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Abstract

Background: Predicting phenotypes from genetic variation is foundational for fields as diverse as bioengineering and global change
biology, highlighting the importance of efficient methods to predict gene functions. Linking genetic changes to phenotypic changes has
been a goal of decades of experimental work, especially for some model gene families, including light-sensitive opsin proteins. Opsins
can be expressed in vitro to measure light absorption parameters, including Amax—the wavelength of maximum absorbance—which
strongly affects organismal phenotypes like color vision. Despite extensive research on opsins, the data remain dispersed, uncompiled,
and often challenging to access, thereby precluding systematic and comprehensive analyses of the intricate relationships between
genotype and phenotype.

Results: Here, we report a newly compiled database of all heterologously expressed opsin genes with Amax phenotypes that we call
the Visual Physiology Opsin Database (VPOD). VPOD_1.0 contains 864 unique opsin genotypes and corresponding Amax phenotypes
collected across all animals from 73 separate publications. We use VPOD data and deepBreaks to show regression-based machine
learning (ML) models often reliably predict Amax, account for nonadditive effects of mutations on function, and identify functionally
critical amino acid sites.

Conclusion: The ability to reliably predict functions from gene sequences alone using ML will allow robust exploration of molecular-
evolutionary patterns governing phenotype, will inform functional and evolutionary connections to an organism'’s ecological niche,
and may be used more broadly for de novo protein design. Together, our database, phenotype predictions, and model comparisons lay
the groundwork for future research applicable to families of genes with quantifiable and comparable phenotypes.

Keywords: machine learning, regression, compiled database, genotype-phenotype relationships, predicting phenotypes, spectral sen-
sitivity, color-vision, opsins, imputation

Introduction

Key Points: . . . .
Although critical to progress in drug and vaccine design [1-

3], responses to climate change [4-8], and bioengineering (4, 9-
11], accurately predicting gene function from sequences remains
a significant challenge. While there are many ways to eluci-
date genotype-phenotype relationships experimentally, including
deep mutational scanning, and in vitro heterologous expression
with phenotyping, these techniques are often tedious and cost-
prohibitive, especially when applied to broad comparative stud-
ies of gene families. In addition, accurately predicting the phe-
notype of a protein using computational methods alone is chal-
lenging because of data gaps and the sheer complexity of possi-
ble relationships between genes and phenotypes, including epis-
tasis and the nonadditive effects of different mutations. Machine
learning (ML) is gaining traction for its potential broad biological
applications, accessibility, and faster speeds, especially in biolog-
ical contexts where phenotype data are abundant and quantifi-
able. Here, classical regression and classification algorithms are
sometimes used to train models for phenotype predictions using

® We introduce the Visual Physiology Opsin Database
(VPOD_1.0), which includes 864 unique animal opsin
genotypes and corresponding imax phenotypes from 73
separate publications.

® We demonstrate that regression-based machine learn-
ing models can reliably predict Amax from gene sequence
alone, predict nonadditive effects of mutations on func-
tion, and identify functionally critical amino acid sites.

® We provide an approach thatlays the groundwork for fu-
ture robust exploration of molecular-evolutionary pat-
terns governing phenotype, with potential broader ap-
plications to any family of genes with quantifiable and
comparable phenotypes.
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genotype—phenotype data [12, 13], while deep learning models can
be used to integrate heterogeneous multilayered omics and en-
vironmental data for establishing higher-dimensional genotype—
phenotype connections [14, 15] or de novo protein design [16]. In
broader biological contexts, ML models often inform laboratory
experiments to predict directional evolution of diseases and their
variants [17-19] or to automate image sorting and animal iden-
tification from camera trap data [20-22]. In all cases, ML models
are a worthwhile long-term investment for genotype-phenotype
studies because models can iteratively improve as empirical data
accumulate over time.

Such accumulation of important information is exemplified by
decades of laboratory work that has led to significant progress in
understanding the genetic basis of phenotypic changes for model
gene families such as opsins. Opsins are a family of G-protein cou-
pled receptors (GPCR) that bind to a retinal chromophore. The
2 units together, opsin and chromophore, form visual pigments
that absorb photons [23]. Opsins have crucial roles in many or-
ganismal functions, including circadian rhythms, phototaxis, and
image-forming color vision. A critical opsin phenotype is spec-
tral sensitivity—the range of wavelengths to which a gene or or-
ganism is sensitive. The main parameter of opsin spectral sensi-
tivity is Amax, the wavelength of light (in nm) with maximal ab-
sorbance [24]. Common methods of characterizing spectral sen-
sitivities and Amax include organ-level electroretinograms (ERGs)
[25-27], cell-level microspectrophotometry (MSP) [28-32], purifica-
tion of heterologously expressed opsins followed by spectropho-
tometry [33], and heterologous action spectroscopy using light re-
sponse assays for opsins expressed in immortalized cell lines [34].
Different opsins are tuned by changes in amino acid sequences to
respond to different wavelengths of light, and many previ-
ous studies have expressed experimentally mutated opsins and
measured spectral sensitivities to establish genotype-phenotype
connections [34-38]. Although other factors sometimes affect
spectral responsiveness, including the type of chromophore
to which an opsin is covalently bound (11-cis retinal or 11-
cis-3,4-didehydro retinal) [39, 40], opsins provide a rare case
where an intrinsic molecular function extends rather directly
to organismal phenotypes, especially those involving color sen-
sitivity. Despite opsins being a well-studied system with an
extensive backlog of published literature, some previous authors
expressed doubts that sequence data alone could provide reli-
able computational predictions of Amax phenotypes [41-44]. At the
same time, some Amax predictions showed promise, although on
the limited scale of vertebrate cone visual pigments via atomistic
molecular simulations [45, 46]. Furthermore, only the nonanimal,
microbial, or type 1 (T1) opsins have been systematically cata-
loged and used to examine genotype-phenotype predictive power
of ML models [47, 48]. While some researchers have made signifi-
cant efforts to compile peak sensitivity data for terrestrial animal
photopigments [49] and taxon-specific light-sensitivity data for
groups like frogs [50, 51] and ray-finned fishes [52, 53], these efforts
currently lack direct links to genetic data that are essential for
our current study. Consequently, the extensive data on genotype-
phenotype associations of animal opsins remain disorganized, de-
centralized, often in noncomputer readable formats within older
literature, and underanalyzed computationally.

Here, we report a genotype-phenotype database for animal
opsins called the Visual Physiology Opsin Database (VPOD). We
used standard literature searches to compile all heterologously
expressed animal opsin genes with spectral sensitivity measure-
ments. We used this newly compiled and harmonized database
to evaluate ML methods for connecting genotypes and pheno-

types. We created 11 subsets of the overall database to examine
factors that impact the reliability and performance of ML mod-
els and briefly compared ML predictions to phylogenetic imputa-
tion [54, 55]. We also examined whether ML can predict intragenic
epistasis, and we predicted amino acid sites particularly impor-
tant for changing Amax. Using our database of 864 unique opsin
sequences and corresponding Amax values, we show ML models
trained on opsin data accurately predict the Amax Of opsins from
genetic data alone (highest R? = 0.968 with a lowest mean abso-
lute error [MAE] of 6.56 nm), especially when ample and diverse
training data are available. ML also predicts some known effects
of epistatic mutations on Amax. Finally, ML models identify sev-
eral sites that cause shifts in Amax (€.g., “spectral tuning sites”) and
sites known to be structurally important, even in the absence of
mutant data in training. When training data are sufficient, these
results support the use of ML as a reliable and efficient predictor
of Amax for previously uncharacterized opsins, as a tool for iden-
tifying candidate spectral tuning sites and epistatic interactions,
and as a more general method for linking gene sequences and
phenotypes.

Methods

Compiling a genotype-phenotype database for
animal opsins

We collected Amax data for opsins using typical literature re-
view/search methods, with search engine, keywords, and date of
access documented in the “litsearch” table of the VPOD database
(RRID:SCR_025668). We cataloged all usable papers with Amax data
in the “references” table of VPOD, recording DOI and a key to link
to the search that found the paper. We documented the details of
heterologous expression experiments in the “heterologous” table,
including species, GenBank accession number for the sequence,
mutation(s) (if applicable) using a machine-readable notation,
Amax, cell type for expression (e.g., HEK293, COS1, etc.), protein pu-
rification method, type of spectrum (e.g., dark or difference spec-
trum), and a key to link to the corresponding literature source.
Note, we did not record the chromophore used to reconstitute the
purified opsin protein because 11-cis retinal is the standard and all
instances thus far recorded in the “heterologous” table are from ex-
periments using 11-cis retinal (although future iterations of VPOD
could record these details if data with alternative chromophores
become available). We input opsin genetic data in an “opsins” ta-
ble, recording opsin gene family names (e.g., long-wave sensitive =
LWS, short-wave sensitive = SWS1, etc.). We also included specific
“gene names” (where applicable), phylum, class, species informa-
tion, accession number, DNA sequence, amino acid sequence, and
the database from which sequences were retrieved (e.g., NCBI).
We re-created all mutant and chimeric (e.g,, 1 or more trans-
membrane domains of the mutant copied from a different se-
quence to replace the original) opsin sequences based on liter-
ature descriptions using a pair of Python scripts (mutagenesis.py
and chimeras.py) available on our GitHub [56]. We added all het-
erologously expressed opsins from the literature to VPOD; we call
this version of the database VPOD_1.0. We refer to heterologous
data as VPOD_het_1.0, which will allow for future additions to the
database to link specific opsin sequences to Amax values estab-
lished with methods other than heterologous expression, includ-
ing microspectrophotometry or other methods. During the course
of manuscript review, we found and entered 259 new heterolo-
gously expressed opsins into VPOD, an update we call VPOD_1.1
(Fig. 1). We decided to keep results from VPOD_1.0 in the main text
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Figure 1: Histogram distributions of vertebrate and invertebrate opsins and absorbance data—Aimax—from VPOD_het_1.1 with a scaled kernel density
estimate (KDE) curves overlaid to better visualize the general shape and characteristics of our Amax distributions. Note an obvious data bias for
vertebrate opsins, especially those with Amax values between 350-375 nm and 480-510 nm, probably due to focal research on UVS and Rh1 opsins.

because the new data points did not drastically alter any model
performances. We also provide this table of performance metrics
for VPOD_1.1 (Supplementary Material 1 (S1)). Therefore, all tests
and figures should still be assumed to use VPOD_1.0 data unless
stated otherwise.

Training ML models with deepBreaks

We performed all data preprocessing, including data extraction,
sequence alignments, and formatting, in the Jupyter notebooks
“opsin_model_wf.ipynb,” available on GitHub. We used 2 multiple
sequence alignment methods, MAFFT (RRID:SCR_011811) [57] and
MUSCLE (RRID:SCR_011812) [58], and a version of both alignments
with a Gblocks (RRID:SCR_015945) [59] refinement (for a total of 4
alignments), all set to their default parameters to begin to test the
sensitivity of model performance to different alignments. We then
trained various ML models employing a custom version of deep-
Breaks [60], an ML tool designed for exploring genotype-phenotype
associations. deepBreaks takes aligned genotype data (DNA, RNA,
amino acid) and some measure(s) of corresponding continuous or
categorical phenotype data as input to train ML models. deepBreaks
uses one-hot encoding to convert amino acid sequences into nu-
merical values. One consequence of this encoding is any amino
acids at a given position in the alignment, which are not present
atthat positionin any training data, will be treated equivalently as
unseen. For example, cases of only A and V at a highly conserved
site in the training set that are presented with a sequence with T
at that site will be considered as no A and no V. The models can-

not distinguish the input whether it is T or other unseen amino
acids at that site. The results produced by deepBreaks encompass a
compilation of 12 regression ML models [60], showcasing 10 met-
rics of cross-validation performance (ranked by R?) and a feature
importance report derived from the top-performing models that
ranks amino acid positions by their relative importance to each
model (from 0.0-1.0, with 1.0 being a site with the highest rela-
tive importance) for the phenotype in question (Amax). The met-
rics used to determine these relative importance scores of each
position vary based on the structure and output of the algorithms
used for model training. For example, xgboost [61] and LightGBM
[62, 63] use the number of times a feature appears in a tree as a
proxy for importance [60], while AdaBoost [64] and random forest
[65, 66], use Gini importance, which quantifies a feature’s contri-
bution to improving prediction accuracy [60, 67, 68]. For a more
detailed explanation on how position importance scores are cal-
culated for different models, refer to the “Interpretation” heading
under the methods section of the deepBreaks publication [60]. In
addition to R?, deepBreaks reports the MAE, mean absolute percent
error (MAPE), mean square error (MSE), and root mean square er-
ror (RMSE) for each of the 12 ML models. We evaluated the per-
formance of algorithms based on their relative ranks to look for
patterns in which algorithms performed better for different data
subsets and approaches. deepBreaks also produces a set of distri-
bution box plots (default is 100) to visualize phenotypes (Amax) as-
sociated with a particular amino acid identity at a site of interest,
ordered alphabetically.
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Table 1: Performance metrics across opsin subsets and top-performing models

Name Data subset version # sequences  Top ML algorithm R22 MAE (nm)® MAPE (%)° MSE®? RMSE?
Whole dataset VPOD_wds_het_1.0 864 LGBM 0.947 7.47 1.71 207 13.8
All wild types VPOD_wt_het_1.0 318 Bayesian Ridge 0.902 10 2.18 297 16.5
All mutants VPOD_mut_het_1.0 546 LGBM 0.951 7.89 1.86 194 134
Vertebrates VPOD_vert_het_1.0 721 LGBM 0.968 6.56 1.49 111 10.3
WT VPOD_wt_vert_het_1.0 274 GBR 0.961 5.46 1.18 82.1 8.36
vertebrates

Invertebrates VPOD_invu_het_1.0 143 LGBM 0.814 14.7 3.22 614 23.1
Rods VPOD_rod_het_1.0 352 Bayesian Ridge 0.834 3.51 0.71 27.7 5.04
WT Rods VPOD_wt_rod_het_1.0 157 GBR 0.783 3.57 0.72 31.9 5.11
MWS/LWS VPOD_mls_het_1.0 91 XGB 0.677 8.77 1.82 317 15
UVS/SWS VPOD_uss_het_1.0 280 GBR 0.821 8.02 2.06 200 13.6
WT UVS/SWS VPOD_wt_uss_het_1.0 66 Adaboost 0.865 7.79 1.87 152 10.6
T1 opsins Karyasuyama_T1_ops 884 Random Forest 0.804 9.41 1.76 186 135

3R?, mean square error (MSE), and root mean square error (RMSE) are often interpreted as direct measures of comparing/analyzing model performance and used as
training loss terms of the objective function—which measures how well the model fits the training data. One has to often balance between this and the regularization
term, which controls the complexity of the model. Thus, a high performance is both simple and predictive, a trade-off referred to as the “bias-variance” trade-off.
PMean absolute error (MAE) and mean absolute percent error (MAPE) are in relation to the absolute error im.y predictions and interpreted in the same units of
-
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Figure 2: ML model predictions on whole vertebrate opsin dataset, n = 721, R* = 0.968, MAE = 6.68 nm, MAPE = 1.52. Sequences were iteratively and
randomly selected to be withheld from the training dataset (n = 50) to act as unseen test data. This was repeated until all sequences had been sampled
once. Predictions in which the absolute difference between the “known” and “predicted” Amax are <10 nm are represented by gray dots. All predictions
in which the absolute difference between the “known” and “predicted” Amax are >10 nm are represented by colored dots. Yellow dots represent WT
predictions, mutants with only a single mutation are green, mutants with greater than 1 mutation are light blue, and chimeric opsins are dark blue.
The light gray bar surrounding the trend line represents a 95% confidence interval. Inset: Boxplot distribution of prediction error for different opsin
data types from the top-performing vertebrate opsin ML model to better visualize our sources of error. Note, the median for each boxplot hovers
around O nm. Single mutations have the largest spread of error, but this is most likely due to the high abundance of that data type over all others.

sitive opsins (VPOD_mls_het_1.0) and all rod (Rh1) and rod-like
(Rh2) opsins (VPOD_rod_het_1.0). Other subsets use species tax-

We created 11 data subsets with varying levels of taxonomic and onomy, one for vertebrates (VPOD_vert_het_1.0) and another for
gene family inclusivity (Table 1) to test which factors most im- invertebrates (VPOD_inv_het_1.0). For taxonomic subsets, we con-
pact the reliability/performance of ML methods. We used nam- sidered all sequences from phylum Chordata as “vertebrates”
ing conventions that include versioning to improve reproducibil- and the rest as “invertebrates.” Another subset excludes all mu-
ity and reliability of individual datasets and models. For ex-  tant opsin sequences, called “wild-types” (VPOD_wt_het_1.0). A
ample, 1 subset combines ultraviolet and SWS opsins, which ~ final named subset is the whole dataset (VPOD_wds_het_1.0)

we named VPOD_uss_het_1.0. Our convention is to name the (Fig. 2).
subset (in this case USS = “ultraviolet and short-wave sen- Using various subsets of data, we performed a number of
sitive” opsins), name the source of phenotype data (heterol- experiments to better understand the performance of ML models

ogous = het), and record the version number of the dataset in predicting Amax. First, to better understand how training data
(1.0). We also created subsets for medium- and long-wave sen- ~ relate to model performance, R?, and training data size, we
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Figure 3: Scatterplot of wild-type model’s Amax predictions for 546 mutant opsins, with an R? of 0.860, MAE of 12.36 nm, and MAPE of 2.91%. Mutant
predictions in which the absolute difference between the “known” and “predicted” Amax are <10 nm are represented by gray dots. All predictions in
which the absolute difference between the “known” and “predicted” Amax are >10 nm are represented by colored symbols, further separated by
invertebrate (squares) and vertebrate (circles) opsins. Mutants with only a single mutation are green, mutants with greater than 1 mutation are light
blue, and chimeric opsins are dark blue. Mutations that caused a shift of >10 nm from the WT are outlined in purple. The light gray bar surrounding

the trend line represents a 95% confidence interval.

gradually increased the size of training datasets by starting from
zero and incrementally adding between 15 and 50 randomly
selected sequences at a time for the whole dataset (WDS), verte-
brate, wild-type (WT), and rod subsets separately, repeating the
process 3 times per subset (Supplementary Material 2 (S2)). We
then analyzed the fit between the size of training datasets (x-axis)
and model performance (y-axis), comparing 6 nonlinear models
with Akaike information criterion (AIC) to find the model that best
explains the observed variation (Supplementary Material 3 (S3).
Second, to understand if ML could predict known pheno-
typic changes due to experimental mutations, we queried the
top-performing WT model (which lacks data from artificially
mutated sequences) using all experimentally mutated opsins
to predict their known phenotypes. We plotted these results
using matplotlib [69] to visualize characteristics of poorly pre-
dicted outliers (e.g., taxonomic bias or sensitivity to mutations,
which caused large shifts in Amax from the WT) (Fig. 3). To test
further whether including these mutant data significantly im-
proves predictions of Amax, We used the VPOD_het_1.1 dataset
(Supplementary Material 1 (S1)) and a Wilcoxon signed-rank test
[70, 71] to compare distributions of squared error for predictions
by the WDS model (contains mutant data) and WT model (no
mutant data) on all mutant data (n = 761) and separately com-
paring only mutants causing the largest phenotypic changes in
Amax (>10 nm from the wild-type; n = 346). To accomplish this
for the WDS models, we iteratively removed 25 mutant opsins
at a time from training data, used the same training algorithm
(gradient boosted regressor [GBR]), and predicted Amax values of
withheld opsins following the completion of model training (with-
held opsins are not used as test data during the actual model
training), until all mutant opsins were sampled once (this
notebook is available on GitHub as
“vpod_wf_iterate_subsample.ipynb.” Third, we examined the ability
of our models to predict Amax 0f 30 invertebrate opsins not in
VPOD_1.0 because they are only known from physiological studies
(Supplementary Material 4 (S4), Supplementary Material 5 (S5)).

Here, we collected data both characterized by single-cell mi-
crospectrophotometry (MSP) or electroretinogram methods and
with expression localized to cell type by in situ hybridization
(ISH), to link Amax to a specific opsin (the sequences and metadata
can be found in “msp_erg_raw.txt” and “msp_erg_meta.tsv,” while
the resulting predictions can be found under the “msp_tests”
folder on our GitHub repository). Finally, we directly compared
predictive capabilities of models trained on different data subsets
by randomly selecting and removing the same 25 wild-type
ultraviolet or short-wave sensitive opsins from the training data
of the WDS, vertebrate, WT, and ultraviolet sensitive (UVS)/SWS
models before training and querying the model with those same
sequences following training (Supplementary Material 4 (S4),
Supplementary Material 6 (S6)).

Comparing machine learning and phylogenetic
imputation

We compared performance of ML models to phylogenetic impu-
tation, which estimates phenotypes using phylogenetic informa-
tion [54, 55]. Phylogenetic imputation uses maximum likelihood
(we will not abbreviate maximum likelihood as ML to avoid con-
fusion with machine learning), usually assuming Brownian mo-
tion to predict missing phenotypes using a phylogenetic tree, such
that more closely related species or sequences have more sim-
ilar phenotypes. For the phylogeny, we constructed opsin gene
trees in phyML [72], assuming the “WAG” substitution model [73]
and a proportion of 0.029 invariable sites, with Gamma as a rate
across sites model, and 4 substitution rate classes. We randomly
removed 50 opsin sequences and their corresponding Amax val-
ues from each of the ML training datasets (with the exception
of the smaller medium wavelength-sensitive (MWS)/LWS and in-
vertebrate datasets, where we only removed 15), then estimated
the removed Amax values using phylogenetic imputation. We used
the phylogenetic imputation submodule of the phytools R package
[74] for imputation. We compared imputed and actual Amax using
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regression. Imputation seemed sensitive to input alignment, per-
haps caused by very short or zero length branch lengths in the
phylogeny, as we could only complete imputation with phytools
after removing uninformative and heavily gapped regions with
Gblocks. To allow direct comparisons of regressions between im-
putation and ML, we re-created ML training-data alignments us-
ing MAFFT, MUSCLE, and Gblocks in the same way as for imputa-
tion and predicted Amax for the same sets of sequences as impu-
tation (Supplementary Material 7 (S7)).

Testing ability of ML to account for intragenic
epistasis

Functional predictions are often misled by epistasis [41], so we
tested the ability of our WDS models to predict the effects of
epistatic mutations by haphazardly selecting 3 double mutants
with previously demonstrated epistatic effects from training data
in which double mutants, each single mutant, and wild-type se-
quence are all characterized by heterologous expression. The 3
epistatic double mutants are all derived from bovine rhodopsins:
D83N_A292S, F261Y_A269T, and A164S_A269T. We removed the
double mutants from the training dataset but retained single mu-
tants to test whether the model treats the mutations as additive
or epistatic. We hypothesized that the many instances of multi-
mutant sequences with epistatic effects in the training set would
allow the model to account for both the magnitude and direc-
tion of intragenic epistasis. We then ran a separate test where
we removed the same double mutants plus their correspond-
ing single mutants to observe whether the WDS model still pre-
dicts epistatic effects from wild-type data alone. We subsequently
repeated this same process for the WT and vertebrate models
(Supplementary Material 8 (S8)).

We ran an additional experiment to test the general ability
to to predict epistatic interactions between mutations for all
available data. Here, we identified all multimutants that have
phenotype data for each individual component mutation. Next
we selected those multimutants with nonadditive (epistatic) in-
teractions between mutations (which we define as >1 nm dif-
ference between the actual multimutant phenotype and the
sum of changes in phenotype due to the individual mutations).
These 111 “epistatic mutants” were then all removed from WDS
(VPOD_wds_het_1.1) to create a new training dataset called “WDS-
minusepi” that lacks evidence of intragenic epistasis. For this
test, we hypothesized that if the ML approach can account for
epistasis, the RMSE of predictions of the 111 epistatic mutants
would be significantly lower for the model trained with WDS-
minusepi than the model trained with no mutants at all (WT).
We tested for statistically significant differences in the distri-
butions of square error for predictions made by WDS-minusepi
versus WT and WDS-minusepi versus the epistasis-free addi-
tive mutation values (EAMVs, which represent the expected Amax
for mutants if the effects of their singular mutational compo-
nents were treated as additive). We also predicted a statisti-
cally significant difference between predictions made by WT and
EAMV only if WT contains enough natural variation (not based
on mutants) to observe patterns of intragenic epistasis. These
statistical tests assumed a Bonferroni correction for multiple
tests.

Identifying known spectral tuning sites

In addition to predicting Amax, We wanted to identify amino acid
sites with strong effects on the phenotype, called spectral tun-
ing sites for opsins. To do so, deepBreaks produces an “importance

report” of the relative importance of amino acid positions within
the sequence relative to the phenotype. This report is generated
for each of the top 3 performing models, with the addition of a col-
umn that calculates the “mean relative importance” value of each
individual position. We automated the translation of these fea-
ture representations of aligned amino acid positions compared to
bovine rhodopsin for the sake of interpretability. We also included
the amino acid residue identity at each corresponding position
and whether it is in one of the opsin transmembrane domains
(TMDs). We used this to provide us with a standardized context
for analysis of the most significant positions highlighted by the
models, which we could use to compare to published mutants and
known spectral tuning sites. We analyzed the importance report
for each model to see what positions it highlighted as most im-
portant, with an extra emphasis placed on the output for the WT
models since it was the least likely to be biased by the presence of
already known mutant data (Supplementary Material 9 (S9)), as
previous researchers often chose suspected tuning sites for mu-
tagenesis experiments.

Results

Data description: A genotype-phenotype
database for animal opsins

VPOD is a new database, available on GitHub and in GigaDB
[75] that currently includes all heterologously expressed animal
opsins. We refer to a subset of the database with only heterolo-
gous data as VPOD_het_1.0, although for version 1.0, this is syn-
onymous with the entire database. VPOD_het_1.0 relies on 73
publications, mainly primary sources, with dates ranging from
the 1980s to 2023. The database contains opsin sequences and
phenotype data from 166 unique species (counting 35 recon-
structed ancestors), including fishes, amphibians, reptiles, mam-
mals, crustaceans, and bivalves. Altogether, VPOD_het_1.0 con-
tains 864 unique opsin sequences and corresponding Amax values.
This includes 318 unique WT opsins and 546 unique experimen-
tally mutated opsins (447 from vertebrates and 99 from inverte-
brates) from 82 species (73 vertebrate and 9 invertebrate species).
Of the mutants, 73 are “chimeric,” meaning 1 or more transmem-
brane domains of the mutant are copied from a different opsin to
replace the original. Phylogenetically, VPOD_het_1.0 is mainly ver-
tebrate opsins (n = 721), with only 143 unique invertebrate opsins
(Supplementary Material 10 (510)). The vertebrate opsins consist
of 113 UVS opsins, 167 SWS opsins, 8 MWS opsins, 83 LWS opsins,
237 rhodopsin (Rh1) opsins, and 113 rhodopsin-like (Rh2) opsins
(Supplementary Material 10 (S10)). Phenotypically, VPOD_het_1.0
spans a range of Amax values from 350 to 611 nm. The highest con-
centration of phenotype values are between 350-375 nm and 475-
525 nm (Fig. 1) due to the literature bias favoring characterization
of UVS/SWS opsins and rhodopsins (Rh1).

The data used for model training strongly impact
accuracy

Several models trained with different subsets of data predicted
Amax With high accuracy (Table 1). The top-performing models
from these subsets consistently used the same 5 algorithms, in-
cluding the gradient boosting regressor (GBR) [68, 76], Bayesian
ridge (BR) [77, 78], light gradient boosting machine (LGBM) [79],
random forest (RF) [66], and extreme gradient boosted machine
(XGB) [61]. For example, VPOD_vert_het_1.0—trained with all ver-
tebrate wild-type, mutant, and chimeric opsins—had the highest
10-fold cross-validation (CV) R? (0.968) and lowest MAE (6.56 nm)
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of any models we compared (Fig. 2). Similarly, VPOD_wds_het_1.0,
trained with the whole dataset, had very high R? (0.947) and
low MAE (7.47 nm). The 2 data subsets also shared the same
5 top-performing models (GBR, BR, LGBM, RF, and XGB). In addi-
tion, VPOD_wt_het_1.0—trained without mutants and only wild-
type data—had a similarly high R? (0.902) and a low MAE (10.3 nm)
when predicting unseen wild-type data. Overall, this “wild-type-
only” model also fared well, even when predicting mutant data
not included in the model (Fig. 3). While these performance met-
rics are impressive, it is important to remember that phylogenetic
relatedness between sequences of a dataset could inflate values,
like R?, when using random sampling for cross-validation because
opsins that are more similar to those in the training data will be
easier to predict, and phylogenetically clustered sequences will
also be more likely to be resampled. Roberts et al. [80] provide a
discussion of alternative cross-validation strategies such as “block
cross-validation” for nonindependent data types, including phy-
logenetically related data, which can help mitigate this issue. De-
spite overall high R?, we noticed multiple instances where muta-
tions that cause large shifts in Amax (>10 nm) were not well pre-
dicted by the wild-type-only model, as indicated by large resid-
ual values for the predictions of these mutant sequences (Fig. 3).
We found including mutant data significantly improves predic-
tions of Amax When comparing predictions of models trained with
(WDS) and without (WT) mutant data and rejecting the null hy-
potheses of no underlying differences between the distribution
of squared error for predictions of all mutants (P = 9.96e-22,
WDS RMSE = 12.6 nm, WT RMSE = 17.6 nm) (Supplementary
Material 11 (S11)) and when predicting phenotypes of mutants
with large shifts in Amax (P = 2.29e-25, WDS RMSE = 17.0 nm, WT
RMSE = 24.2 nm) (Supplementary Material 11 (S11)).

In addition to including mutant data, data availability more
generally improves predictive power, with performance thresh-
olds and plateaus depending on the genetic diversity of the
training data. Overall accuracy in predicting Amax for our mod-
els trained on more genotypically and phenotypically complete
subsets of data (WDS, vertebrate, WT) improves as a function
of the number of sequences in a dataset and shows an initial
plateau (R? = ~0.80-0.90) of diminishing returns around 120 to
200 sequences that continues to taper off above 200 sequences
(Supplementary Material 2 (S2), Supplementary Material 3 (S3).
Consistent with a rough performance threshold, we found mod-
els from data subsets with fewer than ~200 training sequences to
far less accurately predict Amax. For example, VPOD_mls_het_1.0—
trained only on the 91 MWS/LWS opsins of vertebrates—and
VPOD_inv_het_1.0—trained only on 144 invertebrate opsins—
showed among the lowest R? (0.677 and 0.814, respectively; Ta-
ble 1). For all data subsets, we found the relationship between
number of sequences in a dataset and model performance best
fits a reciprocal model, which is suitable when the dependent vari-
able plateaus as the independent variable grows larger. We found
the coefficients of the reciprocal equations to be different between
data subsets and to increase in negative magnitude with a de-
crease in taxonomic/genetic diversity (the rod model holding the
largest negative value of —44). These equations do not account di-
rectly for taxonomic, genetic, or phenotypic diversity, as the raw
number of genes is the value of the x-axis. Therefore, one should
be cautious about applying them to predict model performance
based on training data size alone.

The complicated relationship between size of training dataset
and predictive power is further illustrated by models from some
larger data subsets that resulted in rather poor predictions. One
large dataset (884 sequences), the previously published Karya-

suyama type 1 opsin dataset (Karyasuyama_T1_ops [47]), showed
only moderate R? (0.804) and MAE (9.41), similar to models from
the much smaller invertebrate data (Table 1). One explanation
for lower predictive power could be that the very old age of T1
opsins led to a higher complexity and diversity of genotype-
phenotype associations, which are not yet completely sampled
enough to allow good predictions. In addition, models based on
rod, UVS/SWS, and MWS/LWS subsets tend to show lower R?
than might be at first expected (Supplementary Material 2 (S2),
Supplementary Material 3 (S3), especially since these 3 datasets
together comprise the training data for the vertebrate model
(our highest performing model, R? = 0.968). For example, the
rod model, with 352 sequences, should have resulted in a model
with an R? around 0.900 to 0.960 based on the trend lines for
the WDS and vertebrate datasets (Supplementary Material 2 (S2),
Supplementary Material 3 (S3) but resulted in an R? = 0.831. A
possible explanation for this lower R? value for rod models is the
small degree of variability in Amax. When variation is low, even very
small differences from model predictions could lead to larger dif-
ferences in R?. Therefore, when a data subset such as rod opsins
contains limited variability in the response variable (Amax), addi-
tional metrics that are less sensitive to variance will be important,
such as MAE or RMSE, which report the absolute magnitude of er-
rors rather than the proportion of explained variance. To illustrate
further, most models tested on their ability to predict the Amax for
a set of 25 subsampled WT-SWS opsins from VPOD performed rel-
atively poorly based on R? alone (Supplementary Material 4 (S4)),
with the vertebrate model (R? = 0.914, MAE = 7.89) demonstrat-
ing a relatively greater predictive power than all other models
(Supplementary Material 4 (S4), Supplementary Material 6 (S6)).
However, between the vertebrate and lowest performing model
(SWS model; R? = 0.778, MAE = 11.6 nm), there is only a 3.71-nm
increase in MAE, a much less dramatic perceived shift in perfor-
mance than might be interpreted from R? alone.

When predicting Amax 0of 30 unseen wild-type invertebrate
opsins from a separately curated MSP dataset, almost every
model performed rather poorly, with exception of the WT model
(n = 30, R? = 0.887, MAE = 17.5) (Supplementary Material 4 (S4),
Supplementary Material 5 (S5)). The best-performing model pro-
duced by the sparsely populated “Invertebrate” dataset could only
predict unseen invertebrate opsins with an R? of 0.837 and MAE of
26.3 nm (Supplementary Material 4 (S4), Supplementary Material
6 (S6)). Until the models are trained with more invertebrate (r-
opsin) data, we would not put high confidence in the estimates of
Amax. Furthermore, these separately curated invertebrate opsins
are independent of the phylogenetic relatedness of the data used
in model training and therefore provide a less inflated estimate
of the ability to predict Amax compared to random resampling of
training data. Because of the sparsity of invertebrate data in the
training set, this result further highlights that opsins more dis-
tantly related to those in the database will be more difficult to
predict.

ML predictions of im.x are comparable to
phylogenetic imputation

Both ML and phylogenetic imputation were often accurate pre-
dictors of Amax (Supplementary Material 7 (S7)). When using the
same test data, ML models usually outperformed phylogenetic
imputation, however slightly (Supplementary Material 7 (S7)), al-
beit using far less computational time: ML used on the order
of minutes to calculate models, and imputation used on the
order of hours to generate opsin phylogenies. The MWS/LWS
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dataset was the only instance where phylogenetic imputation
(R? = 0.784) largely outperformed ML (R? = 0.512). We found our
implementation protocol for phylogenetic imputation required
removing aligned sites with extensive gaps (for which we used
Gblocks); we speculate this lessened the impacts of very short
branch lengths on model fitting during imputation. To allow di-
rect comparisons between approaches, we also used the same
trimmed alignments for training ML models. Interestingly, there
was a slight but noticeable decrease in ML performance following
Gblocks trimming for the invertebrate, MWS/LWS, and UVS/SWS
datasets (Supplementary Material 7 (S7)). The R? of the MWS/LWS
model dropped from 0.677 to 0.645, while the invertebrate model
dropped from 0.814 to 0.797 (Supplementary Material 7 (S7)). ML
performance remained relatively consistent after tripping for the
WT, vertebrate, WDS, SWS/UVS, and rod models, with only a
slight reduction in R? (<0.01) and slight increase in MAE (+1 nm)
for the WT model. We speculate the observed differences in
ML performance following Gblocks processing is due to the re-
duced number of features in the datasets from removing aligned
sites.

ML often predicts the effects of epistatic
mutations

The WDS successfully predicted 3 out of 3 individual instances
of epistasis (Supplementary Material 8 (S8)) using sequences
that were removed from the training data before using the
model to predict known epistatic phenotypes. For double mutant
D83N_A292S, the model predicted 485.2 nm, which was 0.2 nm
off the known Amax of 485 nm. If the WDS model believed the sites
were additive, the resulting Amax based on adding shifts of single
mutants would have been much lower, at 477.5 nm. Second, for
mutant F261Y_A269, the model predicted 520.0 nm, for which the
known Amax was 520 nm. An additive prediction would have been
higher, 524 nm. Third, for mutant A164S_A269T, the model pre-
dicted a Amax 0f 515.5 nm, where the known Amay was 514 nm. This
is a special case in which the double mutant experiences a form of
epistasis where the effect of mutation A269T (Amax = 514) masks
the shift otherwise caused by mutation A164S (Amax = 502 nm).
Thus, the model correctly predicted an instance of epistasis in
which one mutation masks the effect of another.

We also queried the WT model with these same 3 double mu-
tants to test the importance of mutant sequences in informing
the model on epistatic interactions. However, without any mu-
tant data at all, the WT model did not display the same abili-
ties to predict epistasis in any instance. For the double mutant
D83N_A292S, the model predicted that neither the individual mu-
tations nor the double mutant would have a significant effect on
Amax, and all were predicted to be 499.9 nm. For double mutants
F261Y_A269 and A164S_A269T, the WT model successfully pre-
dicted all individual mutations would cause a red shift (although
F261Y and A269 were >3 nm off their known Amax) but incorrectly
treated the mutational effects as additive for the double mutant
(Supplementary Material 8 (S8)).

Our broader experiment to test the predictability of epistatic
effects using the WDS-minusepi model (which excluded from
training all 111 opsins with known nonadditive mutational ef-
fects, which we call epistatic opsins) correctly predicted epis-
tasis for 105 of 111 of the epistatic opsins with higher R?
(0.969) and much lower RMSE (12.4 nm) than predictions by
the WT model (R2 = 0.894, RMSE = 22.3 nm), which contains
no experimentally mutated opsins, and the EAMV (R? = 0.878,
RMSE = 29.8 nm), which ignores epistatic effects, respectively

(Supplementary Material 12 (S12)). Our test of the null hypotheses
of no underlying differences between the distribution of squared
error for predictions of the 111 epistatic mutants were rejected
after Bonferroni correction by the WDS-minusepi model ver-
sus WT model (P = 1.24e-06) and WDS-minusepi model versus
EAMV (P = 2.56e-09) but not rejected for the WT model versus
EAMV (P = 0.086) (Supplementary Material 12 (S12)). Together,
the large differences in RMSE and the results of the statistical
tests strongly support the idea that the inclusion of even single
mutants significantly reduces the error of ML models when pre-
dicting epistatic interactions between mutations and that this er-
ror is also less than the error we would observe if our models
simply treated mutations as additive. Nevertheless, the insignif-
icant difference between WT predictions and EAMV indicates
there is not enough information about epistatic interactions in
wild-type (nonmutant) data alone to accurately predict intragenic
epistasis.

ML predicts tuning sites from wild-type
sequences alone

The full WT model and its few variants (SWS and rod WT
models) predict several previously characterized “spectral tun-
ing sites"—functionally demonstrated to change Amax—even with
no information on mutants used in the training data (Fig. 4,
Supplementary Material 9 (S9)). For the primary WT model alone,
we found 15 of the top 25 amino acid sites, ranked by relative im-
portance to the model (all >0.40), were spectral tuning sites pre-
viously characterized by mutagenesis and heterologous expres-
sion (Supplementary Material 9 (S9)). For example, the especially
well-characterized position 308 (p308), known for its role in tun-
ing LWS opsins and considered 1 of the 5 key sites in character-
izing LWS opsins under the “five-site rule” [81], had the highest
relative importance value of 1.0 when using the full WT model,
indicating the amino acid identity at p308 is especially impor-
tant for predicting Amax. In another example, the full WT model
highlighted p181, a phylogenetically conserved counterion in the
retinal-opsin Schiff base interaction for all nonvertebrate opsins
[82, 83]. Additionally, the transition from E to H at p181 (E181H)
is a characteristic of the red-shifted vertebrate LWS opsins [35,
83], easily visualized in Fig. 4C. When predicting Amax of bovine
rhodopsin with mutation E181H, the WT model predicted a red
shift compared to wild type, as observed with the natural evolu-
tion of the LWS opsin lineage. The WT SWS/UVS model similarly
highlighted p113, a site functionally characterized as the counte-
rion in the retinal-opsin Schiff base interaction for all vertebrate
opsins [35, 83] and as a known spectral tuning site in SWS/UVS
opsins [84]. Moreover, even the WT rod model, trained on a mere
157 sequences, identified p292 (Supplementary Material 9 (S9)),
another well-characterized and conserved spectral tuning site for
vertebrate rhodopsins [85-87], as the site with highest relative im-
portance to its predictions of rhodopsin Amax. These spectral tun-
ing sites are not simply conserved sites, as there is little to no
correlation between amino acid sites important to model predic-
tions (importance scores) and their relative Shannon entropy [88, 89]
scores (R? = 0.001). This is somewhat expected as deepBreaks drops
all conserved (“zero-entropy”) sites during preprocessing, because
a site with no variation provides no important information about
the effects of variation on the resulting phenotype. In addition, we
predict any correlation between site conservation and model im-
portance would be for sites that are moderately conserved and in
close proximity to opsin-chromophore binding site (position 296)
or binding pocket [41, 42, 90].
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Figure 4: (A, B) Blue bars indicate the 7 transmembrane domain regions of the bovine rhodopsin and are labeled accordingly. Purple bars indicate the
top 3 most important positions to predictions of Amax by the “BayesianRidge” ML regression model trained on the WT opsin dataset. (A) Bar graph of
relative entropy scores by position calculated via Shannon entropy [71, 88, 89] using the multisequence alignment for the WT data subset. (B) Bar
graph of relative importance by position generated via “BayesianRidge” ML regression model trained on the WT opsin dataset. We interpret positions
with higher relative importance as having a larger effect or weight on Amax prediction. Positions 181 [35, 83], 261 [87, 91], and 308 [81] are highlighted in
purple because they are among the highest scoring sites and have all been previously characterized as functionally important to opsin phenotype and
function. Based on an R? of 0.001, there is no linear relationship between relative entropy by position and the relative importance of scores by position.
(C-E) These distribution box plots provide a visualization for which amino acid (aa) residues at a particular site are associated with different ranges of
lambda max at a site of interest, ordered alphabetically, not by frequency (left to right). For a more detailed explanation on how position importance
scores are calculated for different models, refer to the “Interpretation” heading under the methods section of the deepBreaks publication [60].
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Discussion

To better understand methods to connect genes and their func-
tions, we initiate VPOD, a database of opsin genes and correspond-
ing spectral sensitivity phenotypes. Here, we used VPOD_1.0 to
examine the ability of ML models to predict functions of opsin
genes, predict intragenic epistasis, and identify amino acid sites
critical for functional changes. In all cases, ML shows promise, es-
pecially when given enough training data.

The important relationship between data
availability and predictive power

The predictive power of Amax is often high when using ML for
opsins, and it improves with a greater amount and variety of
data, albeit with diminishing returns. In particular, the number of
opsin genes, their genetic diversity, and the relationship between
genetic and phenotypic differences are all critical in determin-
ing predictive power. Particularly illustrative of these ideas are
our analyses with and without experimentally mutated opsins.
Even though we might conceive of all wild-type data as natu-
ral mutants chosen by evolution, experimentally induced muta-
tions are particularly important by often changing just 1 amino
acid that drastically changes phenotype. As such, we found that
including mutant data usually improved predictive power, and
conversely, predicting some phenotypes from laboratory muta-
genesis was sometimes difficult without including other mutant
data in model training (Supplementary Material 11 (S11)). How-
ever, relying on published mutant data alone is not optimal be-
cause it is derived from a nonrandom subset of species because
people continue to work in established systems. Nevertheless, the
genotype-phenotype landscape may be sampled well enough us-
ing high numbers of only wild-type genes, as evidenced by the
small difference in performance when adding mutant data to the
wild-type subset of well-sampled vertebrate opsins (Table 1). In
contrast, adding mutant data to the sparsely sampled inverte-
brate opsins made a big difference. For invertebrate opsins, using
only wild-type data (ignoring all mutants) led to some very in-
accurate predictions, especially of large phenotypic shifts caused
by experimental mutagenesis (Fig. 3), indicating the genotype-
phenotype space is still undersampled for invertebrates. This is
expected since ML learns from patterns in the underlying dataset,
making predictions of distantly related opsins from those in VPOD
more unreliable. We acknowledge this as a significant drawback
for the ML approach, especially in systems or taxonomic groups
lacking sufficient or reliable data. Thus, given this currently lim-
ited dataset, we do not put high confidence in the Amax estimates
of either wild-type or mutant invertebrate (rthabdomeric) opsins.
Therefore, targeting invertebrate opsins should be a high priority
for new additions to VPOD.

Alarge diversity of training data is also critical for reliably pre-
dicting intragenic epistasis—the nonadditive effects on a pheno-
type of interactions between 2 or more mutations within a gene—
which is common [10, 41, 43, 44, 92, 93] and an obstacle to con-
necting genotypes and phenotypes [41, 94-96]. Our most com-
plete datasets (whole dataset and vertebrate dataset) identified
known cases of intragenic epistasis, but our models trained with-
out experimental mutagenesis data did not. Moreover, ML demon-
strates some capacity to predict the epistatic interactions between
mutations, even when only provided with the single mutation
components—as is evidenced by our WDS-minusepi dataset test
(Supplementary Material 12 (§12)). Similarly to the overall predic-
tive power of Amax above, predicting epistasis probably requires

sufficient variation atinteracting sites, which seems especially en-
hanced by experimentally mutated genes.

Variation in the availability of genotype-phenotype data for
training impacts not only the predictive power of phenotype but
also the converse: the ability to predict amino acid sites that
change Amax. Several models, including those trained with the
WDS, vertebrate, and WT data, were able to successfully pre-
dict previously characterized spectral tuning sites. This is less
surprising for models trained with WDS and vertebrate datasets
due to the prevalence of data, even including mutants in the
training data from experiments that specifically targeted sites
thought by researchers to be functionally informative. Yet even
without any targeted mutational data, 3 model variants using
only wild-type data predicted experimentally well-characterized
spectral tuning/functional sites, including sites important to the
stability of the opsin-chromophore interaction (P181 and P113).
This demonstrates the strong potential for ML models to iden-
tify amino acid sites that govern phenotype, leading to pre-
dictions of candidate spectral tuning sites, which can be con-
firmed with mutagenesis experiments (38, 86] if not done so
already.

ML algorithm type contributes to the predictive
power of ML models

While probably not as important as the training data used, the
ML algorithm itself also impacts predictive power. All 5 of the
best-performing ML algorithms (GBR, BR, LGBM, RF, and XGB) are
variants of the decision tree model architecture (Supplementary
Material 13 (S13)), and 3 of 5, including GBR, LGBM, and XGB, are
“gradient boosted” decision tree-based ML algorithms. The gra-
dient boosted algorithms all share the same general principles
of gradient boosting [76, 97], including the use of ensembles of
“weak learners,” usually decision trees, which work sequentially
and “gradient descent” when minimizing a loss function, to im-
prove ML model performance. While LGBM generally performed
best for predicting phenotype, it was not as effective in predicting
the epistatic effects of mutations, where GBR and XGB showed
the highest performance. This suggests that while LGBM excels in
general phenotype prediction, the details of GBR and XGB may be
better suited for epistasis prediction. The difference likely arises
from the unique aspects of each algorithm’s model training and
settings of hyperparameters. XGB and LGBM differ from GBR by
the addition of a regularization term to the objective function and
in the process of ensemble tree construction during model train-
ing: GBR and XGB use level-based tree fitting while LGBM uses
leaf-based tree fitting. One consequence of leaf-based tree con-
struction is that due to its faster convergence/training time, it can
create complex trees that are more prone to overfitting, thereby
“learning” patterns that may not exist as it constructs trees on a
“best-first basis” with a fixed number of n-terminal nodes [63, 79].
This creates a model that often performs well on training data but
may overgeneralize, missing finer grained collinearities and inter-
dependencies, which would be important for predicting epistasis.
As such, our models might be improved by fine-tuning hyperpa-
rameters (e.g., learning rate, max-depth, and number of estima-
tors), and the choice of which model to use will depend on the end
goals of the analysis.

The assumptions of our method and limitations
of ML extrapolation

Understanding the limitations and assumptions inherent in pre-
dictive modeling is vital for accurately interpreting animal color
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sensitivity from opsin sequences, especially considering the im-
pact of various factors on sensitivity beyond the opsin itself across
multiple levels of biological organization. At the cell level, we as-
sume that Amax measured in cell culture (e.g., HEK293, COS cells)
is the same as in living photoreceptor cells. We also assume the
photopigment uses 11-cis-retinal, as all heterologously expressed
opsins in VPOD were reconstituted using this chromophore. How-
ever, this assumption is violated in some organisms because they
use 13-cis-retinal as the in vivo chromophore [23, 98, 99], which is
associated with a red shift in Amax [35, 98]. At the organ level, fil-
ters such as oil droplets in bird eyes [100-103], pigments in butter-
fly eyes [104], or a combination of transmissive filter and narrow
band reflector in mantis shrimp larval eyes [105] each may selec-
tively influence light reaching photoreceptor cells and therefore
animal color sensitivity. Finally, organismal responses to light in-
volve neural processes, so even if an organism possesses the phys-
iological ability to detect certain wavelengths, it still may not have
a use for that ability. Similar considerations for all these assump-
tions will apply when using ML to infer other functions from other
genes. In fact, many genes are more susceptible than opsins (but
see [106] showing the pressure of ocean depth may slightly affect
Amax phenotypes) to changes in pH, temperature, and other envi-
ronmental factors [107], such that databases compiling these gene
functions should also record these parameters for use in training
ML models.

Perhaps the most important caveat of using ML models to
accurately predict phenotype or functional sites is that we as-
sume there is a genotype-phenotype association that we can
fit to a function and that our models were trained using am-
ple data to capture these associations. Based on the nonlinear
fit between size of training dataset and model performance, we
estimate that including about 200 sequences (and correspond-
Ing Amax) from a taxonomically and phenotypically diverse range
still provides improvements to model performance. Above 200 se-
quences, there is still improvement, but at a diminishing rate con-
sistent with a reciprocal model (Supplementary Material 2 (S2),
Supplementary Material 3 (S3). That said, we encourage caution
when extrapolating these results to predict model performance
on training data size alone as the equations we used do not
account directly for taxonomic, genetic, or phenotypic diversity.
When using ML for predicting functionally important sites, the ad-
dition of experimental mutants to training data that cause large
phenotypic changes could heavily bias which sites are selected as
“most important” and potentially mask the importance of other
sites. Here again, providing a diverse set of genotype-phenotype
data should allow for the discovery of new functional sites, even
when including known mutants in the training data with large
phenotypic effects. Additionally, providing a large number of mu-
tations from a limited breadth of taxa can bias model predictions
as not all mutations will have the same effect on different se-
quences, especially if they are genetically distant. This makesitall
the more important to consider the level of genetic diversity used
to train a model when extrapolating to find potentially important
functional sites (i.e, if identifying tuning sites for rhodopsins, then
using a dataset of only rhodopsins would likely be the best ap-
proach, butif data are sparse or if looking for sites that may largely
impact spectral tuning across opsin subfamilies, a genetically and
phenotypically broad dataset may be better).

Conclusion

Using opsin sequence data with deepBreaks, we were able to
train regression-based ML models to reliably predict Amax, of-

g

ng genotype-pnen

ten accounting for nonadditive effects of mutations on func-
tion (intragenic-epistasis) and identifying amino acid sites critical
for function. We expect future work will improve these already
promising results even further through at least 2 general direc-
tions. First, adding more data to VPOD will improve results, espe-
cially adding invertebrate (rhabdomeric opsins) data, as technical
knowledge improves for expressing these genes [34]. In addition,
phenotypic data—besides the in vitro heterologous expression tar-
geted here—is expansive, including Amax measurements from mi-
crospectrophotometry and electroretinograms, but will take con-
siderable effort to link these phenotypes to specific opsin genes.
Second, our models can be improved to take advantage of more in-
formation. One important addition should be inclusion of physic-
ochemical properties of the amino acids [108], as implemented
with success on a small scale of only 26 amino acid positions of
microbial opsins to predict red-shifted phenotypes for optogenet-
ics [109]. Additionally, information on protein structure could be
particularly important, such as the distance of an amino acid from
the binding pocket of the chromophore [40]. While there are only
a few solved crystal structures for opsins [110, 111] to provide
such data, indirect techniques like homology modeling [112] or
neural network-based structural prediction [113] might be usable.
Other information about opsins could also be predictive, such as
which G-protein the opsin signals to, allowing prediction of which
amino acids dictate G-protein specificity. Opsin kinetics [e.g., 114],
or even the habitat depth at which the animal lives in the ocean,
which not only influences light environment but also alters which
amino acids are used in opsins [115], could improve predictive
power of the ML models. Finally, we once again caution against
treating predictions of Aimax uncritically, because the quantity
and quality of genotype-phenotype data used to train a model—
including the taxonomic, genetic, and phenotypic diversity—is
integral to the reliability of a model’s predictions. Thus, ML models
like those used here can be considered tools to make predictions
based on summaries of existing knowledge, thereby complement-
ing traditional experimental methods.

Potential implications

Given the high performance demonstrated in this article, cur-
rent models are already robust enough to allow several appli-
cations. First, predicting Amax Will often be useful, especially for
vertebrate opsins. For example, ML could provide an estimate
of Amax In a hogfish, whose skin expresses an opsin with un-
known absorption and where Ay has implications for a concep-
tual model of chromatophore expansion [116]. Second, estimates
of Amax from opsin sequences formed part of an argument that
changes in gene expression, not sequence, adapted Amazon fishes
to local light environments [117]. On broader taxonomic scales,
predictions of Amax from opsin sequences could expand studies
of adaptation, molecular evolution, and constraint in compari-
son to light environments [118]. Another application could be pro-
tein design for optogenetics—the use of genetic light sensors to
induce and study expression or response pathways [119-121]—
including those associated with embryogenesis [122,123], stress
and depression [124-126], or neuronal diseases [127, 128]. Finally,
our models could be used to simulate molecular evolution un-
der a realistic genotype-phenotype landscape. One shortcoming
presently for such simulations is that our models are not trained
with nonfunctional opsins, so even nonfunctional genes would
be predicted to have functional imax values. A solution could be
to add large-scale mutagenesis data to the training set, such as
that from deep mutational scanning [129], although the authors
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indicated the method is only in a proof-of-concept stage, such that
the results are too noisy to be useful for model training. As the
VPOD database expands, there will be many applications for ML,
and similar techniques can also be applied to other gene families
such as luciferases [16,130,131].

Availability of Supporting Source Code and
Requirements

Project name: The Visual Physiology Opsin Database (VPOD).
Project homepage: https://github.com/VisualPhysiologyDB/
visual-physiology-opsin-db [56].

License: GNU General Public License (GPL)—Version 3, 29 June
2007.

RRID: SCR_025668.

Operating system(s): Windows, MacOS, and Linux.

Programming language: Python, R.

Other requirements: Conda 4.9.2, deepBreaks 1.1.2, GBlocks 0.91b,
MAFFT 7.520-1, MUSCLE 3.8.31, mySQL workbench 8.0.36, Python
3.9, RStudio 2023.06.2+562.

Docker image of the latest version of the deepBreaks: [132].

The Docker image provided above includes a summary of required
package libraries and instructions on how to use it. Along with our
existing online materials with tools used, deepBreaks, we also have
a Jupyter notebook, instructions for Conda installation, and Code
Ocean (RRID:SCR_015532) capsule [133], for deepBreaks.

These resources should help practitioners using the main ML pro-
gram we used, deepBreaks, described elsewhere, use the VPOD
database for Opsin applications.

Additional Files

Supplementary Material 1 (S1). Performance metrics across opsin
subsets and top performing models for VPOD_1.1.
Supplementary Material 2 (S2). Tracking model performance vs.
number of sequences in training data.

Supplementary Material 3 (S3). Three functions fitted to visual-
ize the relationship between training data size (number of geno-
types and corresponding phenotypes) vs. model performance (R?)
based on results from the vertebrate subset of data. The Akaike
information criterion (AIC) is a measure used for model selection
when comparing different statistical models, accounting for both
the goodness of fit of the model and the simplicity of the model
(the number of parameters used). The goal is to find a balance
between a model’s ability to explain the data and its complexity,
preventing overfitting.

Supplementary Material 4 (S4). Comparing ML predictions on in-
vertebrate and vertebrate UVS/SWS opsin MSP data.
Supplementary Material 5 (S5). Graph of WT model predictions
for 30 unseen invertebrate opsins, R> = 0.887, MAE = 17.5 nm,
MAPE = 4.05. All the “known” Amax values are from physiolog-
ical measures, including MSP or ERG measurements (instead
of purified heterologously expressed opsins), and are linked to
a particular opsin sequence by in situ hybridization. The light
gray bar surrounding the trend line represents a 95% confidence
interval.

Supplementary Material 6 (S6). Graph of vertebrate model pre-
dictions for unseen WT-UVS/SWS data, n = 25, R? = 0.914, MAE
= 7.89 nm, MAPE = 1.90. All sequences were randomly selected
from the UVS/SWS model under the condition that they were WT
opsins. The light gray bar surrounding the trend line represents a
95% confidence interval.

Supplementary Material 7 (S7). Comparing performances of ML
predictions and phylogenetic imputation on a subsample of opsin
data.

Supplementary Material 8 (S8). Results for epistasis test on the
WDS, vertebrate, WT, and rod models.

Supplementary Material 9 (S9). Functionally characterized spec-
tral tuning sites predicted by the WT models.

Supplementary Material S10 (S10). Phylogenetic gene tree of all
wild-type opsins (n = 362), including ancestral constructs (branch
lengths = 0), constructed from the VPOD_wt_het_1.1 dataset. In
this tree, we have annotated the major opsin groups (c-opsins, r-
opsins, and some tetraopsins), then further annotated the c-opsin
families (LWS, SWS1, SWS2, Rh1, and Rh2). We have also assigned
taxonomic annotations by class, which are color-coded and pro-
vided by the key.

Supplementary Material S11 (S11). Including data from experi-
mentally mutated opsin sequences reduces errors in predicting
Amax. (A) Distributions of errors from predicting Amax 0f exper-
imentally mutated opsin sequences. Blue are prediction errors
when using the WT model, which lacks experimentally mutated
sequences (root mean square error [RMSE] = 17.6 nm). Orange are
prediction errors when using the WDS model, which includes ex-
perimentally mutated sequences (RMSE = 12.6 nm). (B) Data from
experimental mutants significantly improves predictions of Amax
when using a model trained with experimental mutants (WDS)
compared to a model without (WT) experimental mutant data,
rejecting the null hypotheses of no difference between prediction
errors based on different models. At top is the distribution of dif-
ferences between predictions with and without experimental mu-
tants in the training data for large effect mutations (>10 nm). At
bottom is the same for all mutations. We plot differences of ab-
solute error instead of squared error in B for easier visualization,
although P values were calculated using distributions of squared
errors. Additionally, plotting raw differences allows seeing most
values are below zero, meaning predictions with WDS (which has
experimental mutants) have less error than those without exper-
imental data from mutants (WT).

Supplementary Material 12 (S12). Including data from experi-
mentally mutated opsin sequences reduces errors in predicting
epistatic effects. (A) We analyzed opsins with multiple mutations
whose known effect on Amax phenotype were nonadditive (epista-
sis). In purple, we plot the difference (absolute error in nm) be-
tween known Amax phenotypes with epistasis, compared to Amax
phenotypes ignoring epistasis by assuming individual mutations
are not additive, which we call epistasis-free additive mutation
values (EAMVs). Here root mean square error (RMSE) = 29.8 nm.
In blue, we plot errors when predicting epistatic phenotypes us-
ing a model trained without opsins containing experimentally
generated mutations (WT), which lead to RMSE = 12.4 nm. In
orange, we plot errors when predicting epistatic phenotypes us-
ing a model trained with opsins containing experimentally gener-
ated mutations but excluding those whose mutational effects are
nonadditive (WDS-minusepi), which lead to RMSE = 12.4. (B) Our
tests of the null hypotheses of no underlying differences between
the distribution of squared error for predictions of Amax for the
111 “epistatic opsins” were rejected with Wilcoxon signed-rank
tests after Bonferroni correction by the WDS-minusepi model ver-
sus WT model (P = 1.24e-06); WDS-minusepi model versus EAV
(P = 2.56e-09), but not rejected for the WT model versus EAV
(P = 0.086). The large differences in RMSE and the results of the
statistical comparisons strongly support the idea that the inclu-
sion of even single mutants greatly reduces the error of ML mod-
els when predicting epistatic interactions between mutations and
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that this error is significantly less than the error we would observe
if our models simply treated mutations as additive. Conversely,
the insignificant difference between WT predictions and EAMV
indicates there is not enough information about epistatic inter-
actions in wild-type (which excludes artificially mutated opsins)
data alone to accurately predict intragenic epistasis. As with S11,
we plot differences of absolute error instead of squared error in B
for easier visualization but use squared error for statistical com-
parison.

Supplementary Material 13 (S13). Ranked ML algorithm perfor-
mances.

Abbreviations

Adaboost: adaptive boosting; AIC: Akaike information criterion;
COS1: monkey kidney cell line; CV: cross-validation; EAMV:
epistasis-free additive mutation value; ERG: electroretinogram;
GBR: gradient boosting regressor; GPCR: G-protein coupled recep-
tor; HEK293: human embryonic kidney cell line; ISH: in situ hy-
bridization; KDE: kernel density estimate; LGBM: light gradient
boosting machine; LWS: long-wave sensitive; MAE: mean abso-
lute error; MAPE: mean absolute percentage error; ML: machine
learning; MSE: mean squared error; MSP: microspectrophotom-
etry; MWS: medium wavelength-sensitive; NCBI: National Cen-
ter for Biotechnology Information; RMSE: root mean square error;
SWS: short-wave sensitive; T1: type 1 {microbial opsins}; TMD:
transmembrane domain; USS: ultraviolet and short-wave sensi-
tive; UVS: ultraviolet sensitive; VPOD: Visual Physiology Opsin
Database; WAG: Whelan and Goldman substitution model; WDS:
whole dataset; WT: wild-type; XGB: extreme gradient boosting;
Amax: lambda max/wavelength of light with maximal absorbance.
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