive to the applied pressure,
as seen in Figs. 8(d) and (h). At lower pressures the co-
ordination number is consistently lower for both flowing
and arrested states, which can be observed by compar-
ing Fig. 6(c) and Fig. 7(c). Remarkably, however, the
variation of ratio ac/Z with µ is nearly equivalent at all
pressures (see Fig. 6(d) and Fig. 7(d)), thus further con-
firming that ac/Z is an important internal constitutive
variable in modeling the flow-arrest transition of granular
materials.
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(a)

(b)

(c)

(d)

(e) (f)

FIG. 6. (a) Nonequilibrium states of shear arrest (open sym-
bols) and steady shear flow (closed symbols) on (a) φ−µ axes
and (c) Z−µ axes for different frictions µs (see the color leg-
end in (b)) for an applied pressure pa = 10−6. The asterisk
denote states in the vicinity of the flow-arrest transition for
which some simulations arrested and some flowed steadily at
long times. (b) The state diagram in (a) shifted and normal-
ized by the friction-dependent critical values µc and φc. (d)
Contact fabric anisotropy ac normalized by Z for the states
of steady flow and arrest as a function of µ. (e) The state dia-
gram in (c) shifted and normalized by the friction-dependent
critical values Zc and µc. (f) The state diagram in (d) shifted
and normalized by the friction-dependent critical values ac

c

and µc.

(a)

(b)

(c)

(d)

(e) (f)

FIG. 7. (a) Nonequilibrium states of shear arrest (open sym-
bols) and steady shear flow (closed symbols) on (a) φ−µ axes
and (c) Z−µ axes for different frictions µs (see the color leg-
end in (b)) for an applied pressure pa = 10−4. The asterisk
denote states in the vicinity of the flow-arrest transition for
which some simulations arrested and some flowed steadily at
long times. (b) The state diagram in (a) shifted and normal-
ized by the friction-dependent critical values µc and φc. (d)
Contact fabric anisotropy ac normalized by Z for the states
of steady flow and arrest as a function of µ. (e) The state dia-
gram in (c) shifted and normalized by the friction-dependent
critical values Zc and µc. (f) The state diagram in (d) shifted
and normalized by the friction-dependent critical values ac

c

and µc.

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 8. Critical values (a,e) µc, (b,f) φc, (c,g) ac

c and (d,h)
Zc as a function of friction µs. The top row corresponds to
applied pressure pa = 10−4 and the bottom row corresponds
to pa = 10−6. The jamming volume fraction φJ and coordi-
nation number ZJ are also marked with crosses in (b,f) and
(d,h) respectively. The leftmost data points in each panel cor-
respond to the frictionless case. The vertical bars around data
points represent the error in estimating the critical boundary
between the steady shear flowing and shear arrested granular
states from the discrete simulation data in Figs. 6 and 7.
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