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Abstract

The SMOOTHENED inhibitor vismodegib is FDA approved for advanced basal cell carcinoma 

(BCC), and shows promise in clinical trials for SONIC HEDGEHOG (SHH)-subgroup 

medulloblastoma (MB) patients. Clinical experience with BCC patients shows that continuous 

exposure to vismodegib is necessary to prevent tumor recurrence, suggesting the existence of a 

vismodegib-resistant reservoir of tumor-propagating cells. We isolated such tumor-propagating 

cells from a mouse model of SHH-subgroup MB and grew them as sphere cultures. These cultures 

were enriched for the MB progenitor marker SOX2 and formed tumors in vivo. Moreover, while 

their ability to self-renew was resistant to SHH inhibitors, as has been previously suggested, this 

self-renewal was instead WNT-dependent. We show here that loss of Trp53 activates canonical 

Correspondence: Dr DJ Robbins, Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of 
Miami Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136, USA. drobbins@miami.edu. 

CONFLICT OF INTEREST
The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS
DJR and JR-B conceived and designed the experiments. JR-B performed the experiments. LP, CP and BL contributed to mouse work. 
JR-B and DJR analyzed the data. JL and EL contributed reagents/materials/analytic tools. VM, CR, DMN, PR, EL, WAW and AJC 
gave technical support and conceptual advice. NM provided pathological insights. DJR and JR-B wrote the paper.

Supplementary Information accompanies this paper on the Oncogene website (http://www.nature.com/onc)

HHS Public Access
Author manuscript
Oncogene. Author manuscript; available in PMC 2017 November 10.

Published in final edited form as:
Oncogene. 2017 November 09; 36(45): 6306–6314. doi:10.1038/onc.2017.232.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/onc


WNT signaling in these SOX2-enriched cultures. Importantly, a small molecule WNT inhibitor 

was able to reduce the propagation and growth of SHH-subgroup MB in vivo, in an on-target 

manner, leading to increased survival. Our results imply that the tumor-propagating cells driving 

the growth of bulk SHH-dependent MB are themselves WNT dependent. Further, our data suggest 

combination therapy with WNT and SHH inhibitors as a therapeutic strategy in patients with 

SHH-subgroup MB, in order to decrease the tumor recurrence commonly observed in patients 

treated with vismodegib.

INTRODUCTION

Medulloblastoma (MB) is the most common malignant brain tumor of childhood.1 While the 

bulk of patients respond to multimodal therapy (surgery, radiation and cytotoxic 

chemotherapy), treatment-induced morbidity leaves survivors with significant 

neurocognitive and endocrine disabilities.2 These patients thus require therapies that promise 

to be more effective and less toxic. The classification of MB into four molecular 

subgroups3,4 provided a template with which to begin identifying and testing such targeted 

therapies.5,6 The best characterized subgroup is driven by the SONIC HEDGEHOG (SHH) 

signaling pathway, most commonly via mutation and loss of the gene encoding the SHH 

receptor PATCHED (PTCH). The SHH inhibitor vismodegib targets the upstream signaling 

component SMOOTHENED (SMO) and is FDA-approved for advanced basal cell 

carcinoma,7 which is almost uniformly driven by SHH signaling.8,9 As similar SMO 

inhibitors effectively target SHH-dependent mouse models of MB, significantly reducing the 

bulk of such tumors,10 they are now being tested in SHH-subgroup MB patients.11–13

Tumors are heterogeneous, comprised of immune, stromal and tumor cells proper. Even the 

tumor cells themselves show significant variation in morphologies, proliferation rates and 

self-renewing capacity.14,15 This heterogeneity is thought to result from a hierarchical 

organization, in which a small population of relatively quiescent, long-lived, multipotent, 

propagating/initiating cells drives the production of a population of rapidly amplifying 

progenitor cells, which in turn can give rise to more differentiated cell types.16 Although the 

progenitor cells constitute the bulk of the tumor, they have limited self-renewing capacity, 

and are thus maintained by the smaller population of tumor-propagating cells. The tumor-

propagating cells are relatively chemotherapy resistant, and are therefore thought to drive the 

tumor recurrence often observed in patients treated with chemotherapy.17 Similarly, while 

limited clinical experience with SMO inhibitors in clinical trials has shown that there is 

often a rapid initial response to vismodegib, this is frequently followed by aggressive 

recurrent MB growth.11,18 Additionally, it was noted that basal cell carcinoma patients often 

exhibited rapid recurrence upon vismodegib cessation, consistent with such tumors 

harboring a reservoir of vismodegib-resistant cells capable of driving recurrence.19–22

A number of tumor-propagating cells have been described for the SHH-subgroup of MB, 

with distinct properties, biomarkers, sensitivity to SMO inhibitors and abilities to be 

propagated as neurospheres ex vivo.23–28 Most recently, lineage tracing in a mouse model of 

SHH MB identified a small population of SOX2+ MB propagating cells (MPCs), and a 

population of SOX2− cells that constituted the bulk of the tumor proper.28,29 The SOX2+ 
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cells were capable of efficient self-renewal but resistant to vismodegib, while the SOX2− 

cells exhibited a more limited capacity for self-renewal but were sensitive to vismodegib. 

Consistent with this observation, treatment of this mouse model of MB with vismodegib led 

to an enrichment of SOX2+ cells in the residual tumor.28 These SOX2+ cells may contribute 

to recurrence observed in patients treated with vismodegib. Here, we show that self-renewal 

of SOX2+ enriched sphere cultures (SCs) is dependent on canonical WNT activity, and that 

loss of Trp53 drives this WNT dependence. A small molecule WNT inhibitor also depleted 

this population of SOX2+ cells in SHH-subgroup MB in vivo, significantly reducing the 

ability of SHH tumors to propagate.

RESULTS

Characterization of MB sphere cultures

SHH-subgroup MBs harbor a small and phenotypically primitive population of MPCs that 

are enriched in cultured neurospheres ex vivo.25,27 We isolated and characterized the MPC-

like characteristics of three independent Ptch1−/−-;Trp53−/− neurosphere cultures (SC 1–3). 

These cultures were enriched for neural stem cell markers, such as Nestin and Sox2, relative 

to bulk MB tissue (Figure 1a). They also displayed the cellular heterogeneity previously 

described for MPCs enriched cultures,25,30 as evidenced by the mutually exclusive staining 

of a neural stem cell marker (NESTIN) with that of a neuronal progenitor marker (β3-

TUBULIN) (Figure 1b). The SCs could be induced to express biomarkers of three distinct 

neural lineages (Figure 1c), suggesting that they are also pluripotent. Consistent with them 

being enriched for tumor-propagating cells, as few as 5000 SC cells were able to form 

tumors when implanted into mice (Figure 1d). SOX2 has previously being described as a 

biomarker for such tumor-propagating cells.28,29 We therefore quantitated the percentage of 

SOX2+ cells in the SCs relative to that in primary MB tissue. SOX2+ cells were considerably 

more enriched in the SCs, relative to the approximate 5% of such cells observed in primary 

MB (Figure 1e).

The self-renewal of MPCs is dependent on WNT activity

The MPC enriched SCs were exposed to the SMO inhibitors cyclopamine and vismodegib, 

the inactive cyclopamine analog tomatidine, or a vehicle control. Interestingly, even though 

the parental MB tissue responded to vismodegib in vivo (Supplementary Figure S1A), 

neither SMO inhibitor had significant effects on the cellular viability (Supplementary 

Figures S1B,C) or self-renewal (Supplementary Figures S1D,E) of the three SCs. However, 

they both attenuated SHH target gene expression (Supplementary Figures S1F,G,H) relative 

to either a vehicle control or cultures treated with tomatidine. These results suggest that 

SMO inhibitors are capable of attenuating SHH signaling, but that such attenuation has only 

minimal biological affects in these Trp53-deficient SCs.

A WNT-driven gene expression profile was previously observed in Ptch1+/−;Trp53−/− SCs.27 

Further, SOX2 expression, for which the SCs are enriched (Figure 1e), is WNT-dependent in 

many physiological settings.31 Thus, we hypothesized that the MB SCs we had isolated were 

WNT-dependent. Consistent with this hypothesis, SCs were enriched for WNT signaling 

biomarkers relative to primary MB (Figure 2a). To directly test whether SCs are WNT-
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dependent we transfected them with pools of siRNA targeting the pivotal WNT signaling 

component β-Catenin (Ctnnb1), green fluorescent protein (GFP), or a scrambled control 

siRNA. Relative to the control siRNAs, the Ctnnb1 siRNA reduced the expression of the 

WNT biomarker Lgr5 as well as Sox2, but had no effect on the SHH target genes Gli1 or 

Ptch2 (Figure 2b). Further, the Ctnnb1 siRNA attenuated the self-renewal capability of the 

SCs (Figure 2c), but had little effect on the overall viability of these cultures (Supplementary 

Figure S2A). Although WNT activation in MB is commonly linked to Ctnnb1 
mutations,32,33 no Ctnnb1 mutations were identified in the SCs (Supplementary Figure 

S2B). As β-CATENIN also plays an essential role in E-CADHERIN signaling, distinct from 

its role in WNT signaling,34 we also utilized a dominant negative form of the WNT 

transcription factor TCF3 (dnTCF3) commonly used to definitively identify WNT-dependent 

biomarkers.35 Cultures expressing dnTCF3 exhibited significantly attenuated WNT target 

gene expression, including Sox2, but had no effect on the expression of two SHH target 

genes (Figure 2d). SCs expressing dnTCF3 had a reduced capacity for self-renewal (Figure 

2e), but exhibited no change in viability (Figure 2f). To examine if the WNT activation we 

observe in SCs is ligand-driven we overexpressed a negative regulator of the canonical WNT 

pathway, DKK1, which antagonizes the LRP5/6 WNT co-receptor.36 Overexpression of 

DKK1 downregulated WNT target gene expression (Figure 2g), and reduced secondary 

sphere formation (Figure 2h) without affecting cell viability (Figure 2i). Combined, these 

results suggest that WNT signaling plays an important role in the self-renewal of the SCs, 

but a more minimal role in the immediate viability of these cultures. Consistent with this 

suggestion, two small-molecule activators of WNT signaling (GSK-3β inhibitors)37 

significantly increased the self-renewal capacity of these SCs (Supplementary Figure S2C).

Small-molecule WNT inhibitors attenuate the self-renewal of MPCs To identify a small-

molecule WNT inhibitor that could be used to attenuate MB growth in vivo, we screened a 

number of mechanistically distinct small-molecule WNT inhibitors for their ability to 

attenuate self-renewal ex vivo. As downregulation of WNT signaling by DKK1 
overexpression reduced secondary sphere formation (Figure 2h), and DKK1 acts to suppress 

ligand-dependent WNT signaling,36 we tested a small-molecule that directly attenuates 

WNT ligand activity, the PORCUPINE inhibitor LGK974.38 Similar to DKK1 
overexpression, PORCUPINE inhibition reduced WNT pathway activation (Figure 3a) and 

secondary sphere formation (Figure 3b), without affecting SC viability (Figure 3c). 

Consistent with this WNT activation being ligand driven, Wnt7a and Wnt7b were highly 

expressed in SCs relative to parental MB tissue (Supplementary Figure S3A).

As both Ctnnb1 knockdown (Figure 2c) and overexpression of dnTCF reduced secondary 

sphere formation (Figure 2e), we included in our screening antagonists of the TCF/β-

CATENIN complex: carnosate,39 CCT-031374,40 ICG-00141 and PKF115-584.42 We first 

confirmed that this panel of TCF/β-CATENIN antagonists reduced WNT activity in a WNT-

dependent reporter assay (Supplementary Figure S3B). We next treated SCs with these 

antagonists and observed a significant reduction in secondary sphere formation (Figure 3d), 

which occurred at lower doses than those that had effects on SC viability (Figure 3e). These 

WNT inhibitors also attenuated the expression of WNT target genes in SCs (Figure 3f), 

consistent with an on-target mechanism of action. We also verified that one of these 

inhibitors, carnosate, reduced the expression of Sox2 (Supplementary Figure S3C) and the 
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numbers of SOX2+ cells in these cultures (Supplementary Figure S3D). Finally, we 

determined if carnosate affects either proliferation or survival of SOX+ cells. No changes in 

the expression of either proliferation proliferating cell nuclear antigen (PCNA) or apoptotic 

(CLEAVED CASPASE-3) biomarkers were observed in SOX2+ cells (Supplementary Figure 

S3E), consistent with minimal changes in the number of viable cells in culture after longer 

exposure to WNT inhibitor (Supplementary Figure S3F). Together, these results are 

consistent with WNT signaling controlling Sox2 expression, which is required for SCs to 

self-renew.

Loss of Trp53 results in WNT-dependent self-renewal

A number of groups have previously shown that WNT activation attenuates SHH-subgroup 

MB growth,43–45 observations inconsistent with our results. These previous results were 

obtained using SmoA1- or Ptch1-driven MB mouse models, or cells derived from such mice, 

which in all cases were in a wild type (WT) Trp53 background. Thus, we hypothesized that 

the WNT requirement for SC self-renewal that we observe results from loss of Trp53. To test 

this hypothesis, we compared the expression of WNT biomarkers in Ptch1−/− SCs 

expressing WT Trp53 or deficient for Trp53. We noted that expression of WNT biomarkers, 

including WNT ligands, was significantly reduced in the SCs expressing WT Trp53 (Figure 

4a). SCs expressing WT Trp53 were unresponsive to small-molecule β-CATENIN/TCF 

inhibitors, as carnosate was unable to downregulate the expression of WNT target genes 

(Figure 4b), attenuate self-renewal (Figure 4c) or affect viability (Figure 4d). Further, 

overexpression of dnTCF3 did not attenuate WNT target gene expression (Figure 4e) or self-

renewal (Figure 4f) in WT Trp53 SCs, but did in Trp53-deficient cultures. The cell viability 

of either SC was not reduced by dnTCF3 (Supplementary Figure S4A). To more directly 

address the effects of P53 on WNT signaling we attenuated P53 activity in SCs expressing 

WT Trp53 and expressed WT Trp53 in those cultures deficient in Trp53, and determined 

P53 and WNT activity. We observed increased expression of a P53 target gene (Mdm2) and 

decreased expression of WNT target genes upon transfection of Ptch1−/− SCs deficient in 

Trp53 with a plasmid expressing WT Trp53 (Figure 4g). Conversely, reducing P53 activity 

in Ptch1−/− SCs WT for Trp53, via expression of a dominant negative Trp53 construct or 

treatment with the small-molecule P53 inhibitor [Pifithrin-α (PFTα)], reduced Mdm2 
expression but increased expression of WNT target genes (Figures 4h and i). Together, these 

results suggest that loss of Trp53 results in increased WNT activity in Ptch1 mutation-driven 

SCs.

MB growth and propagation is WNT-dependent

To examine the dependence of MB growth and initiation on WNT signaling in vivo, we 

implanted Trp53 mutant, Ptch1-driven MB tissue, which had never been cultured ex vivo, 

into the brains of immunocompromised mice and treated them with vehicle or carnosate. 

Carnosate was selected for these in vivo studies based on ex vivo efficacy and its blood brain 

barrier penetrance.46 These mice were treated for 20 days, or until they displayed behavior 

consistent with having MB (head tilt, hunched posture, ataxia, weight loss), at which time 

the mice were killed and their brains collected for further analyses. We noted that 

orthotopically grown MBs were significantly smaller in carnosate treated mice relative to 

vehicle treated mice (Figures 5a and b). These smaller residual tumors had decreased 
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numbers of proliferating cells, as determined by PCNA immunostaining (Figure 5c, 

Supplementary Figure S5A), and decreased numbers of SOX2+ cells (Figure 5d, 

Supplementary Figure S5B). These results appear distinct from our ex vivo experiments in 

which carnosate did not affect culture growth (Figure 3e, Supplementary Figure S3F). We 

speculate that the effects we see on MB cell proliferation in vivo are indirect, resulting from 

loss of the MPCs that drive bulk tumor growth. Likely, similar effects were not observed ex 
vivo because of the significantly reduced time such cultures were exposed to carnosate.

To determine the WNT dependence of MPCs in vivo, we implanted MB tissue into the 

flanks of mice and treated them with carnosate or vehicle once tumor growth was palpable. 

Carnosate significantly reduced the expression of WNT target genes, but not SHH target 

genes, in these tumors (Figure 5e), and reduced the numbers of SOX2+ cells (Figure 5f, 

Supplementary Figure S5C). Consistent with carnosate treatment reducing the number of 

MPCs, MB tissue from the carnosate-treated primary tumors also displayed significantly 

reduced ability to initiate new tumors when similar numbers of viable donor cells were 

reimplanted into recipient mice (Figure 5g). We also reimplanted carnosate-treated MB 

tissue from donor mice orthotopically into naïve recipient mice, and monitored their MB 

symptom-free survival. Consistent with carnosate treatment reducing MB propagation, mice 

harboring carnosate-treated tumor tissue exhibited significantly increased MB symptom-free 

survival over those that received MB tissue from vehicle-treated donors (Figure 5h).

DISCUSSION

The WNT signaling pathway regulates multiple aspects of stem cell function. Indeed, WNT 

ligands play key roles in neuronal stem cell self-renewal,31 symmetric division,47 

pluripotency48 and tumor initiation in cancer stem cells.31,49 We show here that the self-

renewal of multipotent, SOX2+-enriched SCs, which ultimately drive the growth of Trp53-

deficient SHH-subgroup MB, is dependent on WNT activity. This conclusion is based on 

inhibiting several components of the canonical WNT signaling pathway, using both 

molecular genetic and small-molecule inhibitors (Supplementary Figure S6). Further, we 

show that a small-molecule WNT inhibitor is able to reduce the number of SOX2+ cells, 

tumor initiation and tumor growth in vivo, increasing the overall survival of mice harboring 

Trp53-deficient SHH-subgroup MB.

Our Trp53-deficient SCs had reduced expression of SHH biomarkers relative to primary MB 

tissue, which is likely why they were resistant to SMO inhibitors.50 However, these cultures 

expressed both WNT ligands and biomarkers associated with an activated WNT signaling 

pathway. Consistent with MPC self-renewal being WNT ligand-dependent, a PORCUPINE 

inhibitor, which reduces WNT ligand activity,38 or overexpression of DKK1, which 

attenuates WNT co-receptor activation,36 prevented SCs self-renewal. The self-renewal of 

Trp53-deficient SCs also required canonical β-CATENIN/TCF activity, as knockdown of β-
Catenin, overexpression of dnTCF3, or four distinct small-molecule inhibitors of this WNT-

dependent transcriptional complex, inhibited self-renewal. Based on the sensitivity of these 

cultures to these mechanistically distinct small molecule and molecular genetic regulators of 

WNT signaling, we suggest that the MPC-enriched cultures elaborate a WNT ligand-
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dependent activation of canonical β-CATENIN/TCF signaling, which ultimately drives SC 

self-renewal.

It was previously suggested that WNT signaling attenuates the growth of SHH-subgroup 

MB.43–45 This work showed that the repressive effect of WNT activity on SHH-subgroup 

MB was indirect, via downregulation of SHH signaling. The major difference between these 

previous studies and our work is that we use a Trp53-deficient mouse model of MB. 

Consistent with this previous work, we show that SCs expressing WT Trp53 do not express 

high levels of WNT biomarkers, are not sensitive to WNT inhibition and do not self-renew 

in a WNT-dependent manner. However, we also show that reducing P53 activity in these WT 

Trp53 cultures increased WNT activity and that overexpression of Trp53 in 

Ptch1−/−;Trp53−/− SCs reduced WNT activity. Together, these results suggest that loss of 

Trp53 expression modulates the WNT dependence of Ptch1 mutant-driven MB. Similarly, it 

was previously suggested that P53 can repress canonical WNT signaling in several tumor 

types. In some tumors, such as neuroblastoma and breast cancer, this regulation was shown 

to occur via the transcriptional activation of specific micro-RNAs.51,52 While in colorectal 

cancer, loss of TRP53 activates WNT signaling via BONE MORPHOGENIC PROTEIN 

signaling.53

TRP53 status is the most important risk factor of SHH-subgroup MB patients.13,54,55 These 

patients, who tend to be children with germline TRP53 mutations, exhibit a significantly 

reduced 5-year survival rate.56 Further, clinical trials of vismodegib noted reduced 

progression-free survival of SHH-subgroup MB patients deficient in P53 activity.13 Our 

findings suggest a model in which loss of Trp53 results in the emergence of a vismodegib 

resistant, WNT-dependent population of MPCs. We further suggest that this population of 

WNT-dependent MPCs might underlie the poor outcome and relative vismodegib resistance 

of SHH-subgroup patients deficient in TRP53. Indeed, a similar model in which WNT-

dependent basal cell carcinoma propagating cells drive bulk SHH-dependent basal cell 

carcinoma growth has been described.57,58 Although the translational relevance of our 

findings using mouse models of MB are not yet known, we speculate that a therapeutic 

approach using WNT inhibitors would improve the outcome of TRP53-deficient SHH-

subgroup patients. Importantly, such patients would likely benefit most from the use of 

combination therapy that also includes conventional chemotherapy or one of the SMO 

inhibitors now in clinical trials. Such a therapeutic strategy would inhibit the growth of the 

bulk tumor by targeting the rapidly dividing MB cells as well as target the MPCs that are 

resistant to such agents.59

MATERIALS AND METHODS

MPC enrichment and assay

MB tissue was enzymatically and mechanically digested using the Papain Dissociation 

System (Worthington, Lakewood, NJ, USA).60,61 The resulting cell suspensions were grown 

ex vivo in Neurobasal serum-free medium containing 1% Glutamax, 2% B27, 1% N2, 

epidermal growth factor (25 ng/ml), fibroblast growth factor (25 ng/ml) and Pen-Strep 

(Invitrogen, Frederick, MD, USA) and allow to form spheres for up to 10 days. For analysis 

by immunocytochemistry, SCs were plated on poly-L-lysine-coated glass chamber slides 
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(Millipore, Billerica, MA, USA) in the medium described above or in Neurobasal medium 

containing 2% fetal bovine serum for 6 days, essentially as previously described.62 All 

primary antibodies including: SOX2 #ab97959 (Abcam, Cambridge, UK), PCNA #2586, 

GFAP #12389, CNPASE #5664, β3-TUBULIN #5568, NESTIN #4760, 

NEUROFILAMENT-L #2837 (Cell Signaling, Danvers, MA, USA) were used according to 

their manufacturer’s instructions. For analyses by flow cytometry, cell suspensions from SCs 

or tumor tissues were incubated in Cytofix/Cytoperm solution (Becton & Dickinson, 

Franklin Lakes, NJ, USA) prior to staining with the corresponding fluorescent-conjugated 

antibody: SOX2 #656103, PCNA #307909 (BioLegend, San Diego, CA, USA), and 

CLEAVED CASPASE-3 #9669 (Cell Signaling). Fluorescence activated cell sorting (FACS) 

data were acquired using a BD CANTO II FACS (Becton & Dickinson) and analyzed using 

DiVa6 software.

Cell and molecular biology

Plasmids expressing a dominant-negative TCF3 construct (dnTCF3),63 DKK1 (Addgene, 

Cambridge, CA, USA), Trp53 (Takara, Mountain View, CA, USA), a dominant-negative P53 

(dnTrp53) (Takara) or siRNA smart pools (Dharmacon, Lafayette, LA, USA) were 

transfected into SCs using Lipofectamine 2000 (Invitrogen). Cell viability was monitored by 

the reduction of 3-(4,5-dimethyl-2-thiazolyl) 2,5-diphenyl-2H-tetrazolium bromide to 

formazan,64 or by trypan blue exclusion when evaluating the number of viable cells prior to 

sphere formation assays, FACS analysis or engraftment in vivo. Secondary sphere formation 

was determined using equal numbers of viable cells, from treated primary SCs, to form 

spheres in 8 days. Total RNA was Trizol (Invitrogen) extracted and the expression of the 

indicated genes determined using quantitative real-time PCR (RT–qPCR) and Taqman 

probes (Invitrogen), followed by normalization to the expression of Gapdh.65 The efficacy of 

WNT antagonists was validated using a mycoplasma tested cell line and containing a 

TCF/LEF luciferase reporter gene, HEK 293 STF (ATCC, Manassas, VA, USA), treated 

with 10 mM LiCl and 10 mg/ml WNT3a, and normalized to protein concentration. For 

Ctnnb1 sequencing cDNA was prepared from total RNA extracted from SCs-1, 2, 3. The 

region of β-Catenin (Ctnnb1) encoding exon 3 was sequenced and compared to WT. Primer 

sequences used were Ctnnb1 Fw: 5′-CGC TGCGTGGACAATGGCTA-3′ and Ctnnb1 Rv: 

5′-CGTGTGGCAAGTTCCGCGTC-3′. Sequence alignment was performed using Ape 

software.

Mouse work

All mouse work was conducted in accordance with protocols approved by the Institutional 

Animal Care and Use Committee at the University of Miami. Ptch1tm1Mps/J66 and 

B6.129S2-Trp53tm1Tyj/J67 mice (Jackson laboratory, Bar Harbor, ME, USA) were mated to 

generate a breeding colony. Spontaneous tumors Ptch1−/−;Trp53+/+ or Ptch1+/− ;Trp53+/− 

were expanded and maintained in 6-week-old male CD1-Foxn1nu mice as allografts (Charles 

River Laboratories, Worcester, MA, USA). For orthotopic studies, 100 000 viable cells were 

resuspended in 3 µl final volume and implanted into the cerebella of 6-week-old male CD1-
Foxn1nu mice using the stereotaxic coordinates 2 mm posterior to lambda, 2 mm lateral to 

the middle line and 2 mm deep. Treatment was started 2 days after implantation. The same 

coordinates and final volume were used to implant 10 000 viable cells for symptom-free 
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survival studies. For flank treatments, 1 000 000 viable cells were subcutaneously implanted 

into 6-week-old male CD1-Foxn1nu mice and treatment started once the tumors reached a 

size of approximately 200 mm3. Mouse tissues were fixed in formalin prior to be stained. 

For in vivo engraftment studies, the indicated numbers of viable cells from residual tumors 

were implanted into the flanks of 6-week-old male CD1-Foxn1nu mice. For all in vivo 
studies, 50 µl of 50 mg/kg vismodegib (Selleckchem, Houston, TX, USA) or 10 mg/kg 

carnosate (Enzo, Farmingdale, NY, USA) both dissolved in dimethyl sulfoxide and were 

administrated daily via intra-peritoneal injection.

Statistical analysis

For our ex vivo analyses, the results shown represent the mean of at least three independent 

experiments ± s.e.m. For in vivo analyses, the results shown represent the mean and s.e.m. of 

at least six mice. For IHC quantification, the results shown represent the mean and s.e.m. of 

at least six fields from three different tumors. Sample sizes were chosen based on similar 

well-characterized experiments to ensure adequate power to detect a pre-specified effect 

size. Mice were randomly distributed to different treatments and the investigator blinded to 

the assignment until final tumor analyses. For symptom-free survival analysis, those mice 

that did not show tumors as per hematoxylin eosin staining 60 days after experiment 

initiation were excluded from the analyses. Significance in multiple group comparisons was 

determined using a one-way analysis of variance followed by a post-hoc Student–Newman–

Keuls analysis. Two sample analyses were determined using a one-tailed Student’s t-test. 

Data generated showed normal distribution with similar variances, and analysis was 

completed assuming equal variances. Statistical significance was reached when P < 0.05. 

The significance of tumor frequency was determined using a χ2 test, and statistically 

significance determined when α < 0.05. Survival significance was calculated using a Log-

rank (Mantel–Cox) test and statistically significance reached when P < 0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Medulloblastoma sphere cultures display stem cell properties. (a) The expression of the 

indicated progenitor cell biomarkers, from three independently derived Trp53-deficient MB 

sphere cultures (SC-1, 2 and 3) and two primary MBs (MB-A and MB-B), was determined 

and then normalized to that of MB-A. (b) SCs were immunostained for neuronal progenitor 

biomarkers (NESTIN and β3-TUBULIN). (c) The level of SC pluripotency was determined 

by examining the biomarkers GLIAL FRIBRILLARY ACIDIC PROTEIN (GFAP), 

NEUROFILAMENT-LARGE (NF-L) or CYCLIC-NUCLEOTIDE-

PHOSPHODIESTERASE (CNPASE). Representative images of immunostained SC-2 are 

shown. (d) The indicated numbers of viable SC-2 cells were implanted subcutaneously into 

the flanks of immunocompromised mice. The frequency and number of tumor engraftments 

is shown. (e) The percentage of SOX2+ cells in MB flank tumors and SCs was determined 

by FACS analysis.

Rodriguez-Blanco et al. Page 14

Oncogene. Author manuscript; available in PMC 2017 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
The self-renewal of medulloblastoma sphere cultures is dependent on WNT activity. (a) A 

heat map representing the relative gene expression of SHH (Gli1, Gli2, Gli3, Ptch2, Smo, 
Hhip, Sufu, Boc, Cdo) and WNT pathway-related genes (Axin1, Axin2, Lgr5, Ctnnb1, 
Dkk1, Ddx3, Lef1, Porcn), as determined in the indicated Trp53-deficient SCs and Trp53-

deficient MB tissues (MB-A and MB-B). The color scale was calculated using Log2 

transformed gene expression data normalized to their expression in MB-A. (b) SC-2 were 

transfected with the indicated siRNA smart pools, and the expression of the indicated genes 

determined 72 h later. (c) The ability of SC-2 to form secondary spheres 72 h after 

transfection with the indicated siRNA smart pool was determined. (d) SC-2 were transfected 

with a plasmid expressing a dnTCF3 construct or a control plasmid (pCS2), and the 

expression of the indicated genes determined 48 h later. (e) The ability of SC-2 to form 

secondary spheres was determined 48 h after transfection with a dnTCF3 expression plasmid 

or control plasmid (pCS2). (f) SC-2 was transfected with a plasmid expressing a dnTCF3 
construct or control plasmid (pCS2) and cell viability determined 5 days later using an MTT 

reduction assay. (g) SC-2 was transfected with a plasmid expressing DKK1 or control 

plasmid (pCS2) and the expression of WNT target genes determined. (h) The ability of SC-2 

to form secondary spheres was determined 48 h after transfection with a plasmid expressing 
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DKK1 or control plasmid (pCS2). (i) SC-2 was transfected with a plasmid expressing DKK1 
or control plasmid (pCS2) and cell viability determined 5 days later using an MTT reduction 

assay. Results were normalized to that from pCS2 transfected cultures unless otherwise 

indicated. MTT, 3-(4,5-dimethyl-2-thiazolyl) 2,5-diphenyl-2H-tetrazolium bromide.
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Figure 3. 
Small-molecule WNT inhibitors attenuate the self-renewal of medulloblastoma sphere 

cultures. (a) SC-2 were treated with the indicated concentrations of the PORCUPINE 

inhibitor LGK974, and the expression of the indicated genes determined 72 h later. (b) The 

ability of SC-2 to form secondary spheres was determined following incubation (72 h) with 

the indicated concentrations of LGK974. (c) SC-2 were incubated with the indicated 

concentrations of LGK974, and cell viability determined 5 days later using an MTT 

reduction assay. (d) The ability of SC-2 to form secondary spheres was determined 

following incubation (24 h) with the indicated concentrations of TCF/β-CATENIN inhibitors 

(carnosate, CCT-031374 hydrobromide [CCT], ICG-001 [ICG] or PKF-115-584 [PKF]). (e) 

SC-2 were incubated for 72 h with the indicated concentrations of TCF/β-CATENIN 

inhibitors, and cell viability determined 5 days later using an MTT reduction assay. (f) SC-2 

were treated with the indicated TCF/β-CATENIN inhibitors for 24 h. The expression of the 

indicated genes was determined. Results were normalized to dimethyl sulfoxide control. 

MTT, 3-(4,5-dimethyl-2-thiazolyl) 2,5-diphenyl-2H-tetrazolium bromide.
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Figure 4. 
MPC enriched cultures expressing wild-type Trp53 are not WNT-dependent. (a) The 

expression of the indicated genes was determined in Ptch1−/−;Trp53−/− or Ptch1−/−;Trp53+/+ 

SCs, and normalized to the data from Ptch1−/−;Trp53−/− cultures. (b) SC cultures were 

treated with 25 µM carnosate for 24 h, and the expression of the indicated WNT target genes 

determined. (c) The ability of the SCs to form secondary spheres, following incubation (24 

h) with the indicated concentrations of carnosate, was determined. (d) The indicated SCs 

were incubated for 3 days with the various concentrations of carnosate, and cell viability 

determined 5 days later using an MTT reduction assay. The results were normalized to those 

from the dimethyl sulfoxide control. (e) SCs were transfected with a plasmid expressing a 

dnTCF3 construct or a control plasmid (pCS2), and the expression of the indicated WNT 

target genes determined 48 h later. (f) The ability of SCs to form secondary spheres was 

determined 48 h after transfection with plasmids expressing dnTCF3, a control plasmid 

(pCS2) or GFP. Results were normalized to those from the pCS2 control. (g) Ptch1−/

−;Trp53−/− SCs were transfected with plasmids expressing wild-type P53 (pCMV-Trp53), or 

an enhanced green fluorescent protein (EGFP) (pCMV-EGFP) control vector, and the 

expression of the indicated genes determined 72 h later. (h) Ptch1−/−; Trp53+/+ SCs were 
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transfected with plasmids expressing dominant negative P53 (pCMV-dnTrp53) or EGFP 

(pCMV-EGFP), and the expression of the indicated genes determined 72 h later. The results 

were normalized to those from the EGFP expressing cultures. (i) Ptch1−/−;Trp53+/+ SCs 

were incubated with the P53/MDM2 inhibitor Pifithrin-α (PFT-α) for 24 h, and the 

expression of the indicated genes determined. The results were normalized to those from the 

dimethyl sulfoxide control. MTT, 3-(4,5-dimethyl-2-thiazolyl) 2,5-diphenyl-2H-tetrazolium 

bromide.
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Figure 5. 
The propagation and growth of Trp53-deficient, SHH-subgroup medulloblastoma is WNT-

dependent. Trp53 mutant, Ptch1-driven MB tissue, which had never been cultured ex vivo, 

was orthotopically implanted into the cerebellum of immunocompromised mice. These mice 

were then treated with carnosate or vehicle for 20 days, or until they developed MB 

symptoms. The mice were then killed and their brains collected. (a) Representative 

hematoxylin eosin staining of orthotopic MB tissue from a carnosate or vehicle-treated 

mouse is shown. (b) The volume of residual orthotopic tumors from these mice was 

calculated, and the mean volume and s.e.m. shown. (c) The residual orthotopic tumors from 

these mice were immunostained for the proliferation biomarker PCNA, and the numbers of 

PCNA+ cells quantified and normalized to total cell number per field (%). (d) The residual 

orthotopic tumors from these mice were immunostained for the MPC biomarker SOX2, and 

the numbers of SOX2+ cells quantified and normalized to total cell number per field (%). (e) 

MB tumor tissue was subcutaneously implanted into the flanks of immunocompromised 

mice, and treated daily with of carnosate, or vehicle control, for 8 days. The expression of 

the indicated genes in residual flank tumors was then determined. (f) The enrichment of 

SOX2+ cells in residual flank tissue, from carnosate or vehicle-treated mice, was determined 

by FACS analysis. (g) The indicated number of viable cells from residual MB tissue was 

transplanted into additional immunocompromised mice, and the frequency of tumor 

engraftment determined. (h) Equal numbers of viable cells from residual flank MB tissue 
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were implanted into the cerebellum of additional immunocompromised mice, and MB 

symptom-free survival monitored for 60 days. Results were normalized to vehicle control.
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