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Abstract 

Bac kgr ound: Predicting phenotypes from genetic variation is foundational for fields as di v erse as bioengineering and global change 
biology, highlighting the importance of efficient methods to predict gene functions. Linking genetic changes to phenotypic changes has 
been a goal of decades of experimental work, especially for some model gene families, including light-sensiti v e opsin proteins. Opsins 
can be expressed in vitro to measure light absorption parameters, including λmax —the w av elength of maxim um a bsorbance—which 

str ongl y affects organismal phenotypes like color vision. Despite extensi v e r esear c h on opsins, the data remain dispersed, uncompiled, 
and often challenging to access, thereby precluding systematic and comprehensive analyses of the intricate relationships between 

genotype and phenotype. 

Results: Here , w e report a newly compiled database of all heterolo gously e xpressed opsin genes with λmax phenotypes that we call 
the Visual Physiology Opsin Database ( VPOD ). VPOD_1.0 contains 864 unique opsin genotypes and corresponding λmax phenotypes 
collected across all animals from 73 separate publications. We use VPOD data and deepBreaks to show regression-based machine 
learning (ML) models often r elia b l y pr edict λmax , account for nonadditi v e effects of m utations on function, and identify functionall y 
critical amino acid sites. 

Conclusion: The ability to reliably predict functions from gene sequences alone using ML will allow robust exploration of molecular- 
ev olutionar y patterns gov erning phenotype, will inform functional and ev olutionar y connections to an organism’s ecological nic he , 
and may be used mor e br oadl y for de novo protein design. Together, our database, phenotype predictions, and model comparisons lay 
the groundwork for future resear c h applicable to families of genes with quantifiable and comparable phenotypes. 

Ke yw or ds: mac hine learning, re gression, compiled database, genotype–phenotype relationships, predicting phenotypes, spectral sen- 
sitivity, color-vision, opsins, imputation 
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Ke y P oints: 

� We introduce the Visual Physiology Opsin Database 
( VPOD_1.0 ), which includes 864 unique animal opsin 

genotypes and corresponding λmax phenotypes from 73 
separate publications. 

� We demonstrate that regression-based machine learn- 
ing models can r eliabl y pr edict λmax fr om gene sequence 
alone, predict nonad diti ve effects of mutations on func- 
tion, and identify functionally critical amino acid sites. 

� We provide an approach that lays the groundwork for fu- 
tur e r obust explor ation of molecular-e volutionary pat- 
terns governing phenotype, with potential broader ap- 
plications to any family of genes with quantifiable and 

comparable phenotypes. 
Recei v ed: February 15, 2024. Revised: June 25, 2024. Accepted: September 1, 2024 
© The Author(s) 2024. Published by Oxford Uni v ersity Pr ess GigaScience. This is an
Attribution License ( https://cr eati v ecommons.org/licenses/by/4.0/ ), which permits 
the original work is pr operl y cited. 
ntroduction 

lthough critical to pr ogr ess in drug and vaccine design [ 1–
 ], responses to climate change [ 4–8 ], and bioengineering [ 4 , 9–
1 ], accur atel y pr edicting gene function fr om sequences r emains
 significant challenge. While there are many ways to eluci-
ate genotype–phenotype relationships experimentally, including 
eep mutational scanning, and in vitro heter ologous expr ession
ith phenotyping, these techniques are often tedious and cost- 
r ohibitiv e, especiall y when applied to broad comparative stud-

es of gene families. In addition, accur atel y pr edicting the phe-
otype of a protein using computational methods alone is chal-

enging because of data gaps and the sheer complexity of possi-
le relationships between genes and phenotypes, including epis- 
asis and the nonad diti ve effects of different mutations. Machine
earning (ML) is gaining traction for its potential broad biological
pplications, accessibility, and faster speeds, especially in biolog- 
cal contexts where phenotype data are abundant and quantifi- 
ble . Here , classical regression and classification algorithms are
ometimes used to train models for phenotype predictions using 
 Open Access article distributed under the terms of the Cr eati v e Commons 
unrestricted reuse, distribution, and reproduction in any medium, provided 
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enotype–phenotype data [ 12 , 13 ], while deep learning models can
e used to integrate heterogeneous multilayered omics and en-
ironmental data for establishing higher-dimensional genotype–
henotype connections [ 14 , 15 ] or de novo protein design [ 16 ]. In
roader biological contexts, ML models often inform laboratory
xperiments to predict directional evolution of diseases and their
ariants [ 17–19 ] or to automate image sorting and animal iden-
ification from camera trap data [ 20–22 ]. In all cases, ML models
re a worthwhile long-term investment for genotype–phenotype
tudies because models can iter ativ el y impr ov e as empirical data
ccum ulate ov er time. 

Suc h accum ulation of important information is exemplified by
ecades of laboratory work that has led to significant pr ogr ess in
nderstanding the genetic basis of phenotypic changes for model
ene families such as opsins. Opsins are a family of G-protein cou-
led receptors (GPCR) that bind to a retinal chromophore . T he
 units together, opsin and c hr omophor e, form visual pigments
hat absorb photons [ 23 ]. Opsins have crucial roles in many or-
anismal functions, including circadian rhythms, phototaxis, and
mage-forming color vision. A critical opsin phenotype is spec-
ral sensitivity—the range of wavelengths to which a gene or or-
anism is sensitive . T he main parameter of opsin spectral sensi-
ivity is λmax , the wavelength of light (in nm) with maximal ab-
orbance [ 24 ]. Common methods of c har acterizing spectr al sen-
itivities and λmax include or gan-le v el electr or etinogr ams (ERGs)
 25–27 ], cell-le v el micr ospectr ophotometry (MSP) [ 28–32 ], purifica-
ion of heter ologousl y expr essed opsins follo w ed b y spectropho-
ometry [ 33 ], and heterologous action spectroscopy using light re-
ponse assays for opsins expressed in immortalized cell lines [ 34 ].
iffer ent opsins ar e tuned by c hanges in amino acid sequences to

espond to different wavelengths of light, and many previ-
us studies have expressed experimentally mutated opsins and
easur ed spectr al sensitivities to establish genotype–phenotype

onnections [ 34–38 ]. Although other factors sometimes affect
pectr al r esponsiv eness, including the type of c hr omophor e
o which an opsin is cov alentl y bound (11- cis retinal or 11-
is -3,4-didehydr o r etinal) [ 39 , 40 ], opsins pr ovide a r ar e case
here an intrinsic molecular function extends rather directly

o organismal phenotypes, especially those involving color sen-
itivity. Despite opsins being a well-studied system with an
xtensiv e bac klog of published liter atur e, some pr e vious authors
xpressed doubts that sequence data alone could pr ovide r eli-
ble computational predictions of λmax phenotypes [ 41–44 ]. At the
ame time, some λmax predictions sho w ed promise, although on
he limited scale of v ertebr ate cone visual pigments via atomistic

olecular sim ulations [ 45 , 46 ]. Furthermor e, onl y the nonanimal,
icrobial, or type 1 (T1) opsins have been systematically cata-

oged and used to examine genotype–phenotype pr edictiv e po w er
f ML models [ 47 , 48 ]. While some r esearc hers hav e made signifi-
ant efforts to compile peak sensitivity data for terrestrial animal
hotopigments [ 49 ] and taxon-specific light-sensitivity data for
r oups like fr ogs [ 50 , 51 ] and r ay-finned fishes [ 52 , 53 ], these efforts
urr entl y lac k dir ect links to genetic data that are essential for
ur current study . Consequently , the extensive data on genotype–
henotype associations of animal opsins remain disorganized, de-
entralized, often in noncomputer readable formats within older
iter atur e, and under anal yzed computationall y. 

Her e, we r eport a genotype–phenotype database for animal
psins called the Visual Physiology Opsin Database ( VPOD ). We
sed standard liter atur e searc hes to compile all heter ologousl y
xpressed animal opsin genes with spectral sensitivity measure-
ents. We used this ne wl y compiled and harmonized database

o e v aluate ML methods for connecting genotypes and pheno-
ypes. We created 11 subsets of the ov er all database to examine
actors that impact the reliability and performance of ML mod-
ls and briefly compar ed ML pr edictions to phylogenetic imputa-
ion [ 54 , 55 ]. We also examined whether ML can pr edict intr a genic
pistasis, and we predicted amino acid sites particularly impor-
ant for changing λmax . Using our database of 864 unique opsin
equences and corresponding λmax values, w e sho w ML models
rained on opsin data accur atel y pr edict the λmax of opsins from
enetic data alone (highest R 

2 = 0.968 with a lo w est mean abso-
ute error [MAE] of 6.56 nm), especially when ample and diverse
raining data are a vailable . ML also predicts some known effects
f epistatic mutations on λmax . Finally, ML models identify sev-
ral sites that cause shifts in λmax (e.g., “spectral tuning sites”) and
ites known to be structur all y important, e v en in the absence of
utant data in training. When training data are sufficient, these

esults support the use of ML as a reliable and efficient predictor
f λmax for pr e viousl y unc har acterized opsins, as a tool for iden-
ifying candidate spectral tuning sites and epistatic interactions,
nd as a more general method for linking gene sequences and
henotypes. 

ethods 

ompiling a genotype–phenotype database for 
nimal opsins 

e collected λmax data for opsins using typical liter atur e r e-
ie w/searc h methods, with search engine, k e ywords, and date of
ccess documented in the “litsearch ” table of the VPOD database
 RRID:SCR _ 025668 ). We cataloged all usable papers with λmax data
n the “references ” table of VPOD , recording DOI and a k e y to link
o the search that found the paper. We documented the details of
eter ologous expr ession experiments in the “heterologous ” table,

ncluding species, GenBank accession number for the sequence,
 utation(s) (if a pplicable) using a mac hine-r eadable notation,

max , cell type for expression (e.g., HEK293, COS1, etc.), protein pu-
ification method, type of spectrum (e.g., dark or difference spec-
rum), and a k e y to link to the corresponding literature source.
ote, we did not record the c hr omophor e used to r econstitute the
urified opsin protein because 11- cis retinal is the standard and all

nstances thus far recorded in the “heterologous ” table are from ex-
eriments using 11- cis retinal (although future iterations of VPOD
ould record these details if data with alternative chromophores
ecome available). We input opsin genetic data in an “opsins ” ta-
le, recording opsin gene family names (e .g., long-wa ve sensitive =
WS, short-wav e sensitiv e = SWS1, etc.). We also included specific
gene names ” (where applicable), phylum, class, species informa-
ion, accession number, DNA sequence, amino acid sequence, and
he database from which sequences were retrieved (e.g., NCBI).

e r e-cr eated all m utant and c himeric (e.g., 1 or mor e tr ans-
embrane domains of the mutant copied from a different se-

uence to replace the original) opsin sequences based on liter-
ture descriptions using a pair of Python scripts ( mutagenesis.py
nd chimeras.p y ) a vailable on our GitHub [ 56 ]. We added all het-
r ologousl y expr essed opsins fr om the liter atur e to VPOD ; we call
his version of the database VPOD_1.0. We refer to heterologous
ata as VPOD_het_1.0 , which will allow for future additions to the
atabase to link specific opsin sequences to λmax values estab-

ished with methods other than heter ologous expr ession, includ-
ng micr ospectr ophotometry or other methods. During the course
f manuscript r e vie w, we found and entered 259 new heterolo-
ousl y expr essed opsins into VPOD , an update we call VPOD_1.1
Fig. 1 ) . We decided to k ee p results from VPOD_1.0 in the main text

https://scicrunch.org/resolver/RRID:SCR_025668
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Figure 1: Histogram distributions of vertebrate and invertebrate opsins and absorbance data—λmax —from VPOD_het_1.1 with a scaled kernel density 
estimate (KDE) curves overlaid to better visualize the general shape and characteristics of our λmax distributions. Note an obvious data bias for 
v ertebr ate opsins, especiall y those with λmax v alues between 350–375 nm and 480–510 nm, pr obabl y due to focal r esearc h on UVS and Rh1 opsins. 
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because the new data points did not dr asticall y alter an y model 
performances. We also provide this table of performance metrics 
for VPOD_1.1 ( Supplementary Material 1 (S1) ). Ther efor e, all tests 
and figures should still be assumed to use VPOD_1.0 data unless 
stated otherwise. 

Training ML models with deepBreaks 
We performed all data pr epr ocessing, including data extr action,
sequence alignments, and formatting, in the Jupyter notebooks 
“opsin_model_wf .ipynb , ” available on GitHub . We used 2 multiple 
sequence alignment methods, MAFFT ( RRID:SCR _ 011811 ) [ 57 ] and 

MUSCLE ( RRID:SCR _ 011812 ) [ 58 ], and a version of both alignments 
with a Gblocks ( RRID:SCR _ 015945 ) [ 59 ] refinement (for a total of 4 
alignments), all set to their default parameters to begin to test the 
sensitivity of model performance to different alignments. We then 

tr ained v arious ML models employing a custom version of deep- 
Breaks [ 60 ], an ML tool designed for exploring genotype–phenotype 
associations. deepBreaks takes aligned genotype data (DN A, RN A,
amino acid) and some measure(s) of corresponding continuous or 
categorical phenotype data as input to train ML models. deepBreaks 
uses one-hot encoding to convert amino acid sequences into nu- 
merical values. One consequence of this encoding is any amino 
acids at a given position in the alignment, which are not present 
at that position in any training data, will be treated equivalently as 
unseen. For example, cases of only A and V at a highly conserved 

site in the training set that are presented with a sequence with T 

at that site will be considered as no A and no V. The models can- 
ot distinguish the input whether it is T or other unseen amino
cids at that site . T he results produced by deepBreaks encompass a
ompilation of 12 r egr ession ML models [ 60 ], showcasing 10 met-

ics of cr oss-v alidation performance (ranked by R 

2 ) and a feature
mportance report derived from the top-performing models that 
anks amino acid positions by their relative importance to each

odel (from 0.0–1.0, with 1.0 being a site with the highest rela-

ive importance) for the phenotype in question ( λmax ). The met-
ics used to determine these r elativ e importance scor es of eac h
osition vary based on the structure and output of the algorithms
sed for model training. For example, xgboost [ 61 ] and LightGBM
 62 , 63 ] use the number of times a feature appears in a tree as a
roxy for importance [ 60 ], while AdaBoost [ 64 ] and random forest
 65 , 66 ], use Gini importance, which quantifies a feature’s contri-
ution to impr oving pr ediction accur acy [ 60 , 67 , 68 ]. For a more

etailed explanation on how position importance scor es ar e cal-
ulated for different models, refer to the “Interpretation ” heading 
nder the methods section of the deepBreaks publication [ 60 ]. In

ddition to R 

2 , deepBreaks reports the MAE, mean absolute percent
rr or (MAPE), mean squar e err or (MSE), and r oot mean squar e er-
or (RMSE) for each of the 12 ML models. We e v aluated the per-

ormance of algorithms based on their r elativ e r anks to look for
atterns in which algorithms performed better for different data 
ubsets and a ppr oac hes. deepBreaks also pr oduces a set of distri-
ution box plots (default is 100) to visualize phenotypes ( λmax ) as-
ociated with a particular amino acid identity at a site of interest,
rder ed alphabeticall y. 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://scicrunch.org/resolver/RRID:SCR_011811
https://scicrunch.org/resolver/RRID:SCR_011812
https://scicrunch.org/resolver/RRID:SCR_015945
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Ta ble 1: P erformance metrics across opsin subsets and top-performing models 

Name Data subset version # sequences Top ML algorithm R 2 a MAE (nm) b MAPE (%) b MSE a RMSE a 

Whole dataset VPOD_wds_het_1.0 864 LGBM 0.947 7.47 1.71 207 13.8 
All wild types VPOD_wt_het_1.0 318 Bayesian Ridge 0.902 10 2.18 297 16.5 
All mutants VPOD_mut_het_1.0 546 LGBM 0.951 7.89 1.86 194 13.4 
Vertebrates VPOD_vert_het_1.0 721 LGBM 0.968 6.56 1.49 111 10.3 
WT 

v ertebr ates 
VPOD_wt_vert_het_1.0 274 GBR 0.961 5.46 1.18 82.1 8.36 

Inv ertebr ates VPOD_inv_het_1.0 143 LGBM 0.814 14.7 3.22 614 23.1 
Rods VPOD_rod_het_1.0 352 Bayesian Ridge 0.834 3.51 0.71 27.7 5.04 
WT Rods VPOD_wt_rod_het_1.0 157 GBR 0.783 3.57 0.72 31.9 5.11 
MWS/LWS VPOD_mls_het_1.0 91 XGB 0.677 8.77 1.82 317 15 
UVS/SWS VPOD_uss_het_1.0 280 GBR 0.821 8.02 2.06 200 13.6 
WT UVS/SWS VPOD_wt_uss_het_1.0 66 Adaboost 0.865 7.79 1.87 152 10.6 
T1 opsins Kary asuy ama_T1_ops 884 Random Forest 0.804 9.41 1.76 186 13.5 

a R 2 , mean square error (MSE), and root mean square error (RMSE) are often interpreted as direct measures of comparing/analyzing model performance and used as 
training loss terms of the objective function—which measures how well the model fits the training data. One has to often balance between this and the regularization 
term, whic h contr ols the complexity of the model. T hus , a high performance is both simple and pr edictiv e, a tr ade-off r eferr ed to as the “bias-v ariance ” tr ade-off. 
b Mean absolute error (MAE) and mean absolute percent error (MAPE) are in relation to the absolute error λmax predictions and interpreted in the same units of 
“nm.”
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Figure 2: ML model predictions on whole vertebrate opsin dataset, n = 721, R 2 = 0.968, MAE = 6.68 nm, MAPE = 1.52. Sequences were iteratively and 
r andoml y selected to be withheld from the training dataset ( n = 50) to act as unseen test data. This was repeated until all sequences had been sampled 
once. Predictions in which the absolute difference between the “known” and “pr edicted” λmax ar e < 10 nm are represented by gray dots. All predictions 
in which the absolute difference between the “known” and “pr edicted” λmax ar e > 10 nm are represented by colored dots. Yellow dots represent WT 

pr edictions, m utants with only a single mutation are green, mutants with greater than 1 mutation are light blue, and chimeric opsins are dark blue. 
The light gray bar surrounding the trend line represents a 95% confidence interval. Inset: Boxplot distribution of prediction error for different opsin 
data types from the top-performing vertebrate opsin ML model to better visualize our sources of error. Note, the median for each boxplot hovers 
around 0 nm. Single mutations have the largest spread of error, but this is most likely due to the high abundance of that data type over all others. 
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nderstanding model performance using 

ifferent subsets of the database 

e created 11 data subsets with varying levels of taxonomic and
ene family inclusivity (Table 1 ) to test which factors most im-
act the reliability/performance of ML methods. We used nam-

ng conventions that include versioning to improve reproducibil-
ty and reliability of individual datasets and models. For ex-
mple, 1 subset combines ultraviolet and SWS opsins, which
e named VPOD_uss_het_1.0. Our convention is to name the

ubset (in this case USS = “ultraviolet and short-wave sen-
itive” opsins), name the source of phenotype data (heterol-
gous = het), and record the version number of the dataset
1.0) . We also created subsets for medium- and long-wave sen-
itive opsins ( VPOD_mls_het_1.0 ) and all rod (Rh1) and rod-like
Rh2) opsins ( VPOD_rod_het_1.0 ). Other subsets use species tax-
nomy, one for v ertebr ates ( VPOD_vert_het_1.0 ) and another for
nv ertebr ates ( VPOD_inv_het_1.0 ). For taxonomic subsets, we con-

idered all sequences from phylum Chordata as “vertebrates”
nd the rest as “in vertebrates .” Another subset excludes all mu-
ant opsin sequences, called “wild-types” ( VPOD_wt_het_1.0 ). A
nal named subset is the whole dataset ( VPOD_wds_het_1.0 )

Fig. 2 ). 
Using various subsets of data, we performed a number of

xperiments to better understand the performance of ML models
n predicting λmax . First, to better understand how training data

elate to model performance, R 

2 , and training data size, we
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Figure 3: Scatterplot of wild-type model’s λmax predictions for 546 mutant opsins, with an R 2 of 0.860, MAE of 12.36 nm, and MAPE of 2.91%. Mutant 
predictions in which the absolute difference between the “known” and “pr edicted” λmax ar e < 10 nm are represented by gray dots. All predictions in 
which the absolute difference between the “known” and “pr edicted” λmax ar e > 10 nm are represented by colored symbols, further separated by 
inv ertebr ate (squar es) and v ertebr ate (circles) opsins. Mutants with onl y a single m utation ar e gr een, m utants with gr eater than 1 m utation ar e light 
blue, and chimeric opsins are dark blue. Mutations that caused a shift of > 10 nm from the WT are outlined in purple . T he light gray bar surrounding 
the trend line represents a 95% confidence interval. 
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gr aduall y incr eased the size of training datasets by starting from 

zero and incrementally adding between 15 and 50 r andoml y 
selected sequences at a time for the whole dataset (WDS), verte- 
brate, wild-type (WT), and rod subsets se parately, re peating the 
process 3 times per subset ( Supplementary Material 2 (S2) ). We 
then analyzed the fit between the size of training datasets (x-axis) 
and model performance (y-axis), comparing 6 nonlinear models 
with Akaike information criterion (AIC) to find the model that best 
explains the observed variation ( Supplementary Material 3 (S3 ).
Second, to understand if ML could predict known pheno- 
typic changes due to experimental mutations, we queried the 
top-performing WT model (which lacks data from artificially 
mutated sequences) using all experimentally mutated opsins 
to predict their known phenotypes. We plotted these results 
using matplotlib [ 69 ] to visualize c har acteristics of poorl y pr e- 
dicted outliers (e.g., taxonomic bias or sensitivity to mutations,
whic h caused lar ge shifts in λmax fr om the WT) (Fig. 3 ). To test 
further whether including these mutant data significantly im- 
pr ov es pr edictions of λmax , we used the VPOD_het_1.1 dataset 
( Supplementary Material 1 (S1) ) and a Wilcoxon signed-rank test 
[ 70 , 71 ] to compare distributions of squared error for predictions 
by the WDS model (contains mutant data) and WT model (no 
mutant data) on all mutant data ( n = 761) and separ atel y com- 
paring onl y m utants causing the lar gest phenotypic c hanges in 

λmax ( > 10 nm from the wild-type; n = 346). To accomplish this 
for the WDS models, we iter ativ el y r emov ed 25 mutant opsins 
at a time from training data, used the same training algorithm 

(gr adient boosted r egr essor [GBR]), and pr edicted λmax v alues of 
withheld opsins following the completion of model training (with- 
held opsins are not used as test data during the actual model 
training), until all mutant opsins were sampled once (this 
notebook is available on GitHub as 
“vpod_wf_iterate_subsample.ipynb . ” Thir d, w e examined the ability 
of our models to predict λmax of 30 inv ertebr ate opsins not in 

VPOD_1.0 because they are only known from physiological studies 
( Supplementary Material 4 (S4) , Supplementary Material 5 (S5) ).
ere, we collected data both characterized by single-cell mi- 
r ospectr ophotometry (MSP) or electr or etinogr am methods and
ith expression localized to cell type by in situ hybridization

ISH), to link λmax to a specific opsin (the sequences and metadata
an be found in “msp_erg_raw.txt ” and “msp_erg_meta.tsv ,” while 
he r esulting pr edictions can be found under the “msp_tests ”
older on our GitHub r epository). Finall y, we dir ectl y compar ed
r edictiv e ca pabilities of models tr ained on differ ent data subsets
y r andoml y selecting and r emoving the same 25 wild-type
ltra violet or short-wa ve sensitive opsins from the training data
f the WDS, v ertebr ate, WT, and ultr aviolet sensitiv e (UVS)/SWS
odels before training and querying the model with those same 

equences following training ( Supplementary Material 4 (S4) ,
upplementary Material 6 (S6) ). 

omparing machine learning and phylogenetic 

mputation 

e compared performance of ML models to phylogenetic impu- 
ation, which estimates phenotypes using phylogenetic informa- 
ion [ 54 , 55 ]. Phylogenetic imputation uses maximum likelihood
we will not abbr e viate maxim um likelihood as ML to avoid con-
usion with machine learning), usually assuming Brownian mo- 
ion to predict missing phenotypes using a phylogenetic tr ee, suc h
hat more closely related species or sequences have more sim-
lar phenotypes. For the phylogeny, we constructed opsin gene 
rees in phyML [ 72 ], assuming the “WAG” substitution model [ 73 ]
nd a proportion of 0.029 invariable sites, with Gamma as a rate
cross sites model, and 4 substitution rate classes. We randomly
 emov ed 50 opsin sequences and their corr esponding λmax v al-
es from each of the ML training datasets (with the exception
f the smaller medium wav elength-sensitiv e (MWS)/LWS and in-
 ertebr ate datasets, wher e we onl y r emov ed 15), then estimated
he r emov ed λmax v alues using phylogenetic imputation. We used
he phylogenetic imputation submodule of the phytools R pac ka ge
 74 ] for imputation . We compared imputed and actual λmax using

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
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 egr ession. Imputation seemed sensitiv e to input alignment, per-
aps caused by very short or zero length branch lengths in the
hylogeny, as we could only complete imputation with phytools
fter removing uninformative and heavily gapped regions with
blocks. To allow direct comparisons of regressions between im-
utation and ML, we r e-cr eated ML tr aining–data alignments us-

ng MAFFT, MUSCLE, and Gblocks in the same way as for imputa-
ion and predicted λmax for the same sets of sequences as impu-
ation ( Supplementary Material 7 (S7) ). 

esting ability of ML to account for intragenic 

pistasis 

unctional predictions are often misled by epistasis [ 41 ], so we
ested the ability of our WDS models to predict the effects of
pistatic mutations by haphazardly selecting 3 double mutants
ith pr e viousl y demonstr ated epistatic effects fr om tr aining data

n which double mutants, each single mutant, and wild-type se-
uence are all characterized by heterologous expression. The 3
pistatic double mutants are all derived from bovine rhodopsins:
83N_A292S, F261Y_A269T, and A164S_A269T. We r emov ed the
ouble m utants fr om the tr aining dataset but r etained single m u-
ants to test whether the model treats the mutations as ad diti ve
r epistatic. We hypothesized that the many instances of multi-
utant sequences with epistatic effects in the training set would

llow the model to account for both the magnitude and direc-
ion of intr a genic epistasis. We then r an a separ ate test wher e
e r emov ed the same double m utants plus their corr espond-

ng single mutants to observe whether the WDS model still pre-
icts epistatic effects from wild-type data alone. We subsequently
epeated this same process for the WT and vertebrate models
 Supplementary Material 8 (S8) ). 

We ran an additional experiment to test the general ability
o to predict epistatic interactions between mutations for all
v ailable data. Her e, we identified all m ultim utants that hav e
henotype data for each individual component mutation. Next
e selected those m ultim utants with nonad diti ve (e pistatic) in-

eractions between mutations (which we define as > 1 nm dif-
erence between the actual m ultim utant phenotype and the
um of changes in phenotype due to the individual mutations).
hese 111 “epistatic m utants” wer e then all r emov ed fr om WDS
 VPOD_wds_het_1.1 ) to create a new training dataset called “WDS-

in use pi” that lac ks e vidence of intr a genic epistasis. For this
est, we hypothesized that if the ML a ppr oac h can account for
pistasis, the RMSE of predictions of the 111 epistatic mutants
ould be significantly lower for the model trained with WDS-
in use pi than the model trained with no mutants at all (WT).
e tested for statistically significant differences in the distri-

utions of square error for predictions made by WDS-min use pi
ersus WT and WDS-min use pi versus the epistasis-free addi-
iv e m utation v alues (EAMVs, whic h r epr esent the expected λmax 

or mutants if the effects of their singular mutational compo-
ents wer e tr eated as ad diti v e). We also pr edicted a statisti-
all y significant differ ence between pr edictions made by WT and
AMV only if WT contains enough natur al v ariation (not based
n mutants) to observe patterns of intragenic epistasis . T hese
tatistical tests assumed a Bonferroni correction for multiple
ests. 

dentifying known spectral tuning sites 

n addition to predicting λmax , we wanted to identify amino acid
ites with strong effects on the phenotype, called spectral tun-
ng sites for opsins. To do so, deepBreaks produces an “importance
 eport” of the r elativ e importance of amino acid positions within
he sequence r elativ e to the phenotype . T his r eport is gener ated
or each of the top 3 performing models, with the addition of a col-
mn that calculates the “mean r elativ e importance” v alue of eac h

ndividual position. We automated the translation of these fea-
ur e r epr esentations of aligned amino acid positions compared to
ovine rhodopsin for the sake of inter pr etability. We also included
he amino acid residue identity at eac h corr esponding position
nd whether it is in one of the opsin tr ansmembr ane domains
TMDs). We used this to provide us with a standardized context
or analysis of the most significant positions highlighted by the

odels, which we could use to compare to published mutants and
nown spectral tuning sites. We analyzed the importance report
or each model to see what positions it highlighted as most im-
ortant, with an extra emphasis placed on the output for the WT
odels since it was the least likely to be biased by the presence of

lready known mutant data ( Supplementary Material 9 (S9) ), as
r e vious r esearc hers often c hose suspected tuning sites for m u-
agenesis experiments. 

esults 

ata description: A genotype–phenotype 

atabase for animal opsins 

POD is a new database , a vailable on GitHub and in GigaDB
 75 ] that curr entl y includes all heter ologousl y expr essed animal
psins. We refer to a subset of the database with only heterolo-
ous data as VPOD_het_1.0 , although for version 1.0, this is syn-
nymous with the entire database. VPOD_het_1.0 relies on 73
ublications, mainly primary sources, with dates ranging from
he 1980s to 2023. The database contains opsin sequences and
henotype data from 166 unique species (counting 35 recon-
tructed ancestors), including fishes, amphibians, reptiles, mam-
als , crustaceans , and biv alv es. Altogether, VPOD_het_1.0 con-

ains 864 unique opsin sequences and corresponding λmax values.
his includes 318 unique WT opsins and 546 unique experimen-
all y m utated opsins (447 fr om v ertebr ates and 99 fr om inv erte-
r ates) fr om 82 species (73 v ertebr ate and 9 inv ertebr ate species).
f the mutants, 73 are “chimeric,” meaning 1 or more transmem-
rane domains of the mutant are copied from a different opsin to
eplace the original. Phylogenetically, VPOD_het_1.0 is mainly ver-
ebrate opsins ( n = 721), with only 143 unique invertebrate opsins
 Supplementary Material 10 (S10) ). The v ertebr ate opsins consist
f 113 UVS opsins, 167 SWS opsins, 8 MWS opsins, 83 LWS opsins,
37 rhodopsin (Rh1) opsins, and 113 rhodopsin-like (Rh2) opsins
 Supplementary Material 10 (S10) ). Phenotypically, VPOD_het_1.0
pans a range of λmax values from 350 to 611 nm. The highest con-
entration of phenotype values are between 350–375 nm and 475–
25 nm (Fig. 1 ) due to the liter atur e bias favoring c har acterization
f UVS/SWS opsins and rhodopsins (Rh1). 

 he da ta used for model tr aining strongl y impact
ccuracy 

e v er al models tr ained with differ ent subsets of data pr edicted

max with high accuracy (Table 1 ). The top-performing models
rom these subsets consistently used the same 5 algorithms, in-
luding the gradient boosting regressor (GBR) [ 68 , 76 ], Bayesian
idge (BR) [ 77 , 78 ], light gradient boosting machine (LGBM) [ 79 ],
 andom for est (RF) [ 66 ], and extr eme gr adient boosted mac hine
XGB) [ 61 ]. For example, VPOD_vert_het_1.0 —trained with all ver-
ebr ate wild-type, m utant, and c himeric opsins—had the highest
0-fold cr oss-v alidation (CV) R 

2 (0.968) and lo w est MAE (6.56 nm)

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
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of any models we compared (Fig. 2 ). Similarly, VPOD_wds_het_1.0 ,
trained with the whole dataset, had very high R 

2 (0.947) and 

low MAE (7.47 nm). The 2 data subsets also shared the same 
5 top-performing models (GBR, BR, LGBM, RF, and XGB). In addi- 
tion, VPOD_wt_het_1.0 —trained without mutants and only wild- 
type data—had a similarly high R 

2 (0.902) and a low MAE (10.3 nm) 
when predicting unseen wild-type data. Overall, this “wild-type- 
onl y” model also far ed well, e v en when pr edicting m utant data 
not included in the model (Fig. 3 ). While these performance met- 
rics ar e impr essiv e, it is important to r emember that phylogenetic 
relatedness between sequences of a dataset could inflate values,
like R 

2 , when using random sampling for cr oss-v alidation because 
opsins that are more similar to those in the training data will be 
easier to predict, and phylogenetically clustered sequences will 
also be more likely to be resampled. Roberts et al. [ 80 ] provide a 
discussion of alternative cross-validation strategies such as “block 
cr oss-v alidation” for nonindependent data types, including phy- 
logeneticall y r elated data, whic h can help mitigate this issue. De- 
spite ov er all high R 

2 , we noticed multiple instances wher e m uta- 
tions that cause large shifts in λmax ( > 10 nm) were not well pre- 
dicted by the wild-type-only model, as indicated by large resid- 
ual values for the predictions of these mutant sequences (Fig. 3 ).
We found including mutant data significantl y impr ov es pr edic- 
tions of λmax when comparing predictions of models trained with 

(WDS) and without (WT) mutant data and rejecting the null hy- 
potheses of no underlying differences between the distribution 

of squared error for predictions of all mutants ( P = 9.96e-22,
WDS RMSE = 12.6 nm, WT RMSE = 17.6 nm) ( Supplementary 
Material 11 (S11) ) and when predicting phenotypes of mutants 
with large shifts in λmax ( P = 2.29e-25, WDS RMSE = 17.0 nm, WT 

RMSE = 24.2 nm) ( Supplementary Material 11 (S11) ). 
In addition to including mutant data, data availability more 

gener all y impr ov es pr edictiv e po w er, with performance thresh- 
olds and plateaus depending on the genetic diversity of the 
tr aining data. Ov er all accur acy in pr edicting λmax for our mod- 
els trained on more genotypically and phenotypically complete 
subsets of data (WDS, v ertebr ate, WT) impr ov es as a function 

of the number of sequences in a dataset and shows an initial 
plateau ( R 

2 = ∼0.80–0.90) of diminishing returns around 120 to 
200 sequences that continues to taper off above 200 sequences 
( Supplementary Material 2 (S2) , Supplementary Material 3 (S3 ).
Consistent with a rough performance threshold, we found mod- 
els from data subsets with fewer than ∼200 training sequences to 
far less accur atel y pr edict λmax . For example, VPOD_mls_het_1.0 —
tr ained onl y on the 91 MWS/LWS opsins of v ertebr ates—and 

VPOD_inv_het_1.0 —tr ained onl y on 144 inv ertebr ate opsins—
sho w ed among the lo w est R 

2 (0.677 and 0.814, r espectiv el y; Ta- 
ble 1 ). For all data subsets, we found the relationship between 

number of sequences in a dataset and model performance best 
fits a r ecipr ocal model, whic h is suitable when the dependent vari- 
able plateaus as the independent variable grows larger. We found 

the coefficients of the r ecipr ocal equations to be different between 

data subsets and to increase in negative magnitude with a de- 
crease in taxonomic/genetic diversity (the rod model holding the 
lar gest negativ e v alue of −44). These equations do not account di- 
r ectl y for taxonomic , genetic , or phenotypic diversity, as the raw 

number of genes is the value of the x-axis . T herefore , one should 

be cautious about a ppl ying them to predict model performance 
based on training data size alone. 

The complicated relationship between size of training dataset 
and pr edictiv e po w er is further illustrated b y models from some 
larger data subsets that resulted in rather poor predictions. One 
large dataset (884 sequences), the previously published Karya- 
uyama type 1 opsin dataset ( Kary asuy ama_T1_ops [ 47 ]), showed
nl y moder ate R 

2 (0.804) and MAE (9.41), similar to models fr om
he m uc h smaller inv ertebr ate data (Table 1 ). One explanation
or lo w er pr edictiv e po w er could be that the v ery old a ge of T1
psins led to a higher complexity and diversity of genotype–
henotype associations, which are not yet completely sampled 

nough to allow good predictions. In addition, models based on
od, UVS/SWS, and MWS/LWS subsets tend to sho w lo w er R 

2 

han might be at first expected ( Supplementary Material 2 (S2) ,
upplementary Material 3 (S3 ), especially since these 3 datasets
ogether comprise the training data for the vertebrate model 
our highest performing model, R 

2 = 0.968). For example, the
od model, with 352 sequences, should have resulted in a model
ith an R 

2 around 0.900 to 0.960 based on the trend lines for
he WDS and v ertebr ate datasets ( Supplementary Material 2 (S2) ,
upplementary Material 3 (S3 ) but resulted in an R 

2 = 0.831. A
ossible explanation for this lo w er R 

2 v alue for r od models is the
mall degree of variability in λmax. When variation is low, even very
mall differences from model predictions could lead to larger dif-
er ences in R 

2 . Ther efor e, when a data subset such as rod opsins
ontains limited variability in the r esponse v ariable ( λmax ), addi-
ional metrics that are less sensitive to variance will be important,
uch as MAE or RMSE, which report the absolute magnitude of er-
 ors r ather than the pr oportion of explained v ariance. To illustr ate
urther, most models tested on their ability to predict the λmax for
 set of 25 subsampled WT-SWS opsins from VPOD performed rel-
tiv el y poorl y based on R 

2 alone ( Supplementary Material 4 (S4) ),
ith the v ertebr ate model ( R 

2 = 0.914, MAE = 7.89) demonstrat-
ng a r elativ el y gr eater pr edictiv e po w er than all other models
 Supplementary Material 4 (S4) , Supplementary Material 6 (S6) ).
o w e v er, between the v ertebr ate and lowest performing model

SWS model; R 

2 = 0.778, MAE = 11.6 nm), there is only a 3.71-nm
ncrease in MAE, a much less dramatic perceived shift in perfor-

ance than might be inter pr eted fr om R 

2 alone. 
When predicting λmax of 30 unseen wild-type inv ertebr ate 

psins from a separately curated MSP dataset, almost every 
odel performed rather poorly, with exception of the WT model

 n = 30, R 

2 = 0.887, MAE = 17.5) ( Supplementary Material 4 (S4) ,
upplementary Material 5 (S5) ). The best-performing model pro- 
uced by the sparsely populated “Invertebrate ” dataset could only 
r edict unseen inv ertebr ate opsins with an R 

2 of 0.837 and MAE of
6.3 nm ( Supplementary Material 4 (S4) , Supplementary Material 
 (S6) ). Until the models ar e tr ained with mor e inv ertebr ate (r-
psin) data, w e w ould not put high confidence in the estimates of

max . Furthermor e, these separ atel y cur ated inv ertebr ate opsins
re independent of the phylogenetic relatedness of the data used
n model training and therefore provide a less inflated estimate 
f the ability to predict λmax compared to random resampling of
raining data. Because of the sparsity of invertebrate data in the
raining set, this result further highlights that opsins more dis-
antl y r elated to those in the database will be more difficult to
redict. 

L predictions of λmax are comparable to 

hylogenetic imputation 

oth ML and phylogenetic imputation were often accurate pre- 
ictors of λmax ( Supplementary Material 7 (S7) ). When using the
ame test data, ML models usually outperformed phylogenetic 
mputation, ho w e v er slightl y ( Supplementary Material 7 (S7) ), al-
eit using far less computational time: ML used on the order
f minutes to calculate models, and imputation used on the
rder of hours to generate opsin phylogenies . T he MWS/LWS

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
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ataset was the only instance where phylogenetic imputation
 R 

2 = 0.784) lar gel y outperformed ML ( R 

2 = 0.512). We found our
mplementation protocol for phylogenetic imputation r equir ed
emoving aligned sites with extensive gaps (for which we used
blocks); we speculate this lessened the impacts of very short
r anc h lengths on model fitting during imputation. To allow di-
ect comparisons between approaches, we also used the same
rimmed alignments for tr aining ML models. Inter estingl y, ther e
as a slight but noticeable decrease in ML performance following
blocks trimming for the inv ertebr ate, MWS/LWS, and UVS/SWS
atasets ( Supplementary Material 7 (S7) ). The R 

2 of the MWS/LWS
odel dr opped fr om 0.677 to 0.645, while the inv ertebr ate model

r opped fr om 0.814 to 0.797 ( Supplementary Material 7 (S7) ). ML
erformance r emained r elativ el y consistent after tripping for the
T, v ertebr ate, WDS , SWS/UVS , and rod models, with only a

light reduction in R 

2 ( < 0.01) and slight increase in MAE ( ±1 nm)
or the WT model. We speculate the observed differences in
L performance following Gblocks processing is due to the re-

uced number of features in the datasets from removing aligned
ites. 

L often predicts the effects of epistatic 

utations 

he WDS successfull y pr edicted 3 out of 3 individual instances
f epistasis ( Supplementary Material 8 (S8) ) using sequences
hat wer e r emov ed fr om the tr aining data befor e using the

odel to predict known epistatic phenotypes. For double mutant
83N_A292S, the model predicted 485.2 nm, which was 0.2 nm
ff the known λmax of 485 nm. If the WDS model belie v ed the sites
ere ad diti ve, the resulting λmax based on adding shifts of single
utants would have been much lo w er, at 477.5 nm. Second, for
utant F261Y_A269, the model predicted 520.0 nm, for which the

no wn λmax w as 520 nm. An ad diti v e pr ediction would hav e been
igher, 524 nm. Third, for m utant A164S_A269T, the model pr e-
icted a λmax of 515.5 nm, where the kno wn λmax w as 514 nm. This

s a special case in which the double mutant experiences a form of
pistasis where the effect of mutation A269T ( λmax = 514) masks
he shift otherwise caused by mutation A164S ( λmax = 502 nm).
 hus , the model corr ectl y pr edicted an instance of epistasis in
hich one mutation masks the effect of another. 
We also queried the WT model with these same 3 double mu-

ants to test the importance of mutant sequences in informing
he model on epistatic interactions. Ho w ever, without any mu-
ant data at all, the WT model did not display the same abili-
ies to predict epistasis in any instance. For the double mutant
83N_A292S, the model predicted that neither the individual mu-

ations nor the double mutant would have a significant effect on

max , and all were predicted to be 499.9 nm. For double mutants
261Y_A269 and A164S_A269T, the WT model successfully pre-
icted all individual mutations would cause a red shift (although
261Y and A269 were > 3 nm off their known λmax ) but incorr ectl y
reated the mutational effects as ad diti ve for the double mutant
 Supplementary Material 8 (S8) ). 

Our broader experiment to test the predictability of epistatic
ffects using the WDS-min use pi model (which excluded from
raining all 111 opsins with known nonad diti v e m utational ef-
ects, which we call epistatic opsins) correctly predicted epis-
asis for 105 of 111 of the epistatic opsins with higher R 

2 

0.969) and m uc h lo w er RMSE (12.4 nm) than predictions by
he WT model ( R 

2 = 0.894, RMSE = 22.3 nm), which contains
o experimentall y m utated opsins, and the EAMV ( R 

2 = 0.878,
MSE = 29.8 nm), whic h ignor es epistatic effects, r espectiv el y
 Supplementary Material 12 (S12) ). Our test of the null hypotheses
f no underlying differences between the distribution of squared
rror for predictions of the 111 epistatic mutants were rejected
fter Bonferr oni corr ection by the WDS-min use pi model ver-
us WT model ( P = 1.24e-06) and WDS-min use pi model versus
AMV ( P = 2.56e-09) but not rejected for the WT model versus
AMV ( P = 0.086) ( Supplementary Material 12 (S12) ). Together,
he large differences in RMSE and the results of the statistical
ests str ongl y support the idea that the inclusion of e v en single
 utants significantl y r educes the err or of ML models when pre-

icting epistatic interactions between mutations and that this er-
or is also less than the error we would observe if our models
impl y tr eated m utations as ad diti v e. Ne v ertheless, the insignif-
cant difference between WT predictions and EAMV indicates
here is not enough information about epistatic interactions in
ild-type (nonmutant) data alone to accurately predict intragenic

pistasis. 

L predicts tuning sites from wild-type 

equences alone 

he full WT model and its few variants (SWS and rod WT
odels) predict several previously characterized “spectral tun-

ng sites”—functionally demonstrated to change λmax —even with
o information on mutants used in the training data (Fig. 4 ,
upplementary Material 9 (S9) ). For the primary WT model alone,
e found 15 of the top 25 amino acid sites, ranked by r elativ e im-
ortance to the model (all ≥0.40), were spectral tuning sites pre-
iousl y c har acterized by m uta genesis and heter ologous expr es-
ion ( Supplementary Material 9 (S9) ). For example, the especially
ell-c har acterized position 308 (p308), known for its role in tun-

ng LWS opsins and considered 1 of the 5 k e y sites in c har acter-
zing LWS opsins under the “five-site rule” [ 81 ], had the highest
 elativ e importance v alue of 1.0 when using the full WT model,
ndicating the amino acid identity at p308 is especially impor-
ant for predicting λmax . In another example, the full WT model
ighlighted p181, a phylogenetically conserved counterion in the
 etinal-opsin Sc hiff base inter action for all nonv ertebr ate opsins
 82 , 83 ]. Additionally, the transition from E to H at p181 (E181H)
s a c har acteristic of the r ed-shifted v ertebr ate LWS opsins [ 35 ,
3 ], easily visualized in Fig. 4 C. When predicting λmax of bovine
hodopsin with mutation E181H, the WT model predicted a red
hift compared to wild type, as observed with the natural evolu-
ion of the LWS opsin lineage . T he WT SWS/UVS model similarly
ighlighted p113, a site functionall y c har acterized as the counte-
ion in the r etinal-opsin Sc hiff base inter action for all v ertebr ate
psins [ 35 , 83 ] and as a known spectral tuning site in SWS/UVS
psins [ 84 ]. Mor eov er, e v en the WT r od model, tr ained on a mer e
57 sequences, identified p292 ( Supplementary Material 9 (S9) ),
nother well-c har acterized and conserv ed spectr al tuning site for
 ertebr ate rhodopsins [ 85–87 ], as the site with highest r elativ e im-
ortance to its predictions of rhodopsin λmax . These spectral tun-

ng sites are not simply conserved sites, as there is little to no
orrelation between amino acid sites important to model predic-
ions (importance scores) and their r elativ e Shannon entropy [ 88 , 89 ]
cores ( R 

2 = 0.001). This is somewhat expected as deepBreaks drops
ll conserv ed (“zer o-entr opy”) sites during pr epr ocessing, because
 site with no variation provides no important information about
he effects of variation on the resulting phenotype. In addition, we
r edict an y corr elation between site conserv ation and model im-
ortance would be for sites that ar e moder atel y conserv ed and in
lose proximity to opsin–chromophore binding site (position 296)
r binding pocket [ 41 , 42 , 90 ]. 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
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Figure 4: (A, B) Blue bars indicate the 7 tr ansmembr ane domain regions of the bovine rhodopsin and are labeled accordingly. Purple bars indicate the 
top 3 most important positions to predictions of λmax by the “BayesianRidge” ML r egr ession model trained on the WT opsin dataset. (A) Bar gr a ph of 
r elativ e entr opy scor es by position calculated via Shannon entr opy [ 71 , 88 , 89 ] using the multisequence alignment for the WT data subset. (B) Bar 
gr a ph of r elativ e importance by position generated via “BayesianRidge” ML r egr ession model trained on the WT opsin dataset. We inter pr et positions 
with higher r elativ e importance as having a larger effect or weight on λmax prediction. Positions 181 [ 35 , 83 ], 261 [ 87 , 91 ], and 308 [ 81 ] are highlighted in 
purple because they are among the highest scoring sites and have all been previously characterized as functionally important to opsin phenotype and 
function. Based on an R 2 of 0.001, there is no linear relationship between r elativ e entr op y b y position and the r elativ e importance of scor es by position. 
(C–E) These distribution box plots provide a visualization for which amino acid (aa) residues at a particular site are associated with different ranges of 
lambda max at a site of inter est, order ed alphabeticall y, not by frequency (left to right). For a more detailed explanation on how position importance 
scor es ar e calculated for differ ent models, r efer to the “Inter pr etation” heading under the methods section of the deepBreaks publication [ 60 ]. 
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o better understand methods to connect genes and their func-
ions, we initiate VPOD , a database of opsin genes and correspond-
ng spectral sensitivity phenotypes . Here , we used VPOD_1.0 to
xamine the ability of ML models to predict functions of opsin
enes, pr edict intr a genic epistasis, and identify amino acid sites
ritical for functional changes. In all cases, ML shows promise, es-
ecially when given enough training data. 

he important relationship between data 

vailability and predictive po w er 
he pr edictiv e po w er of λmax is often high when using ML for
psins , and it impro ves with a greater amount and variety of
ata, albeit with diminishing returns. In particular, the number of
psin genes, their genetic diversity, and the relationship between
enetic and phenotypic differences are all critical in determin-
ng pr edictiv e po w er. P articularl y illustr ativ e of these ideas are
ur analyses with and without experimentally mutated opsins.
ven though we might conceive of all wild-type data as natu-
 al m utants c hosen by e volution, experimentall y induced m uta-
ions ar e particularl y important by often c hanging just 1 amino
cid that dr asticall y c hanges phenotype. As such, we found that
ncluding mutant data usually improved predictive po w er, and
onv ersel y, pr edicting some phenotypes fr om labor atory m uta-
enesis was sometimes difficult without including other mutant
ata in model training ( Supplementary Material 11 (S11) ). How-
 v er, r el ying on published mutant data alone is not optimal be-
ause it is derived from a nonrandom subset of species because
eople continue to work in established systems. Ne v ertheless, the
enotype–phenotype landscape may be sampled well enough us-
ng high numbers of only wild-type genes, as evidenced by the
mall difference in performance when adding mutant data to the
ild-type subset of well-sampled v ertebr ate opsins (Table 1 ). In

ontr ast, adding m utant data to the sparsely sampled inverte-
rate opsins made a big difference . For in v ertebr ate opsins, using
nly wild-type data (ignoring all mutants) led to some very in-
ccur ate pr edictions, especiall y of lar ge phenotypic shifts caused
y experimental m uta genesis (Fig. 3 ), indicating the genotype–
henotype space is still undersampled for inv ertebr ates. This is
xpected since ML learns from patterns in the underlying dataset,
aking predictions of distantly related opsins from those in VPOD
or e unr eliable. We ac knowledge this as a significant dr awbac k

or the ML a ppr oac h, especiall y in systems or taxonomic groups
acking sufficient or reliable data. T hus , given this currently lim-
ted dataset, we do not put high confidence in the λmax estimates
f either wild-type or mutant invertebrate (rhabdomeric) opsins.
her efor e, tar geting inv ertebr ate opsins should be a high priority
or new additions to VPOD . 

A lar ge div ersity of tr aining data is also critical for r eliabl y pr e-
icting intr a genic e pistasis—the nonad diti ve effects on a pheno-
ype of interactions between 2 or more mutations within a gene—
hich is common [ 10 , 41 , 43 , 44 , 92 , 93 ] and an obstacle to con-
ecting genotypes and phenotypes [ 41 , 94–96 ]. Our most com-
lete datasets (whole dataset and v ertebr ate dataset) identified
nown cases of intr a genic epistasis, but our models trained with-
ut experimental m uta genesis data did not. Mor eov er, ML demon-
trates some capacity to predict the epistatic interactions between
 utations, e v en when onl y pr ovided with the single m utation

omponents—as is evidenced by our WDS-min use pi dataset test
 Supplementary Material 12 (S12) ). Similarly to the overall predic-
ive po w er of λmax abo ve , predicting epistasis probably requires
ufficient variation at interacting sites, which seems especially en-
anced by experimentally mutated genes. 

Variation in the availability of genotype–phenotype data for
raining impacts not only the predictive po w er of phenotype but
lso the converse: the ability to predict amino acid sites that
 hange λmax . Se v er al models, including those tr ained with the
DS, v ertebr ate, and WT data, wer e able to successfull y pr e-

ict pr e viousl y c har acterized spectr al tuning sites . T his is less
urprising for models trained with WDS and vertebrate datasets
ue to the pr e v alence of data, e v en including mutants in the
raining data from experiments that specifically targeted sites
hought b y resear chers to be functionally informative. Yet even
ithout any targeted mutational data, 3 model variants using
nly wild-type data predicted experimentally well-characterized
pectral tuning/functional sites, including sites important to the
tability of the opsin–c hr omophor e inter action (P181 and P113).
his demonstrates the strong potential for ML models to iden-
ify amino acid sites that go vern phenotype , leading to pre-
ictions of candidate spectral tuning sites, which can be con-
rmed with m uta genesis experiments [ 38 , 86 ] if not done so
lready. 

L algorithm type contributes to the predicti v e 

o w er of ML models 

hile pr obabl y not as important as the training data used, the
L algorithm itself also impacts pr edictiv e po w er. All 5 of the

est-performing ML algorithms (GBR, BR, LGBM, RF, and XGB) are
ariants of the decision tree model architecture ( Supplementary
aterial 13 (S13) ), and 3 of 5, including GBR, LGBM, and XGB, are

gr adient boosted” decision tr ee–based ML algorithms . T he gra-
ient boosted algorithms all share the same general principles
f gradient boosting [ 76 , 97 ], including the use of ensembles of
weak learners,” usually decision trees, which work sequentially
nd “gradient descent” when minimizing a loss function, to im-
r ov e ML model performance. While LGBM gener all y performed
est for predicting phenotype, it was not as effective in predicting
he epistatic effects of m utations, wher e GBR and XGB sho w ed
he highest performance . T his suggests that while LGBM excels in
ener al phenotype pr ediction, the details of GBR and XGB may be
etter suited for epistasis prediction. The difference likely arises
rom the unique aspects of each algorithm’s model training and
ettings of hyper par ameters. XGB and LGBM differ from GBR by
he addition of a regularization term to the objective function and
n the process of ensemble tree construction during model train-
ng: GBR and XGB use le v el-based tr ee fitting while LGBM uses
eaf-based tree fitting. One consequence of leaf-based tree con-
truction is that due to its faster conv er gence/tr aining time, it can
reate complex trees that are more prone to overfitting, thereby
learning” patterns that may not exist as it constructs trees on a
best-first basis” with a fixed number of n-terminal nodes [ 63 , 79 ].
his creates a model that often performs well on training data but
a y o v er gener alize, missing finer gr ained collinearities and inter-

ependencies, which would be important for predicting epistasis.
s such, our models might be improved by fine-tuning hyperpa-

ameters (e.g., learning rate, max-depth, and number of estima-
ors), and the choice of which model to use will depend on the end
oals of the analysis. 

he assumptions of our method and limitations 

f ML extr apola tion 

nderstanding the limitations and assumptions inherent in pre-
ictive modeling is vital for accurately interpreting animal color

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
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sensitivity from opsin sequences, especially considering the im- 
pact of various factors on sensitivity beyond the opsin itself across 
m ultiple le v els of biological or ganization. At the cell le v el, we as- 
sume that λmax measured in cell culture (e.g., HEK293, COS cells) 
is the same as in li ving photorece ptor cells. We also assume the 
photopigment uses 11- cis -retinal, as all heterologously expressed 

opsins in VPOD were reconstituted using this chromophore. How- 
e v er, this assumption is violated in some organisms because they 
use 13- cis -retinal as the in vivo chromophore [ 23 , 98 , 99 ], which is 
associated with a red shift in λmax [ 35 , 98 ]. At the or gan le v el, fil- 
ters such as oil droplets in bird eyes [ 100–103 ], pigments in butter- 
fly eyes [ 104 ], or a combination of tr ansmissiv e filter and narrow 

band reflector in mantis shrimp larval eyes [ 105 ] each may selec- 
tiv el y influence light r eac hing photor eceptor cells and ther efor e 
animal color sensitivity . Finally , organismal responses to light in- 
volv e neur al pr ocesses, so e v en if an or ganism possesses the phys- 
iological ability to detect certain wa velengths , it still may not have 
a use for that ability. Similar considerations for all these assump- 
tions will a ppl y when using ML to infer other functions from other 
genes. In fact, many genes are more susceptible than opsins (but 
see [ 106 ] showing the pr essur e of ocean depth may slightly affect 
λmax phenotypes) to changes in pH, temper atur e , and other en vi- 
ronmental factors [ 107 ], such that databases compiling these gene 
functions should also record these parameters for use in training 
ML models. 

Perhaps the most important caveat of using ML models to 
accur atel y pr edict phenotype or functional sites is that we as- 
sume there is a genotype–phenotype association that we can 

fit to a function and that our models wer e tr ained using am- 
ple data to ca ptur e these associations. Based on the nonlinear 
fit between size of training dataset and model performance, we 
estimate that including about 200 sequences (and correspond- 
ing λmax ) from a taxonomically and phenotypically diverse range 
still pr ovides impr ov ements to model performance. Above 200 se- 
quences, there is still improvement, but at a diminishing rate con- 
sistent with a r ecipr ocal model ( Supplementary Material 2 (S2) ,
Supplementary Material 3 (S3 ). That said, we encour a ge caution 

when extr a polating these r esults to pr edict model performance 
on training data size alone as the equations we used do not 
account dir ectl y for taxonomic , genetic , or phenotypic diversity.
When using ML for pr edicting functionall y important sites, the ad- 
dition of experimental mutants to training data that cause large 
phenotypic changes could heavily bias which sites are selected as 
“most important” and potentially mask the importance of other 
sites. Her e a gain, pr oviding a div erse set of genotype–phenotype 
data should allow for the discovery of new functional sites, even 

when including known mutants in the training data with large 
phenotypic effects. Additionall y, pr oviding a large number of mu- 
tations from a limited breadth of taxa can bias model predictions 
as not all mutations will have the same effect on different se- 
quences, especially if they are genetically distant. This makes it all 
the more important to consider the le v el of genetic div ersity used 

to train a model when extr a polating to find potentially important 
functional sites (i.e., if identifying tuning sites for rhodopsins, then 

using a dataset of only rhodopsins would likely be the best ap- 
pr oac h, but if data are sparse or if looking for sites that may largely 
impact spectral tuning across opsin subfamilies, a genetically and 

phenotypicall y br oad dataset may be better). 

Conclusion 

Using opsin sequence data with deepBreaks , w e w ere able to 
tr ain r egr ession-based ML models to r eliabl y pr edict λmax , of- 
en accounting for nonad diti ve effects of mutations on func-
ion (intr a genic-epistasis) and identifying amino acid sites critical
or function. We expect future work will improve these already
r omising r esults e v en further thr ough at least 2 gener al dir ec-
ions. First, adding more data to VPOD will improve results, espe-
ially adding invertebrate (rhabdomeric opsins) data, as technical 
nowledge impr ov es for expr essing these genes [ 34 ]. In addition,
henotypic data—besides the in vitro heter ologous expr ession tar- 
eted here—is expansive, including λmax measurements from mi- 
r ospectr ophotometry and electr or etinogr ams, but will take con-
iderable effort to link these phenotypes to specific opsin genes.
econd, our models can be impr ov ed to take adv anta ge of more in-
ormation. One important addition should be inclusion of physic- 
c hemical pr operties of the amino acids [ 108 ], as implemented
ith success on a small scale of only 26 amino acid positions of
icrobial opsins to predict red-shifted phenotypes for optogenet- 

cs [ 109 ]. Additionally, information on protein structure could be
articularl y important, suc h as the distance of an amino acid from
he binding pocket of the chromophore [ 40 ]. While there are only
 few solved crystal structures for opsins [ 110 , 111 ] to provide
uc h data, indir ect tec hniques like homology modeling [ 112 ] or
eur al network–based structur al pr ediction [ 113 ] might be usable.
ther information about opsins could also be pr edictiv e, suc h as
hic h G-pr otein the opsin signals to, allowing pr ediction of whic h
mino acids dictate G-protein specificity. Opsin kinetics [e.g., 114 ],
r e v en the habitat depth at whic h the animal liv es in the ocean,
hic h not onl y influences light envir onment but also alters whic h
mino acids are used in opsins [ 115 ], could improve predictive
o w er of the ML models. Finally, we once again caution against
r eating pr edictions of λmax uncriticall y, because the quantity
nd quality of genotype–phenotype data used to train a model—
ncluding the taxonomic , genetic , and phenotypic diversity—is
ntegral to the reliability of a model’s predictions . T hus , ML models
ike those used here can be considered tools to make predictions
ased on summaries of existing kno wledge, thereb y complement- 

ng traditional experimental methods. 

otential implications 

iven the high performance demonstrated in this article, cur- 
ent models are already robust enough to allow several appli-
ations. First, predicting λmax will often be useful, especially for 
 ertebr ate opsins. For example, ML could provide an estimate
f λmax in a hogfish, whose skin expresses an opsin with un-
nown absorption and where λmax has implications for a concep- 
ual model of c hr omatophor e expansion [ 116 ]. Second, estimates
f λmax from opsin sequences formed part of an argument that
hanges in gene expression, not sequence, adapted Amazon fishes 
o local light environments [ 117 ]. On broader taxonomic scales,
redictions of λmax from opsin sequences could expand studies 
f adaptation, molecular evolution, and constraint in compari- 
on to light environments [ 118 ]. Another application could be pro-
ein design for optogenetics—the use of genetic light sensors to
nduce and study expression or response pathways [ 119–121 ]—
ncluding those associated with embryogenesis [ 122 ,123 ], stress
nd depression [ 124–126 ], or neuronal diseases [ 127 , 128 ]. Finally,
ur models could be used to simulate molecular evolution un-
er a realistic genotype–phenotype landscape. One shortcoming 
r esentl y for such simulations is that our models are not trained
ith nonfunctional opsins, so e v en nonfunctional genes would
e predicted to have functional λmax values. A solution could be
o add large-scale mutagenesis data to the training set, such as
hat from deep mutational scanning [ 129 ], although the authors

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae073#supplementary-data
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ndicated the method is only in a proof-of-concept stage, such that
he r esults ar e too noisy to be useful for model training. As the
POD database expands, there will be many applications for ML,
nd similar techniques can also be applied to other gene families
uch as luciferases [ 16 , 130 , 131 ]. 

vailability of Supporting Source Code and 

equirements 

roject name : The Visual Physiology Opsin Database (VPOD). 
r oject homepa ge: https:// github.com/ VisualPhysiologyDB/
isual- physiology- opsin- db [ 56 ]. 
icense: GNU General Public License (GPL)—Version 3, 29 June
007. 
RID: SCR_025668. 
per a ting system(s) : Windows , MacOS, and Linux. 
r ogramming langua ge: Python, R. 
ther requirements : Conda 4.9.2, deepBreaks 1.1.2, GBlocks 0.91b,
AFFT 7.520-1, MUSCLE 3.8.31, mySQL workbench 8.0.36, Python

.9, RStudio 2023.06.2 + 562. 
oc k er image of the latest version of the deepBreaks: [ 132 ]. 
he Doc ker ima ge pr o vided abo ve includes a summary of r equir ed
ac ka ge libr aries and instructions on how to use it. Along with our
xisting online materials with tools used, deepBreaks , we also have
 Jupyter notebook, instructions for Conda installation, and Code
cean ( RRID:SCR _ 015532 ) capsule [ 133 ], for deepBreaks. 
hese resources should help practitioners using the main ML pro-
r am we used, deepBr eaks, described else wher e, use the VPOD
atabase for Opsin applications. 

dditional Files 

upplementary Material 1 (S1). Performance metrics across opsin
ubsets and top performing models for VPOD_1.1 . 
upplementary Material 2 (S2). Tr ac king model performance vs.
umber of sequences in training data. 
upplementary Material 3 (S3). Three functions fitted to visual-

ze the relationship between training data size (number of geno-
ypes and corresponding phenotypes) vs. model performance ( R 

2 )
ased on results from the vertebrate subset of data. The Akaike

nformation criterion (AIC) is a measure used for model selection
hen comparing different statistical models, accounting for both

he goodness of fit of the model and the simplicity of the model
the number of parameters used). The goal is to find a balance
etween a model’s ability to explain the data and its complexity,
r e v enting ov erfitting. 
upplementary Material 4 (S4). Comparing ML predictions on in-
 ertebr ate and v ertebr ate UVS/SWS opsin MSP data. 
upplementary Material 5 (S5). Gr a ph of WT model predictions
or 30 unseen inv ertebr ate opsins, R 

2 = 0.887, MAE = 17.5 nm,
APE = 4.05. All the “known” λmax values are from physiolog-

cal measures, including MSP or ERG measurements (instead
f purified heter ologousl y expr essed opsins), and ar e linked to
 particular opsin sequence by in situ hybridization. The light
r ay bar surr ounding the tr end line r epr esents a 95% confidence
nterval. 
upplementary Material 6 (S6). Gr a ph of v ertebr ate model pr e-
ictions for unseen WT-UVS/SWS data, n = 25, R 

2 = 0.914, MAE
 7.89 nm, MAPE = 1.90. All sequences were randomly selected

rom the UVS/SWS model under the condition that they were WT
psins . T he light gra y bar surr ounding the tr end line r epr esents a
5% confidence interval. 
upplementary Material 7 (S7). Comparing performances of ML
redictions and phylogenetic imputation on a subsample of opsin
ata. 
upplementary Material 8 (S8). Results for epistasis test on the
DS, v ertebr ate, WT, and r od models. 

upplementary Material 9 (S9). Functionall y c har acterized spec-
ral tuning sites predicted by the WT models. 
upplementary Material S10 (S10). Phylogenetic gene tree of all
ild-type opsins ( n = 362), including ancestral constructs (branch

engths = 0), constructed from the VPOD_wt_het_1.1 dataset. In
his tree, we have annotated the major opsin groups (c-opsins, r-
psins, and some tetraopsins), then further annotated the c-opsin
amilies (LWS, SWS1, SWS2, Rh1, and Rh2). We have also assigned
axonomic annotations by class, which are color-coded and pro-
ided by the k e y. 
upplementary Material S11 (S11). Including data from experi-
entall y m utated opsin sequences r educes err ors in pr edicting

max . (A) Distributions of errors from predicting λmax of exper-
mentall y m utated opsin sequences. Blue ar e pr ediction err ors
hen using the WT model, which lacks experimentally mutated

equences (root mean square error [RMSE] = 17.6 nm). Orange are
r ediction err ors when using the WDS model, whic h includes ex-
erimentall y m utated sequences (RMSE = 12.6 nm). (B) Data from
xperimental m utants significantl y impr ov es pr edictions of λmax 

hen using a model trained with experimental mutants (WDS)
ompared to a model without (WT) experimental mutant data,
ejecting the null hypotheses of no difference between prediction
rrors based on different models. At top is the distribution of dif-
er ences between pr edictions with and without experimental m u-
ants in the training data for large effect mutations ( > 10 nm). At
ottom is the same for all mutations. We plot differences of ab-
olute error instead of squared error in B for easier visualization,
lthough P values were calculated using distributions of squared
rr ors. Additionall y, plotting r aw differ ences allows seeing most
 alues ar e below zer o, meaning pr edictions with WDS (whic h has
xperimental mutants) have less error than those without exper-
mental data from mutants (WT). 
upplementary Material 12 (S12). Including data from experi-
entall y m utated opsin sequences r educes err ors in pr edicting

pistatic effects. (A) We analyzed opsins with multiple mutations
hose known effect on λmax phenotype were nonad diti ve (e pista-

is). In purple, we plot the difference (absolute error in nm) be-
w een kno wn λmax phenotypes with epistasis, compared to λmax 

henotypes ignoring epistasis by assuming individual mutations
re not ad diti ve, which we call epistasis-free ad diti ve mutation
 alues (EAMVs). Her e r oot mean squar e err or (RMSE) = 29.8 nm.
n blue, we plot errors when predicting epistatic phenotypes us-
ng a model trained without opsins containing experimentally
ener ated m utations (WT), whic h lead to RMSE = 12.4 nm. In
r ange, we plot err ors when pr edicting epistatic phenotypes us-
ng a model trained with opsins containing experimentally gener-
ted mutations but excluding those whose mutational effects are
onad diti ve (WDS-min use pi), which lead to RMSE = 12.4. (B) Our
ests of the null hypotheses of no underlying differences between
he distribution of squared error for predictions of λmax for the
11 “epistatic opsins” wer e r ejected with Wilcoxon signed-rank
ests after Bonferroni correction by the WDS-min use pi model ver-
us WT model ( P = 1.24e-06); WDS-min use pi model versus EAV
 P = 2.56e-09), but not rejected for the WT model versus EAV
 P = 0.086). The large differences in RMSE and the results of the
tatistical comparisons str ongl y support the idea that the inclu-
ion of e v en single m utants gr eatl y r educes the err or of ML mod-
ls when predicting epistatic interactions between mutations and

https://github.com/VisualPhysiologyDB/visual-physiology-opsin-db
https://scicrunch.org/resolver/RRID:SCR_015532
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that this error is significantly less than the error we would observe 
if our models simply treated mutations as ad diti ve . Con versely,
the insignificant difference between WT predictions and EAMV 

indicates there is not enough information about epistatic inter- 
actions in wild-type (which excludes artificiall y m utated opsins) 
data alone to accur atel y pr edict intr a genic epistasis. As with S11,
we plot differences of absolute error instead of squared error in B 

for easier visualization but use squared error for statistical com- 
parison. 
Supplementary Material 13 (S13). Ranked ML algorithm perfor- 
mances. 
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