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Abstract

Several Studies of Weakly Supervised Learning

in Text Classification

by

Tianyi Luo

Text classification is one of the most fundamental tasks in Natural Language Processing. How

to effectually utilize the unlabeled dataset in text classification and apply weakly supervised

learning methods to further improve the performance based on the existing labeled dataset,

especially for supervision-starved tasks (hard to obtain high-quality labeled data), is challenging.

In this PhD thesis, we show several studies of weakly supervised learning methods in text

classification.

We first focus on improving the accuracy and interpretability in text classification tasks

using weakly supervised learning methods with the help of unlabeled dataset. More specifically,

we proposed several new methods to further improve the accuracy and interpretability on both

of two main research directions in weakly supervised learning methods: learning with noisy

labels and semi-supervised learning. For learning with noisy labels, we proposed two weakly

supervised learning aided methods on the special supervision-starved text classification task:

Research Replication Prediction. For semi-supervised learning, we presented a new weakly

interpretable model to improve the interpretability on the long text classification tasks. We also

proposed a new ensemble method to assign better pseudo or noisy labels to the samples in the

unlabeled dataset for semi-supervise learning methods.

xiii



Furthermore, we conducted the research on fairness on weakly supervised learning.

More specifically, we reveal the disparate impacts in different sub-populations (e.g., race and

gender) when applying the semi-supervised learning methods. Finally, we also contribute a

weakly supervised learning benchmark (Research Replication Prediction) to the community.
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Chapter 1

Introduction

Text classification, also known as text categorization, is one of the most fundamental

tasks in Natural Language Processing (NLP), which aims to assign one or more classes or

categories to a textual unit e.g., sentences, paragraphs, and documents [37, 166, 69, 30, 165, 126,

82]. The text classification technologies are widely applied in the real world such as sentiment

analysis [10], news categorization [129], spam filtering [36], and question answering [179].

Over the last decade, machine learning (ML) has made unprecedented progress in the

text classification tasks [107]. These successes have been largely obtained by training the model

with strong supervisions in supervised learning. However, supervised learning is an arduous

process, requiring collecting massive amounts of data, cleaning it up, manually labelling it,

training and perfecting a model purpose-built for the text classification tasks, and then using

it to predict labels for unknown data. Collecting a large size of strong-supervised labels in

the supervised learning is too expensive and time-consuming especially for some supervision-

starved tasks, e.g. medical data [145] and research replication prediction [101] mentioned

1



1.1. PROBLEMS AND MOTIVATIONS
above. However, it is usually much easier for us to get a large size of unlabeled dataset. These

unlabelled examples, though possibly noisy, but are informative and useful information [159].

Therefore, how to effectually utilize the unlabeled dataset in text classification to further improve

the performance based on the existing labeled dataset becomes an interesting and important

problem. For solving the problem, the weakly supervised learning models are proposed to

deal with the data containing few labeled examples and a large number of unlabelled examples

[54, 86, 106, 178, 8, 108, 109, 162, 24].

In this PhD thesis, we show several studies of weakly supervised learning methods in

text classification. In the remaining sections in this chapter, we first describe the problems and

motivations. Then we provide our corresponding results and contributions.

1.1 Problems and Motivations

The problems we want to resolve in this thesis are how to make better use of the

unlabeled dataset to further improve the model performance in different aspects such as accuracy

and interpretability for text classification tasks. In addition, when having machine learning

models with better performance, the potential unfairness issue among different sub-populations

such as race and gender arises and need to be explored when deploying them in the real world.

Furthermore, the researches mentioned above need to be evaluated on the suitable datasets and

building new standard datasets will facilitate the researchers to speed up the development of new

weakly supervised learning methods.
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1.1. PROBLEMS AND MOTIVATIONS
1.1.1 Noisy Labels in Weakly Supervised Learning for Text Classification

While ML models are increasingly applied in text classification tasks and deployed in

the real world, high-quality training data are often limited in amount [1, 160], especially for the

supervision-starved tasks [101, 145]. Therefore, it is imperative to propose weakly supervised

learning method to make the most use of the unlabeled dataset. In weakly supervised learning,

we usually assign the pseudo labels to unlabeled dataset for conducting additional training based

on the labeled dataset. However, the generated pseudo label are often noisy and inaccurate. How

to utilize the unlabeled dataset with noisy labels is challenging.

1.1.2 Interpretability in Weakly Supervised Learning for Text Classification

In recent years, deep learning neural network models draw a lot of attentions and are

widely applied in text classification. However, these neural network models are often black-box

and lacks of model interpretability [16]. Building an interpretable neural text classifier for text

classification is necessary and it will make the deployed model in the real-world more reliable

and trustworthy. Some studies on building the interpretable models have been conducted for

short text classification tasks and few are for long text [23]. Furthermore, the prior works on

model interpretation mainly focused on improving the model interpretability at the word/phrase

level, which are insufficient especially for long documents. In addition, the existing methods

cannot utilize a large size of unlabeled dataset to further improve the model interpretability. How

to address these limitations are challenging.
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1.1.3 Quality of Noisy Labels in Weakly Supervised Learning for Text Classifica-

tion

Assigning the high-quality pseudo or noisy labels to the unlabeled dataset is crucial

for weakly supervised learning in the text classification tasks. Ensemble methods are usually

applied to conduct the better aggregating in the step of generating pseudo or noisy labels to the

unlabeled dataset [9]. Nonetheless, the existing aggregating rule would fail when the majority

answer of all the constituent algorithms is more likely to be wrong. It is challenging on whether

we can propose a new ensemble method which can reveal the correct minority label when the

majority answer is wrong.

1.1.4 Fairness in Weakly Supervised Learning for Text Classification

Weakly supervised learning have been successfully applied in text classification tasks,

where the high-quality supervised data is severely limited. Although the average accuracy

for the whole population of data is improved, it is unclear on the improvement for different

sub-populations. It may raise the fairness concerns when the sub-populations are defined by the

demographic groups such as race and gender [76]. Verifying whether there exists fairness issue

for different sub-populations and how to qualitatively show the fairness issue in a suitable way

for this setting is challenging.

1.1.5 Datasets in Weakly Supervised Learning for Text Classification

Many standard text classification datasets have been built [20, 103, 87, 174, 122, 121,

170] and they facilitate the development of the corresponding ML approaches. However, few
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standard datasets are built specially for developing weakly supervised learning methods.

1.2 Results and Contributions

In this thesis, we proposed some new weakly supervised learning methods to further

improve the accuracy and interpretability on both of two main research directions in weakly

supervised learning methods: learning with noisy labels and semi-supervised learning. We also

reveal the disparate impacts in different sub-populations (e.g., race and gender) when deploying

semi-supervised learning methods. In addition, we also contributes a weakly supervised learning

benchmark (Research Replication Prediction) to the community. Our main results are described

in Chapter 3 (published in EMNLP 2020 Findings), Chapter 4 (published in ACL 2022 Findings),

Chapter 5 (Minor revision in Machine Learning Journal), Chapter 6 (published in ICLR 2022),

and Chapter 7 (will be submitted to Nature Scientific Data Journal).

1.2.1 Research Replication Prediction Using Weakly Supervised Learning

Research Replication Prediction (RRP), which aims to predict if a published research

result can be replicated, is a supervision-starved task. Carrying out direct replication of published

research to obtain the high-quality labels incurs a high cost. We propose two weakly supervised

learning approaches (Variational Inference based and Peer Loss based) to further improve the

accuracy on this supervision-starved RRP task using both labeled and unlabeled datasets. This

paper [101] was published in EMNLP 2020 Findings.
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1.2.2 Interpretable Research Replication Prediction via Variational Contextual

Consistency Sentence Masking

For long text classification tasks such as Research Replication Prediction (RRP) and

European Convention of Human Rights (ECHR), we built an interpretable neural model which

can provide sentence-level explanations and apply weakly supervised approach to further leverage

the large corpus of unlabeled datasets to boost the interpretability in addition to improving pre-

diction performance as existing works have done. More specifically, we propose the Variational

Contextual Consistency Sentence Masking (VCCSM) method to automatically extract key sen-

tences based on the context in the classifier, using both labeled and unlabeled datasets. This

paper [102] was published in ACL 2022 Findings.

1.2.3 Machine Truth Serum: a Surprisingly Popular Approach to Improving

Ensemble Methods in Classification

To further improve the quality of noisy or pseudo labels of unlabeled dataset generated

by ensemble methods in the weakly supervised learning, we present two machine learning aided

methods which can reveal the truth when the minority instead of majority has the true answer

on both settings of supervised and semi-supervised classification tasks. We name our proposed

method the Machine Truth Serum (MTS). Our experiments on a set of classification tasks (image,

text, etc.) show that the classification performance can be further improved by applying MTS in

the ensemble final predictions step (supervised) and in the ensemble data augmentations step

(semi-supervised). This paper obtained minor revision in Machine Learning Journal.
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1.2. RESULTS AND CONTRIBUTIONS
1.2.4 The Rich Get Richer: Disparate Impact of Semi-Supervised Learning

With weakly supervised learning methods widely applied in various applications,

fairness issue among different sub-populations such as gender and race arises. We reveal the

disparate impacts of deploying semi-supervised leanring (SSL): the sub-population who has a

higher baseline accuracy without using SSL (the “rich" one) tends to benefit more from SSL;

while the sub-population who suffers from a low baseline accuracy (the “poor" one) might even

observe a performance drop after adding the SSL module. We hope our paper will alarm the

potential pitfall of using SSL and encourage a multifaceted evaluation of future SSL algorithms.

This paper [184] was published in ICLR 2022.

1.2.5 A New Weakly Supervised Learning Dataset — Research Replication Pre-

diction

To help the community develop better weakly supervised learning ML models, we

present a new weakly supervised dataset — Research Replication Prediction (RRP). In this

RRP dataset, we collected two types of data with different costs: one with direct verification

(expensive with smaller size) and one using crowdsourcing (larger scale but potentially noisy).

In total, our dataset contains 399 directly replicated samples and 2,682 crowdsourced samples.

We benchmark the performances of several representative weakly supervised baseline methods.

We report several commonly used metrics (accuracy, precision, recall, and F1) to evaluate the

models.
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Chapter 2

Preliminaries

In this chapter we present definitions and notations for supervised learning, semi-

supervised learning and learning with noisy labels methods for text classification tasks.

2.1 Supervised Text Classification Tasks

Consider a K-class classification task given NL labeled training examples denoted

by DL := {(xl, yl)}NL
l=1 and NT labeled testing examples denoted by DT := {(xt, yt)}NT

t=1,

xl or xt ∈ X is an input feature of a text unit, yl or yt ∈ {0, 1, ...,K − 1} represents its

corresponding clean class label. The clean data distribution with full supervision is denoted

by D. Examples (xl, yl) or (xt, yt) are drawn according to random variables (X,Y ) ∼ D.

The classification task aims to learn a classifier f that maps X to Y accurately denoted by f :

X → Y . We define the K-classification cross entropy loss as ℓ(f(xl), yl) := − ln(fxl
[yl]), yl ∈

{0, 1, ..,K − 1}, where fxl
[yl] denotes the yl-th component of f(xl), for the supervised text

classifier on each data point (xl, yl) in the training dataset. Therefore, the empirical risk of the
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2.2. SEMI-SUPERVISED TEXT CLASSIFICATION TASKS
supervised text classifier using clean class labels is as follows:

L1(f,DL) =
1

NL

NL∑
l=1

ℓ(f(xl), yl).

2.2 Semi-Supervised Text Classification Tasks

In the semi-supervised text classification tasks, there is also one additional unlabeled

dataset DU := {(xu, ·)}NU
u=1, where the labels are missing or unobservable. Many methods are

proposed to generate the high-quality pseudo labels of unsupervised dataset [9, 162, 8, 141, 164]

and we can have a new DU := {(xu, yu)}NU
u=1. Compared with supervised classification tasks,

the information of unsupervised should be leveraged to improve the performance. The empirical

risk of the semi-supervised text classifier for f(·) using pseudo labels is as follows:

L2(f,DL, DU ) =
1

NL

NL∑
i=1

ℓ(f(xl), yl) +
1

NU

NU∑
u=1

ℓ(f(xu), yu).

2.3 Learning with Noisy Labels Text Classification Tasks

Semi-supervised learning and learning with noisy labels methods are two main research

lines which can improve the performance with the help of unlabeled dataset. Although both

semi-supervised and learning with noisy labels methods try to assign high-quality pseudo or

noisy labels to the unlabeled dataset, learning with noisy labels utilizes the non-standard loss

functions including the information of error rates instead of directly using standard loss functions

such as Cross Entropy [38]. In this subsection, we introduce two commonly used learning with
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noisy label methods.

Loss correction A main research line of learning with noisy labels are loss correction methods

require estimating the error rates. A representative method is variational inference (VI) aided

weakly supervised method [101]. In VI, several basic text classifiers (only for estimating the

error rates) are first trained on the labeled dataset and then the pseudo or noisy labels of unlabeled

dataset are obtained applying the majority rule based on the predictions of the trained basic

classifiers. Then pseudo or noisy labels of unlabeled dataset as well as the predictions of basic

classifiers are used to estimate the error rates using the variational inference methods proposed by

Liu et al. [89]. In the final step, the noisy training is conducted on the unlabeled dataset with the

proxy loss function [112] as shown below (only show binary classification case for simplicity):

ℓnoise_correct =

NU∑
u=1

(1− ρ1−yu)ℓ(y
p
u, yu)− ρyuℓ(y

p
u, 1− yu)

1− ρ1 − ρ0

where ℓ(ypu, yu) is a standard cross entropy loss function where ypu is the u-th training sample’s

prediction in the unlabeled dataset and yu is its corresponding pseudo or noisy label. NU is the

number of unlabeled training dataset and ρ0 := Pr(ypu ̸= yu|yu = 0) , ρ1 := Pr(ypu ̸= yu|yu = 1)

are two classes’ error rates estimated using variational inference method.

Peer loss Instead of estimating the noise rates in VI (may introduce the extra errors), Liu and Guo

[97] provided an alternative, peer loss, to deal with noisy labels without requiring an additional

estimation step for the noise rates. To apply peer loss, we first construct peer samples for each

sample in the unlabeled training dataset. More specifically, for the u-th training sample (xu, yu)

in the unlabeled dataset, we randomly choose two other samples (xu1 , yu1), (xu2 , yu2) such
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that u1 ̸= u2 and u1, u2 ̸= u. Then we can construct the peer sample (xu1 , yu1), (xu2 , yu2) for

(xu, yu). Then we can calculate peer loss function as shown below:

ℓnoise_peer =

NU∑
u=1

ℓ(ypu, yu)− α · ℓ(ypu1
, yu2)

where ℓ(ypu, yu) is a standard cross entropy loss function. ypu is the u-th sample’s prediction and

yu is the corresponding noisy label. α is an important hyperparameter that need to be tuned with

in the peer loss function. NU is the number of unlabeled training dataset.

Based on two learning with noisy labels methods mentioned above, the empirical risk

of the learning with noisy labels text classifier for f(·) using pseudo labels is as follows:

L3(f,DL, DU ) =
1

NL

NL∑
l=1

ℓ(f(xl), yl) +
1

NU

NU∑
u=1

ℓnoise(f(xu), yu).
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Chapter 3

Research Replication Prediction Using Weakly

Supervised Learning

3.1 Introduction

This chapter focuses on proposing the new weakly supervised learning methods

to improve the accuracy for a typical supervision-starved text classification task: Research

Replication Prediction (RRP) in the research line of learning with noisy labels.

Non-reproducible scientific results will mislead the progress of science and undermine

the trustworthiness of the research community. Therefore, it is important to know whether a

published research result can be reproduced or not. In recent years, researchers have conducted

several direct replication projects for hundreds of classic and contemporary published findings

in the social sciences studies [14, 15, 44, 80, 33]. However, such direct replication is very

time-consuming and expensive [47]. Therefore, machine learning (ML), a much cheaper and
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3.1. INTRODUCTION
more efficient alternative is used to conduct the replication prediction. After being modeled as a

ML prediction problem, it becomes a very typical supervision-starved task due to the high cost

of obtaining labeled dataset mentioned above.

Existing ML works for this RRP task only utilized a small amount of expensive labeled

dataset to train the model, where the use of more sophisticated but more accurate deep learning

techniques is limited [43, 167, 3]. Even though we only have a small size of labeled dataset,

large amounts of unlabeled research articles are available. These unlabeled examples, although

possibly noisy, can provide useful information. Therefore, we aim to propose the new methods

to leverage the large size of unlabeled dataset to further improve the performance.

To make use of the unlabeled dataset, we explore the possibility of using the weakly

supervised learning methods . More specifically, we focus on utlizing the techniques from the

research line of learning with noisy labels [89, 112, 130, 149, 97]. The high level idea is to first

train several weak classifiers based on the small size of labeled data. Then these weak classifiers

can help us assign the noisy label to the large size of unlabeled data. Finally, the tools from

learning with noisy labels can be utilized to further improve the performance with additional

training on these noisy or weakly supervised samples.

In this chapter, we proposed two weakly supervised learning approaches based on text

information of research papers to further improve the prediction accuracy of research replication

using both labeled and unlabeled datasets. The first method is Variational Inference (VI) aided

Weakly Supervised Learning. In VI, the efficient variational inference method [89] are firstly

used to estimate the error rates of weakly supervised samples. Then the loss correction can be

conducted to further improve the performance with the estimated error rates. The second method
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3.2. LEARNING WITH NOISY LABELS BASED WEAKLY SUPERVISED LEARNING
— Peer Loss (PL) aided Weakly Supervised Learning applied the peer loss function [97] which

can directly be trained on the peer samples without requiring the knowledge of error rates.

In addition, the labeled and unlabeled datasets for the RRP task are constructed the by

ourselves. The labeled dataset containing 399 research articles are collected by summarizing

eight research replication projects. As for the unlabeled dataset, we implemented a python

crawler to obtain the pdf files of 2,170 research papers from the websites of corresponding

journals.

3.2 Learning with Noisy Labels based Weakly Supervised Learning

In this section we present two learning with noisy labels based weakly supervised

methods.

The first method relies on proxy loss function [112] to correct the error in the noisy

labels and variational inference approaches [89] to estimate the error rates. These two techniques

jointly provide us a bias-corrected training process to improve the model’s robustness against

errors in the noisy labels. The first method is named as Variational Inference aided Weakly

Supervised Learning.

The second method is built on the peer loss approach [97]. The peer loss approach,

where estimating the error rates are not required, is particularly suitable for our RRP task when

the errors in the noisy labels are unclear. We name this solution as Peer Loss aided Weakly

Supervised Learning.
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3.2. LEARNING WITH NOISY LABELS BASED WEAKLY SUPERVISED LEARNING
3.2.1 Variational Inference aided Weakly Supervised Learning

Algorithm 1 Variational Inference aided Weakly Supervised Learning

Require:
Input:
DL = {(x1, y1), ..., (xNL

, yNL
)}: labeled data

DU = {x1, ..., xNU
}: unlabeled data

DT = {(x1, y1), ..., (xNT
, yNT

)}: test data
F = {f1, ..., fJ}: classifiers

Ensure:
1: Train J classifiers (F) on the labeled training data DL.
2: for j = 1 to J do
3: for u = 1 to NU do
4: Compute yju using j-th basic classifier.
5: end for
6: end for
7: Aggregate above labels into {yu}NU

u=1 and estimate the error rates according to mean field
method described in [89].

8: Train the LSTM model using the proxy loss function mentioned in Section 5.1 with the
estimated error rates in line 7 as the inputs on the weakly supervised dataset. Also train the
LSTM model using the standard cross entropy on the labeled datset.

9: for t = 1 to NT do
10: Output prediction.
11: end for

We first use five basic classifiers (LR, RF, SVM, MLP, and LSTM) trained on the small

size of labeled dataset to generate the noisy labels for each sample in the unlabeled dataset. Then

these noisy labels will be aggregated and the error rates will be estimated utilizing a variational

inference procedure [89], which we reproduce below:

µi is denoted as the probability of different class labels for the u-th training sample in

the unlabeled dataset and ωj represents the weight or ability of the j-th classifier, α and β are

the hyperparameters, δuj = 1[yju = yu] where yju is the noisy label of the j-th basic classifiers

and yu is the aggregated noisy labels by applying the majority voting rule on the yju for each

unlabeled data sample. We first estimated µi and ωj using the Expectation-Maximization (EM)
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3.2. LEARNING WITH NOISY LABELS BASED WEAKLY SUPERVISED LEARNING
algorithms. Then the EM predictions yemu are obtained based on the above estimated µu and ωk.

Finally, we estimate the error rates σ0 := P(yu = 1|yemu = 0) and σ1 := P(yu = 0|yemu = 1)

by using yemu as the proxy for the ground truth label. The steps of estimating the error rates are

summarized in Algorithm 2. More details of EM estimation are described in [89].

Algorithm 2 Aggregation and Error Rates
1: Update µu :

µu(zu) =
∏
j∈K

ω
δuj
j (1− ωj)

1−δuj

2: Update ωj : ωj =

∑
u∈NU

µu(y
j
u)+α

NU+α+β
3: VI Predictions : yemu = argmaxz µu(zu)
4: Error rates :

σ0 =
|u : yemu = 0, yu = 1|

|u : yemu = 0|

σ1 =
|i : yemu = 1, yu = 0|

|u : yemu = 1|

In the final step, an LSTM neural network model with proxy loss function as described

in [112] is used to conduct the training. The definition of proxy loss function is as follows:

NU∑
u=1

(1− ρ1−yu)ℓ(y
p
u, yu)− ρyuℓ(y

p
u, 1− yu)

1− ρ1 − ρ0

where ypu is the u-th sample’s prediction of final LSTM model and yu is the corresponding noisy

label. ℓ is the standard cross entropy loss function.

The whole procedure of Variational Inference based Weakly Supervised Learning

method is summarized in Algorithm 1.
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3.2.2 Peer Loss aided Weakly Supervised Learning

As described in last subsection, Variational Inference aided Weakly Supervised Learn-

ing method needs to estimate the error rates, where the additional estimating step may introduce

extra errors. Liu and Guo [97] proposed a new learning with noisy label method without requiring

estimating the error rates. Therefore, we proposed Peer Loss aided Weakly Supervised Learning

method.

Similar to Variational Inference aided Weakly Supervised Learning method, five basic

classifiers (LR, RF, SVM, MLP, and LSTM) trained on the small size of labeled dataset are

utilized to generate the noisy labels for each training sample in the unlabeled dataset {yu}NU
u=1

via a majority voting rule.

For each training sample (xu, yu) in the unlabeled dataset, we randomly draw another

two samples

Peer Samples: (xu1 , yu1), (xu2 , yu2)

such that u1 ̸= u2 and u1, u2 ̸= u. (xu1 , yu1), (xu2 , yu2) are the u-th data’s peer samples. Then

we calculate peer loss function as shown in [97]. The definition of total peer loss function is

given as follows:

NU∑
u=1

ℓ(ypu, yu)− α · ℓ(ypu1
, yu2)

where ypu is the u-th sample’s prediction of final LSTM model and yu is the corresponding noisy

label. ℓ is a standard cross entropy loss function and α is a hyperparameter that we need to tune
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with.

Finally, an LSTM neural network model with the above peer loss function are trained.

The whole procedure of Peer Loss aided Weakly Supervised Learning method is further illustrated

in Algorithm 3.

Algorithm 3 Peer Loss aided Weakly Supervised Learning

Require:
Input:
DL = {(x1, y1), ..., (xNL

, yNL
)}: labeled data

DU = {x1, , ..., xNU
}: unlabeled data

T = {(x1, y1), ..., (xNT
, yNT

)}: test data
F = {f1, ..., fJ}: classifiers

Ensure:
1: Train J classifiers (F) on the labeled training data DL.
2: for j = 1 to J do
3: for u = 1 to NU do
4: Compute yju using j-th basic classifier.
5: end for
6: end for
7: Compute {yu}NU

u=1 using majority rule.
8: for u = 1 to NU do
9: Construct {(xu, yu), (xu1 , yu2)}.

10: end for
11: Create noisy training dataset: Dnoise = {(xu, yu), (xu1 , yu2)}

NU
u=1.

12: Train the LSTM model using peer loss function as shown in Section 5.2 on Dnoise on the
unlabeled dataset. Also train the LSTM model using the standard cross entropy on the
labeled datset.

13: for t = 1 to NT do
14: Output prediction.
15: end for

3.3 Datasets

Annotated Data we obtained 399 annotated articles from eight research replication projects

which are the Registered Replication Report (RRR) [135], Many Labs 1 [78], Many Labs 2 [80],
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Many Labs 3 [44], Social Sciences Replication Project (SSRP) [15], PsychFileDrawer [115],

Experimental Economics Replication Project [14], and Reproducibility Project: Psychology

(RPP) [32].

There are different standards to claim that one research paper is replicable. To include

as many annotated samples as possible, we adopt the comonly used definition — “statistically

significant (p-value <= 0.05) effect in the same direction as in the original study." [3]

In the labeled dataset, label ‘1’ is used to denote that the research paper can be

reproduced. Otherwise, the label ‘0’ is used to represent it. In the 399 annotated samples, there

are 201 samples with label ‘1’ (replicable) and 198 samples are ‘0’ (non-replicable). From the

class distribution, we observe that the labeled dataset is class-balanced.

Unsupervised Data Along with collecting the labeled dataset, we write a python crawler to

obtain an unlabeled dataset. Since the research papers in the labeled dataset are mainly from

American Economic Review and Psychological Science and the remaining papers are mainly

in the economic and psychology fields, we applied the python crawler to obtain 981 unlabeled

research papers (PDF files) from the website of American Economic Review (Jan 2011 - Dec

2014) and 1,189 unlabeled research papers (PDF files) from the website of Psychological Science

(Jan 2006 - Dec 2012).

Datasets Number of documents Average length Maximum length Minimum length
Train 300 8948 68998 1446
Test 99 8343 33354 3599

Unlabeled 2170 6647 28994 1260

Table 3.1: Number, average length, maximum length, and minimum length of documents in
different datasets
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Overall Dataset We list the average length, minimum length, and maximum length information

of different datasets in Table 3.1. The length means the number of words.

3.4 Experiments

3.4.1 Experimental Setup

In total, we have 399 labeled and 2,170 unlabeled samples. 300 (150:1;150:0) samples

are randomly selected from labeled dataset and all the samples from unlabeled dataset construct

our training dataset. The remaining 99 (51:1;48:0) samples in the labeled dataset are considered

as the testing dataset.

Considering this special task, both text and statistics features of research papers are

utilized. As for the statistics features, p-value, effect size, sample size are considered. As for the

text features, tf-idf and BERT word embeddings are used for bag-of-words and sequential models

respectively. BERT models can help obtain better context-aware features. More specifically, we

used fine-tuned BERT model based on our own corpus as the pretrained model. In addition, we

set the maximum length of our model to 10,000 since the average length of all the documents are

10,000.

Because the text features and statistics features represent different types of information,

we trained models using these two types of features separately. We also try to combine the

predictions of these two types of models. In the combination, the model trained on the statistics

features are fixed to SVM because it obtains the best performance.
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Model Train Setting Test Accuracy (Text) Test Accuracy (Text + Statistics)
LR 300 (L) 57.58% (57/99) 58.59% (58/99)
RF 300 (L) 51.52% (51/99) 52.53% (52/99)

SVM 300 (L) 58.59% (58/99) 60.61% (60/99)
MLP 300 (L) 59.60% (59/99) 60.61% (60/99)

DIVIDEMIX 300 (L) + 2,170 (U) 62.63% (62/99) 63.64% (63/99)
BERT 300 (L) 64.65% (64/99) 65.66% (65/99)
BERT 300 (L) + 2,170 (U) 65.66% (65/99) 67.68% (67/99)

MixText 300 (L) + 2,170 (U) 64.65% (64/99) 65.66% (65/99)
VI 300 (L) + 2,170 (U) 68.69% (68/99) 69.70% (69/99)
PL 300 (L) + 2,170 (U) 71.72% (71/99) 75.76% (75/99)

Table 3.2: Comparison on Train Setting, Test Accuracy (Text), and Test Accuracy (Text +
Statistics) between different nine models. VI is our variational inference based weakly supervised
learning method, and PL is our peer loss based weakly supervised learning approach. 300 (L)
means that 300 labeled samples are used to train. 300 (L) + 2,170 (U) means that 300 labeled
and 2,170 unlabeled samples are used to train.

3.4.2 Results

The experimental results of text only and text + statistics are listed in Table 7.9. As

shown in Table 7.9, we can observe that the combination model (text + statistics) performs

better than the ones trained only on the text features, which indicates that the statistics feature

are complementary to text feature. As for the models only trained on the statistical features,

we report that LR, RF, and SVM (non-deep learning models) are only able to obtain 54.55%,

50.51%, and 56.57% accuracy on the testing dataset respectively. The experimental results of

models trained on the statistics features only confirms that the models train on the text features

are better.

In Table 7.9, we compare nine different approaches LR, RF, SVM, MLP, LSTM,

DIVIDEMIX [88], MixText[24], VI (our variational inference based weakly supervised learning

method), and PL (our peer loss based weakly supervised learning method). From Table 7.9,
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we can observe that our two proposed weakly supervised learning methods obtain the best

performance and it shows the effectiveness of our proposed methods. Furthermore, among our

two proposed approaches, PL perform better than VI. It suggests that PL works better in handling

the noise and likely the extra error are introduced to VI when estimating the error rates.

In addition, we also trained the BERT on both supervised and weakly supervised set-

tings without using noise-resistant loss functions. We observe that they get the same performance.

It suggest that the performance cannot be improve if the noise-resistant loss functions are not

applied to correct the biases in the noisy labels.

3.4.3 Case Study

In this subsection, we showed two cases with the same text but obtain different results

predicted by Logistic Regression and Peer Loss aided Weakly Supervised Learning methods.

The showing text is a paragraph selected from a research paper “Avoiding overhead aversion in

charity” in Behavioral Economics. The ground truth label of this paper is replicable. Showing

the case study aim to provide an intuitive view about how different classifiers work and identify

replicable related words.

In Table 3.3, we highlight the words with larger weights using Logistic Regressions

classifier. Since we used tf-idf features in the Logistic Regression classifier, each word has its

unique weight. In Table 3.4, we highlight the words with larger weights using Peer Loss aided

Weakly Supervised Learning classifier. Because PL used a neural network model, each word

(node) in the input layer has multiple links to hidden states and we calculate a summation of all

the weights of the corresponding links for each word. Comparing Table 3.3 and 3.4, PL provide
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Donors tend to avoid charities that dedicate a high percentage of expenses to administrative and
fundraising costs, limiting the ability of nonprofits to be effective. We propose a solution to this
problem: Use donations from major philanthropists to cover overhead expenses and offer potential
donors an overhead-free donation opportunity. A laboratory experiment testing this solution
confirms that donations decrease when overhead increases, but only when donors pay for overhead
themselves. In a field experiment with 40,000 potential donors, we compared the overhead-free
solution with other common uses of initial donations. Consistent with prior research, informing
donors that seed money has already been raised increases donations, as does a $1:$1 matching
campaign. Our main result, however, clearly shows that informing potential donors that overhead
costs 3 are covered by an initial donation significantly increases the donation rate by 80% (or 94%)
and total donations by 75% (or 89%) compared with the seed (or matching) approach.

Table 3.3: Red color highlights words having positive weights and the absolute value is larger
than 0.1. Blue color highlights words having negative weights and the absolute value is larger
than 0.1. Classification result of Logistic Regression for this paper is Non-replicable (Wrong)

Donors tend to avoid charities that dedicate a high percentage of expenses to administrative and
fundraising costs, limiting the ability of nonprofits to be effective. We propose a solution to this
problem: Use donations from major philanthropists to cover overhead expenses and offer
potential donors an overhead-free donation opportunity. A laboratory experiment testing this
solution confirms that donations decrease when overhead increases, but only when donors
pay for overhead themselves. In a field experiment with 40,000 potential donors, we compared
the overhead-free solution with other common uses of initial donations. Consistent with prior
research, informing donors that seed money has already been raised increases donations, as does
a $1:$1 matching campaign. Our main result, however, clearly shows that informing potential
donors that overhead costs3 are covered by an initial donation significantly increases the donation
rate by 80% (or 94%) and total donations by 75% (or 89%) compared with the seed (or matching)
approach.

Table 3.4: Red color highlights words having positive weights and the absolute value is larger
than 0.15. Blue colors highlight words having negative weights and the absolute value is larger
than 0.15. Classification result of Peer Loss for this paper is Replicable (Correct)

a correct prediction result because it is able to capture more relevant keywords such as charity,

donors, overhead, significantly, etc.

3.5 Related Work

Replication crisis has spurred several large-scale direct replication projects which are

conducted by the professional individuals or teams in the social science [14, 15, 44, 79, 80, 33].
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However, such direct replication is expensive and time-consuming [47]. Therefore, machine

learning serves as a much more efficient method to conduct the replication prediction task.

Altmejd et al. [3] applied machine learning methods on the data from four large-scale replication

projects in experimental psychology and economics. But they trained only on the small size of

labeled dataset.

Weakly supervised learning methods have been proposed to leverage both labeled

and unlabeled datasets [178, 114, 109]. We focus on the research line of learning with noisy

labels in the weakly supervised learning methods [17, 13, 131, 130, 149]. Particularly relevant

to us, [112] proposed a proxy loss function which can provide an unbiased estimation of the

loss on the clean dataset using only noisy labels. Liu and Guo [97] introduced a new family of

loss functions, peer loss functions which can conduct the empirical risk minimization without

requiring estimating the error rates of noisy labels.
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Chapter 4

Interpretable Research Replication Prediction

via Variational Contextual Consistency

Sentence Masking

4.1 Introduction

In this chapter, we focus on proposing the new weakly supervised learning methods to

improve the model interpretability with the help of unlabeled dataset for text classification tasks.

We started with the same typical supervision-starved text classification task: Research Replication

Prediction (RRP) and then generally extended our method to other long text classification tasks.

It is important to know whether a published research result can be replicated or

not. In recent years, several direct replication projects on social science have been conducted

[14, 15, 44, 80, 33]. However, such direct replication is very time-consuming and expensive.

Therefore, a much more efficient and cheaper alternative—ML method is applied to predict
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Figure 4.1: (a) Given the text information of a research paper, Research Replication Prediction
(RRP) task predicts whether the paper can be reproduced or not. (b) Having the same input as
(a), our VCCSM model can keep the important sentences (through masking unimportant ones)
which are related to reproducibility.

research replication [43, 167, 3, 101]. In this chapter, we model the task of predicting research

replication as a binary text classification problem — Research Replication Prediction (RRP)

task which is shown in Figure 4.1(a). Nonetheless, applying the recent deep neural network

models on the RRP task faces two challenges. The first challenge is the existing neural network

models applied on RRP task lack of interpretability. The results of RRP may not be widely

accepted as reliable and trustworthy if the understandable explanations are provided for the

predictions. The second challenge is the small size of labeled dataset in RRP due to its high

cost of direct replications. Although we have proposed some new weakly supervised learning

methods to further improve the accuracy with the help of unlabeled dataset, how to make use of
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4.1. INTRODUCTION
the unlabeled dataset to further improve the model interpretabity is challenging.

As for the first challenge, the existing interpretable machine learning methods mostly

focus on improving the interpretability only at the word/phrase level which may work well for

short documents (the average length of words is less than 500) [63, 140, 138, 132, 57, 23, 22].

However, the average length of words for the research papers in RRP are about 10,000 which are

lengthy. As for the second challenge, the existing weakly supervised approaches mainly focused

on improving the accuracy but not the interpretability [9, 162, 24]. We aim to explore a new

weakly interpretable neural text classifier for predicting research replication which can utilize

the large size of unlabeled dataset to improve the model interpretability.

For tackling the first challenge, we built an interpretable neural network model which

can automatically select key sentences based on the contexts instead of words/phrases by adding

a variational sentence masking layer (information bottleneck framework [148, 2] can be used) on

the input layer. We considered these selected key sentences after masking as our interpretations

for each research paper. To tackle the second challenge, we proposed a new weakly supervised

method to leverage the unlabeled dataset to improve the model interpretability. More specifically,

we proposed a consistency training method through replacing the noise-added input of unlabeled

dataset by masked sentences. For each research paper, we make the first prediction using the

key sentences after masking and then get the second prediction using all the sentences without

masking. Then the consistency check is conducted on these two predictions by minimizing

the difference between them. Therefore, a large size of unlabeled dataset is utilized to further

improve the model interpretability.

In sum, we proposed a variational contextual consistency sentence masking (VCCSM)
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4.2. VARIATIONAL CONTEXTUAL CONSISTENCY SENTENCE MASKING
method as shown in Figure 4.1(b) which can extract the key sentences based on their contexts

and leverage a large size of unlabeled dataset to further improve the model interpretability by

using a consistency checking mechanism. In addition, our proposed VCCSM method can also

be generally applied on other long text classification tasks.

4.2 Variational Contextual Consistency Sentence Masking

4.2.1 Model Overview

Labeled 
data

Unlabeled 
data

Supervised 
VAB Loss

Unsupervised 
VAB Loss

Final Loss

𝑥𝑖
𝑚𝑎𝑠𝑘 𝑦𝑖

Sentence 
Mask

𝑥𝑖 𝑥𝑖
𝑚𝑎𝑠𝑘

𝑥𝑖

ෝ𝑦𝑖
𝑚𝑎𝑠𝑘 = 𝑓(𝑥𝑖

𝑚𝑎𝑠𝑘)
ෝ𝑦𝑖
𝑚𝑎𝑠𝑘 = 𝑓(𝑥𝑖

𝑚𝑎𝑠𝑘)ෝ𝑦𝑖 = 𝑓(𝑥𝑖)

Sentence 
Mask

Figure 4.2: The architecture of variational contextual consistency sentence masking (VCCSM).

There are two key modules (variational contextual sentence masking and consistency

training) in our proposed model. Variational contextual sentence masking is applied on both

labeled and unlabeled datasets. Consistency training is only utilized on the unlabeled dataset.

In the training on the labeled dataset, variational contextual sentence masking module

are used to extract the key sentences by using contextual masking implemented by a LSTM

model. Then the supervised variational bottleneck loss is calculated between the predictions on
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4.2. VARIATIONAL CONTEXTUAL CONSISTENCY SENTENCE MASKING
the key sentences after masking and the ground truth label. The model architecture on how to

train the labeled dataset is shown in the left part of Figure 4.2.

In the training on the unlabeled dataset, different from the prior works, the consistency

training are conducted to improve the model interpretability along with the accuracy. More

specifically, we replace the traditional noise injection methods (e.g., additive Gaussian noise,

dropout noise, and adversarial noise [127, 109, 30]) by our sentence masking method in our

consistency training. We first make the first prediction using the key sentences after masking and

the second prediction based on all the sentences without masking. The unsupervised variational

bottleneck loss is calculated between these two predictions and the goal is to minimize the

difference. The model architecture on how to train the unlabeled dataset is shown in the right

part of Figure 4.2.

4.2.2 Variational Contextual Sentence Masking

Inspired by Chen and Ji [23], we add one mask layer M after the sentence embedding

layer to help the model extract the key sentences. The sentence masking layer is denoted by

M = [M1,M2, ...Mj ...,MS ] and S is the maximum number of sentences in a research paper in

the RRP dataset. The embedding of each sentence is concatenated by word embeddings included

in this sentence.

In our model, each Mj ∈ {0, 1} is a binary random variable which decides whether

mask the j-th sentence or not. For each sentence, whether mask it or not should based on both

itself and its context (sentences around it). Therefore, an LSTM model is used to predict Mj

given the whole document and the current j-th sentence as the input, where Mj = LSTM(x, xj),
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j = 1, 2, ..., S. The contextual sentence mask layer Mj together with sentence embeddings

construct the real input of our neural network text classifier, which is denoted by:

Z = Xmask = M
⊙

X, (4.1)

where
⊙

is an element-wise multiplication, X represents the original input of all the samples,

Xmask denotes the real input of neural text classifier after masking X . We aims to optimize M so

that our VCCSM model can extract the key sentences for each research paper in the RRP dataset.

The information bottleneck theory is used to learn the input X’s encoding Z with

maximal information on predicting the target Y while keeps the least redundant information

of input X [148, 2]. As proven effective in identifying important features [23], we applied

the information bottleneck framework in our model and want to make Z = Xmask maximally

expressive on predicting the target Y while being maximally compressive on the original input X .

Therefore, according to the standard information bottleneck theory [148], our objective function

is denoted as follows:

max
Z

I(Z;Y )− β · I(Z;X), (4.2)

where the definitions of X and Z = Xmask are given in Equation 4.1. Y is the target, I(·; ·)

denotes the mutual information, and β ∈ R+ is a coefficient that balances the two terms in the

information bottleneck objective function.

Nonetheless, directly computing the Equation 4.2 is usually computationally challeng-
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ing. Therefore, we used the variational inference method to construct a lower bound of Equation

4.2. Having this lower bound, the reparameterization trick [77] can be applied to conduct the

optimizing utilizing stochastic gradient descent. In this chapter, we just listed the lower bound in

the Equation 4.3 and the derivation details is shown in Appendix A.1.

We assume that the true joint distribution is P (X,Y, Z) and X,Y, Z are random

variables having the following conditional dependency property: Y ↔ X ↔ Z. x, y, z are

instances of random variables X,Y, Z respectively. The lower bound of Equation 4.2 is listed as

follows:

∑
x,y,z

PX(x)PY |X(y|x)PZ|X(z|x) logQY |X(y|z)

− β
∑
z,x

PX(x)PZ|X(z|x) log
PZ|X(z|x)
QZ(z)

(4.3)

To compute Equation 4.3, we use the empirical data distribution including two Delta

functions to approximate the PX,Y (x, y). Therefore we have the loss function of variational

information bottleneck (VAB) as follows:

ℓvib = −(EPX,Y (x,y)[EPZ|X(z|x)[log(QY |Z(y|z)]

− β · KL[PZ|X(z|x)||QZ(z)]]) (4.4)

4.2.3 Consistency Training based on Variational Contextual Sentence Masking

In this chapter, we utilized a particular consistency training to leverage the unlabeled

dataset to further improve the interpretability. More specifically, we replace the traditional noise
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inject method in the regular consistency training by our Contextual Sentence Masking module

to generate the masked input xmask given each input x in the unlabeled dataset which can be

written as follows: xmask = M · x. We also used the information bottleneck framework in the

consistency training. The only difference comparing with the supervised training is that we

replace the ground truth label by the prediction ŷu give the all the sentences as then input without

masking.

4.2.4 Variational Information Bottleneck (VAB) Loss Function

As shown in Figure 4.2, our VAB loss function has two key parts: a supervised VAB

loss ℓsu and an unsupervised VAB loss ℓun. The same model is optimized in both losses.

Supervised VAB Loss Since we have ground truth labels in the labeled dataset, the supervised

VAB loss ℓsu is the same as the VAB loss ℓvlb in Equation 4.4 and it is denoted as follows:

ℓsu = −(EPX,Y (x,y)[EPZ|X(z|x)[log(QY |Z(y|z)]

− β · KL[PZ|X(z|x)||QZ(z)]]) (4.5)

where PX,Y (x, y) refers to empirical distribution of complete observations.

Unsupervised VAB Loss As for the unsupervised VAB loss, the only difference comparing

with the supervised one is to replace the ground truth label y by the prediction ŷ = f(x) given

the all the sentences in the research paper x (without masking) as the input and and it is denoted
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as follows:

ℓun = −(EPX(x)[EPZ|X(z|x)[log(QY |Z(ŷ|z)]

− β · KL[PZ|X(z|x)||QZ(z)]]) (4.6)

where PX(x) refers to empirical distribution of incomplete observations.

Total Loss In summary, our full training objective ℓ can be written as follows:

ℓ = ℓsu + α · ℓun (4.7)

where α > 0 is a balancing hyper parameter about these two items of losses. Our goal is to

minimize the full training objective ℓ.

4.3 Experiments

Our proposed VCCSM method is evaluated with two typical neural network models

commonly used in text classification, LSTM [66] and BERT [39]. In the experiments, we mainly

show the results on RRP datasets. We also show the results on another ECHR Dataset since our

proposed method can be generally extended to other text classification tasks.
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4.3.1 Experimental Setup

4.3.1.1 Datasets

RRP Dataset Luo et al. [101] proposed the RRP dataset and the details are described in last

chapter. In summary, RRP dataset contains 399 labeled and 2,170 unlabeled research articles

in social science fields. As for the training/testing splitting, we follow the same setting as in

last chapter. 300 (150:1;150:0) samples are randomly selected from labeled dataset and all the

samples from unlabeled dataset construct our training dataset. The remaining 99 (51:1;48:0)

samples in the labeled dataset are considered as the testing dataset.

ECHR Dataset European Convention of Human Rights (ECHR) [18] is a publicly available

English legal judgment prediction dataset containing 11,478 cases. In each case, there are a list

of paragraphs describing the facts. The task is to predict whether one given case is judged as

violated or not based on the text description. Training, development, testing datasets contains

7,100, 1,380 and 2,998 cases. The average number of words for training, development, and

testing datasets are 2,421, 1,931, and 2,588, respectively.

4.3.1.2 Implementation Details

The LSTM model we used has a bidirectional hidden layer, and it’s initialized with

300-dimensional google’s pre-trained word embeddings. We fix the embedding layer and update

other parameters in LSTM to achieve the best performance. As for BERT model, a published

BERT pre-trained model (“bert-base-uncased”1) is utilized as the embedding layer of LSTM
1https://huggingface.co/bert-base-uncased
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model. We first use our corpus to pre-train the BERT model and then fine-tune it in the VCCSM

classifier’s training. In each epoch, the model is first trained on labeled data, followed by

unlabeled data. The hidden state of the [CLS] token of the last layer is considered as the sentence

representation.

Because the average length (words) of all the documents in the labeled and unlabeled

datasets is about 10,000, we set the the maximum length of words in our paper to 10,000.

Since VCCSM method is sentence masking and we need to split the text of research paper

into sentences. We use period, question mark, and semicolon to conduct the splitting. After

some statistical analysis, the average length (words) of each sentence is around 25. For a

fair comparison with word masking method, we set the maximum length of sentences in each

document to 400. It means that we set the maximum length of words in each document to 10,000

in all models.

4.3.1.3 Interpretability Metrics

AOPC The first interpretability metric we used is area over the perturbation curve (AOPC)

[128, 113] which is obtained by computing the average change of prediction probability by

deleting top n important words and it can evaluate the model interpretablity on faithness. Since

our proposed VCCSM is sentence masking method, we calculate the average change of prediction

probability by deleting top n key sentences in the explanations of the papers. Therefore, AOPC

used in our paper is defined as follows:
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AOPC(f) =
1

T + 1

T∑
i=1

(f(xi)− f(xi\{s1, ..., sn})) ,

where f(xi\{s1, ..., sn}) is the probability for the predicted class on the ith document

in RRP when the top n sentences on importance are removed. Higher AOPC score is better.

Post-hoc Accuracy The second interpretability metric utilized in this paper is post-hoc accu-

racy metric [25] which is computed by counting how many testing examples’ predictions are

changed by utilizing only extracted top n words to classify. For our VCCSM models, we used

top n key sentences. The formula to calculate the post-hoc accuracy in our paper is as follows:

ACCpost(f, n) =
1

T

T∑
i=1

1[f({s1, ..., sn}) = f(xi)],

where T is the number of examples in the testing dataset, {s1, ..., sn} are the top n

sentences on importance in the ith document. Higher post-hoc accuracy is better.

4.3.2 Experimental Results

We tested our proposed models on two text classification datasets (RRP along with

ECHR), and the details about prediction accuracy and interpretability are described in this

section.
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RRP ECHR
Methods Acc AOPC Post-hoc Acc AOPC Post-hoc

LSTM Word Masking [23] 60.61% 11.16% 50.51% 84.86% 10.32% 65.84%
BERT’s Attention Weights (words) 64.65% 11.70% 60.61% 84.26% 15.06% 73.75%

BERT Word Masking [23] 65.66% 12.05% 61.62% 85.06% 16.30% 76.38%
SOTA Extractive Summarization [35] 65.66% 12.86% 57.58% 85.39% 19.57% 75.52%
BERT’s Attention Weights (sentences) 65.66% 13.62% 62.63% 85.39% 22.61% 81.49%

LSTM Sentence Masking + Contextual + Consistency 65.66% 22.19% 63.64% 86.06% 30.53% 84.22%
BERT Sentence Masking + Contextual + Consistency 68.69% 24.02% 65.66% 87.66% 32.78% 86.59%

Table 4.1: Comparison between VCCSM and other methods on testing accuracy, area over the
perturbation curve (AOPC), and post-hoc accuracy on RRP and ECHR datasets.

4.3.2.1 Quantitative Evaluation

We evaluate the interpretability of VCCSM model against other types of models via

the AOPC [128, 113] and post-hoc accuracy [25] metrics. We also listed the performance with

varying number of the unlabeled data in Appendix A.2 and it shows that the performance become

higher with more unlabeled data.

Table 4.1 shows the results of VCCSM (LSTM & BERT) and other interpretable

models on the RPP and ECHR datasets with top 500 words (word based methods) or 20 sentences

(sentence based methods). Simialr results are obtained with varying number of sentences. For

BERT’s attention weights model, we extracted the words’ attention weights of all heads in the

last layer and average them. As for BERT’s attention weights (sentences), we average the words’

averaged weights in each sentence as its sentence representation. Extractive summarization

models can also extract the key sentences for each document. In this section, we used the

recent extractive summarization method [35] as the baseline. We conduct the training on arXiv +

PubMed [31] and our labeled + unlabeled datasets (the abstract are the summary). Training on

arXiv + PubMed aims to generalize the model and make the model extract a more comprehensive

of information instead of only abstract in the research paper. We can observe that our proposed
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models perform better than other methods in both interpretability and prediction performance on

both RRP and ECHR datasets.

Model Methods Accuracy AOPC Post-hoc
Proposed LSTM VCCSM 65.66% 22.19% 63.64%

LSTM w/o consistency training 62.63% 14.29% 60.61%
w/o contextual masking 63.64% 19.10% 62.63%

Proposed BERT VCCSM 68.69% 24.02% 65.66%
BERT w/o consistency training 65.66% 16.38% 62.63%

w/o contextual masking 66.67% 21.16% 64.65%

Table 4.2: Ablation study of proposed VCCSM (LSTM & BERT Sentence Masking + Contextual
+ Consistency) on testing accuracy, area over the perturbation curve (AOPC), and post-hoc
accuracy on RRP dataset.

Ablation Study In order to validate different modules in our proposed VCCSM method, we

conduct the ablation study on the RRP dataset as shown in Table 4.2. We observe the drop after

removing contextual masking or consistency training (on the unlabeled data) which shows that

each component benefit to the model. It is noting that we observe a larger drop on both accuracy

and two interpreatability metrics without the consistency training on the unlabeled data which

demonstrates that consistency training contributes more to the model.

4.3.2.2 Qualitative Evaluation

In this section, we conduct the qualitative evaluations and compare the explanations

of different models intuitively by highlighting the words or sentences. Specifically, we draw

on the Open Science pratices (e.g., mentioning how to access the data) as indicators of high

reproducibility, because these practices are proposed as solutions to the reproducibility crisis

in the science community [136, 46, 12, 41, 104]. Some of those indicators which are easier
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examples conditions. This difference was in the predicted direc-
tion, and it was also predicted to be small, so a nonsignificant
result is not surprising.

To investigate the second question, we tested a series of specific
predictions from our model (discussed below), about how gener-
alizations given three examples at a certain level of specificity
should differ from each other. A set of planned comparisons
addressed this question by comparing the percentages of response
at each level. Given three examples from the same subordinate-
level category, the model predicts a sharp drop between
subordinate-level generalization and basic-level generalization
(95% vs. 16%, p � .0001). Given three examples from the same
basic-level category, the model predicts a sharp drop between
basic-level generalization and superordinate-level generalization
(91% vs. 4%, p � .0001). Given three examples from the same
superordinate category, the model predicts that generalization
should include all exemplars from that superordinate category
(94%, 91%, and 87%, ns).

The similarity data are analyzed later in the article, when we
describe the fits of our Bayesian learning model. The similarities
will be used to construct the model’s hypothesis space.
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tion, and it was also predicted to be small, so a nonsignificant
result is not surprising.

To investigate the second question, we tested a series of specific
predictions from our model (discussed below), about how gener-
alizations given three examples at a certain level of specificity
should differ from each other. A set of planned comparisons
addressed this question by comparing the percentages of response
at each level. Given three examples from the same subordinate-
level category, the model predicts a sharp drop between
subordinate-level generalization and basic-level generalization
(95% vs. 16%, p � .0001). Given three examples from the same
basic-level category, the model predicts a sharp drop between
basic-level generalization and superordinate-level generalization

Given three examples from the same subordinate-
level category, the model predicts a sharp drop between
subordinate-level generalization and basic-level generalization
(95% vs. 16%, p .0001).� Given three examples from the same
basic-level category, the model predicts a sharp drop between
basic-level generalization and superordinate-level generalization
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(91%(91% vs.vs. 4%4%,, pp �� .0001)..0001). GGiven three examples from the same 
superordinate category, the model predicts that generalization 
should include all exemplars from that superordinate category 
(94%, 91%, and 87%, ns).

The similarity data are analyzed later in the article, when we 
describe the fits of our Bayesian learning model. The similarities 
will be used to construct the model’s hypothesis space.

BERT VCCSM

Figure 4.3: Highlighted explanations (words or sentences) of BERT word masking, attention
weights (sentences), SOTA extractive summarization, and BERT VCCSM methods for a para-
graph in one replicable research paper “Word Learning as Bayesian Inference” in Psychological
Review.

to check are listed as below: (1) Publish materials, data, and code; (2) Preregister studies and

submit the reports; (3) Conduct the replications by themselves; (4) Collaborate with others; (5)

P-value2 is close to 0.5.

We conduct the case studies on the testing dataset and find that our proposed methods

can highlight more sentences which are related to the indicators mentioned above. A case

study is shown in Figure 4.3. More specifically, Figure 4.3 shows highlighted explanations

(words or sentences) of BERT word masking, attention weights (sentences), SOTA extractive

summarization, and BERT VCCSM methods for a paragraph in one replicable research paper

“Word Learning as Bayesian Inference” [163] in Psychological Review. In this case study, we

extracted top 200 sentences or 5,000 words (only for BERT word masking method) but only

show one paragraph highlighted results. Although all the methods provide the correct prediction,

our VCCSM highlights the sentences which are related to the indicators described above. It is

noting that the highlight words of BERT word masking is not so readable for the long research
2Probability of obtaining test results at least as extreme as the results actually observed, under the assumption that

the null hypothesis is correct.
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paper. Attention weights (sentences) and SOTA extractive summarization methods can provide

informational sentences but the highlighted sentence are not related to the indicators described

above. BERT VCSSM can highlight p-value sentences which are related to the indicators

mentioned above.

4.3.2.3 Discussion on Plausibility of Predicting Research Replicability using Text

By looking into RRP’s labeled dataset and conducting the cases studies carefully such

as in Figure 4.3, we discuss on whether classifying results in a research paper as replicable

using text is actually sufficient to replicate the results, which is the central premise this paper

is based on. Non-replicability of scientific studies largely results from unscientific, unethical

research practices (e.g., p-hacking, selective reporting, data manipulation). Such practices can

be manifested in the texts of research papers such as the reports of p-values, experimental

procedures, etc. Generally speaking, the more problematic practices a research paper involves,

the less likely its findings are valid, and the less likely it will be reproduced. Hence, by modeling

the replicability of research paper with regard to its textual components that are potentially linked

with the problematic practices, we can classify whether a research paper can be replicated and

identify the focal sentences relevant to the prediction.

4.4 Related Work

Blackbox Research Replication Prediction Research Replication Prediction, knowing

whether a published research result is replicable or not, is important. Recently, several large

scale of direct replication projects have been conducted in social science studies to alleviate the
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replication crisis. But the cost of direct replication is too high to have a large size of annotated

dataset. Therefore, an alternative ML method that is much cheaper and more efficient than

direction replication is utilized in RRP. Luo et al. [101] proposed a neural text classifier to

achieve the best performance on RRP. But their model is a blackbox and cannot provide faithful

explanations about why a research paper is predicted as replicable or non-replicable.

Interpreting Neural Networks Various approaches have been proposed to interpret neural

network models from the post-hoc manner, such as gradient-based [137, 63, 143], attention-based

[132], decomposition-based [111, 138], example-based methods [81, 57], and word masking

[23]. However, these interpretation methods have their own limitations, including only work

with specific neural network model, render doubts on faithfulness, and need additional work to

provide the explanations based on trained models. In this paper, we focus on model-agnostic

explanation methods. More specifically, we follow the research of masking methods which can

improve both the prediction performance and interpretability by adopting information bottleneck

framework [148, 2] to identify important sentences.

Improving interpretability via word masking Chen and Ji [23] proposed a word masking

method which can automatically select important words in the training process and build inter-

pretable neural text classifiers by formulating their problem in the framework of information

bottleneck. The proposed solution mainly deals with the short text and the average length (words)

in all the seven datasets they used are less than 300. Four of them are less than 25. In constrast,

the average length (words) of research papers in our RRP task is about 10,000 which is much

longer than the ones used in [23]. Therefore, we view word masking as insufficient for our task.
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On the other hand, Chen and Ji [23] learn independently on whether each word is masked or not.

Different from prior work, we utilized the context information (whether other sentences in the

same paper are masked or not) of each sentence by applying LSTM models to decide whether

to mask this sentence or not. We hypothesize that context masking is better than independent

masking, especially for long documents such as the research papers in RRP.

Consistency Training on Unlabeled Dataset The annotated data in RRP is collected using

direction replication and its size is small. Therefore, weakly supervised learning methods need

to be used to improve the model performance in RRP with the help of the unlabeled dataset. The

existing weakly supervised methods applied in RRP focus mainly on improving the prediction

performance, but less so about the model interpretability.

Consistency training can improve the robustness of models by regularizing model

predictions to be invariant to small noise applied to input examples [127, 30]. Xie et al. [162]

proposed to substitute the traditional noise injection methods in the consistency training with

high quality data augmentations so that a new consistency training based weakly supervised

method is proposed and the performance is improved with the help of unlabeled dataset. But

they focused only on improving the prediction performance.

In this paper, we conduct the consistency training on the unlabeled dataset to improve

both prediction performance and interpretability by substituting the traditional noise injection

methods with sentence masking methods. More specifically, we first mask the unimportant

sentences and keep the critical sentences. Then we make the predictions on the kept key sentences

the same as the ones based on all the sentences in the research paper without masking. Finally,
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we conducted the consistency check by minimizing the difference between them.
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Chapter 5

Machine Truth Serum: a Surprisingly Popular

Approach to Improving Ensemble Methods in

Classification

5.1 Introduction

In this chapter, we focus on improving the quality of noisy labels by proposing a new

ensemble method to reveal the correct minority answer when the majority answer is wrong in

the weakly supervise learning methods.

Wisdom of the crowd shows the power of aggregating opinion from a diverse of groups.

Even though this idea was proposed to aggregate the human opinions, it has been successfully

applied in the Machine Learning (ML) and the most typical one is Ensemble method. Ensemble

methods are widely applied in various settings such as supervised (SL) and semi-supervised

(SSL) learning by combining several different types of ML models [42]. More specifically,
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ensemble methods can be utlized to enhance the final predictions in SL and improve the quality

of pseudo or noisy labels for the data augmentations methods in SSL (e.g., MixMatch [9]). Many

ensemble methods are proposed to solve various types of problems [65, 124, 175, 89, 176, 177].

However, all the methods mentioned above are based the same assumption that the majority

is likely to be correct. While enjoying the assumption that the majority answer is tending to

be correct, it is questionable where the special knowledge is required for obtaining the ground

truth answer, especially when the knowledge is not widely shared and owned by a few experts

[26, 134, 119]. Similar to the setting of aggregating the human knowledge, the same challenge is

faced in the ensemble methods. For example, when we ensemble several deep learning models

[53], one of them is a state-of-the-art (SOTA) and gets the best performance. For some samples,

the prediction result of this SOTA model may be the correct minority. In this situation, applying

the majoirty voting rule can lead to the wrong answer.

Our goal is to explore whether there is a better ensemble method which overcome the

shortcoming of the majority voting rule, where the minority correct answer can also be revealed.

Inspired by the Bayesian Truth Serum (BTS) [118, 119] which are proposed to solve the problem

in the setting of aggregating the human opinions, we transferred the idea to ensemble methods in

the ML field. The core idea in BTS is simple and elegant: the “surprisingly” popular one (having

a higher posterior than prior) is the correct answer instead of the one obtained by applying the

majority voting rule (only having a higher posterior). In BTS, the prior is constructed by eliciting

a peer prediction information which is “how many other people would agree with you” for each

agent. However, in ensemble methods, we cannot ask the classier the subjective question “how

many other classifiers would agree with you”. Therefore, if we want to transferred the idea in
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BTS into ensemble methods, the new methods are needed to proposed.

In this chapter, we aims to extended the idea in BTS to further improve the performance

in the ensemble methods in the context of SL and SSL text classification. Again, the challenge

is that we cannot elicit a belief from a classifier “how many other classifiers would agree

with themselves” which make computing the prior difficult. Therefore, we proposed two ML

aided algorithms to mimic the procedure of reporting the peer prediction information for each

classier, which are jointly named Machine Truth Serum (MTS). In Heuristic Machine Truth

Serum (HMTS), for each classifier (an agent), a regressor model is trained to prediction the peer

prediction information utilizing a processed training dataset. Having the predictions from these

regressors, we can computer the prior and directly apply the idea in BTS to decide minority

answer is “surprising popular” by comparing the prior and posterior. In Discriminative Machine

Truth Serum (DMTS), we directly train a model to predict whether the minority answer is correct

or not. We applied our proposed HMTS and DMTS on SL and SSL text classification tasks. For

SL, MTS methods are used to enhance the ensemble methods in the final predictions step. As

for SSL, MTS methods are utilized to improve the quality of pseudo or noisy labels in the data

augmentation steps. The theoretical analysis for the correctness of our proposed MTS approaches

is also provided and they are very practical to implement and run based on the computational

complexity analysis.
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5.2 Preliminary

In this chapter, we consider supervised and semi-supervised classification problems.

Nonetheless, for simplicity of demonstration, our main presentation focuses on binary classifica-

tion. A multi-class extension of our method is presented in Section 5.3.3.

5.2.1 Supervised Classification Tasks

Suppose that we have a training dataset DL := {(xl, yl)}NL
l=1 and a test dataset T :=

{(xt, yt)}NT
t=1, where xl or xt ∈ X ⊆ Rd is a d-dimensional feature vector and yl or yt is its true

class label. We have J baseline classifiers F := {f1, f2, ..., fJ : X → {0, 1}} that map each

feature vector to a binary classification outcome. Ensemble method such as boosting algorithms

can combine {f1, f2, ..., fJ} to get better prediction results than each single one. For instance,

Random Forest first applies the bootstrap aggregating to train multiple different decision trees to

correct overfitting problems of decision trees. After training, the majority rule will be applied

to generate the prediction result. We define the binary cross-entropy (BCE) loss of supervised

classification as ℓ(fj(xl), yl) := −[yl · ln(fj(xl))+(1−yl) · ln(1−fj(xl))] for the j-th classifier

on each data point (xl, yl) in the training dataset. Therefore, the empirical risk of the supervised

classifier for fj , j = 1, ..., J using true labels is as follows:

L1(fj , DL) =
1

NL

NL∑
l=1

ℓ(fj(xl), yl).

The above dependence on the majority voting rule is ubiquitous in ensemble methods.

The key assumption of using the majority rule is that the majority is more likely to be correct
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than random guessing. Denoting as Maj({f1(x), f2(x), ..., fJ(x)}) the majority answer from

the J classifiers, formally, most, if not all, methods require that

P (Maj({f1(x), f2(x), ..., fJ(x)}) ̸= y) < 0.5

Our goal is still to construct a single aggregator ADL
({f1, f2, ..., fJ}) that takes the classi-

fiers’ predictions on each supervised data point as inputs and generates an accurate aggregated

prediction. But we aim to provide instruction to cases where it is possible that

P (Maj({f1(x), f2(x), ..., fJ(x)}) ̸= y) > 0.5

The challenge is to detect when the minority population has the true answer.

5.2.2 Semi-supervised Classification Tasks

In the semi-supervised classification tasks, there is also an unlabeled dataset DU :=

{(xu, ·)}NU
u=1, where the labels are missing or unobservable. Many methods are proposed to

generate the high-quality pseudo labels of unsupervised dataset [9, 162, 8, 141, 164] and we

can have a new DU := {(xu, yu)}NU
u=1. Let N := NL + NU . We unify the whole data

including both labeled and unlabeled as D := {(xn, yn)}Nn=1. {yn}NL
n=1 are the true labels of

supervised dataset and {yn}Nn=NL+1 are the pseudo labels of unsupervised dataset. Compared

with supervised classification tasks, the information of unsupervised should be leveraged to

improve the performance. Recent SSL methods usually apply the consistency regularization

methods to make use of unsupervised data, where the output of original inputs and their data
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augmented ones should be consistent [86, 123, 146, 109, 71, 9, 141, 24]. In this paper, we

consider MixMatch [9] and MixText [24] as our ensemble baseline methods because they

generated the high-quanlity explicit pseudo labels for unsupervised data using ensemble methods.

For each unlabeled data xu, u = 1, ..., NU , the pseudo label can be generated by en-

semble the model predictions of its data augmentations. We set the number of data augmentations

for each unlabeled data to M . The data augmentation is denoted by xu,m := faugment(xu),m =

1, ...,M ;u = 1, ..., NU . The pseudo label yu can be generated based on M model predictions

of data augmentations as yu = fsharpen

(
1
M

∑M
m=1 f̄m(xu,m)

)
,m = 1, ...,M ;u = 1, ..., NU ,

where {f̄1, f̄2, ..., f̄M} are extra M classifiers which are only utilized to generate better pseudo

labels of unsupervised data and ensemble methods are limited to applying on this pseudo labeling

process (not used in final classification prediction). We denoted the classifier conducting the

final classification prediction as f(·). The function fsharpen(·) can reduce the entropy of pseudo

labels, e.g., setting to one-hot encoding based on the probabilities of different class labels [141].

The empirical risk of the semi-supervised classifier for f(·) using pseudo labels is as follows:

L2(f,DL, DU ) =
1

NL

NL∑
l=1

ℓ(f(xl), yl) +
1

NU

NU∑
u=1

ℓ(f(xu), yu).

Similar to 5.2.1, our goal is to construct a single aggregator ADL,DU
({f̄1, f̄2, ..., f̄M})

that takes the model predictions of data augmentations on each unsupervised data point as inputs

and generates a high-quality pseudo label even the majority of model predictions is wrong. The

challenge is still to detect when the minority population has the true answer.
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5.2.3 Bayesian Truth Serum

[118] considers the following human judgement elicitation problem: There are a set of

agents denoted by {aj}Jj=1. The designer aims to collect subjective judgement from each agent

about an unknown event y ∈ {0, 1} and aggregate accordingly. Each of the agent j needs to

report his own predicted label lj ∈ {0, 1} for y, and the percentage of other agents he believes

will agree with him pj ∈ [0, 1]. We will also call this second belief information as the peer

prediction information. Denote the j’s local belief of lr, r ̸= j as lbj,r, r ̸= j. pj is defined as

follows:

pj = Elbj,r,r ̸=j

[∑
r ̸=j 1(l

b
j,r = lj)

J − 1

]

In above the expectation is w.r.t. lbj,r, r ̸= j - this definition rigorously sets up the formulation,

since in BTS, each agent only observes his/her private signals but not others.

We, as the designer, obtain the prediction labels {lj}Jj=1 and the percentage information

{pj}Jj=1 from all the agents. The posterior for each label is defined as the actual percentage of

this label which can be easily calculated utilizing the prediction results: (for label 1)

Posterior(1) =

∑
j 1(lj = 1)

J
(5.1)

In [118, 119], Prelec et al. promote the idea of using the average predicted percentage of the

responding label as the approximation of the priors: (for label 1).

Prior(1) =

∑J
j=1 p

1(lj=1)
j · (1− pj)

1−1(lj=1)

J
(5.2)
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If Posterior(1) > Prior(1), label 1 will be taken as the surprisingly more popular answer, which

should be considered as the true answer ŷ, even though it might be in minority’s hands. The

same rule is applied to label 0. Formally, if we denote ŷ as the aggregated answer:

ŷ =


1 if Prior(1) < Posterior(1);

0 if Prior(1) > Posterior(1).
(5.3)

The rest of the paper will focus on generalizing the above idea to aggregate classifiers’ predictions.

5.3 Machine Truth Serum

In this section, we introduce Machine Truth Serum (MTS). We aim to build a more

robust ensemble method which can recover the true answer (in minority’s hands) if the majority’s

answer is wrong. Suppose we have access to a set of basic classifiers. We’d like to build a BTS-

ish ensemble method to further improve the model’s robustness. The challenge is to compute the

priors from the classifiers - machine-trained classifiers do not encode beliefs as human agents do,

so we cannot elicit the peer prediction information from them directly. We propose two machine

learning aided approaches to perform the generation of this peer prediction information. We first

introduce two MTS approaches for binary classification in supervised learning. Then we extend

these approaches to multiclass classification case in supervised learning. After describing our

proposed methods in supervised learning, we show the MTS methods for binary classification in

SSL. Finally, the theoretical analysis of our MTS methods are provided.
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5.3.1 Heuristic Machine Truth Serum

We first introduce Heuristic Machine Truth Serum (HMTS). The high-level idea is to

train a regression model for each classifier to predict the percent of the agreement from other

classifiers on the prediction of each particular data point. After getting the predicted labels and

the predicted peer prediction information of the classifiers, we can again approximate the priors

using the predicted peer prediction information for each classifier, compute the average and

compare it to posterior. In this part, HMTS for binary classification in supervised learning is

introduced firstly and its multiclass extension is stated in Section 4.3.

Algorithm 4 Heuristic Machine Truth Serum (Binary classification)

Require:
Input:
DL = {(x1, y1), ..., (xNL

, yNL
)}: training data

T = {(x1, y1), ..., (xNT
, yNT

)}: testing data
F = {fj , ..., fJ}: classifiers

Ensure:
1: Train J classifiers (F) on the training data
2: for j = 1 to J do
3: for l = 1 to NL do
4: Compute ȳjl according to Eqn.(5.4)
5: end for
6: end for
7: Train machine belief regressors p−j , p

+
j on training dataset DH

j := {(xl, ȳjl )}
NL
l=1.

8: for t = 1 to NT do
9: Get Prior(xt, k = 1) and Posterior(xt, k = 1) according to Eqn.(5.5) and Eqn.(5.7).

10: if Prior(xt, k = 1) < Posterior(xt, k = 1) then
11: Output “surprising” answer 1 as the final prediction.
12: if Prior(xt, k = 1) > Posterior(xt, k = 1) then
13: Output “surprising” answer 0 as the final prediction.
14: end if
15: end if
16: end for

Given the training data D = {(xl, yl)}NL
l=1 and multiple classifiers {fj}Jj=1 , we first
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try to compute the j-th classifier’s “belief” of the fraction of other classifiers that would “agree”

with it. Denote this number as ȳjl for each training example (xl, yl). ȳjl can be computed as

follows:

ȳjl =

∑
c̸=k 1 (fc(xl) = fj(xl))

J − 1
(5.4)

By above, we have pre-processed the training data to obtain DH|j := {(xl, ȳjl )}
NL
l=1, j = 1, ..., J ,

which can serve as the training data to predict the peer prediction information of classifier j

(again to recall, peer prediction information is the fraction of other classifiers that classifier

j believes would agree with it). We then train peer prediction regression models {p̄j}Jj=1 on

DH|j := {(xl, ȳjl )}
NL
l=1, j = 1, ..., J respectively to map xl to ȳjl . We consider different class

labels1 and will first train two regression models: p−j and p+j are two belief regression models

of classifier j and trained on the examples whose predicted labels are 0s (D−
H|j := {(xl, ȳjl ) :

fj(xl) = 0}NL
l=1) and 1s (D+

H|j := {(xl, ȳjl ) : fj(xl) = 1}NL
l=1) respectively.

Then we compute the following prior of label 1 for each (xt, yt) ∈ T in the testing

dataset:

p̄j(xt) =


p+j (xt) if fj(xt) = 1;

1− p−j (xt) if fj(xt) = 0.

(5.5)

After obtaining these peer prediction regression results p̄j(xt) for all test data points,

1In BTS, an agent predicts how many other agents agree with it depending on its own prediction.
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the prior and posterior of (xt, yt) ∈ T in the test dataset are then calculated by,

P (xt, 1) :=
∑

j p̄j(xt)

J ;

Q(xt, 1) :=
∑

j 1(fj(xt)=1)

J . (5.6)

If P (xt, 1) < Q(xt, 1), the “surprising” answer 1 will be considered as the true answer.

The decision rule is similar for label 0. The procedure is illustrated in Algorithm 4.

To be noted, training the regressors to estimate the prior instead of directly using

Eqn.(4) is necessary. Because, if we don’t train the regressors and estimate the prior directly using

Eqn.(4), prior will always be equal to posterior and we cannot use the decision rule mentioned

above to obtain the “surprising” answer by comparing prior and postrior. For simplicity, the

proof for binary classification (multiclass case is similar) is given as follows:

We set J1 =
∑

j 1(fj(xt) = 1) and J2 =
∑

j 1(fj(xt) = 0). Obviously, J = J1+J2.

Then we can get:

ȳjt (1) =

∑
c1 ̸=j 1 (fc1(xt) = fj(xt) = 1)

J − 1

ȳjt (0) =

∑
c2 ̸=j 1 (fc2(xt) = fj(xt) = 0)

J − 1

The above two quantities further help us compute both the posterior and the “direct prior” as
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follows:

Pdirect(xt, 1) :=

∑
j [ȳ

j
t (1) · 1(fj(xt) = 1) + (1− ȳjt (0)) · 1(fj(xt) = 0)]

J
;

=

∑
j [ȳ

j
t (1) · 1(fj(xt) = 1)] +

∑
j [(1− ȳjt (0)) · 1(fj(xt) = 0)]

J
;

=
J1 · J1−1

J−1 + J2 · (1− J2−1
J−1 )

J
=

J1
J

=

∑
j 1(fj(xt) = 1)

J
; (5.7)

Q(xt, 1) :=

∑
j 1(fj(xt) = 1)

J
. (5.8)

Therefore, the prior is equal to the postrior by comparing Eqn.(7) and (8). Based

on this proof, learning the regressors to estimate the prior instead of directly using Eqn.(4) is

necessary.

5.3.2 Discriminative Machine Truth Serum

The Heuristic Machine Truth Serum above relies on training models to predict the

peer prediction information for each classifier (which will be used to compute the priors) and

compare them to the posteriors, and then decide on whether to follow the minority opinion or

not. HMTS closely mimicked the procedure of BTS method in the seed paper. But it is not the

most efficient way due to the extra computational cost of regressors. Also, its performance is

dependent on the quality of regression models. We notice the above task of determining whether

to follow the minority or not is also a binary classification question. This observation inspires

us to utilize a classification model to directly predict for each data point whether the minority

should be chosen as the answer or not.

We propose Discriminative Machine Truth Serum (DMTS). Again, DMTS for binary
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classification will be introduced firstly and its multiclass extension is stated in Section 4.3. With

DMTS, a new training dataset DD := {xl, ŷl}NL
l=1 about whether considering the minority as

the final answer or not is constructed. Each data DD := (xl, ŷl), for l = 1, ..., NL, in this new

training dataset is calculated as follows: for each (xl, yl) ∈ D

ŷl =


1 if majority of F on xl ̸= the true label;

0 if majority of F on xl = the true label.
(5.9)

Now with above preparation, predicting whether majority is correct or not becomes a standard

classification problem on DD := {xl, ŷl}NL
l=1. This is readily solvable by applying standard

techniques. In our experiments, we will mainly use a Multi-Layer Perceptron (MLP) [53] denoted

as f . f is trained on this new training dataset and can directly predict whether we should adopt

the minority as the answer or not. f does not restrict to MLP and can be other classifiers. We

have tried several other methods, such as logistic regression and support vector machine, with

similar conclusions obtained. The whole procedure of DMTS is illustrated in Algorithm 5.

5.3.3 Multiclass Extension of HMTS and DMTS

HMTS and DMTS can be extended to multiclass classification problem with the same

ideas by modifying them accordingly. In the multiclass case, k ∈ Y = {0, 1, ...,K − 1} is

denoted as the class label of the dataset. Consider HMTS first. For each classifier j, we need to

consider different class labels of regression models {pkj }, where k ∈ Y = {0, 1, ...,K − 1}. pkj

is the belief regression model of classifier j and trained on the examples whose predicting labels

are ks.
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Algorithm 5 Discriminative Machine Truth Serum (Binary classification)

Require:
Input:
DL = {(x1, y1), ..., (xNL

, yNL
)}: training data

T = {(x1, y1), ..., (xNT
, yNT

)}: testing data
Ensure:

1: for l = 1 to NL do
2: Compute ŷl according to Eqn.(7).
3: end for
4: Train DMTS classifier f on the dataset {xl, ŷl}NL

l=1

5: for t = 1 to NT do
6: Compute the classification result yt := f(xt)
7: if yt = 0 then
8: Stay with the majority answer.
9: if yt = 1 then

10: Predict with the minority answer.
11: end if
12: end if
13: end for

Again compute the following prior for each xl

pj(xl, k) =


pkj (xl) if fj(xl) = k;(
1− pvj (xl)

)
· rk if fj(xl) = v ̸= k.

(5.10)

where rk = pkj (xl)/(
∑

c∈Y:c ̸=v p
c
j(xl)) is defined as the ratio of the k’s belief to the summation

of all the other classes’ beliefs except for class v. In the multi-class classification tasks, we cannot

directly obtain the prior of class k — pkj (xl) as in the binary classification by using (1− pvj (xl))

if fj(xl) = v ̸= k. Therefore, the prior regressors for other classes {pcj(xl) | c ∈ Y : c ̸= v}

need to be utilized to calculate the prior of class k with a normalization parameter rk.
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Posterior

Original prediction: 8 (Wrong!)

True label: 
Number 0

Prior Posterior - Prior

New prediction: 0 (Correct!)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Posterior

Original prediction: 2 (Wrong!)

True label: 
Number 1

Prior Posterior - Prior

New prediction: 1 (Correct!)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Posterior

Original prediction: 9 (Wrong!)

True label: 
Number 5

Prior Posterior - Prior

New prediction: 5 (Correct!)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Posterior

Original prediction: 1 (Wrong!)

True label: 
Number 7

Prior Posterior - Prior

New prediction: 7 (Correct!)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Figure 5.1: Four sample images (number 0, 1, 5, and 7) where HMTS corrects the wrong majority
predictions of the majority voting baseline on Pendigits dataset (10 classes) testing dataset. Their
posterior, prior, and posterior-prior information are listed

In HMTS, Eqn.(5.7) modify to the following:

P (xl, k) :=
∑J

j=1 pj(xl,k)

J ,

Q(xl, k) :=
∑J

j=1 1(fj(xl)=k)

J (5.11)

We then compute all the priors and posteriors of each class label based on Eqn.(5.11). It is

possible that there exist more than one class labels whose posterior is larger than its prior. We
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define the set containing all these label classes as Ysat = {k | P (xl, k) < Q(xl, k)}. We then

predict the class label which has the biggest improvement from its prior to posterior:

argmaxk∈Ysat
{Q(xl, k)− P (xl, k)}

In DMTS, firstly we need to train a model that decides whether to apply the minority

as the final answer which are very similar to the binary case. The difference is that we will then

choose the minority answer as the predicted answer instead of using majority if i) it has the most

votes in the minority answers and ii) the prediction result of classifier obtained in the training

phase is 1 (we should use minority).

How does MTS work? In Fig. 5.1, we show four sample images to demonstrate how HMTS

correct the wrong majority predictions. We show for these four cases even with high prediction

on the wrong class, we are able to correct the prediction by introducing MTS to check on the

priors. For example, in the first sample, the wrong prediction (number 8) is provided if we

only look at posterior (number 0: 0.400; number 8: 0.467) following the majority rule. But

the “surprising popular” correct minority (number 0) will be recovered if we predict based on

Posterior - Prior (number 0: +0.117; number 8: +0.054).

5.3.4 HMTS and DMTS for Semi-supervised Classification

In this section, we describe the HMTS and DMTS for SSL classification problem.

For simplicity, we consider binary classification and its multiclass extension can be inferred

accordingly.
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As we focus on applying ensemble methods on the pseudo labels’ generation based

on data augmentations for each unsupervised data, we first need to compute the m-th data

augmentation classifier’s “belief” of the fraction of other data augmentation classifiers that would

“agree” with it. We first train M data augmentation classifiers {f̄m}Mm=1 on the supervised

training dataset DL = {(xl, yl)}NL
l=1. Then we can compute the classification predictions denoted

as f̄m(xl,m),m = 1, ...,M ; l = 1, ..., NL for the data augmentations of supervised training

dataset generated by xl,m := Augmentation(xl),m = 1, ...,M ; l = 1, ..., NL. Denote the m-th

data augmentation classifier’s “belief” (the fraction of other data augmentation classifiers that

would “agree” with it) as ŷml for the data augmentations of each supervised training example

(xl,m, yl). ŷml can be computed as follows:

ŷml =

∑
c̸=m 1 (fc(xl,c) = fm(xl,m))

M − 1
(5.12)

By above, we have pre-processed the supervised training data to obtain DL
H|m :=

{(xl,m, ŷml )}NL
l=1, m = 1, ...,M , which can serve as the training data to predict the peer predic-

tion information of data augmentation classifier m. We then train peer prediction regression

models {p̂m}Mm=1 on DS
H|m := {(xl,m, ŷml )}Mm=1, m = 1, ...,M respectively to map xl,m to

ŷml . We consider different class labels2 and will first train two regression models: p̂−k,m and

p̂+k,m are two belief regression models of data augmentation classifier m and trained on the

examples whose predicted labels are 0s (D−L
H|m := {(xl,m, ŷml ) : f̂m(xl,m) = 0}NL

l=1) and 1s

(D+L
H|m := {(xl,m, ŷml ) : f̂m(xl,m) = 1}NL

l=1) respectively.

2In BTS, an agent predicts how many other agents agree with it depending on its own prediction.
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Then compute the following prior of label 1 for the data augmentations of each

xu, u = 1, ..., NU in the unsupervised dataset:

p̂m(xu) =


p̂+m(xu,m) if f̂m(xu,m) = 1;

1− p̂−m(xu,m) if f̂m(xu,m) = 0.

(5.13)

After obtaining these peer prediction regression results p̂m(xu,m), u = 1, ..., NU for

all unsupervised data, the prior and posterior of (xu,m, yu,m) ∈ DU in the unsupervised dataset

are then calculated by,

P (xu,m, 1) :=
∑

m p̂m(xu,m)
M ;

Q(xu,m, 1) :=
∑

m 1(f̂m(xu,m)=1)
M . (5.14)

If P (xu,m, 1) < Q(xu,m, 1), the “surprising” answer 1 will be considered as the true

pseudo label in the semi-supervise classification. The decision rule is similar for answer 0.

As for the DMTS, {ŷl}NL
l=1 about whether considering the minority as the final pseudo

label for each supervised training data xl or not is constructed. Each data DL
D := (xl, ŷl), for

l = 1, ..., NL, in this new training dataset is calculated as follows: for each (xl, yl) ∈ DL

ŷl =


1 if majority of predictions on xl,m(m = 1, ...,M) ̸= the true label;

0 if majority of predictions on xl,m(m = 1, ...,M) = the true label.
(5.15)
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5.3.5 Theoretical Analysis

We performed a formal analysis of the correctness of our proposed algorithms via

proofs adapted from proofs for BTS [119]. Similar to BTS, with MTS, each classifier (i.e., an

agent), depending on its own predicted label, will use a different regression model to predict

how many other classifiers agree with it. For simplicity, we only present the theorems for binary

classification. The proofs of multiclass are similar to the binary case. The details of proofs are

reported in Appendix A.3.

To set up for presenting the theorems, we restate our problem: we assume that each

classifier fj(x) can take on any value in the discrete set {s1, ..., sS} as its features for the

simplicity of proof. In practice, conceptually each feature vector can be represented by an

assigned (large-enough) categorical number. One can consider si(i = 1, 2, ..., S) as a code for

each feature vector. Our proof builds on similar assumptions made in [119]:

Assumption 1. Conditional on each possible label k, fj(x), j = 1, 2, ..., J are independent

from each other, and are identically distributed.

Assumption 2. The learner has access to the conditional distribution P(f−j(x) | fj(x)), where

f−j(x) denotes the prediction from a randomly selected classifier r ̸= j.

We reproduce the following theorems:

Theorem 1. The correct answer (majority or minority) cannot be deduced by any algorithm

if only relying on posterior probabilities, Q(si, k), i = 1, ..., S; k = 0, 1 because considering

either 0 or 1 as the correct label can generate the same posterior probabilities based on the

training dataset.
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Theorem 1 implies that any existing ensemble algorithm based on the majority voting

rule cannot always infer the true answer no matter either majority or minority is the final true

answer. In other words, we cannot decide whether majority or minority is correct if we only

know the information of the posterior probabilities Q over all the possible labels. The majority

rule applied by the existing ensemble methods is a special case of Theorem 1.

Theorem 2. For input si, the estimate of the prior prediction for the correct classification label

denoted as k∗ will be strictly underestimated if the prediction probability of the true label is less

than 1. We can express this as

P (si, k
∗) < Q(si, k

∗) if P(k∗ | si) < 1.

We leave more details to the Appendix. Theorem 2 is applicable when the task

is difficulty that the true label is only observed by a minority of the classifiers. A hidden

assumption is that the minority but expert classifiers hold a stronger belief about the ground

truth label than the majority classifiers who predicted wrongly. More formally we assume

P(Y = k∗ | fj(si) = k∗) > P(Y = k∗ | fj(si) = k) for all k ̸= k∗. The high-level intuition is

that the expert classifiers, though being minority, must retain a strong signal to classify a difficult

task correctly. While for a non-expert one who predicted wrongly, would not “reason” specially

how the hidden true label class. In Section 5.4.1, page 17-19, we have also provided an empirical

observation and explanation.

Theorem 2 shows that having the prior information can help improve the robustness

of models because the minority correct classification result can be recovered using the rule
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descried in the theorem when the minority is the true answer instead of the majority answer.

In other words, having Theorem 2, the true minority answer can be revealed as correct if the

prior probability is less than the posterior one. The existing ensemble methods always adopt the

majority result as the final answer and cannot recover the minority correct answer.

As for the training complexity of our algorithm, the training time of HMTS is linear

in the number of label classes because of the training of extra regressors. DMTS only needs to

train one additional classifier and both the training and the running time are almost the same

as the basic majority voting algorithm. Therefore our proposed methods are very practical to

implement and run. Detailed discussions are described as follows:

Complexity Analysis of HMTS and DMTS For HMTS, for example in our experiments,

another J ·K (label classes {0, 1, ...,K − 1}) simple regressors will be trained to predict others’

beliefs based on K baseline classifiers. So the total training time is linear in the number of

label classes. After training the extra regressors, running the algorithm only requires taking K

averages (J of the J ·K regressors each) and compare with average posterior. DMTS will only

need to train one additional classifier based on K classifiers and both the training and the running

time are almost the same as the basic majority voting algorithm. The above complexity analysis

shows our methods are very practical.

5.4 Experimental Results

In this section, we present our experimental results. We test our proposed methods by

applying in the ensemble final predictions step in supervised classification and in the ensemble
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data augmentations step in semi-supervised classification.

For supervised classification, we conducted the experiments on five binary and four

multiclass real-world classification datasets. Experimental results show that consistently better

classification accuracy can be obtained compared to always trusting the majority voting outcomes.

As for the splitting of training and testing, the original setting are used when training and testing

files are provided. The remaining datasets only give one data file. We adopt 50/50 spliting for

the testing results’ statistical significance as more data is distributed to testing dataset.

As for semi-supervised classification, we adopt recent methods - MixMatch [9] and

MixText [24] as our ensemble baselines. We also used UDA [162] as the baseline but it isn’t the

ensemble baseline because UDA doesn’t use ensemble data augmentation methods to generate

the pseudo labels. Both of the ensemble baselines (MixMatch and MixText) mixed labeled and

unlabeled datasets utilizing MixUp [173] by applying the recent data augmentations methods

to generate low-entropy explicit pseudo labels for unlabeled examples. The difference is that

[24] applied MixUp in hidden space so that it is more suitable for text tasks. We used MixMatch

to conduct the image classification experiments on CIFAR-10 and CIFAR-100 datasets [83].

MixText is used as the ensemble baseline model for text classification tasks, where Yahoo!

Answers [20] and AG News [174] datasets are performed. The experimental results show the

effectiveness of our proposed methods by providing better pseudo labels for unsupervised data

based on data augmentations than commly used ensemble method using the majority voting rule.
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Datasets Breast cancer Movie Review Spambase Australian German
Majority (ALL) 92.96% (264/284) 80.25%(321/400) 73.57%(1692/2300) 81.74%(282/345) 76.00%(380/500)
HMTS (ALL) 95.42% (264+7/284) 82.00% (321+7/400) 75.83% (1692+52/2300) 84.06% (282+8/345) 77.20% (380+6/500)
DMTS (ALL) 94.01% (264+4/284) 81.75% (321+6/400) 76.30% (1692+63/2300) 82.94% (282+4/345) 76.20% (380+1/500)
Majority (HA) 82.35% (42/51) 29.73% (11/37) 28.19% (42/149) 62.79% (27/43) 66.67% (30/45)
HMTS (HA) 98.04% (42+8/51) 43.24% (11+5/37) 60.40% (42+48/149) 76.74% (27+6/43) 80.00% (30+6/45)
DMTS (HA) 90.20% (42+4/51) 43.24% (11+5/37) 75.17% (42+70/149) 72.09% (27+4/43) 68.89% (30+1/45)

Majority (LA) 95.29% (222/233) 85.40% (310/363) 76.71% (1650/2151) 84.44% (255/302) 76.92% (350/455)
HMTS (LA) 94.85% (222-1/233) 85.95% (310+2/363) 76.89% (1650+4/2151) 85.10% (255+2/302) 76.92% (350+0/455)
DMTS (LA) 95.29% (222+0/233) 85.67% (310+1/363) 76.38% (1650-7/2151) 84.44% (255+0/302) 76.92% (350+0/455)

Table 5.1: Accuracy and the number of increased correct predictions for the three categories of
cases, namely, Overall & “High disagreement (HA)” & “Low disagreement (LA)” cases’, using
methods of Uniformly-weighted Majority Voting, HMTS, and DMTS on five binary classification
datasets. The “high disagreement” means that the difference between the number of predicting
0 and 1 is small. We have 15 classifiers and the instance will be considered as having “high
disagreement” if the vote number of majority class is 8 or 9. For other conditions the instance
will be considered as having “low disagreement”. In MTS methods, the numbers of HA and
LA instances we consider in five datasets are 51, 37, 149, 43, 45 and 233, 363, 2151, 302, 455
respectively. The numbers of five overall testing datasets are 284, 400, 2300, 345, 500.

5.4.1 Experimental Setup and Results for Supervised Classification

In our binary classification experiments, we consider five commonly used binary

classification algorithms which are Perceptron [125], Logistic Regression (LR) [116], Random

Forest (RF), Support Vector Machine (SVM) [19], and MLP. In order to test the usefulness of

our methods, we experiment with a noisy environment - we flipped the true class label with three

noisy rates to construct three binary classifiers for each of the five methods which have mediocre

performance on the test datasets. We wanted to diversify our classifiers by introducing different

noisy rates (varying the data distribution). Our experiments used 0.06, 0.08, and 0.1 (probability

of flipping the label) for each family of classifier. We also tried other values such as 0.1, 0.2,

and 0.3, and we reached similar conclusions. In total, 15 different classifiers are obtained as the

baseline classifiers.

In this subsection, we report the experimental results on five binary classification
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datasets and analyze when and why our proposed MTS methods perform better than majority

voting.

Table 5.1 presents the experimental results of accuracy and the number of increased

correct predictions for the three categories of cases, namely, Overall & “High disagreement

(HA)” & “Low disagreement (LA)” cases’, using methods of Uniformly-weighted Majority

Voting, HMTS, and DMTS on five binary classification datasets. Specifically, “HA” cases are

the tasks/instances when the ensemble is least certain about. “LA” ones are the relatively easier

tasks/instances that the ensemble is more certain about, which is also the cases when the majority

opinion is likely to be correct.

Because the accuracy improvement from using our proposed MTS mainly occurred

for the HA cases, in Table 5.1, we report the accuracy of the majority voted baseline and our

proposed methods (HMTS and DMTS) on HA cases, LA cases, and all cases separately. From

the results, we observe that our MTS methods significantly improve the performance on HA

cases by 10%-50%. It is reasonable because the “high disagreement” instances, compared with

“low disagreement”, are more difficult to classify. Hence, for HA cases, applying the majority

voting rule leads to low accuracy and the majority answer is unreliable, when MTS is especially

relevant because it was originally designed to address the issue of the majority being wrong. As

such, our MTS methods can recover the correct minority answer when the majority is wrong,

resulting in higher improvement in performance. For LA cases, that is, when the disagreement is

low in the ensemble, accuracy achieved by trusting the majority labels is already high, as shown

in the Majority (LA) row in Table 5.1. Such LA tasks leave us little room for our proposed

methods to improve, as shown in the last three rows in Table 5.1 such that the accuracy is almost
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unchanged after applying our MTS methods as compared with the accuracy of the majority

voting.

Another observation is that Heuristics Machine Truth Serum (HMTS) tends to have

more robust and better performances than Discriminative Machine Truth Serum (DMTS) in most

datasets, especially in the small-size datasets. These can be explained by the fact DMTS itself is

a MLP classifier which needs a larger size of data to get good results. That HMTS can improve

the classification accuracy in the small size of dataset is particularly useful in some fields such as

healthcare in which collecting data is very time-consuming and expensive. As for the running

time, DMTS is faster than HMTS as HMTS needs to compute the peer prediction results of all

the 15 classifiers and DMTS only predicts once.
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Figure 5.2: Distributions of the number of wrong->correct and correct->wrong cases (two
subsets of HA cases) in four different intervals according to the value of (posterior - prior) using
HMTS on Spambase binary classification dataset, where a larger value means a bigger difference
between prior and posterior probabilities. Our proposed MTS methods can obtain more correct
answers when there is a significant difference between prior and posterior.

To further demonstrate the conditions under which MTS Methods are expected to be

effective, we compare the distributions of the difference between prior and posterior probabilities
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in two subsets of HA cases from the Spambase dataset. The first subset consists of the cases

where the correct classifications are successfully recovered by applying the MTS methods. The

other subset is constituted by the cases where MTS ends up recovering wrong answers (i.e., the

majority is correct in the first place, but rejected by MTS). In Figure 5.2, for these two subsets of

HA cases, we respectively present the distributions of the number of cases (wrong->correct and

correct->wrong) in four different intervals according to the value of (posterior - prior), where a

larger value means a bigger difference between prior and posterior probabilities. As Figure 5.2

shows, the MTS methods obtain more correct answers when there is a significant difference

between prior and posterior. In other words, we are more likely to recover the correct answer

successfully if the difference between prior and posterior is large.

Datasets Waveform Statlog Optical Pen-Based
# of class 3 6 10 10

Majority (ALL) 85.04% (2126/2500) 86.70% (1734/2000) 97.50% (1752/1797) 95.08% (3326/3498)
HMTS (ALL) 85.60% (+14/2500) 87.05% (+7/2000) 97.66% (+3/1797) 95.48% (+14/3498)
DMTS (ALL) 85.64% (+15/2500) 86.75% (+1/2000) 97.61% (+2/1797) 95.54% (+16/3498)

Majority (HA) 42.59% (23/54) 23.08% (15/65) 40.00% (6/15) 57.32% (90/157)
HMTS (HA) 62.96% (23+11/54) 53.33% (15+8/65) 53.33% (6+2/15) 68.15% (90+17/157)
DMTS (HA) 68.52% (23+14/54) 24.62% (15+1/65) 60.00% (6+3/15) 66.88% (90+15/157)

Majority (LA) 85.98% (2103/2446) 88.84% (1719/1935) 97.98% (1746/1782) 96.86% (3236/3341)
HMTS (LA) 86.10% (2103+3/2446) 88.79% (1719-1/1935) 98.04% (1746+1/1782) 96.77% (3236-3/3341)
DMTS (LA) 86.02% (2103+1/2446) 88.84% (1719+0/1935) 97.92% (1746-1/1782) 96.89% (3236+1/3341)

Table 5.2: Accuracy and the number of increased correct predictions for the three categories
of cases, namely, Overall & “High disagreement (HA)” & “Low disagreement (LA)” cases’,
using methods of Uniformly-weighted Majority Voting, HMTS, and DMTS on four multi-class
classification datasets. We have 15 classifiers and the instance will be considered as having
“high disagreement” if the vote number of majority class is less or equals to 6 for the 3-class
dataset. The threshold number is 5 for 6-class and 3 for 10-class datasets. For other conditions
the instance will be considered as having “low disagreement”. In MTS methods, the numbers of
HA and LA instances we consider in four datasets are 54, 65, 15, 157 and 2446, 1935, 1782,
3341 respectively. The numbers of four overall testing datasets are 2500, 2000, 1797, 3498.

We also tested our extension to multi-class classification problems. Experimental

results on four multi-class classification datasets are reported in Table 5.2. We observe that

HMTS and DMTS obtained similarly good performance in the accuracy metric because the size
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of multi-class classification datasets is larger and the MLP of DMTS can perform better than

the binary case. In Table 5.2, we also noted that the similar significant improvement on the HA

cases and almost unchanged performance on the LA cases after applying our MTS methods for

four multi-class classification datasets.

We also observe that, in both binary & multi-class classification tasks, DMTS performs

much worse than HMTS for some datasets. We analyze this phenomenon below.

Analysis on why DMTS performs much worse than HMTS in some datasets In some

datasets (e.g., German and Statlog), compared with HMTS, DMTS performs much worse. After

examining the cases in those datasets, we observe that in the cases where HMTS recovers

the correct minority answers, there is an imbalance in the distribution of labels. For example,

most corrected cases in the Statlog dataset have the same label. It makes sense because HMTS

is a heuristic method and can compute for each data point individually and doesn’t have the

constraints of balanced distribution on labels. For DMTS, however, we found that the labels of

the cases using DMTS are balanced, which suggests that it seems to be subject to a constraint

of label balance. This could be because we trained the model on the dataset with a balanced

distribution of labels. As a result, it enforces the balanced distribution of the labels when applied

in the testing datasets.

Finally, we compare between several popular ensemble algorithms and our proposed

approaches. We list the testing accuracy for Adaboost with 15 decision tree base estimators,

Random Forest with 15 decision trees, Weighted Majority [50], Stacking with the same setting

of 15 classifiers utilized in our two MTS algorithms and Logistic Regression or SVM as meta
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Methods Adaboost Random
Forest

Weighted
Majority Stacking HMTS DMTS

Breast Cancer 94.37% 94.37% 94.01% 94.72% 96.13% 94.01%
Movie Review 75.10% 77.20% 81.60% 70.30% 80.85% 80.60%

Spambase 74.74% 74.65% 74.17% 75.91% 76.87% 77.35%
Australian 82.03% 84.06% 84.06% 85.22% 83.44% 82.94%
German 72.20% 74.80% 73.80% 77.20% 77.20% 76.20%

Waveform 81.80% 82.60% 85.36% 84.00% 85.48% 85.60%
Statlog 85.85% 86.15% 86.85% 82.70% 87.10% 86.75%
Optical 93.99% 94.88% 92.21% 95.83% 97.61% 97.66%

Pen-Based 94.97% 95.45% 90.59% 95.43% 95.57% 95.51%

# of best 0 0 1 1 4 3
# of significant wins 0 1 0 0 3 3

Table 5.3: Comparison between popular ensemble and our proposed approaches. # of best means
the number of datasets where the benchmark achieves the best performance. # of significant wins
means winning number of comparisons between itself and other methods if they are significantly
different (p-value<0.05) by doing paired t-test.

classifier, HMTS, and DMTS for all nine datasets in Table 5.3. As shown in the table, HMTS

and DMTS outperform Adaboost, Random Forest, Weighted Majority, and Stacking in seven

datasets and are very close to the best in two datasets. Compared to other weighted methods,

we’d like to note that our aggregation operates on each single task separately - this means that

our method will be more robust when the difficulty levels of tasks differ drastically in the dataset.

None of the other weighted methods (with fixed and learned weights) has this feature. We also

find that our method is robust to a smaller number of classifiers, in contrast to, say Adaboosting.

We also conduct paired t-testing where all methods are compared to each other. If two methods

are significantly different (p-value<0.05) and one method performs better, it means significant

win or better. Random Forest is significantly better than Adaboost. HMTS and DMTS are

significantly better than Adaboost, Random Forest, and Weighte Majority (almost for Stacking).

Paired t-testing results show the effectiveness of our proposed approaches.
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5.4.2 Experimental Setup and Results for Semi-supervised Classification

Methods CIFAR-10 CIFAR-100

UDA 88.70% 75.23%
MixMatch (2-AUG) 90.68% 76.78%
MixMatch (5-AUG) 91.59% 78.20%

HMTS 92.62% 80.75%
DMTS 91.90% 79.52%

Table 5.4: Classification accuracy (%) in UDA, MixMatch (2-AUG), MixMatch (5-AUG), HMTS,
and DMTS settings on the CIFAR-10 and CIFAR-100 testing dataset using MixMatch method.
2-AUG means that two data augmentation samples are constructed for each unsupervised data.
HMTS and DMTS are based on 5-AUG setting.

Methods Yahoo! Answers AG News

UDA 65.6% 86.8%
MixText (2-AUG) 66.7% 87.6%
MixText (3-AUG) 67.1% 88.3%

HMTS 67.8% 89.5%
DMTS 67.3% 88.9%

Table 5.5: Classification accuracy (%) in UDA, MixText (2-AUG), MixText (3-AUG), HMTS,
and DMTS settings on the Yahoo! Answers and AG News testing dataset using MixText method.
2-AUG means that two data augmentation samples are constructed for each unsupervised data.
HMTS and DMTS are based on 3-AUG setting.

We adopt the recent SSL methods UDA [162], MixMatch [9], and MixText [24] as our

baselines in SSL. Becuase UDA doesn’t use ensemble data augmentation methods to generate

the pseudo labels, we consider MixMatch and MixText as the ensemble baselines.

We applied UDA and MixMatch on image classification tasks (CIFAR-10 and CIFAR-

100). In both CIFAR-10 and CIFAR-100 datasets, 14,000 data points are utilized as supervised

dataset and the remaining as unsupervised dataset. For UDA, it performs worse than other

methods because it doesn’t use ensemble data augmentation methods to generate the pseudo

labels. For MixMatch, we tried different data augmentation settings, where varying number of

data augmented samples are constructed for each unsupervised data. As shown in Table 5.4,
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2-AUG and 5-AUG settings are conducted. We observe that constructing more data augmented

samples can improve the classification accuracy. HMTS and DMTS in Table 5.4 are applied on

5-AUG settings. We change the pseudo labels on the “high disagreement” cases, which are the

ones when the ensemble is least certain about. In the image classification tasks, instances are

considered as having “high disagreement” if three give the same classification results and the

remaining two provide another consistent prediction results. HMTS and DMTS further improve

the better performance than 5-AUG ensemble setting.

MixText utilized Mixup in the hidden states so that it is more suitable for text tasks.

UDA can also be used in the text tasks. Therefore, we conducted the experiments on two text

classification datasets - Yahoo! Answers and AG News using UDA and MixText. 100 labeled

data and 5,000 unlabeled data per class in both datasets are used to train the model. For UDA,

similar to image classification tasks, it performs worse than other methods because it doesn’t

use ensemble data augmentation methods to generate the pseudo labels. For MixText, we also

tried different data augmentation settings as in the MixMatch, where varying number of data

augmented samples are constructed for each unsupervised data. In the 2-AUG setting, Russian

and German machine translation models are utilized to generate data augmented samples for

each unsupervised data. We add one more model - French machine translation model in the

3-AUG setting. We change the pseudo labels on the “high disagreement” cases which is defined

in the above paragraph. In the text classification tasks, instances are considered as having “high

disagreement” if two give the same classification results and the remaining one provide another

prediction result. In Table 5.5, we observe the consistent improvement as the one in Table 5.4.

The reason that our MTS methods work in SSL is that better pseudo labels for unsuper-
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Methods HA accuracy (pseudo labels) in CIFAR-10 Improvement over 2-AUG (%)
2-AUG 86.34% (2308/2673) -
5-AUG 89.45% (2391/2673) +3.11%
HMTS 92.07% (2461/2673) +5.73%
DMTS 90.35% (2415/2673) +4.01%

Table 5.6: Pseudo labels accuracy (%) in high disagreement (HA) cases for 2-AUG, 5-AUG,
HMTS, and DMTS settings on CIFAR-10 dataset. 2-AUG means that two data augmentation
samples are constructed for each unsupervised data. HMTS and DMTS are based on the 5-AUG
setting. The numbers of HA unsupervised cases and overall unsupervised cases are 2,673 and
36,000 respectively.

Methods HA accuracy (pseudo labels) in CIFAR-100 Improvement over 2-AUG (%)
2-AUG 76.18% (2559/3359) -
5-AUG 78.38% (2633/3359) +2.20%
HMTS 81.30% (2731/3359) +5.12%
DMTS 80.53% (2705/3359) +4.35%

Table 5.7: Pseudo labels accuracy (%) in high disagreement (HA) cases for 2-AUG, 5-AUG,
HMTS, and DMTS settings on CIFAR-100 dataset. 2-AUG means that two data augmentation
samples are constructed for each unsupervised data. HMTS and DMTS are based on the 5-AUG
setting. The numbers of HA unsupervised cases and overall unsupervised cases are 3,359 and
36,000 respectively.

Methods HA accuracy (pseudo labels) in Yahoo! Answers Improvement over 2-AUG (%)
2-AUG 64.1% (8452/13186) -
3-AUG 66.2% (8729/13186) +2.1%
HMTS 67.4% (8887/13186) +3.3%
DMTS 66.9% (8821/13186) +2.8%

Table 5.8: Pseudo labels accuracy (%) in high disagreement (HA) cases for 2-AUG, 3-AUG,
HMTS, and DMTS settings on Yahoo! Answers dataset. 2-AUG means that two data augmenta-
tion samples are constructed for each unsupervised data. HMTS and DMTS are based on the
3-AUG setting. The numbers of HA unsupervised cases and overall unsupervised cases are
13,186 and 50,000 respectively.

vised data are obtained. For better analyzing why our MTS methods are effective, we show that

the accuracy improvement on the high disagreement (HA) cases’ pseudo labels for unsupervised

data since we only applied our MTS methods on HA cases. The number of HA cases in the

36,000 unsupervised cases in CIFAR-10 dataset is 2,673. Because we actually have true labels
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Methods HA accuracy (pseudo labels) in AG News Improvement over 2-AUG (%)
2-AUG 86.4% (3558/4118) -
3-AUG 88.1% (3628/4118) +1.7%
HMTS 90.7% (3735/4118) +4.3%
DMTS 90.2% (3714/4118) +3.8%

Table 5.9: Pseudo labels accuracy (%) in high disagreement (HA) cases for 2-AUG, 3-AUG,
HMTS, and DMTS settings on AG News dataset. 2-AUG means that two data augmentation
samples are constructed for each unsupervised data. HMTS and DMTS are based on the 3-AUG
setting. The numbers of HA unsupervised cases and overall unsupervised cases are 4,118 and
20,000 respectively.

of unsupervised data in CIFAR-10, we can calculate the accuracy on HA cases’ pseudo labels

obtained by aggregating the predictions of data augmented cases for unsupervised data with

ensemble methods. As shown in Table 5.6, our methods provide more correct pseduo labels and

the improvement is significant. The similar improvements are observed on the experiments for

other datasets (CIFAR-100, Yahoo! Answers, and AG News) in the SSL setting and the details

are shown in Table 5.7, 5.8, and 5.9.

5.5 Related Work

5.5.1 Ensemble Methods

Wisdom of the crowd [144] often performs better than a few elite individuals in the

applications such as decision making of public policy [110], answering the questions on general

world knowledge [139]. The same idea has been also successfully applied in ML - ensemble

methods combine multiple learning algorithms and usually performs better than any single

method [42]. Ensemble methods are usually used where aggregating the predictions are needed

such as ensemble final predictions in supervised learning and ensemble data augmentations in
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SSL. In this paper, we focus on classification problem which is one of the most fundamental

problems in ML community [37, 166, 69, 30, 165, 126, 169].

Ensemble Final Predictions for Supervised Classification In this part, we focus on describing

the ensemble methods aggregating the final predictions for supervised classification which is the

most commonly used scenario of ensemble methods. Ensemble methods consist of a rich family

of algorithms. Popular ensemble methods include Boosting (e.g., AdaBoost [48]), Bootstrap

aggregating (e.g., Random Forest [65]), and Stacking [11].

Ensemble Data Augmentation for Semi-supervised Classification Another important appli-

cation of ensemble methods is to generate better pseudo labels for unsupervised data with the

help of data augmentation in semi-supervised classification other than improving the performance

of final predictions. There are a wide family of SSL algorithms [21, 114, 9, 162, 24]. In this

paper, we mainly review the recent pseudo labeling based SSL methods [86, 123, 52, 92, 71, 9].

Pseudo labeling based SSL methods benefit from the unlabeled dataset by providing the high-

quanlity explicit pseudo labels after applying data augmentation and ensemble methods. Some

recent SSL methods such as UDA [162] conducted the consistency regularization training with

implicit pseudo-labels and cannot be considered as our ensemble baseline because they don’t use

ensemble data augmentation methods to generate the pseudo labels. In this paper, we utilized

MixMatch [9] and MixText [24] as the ensemble baseline methods in the SSL setting.
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5.5.2 Bayesian Truth Serum

As mentioned in above sections, typical algorithms for aggregating human judgements

and classical ensemble methods for combining classifiers’ predictions have the same assumption

that the majority answer is likely to be correct. Most works in these two settings, except for

[118], would fail when the majority answer is instead likely to be wrong. But BTS only works in

the setting of aggregating human judgements by collecting subjective judgment data. Inspired

by the ideas proposed by [118, 119], we proposed two ML aided algorithms to discover the

correct answer when it is minority instead of majority in the setting of classification problem. As

our proposed methods are ML algorithms, they can be trained and the predictions will be made

automatically instead of collecting subjective judgment data as the case in [118].
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Chapter 6

The Rich Get Richer: Disparate Impact of

Semi-Supervised Learning

6.1 Introduction

This chapter focuses on the fairness of semi-supervised learning (SSL). While SSL

are widely applied in various kinds of real-world applications, fairness issue are drawing more

attention. For example, even though the global model performance for the entire population of

data is almost always improved by SSL, it is unclear how the improvements fare for different

sub-populations which can leads to fairness issue, especially when sub-populations are defined

by the demographic groups e.g., race and gender.

In this chapter, we aim to understand the disparate impact of SSL from both theoretical

and empirical aspects, and propose to evaluate SSL from a different dimension. Specifically,

based on classifications tasks, we study the disparate impact of model accuracies with respect to
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different sub-populations (such as label classes, feature groups and demographic groups) after

applying SSL. Different from traditional group fairness [172, 7, 73] defined over one model,

our study focuses on comparing the gap between two models (before and after SSL). To this

end, we first theoretically analyze why and how disparate impact are generated. The theoretical

results motivate us to further propose a new metric, benefit ratio, which evaluates the normalized

improvement of model accuracy using SSL methods for different sub-populations. The benefit

ratio helps reveal the “Matthew effect" of SSL: a high baseline accuracy tends to reach a high

benefit ratio that may even be larger than 1 (the rich get richer), and a sufficiently low baseline

accuracy may return a negative benefit ratio (the poor get poorer). The above revealed Matthew

effect indicates that existing and popular SSL algorithms can be unfair. Aligning with recent

literature on fair machine learning [60, 34, 150], we promote that a fair SSL algorithm should

benefit different sub-populations equally, i.e., achieving Equalized Benefit Ratio which we will

formally define in Definition 1. We then evaluate SSL using benefit ratios and discuss how two

possible treatments, i.e., balancing the data and collecting more labeled data, might mitigate the

disparate impact. We hope our analyses and discussions could encourage future contributions to

promote the fairness of SSL.

6.2 Preliminaries

We summarize the key concepts and notations as follows.

79



6.2. PRELIMINARIES
6.2.1 Supervised Classification Tasks

Consider a K-class classification task given a set of NL labeled training examples

denoted by DL := {(xl, yl)}NL
l=1, xl is an input feature, yl ∈ {0, 1, ...,K − 1} is a label. The

clean data distribution with full supervision is denoted by D. Examples (xl, yl) are drawn

according to random variables (X,Y ) ∼ D. The classification task aims to identify a classifier

f that maps X to Y accurately. Let 1{·} be the indicator function taking value 1 when the

specified condition is satisfied and 0 otherwise. Define the 0-1 loss as 1(f(X), Y ) := 1{f(X) ̸=

Y }. The optimal f is denoted by the Bayes classifier f∗ = argminf ED[1(f(X), Y )]. One

common choice is training a deep neural network (DNN) by minimizing the empirical risk:

f̂ = argminf
1
N

∑N
l=1 Lℓ(f(xl), yl). Notation ℓ(·) stands for the cross-entropy (CE) loss

ℓ(f(x), y) := − ln(fx[y]), y ∈ {0, 1, ...,K − 1}, where fx[y] denotes the y-th component of

f(x). Notations f and f stand for the same model but different outputs. Specifically, vector

f(x) denotes the probability of each class that model f predicts given feature x. The predicted

label f(x) is the class with maximal probability, i.e., f(x) := argmaxk∈{0,1,...,K−1} fx[k]. We

use notation f if we only refer to a model.

6.2.2 Semi-Supervised Classification Tasks

In the semi-supervised learning (SSL) task, there is also an unlabeled (a.k.a. unsu-

pervised) dataset DU := {(xu, ·)}NU
u=1 drawn from D, while the labels are missing or unob-

servable. Let N := NL +NU . Denote the corresponding unobservable supervised dataset by

D := {(xn, yn)}Nn=1. Compared with the supervised learning tasks, it is critical to leverage the

unsupervised information in semi-supervised learning. To improve the model generalization
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ability, many recent SSL methods build consistency regularization with unlabeled data to ensure

that the model output remains unchanged with randomly augmented inputs [9, 162, 8, 141, 164].

To proceed, we introduce soft/pseudo-labels y.

Soft-labels Note the one-hot encoding of yn can be written as yn, where each element

writes as yn[k] = 1{k = yn}. More generally, we can extend the one-hot encoding to soft labels

by requiring each element y[k] ∈ [0, 1] and
∑

k∈[K] y[k] = 1. The CE loss with soft y writes as

ℓ(f(x),y) := −
∑K−1

k=0 y[k] ln(fx[k]). If we interpret y[k] = P(Y = k) as a probability [182]

and denote by Dy the corresponding label distribution, the above CE loss with soft labels can be

interpreted as the expected loss with respect to a stochastic label Ỹ , i.e.,

ℓ(f(x),y) :=
∑
k∈[K]

P(Ỹ = k)ℓ(f(x), k) = E
Ỹ∼Dy

[
ℓ(f(x), Ỹ )

]
. (6.1)

Pseudo-labels In consistency regularization, by using model predictions, the unlabeled data

will be assigned pseudo-labels either explicitly [9] or implicitly [162], where the pseudo-labels

can be modeled as soft-labels. In the following, we review both the explicit and the implicit

approaches and unify them in our analytical framework.

Consistency regularization with explicit pseudo-labels For each unlabeled feature

xn, pseudo-labels can be explicitly generated based on model predictions [9]. The pseudo-label

is later used to evaluate the model predictions. To avoid trivial solutions where model predictions

and pseudo-labels are always identical, independent data augmentations of feature xn are often

generated for M rounds. The augmented feature is denoted by x′n,m := Augment(xn),m ∈

{m = 1, 2, ...,M}. Then the pseudo-label yn in epoch-t can be determined based on M model
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predictions as y(t)
n = Sharpen

(
1
M

∑M
m=1 f̄

(t)(x′n,m)
)
, where model f̄ (t) is a copy of the DNN

at the beginning of epoch-t but without gradients. The function Sharpen(·) reduces the entropy

of a pseudo-label, e.g., setting to one-hot encoding ej , j = argmaxk∈{0,1,...,K−1} y
(t)
n [141]. In

epoch-t, with some consistency regularization loss ℓCR(·), the empirical risk using pseudo-labels

is:

L1(f,DL, DU ) =
1

NL

NL∑
n=1

ℓ(f(xn), yn) +
1

NU

NL+NU∑
n=NL+1

ℓCR(f(xn),y
(t)
n ).

Consistency regularization with implicit pseudo-labels Consistency regularization can also

be applied without specifying particular pseudo-labels, where a divergence metric between

predictions on the original feature and the augmented feature is minimized to make predictions

consistent. For example, the KL-divergence could be applied and the data augmentation could

be domain-specific [162] or adversarial [109]. In epoch-t, the total loss is:

L2(f,DL, DU ) =
1

NL

NL∑
n=1

ℓ(f(xn), yn) + λ · 1

NU

NL+NU∑
n=NL+1

ℓCR(f(xn), f̄
(t)(x′n)),

where λ balances the supervised loss and the unsupervised loss, x′n := Augment(xn) stands for

one-round data augmentation (m = 1 following the previous notation x′n,m). Without loss of

generality, we use λ = 1 in our analytical framework.

Consistency regularization loss ℓCR(·) In the above two lines of works, there are

different choices of ℓCR(·), such as mean-squared error ℓCR(f(x),y) := ∥f(x)−y∥22/K [9, 85]

or CE loss [109, 162] defined in Eq. (6.1). For a clean analytical framework, we consider the case

when both supervised loss and unsupervised loss are the same, i.e., ℓCR(f(x),y) = ℓ(f(x),y).

Note L2 implies the entropy minimization [54] when both loss functions are CE and there is no
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augmentation, i.e., x′n = xn.

6.2.3 Analytical Framework

We propose an analytical framework to unify both the explicit and the implicit ap-

proaches. With Eqn. (6.1), the unsupervised loss in the above two methods can be respectively

written as:

1

NU

NL+NU∑
n=NL+1

E
Ỹ∼D

y
(t)
n

[
ℓ(f(xn), Ỹ )

]
and

1

NU

NL+NU∑
n=NL+1

E
Ỹ∼D

f̄(t)(x′n)

[
ℓ(f(xn), Ỹ )

]
.

Both unsupervised loss terms inform us that, for each feature xn, we compute the loss with respect

to the reference label Ỹ , which is a random variable following distribution D
y
(t)
n

or Df̄ (t)(x′
n)

.

Compared with the original clean label Y , the unsupervised reference label Ỹ contains label

noise, and the noise transition [185] depends on feature xn. Specifically, we have

P(Ỹ = k|X = xn) = y(t)
n [k] (Explicit) or P(Ỹ = k|X = xn) = f̄

(t)
x′
n
[k] (Implicit).

Then with model f̄ (t), we can define a new dataset with instance-dependent noisy reference

labels: D̃ = {(xn, ỹn)}n∈[N ], where ỹn = yn,∀n ∈ [NL], and ỹn = y
(t)
n or f̄

(t)
x′
n

, ∀n ∈

{NL + 1, · · · , N}. The unified loss is:

L(f, D̃) =
1

N

N∑
n=1

ℓ(f(xn), ỹn) =
1

N

N∑
n=1

E
Ỹ∼Dỹn

[
ℓ(f(xn), Ỹ )

]
. (6.2)

83



6.3. DISPARATE IMPACTS OF SSL
Therefore, with the pseudo-label as a bridge, we can model the popular SSL solution with

consistency regularization as a problem of learning with noisy labels [112]. But different from

the traditional class-dependent assumption [91, 158, 186], the instance-dependent pseudo-labels

are more challenging [95].

6.3 Disparate Impacts of SSL

To understand the disparate impact of SSL, we study how supervised learning with

DL affects the performance of SSL with both DL and DU . In this section, the analyses are for

one and an arbitrary sub-population, thus we did not explicitly distinguish sub-populations in

notation.

Intuition The rich sub-population with a higher baseline accuracy (from supervised

learning with DL) will have higher-quality pseudo-labels for consistency regularization, which

helps to further improve the performance. In contrast, the poorer sub-population with a lower

baseline accuracy (again from supervised learning with DL) can only have lower-quality pseudo-

labels to regularize the consistency of unsupervised features. With a wrong regularization

direction, the unsupervised feature will have its augmented copies reach consensus on a wrong

label class, which leads to a performance drop. Therefore, when the baseline accuracy is getting

worse, there will be more and more unsupervised features that are wrongly regularized, resulting

in disparate impacts of model accuracies.

In the following, we first analyze the generalization error for supervised learning with

labeled data, then extend the analyses to semi-supervised learning with the help of pseudo-labels.
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Without loss of generality, we consider minimizing 0-1 loss 1(f(X), Y ) with infinite search

space. Our analyses can be generalized to bounded loss ℓ(·) and finite function space F following

the generalization bounds that can be introduced using Rademacher complexity [6].

6.3.1 Learning with Clean Data

Denote the expected error rate of classifier f on distribution D by

RD(f) := ED[1(f(X), Y )]. Let f̂D denote the classifier trained by minimizing 0-1 loss with

clean dataset D, i.e., f̂D := argminf R̂D(f), where R̂D(f) :=
1
N

∑N
n=1 1(f(xn), yn). Denote

by Y ∗|X := argmaxk∈{0,1,...,K−1} P(Y |X) the Bayes optimal label on clean distribution D.

Theorem 3 shows the generalization bound in the clean case. Replacing D and N with DL and

NL we have:

Theorem 3 (Supervised error). With probability at least 1 − δ, the generalization error of

supervised learning on clean dataset DL is upper-bounded by RD(f̂DL
) ≤

√
2 log(2/δ)

NL
+P(Y ∗ ̸=

Y ).

6.3.2 Learning with Semi-supervised Data

We further derive generalization bounds for learning with semi-supervised data. Fol-

lowing our analytical framework in Section 6.2.3, in each epoch-t, we can transform the semi-

supervised data to supervised data with noisy supervisions by assigning pseudo-labels, where the

semi-supervised dataset DL ∪DU is converted to the dataset D̃ given the model learned from

the previous epoch.

Two-iteration scenario In our theoretical analyses, to find a clean-structured per-
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formance bound for learning with semi-supervised data and highlight the impact of the model

learned from supervised data, we consider a particular two-iteration scenario where the model is

first trained to convergence with the small labeled dataset DL and get f̂DL
, then trained on the

pseudo noisy dataset D̃ labeled by f̂DL
. Noting assigning pseudo labels iteratively may improve

the performance as suggested by most SSL algorithms [9, 162], our considered two-iteration

scenario can be seen as a worst case for an SSL algorithm.

Independence of samples in D̃ Recall x′n denotes the augmented copy of xn. The

N instances in D̃ may not be independent since pseudo-label ỹn comes from f̂DL
(x′n), which

depends on xn. Namely, the number of independent instances N ′ should be in the range of

[NL, N ]. Intuitively, with appropriate noise injection or data augmentation [162, 109] to xn such

that x′n could be treated as independent of xn, the number of independent samples in D̃ could

be improved to N . We consider the ideal case where all N instances are i.i.d. in the following

analyses.

By minimizing the unified loss defined in Eq. (6.2), we can get classifier f̂
D̃

:=

argminf R̂
D̃
(f), where R̂

D̃
(f) := 1

N

∑N
n=1

(∑K−1
k=0 ỹ[k] · 1(f(xn), k)

)
. The expected error

given classifier f is denoted by RD̃(f) := ED̃[1(f(X), Ỹ )], where the probability density

function of distribution D̃ can be defined as P
(X,Ỹ )∼D̃(X = xn, Ỹ = k) = P(X,Y )∼D(X =

xn) · ỹn[k].

Decomposition With the above definitions, the generalization error (on the clean dis-

tribution) of classifier f̂
D̃

could be decomposed as RD(f̂D̃) = (RD(f̂D̃)−RD̃(f̂D̃))︸ ︷︷ ︸
Term-1

+RD̃(f̂D̃)︸ ︷︷ ︸
Term-2

,

where Term-1 transforms the evaluation of f̂
D̃

from clean distribution D to the pseudo noisy

distribution D̃. Term-2 is similar to the generalization error in Theorem 3 but the model is
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trained and evaluated on noisy distribution D̃.

We first provide the related definitions about the upper and lower bounds for both

terms. Let η(X) := 1
2

∑K−1
k=0 |P(Ỹ = k|X) − P(Y = k|X)|, e(X) := P(Y ̸= Ỹ |X) be the

feature-dependent error rate, Ãf (X) := P(f(X) = Ỹ |X) be the accuracy of prediction f(X)

on noisy dataset D̃. Denote their expectations (over X) by η̄ := EX [η(X)], ē := EX [e(X)],

Ãf = EX [Ãf (X)]. To highlight that η̄ and ē depends on the noisy dataset D̃ labeled by f̂DL
, we

denote them as η̄(f̂DL
) and ē(f̂DL

). Denote by Ỹ ∗|X := argmaxi∈[K] P(Ỹ = i|X) the Bayes

optimal label on noisy distribution D̃. Following the proof for Theorem 3, we have:

Theorem 4 (Semi-supervised learning error). Suppose the model trained with only DL has

generalization error η̄′(f̂DL
). With probability at least 1− δ, the generalization error of semi-

supervised learning on datasets DL ∪DU is upper-bounded by

RD(f̂DL∪DU
) ≤ η̄(f̂DL

)︸ ︷︷ ︸
Disparity due to baseline

+ P(Ỹ ̸= Ỹ ∗)︸ ︷︷ ︸
Sharpness of pseudo labels

+

√
2 log(2/δ)

N︸ ︷︷ ︸
Data dependency

,

where η̄(f̂DL
) := η̄′(f̂DL

) ·NU/N is the expected label error in the pseudo noisy dataset D̃.

Takeaways Theorem 4 explains how disparate impacts in SSL are generated.

• Supervised error η̄′(f̂DL
): the major source of disparity. The sub-population that generalizes

well before SSL tends to have a lower SSL error. Namely, the rich get richer.

• Sharpness of noisy labels P(Ỹ ̸= Ỹ ∗): a minor source of disparity depends on how one

processes pseudo-labels. This term is negligible if we sharpen the pseudo-label.

• Sample complexity
√
2 log(2/δ)/N : disparity depends on the number of instances N and

their independence. Recall we assume ideal data augmentations to get N in this term. There
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will be much less than N i.i.d. instances with poor data augmentations. It would be a major

source of disparity if data augmentations are poor.

6.4 Benefit Ratio: An Evaluation Metric

In our preliminary experiments, they demonstrates that SSL can lead to disparate

impacts of different sub-populations’ accuracies, but it is still not clear how much that SSL

benefits a certain sub-population. To quantify the disparate impacts of SSL, we propose a new

metric called benefit ratio.

Benefit Ratio The benefit ratio BR(P) captures the normalized accuracy improvement

of sub-population P after SSL, which depends on three classifiers, i.e., f̂DL
: (baseline) supervised

learning only with a small labeled data DL, f̂D: (ideal) supervised learning if the whole dataset

D has ground-truth labels, and f̂DL∪DU
: SSL with both labeled dataset DL and unlabeled

datasetDU . The test/validation accuracy of the above classifiers are abaseline(P), aideal(P), and

asemi(P), respectively. As a posterior evaluation of SSL algorithms, the benefit ratio BR(P) is

defined as:

BR(P) =
asemi(P)− abaseline(P)

aideal(P)− abaseline(P)
. (6.3)

Let P⋄ := {P1,P2, · · · } be the set of all the concerned sub-populations. We formally define the

Equalized Benefit Ratio as follows.

Definition 1 (Equalized Benefit Ratio). We call an algorithm achieving equalized benefit ratio if

all the concerned sub-populations have the same benefit ratio: BR(P) = BR(P ′),∀P,P ′ ∈ P⋄.

Intuitively, a larger benefit ratio indicates more benefits from SSL. We have BR(P) = 1
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when SSL performs as well as the corresponding fully-supervised learning. A negative benefit

ratio indicates the poor population is hurt by SSL such that asemi(P) < abaseline(P). It has the

potential of providing guidance and intuitions for designing fair SSL algorithms on standard

datasets with full ground-truth labels. Whether a fair SSL algorithm on one dataset is still

fair on another dataset would be an interesting future work. In real scenarios without full

supervisions, we may use some extra knowledge to estimate the highest achievable accuracy of

each sub-population and set it as a proxy of the ideal accuracy aideal(P).

Theoretical Explanation Recall we have error upper bounds for both supervised

learning (Theorem 3) and semi-supervised learning (Theorem 4). Both bounds have similar

tightness thus we can compare them and get a proxy of benefit ratio as

B̂R(P) :=
sup (RD(f̂DL∪DU |P))− sup (RD(f̂DL|P))

sup(RD(f̂D|P))− sup (RD(f̂DL|P))
,

where sup(·) denotes the upper bound derived in Theorem 3 and Theorem 4, P is a sub-

population, and D|P denotes the set of i.i.d. instances in D that affect model generalization on

P . By assuming P(Y ̸= Y ∗) = P(Ỹ ̸= Ỹ ∗) (both distributions have the same sharpness), we

have:

Corollary 1. The benefit ratio proxy for P is B̂R(P) = 1− η̄(f̂DL|P )

∆(NP ,NPL
) , where ∆(NP , NPL

) =√
2 log(2/δ)

NPL
−

√
2 log(2/δ)

NP
, NP and NPL

are the effective numbers of instances in D|P and

DL|P .

Corollary 1 shows the benefit ratio is negatively related to the error rate of baseline

models and positively related to the number of i.i.d. instances after in SSL, which is consistent
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with our takeaways from Section 6.3. Note NP and NPL

may be larger than the corresponding

sub-populations sizes if P shares information with other sub-population P ′ during training, e.g.,

a better classification of P ′ helps classify P . It also informs us that SSL may have a negative

effect on sub-population P if η
∆(NP ,NPL

) > 1, i.e., the benefit from getting more effective i.i.d.

instances is less than the harm from wrong pseudo-labels. This negative effect indicates “the

poor get poorer”.

6.5 Experiments

In this section, we first show the existence of disparate impact on several representative

SSL methods and then discuss the possible treatment methods to mitigate this disparate impact.

Settings Two representative SSL methods, i.e., UDA [162], and MixText [24], are

tested on several text classification tasks. In our text classification tasks, we employ three

datasets: Yahoo! Answers [20], AG News [174] and Jigsaw Toxicity [74]. Jigsaw Toxicity

dataset contains both classification labels (one text comment is toxic or non-toxic) and a variety

of sensitive attributes (e.g., race and gender information) of the identities that are mentioned in

the text comment, which are fairness concerns in real-world applications.

6.5.1 Disparate Impact Exists in Popular SSL Methods

We show that, even though the size of each sub-population is equal, disparate impacts

exist in the model accuracy of different sub-populations, i.e., 1) explicit sub-populations such

as classification labels in Figure 6.1, and 2) implicit sub-populations such as demographic
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(a) Benefit ratios (y-axis) versus baseline accuracies before SSL (x-axis) on Yahoo! Answers

(b) Benefit ratios of different class labels (y-axis) versus baseline accuracies before SSL (x-axis)
on AG News

Figure 6.1: Benefit ratios across explicit sub-populations. Dot: Result of each label class. Line:
Best linear fit of dots.

groups including race & gender in Figure 6.2a & Figure 6.2b. All the experiments in this

subsection adopt both a balanced labeled dataset and a balanced unlabeled dataset. Note we

sample a balanced subset from the raw (unbalanced) Jigsaw dataset. Other datasets are originally

balanced.

Disparate impact across explicit sub-populations In this part, we show the disparate

impact on model accuracy across different classification labels on Yahoo! Answers, and AG

News datasets. In Figure 6.1a, and 6.1b, we show the benefit ratios (y-axis) versus baseline

accuracies before SSL (x-axis). From left to right, we show results with different sizes of labeled

data: 100 per class to 200 on Yahoo! Answers. Figure 6.1a, and 6.1b utilized two SSL methods

(Yahoo! Answers and AG News: MixText & UDA).We statistically observe that the class labels

with higher baseline accuracies have higher benefit ratios on Yahoo! Answers datasets. It means
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(a) Benefit ratios of different race attributes (y-axis) versus baseline accuracies before SSL on
Jigsaw.

(b) Benefit ratios of different gender attributes (y-axis) versus baseline accuracies before SSL
(x-axis) on Jigsaw.

Figure 6.2: Benefit ratios across implicit sub-populations.

that “richer” classes benefit more from applying SSL methods than the “poorer” ones. We also

observe that for some models with low baseline accuracy (left side of the x-axis), applying SSL

results in rather low benefit ratios that are close to 0.

Disparate impact across implicit sub-populations We demonstrate the disparate

impacts on model accuracy across different sub-populations on Jigsaw (race and gender) datasets.

In Figure 6.2, we can statistically observe the disparate impact across different sub-populations

on Jigsaw (race and gender) datasets for two baseline SSL methods. We again observe very

similar disparate improvements as presented in Figure 6.2a, and 6.2b.Note the disparate impact

on the demographic groups in Jigsaw raises fairness concerns in real-world applications.
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6.5.2 Mitigating Disparate Impact

Our analyses in Section 6.3 and Section 6.4 indicate the disparate impacts may be

mitigated by balancing the supervised error η̄(f̂DL|P) and the number of effective i.i.d. in-

stances for different populations. We perform preliminary tests to check the effectiveness of the

above findings in this subsection. We hope our analyses and experiments could inspire future

contributions to disparity mitigation in SSL.

Balancing and Collecting more labeled data We firstly sample 400 i.i.d. instances

from the raw (unbalanced) Jigsaw dataset and get the setting of Unbalanced (400). To balance

the supervised error and effective instances for different sub-populations, an intuitive method

is to balance the labeled data by reweighting, e.g., if the size of two sub-populations is 1:2,

we simply sample instances from two sub-populations with a probability ratio of 2:1 to ensure

all sub-population have the same weights in each epoch during training. Balance labeled (400)

denotes only 400 labeled instances are reweighted. Balance both (400) means both labeled and

unlabeled instances are balanced. Table 6.1 shows a detailed comparison on the benefit ratios

between different race identities of the Jigsaw dataset and their standard deviations, where the

first three rows denote the above three settings. We can observe that both the standard deviation

and the number of negative benefit ratios become lower with more balanced settings, which

demonstrates the effectiveness of the balancing treatment strategy, although there still exists a

sub-population that has a negative benefit ratio, indicating an unfair learning result. To further

improve fairness, as suggested in our analyses, we “collect" (rather add) another 400 i.i.d. labeled

instances (800 in total) from the Jigsaw dataset, and show the result after balancing both labeled
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[Jigsaw] Settings t_asian t_black t_latin t_white nt_asian nt_black nt_latin nt_white SD

Unbalanced (400) 24.71 21.76 28.21 -9.57 27.27 -8.33 -13.82 29.47 19.28

Balance labeled (400) 28.18 20.00 25.23 33.93 14.33 -11.29 -10.37 3.70 17.29

Balance both (400) 28.57 0.00 11.11 40.63 15.38 14.29 6.90 -7.41 15.29

Balance both (800) 13.04 25.00 7.69 24.00 3.85 10.71 16.67 20.00 7.64

Table 6.1: Comparison on the benefit ratio (%) of all race identities & standard deviation (%)
between different settings. t_asian (nt_asian) is the benefit ratio of asian identity with “toxic”
labels (“non-toxic” labels). SD denotes standard deviation. Negative benefit ratios are highlighted
in red colors.

and unlabeled data in the last row of Table 6.1 (Balance both (800)). Both the standard deviation

and the number of negative benefit ratios can be further reduced with more labeled data. More

experimental results are on Jigsaw (gender) datasets shown in Table 6.2 (balancing) and Table 6.3

(more data).

Datasets Mean Standard Deviation

Jigsaw (race) (1.4:4.5:1:7.5) Accuracy 66.71 → 67.25 → 67.88 25.64 → 21.33 → 17.84
Jigsaw (gender) (13.7:12.6:4.8:1) Accuracy 66.03 → 66.74 → 67.17 12.90 → 9.75 → 8.68
Jigsaw (race) (1.4:4.5:1:7.5) Benefit Ratio 12.46 → 13.09 → 13.67 19.28 → 17.29 → 15.29

Jigsaw (gender) (13.7:12.6:4.8:1) Benefit Ratio 11.90 → 12.18 → 12.54 88.52 → 50.67 → 34.24

Table 6.2: Balance samples with reweighting. Jigsaw is naturally unbalanced. For race, we
consider asian, black, latin, and white identities. For gender, we consider male, female, male
female, and transgender identities. The rounded ratios on the number of samples between
different identities in race and gender are listed in the table.

Datasets Mean Standard Deviation

Jigsaw (race) Accuracy 64.88 → 67.88 → 72.25 → 73.50 29.55 → 17.84 → 9.93 → 6.86
Jigsaw (gender) Accuracy 64.50 → 67.17 → 73.50 → 74.83 20.15 → 8.68 → 6.41 → 5.99
Jigsaw (race) Benefit Ratio 12.09 → 13.67 → 14.52 → 15.12 18.29 → 15.29 → 11.69 → 7.64

Jigsaw (gender) Benefit Ratio 7.80 → 12.54 → 22.46 → 25.81 41.29 → 34.24 → 27.30 → 13.08

Table 6.3: Collect more data. a → b → c → d: stands for the change of mean or standard
deviation with different sizes of labeled dataset. For Jigsaw (both race and gender), the sizes are
25× 8, 50× 8, 100× 8, 150× 8.
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6.6 Related Works

Semi-supervised learning SSL is popular in various communities [37, 69, 30, 165,

126, 55, 28, 156, 100, 70, 5, 157, 90]. We briefly review recent advances in SSL. See com-

prehensive overviews by [21, 181] for traditional methods. Recent works focus on assigning

pseudo-labels generated by the supervised model to unlabeled dataset [86, 71, 9, 8], where the

pseudo-labels are often confident or with low-entropy [141, 178, 106]. There are also many

works on minimizing entropy of predictions on unsupervised data [54] or regularizing the model

consistency on the same feature with different data augmentations [146, 109, 127, 173, 108, 162].

In addition to network inputs, augmentations can also be applied on hidden layers [24]. Be-

sides, some works [117, 39, 56, 27, 168] first conduct pre-training on the unlabeled dataset then

fine-tune on the labeled dataset, or use ladder networks to combine unsupervised learning with

supervised learning [123].

Disparate impact Even models developed with the best intentions may introduce

discriminatory biases [120]. Researchers in various fields have found the unfairness issues, e.g.,

vision-and-language representations [153], model compression [4], differential privacy [67, 68],

recommendation system [51], information retrieval [49], image search [152], machine translation

[75], message-passing [72], and learning with noisy labels [94, 183, 98]. There are also some

treatments considering fairness without demographics [84, 40, 61], minimax Pareto fairness

[105], multiaccuracy boosting [76], and fair classification with label noise [151]. Most of these

works focus on supervised learning. To our best knowledge, the unfairness of SSL has not been

sufficiently explored.
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Chapter 7

A New Weakly Supervised Learning Dataset —

Research Replication Prediction

7.1 Introduction

This chapter focuses on proposed a new weakly supervised learning dataset to con-

tribute the community.

Non-reproducible scientific results will negatively impact the development of science

and lead to the replication crisis. In recent years, several systematic large-scale direct replication

projects in contemporary published social science studies have been conducted based on the

concerns of research credibility in contemporary published social science studies [14, 15, 44, 79,

80, 33]. However, direct replication is expensive and time-consuming. A much more efficient

alternative that uses ML methods emerged for predicting research replication [43, 167, 3, 101].

Nonetheless, ML-based results for RRP failed to improve with new machine learning algorithms.
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The primary cause is due to the lack of publicly available and standardized datasets for researchers

to develop and test the more advanced ML methods. Our goal is to provide this community with

one to facilitate the development of automated solutions for this replication prediction task.

Our efforts include two types of data collected with different costs. The first set of

data is collected via existing direct replication efforts. This data is collected by professional

individual volunteers or volunteer teams throughout direct replication and therefore contains the

strong supervisions which has high quality. As we discussed earlier, due to the nature of a direct

replication being expensive and time-consuming [47], we only obtained a small size of directly

replicated dataset. A large and diverse dataset is required in order to apply modern deep learning

approaches. To complement the above data, we crowdsource to obtain a large size of annotated

dataset from an ordinary population of participants. Despite being a more cost-efficient way for

collecting data, the crowdsourced labels are often inaccurate or noisy.

Our dataset covers nicely research results published in psychology, social science, and

economics journals. Altogether, we have assembled 3081 articles. We benchmark the perfor-

mance of several populations weakly supervised learning approaches for predicting research

replicability. We report several commonly used metrics (accuracy, precision, recall, and F1) to

evaluate the considered methods. We also build a RRP website where users can upload their

own research paper (PDF format) and obtain the replication prediction probabilities as well

as highlighted sentences obtained by the variational contextual consistency sentence masking

(VCCSM) method described in the Chapter 4.
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7.2 Our Proposed Research Replication Prediction (RRP) dataset

RRP dataset includes two types of data (directly replicated and crowdsourced datasets)

with different costs. The first type of data includes 399 directly replicated data with higher costs

and strong supervision. The second type of data has 2,682 crowdsourced samples where the

label collecting methods is more economical than direct replication but the labels are noisy.

7.2.1 Directly replicated dataset

7.2.1.1 Dataset collection

In total, we obtained 399 directly replicated labeled data which are collected by

professional individuals or team throughout direct replication and therefore contain the strong

supervisions. There are different standard and definitions on decide whether one research paper

is replicable or not. In this paper, we consider a research paper as replicable if the results of an

independent replication can produce the same statistically significant effect in the direction from

the original paper. To collect more papers, we define it produces a statistically significant effect

when p-value ≤ 0.05 [3].

Based on the treating standard, we collect the directly replicated labeled dataset from

eight research replication projects which are the Registered Replication Report (RRR) [135],

Many Labs 1 [78], Many Labs 2 [80], Many Labs 3 [44], Social Sciences Replication Project

(SSRP) [15], PsychFileDrawer [115], Experimental Economics Replication Project [14], and

Reproducibility Project: Psychology (RPP) [32].
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Direct replication projects Domains # of labeled samples
1 Registered Replication Report (RRR) [135] Psychology 19
2 Many Labs 1 [78] Psychology 15
3 Many Labs 2 [80] Psychology 28
4 Many Labs 3 [44] Psychology 20
5 Social Sciences Replication Project (SSRP) [15] Social sciences 21
6 PsychFileDrawer [115] Psychology 72
7 Experimental Economics Replication Project [14] Economics 206
8 Reproducibility Project: Psychology (RPP) [32] Psychology 18

Table 7.1: Distribution of research papers’ number and domains by eight direction replication
projects in the directly replicated labeled dataset

7.2.1.2 Dataset statistics and observation

The fields of these eight research replication projects are included in social science

and are mainly about economics and psychology. The distribution of research papers’ number

and domains by eight direction replication projects in the directly replicated labeled dataset are

showed in Table 7.1. The distribution of research papers’ number by different fields is listed in

Table 7.2. We observe that the number of economical research publications is larger than the

ones in the psychology and other social science fields.

Dataset # of docs Econ Psyc Other
Directly replicated 399 206 172 21

Table 7.2: Distribution of research papers’ number by fields (economics, psychology, and other
social science fields) in the directly replicated labeled dataset

Among 399 annotated samples, 201 samples are labeled as ‘1’ (replicable). The

remaining 198 samples are annotated as ‘0’ (non-replicable). From the distribution of class

labels, we observe that this annotated dataset is balanced. Table 7.3-7.4 show two samples from

the directly replicated labeled data and list the features of title, abstract, body, sample size, effect
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size and p-value.

Throughout looking into the research papers in the directly replicated labeled dataset

by hand, we can observe that the replicable cases show more accurate description in the abstract,

larger sample size, and larger ratio of pages on experiments than the non-replicable ones.

Label 1 (replicalbe)
Title The Economics of Credence Goods: An Experiment on the Role of

Liability, Verifiability, Reputation, and Competition
Abstract Credence goods markets are characterized by asymmetric ...

...

... does not lead to higher efficiency as long as liability is violated.
Body Repair services, medical treatments, the provision of software ...

...

... preferences on the performance of markets for credence goods.
Sample size1 936
Effect size2 0.29
P-value3 0.01

Table 7.3: A replicable sample in American Economic Review (Directly replicated labeled
dataset)

Label 0 (non-replicalbe)
Title Reference Points and Effort Provision
Abstract A key open question for theories of reference-dependent ...

...

... If expectations are high, subjects work longer and earn more
money than if expectations are low.

Body Imagine two identical workers. One expected a salary increase of ...
...
... to stop at the two fixed payments but not at the mean.

Sample size1 238
Effect size2 0.22
P-value3 0.015

Table 7.4: A non-replicable sample in American Economic Review (Directly replicated labeled
dataset)

1Number of observations in this research paper.
2Number measuring the strength of the relationship between two variables in a population, or a sample-based

estimate of that quantity.
3Probability of obtaining test results at least as extreme as the results actually observed, under the assumption that
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7.2.2 Crowdsourced dataset

The first type of data (directly replicated labeled) has high quality but is expensive. In

reality, even such small-size good-quality training data can be hard to obtain due to its prohibitive

cost. An alternative inexpensive and commonly used way to obtain labeled training data is

crowdsourcing. The power of human prediction has been studied in many contexts [147]. We

used crowdsourcing method to collect the rates about the credibility of social and behavioral

science research papers in the Replication Markets, part of the larger DARPA-funded program

on Systematizing Confidence in Open Research and Evidence (SCORE) [96].

7.2.2.1 Data collection

The whole data collecting process lasted for 10 months. In each month, 300 of the

3000 papers were divided into batches of 10 of the same field, e.g., psychology or economics,

and opened for prediction. Each participant was assigned one or more batches according to their

interests specified at the beginning of the data collecting process. For each paper, the participants

were given complete information about the paper, including the title, abstract, authors, the

published journal, DOI, and a link to a pdf file of the full paper. Meanwhile, the participants

were also presented with summarized information related to the paper’s main claim, including

the extracted main claim, the corresponding hypothesis test, the experiment method, the results,

and the main statistics, i.e., the sample size, effect size, and p-value.

The participants were asked to predict how likely (a probability between 0 and 1) the

main claim is replicable with statistical significance. Participants were assigned accuracy scores

the null hypothesis is correct.
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for their predictions in each batch, and the top four participants in each batch would receive

a monetary prize. The accuracy scores were determined by the surrogate scoring rules [99],

a strategy-proof scoring rule that works in the absence of ground truth. Over the whole data

collecting process, we collected around 57,000 predictions in total. On average, each participant

provided 127 predictions and each paper received 19 predictions. A more detailed statistics

(average, standard variance, maximium, minimium, and media) on the number of predictions per

paper is shown in Table 7.5.

# of predictions (per paper) Avg Std Max Min Med
Crowdsourced 19.48 8.54 41 4 19

Table 7.5: Statistics (average, standard variance, maximium, minimium, and median) on the
number of predictions per paper

Papers

… …

Forecast
probability Average

Crowd-
sourced
labeling

Directly 
replicated
labeling

ThresholdPapers

Direct replication

Replicable 
probability [0, 1]

Replicable label 
(1 or 0)

Replicable label 
(1 or 0)

Rater 1

Rater 2

Rater 3

Crowdsourced rating

Figure 7.1: Data collection process for directly replicated and crowdsourced datasets

The comparison between the data collection processes for directly replicated and

crowdsourced datasets are shown in Figure 7.1.
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7.2.2.2 Dataset statistics and observation

Dataset # of docs Econ Psyc Other
Crowdsourced 2682 674 1763 245

Table 7.6: Distribution of research papers’ number by fields (economics, psychology, and other
social science fields) in the crowdsourced dataset

The distribution of research papers’ number by different fields in the crowdsourced

dataset is listed in Table 7.6. We observe that there are more psychological research publications

than the ones in the economics and other social science fields.

As demonstrated in Table 7.6, the fields in the crowdsourced labeled data are mainly

economics and psychology. Table 7.7 shows one replicable sample from the crowdsourced

labeled data and list the features of publish year, digital object identifiers (DOI), title, abstract,

claims, sample size, effect size and p-value.

7.3 Weakly Supervised Research Replication Prediction

Research Replication Prediction (RRP) task We model RRP task as a binary classification

problem. We aim to build a model f that takes each research paper as input and predicts whether

the research paper is replicable or not f(paper) ∈ {0 (non-replicable),1 (replicable)}. A

research paper is considered as replicable if an independent replication can produce a statistically

significant effect in the direction claimed in the original paper.
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Label 1 (replicalbe)
Number of raters 9
Scores of raters [0.6, 0.92, 0.81, 0.3, 0.6, 0.65, 0.75, 0.6, 0.4]
Label process Average score: 0.527 > 0.50 (threshold)
Publish year 2015
DOI 10.1177/0956797615581491
Title Variability modifies life satisfaction’s association with

mortality risk in older adults
Abstract Greater life satisfaction is associated with greater longevity,

but its variability across time has not been examined ...
...
... intraindividual variability provides additional insight into
associations between psychological characteristics and health.

Claim1 abstract These findings were qualified by a significant interaction such
that individuals with low mean satisfaction and high variability
in satisfaction had the greatest risk of mortality over the
follow-up period.

...

ClaimN abstract The interaction between mean life satisfaction and variability
in life satisfaction on proportional hazard was statistically
significant.

Sample size 4458
Effect size 0.91
P-value p ≤ 0.001

Table 7.7: A replicable sample in Psychological Science (Crowdsourced dataset)

7.3.1 Feature Extraction

In this subsection, we explain how to extract the text features as the input of our

baseline methods. Specifically, we utilized PDFMiner [133] to extract the text information from

the raw pdf files of the research papers. Tf-idf features are extracted as the input of bag-of-words.

As for the sequential models, BERT is used to obtain the input word embeddings. BERT can

provide the context-aware word embeddings and can further improve the classification accuracy.

We used the directly replicated and crowdsourced datasets to pretrain the model first and then

fine-tuned using the directly replicated supervised data based on a published BERT pretrained
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model (“bert-base-uncased”1). Then the fine-tuned pretrained model is utilized as the embedding

layer of bi-directional GRU [29]. BERT has the maximum limitation - 512 tokens for the input

sequence. BERT contains two special tokens in the input sequence. The first token is always

[CLS] which indicates the embedding containing the information of whole sequence. The other

special token is [SEP] which is used to separate segments. For text classification tasks, the

final hidden state of the first token [CLS] is usually extracted as the representation of the whole

sequence.

We set the maximum length of documents L to 10,000 in the BERT model because the

average length of all the documents in the labeled dataset is about 10,000. Since BERT takes an

input of a sequence of no more than 512 tokens and outputs the representation of the sequence,

we adopted the trick described in the [142]. We first divide the input text into L = L/510

sections. Then each section is fed into the BERT to obtain its representation. Then we used mean

pooling to obtain the final representation of the overall document.

We showed the feature extraction process in Figure 7.2. Figure 7.3 shows a more

detailed of feature extraction process and architecture of Model (neural network) in Figure 7.2.

Credence goods 
markets are 
… as liability is 
violated. 

Text (TXT)

BERT

Credence -> [0.6, -0.9, … , 0.2]
goods -> [0.5,  0.8, … , 0.1]
…
violated -> [0.3, -0.2, … , 0.4]

Text features

PDFMiner
P(replicable)Model

Papers (PDF)

Input

Figure 7.2: Feature extraction process and architecture of the overall model

1https://huggingface.co/bert-base-uncased
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Transformer Transformer Transformer Transformer

Transformer Transformer Transformer Transformer

…Transformer

Transformer

…

Initial Word 
embedding

BERT

…

BERT 
embedding

[0.32, 0.28,  … , 0.29, 0.41]

[0.6, -0.9, … ,  0,4, 0.2] [0.5, -0.1, … , 0,5, 0.1] [0.7, -0.1,  … , 0,3, 0.8] [0.3, -0.2, … ,  0,1, 0.4]

[0.11, 0.36,  … , 0.72, 0.92] [0.21, 0.38,  … , 0.29, 0.42] [0.14, 0.77,  … , 0.25, 0.82]

Bidirectional 
LSTM (GRU)

Node 1 Node 2 Node 3 Node N
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Figure 7.3: Detailed feature extraction process and architecture of Model in Figure 7.2

7.3.2 Supervised baseline methods

Our problem is formulated as a binary classification problem to predict whether a

research paper can be replicated or not. We first used five commonly used binary classification

algorithms including Logistic Regression (LR) [116], Random Forest (RF) [65], Support Vector

Machine (SVM) [19], Multilayer Perceptron (MLP) [53], and BERT [39] using only the 300

labeled training samples.

7.3.3 Weakly supervised baseline methods

To better leverage the crowdsourced training samples, we also test how weakly su-

pervised learning approaches fare for our task. Our weakly supervised learning approaches tie

close to learning with noisy labels [17, 13, 131, 130, 149], as well as semi-supervised learning

[37, 166, 162, 24]. Our considered baselines can be categorized as follows:
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Loss correction A main research line of learning with noisy labels are loss correction methods

require estimating the error rates. A representative method is variational inference (VI) aided

weakly supervised method [101]. In VI, several basic classifiers (only for error rates’ estimation)

are first trained on the directly replicated dataset and then predictions of crowd sourced samples

are obtained using the trained basic classifiers. Then noisy label of crowd sourced samples as

well as the predictions of basic classifiers are used to estimate the error rates using the variational

inference methods proposed by Liu et al. [89]. Finally, the noisy training is conducted on the

crowdsourced dataset with the proxy loss function [112] as shown below:

NU∑
u=1

(1− ρ1−yu)ℓ(y
p
u, yu)− ρyuℓ(y

p
u, 1− yu)

1− ρ1 − ρ0

where ypu is the u-th sample’s prediction of final LSTM model and yu is the corresponding noisy

label. ℓ is the standard cross entropy loss function. NU is the total number of unlabeled training

dataset and σ0 , σ1 are two classes’ estimated error rates estimated using variational inference

method mentioned in the Preliminary section.

Peer loss Instead of estimating the noise rates in VI (may introduce the extra errors), Liu and Guo

[97] provided an alternative, peer loss, to deal with noisy labels without requiring an additional

estimation step for the noise rates. To apply peer loss, we first construct peer samples for each

sample in the unlabeled training dataset. More specifically, for the u-th training sample (xu, yu)

in the unlabeled dataset, we randomly choose two other samples (xu1 , yu1), (xu2 , yu2) such

that u1 ̸= u2 and u1, u2 ̸= u. Then we can construct the peer sample (xu1 , yu1), (xu2 , yu2) for
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(xu, yu). Then we can calculate peer loss function as shown below:

ℓnoise_peer =

NU∑
u=1

ℓ(ypu, yu)− α · ℓ(ypu1
, yu2)

where ℓ(ypu, yu) is a standard cross entropy loss function. ypu is the u-th sample’s prediction and

yu is the corresponding noisy label. α is an important hyperparameter that need to be tuned with

in the peer loss function. NU is the number of unlabeled training dataset.

Semi-supervised learning We also applied the recent semi-supervised method in Natural Lan-

guage Processing (NLP), MixText [24], as the other weakly supervised baseline method. More

specifically, we drop all the labels in the crowdsourced dataset and consider it as an unlabeled

dataset. A model is first trained on the directly replicated labeled dataset. Then the trained

model provides low-entropy labels for two data augmentations generated by Russian and German

machine translation trained models for each unlabeled data. Through ensemble methods, we can

obtain the pseduo label for each unlabeled data. In the final training, MixText mixed the labeled

and unlabeled using MixUp [173] by interpolating text in hidden space which is more suitable

for NLP tasks.

7.4 Experiments

To provide the researchers with baselines to compare, we conducted the experiments

on our RRP dataset using baseline methods.
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7.4.1 Setup

We have 399 directly replicated labeled and 2,682 crowdsourced samples. Randomly

selected 300 (150 replicable and 150 non-replicable) labeled and the 2,682 crowdsourced samples

are considered as the training dataset. We test our proposed framework on the remaining 99 (51

replicable and 48 non-replicable) directly replicated samples.

For our five supervised models, TF-IDF features extracted by scikit-learn2 are used

as the input of LR, RF, SVM, and MLP models. The input of BERT model is obtained after

pretraining on the crowdsourced dataset and fine-tuning on the directly replicated dataset. “Bert-

base-uncased” pretrained model is used in this paper. It is on English language with a masked

language modeling objective and the vocabulary size is 30,522. “Bert-base-uncased” contains

an encoder with 12 Transformer blocks, 12 self-attention heads, and the hidden size of 768.

Therefore, it has 110M parameters.

As for the weakly supervised learning methods, we tried MixText, VI, and PL which

are described in Section 7.3.3. For directly replicated data, they conducted the same normal

training. Their differences are shown in the training on the crowdsourced data. The basic

classifiers for VI are LR, RF, SVM, MLP, and LSTM. For PL methods, we need to tune an

important hyperparameter α. Introducing the hyperparameter α can make this weakly supervised

model be more robust to class-imbalanced dataset. When PL is trained on the directly replicated

labeled dataset, the hyperparameter α is always set to 0. When training on crowdsourced

dataset, α is set to 0 in the first 30 epochs and will be continually increased with more epochs.

These weakly supervised learning models are trained on three GeForce RTX 2080 GPUs. Other
2https://scikit-learn.org/stable/index.html
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parameters setting are shown in Table 7.8.

Parameters MixText VI PL
Epochs 50 500 500

Batch size 4 (L) & 24 (U) 128 128
Learning rate e-5 5e-5 5e-5

Dropout 0.25 0.25 0.25

Table 7.8: Parameters for MixText, VI, and PL. ‘L’ and ‘U’ denotes labeled and unlabeled
respectively.

Model Train Setting Accuracy Precision Recall F1
LR 300 (Direct) 57.58 61.90 50.98 55.91
RF 300 (Direct) 51.52 54.05 39.22 45.45

SVM 300 (Direct) 58.59 63.04 56.86 59.79
MLP 300 (Direct) 59.60 ± 1.00 65.00 ± 1.00 50.98 ± 1.96 57.14 ± 1.31
BERT 300 (Direct) 65.66 ± 1.00 64.71 ± 0.65 67.35 ± 0.74 66.00 ± 1.30

MixText [300 (Direct) + 2,682 (Crowd)] 66.67 ± 1.00 70.59 ± 1.32 69.02 ± 1.97 69.47 ± 0.67
VI 2,682 (Crowd) 65.66 ± 2.00 78.43 ± 1.89 63.49 ± 3.92 70.17 ± 1.93
VI [300 (Direct) + 2,682 (Crowd)] 67.68 ± 2.00 69.23 ± 2.54 71.04 ± 1.96 70.12 ± 1.89
VI [300 (Direct)] + [2,682 (Crowd)] 69.70 ± 1.00 73.22 ± 1.34 70.47 ± 0.69 71.84 ± 1.23
PL 2,682 (Crowd) 69.70 ± 2.00 72.55 ± 2.04 69.81 ± 1.96 71.15 ± 2.00
PL [300 (Direct) + 2,682 (Crowd)] 70.71 ± 1.00 82.35± 1.55 67.74 ± 0.55 74.33 ± 1.29
PL [300 (Direct)] + [2,682 (Crowd)] 73.74 ± 1.00 78.43 ± 1.77 72.73 ± 1.96 75.47± 1.34

Table 7.9: Comparison on Train setting, Test accuracy (%), Precision (%), Recall (%), and F1
(%) between Logistic Regression, Random Forest, SVM, BERT, MixText, Variational Inferance
based method, and Peer Loss based method. Particularly, [300 (Direct) + 2,682 (Crowd)] means
that model is trained on 300 directly replicated labeled samples and 2,682 crowdsourced samples
labeled by trained model using 300 directly replicated labeled samples.

7.4.2 Results

The results (accuracy, precision, recall, and F1) of the five supervised ML models are

reported in the first five lines in Table 7.9. The results (test accuracy, precision, recall, and F1)

of seven weakly supervised models with different settings are reported in the last seven lines in

Table 7.9.
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As for different settings in Table 7.9, 300 (Direct) means that 300 directly replicated

labeled samples are used to train. 2,682 (Crowd) means that 2,682 crowdsourced labeled samples

are used to train. [300 (Direct) + 2,682 (Crowd)] means that 300 directly replicated labeled

samples and 2,682 crowdsourced samples labeled by trained model on 300 directly replicated

labeled samples are used to train. [300 (Direct)] + [2,682 (Crowd)] means that 300 directly

replicated labeled samples and 2,682 crowdsourced labeled samples are used to train.

From Table 7.9, we first observe that all the weakly supervised ML methods (lines

after the fifth line) using both of the two types of data are better than the classical supervised ML

methods (first five lines) trained only on directly replicated labeled dataset. It shows that weakly

supervised methods can make use of crowdsourced dataset with weak supervisions to improve

the predict performance. The average results including the variance are reported in Table 7.9

after running the models for 10 times.

In the experiments with crowdsourced dataset included, we have two observations.

Firstly, we only used crowdsourced dataset to train the model and aim to further test the

effectiveness of PL weakly supervised learning with imperfectly labeled dataset. We found that

the prediction accuracy of research replication is better than the performance in the previous

experiments where the high quality directly replicated data were used. This finding suggests a

very promising solution to the issue of research reproducibility because the cost of obtaining

crowdsourced dataset is much less than that to get a labeled dataset through direct replication.

Second, to examine the benefits of crowdsourced labels to the training, we compared [300 (direct)

+ 2,682 (crowd)] with [300 (direct)] + 2,682 (crowd) settings. The labels of 2,682 crowdsourced

samples in the former setting were obtained by the model trained on 300 directly replicated
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labeled samples. We found that the performance of the latter setting is better. It suggests that the

labels of crowdsourced data can be best leveraged with the frameworks of learning with noisy

labels.

7.4.3 Ablation Studies

We conducted the ablation studies to show the effectiveness of the information included

in our RRP datasets.

7.4.3.1 Remove different labels from RRP

Model Train setting Accuracy
PL [300 (Direct)] + [2,682 (Crowd)] 73.74%
PL w/o Crowd’s labels: [300 (Direct) + 2,682 (Crowd)] 70.71%
PL w/o Direct’s labels: 2,682 (Crowd) 69.70%

Table 7.10: Ablation studies of PL method utilizing all label information of RRP dataset on
accuracy.

Based on the results using PL weakly supervised learning in Table 7.9, we compare the

settings of PL with [300 (Direct)] + [2,682 (Crowd)], PL with [300 (Direct) + 2,682 (Crowd)],

and PL with 2,682 (Crowd) in Table 7.10. We observe that a larger drop on the accuracy without

the training on directly replicated labeled dataset. It is reasonable because directly replicated

labeled dataset is of high quality with higher cost than crowdsourced dataset. A promising

finding is that the drop on the accuracy without training on crowdsourced labeled dataset is

almost the same as the one without training on directly replicated labeled dataset. It means

that we can utilized weakly supervised learning methods training on the crowdsourced dataset

to obtain the almost same performance as the one training on high-quality directly replicated
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dataset, but with a much less cost.

7.4.4 RRP website

Figure 7.4: Page showing the prediction probability as well as the highlighted important sentences
in our RRP website

We also built a RRP website where users can upload their own research paper (PDF

format) and obtain the replication prediction probabilities as well as highlighted sentences

obtained by the variational contextual consistency sentence masking (VCCSM) method described

in the Chapter 4. The screenshots of our RRP website is shown in Figure 7.4.

7.5 Related Work

Researchers have conducted direct replication projects in contemporary published

social science studies to alleviate the replication crisis [14, 15, 44, 79, 80, 33]. As such direct

replication is extremely time-consuming and expensive, ML methods serve as a much more

efficient method to predict the reproducibility of a scientific finding [43, 167, 3, 101].
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The labeled data for RRP obtained by direct replication is of high quality, but is also

very expensive to obtain in practice. One alternative way to obtain labeled training data is

crowdsourcing, which is inexpensive and commonly used [58, 59, 161, 96]. The downside

of crowdsourcing methods is that the labels generated by human raters are often inaccurate.

Therefore, we need to seek the help of weakly supervised learning methods that have been utilized

to make use of a large size of weakly supervised data to improve the prediction performance

[9, 162, 24, 101]. Therefore, we applied the recent weakly supervise learning methods as the

baselines for RRP task.

114



Chapter 8

Conclusion and Future Directions

8.1 Conclusion

In this PhD thesis, we show several studies of weakly supervised learning methods in

text classification which is a fundamental task in NLP community. More specifically, we first

proposed several new weakly supervised learning methods to further improve the accuracy and

interpretability of neural network models on two main research directions: learning with noisy

labels and semi-supervised learning. As for learning with noisy labels, two weakly supervised

learning methods are proposed to further improve the accuracy in the supervised-starved task

– Research Replication Prediction. For semi-supervised learning, we proposed a new weakly

supervised learning method to improve the model interpretability with the help of unlabeled

dataset. In addition, we proposed a new ensemble method to further improve the quality of

pseudo or noisy labels for the unlabeled dataset comparing with the existing ensemble methods

(apply the majority rule to obtain the answer) since our model can reveal the minority correct
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answer when the majority answer is wrong.

Furthermore, we also found the fairness issue about the imbalanced improvement

among different sub-populations such as race and gender in semi-supervised learning for text

classification tasks. Finally, we contributes a new weakly supervised learning dataset (Research

Replication Prediction) to the community for facilitate the researchers to develop the weakly

supervised learning models more efficiently.

8.2 Future Directions

My long-term research goal is to propose new and general weakly supervised learning

methods to sufficiently make use of the unlabeled dataset to further improve all aspects of

performance in NLP such as accuracy and interpretability. Following the goal, several future

directions are shown in the remaining chapter.

8.2.1 Weakly Supervised Learning in Sequential Tasks in NLP

Sequential tasks in NLP such as natural language generation [155, 154, 62, 93],

machine translation [45], and sequence tagging [64] are different from text classification. The

output of sequential tasks are sequence instead of assigning one class label once to a text unit

in the text classification. Therefore the sequential tasks have different properties. For example,

the errors will accumulate in the subsequent sequence generation if the current prediction is

wrong. Therefore, the loss functions of learning with noisy labels methods for the sequential

tasks should be different from the ones applied in the text classification.
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8.2.2 Multimodel Weakly Supervised Learning

Multimodel draws a lot of attention in recent years [180, 171]. Many tasks has evolved

into more complex models of multimodal beyond the model utilizing only single source of

data. For example, sentiment analysis is a traditional text classification task. In the social

media, different sources of data such as image and audio are accompanied with text information.

Therefore, sentiment analysis can be evolved into multimodel sentiment analysis task. The new

weakly supervised learning methods which are specially designed for the new multimodel tasks

needed to be explored.

8.2.3 Fusing Different Types of Research Methods in Weakly Supervised Learning

There are different types of weakly supervised learning methods such as learning with

noisy label [89, 112, 130, 149, 97] and semi-supervised learning methods [86, 71, 9, 8]. They

are different but have their respect advantages. Semi-supervised learning methods focus on

providing the high-quality labels and use the normal loss functions e.g., standard Cross-Entropy

Loss. Learning with noisy labels aims to apply the modified loss functions including the error

rates information to against the noisy labels. Fusing these different types of weakly supervised

learning methods is a promising research direction.
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Appendix A

Omitted Proofs and Additional Results

A.1 Detailed Derivation of Lower Bound for VCCSM in Section 4.2

In this section, we provided the complete details on the derivation of lower bound for

Variational Contextual Consistency Sentence Masking (VCCSM) in Section 4.2.

Assuming that the true joint distribution is P (X,Y, Z) and X,Y, Z are random vari-

ables which have the following conditional dependency: Y ↔ X ↔ Z. And x, y, z are instances

of ramdom variables. We can have

P (X,Y, Z) = P (Z|X,Y )P (Y |X)P (X) = P (Z|X)P (Y |X)P (X). (A.1)

According to the definition of I(Z;Y ), we have

I(Z;Y ) =
∑
z,y

PZ,Y (z, y) log
PZ,Y (z, y)

PZ(z)PY (y)
=

∑
z,y

PZ,Y (z, y) log
PY |Z(y|z)
PY (y)

. (A.2)
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And we also have

PY |Z(y|z) =
∑
x

PX,Y |Z(x, y|z) =
∑
x

PY |X(y|x)PX|Z(x|z)

=
∑
x

PY |X(y|x)PZ|X(z|x)PX(x)

PZ(z)
. (A.3)

Since P (Y |Z) can be intractable, Q(Y |Z) is considered as a variational approximation to

P (Y |Z). Q(Y |Z) is our decoder and a neural network. Because the Kullback Leibler divergence

is non-negative, we have

KL[P (Y |Z)||Q(Y |Z)] ≥ 0 ⇒
∑
y

p(y|z) log p(y|z) ≥
∑
y

p(y|z) log q(y|z).

(A.4)

Therefore, we can obtain the lower bound of I(Z;Y ) as follows:

I(Z;Y ) ≥
∑
z,y

PZ,Y (z, y) log
QY,Z(y|z)
PY (y)

=
∑
z,y

PZ,Y (z, y) logQY |Z(y|z) +H(Y ). (A.5)

where H(Y ) = −
∑

y PY (y) logPY (y) is entropy. According to Equation A.1, we have

P (Y |Z) =
∑
x

PX,Y,Z(x, y, z) =
∑
x

PX,Y,Z(x, y, z)

=
∑
x

PX(x)PY |X(y|x)PZ|X(z|x). (A.6)
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Hence, we obtain the lower bound of I(Z, Y ) as follows:

∑
x,y,z

PX(x)PY |X(y|x)PZ|X(z|x) logQY |Z(y|z).

As for I(Z;X), similar to Equation A.2 in the derivation of I(Z;Y ), we first obtain

I(Z;X) =
∑
z,x

PZ,X(z, x) log
PZ|X(z|x)
PZ(z)

=
∑
z,x

PZ,X(z, x) logPZ|X(z|x)−
∑
z

PZ(z) logPZ(z). (A.7)

Because the marginal distribtuion of Z, P (Z) =
∑

x PZ|X(z|x)PX(x) in which the

computation might be difficult, we replace P (Z) by a variational approximation of Q(Z). Since

KL[P (Z)||Q(Z)] ≥ 0 ⇒
∑

z PZ(z) logPZ(z) ≥
∑

z PZ(z) logQZ(z), we can get the upper

bound of I(Z;X) as follows:

I(Z;X) ≤
∑
z,x

PZ,X(z, x) logPZ|X(z|x)−
∑
z,x

PZ,X(z, x) logQZ(z)

≤
∑
z,x

PX(x)PZ|X(z|x) log
PZ|X(z|x)
QZ(z)

. (A.8)

Combining Equation A.5 and A.8, we can get the lower bound of I(Z;Y ) − βI(Z;X) as
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Figure A.1: Testing accuracy (%) on RRP dataset with varying number of unlabeled dataset for
VCCSM applied on two neural text classifiers (LSTM and BERT)

follows:

∑
x,y,z

PX(x)PY |X(y|x)PZ|X(z|x) logQY |X(y|z)

− β
∑
z,x

PX(x)PZ|X(z|x) log
PZ|X(z|x)
QZ(z)

.

A.2 Performance with Varying Number of Unlabeled Data

We conducted the experiments to test our model’s effectiveness by varying number

of unlabeled data for VCCSM applied on two neural text classifiers (LSTM and BERT). From

Figure A.1, we can observe that, with more unlabeled data, the testing accuracy become higher

on both LSTM Sentence Masking + Contextual + Consistency and BERT Sentence Masking +

Contextual + Consistency models, which validates the effectiveness of using unlabeled data.
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A.3 Proof of Theorems in Section 5.3.5

In this part, we provided the detailed proof of two theorems which are the analytical

evidences for the correctness of our proposed approaches. For simplicity, we only show the

proof details of binary classification. The proof of multi-class classification is similar to the

binary case. This proof is largely adapted from [119]. Nonetheless we reproduce the details for

completeness.

Theorem 1. The correct answer (majority or minority) cannot be deduced by any algorithm

if only relying on posterior probabilities, Q(si, k), i = 1, ..., S; k = 0, 1 because considering

either 0 or 1 as the correct label can generate the same posterior probabilities based on the

training dataset.

Proof. In this proof, for any arbitrarily selected class label as the answer, we can generate the

same posterior probabilities. Therefore, we cannot decide which label (majority or minority) is

the true class label if only relying on posterior probabilities.

Denote by k∗ as the true class label. Given the training dataset, P(si | k∗), i = 1, ..., S

is known. Based on the description of theorem, the posterior probabilities Q(si, k) = P(k |

si), i = 1, ..., S; k = 0, 1 is also known.

But we don’t know which class label is the truth label. We arbitrarily selected one

class label l as the true label. We denote the corresponding model is K(si, k). We will prove

that K(si, k) can generate the same P(si | k∗), i = 1, ..., S and Q(si, k) = P(k | si), i =

1, ..., S; k = 0, 1 for any arbitrarily selected class label k.

Because the known parts don’t constrain the prior over the feature vector si. In
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particular, we can set the prior of model K(si, k) to:

K(si) =
P(si | k∗)
P(k | si)

(∑
r

P(sr | k∗)
P(k | sr)

)−1

Because the posteriors in the corresponding model K(si, k) must equal to the known posteriors,

we have K(k | si) = P(k | si), for i = 1, ..., S; k = 0, 1. So we can get the joint distribution of

label k and the feature vector si:

K(k, si) = K(k | si)K(si) = P(k | si)K(si)

= P(si | k∗)
(∑

r

P(sr | k∗)
P(k | sr)

)−1

Then we can get the marginal distribution k by summing over i:

K(k) =
∑
i

P(si | k∗)
(∑

r

P(sr | k∗)
P(k | sr)

)−1

=

(∑
r

P(sr | k∗)
P(k | sr)

)−1

After getting the marginal distributions K(si),K(k), and the posteriors, K(k | si), for i =

1, ..., S, the feature vector distribution si of the arbitrarily selected class label k, K(si | k) can

be calculated by:

K(si | k) =
K(k | si)K(si)

K(k)
= P(si | k∗)

Because k was arbitrarily chosen, this theorem is proved.
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Theorem 1 implies that any existing ensemble algorithm based on the majority voting

rule cannot always infer the true answer no matter either majority or minority is the final true

answer. In other words, we cannot decide whether majority or minority is correct if we only

know the information of the posterior probabilities Q over all the possible labels. The majority

rule applied by the existing ensemble methods is a special case of Theorem 1.

In the following part, we are considering the extra information which is the estimation

of other classifiers’ prediction results. We use P(vk | si), k ∈ {0, 1} to represent the how many

percentage of basic classifiers will predict label k given si.

We also define two possible learnt final classification functions ωi
0 and ωi

1 which decide

the final label for each si. ωi
0 is the function which finally predict si as 0 and ωi

1 is the function

which finally predict si as 1. If the true label is 1, ωi
1 is defined as the actual final classifier and

ωi
0 is counterfactural final classifier. For simplicity, we ignore the input index of ωi

k, k ∈ {0, 1}

for each si and write it as ωk, k ∈ {0, 1} in the proof of Theorem 2.

Theorem 2. For input si, the estimate of the prior prediction for the correct classification label

denoted as k∗ will be strictly underestimated if the prediction probability of the true label is less

than 1. We can express this as

P (si, k
∗) < Q(si, k

∗) if P(k∗ | si) < 1.

Proof. For each si, we set k∗ as the true label. We first prove that the actual percentage of

predicted labels for the true label in the actual final classifier exceeds counterfactual classifier’s

percentage for the true label, P(vk∗ | wk∗) > P(vk∗ | wk), k ̸= k∗.

124



A.3. PROOF OF THEOREMS IN SECTION 5.3.5
Based on the description of ωk and vk mentioned above and a BTS’s hidden assumption

that the minority but expert classifiers hold a stronger belief about the ground truth label than

the majority classifiers who predicted wrongly, for the true label k∗, the probability of ωk∗

being the actual final classifier for the expert classifiers predicting correctly is higher than the

one for the non-expert classifiers predicting the other wrong label k. Therefore, we can get

P(wk∗ | vk∗) > P(wk∗ | vk). Then we have P(wk∗ | vk∗)P(vk) > P(wk∗ | vk)P(vk) by timing

the same factor P (vk) on both sides. So we have:

P(wk∗ | vk∗) > P(wk∗ | vk∗)P(vk∗) + P(wk∗ | vk)P(vk) = P(wk∗) (A.9)

According to Bayesian rule, we have the following deduction:

P(vk∗ | wk∗)

P(vk∗ | wk)
=

P(wk∗ | vk∗)P(wk)

P(wk | vk∗)P(wk∗)
=

P(wk∗ | vk∗)
1− P(wk∗ | vk∗)

1− P(wk∗)

P(wk∗)
(A.10)

Based on equation A.9, equation A.10 is greater than one. So P(vk∗ | wk∗) > P(vk∗ | wk), k ̸=

k∗ is proved.

The estimate of classification prediction given the feature value si can be computed by

marginalizing the actual and counterfactual final classifiers, P(vk∗ | si) = P(vk∗ | wk∗)P(wk∗ |

si) + P(vk∗ | wk)P(wk | si). And we proved that P(vk∗ | wk∗) > P(vk∗ | wk), k ̸= k∗.

Therefore, P(vk∗ | si) ≤ P(vk∗ | wk∗). It will be the strict inequality unless P(wk∗ | si) = 1.

If the prediction probability is less than 1, the prior prediction for each si will be strictly

underestimated. So we can get P (si, k
∗) < Q(si, k

∗) if the prediction probability is less than 1.
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A.3. PROOF OF THEOREMS IN SECTION 5.3.5
This theorem is proved.

Theorem 2 shows that having the prior information can help improve the robustness

of models because the minority correct classification result can be recovered using the rule

descried in the theorem when the minority is the true answer instead of the majority answer.

In other words, having Theorem 2, the true minority answer can be revealed as correct if the

prior probability is less than the posterior one. The existing ensemble methods always adopt the

majority result as the final answer and cannot recover the minority correct answer.
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