
UC San Diego
UC San Diego Previously Published Works

Title
Marinopyrrole Derivatives as Potential Antibiotic Agents against Methicillin-Resistant 
Staphylococcus aureus (III)

Permalink
https://escholarship.org/uc/item/219638dq

Journal
Marine Drugs, 12(5)

ISSN
1660-3397

Authors
Liu, Yan
Haste, Nina M
Thienphrapa, Wdee
et al.

Publication Date
2014

DOI
10.3390/md12052458

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/219638dq
https://escholarship.org/uc/item/219638dq#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Mar. Drugs 2014, 12, 2458-2470; doi:10.3390/md12052458 

 

marine drugs  

ISSN 1660-3397 

www.mdpi.com/journal/marinedrugs 

Article 

Marinopyrrole Derivatives as Potential Antibiotic Agents 

against Methicillin-Resistant Staphylococcus aureus (III) 

Yan Liu 
1,2,3,†

, Nina M. Haste 
4,5,†

, Wdee Thienphrapa 
5
, Jerry Li 

3
, Victor Nizet 

4,5
,  

Mary Hensler 
5
 and Rongshi Li 

1,2,3,6,
* 

1
 Department of Pharmaceutical Sciences, Center for Drug Discovery, College of Pharmacy, 

University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, 

USA; E-Mail: Yan.Liu@unmc.edu 
2
 Cancer Genes and Molecular Regulation Program, Buffett Cancer Center, University of Nebraska 

Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198, USA 
3
 Department of Drug Discovery, Chemical Biology & Molecular Medicine Program, H. Lee Moffitt 

Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA;  

E-Mail: Jerry.Li@ucsf.edu 
4 

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,  

La Jolla, CA 92093, USA; E-Mails: nhaste@ucsd.edu (N.M.H.); vnizet@ucsd.edu (V.N.) 
5 

Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA;  

E-Mails: wdee.ucsd@gmail.com (W.T.); mhensler@ucsd.edu (M.H.) 
6
 Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, 

12901 Bruce B. Downs, Tampa, FL 33612, USA 

† 
These authors contributed equally to this work. 

* Author to whom correspondence should be addressed; E-Mail: Rongshi.Li@unmc.edu;  

Tel.: +1-402-559-5965; Fax: +1-402-559-8270. 

Received: 10 February 2014; in revised form: 21 March 2014 / Accepted: 24 March 2014 /  

Published: 30 April 2014 

 

Abstract: The marine natural product, marinopyrrole A (1), was previously shown to have 

significant antibiotic activity against Gram-positive pathogens, including methicillin-resistant 

Staphylococcus aureus (MRSA). Although compound (1) exhibits a significant reduction 

in MRSA activity in the presence of human serum, we have identified key modifications 

that partially restore activity. We previously reported our discovery of a chloro-derivative 

of marinopyrrole A (1a) featuring a 2–4 fold improved minimum inhibitory concentration 

(MIC) against MRSA, significantly less susceptibility to serum inhibition and rapid and 

concentration-dependent killing of MRSA. Here, we report a novel fluoro-derivative of 
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marinopyrrole A (1e) showing an improved profile of potency, less susceptibility to serum 

inhibition, as well as rapid and concentration-dependent killing of MRSA. 

Keywords: antibiotics; non-symmetrical marinopyrroles; MRSA; SAR 

 

1. Introduction 

Since we reported the synthesis of novel non-symmetrical marinopyrrole derivatives retaining their 

potent activity against methicillin-resistant Staphylococcus aureus (MRSA), yet less susceptible to 

human serum inhibition [1], several research publications on the topic of marinopyrroles have 

appeared [2–7]. Biosynthesis of marinopyrrole A via an N,C-bipyrrole homocoupling catalyzed by two 

flavin-dependent halogenases was reported by the Moore group [2], and racemic marinopyrrole B by 

total synthesis and a review of the marinopyrroles were reported by the Clive group [3,4]. After 

optimization of the key step to avoid the formation of an oxazepine byproduct [5] that was reported in 

our first total synthesis of marinopyrroles [8], we published the most potent symmetrical 

marinopyrrole derivative against MRSA and methicillin-resistant Staphylococcus epidermidis  

(MRSE) [6]. Recently we reported a series of cyclic marinopyrroles as disruptors of Mcl-1 and Bcl-xL 

binding to Bim [7] and a series of novel marinopyrroles with potential as anticancer agents [9].  

The World Health Organization recognizes antibiotic resistance as a serious threat to human  

health [10]. The global crisis of antibiotic resistance has spread rapidly over the last several decades, 

with multidrug-resistant MRSA as a major cause of serious infections in the United States [11–15]. 

From 1999 to 2005, estimated MRSA hospitalizations in the U.S. more than doubled, increasing from 

127,000 to 280,000, and accounted for roughly 94,000 infections and close to 19,000 deaths in  

2005 [16]. That same year, more people in the U.S. died from MRSA infections than HIV/AIDS 

(16,000 people). MRSA infections cost U.S. hospitals between $3.2 and $4.2 billion annually [17]. 

Recent survey documents have shown that MRSA remains one of the most prevalent  

multidrug-resistant organisms causing healthcare-associated infections, and the MRSA prevalence in 

2010 is higher than that reported in 2006 [18]. The introduction of new MRSA antibiotics to clinical 

practice has been limited primarily to the oxazolidinone, linezolid [19], in 2000, the lipopeptide, 

daptomycin [20], in 2003, and ceftaroline [21]. Vancomycin remains the most commonly used first 

line treatment against MRSA. However, overreliance on this drug has resulted in an increase in MRSA 

with reduced susceptibility to vancomycin [22,23]. The minimum inhibitory concentration (MIC) shift 

(“the MIC creep”) for vancomycin has been especially noticeable in MRSA compared to other  

S. aureus [24]. In fact, vancomycin efficacy continues to decline, due to pathogen-developed  

resistance [22,24]. Instances of daptomycin [25] and linezolid [26,27] resistance have also surfaced. 

There are now several late-stage products in development, including tedizolid, dalbavancin, 

oritavancin and ceptobiprole. Although these antibiotics may add to the arsenal for combating MRSA 

resistance, bacteria inevitably develop resistance to all antibacterial agents that are introduced to the 

clinic [28]. Novel antibiotic agents of new structural classes and further advances in discovery research 

are urgently needed to overcome the problem of MRSA resistance. 
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The relative abandonment of the discovery and development of antibiotics by the pharmaceutical 

industry has opened opportunities for academic researchers to discover new antibiotics that treat these 

increasingly problematic infections. Here, we report our design and synthesis of novel marinopyrrole 

derivatives with excellent antibiotic activity against MRSA, but only limited serum inactivation. 

2. Results and Discussion 

2.1. Synthesis and Structural Activity Relationships of Non-Symmetrical Marinopyrrole Derivatives 

We classified marinopyrroles as “symmetrical” and “asymmetrical/non-symmetrical” in our 

previous publication to facilitate structure-activity relationship (SAR) discussions [1]. “Symmetrical” 

derivatives bear the same substituents and patterns on both phenyl Rings A and B attached to the 

carbonyl groups, while “non-symmetrical” marinopyrroles are those with different substituents for 

Rings A and B (Chart 1). As we envisaged that the “non-symmetrical” marinopyrrole derivatives 

should have different and possibly more favorable biological activity than their symmetrical 

counterparts, in particular, the molecules with diverse functional groups decorated on this unique  

1,3-bispyrrole system may adopt specific conformations, due to the restricted free rotation of the chiral 

axis. Indeed, a series of novel non-symmetrical marinopyrrole derivatives that we designed and 

synthesized showed potent anti-MRSA activity with a superior antibiotic profile to the parent 

marinopyrrole A (1) [1].  

Chart 1. Marinopyrroles. 

 

To continue our efforts of structure-activity relationship (SAR) optimization, we designed and 

synthesized a series of novel non-symmetrical marinopyrroles and evaluated their anti-MRSA activity. 

As shown in Chart 1 and Scheme 1, while Ring A was kept constant, substitutions with different 

halogen (F, Cl and Br) in the different position of Ring B were examined. Indeed, the effects of 

different halogen (F, Cl and Br) in Ring B on SARs, physicochemical properties and pH-dependent 

microspecies are observed, as detailed in Figures 1 and 2.  

Chemistries to access both symmetrical and non-symmetrical marinopyrrole derivatives have been 

reported [1,6,8,29]. Briefly, Friedel–Crafts arylation of mono acylated bispyrrole 2 [1,29] with the acid 

chlorides, 4, generated in situ from the corresponding carboxylic acids, 3, with thionyl chloride, 

afforded a series of marinopyrrole precursors, 5c–5f, in a 48%–71% yield. A novel series of  

non-symmetrical marinopyrrole derivatives, 6c–6f, were obtained in a 21%–60% yield by 

tetrachlorination of the corresponding 5c–5f using 4.1 equivalents of sulfuryl chloride (SO2Cl2) in 

DCM at 0 °C. Demethylation of 6c–6f using BBr3 in DCM at −78 °C furnished 1c–1f in a 31%–72% 

yield (Scheme 1). 
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Scheme 1. Synthesis of novel non-symmetrical marinopyrrole derivatives. 

 

Figure 1. Physicochemical properties and structure-activity relationship (SAR) of 

marinopyrrole derivatives against methicillin-resistant Staphylococcus aureus (MRSA). 

 

Compound MW f pKa 1 
a
 pKa 2 

a
 Clog p 

a
 THB 

c
 THB + 20% Serum 

c
 

1 (parent) 510.15 7.8 b 8.4 b 5.6 b 0.75 d 94–188 d 

1a 
d
 544.60 7.3 8.2 6.1 0.19–0.39 d 12.5–25 d 

1c 528.14 7.2 8.2 5.7 3.13 ND e 

1d 528.14 7.0 8.1 5.7 0.78 ND 

1e 528.14 7.6 8.3 5.7 0.19–0.78 25–50 

1f 589.05 7.5 8.2 6.4 1.56 ND 

Vanco g 1485.72    0.85–1.7 0.85–1.7 
a Calculated using ChemAxon Software Version 5.12.3 (ChemAxon, Budapest, Hungary); b reported in our 

previous paper [6]; c MIC, minimum inhibitory concentration in μM in Todd-Hewitt broth (THB) in the 

absence or presence of 20% human serum; all data were generated from experiments repeated four times;  
d results, except for the calculated pKa and log p-values, from our previous paper [1] for SAR discussions;  
e not determined; f MW, molecular weight; g Vanco, vancomycin. 
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Figure 2. pH-dependent microspecies of marinopyrroles. 

 

Microspecies 1 1a 1c 1d 1e 1f 

I 85.3/68.5/29.9 a 63.2/38.4/9.7 61.2/36.3/9.0 50.3/26.7/5.9 79.8/59.4/21.3 75.3/52.7/16.7 

II 7.1/14.3/24.8 29.2/44.4/45.0 31.2/46.5/45.7 42.0/56.1/48.8 6.6/12.4/17.6 17.1/30.0/38.0 

III 7.1/14.3/24.8 5.2/8.0/8.1 5.1/7.6/7.4 4.2/5.6/4.8 12.5/23.4/33.4 6.2/11.0/13.9 

IV 0.6/3.0/20.5 2.4/8.0/37.2 2.6/9.7/37.9 3.5/11.7/40.4 1.0/4.9/27.6 1.4/6.3/31.4 

V 0.0/0.0/0.01 0.0/0.0/0.01 0.0/0.0/0.01 0.0/0.0/0.01 0.0/0.0/0.02 0.0/0.0/0.01 

a Percentage (%) of microspecies distributions at pH 7.0/7.4/8.0, respectively, calculated using ChemAxon Software 

Version 5.12.3 (ChemAxon, Budapest, Hungary); numbers in italics are the percent of microspecies distributions at  

pH 7.0. 

The anti-MRSA activity of the novel non-symmetrical marinopyrroles was evaluated against a 

USA300 strain of community-associated MRSA using marinopyrrole A (1) as a control. The MIC values 

of 1a [(4-chloro-2-hydroxyphenyl)(4,4′,5,5′-tetrachloro-2′-(2-hydroxybenzoyl)-1′H-1,3′-bipyrrole-2-yl) 

methanone], which we reported previously [1], were used to facilitate the SAR discussions. Similar to 

the effects from chlorine substituted marinopyrroles [1], fluorine substitutions in Ring B have 

significant contributions to the antibacterial activity. Although non-symmetrical marinopyrrole with 

ortho-substitution of the carbonyl group (1c) is four times less potent than 1, those marinopyrroles 

with para-(1d) and meta-fluoro (1e) substitutions display similar or better activities than 1. One of the 

derivatives, (5-fluoro-2-hydroxyphenyl)(4,4′,5,5′-tetrachloro-2′-(2-hydroxybenzoyl)-1′H-1,3′-bipyrrol-2-yl) 

methanone (1e), exhibited potent antibacterial activity similar to that of 1a [1]. The 1–4 fold 

improvement in antibacterial activity from the parent compound, 1, was observed for this novel  

fluoro-substituted marinopyrrole derivative, 1e, as shown in Figure 1. Compound 1f with meta-bromo 

substitution also exhibited antibacterial activity, although the MIC value is two-fold less potent than 1. 

Most significantly, not only did Compound 1e show increased antibacterial activity compared to the 

parent compound, marinopyrrole A (1), but its activity was also less inhibited upon the addition of 

20% human serum (MIC 25–50 μM vs. 94–188 μM). In comparison to contemporary MRSA agents, 

Compound 1e is more potent than vancomycin against USA300 MRSA strain TCH1516 [30]. 

To understand the significant effects of the physicochemical properties on antibacterial activity, we 

calculated the pKa 1, pKa 2 and log p of all marinopyrrole derivatives (Figure 2). All fluoro-substituted 

marinopyrroles (1c–1e) have lower Clog p-values than 1, while their chloro-(1a) or bromo-(1f) 

counterparts are up to half a log unit higher. Although pKa 2 values do not vary much (8.1–8.4), the 

pKa 1 values change from 7.0 to 7.8, due to the substitution of halogen atoms in different positions of 

Ring B. Careful analysis of pKa data reveals that there are five microspecies, I–V, present, and their 

distributions depend on the pH, as shown in Figure 2. Although our MIC assays were performed at  

pH 7.0, microspecies distributions at pH 7.4 and 8.0 are also tabulated, as the latter conditions are 
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usually used for other assays [7,9]. At pH 7.0, 50%–85% of all marinopyrroles are in the form of 

Microspecies I, with the parent marinopyrrole, 1, being the most predominant (85%) Microspecies I 

(Figure 2); marinopyrroles 1 and 1e have similar distributions of Microspecies II, 7.1% and 6.6%, 

respectively; the rest are increasing from 17% (1f) to 42% (1d) Microspecies II; the variation of 

Microspecies III distributions is small from 4.2% (1d) to 12.5% (1e); both Microspecies IV and V are 

from 0.0% to 3.5% at pH 7 and may be considered negligible. Microspecies I–IV distributions of 

marinopyrroles vary significantly at pH 7.4 and 8.0 (Figure 2). Microspecies I is found in the free 

hydroxyl form for both phenol groups, which can serve as both hydrogen bond donors and acceptors. 

Microspecies II and III can provide one free hydroxyl and one phenoxide group, as shown in Figure 2. 

The former can provide both a hydrogen bond donor and acceptor in Ring A and only a hydrogen bond 

acceptor or phenoxide for ionic interactions in Ring B, and vice versa for the latter. Microspecies IV 

has both phenol groups in phenoxide form, which are only available as hydrogen bond acceptors or for 

ionic interactions. The microspecies and their distributions at different pH should have a significant 

impact on their antibacterial activity. 

Figure 3. In vitro time-kill analysis for marinopyrrole derivatives 1a (A) and 1e (B) 

against the USA300 community-associated MRSA strain TCH1516. MRSA was subjected 

to increasing concentrations of 1× (0.39 μM), 10× (3.9 μM) and 20× (7.8 μM) the MIC of 

the assayed derivatives or the vehicle control (none). Both derivatives showed potent 

concentration-dependent killing kinetics. At 20× (7.8 μM), Derivative 1e demonstrated 

more rapid bacterial killing at 3 h. 

 

2.2. In Vitro Time-Kill of Marinopyrrole Derivative 1e 

Our previous data showed that the marinopyrrole derivative, 1a, exhibited rapid killing kinetics, and 

we investigated whether 1e might also show similar kinetics compared to the parent molecule. 

Derivative 1e displayed strong concentration-dependent MRSA killing similar in profile to the parent 

compound [30]. The potency of Derivative 1e was especially evident at 20× the MIC (7.8 μM), 

yielding greater than a 4-log kill of MRSA at 4 h (Figure 3B). These killing kinetics parallel the effects 

previously seen with the natural product parent compound, (−)-1 [30]. Importantly, the tested 

concentration of 1e (MIC 0.39 μM) was half of the concentration of the parent natural product tested in 

time-kill analyses (MIC 0.75 μM or 0.375 μg/mL) [30]. Secondly at 3.9 μM (10× MIC), bacterial 

counts were reduced by nearly two log units at three hours incubation and on average by three log 
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units at six hours. In comparison, at six hours of incubation, the parent natural product only yielded a 

two log decrease in bacterial counts at concentrations two fold higher (7.5 μM) than that tested for 

Derivative 1e (3.9 μM) [30]. Furthermore, the actual tested compound concentration of (−)-1 was  

7.5 μM, two fold higher than that of Derivative 1e (3.9 μM) (Figure 3). In summary, we have 

discovered a second novel derivative of a natural product with favorable bactericidal activity against 

MRSA, even in the presence of human serum. These results provide additional data showing that the 

marinopyrrole A scaffold is amenable to modifications to increase its antibacterial activity.  

3. Experimental Section 

3.1. Synthesis of Compounds 5c–6f 

All chemicals and solvents were purchased from commercial suppliers and used without further 

purification. Preparative flash column chromatography was performed on silica gel 60, 0.040–0.063 mm 

(EMD Chemicals, Billerica, MA, USA). 
1
H NMR (400 MHz) spectra were recorded on a Varian 

AS400 with a 60-place automated sample changer (Thermo, Madison, WI, USA). High resolution  

ESI-MS spectra were recorded on an Agilent ESI-TOF LC-MS 6200 system (Agilent Technologies, 

Santa Clara, CA, USA). Preparative HPLC was performed on a Gilson HPLC system with UV 

detectors and a Gilson 215 liquid handler for auto injection and fraction collections (customized by HT 

Labs, San Diego, CA, USA). Analytical HPLC was performed on an Agilent 1100 series with diode 

array detectors and auto samplers (Agilent Technologies, Santa Clara, CA, USA). The specifications of 

HPLC analysis are as follows: flow rate, 1 mL/min; column, Intertsil, 2.5 μm, 4.6 × 150 mm; 

wavelength, 254 and 280 nm; mobile phase, A: H2O with 0.1% HCO2H, B: MeOH, gradient of 50%–95% 

B in 25 min. All tested compounds possessed a purity of not less than 95%. 

(2-(6-Fluoro-2-methoxybenzoyl)-1′H-1,3′-bipyrrol-2′-yl)(2-methoxyphenyl)methanone (5c). Into a 

solution of 6-fluoro-2-methoxybenzoic acid (116 mg, 0.67 mmol, 1.2 equivalent) in benzene (1.0 mL), 

SOCl2 (1.0 mL) was added at room temperature, and the resulting solution was refluxed for 2 h. The 

reaction mixture was concentrated under vacuum to generate 6-fluoro-2-methoxybenzoyl chloride 4a, 

which was used directly in the next step without purification. A solution of 4a in CH2Cl2 (DCM, 2 mL) 

was added to a slurry of AlCl3 (97 mg, 1.3 equivalent) in DCM (2.5 mL) at 0 °C, and then, a solution 

of 1′H-1,3′-bipyrrol-2′-yl(2-methoxyphenyl)methanone (2) [1] (150 mg, 0.56 mmol, 1.0 equivalent) in 

DCM (1.5 mL) was added dropwise. The resulting solution was allowed to warm to room temperature 

and stirred overnight. A saturated solution of NaHCO3 (10 mL) and DCM (10 mL) was then added, 

and the resulting mixture was stirred for 1 h and then filtered through Celite
®

 (Sigma-Aldrich, 

St. Louis, MO, USA). The mixture was extracted with DCM (3 × 10 mL). The organic layer was  

dried over anhydrous Na2SO4, and purified by flash column chromatography (silica gel, 

hexanes:DCM:EtOAc 4:4:1) to afford 168 mg of 5c as a white solid, 71% yield. 
1
H NMR (400 MHz, 

CDCl3) δ 9.79 (br s, 1H), 7.31–7.27 (m, 1H), 7.22–7.14 (m, 2H), 7.07 (t, J = 4.0 Hz, 1H), 6.75–6.68 (m, 

4H), 6.54–6.53 (m, 1H), 6.41–6.40 (m, 1H), 6.34 (t, J = 4.0 Hz, 1H), 5.70 (dd, J = 4.0, 2.6 Hz, 1H), 

3.80 (s, 3H), 3.76 (s, 3H). The same procedure as described above was followed to obtain 5d–5f. 

(2-(4-Fluoro-2-methoxybenzoyl)-1′H-1,3′-bipyrrol-2′-yl)(2-methoxyphenyl)methanone (5d). After 

flash column chromatography (silica gel, DCM:EtOAc 9:1), 113 mg of 5d was obtained as a yellowish 
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solid, 48% yield. 
1
H NMR (400 MHz, CDCl3) δ 9.71 (br s, 1H), 7.22–7.14 (m, 3H), 7.07–7.03  

(m, 1H), 6.71–6.60 (m, 5H), 6.32 (dd, J = 4.0, 1.7 Hz, 1H), 6.29 (t, J = 2.8 Hz, 1H), 5.83 (dd, J = 4.0,  

2.6 Hz, 1H), 3.77 (s, 3H), 3.70 (s, 3H). 

(2-(5-Fluoro-2-methoxybenzoyl)-1′H-1,3′-bipyrrol-2′-yl)(2-methoxyphenyl)methanone (5e). After 

flash column chromatography (silica gel, DCM:EtOAc 9:1), 118 mg of 5e was obtained as an  

off-white solid, 50% yield. 
1
H NMR (400 MHz, CDCl3) δ 9.45 (br s, 1H), 7.24–7.19 (m, 2H), 7.08–7.04 

(m, 2H), 6.89–6.86 (m, 2H), 6.73–6.68 (m, 3H), 6.35–6.32 (m, 2H), 5.85 (dd, J = 4.0, 2.6 Hz, 1H), 3.76 

(s, 3H), 3.70 (s, 3H). 

(2-(5-Bromo-2-methoxybenzoyl)-1′H-1,3′-bipyrrol-2′-yl)(2-methoxyphenyl)methanone (5f). After 

flash column chromatography (silica gel, DCM:EtOAc 9:1), 112 mg of 5f was obtained as a yellowish 

solid, 48% yield. 
1
H NMR (400 MHz, CDCl3) δ 9.71 (br s, 1H), 7.45 (dd, J = 8.8, 2.5 Hz, 1H),  

7.26–7.21 (m, 1H), 7.20–7.15 (m, 2H), 7.07 (t, J = 3.0 Hz, 1H), 6.80 (d, J = 8.8 Hz, 1H), 6.73  

(dt, J = 11.3, 8.4 Hz, 3H), 6.34–6.29 (m, 2H), 5.89 (dd, J = 4.0, 2.6 Hz, 1H), 3.75 (s, 3H), 3.69 (s, 3H). 

(6-Fluoro-2-methoxyphenyl)(4,4′,5,5′-tetrachloro-2′-(2-methoxybenzoyl)-1′H-[1,3′-bipyrrole]-2-yl) 

methanone (6c). To a solution of Compound 5c (150 mg, 0.36 mmol, 1 equivalent) in DCM (4 mL) at 

0 °C, SO2Cl2 (119 μL, 1.48 mmol, 4.1 equivalent) was added dropwise, and the solution was stirred at 

0 °C for 1 h. Saturated aqueous NaHCO3 solution (2 mL) was added, and the resulting mixture was 

extracted with DCM (3 × 4 mL). The combined organic layers were dried with anhydrous MgSO4, 

filtered and concentrated. The residue was purified by flash column chromatography (silica gel, 

DCM:hexane:EtOAc 1:1:0.1) to afford 6c (118 mg, 59% yield) as an off-white solid. 
1
H NMR  

(400 MHz, CDCl3) δ 10.48 (br s, 1H), 7.34 (td, J = 8.4, 6.7 Hz, 1H), 7.25–7.18 (m, 2H), 6.80  

(d, J = 8.4 Hz, 1H), 6.77–6.72 (m, 2H), 6.67 (t, J = 7.5 Hz, 1H), 6.37 (s, 1H), 3.80 (s, 3H),  

3.77 (s, 3H).  

(4-Fluoro-2-methoxyphenyl)(4,4′,5,5′-tetrachloro-2′-(2-methoxybenzoyl)-1′H-[1,3′-bipyrrole]-2-yl) 

methanone (6d). To a solution of compound 5d (125 mg, 0.30 mmol, 1 equivalent) in DCM (4 mL) at 

0 °C, SO2Cl2 (99 μL, 1.23 mmol, 4.1 equivalent) was added dropwise, and the solution was stirred at  

0 °C for 1 h. Saturated aqueous NaHCO3 solution (2 mL) was added, and the resulting mixture was 

extracted with DCM (3 × 4 mL). The combined organic layers were dried with anhydrous MgSO4, 

filtered and concentrated. The residue was purified by flash column chromatography (silica gel, 

DCM:hexane:EtOAc 1:1:0.1) to afford 6d (100 mg, 60% yield) as an off-white solid. 
1
H NMR  

(400 MHz, CDCl3) δ 10.60 (br s, 1H), 7.27–7.18 (m, 3H), 6.76 (d, J = 8.6 Hz, 1H), 6.67  

(ddd, J = 8.1, 6.2, 3.8 Hz, 3H), 6.32 (s, 1H), 3.80 (s, 3H), 3.72 (s, 3H). 

(5-Fluoro-2-methoxyphenyl)(4,4′,5,5′-tetrachloro-2′-(2-methoxybenzoyl)-1′H-[1,3′-bipyrrole]-2-yl) 

methanone (6e). To a solution of Compound 5e (270 mg, 0.64 mmol, 1 equivalent) in DCM (7 mL) at 

0 °C, SO2Cl2 (210 μL, 2.63 mmol, 4.1 equivalent) was added dropwise, and the solution was stirred at 

0 °C for 1 h. Saturated aqueous NaHCO3 solution (4 mL) was added, and the resulting mixture was 

extracted with DCM (3 × 4 mL). The combined organic layers were dried with anhydrous MgSO4, 

filtered and concentrated. The residue was purified by flash column chromatography (silica gel, 

DCM:hexane:EtOAc 4:4:0.5) to afford 6e (110 mg, 31% yield) as an off-white solid. 
1
H NMR  

(400 MHz, CDCl3) δ 9.81 (br s, 1H), 7.28 (dt, J = 2.7, 1.8 Hz, 1H), 7.17 (dd, J = 7.5, 1.7 Hz, 1H), 7.11 

(ddd, J = 9.1, 7.9, 3.1 Hz, 1H), 6.88 (ddd, J = 8.0, 6.8, 3.6 Hz, 2H), 6.79 (d, J = 8.3 Hz, 1H), 6.71  

(td, J = 7.5, 0.8 Hz, 1H), 6.34 (s, 1H), 3.78 (s, 3H), 3.74 (s, 3H). 
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(5-Bromo-2-methoxyphenyl)(4,4′,5,5′-tetrachloro-2′-(2-methoxybenzoyl)-1′H-[1,3′-bipyrrole]-2-yl) 

methanone (6f). To a solution of Compound 5f (110 mg, 0.23 mmol, 1 equivalent) in DCM (3 mL) at  

0 °C, SO2Cl2 (75 μL, 0.92 mmol, 4.1 equivalent) was added dropwise, and the solution was stirred at  

0 °C for 1 h. Saturated aqueous NaHCO3 solution (2 mL) was added, and the resulting mixture was 

extracted with DCM (3 × 4 mL). The combined organic layers were dried with anhydrous MgSO4, 

filtered and concentrated. The residue was purified by flash column chromatography (silica gel, 

DCM:hexane:EtOAc 4:4:0.5) to afford 6f (30 mg, 21% yield) as an off-white solid. 
1
H NMR  

(400 MHz, CDCl3) δ 10.53 (br s, 1H), 7.50 (dd, J = 8.8, 2.5 Hz, 1H), 7.32–7.27 (m, 1H), 7.20  

(dd, J = 8.6, 2.1 Hz, 2H), 6.81 (dd, J = 14.3, 8.6 Hz, 2H), 6.74 (td, J = 7.5, 0.7 Hz, 1H), 6.33 (s, 1H), 

3.77 (s, 3H), 3.72 (s, 3H).  

3.2. Synthesis of Compounds 1c–1f 

(6-Fluoro-2-hydroxyphenyl)(4,4′,5,5′-tetrachloro-2′-(2-hydroxybenzoyl)-1′H-1,3′-bipyrrol-2-yl) 

methanone (1c). To a solution of 6c (118 mg, 0.21 mmol) in anhydrous DCM (2 mL) was slowly 

added 1.0 M solution of BBr3 in DCM (848 μL, 0.84 mmol, 4 equivalent) via a syringe under N2  

at −78 °C. After being stirred for 0.5 h, the mixture was quenched by the addition of MeOH (0.5 mL) 

and then H2O (3 mL) and extracted with DCM (3 × 10 mL). The combined organic layers were dried 

over anhydrous MgSO4, filtered and concentrated in vacuum. The residue was purified by column 

chromatography (silica gel, hexanes:EtOAc 10:1) to give 1c (40 mg, 36% yield) as a yellow solid.  
1
H NMR (400 MHz, CDCl3) δ 10.47 (s, 1H), 10.01 (s, 1H), 9.80 (br s, 1H), 7.43–7.36 (m, 2H),  

7.35–7.29 (m, 1H), 6.93 (d, J = 8.3 Hz, 1H), 6.82 (d, J = 8.5 Hz, 1H), 6.79 (d, J = 5.2 Hz, 1H),  

6.68–6.62 (m, 1H), 6.49 (t, J = 7.6 Hz, 1H). HRMS (ESI-TOF) [M + H]
+
 calcd. for C22H12Cl4FN2O4 

526.9530, found 526.9521; HPLC purity, 95.1%. 

(4-Fluoro-2-hydroxyphenyl)(4,4′,5,5′-tetrachloro-2′-(2-hydroxybenzoyl)-1′H-1,3′-bipyrrol-2-yl) 

methanone (1d). To a solution of 6d (100 mg, 0.18 mmol) in anhydrous DCM (2 mL) was slowly 

added a 1.0 M solution of BBr3 in DCM (720 μL, 0.72 mmol, 4 equivalent) via a syringe under N2  

at –78 °C. After being stirred for 0.5 h, the mixture was quenched by the addition of MeOH (0.5 mL) 

and then H2O (4 mL) and extracted with DCM (3 × 10 mL). The combined organic layers were dried 

over anhydrous MgSO4, filtered and concentrated in vacuum. The residue was purified by column 

chromatography (silica gel, hexanes:EtOAc 10:1) to give 1d (29 mg, 31% yield) as a yellow solid. 
1
H 

NMR (400 MHz, CDCl3) δ 11.60 (s, 1H), 10.41 (s, 1H), 9.84 (br s, 1H), 7.57 (dd, J = 8.9, 6.5 Hz, 1H), 

7.45 (dd, J = 8.0, 1.6 Hz, 1H), 7.39–7.34 (m, 1H), 6.93 (d, J = 8.4 Hz, 1H), 6.71 (s, J = 10.3, 2.5 Hz, 

1H), 6.67 (d, J = 1.7 Hz, 1H), 6.65–6.58 (m, 1H), 6.56–6.50 (m, 1H). HRMS (ESI-TOF) [M + H]
+
 

calcd. for C22H12Cl4FN2O4 526.9530, found 526.9533; HPLC purity, 95.2%. 

(5-Fluoro-2-hydroxyphenyl)(4,4′,5,5′-tetrachloro-2′-(2-hydroxybenzoyl)-1′H-1,3′-bipyrrol-2-yl) 

methanone (1e). To a solution of 6e (160 mg, 0.29 mmol) in anhydrous DCM (4 mL) was slowly 

added a 1.0 M solution of BBr3 in DCM (1160 μL, 1.16 mmol, 4 equivalent) via a syringe under N2  

at –78 °C. After being stirred for 0.5 h, the mixture was quenched by the addition of MeOH (0.5 mL) 

and then H2O (5 mL) and extracted with DCM (3 × 10 mL). The combined organic layers were dried 

over anhydrous MgSO4, filtered and concentrated in vacuum. The residue was purified by column 

chromatography (silica gel, hexanes:EtOAc 10:1) to give 1e (110 mg, 72% yield) as a yellow solid.
  



Mar. Drugs 2014, 12 2467 

 

 

1
H NMR (400 MHz, CDCl3) δ 10.91 (s, 1H), 10.36 (s, 1H), 9.71 (br s, 1H), 7.41–7.36 (m, 2H),  

7.27–7.22 (m, 1H), 7.14 (dd, J = 8.8, 3.0 Hz, 1H), 6.99 (dd, J = 9.1, 4.5 Hz, 1H), 6.94 (d, J = 8.4 Hz, 

1H), 6.72 (s, 1H), 6.54 (t, J = 7.6 Hz, 1H). HRMS (ESI-TOF) [M + H]
+
 calcd. for C22H12Cl4FN2O4 

526.9530, found 526.9531; HPLC purity, 98.4%. 

(5-Bromo-2-hydroxyphenyl)(4,4′,5,5′-tetrachloro-2′-(2-hydroxybenzoyl)-1′H-1,3′-bipyrrol-2-yl) 

methanone (1f). To a solution of 6f (30 mg, 0.05 mmol) in anhydrous DCM (2 mL) was slowly added 

a 1.0 M solution of BBr3 in DCM (196 μL, 0.196 mmol, 4 equivalent) via a syringe under N2 at –78 °C. 

After being stirred for 0.5 h, the mixture was quenched by addition of MeOH (0.5 mL) and then H2O 

(2 mL) and extracted with DCM (3 × 5 mL). The combined organic layers were dried over anhydrous 

MgSO4, filtered and concentrated in vacuum. The residue was purified by column chromatography 

(silica gel, hexanes:EtOAc 10:1) to give 1f (12 mg, 42% yield) as a yellow solid. 
1
H NMR (400 MHz, 

CDCl3) δ 
1
H NMR (400 MHz, CDCl3) δ 11.12 (s, 1H), 10.35 (s, 1H), 9.82 (s, 1H), 8.10–8.04 (m, 2H), 

7.83 (d, J = 8.2 Hz, 1H), 7.67 (t, J = 7.7 Hz, 1H), 7.58 (dd, J = 8.8, 2.3 Hz, 1H), 7.44 (t, J = 7.6 Hz, 

1H), 6.92 (d, J = 8.9 Hz, 1H), 6.86 (s, 1H). HRMS (ESI-TOF) [M + H]
+
 calcd. for C22H12BrCl4N2O4 

586.8729, found 586.8731; HPLC purity, 95.6%. 

3.3. In Vitro Antibacterial Assays 

TCH1516, a USA300 strain of community-associated MRSA, was obtained from the American 

Type Culture Collection (Manassas, VA, USA) and used for biological assays. MICs were determined 

by broth microdilution in 96-well tissue-culture treated plates (Falcon Becton Dickson, Franklin Lakes, 

NJ, USA) according to Clinical and Laboratory Standards Institute guidelines, except that Todd-Hewitt 

broth (THB) was used in place of Mueller-Hinton broth. Vancomycin (NOVAPLUS Hospira, Inc. 

Lake Forest, IL, USA) served as a control antibiotic. MIC assays in 20% human serum were assessed 

by bacterial metabolic activity in resazurin, as described [30]. 

3.4. In Vitro Time-Kill Analysis 

The bactericidal activity of Derivative 1e against the MRSA isolate TCH1516 was assessed by 

time-kill analysis, as described previously [30–33]. Briefly, MRSA was grown overnight in  

Todd-Hewitt broth (THB) at 37 °C with shaking. Following overnight growth, MRSA was inoculated 

in fresh media for growth to the mid-logarithmic phase. At the start of the time-kill assay, bacteria 

(starting inoculum ~5 × 10
5
 colony forming units (CFU/mL)) were added to duplicate 5-mL polystyrene  

round-bottom tubes (Falcon, Bedford, MA, USA) containing 20×, 10× or 1× of the MIC of  

Derivative 1e (0.39 μM) or an equivalent amount of dimethyl sulfoxide (DMSO, Sigma-Aldrich,  

St. Louis, MO, USA) vehicle control (Figure 3, none). These cultures were incubated in a shaking  

37 °C incubator for 24 h. To determine the rate of antibiotic killing, small aliquots were removed from 

tubes at 0, 3, 6 and 24 h and serially diluted for CFU enumeration on Todd-Hewitt agar plates  

(Hardy Diagnostics, Santa Maria, CA, USA). The limit of detection for the time-kill assay was  

1.6 (log10 CFU/mL). 
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4. Conclusions 

In our continuation of studies of novel non-symmetrical derivatives of the marine natural product, 

marinopyrrole A, we identified a derivative, designated as 1e, with favorable bactericidal activity 

against MRSA (MIC = 0.19–0.78 μM). Furthermore, our time-kill studies indicate potent  

concentration-dependent killing with 1e that is at least comparable or slightly better than the parent 

natural product in parallel studies. One of the main drawbacks of the natural product has been its 

significant reduction in anti-MRSA activity (a 128 to 256 fold increase in MIC) in the presence of 

human serum. Importantly, 1e is clearly less serum-inhibited with only a 32–64 fold increase in MIC 

in 20% human serum (Figure 3). Future derivatization and SAR optimization will continue to identify 

more potent analogs with activity in human serum. 
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