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Electron Spin Resonance (ESR) measurements performed on the filled skutterudite system
Ce1—2YbgFesP12 (z < 0.003) unequivocally reveal the coexistence of two Ybit resonances, associ-
ated with sites of considerably different occupations and temperature behaviors. Detailed analysis
of the ESR data suggests a scenario where the fraction of oversized (Fe2P3)s cages that host Yb
ions are filled with a low occupation of on-center Yb>* sites and a highly occupied T-dependent
distribution of off-center Yb®" sites. Analysis of the "' Yb3*(I=1/2) isotope hyperfine splittings
reveal that these two sites are associated with a low (~ 1 GHz) and a high (2 15 GHz) rattling

frequency, respectively. Our findings introduce Y

b3t

in T}, symmetry systems and uses the Yb**

ESR as a sensitive microscopic probe to investigate the Yb**" ions dynamics.

I. INTRODUCTION

The dynamics of guest or filler ions vibrating loosely
inside oversized host cages has been a topic of current fo-
cus in condensed matter physics. The anomalous behav-
iors of these so-called rattler ions raise interest both from
the fundamental understanding of the unusual potential
wells they are subjected to (and consequent anharmonic-
ities in their vibrational motions) as well as from the im-
plications of such rattling on the dampening of thermal
transport in the material, which invites application per-
spectives in the field of thermoelectrics.? Thermoelectric
materials, which can convert heat into electricity, are of
great interest for energy sustainability and energy har-
vesting (transformation of waste heat into useful elec-
tricity). The main obstacle is the low thermoelectric ef-
ficiency of materials for heat to electricity conversion,
which is quantified by the thermoelectric figure of merit,
ZT. The high ZT value is the result of the high Seebeck
coefficient and the low thermal conductivity.2 Among the
best-known cage systems displaying such characteristics
are the filled skutterudite compounds RT X2, where R
is a rare earth or actinide, T is a transition metal (Fe,
Ru, Os) and X is a pnictogen (P, As, Sb). Besides ex-
hibiting a rich variety of ground states and promising
thermoeletricity,® the question of whether the R ions
in these compounds are sited on- and/or off-center in
the oversized rigid (T2X3)4-cages is a matter of intense
debate.#® There is also controversy over the extent to
which the weakly bounded R ions can be regarded as in-
dependent Einstein oscillators, and how effectively they
contribute to a phonon-glass type of heat conduction. 2
In this work we take advantage of a uniquely favorable
conjunction between the chemical and structural charac-
teristics of skutterudites and their effect on the Electron
Spin Resonance (ESR) of the J = 7/2 multiplet of Yb3*,

to probe this ion’s dynamical behavior within oversized
cages of the Ce;_,Yb,FesP15 system (z < 0.003).

Skutterudites crystallize in the cubic LaFe P15 struc-
ture with space group Im3.2 Each R ion is surrounded
by eight transition metal ions forming a cube, and twelve
pnictogen ions that form a slightly deformed icosahedron.
Our work lies in the fact that the local point symmetry
for the R ions is T}, which lacks two symmetry operations
(Cy and C} rotations)*® when compared to common cubic
structures. Thus, the electric crystal field (CF) Hamilto-
nian (Hcr) allows for an additional sixth order term with
an extra crystal field parameter (CFP), B§. 2112 This sys-
tems present a complex magnetic behavior, and it is es-
sential to know their CF level schemes for its complete
description. 1314

ESR is a powerful microscopic tool to provide in-
formation about CF effects, site symmetries, valencies
of the paramagnetic ions, g-values, fine and hyperfine
parameters.l?2 The ESR of excited states may be also
observable, then, by measuring a R-ion ESR at differ-
ent frequencies and temperatures, one may obtain CF
ground states and, in some cases, the full set of CFP’s
that determine the overall splitting of a R-ion J-multiplet
ground state.1® Previous works on Ce;_,R,FesP1s for R
= Nd, Dy, Er, Yb; (z < 0.005) succeeded in explaining
the low-T" ESR results using such an expanded Heo g, and
the full set of CFP’s could be determined.t2 However, we
now found that in the case of R = Yb, as T increases,
a second Yb3T resonance emerges from the low-T spec-
tra, corresponding to a distinct site, coexisting with the
first one. The presence of the new term in the Hop has
proven essential to explain the appearance of this second
Yb3T resonance. The sensitivity of Yb31 4 f-electrons to
this type of CF environment make it a rare and useful
probing ion to help the understanding of the potential
well responsible for its motion.
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II. EXPERIMENTAL

Single crystals of Cej_,Yb,FesP1o (x < 0.003) were
grown in Sn-flux as described in Ref. [16. The cubic
structure (Im3) and phase purity were checked by x-ray
powder diffraction. The Yb concentrations were deter-
mined from the H and T-dependence of the magnetiza-
tion, M (H,T), measured in a SQUID dc-magnetometer.
The ESR experiments used crystals of ~2x2x2 mm? of
naturally grown crystallographic faces, as well as crys-
tals crushed into fine powder. The ESR spectra were
taken in Bruker X (9.48 GHz) and Q (34.4 GHz) band
spectrometers using appropriate resonators coupled to a
T-controller of a helium gas flux system for 4.2 < T < 45
K. The ESR spectra of the 1"0Yb3* (I=0) isotope showed
the superposition of a narrow line and a slightly shifted
broad line. For single crystals and powdered samples the
spectra were, respectively, fitted by the superposition of
two dysonian (metallic lineshape) and two lorentzian res-
onances with adjustable resonance fields (Hy), linewidths
(AH), A/B ratios and amplitudes.1?
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Figure 1: (color online) T-evolution (4.2 < T < 40 K)
of the normalized Yb3T ESR spectra in a Cei_, YbgFeqPi2
(x ~ 0.0023) single crystal: a) X-band and b) Q-band. The
enhanced low field spectra shows the absence of hyperfine lines
for the broad line.

Figures la and 1b show, respectively, selected X-
and Q-band ESR spectra for the Kramers doublet
ground state (KDGS) of the "9Yb3+(I=0) isotope in a
Ce1—;Yb,Fe P12 (2 =2 0.0023) single crystal. As T in-
creases the nearly single line observed at low-T for the
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Figure 2: (color online) X and Q-bands low T-evolution of:
a) g-value and b) AH for the narrow and broad lines of Fig.
1 and also for a powdered crystal. At X-band, Inset a) shows
the correlation between 6(AH)/H and §g/g, and Inset b) the
microwave power dependence of the ESR intensity.

170Yh3+ isotope evolves into two lines, a narrow and
a broad one. At low-T the measured g-values for the
narrow and broad lines are essentially the same, g ~
2.57, different from the g-values of 2.666 and 3.428 ex-
pected for I's and T'; doublets, respectivelyi? At X-
band the marrow line displays the full hyperfine spec-
tra for the Yb isotopes "0Yb3*(1=0), 1"1Yb3* (I=1/2)
and '"3YDb3+ (1=5/2), confirming that the observed spec-
tra are associated to Yb®t ions. From the hyperfine
splittings the corresponding hyperfine constants 17 A —
440(10) Oe and ™A = 120(3) Oe were obtained. These
values are ~ 20% smaller than the hyperfine constants
of Yb3*+ in a KDGS of any system with Oy, cubic point
symmetry.1218 The hyperfine lines corresponding to the
broad line of the '"1'Yb3* isotope were not observed.

Figures 2a and 2b show, respectively, the T-evolution
(4.2 £ T < 40 K) of the g-values and linewidths, AH, for
the narrow and broad lines of Fig. 1 and also for a pow-
dered sample at X-band. The following features are note-
worthy: a) for the sites corresponding to the narrow line
the g-value and AH are frequency- and T-independent;
b) for the broad line sites the g-value and AH are T-
dependent, and only AH is frequency dependent; ¢) the
broad line of the powdered sample is broader than that
of the crystal, while the narrow line is about the same;
d) angular dependent ESR experiments found these res-
onances to be isotropic; e) for the various samples the
relative change of the broad line linewidth, 6(AH)/H,
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Figure 3: a) T-dependence of the ESR intensity for the two
resonances of the '"°Yb3* (I1=0) isotope. The intensity of one
of the ' Yb3" (I=1/2) hyperfine line, normalized by the nat-
ural abundance, is also shown. The inset presents the same
data in log scale. b) T-dependence of the relative intensity for
the narrow line. The inset displays the data of Fig. 3a (xT")
normalized at 4.2 K. The green lines show the C-W behavior.

scales at all-T" with the relative change of its g-value,
dg/g (6(AH)/H ~ 1.3(3) dg/g, see inset of Fig. 2a); f)
saturation ESR intensity measurements show that at 4.2
K and ~ 10 mW the broad and narrow lines present, re-
spectively, a ~ 30% and ~ 50% saturation (see inset of
Fig. 2b).

All the experimental features given in Figs. 1 and 2
were confirmed in crystals from different batches with
comparable Yb concentrations. They lead us to con-
clude that: %) the narrow and the broad lines are, re-
spectively, homogeneous and inhomogeneous resonances;
ii) the origin of the inhomogeneity is a distribution of g-
values of the order of the change in the g-value; i) the T-
independent AH for the narrow line indicates that there
is no Yb3t spin-lattice relaxation via exchange interac-
tion with the conduction-electrons;*%2% jy) the saturation
of the spectra at low-T" suggests slow spin-lattice relax-
ation involving lattice phonons via spin-orbit coupling;12
and v) at low-T' the Yb®*" ions behave as an adiabatic
spin system allowing the formation of Einstein oscilla-
tors inside the (FeaP3)4-cages.

Figure 3a displays the T-dependence of the unsatu-
rated (~2 mW) ESR intensity for the broad and narrow
lines of the '"0Yb3* (I=0) isotope of Fig. la. The inten-
sity of one of the "1 Yb?*(I=1/2) isotope hyperfine lines,
normalized by its natural abundance, is also shown. The
inset shows the data in a log scale. From their rela-

tive intensities the broad and narrow lines correspond,
respectively, to ~ 95% and ~ 5% of the Yb3* ions fill-
ing cages. Figure 3b presents the T-dependence of the
relative population for the low occupied sites (narrow
line). The large observed drop strongly suggests that, as
T-increases, the low populated Yb3* sites migrate, in a
reversible way, to the highly populated Yb3* ones. The
inset of Fig. 3b shows for the broad, narrow and hy-
perfine lines the T-dependence of their intensities (xT)
normalized at T ~ 4.2 K. This data reveals that the
broad line practically follows a Curie-Weiss (C-W) law,
while the narrow line surprisingly drops faster than a C-
W behavior, given further support to the sites migration
idea. The C-W behavior is another indication that the
170Y 13+ ions carry localized magnetic moment and that
the resonances arise from a CF KDGS.

IV. ANALYSIS AND DISCUSSION

In order to analyze our ESR data in Ref. 15 we used
the expanded Hamiltonian, Hopz:

Oc Ot
H = Wq(l- -4 ~6
CFZ {( Iv]) {XFE YF62 }

+gsupH - J, (1)

OC
+- g +
6

where a magnetic moment J with a Landé g-factor g is
considered. The CF includes the usual cubic O;2! terms
parametrized by the x variable that measures the relative
weight of the 4th and 6th order terms and also takes into
consideration the new term Of. The relative weight y
linearly interpolates between the Oy, cubic terms for y= 0
and the Of term for y= 1. This (x,y) parametrization
allows the entire range of the CFP’s to be accounted for
within the finite intervals —1 <x< 1 and |y|< 1 and the
results do not depend on the sign of y. By diagonalizing
Hcrz one obtains, as a function of x and y, the CF wave
functions and energies for each of the R in units of W.
From the ground state wave function the low field g-value
can be calculated!®.

A combined analysis of the ESR data for Er3*, Dy3+
and Yb3T impurities in Ce;_zR,Fe P12 allowed us to
pinpoint the exact (x=0.523,y=0.082) values correspond-
ing to the Yb3* narrow line observed at T ~ 4.2 K and
g ~ 2.575.12 However, as T increases, a second Yb3T
broad line emerges from the low-T narrow line (Fig. 1)
and its g-value decreases, reaching g = 2.54(1) at our
highest-T' (~ 45 K). Therefore, these two resonances
should be associated to two coexisting Yb3* sites with
different peculiarities.

In these compounds the R-ions are known to rattle
at frequencies of ~ 103 GHz% 2 which are low compared
to the cage ion vibrations, but still much higher than
the ESR frequencies (~10-30 GHz). Thus, we argue
that the reduced hyperfine constant for the homogeneous
narrow line spectra results from a motional narrowing



mechanism?? of on-center Yb3t ions rattling in the rigid
oversized (¢ ~ 5 A) (FeyP3)4-cages.? In the extreme mo-
tional narrowing regime??® a rattling frequency of ~ 1
GHz will reduce in ~ 20% the hyperfine constant. More-
over, the hyperfine structure in the inhomogeneous broad
line spectra was not observed, suggesting that a distribu-
tion of Yb3* ions are rattling at higher frequencies and
producing an even larger reduction of the hyperfine con-
stant. Again, in the extreme motional narrowing regime,
a rattling frequency =15 GHz will reduce in 90 to 95%
the hyperfine splitting, and the ESR spectra would look
like the observed single broad line of AH ~ 30-40 Oe.
We should mention that the reported rattling amplitudes
are < 0.1 A.24 Hence, the broad line T-dependent shift
and broadening is most likely the result of a T-dependent
distribution of Yb3* ions rattling at higher frequencies
inside the (FesPj3)s-cages. Thus, we associate the ho-
mogeneous narrow line, corresponding to the low occu-
pied sites, to on-center (g = 2.575) of ~1 GHz rattling
Yb3t ions at (x=0.523,y=0.082), whereas the inhomoge-
neous broad line, corresponding to the highly occupied
sites with lower g-values, to a distribution of 215 GHz
rattling Yb3t ions. Since this broad line is an inhomo-
geneous resonance (distribution of g-values) and the rat-
tling frequency is of the order of or higher than the ESR
frequency, the rattling Yb3t ions responsible for these
spectra should be spending more time at off-center posi-
tions in the over-size cage.

Since no emerging second resonance was observed from
the low-T ESR spectra of Er®t and Dy3*t ions diluted
in Ce;_,R,Fe;P15,22 it is possible that for Yb3T, with
smaller ionic radius than that of Er3t and Dy>t, larger
voided excursion space may be available for the Yb3+t
ions inside the (FeqP3)4-cages which may further favor
the Yb3T to rattle. A T-dependent distribution of CFPs,
that in this T}, symmetry allows for a continuous change
on gesr22, or even a distribution of new 2" order CFPs
in Hopy associated to the off-center Yb3* sites may be
also a plausible reason for the observed T-dependence of
the inhomogeneous broad line.

V. CONCLUSIONS

In summary, our ESR results have shown that the
origin for the large g-shift of the Yb*t KDGS, rela-
tive to that in Op symmetry (y = 0), may be associ-
ated to the BE(O2 — Of) term in Heopz. Coexisting
narrow and broad Yb3t resonances were observed and
associated, respectively, to a low occupation (~5%) of
on-center Yb3T rattling ions (~1 GHz) and to a highly
occupied (~95%) T-dependent distribution of off-center
rattling Yb3* ions (215 GHz). These assignments were
based on: i) the much higher expected Yb3™ rattling fre-
quencies than the microwave frequency used in the ESR
experiments® 8 and; ii) on the observed reduction of the
hyperfine constant for the on-center Yb3% ions and the
absence of hyperfine structure in the spectra of the off-
center Yb?* ions which were attributed to motional nar-
rowing effects.22:23 Although our findings relied on the
Yb3+ ESR results to witness the Yb3T rattling mode,
they suggest that the R ions in other skutterudites and
clathrate compounds may be also rattling in an analo-
gous form as long as they are inside an oversized cage.
However, it may not be always observable in an ESR ex-
periment. We believe that the evidence for predominant
off-center rattling Yb3t ions in these skuterudites is a
result that could justify the existence of Einstein oscilla-
tors and help to understand the low thermal conductiv-
ity and the strongly correlated phenomena exhibited by
these type of materials.
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