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Abstract

Genes implicated in neuropsychiatric disorders are active in human fetal brain, yet difficult to 

study in a longitudinal fashion. We demonstrate that organoids from human pluripotent cells 

model cerebral cortical development on the molecular level before 16 weeks post-conception. A 

multi-omics analysis revealed differentially active genes and enhancers with the greatest changes 

occurring at transition from stem cells to progenitors. Networks of converging gene and enhancer 

modules were assembled into six and four global patterns of expression/activity across time. A 

pattern with progressive downregulation was enriched with human-gained enhancers, suggesting 

their importance in early human brain development. A few convergent gene and enhancer modules 
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were enriched in autism-associated genes and genomic variants in autistic children. The organoid 

model helps identify functional elements that may drive disease onset.

Patterning of the mammalian brain into regions of specific size and fate, demarcated by 

transcription factor expression and enhancer activity, is already in progress around the time 

the neural tube closes in the 4th post-conceptional week (PCW) in humans and forestalls 

species-specific mechanisms of neurogenesis, connectivity and function (1-3). A growing 

list of genetic and epidemiological evidence implicates early neurodevelopment in the 

etiology of many common neuropsychiatric disorders, such as autism spectrum disorder 

(ASD), intellectual disabilities, and schizophrenia (4-7). Development, including cell 

proliferation, interaction, and differentiation, is the result of an inherent gene regulation 

governed by complex interactions between enhancers, promoters, noncoding RNAs, and 

transcription regulatory proteins. However, the understanding of epigenetic gene regulation 

in the developing human brain is very limited, largely owing to the relative scarcity of 

available human brain tissue at early developmental time points.

The human cerebral cortex has undergone an extraordinary increase in size and complexity 

during mammalian evolution, in part through the symmetrical division and the exponential 

increase in number of radial glial cells, which are the cortical stem cells (1). The genetic and 

molecular underpinnings of this process are still unclear, perhaps because these events occur 

embryonically, before the cortical anlage is formed during the fetal period. Human induced 

pluripotent stem cells (hiPSCs) and hiPSC-derived organoids allow investigators to gain 

unique and direct insights into the genetic and molecular events that drive these very early 

aspects of human cortical development.

Brain organoids match embryonic to early fetal stages of human cortical 

development

We produced hiPSC lines from fibroblasts isolated from human postmortem fetuses at mid-

gestation, and we differentiated these lines into telencephalic organoids patterned to the 

dorsal forebrain; samples of cerebral cortex were collected from the same specimens for 

comparative analyses (Fig. S1). To assess the validity of hiPSC-derived telencephalic 

organoids as a model of human brain development, we compared overall gene expression 

and regulation of organoids with isogenic cortical brain tissue. Several iPSC lines were 

derived from skin fibroblasts of postmortem fetal specimens 310, 313, and 320, aged 

between 15 and 17 PCW, for which cortical tissue was available (Fig. S2, Table S1). The 

hiPSC lines derived from fetal fibroblasts were comparable to those derived from adult 

fibroblasts with regard to pluripotency, growth rate, and differentiation potential (Figs. S3 

and S4, Table S2) (8). From two hiPSC lines per each of the fetal specimens, we generated 

telencephalic organoids patterned to the dorsal forebrain (6), grew them under proliferative 

conditions for 11 days, and then moved them into a terminal differentiation (TD) medium. 

Organoids were randomly collected for RNA-seq from total cells as well as nuclear fractions 

and histone mark ChIP-seq from nuclear fractions at around day 0, day 11, and day 30 of TD 

in vitro (TD0, TD11, and TD30, respectively). The transcriptome of whole cells and nuclear 

RNA were highly correlated (Fig. S5) (8), hence we used cellular transcriptome for all 
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subsequent analyses. Peaks of three histone marks (H3K4me3, H3K27ac and H3K27me3) 

were called to mark functional elements including enhancers, promoters or polycomb 

repressed regions (Table S3) (8). To place organoids in a human developmental context, we 

then compared transcriptomes and chromatin marks from organoids with those from the 

corresponding isogenic cortical tissue, human embryonic stem cell (hESC) lines, and brain 

tissue of various ages obtained from the PsychENCODE developmental dataset (9), other 

PsychENCODE projects (10), and the Roadmap epigenomics project (11) (Fig. 1A).

Hierarchical clustering of transcriptomes and histone marks revealed that fetal, perinatal and 

adult brain samples formed separate clusters (Fig. 1B-D), confirming fundamental 

differences in gene expression in prenatal versus postnatal stages of brain development (12, 

13). Furthermore, hiPSC/hESC lines from different sources (including ours) and brain 

organoids clustered together with fetal brain tissue and separately from adult brain tissue. 

But importantly, hiPSCs/hESCs lines formed a distinct subcluster, highlighting differences 

between organoids and pluripotent cells. Within each cluster, datasets for the same cell type 

but from different sources were highly concordant with each other (i.e., our data, those of 

Roadmap Epigenomics and the PsychENCODE developmental dataset) suggesting that 

batch effects were not responsible for the observed clustering.

Within our datasets, organoid transcriptomes clustered by in vitro age (i.e., TD0, TD11, and 

TD30) irrespective of hiPSC lines from which they were generated, suggesting that the 

transcriptome reveals well-defined stage-specific cellular differentiation processes (Figs. 1E 

and S6). Invariably, organoids clustered separately from the corresponding isogenic fetal 

cortex. To understand the relationships between organoids and developing human brain, we 

classified the organoids against the PsychENCODE developmental dataset (9), which spans 

a wide range of human ages and brain regions. Organoids’ transcriptomes mapped most 

closely to the human neocortex between 8 and 16 PCW of development, with the isogenic 

fetal brain samples mapping most consistently around 16 PCW, in good agreement with their 

annotated age (Fig. 1F). This analysis places the organoids substantially earlier than their 

corresponding mid-fetal brains, suggesting that organoids model late embryonic to early 

fetal stages of telencephalic development.

We next compared transcriptomes between each stage of organoid development and the 

post-mortem fetal cortical tissue from the same individual. Overall, there were a large 

number of differentially expressed genes (DEGs) between each organoid stage and isogenic 

brain tissue of which roughly half was upregulated and half downregulated (Fig. 1G and 

Table S4). Although some stage-specific DEGs were present, particularly at TD0 (24%), 

most of the differences (63%) were shared across two or more organoid stages. Top GO 

terms for this common set of organoid-brain DEGs were neurogenesis and regulation of 

nervous system development, whereas the TD0-specific set of organoid-brain DEGs were 

related to DNA replication, consistent with age and cell type differences between fetal brain 

tissue and organoids (Table S4). We tested this hypothesis in silico, by assessing for overlap 

between the organoid-brain DEGs and cell type-specific transcripts identified in fetal human 

brain (14). Genes upregulated in fetal cortex were consistently enriched in markers for 

maturing excitatory neurons, interneurons and newborn neurons compared to all organoid 
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stages, whereas genes upregulated in organoids at TD0 and TD11 were enriched in markers 

for dividing radial glia (Fig. S6B, Table S5).

To validate bulk analyses, we performed single nuclei sequencing (snRNA-seq) (8) and 

analyzed the cellular composition of organoids and fetal brain (one sample per 

differentiation time point and one sample for brain). We shallow sequenced about 10,000 

and considered the top 6,000 most informative cells in each sample. We retained only cells 

expressing at least 500 genes, resulting in a final set of 17837 cells that were used for 

analysis. Batch-corrected clustering of single cell’s transcriptomes by tSNE analysis from all 

samples identified 15 clusters (Fig. 1H), with 11 containing mostly cells from organoids and 

4 containing cells mostly from fetal cortex (Fig. S6C,D). Differential expression analysis 

between any individual cluster and all the others highlighted sets of marker genes for each 

cluster (Table S6), and we used a combination of published datasets of cell markers from 

single cell RNAseq studies of fetal human brain samples (14, 15) to annotate them. The 

clusters largely contributed by organoid cells overlapped with those identified in human 

developing brains (15) (Fig.1H, S6E), and only one cluster, cluster 5, did not find any 

correspondence to postmortem human datasets and was labeled “novel”. These organoid-

specific clusters comprised various types of radial glial cells including early RG (eRG), 

outer RG (oRG), ventricular RG (vRG), dividing RG (divRG) and truncated RG (tRG). In 

addition, cluster 3 expresses early- and late-born excitatory neurons (EN) markers, 

consistent with an organoid specification to dorsal cortex. Cell clusters specific to fetal 

cortex contained inhibitory and excitatory neurons (IN/EN) (clusters 7, 13), radial glial cells 

(cluster 8) and a small oligodendrocyte precursor cell (OPC) cluster (cluster 14). The 

presence of IN in fetal cortex is expected, given that the cortex at PCW 17 is already 

receiving migrating interneurons from the developing basal ganglia. Timewise, our TD0 

organoid (clusters 1, 2, 5, 6, and 10) containing RG and choroid cells matched with cells 

ranging from 6 to 9 PCW in fetal brain samples (15). Correspondingly, our CTX1 (clusters 

7, 8, 13 and 14) matched with markers (MGE-RG, RG, IN and EN) seen in 15-16.5 PCW 

fetal brain (Fig. S6K,L). Together, the data confirmed the conclusion of bulk transcriptome 

analyses that organoids are younger than the fetal brain.

The fraction of cells in a cluster originating from a sample at each time point reveals some 

clear trends: clusters 1 (Choroid/eRG), 2 (MGE-RG/dorsal RG/eRG RG), 6 (IPC/divRG) 

and 10 (eRG/Choroid) decrease over time, consistently with them being composed of mostly 

immature cells originating from organoids at TD0 (Fig. S6C,D and Table S6). In contrast, 

clusters 0 (Glyc) and 12 (U3/Glyc) mostly from samples at TD30, increase with time, 

perhaps suggesting changing metabolic requirements among neural precursors (15). The 

remaining clusters and in particular clusters 3 (EN), 4, 5 (unknown) reach a maximum at 

TD11, consistent with findings that some newborn neurons peak at an intermediate 

pseudoage (15). Finally, we ordered the cells along a pseudotime (Fig. S6F-I), which 

revealed cell trajectories along several dimensions (8). Cells originating from TD0 samples 

populated the top branch and were nearly absent after the first branch point, which is 

consistent with the pseudotime progression (Fig. S6H) from the top branch (time 0) to the 

left and right bottom branches (time 15). Similarly, scoring individual cells using cell cycle 

markers (Fig. S6I) revealed higher frequency of actively cycling cells (G2M or S phase) at 

the early pseudotimes and larger fractions of non-cycling cells (G1 phase) when moving 
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along each path (8). In summary, from this integrated analysis emerges a highly coherent 

picture of organoids temporal evolution (i.e. differentiation and maturation), representing 

earlier stages with respect to the corresponding 17 PCW fetal brain counterpart, and 

mimicking early human brain development, consistent with the classification of the bulk 

transcriptome with the PsychENCODE developmental Capstone dataset.

We next defined putative promoter and enhancer elements as well as repressed chromatin 

from histone mark data by chromatin segmentation analyses (Figs. S1, S7, and Tables S7, 

S8) (8). As a result, we identified 327,877 putative enhancers (H3K27ac peaks which lack 

H3K4me3 and H3K27me3 signals) across organoids and fetal brains (Table S9). Among 

these enhancers, H3K27ac signals are highly correlated with ATAC-seq signals, confirming 

the open chromatin signatures and supporting the robustness of our approach (Fig. S7). We 

further connected these enhancers to genes either by promoter-enhancer distance (within 20 

Kb) or by strength of their physical interaction to gene promoters on the basis of Hi-C data 

for fetal brains (16). From the initial dataset of >300,000 putative enhancers, 96,375 

enhancers (29.4%) were found to be associated with 22,835 protein-coding or lincRNA 

genes (out of 27,585 such genes from Gencode V25 annotation) (17) and were used for 

further analyses (Table S10). The gene-associated enhancer dataset was corroborated by the 

observation of the trend that an increase in activity of enhancers or associated number of 

enhancers leads to higher expression of interacting genes (Figs. S8, S9 and S10).

Of the 96,375 gene-linked enhancers, 90% are concordant with those previously discovered 

by the ENCODE/Roadmap Consortia in various cell lines and tissues (18), and 10,243 

(10%) were completely novel. Overall, 83,608 and 46,735 were active in organoids and the 

isogenic mid-fetal cortex, respectively. Of the former, 49,640 (59%) were active only in 

organoids (Fig. S11E) and downregulated in mid-fetal brain, suggesting that organoids, and 

by extension embryonic/early fetal cortex, utilize roughly 1.8-fold more enhancers than later 

developing cerebral cortex. Comparing enhancer numbers active in organoids across stages, 

an increasingly larger number became active with the progression of organoid development, 

with roughly 11,700 enhancers becoming active only at TD30 (Fig. S11F). Furthermore, 

hierarchical clustering analyses based upon the degree of enhancer activity (magnitude of 

H3K27ac signal) (Fig. 1E) revealed two major clusters – organoids and fetal cortex – where 

organoids’ enhancers clustered by in vitro age (i.e., TD0, TD11, and TD30) irrespective of 

genomic background of hiPSC lines, an almost identical pattern to that of transcriptome data 

(Fig. 1E, S6). Finally, comparing enhancer activity between each stage of organoid 

development and fetal cortical tissue from the same individual showed that the three 

organoid stages shared a large number of differentially active enhancers (DAEs) with respect 

to fetal cortex (Fig. 1G), as observed with transcriptome data. All together, these analyses 

reveal a close parallelism between gene expression and enhancer activities across early 

development and suggest that gene regulation in embryonic/early fetal development is driven 

by sets of early enhancers, most of which are not active in mid-fetal cerebral cortex.
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Expression and regulatory changes defining early developmental 

transitions in organoids

To better understand the gene regulatory changes driving embryonic/early fetal development, 

we analyzed DEGs and DAEs in organoids between transitions TD0-to-TD11 and TD11-to-

TD30. We found that the largest differences in gene expression and enhancer activity were at 

the first transition and from 2/3 to 3/4 of changes were specific for this transition (Fig. 1I, 

Tables S10 and S11) confirming that a substantial change in gene regulation must occur at 

the beginning of cortical stem cell differentiation. Downregulated genes specific for the first 

transition were related to mitosis and regulation of the cell cycle, including cyclin dependent 

kinases (CDK2, CDK4, and CDK6) and DNA repair enzymes (TP53, BRCA1/2, PCNA), all 

showing downward trend in expression likely reflecting top proliferative activity of 

precursor cells at the earliest time point that decreases during differentiation (Fig. S12 and 

Table S11). Consistent with this, markers for cell proliferation were progressively 

downregulated at the cellular level between TD0 and TD30 (Fig. S3). Top functional 

annotations for genes downregulated at the second transition (from TD11 to TD30) were 

instead related to transcriptional regulation of pluripotent and cortical precursor cells (i.e., 

SOX1/2, EOMES, LHX2, FOXG1, POU3F2/3, SIX3, FEZF2, EMX2, GLI1/3, NEUROD4, 

HeS5/6, REST, DLL3). In contrast, genes involved in the development of the neuronal 

system and synaptic transmission were upregulated at both transitions, and included cell 

adhesion-, guidance and synaptic molecules-related genes, including a large number of 

receptors, calcium and potassium channels, synaptic membrane recycling components as 

well as intellectual disability related genes such as several CNTN family members.

Performing ChIP-seq and RNA-seq in the same samples provided an opportunity to assess 

the impact of enhancers on the transcription of their gene targets. We correlated enhancer 

activity and expression of their associated genes across the whole dataset (organoids and 

brain samples) to reveal that, globally, 10.6% of gene-enhancer pairs had significant positive 

or negative correlations, corresponding to 15,026 enhancers and 7,858 genes (Table S12). 

Observation of both positive and negative correlations is reminiscent of the finding that 

H3K27ac enriched regulatory regions, commonly referred to as enhancers, can be bound by 

both activators and repressors of gene transcription (19). We referred to 10,192 (67.8%) 

enhancers with positive correlations as activating regulators (A-reg) of 5,605 genes, and to 

4,993 (33.2%) enhancers with negative correlations as repressing regulators (R-reg) of 3,251 

genes. Moreover, 98.9% of enhancers are either A-reg or R-reg but not both, consistent with 

the notion that binding sites of activators and repressors are mutually exclusive (20). Indeed, 

across both transitions, we observed more pronounced correlations between expression 

changes of genes and activity change of linked A-reg versus linked non-A-reg; similar 

observations were made for R-reg (Fig. S13A). Consistently, differentially active A-reg and 

R-reg are associated with DEGs in the expected direction, i.e., A-reg with increased activity 

are enriched in upregulated DEGs, whereas R-reg with increased activity are enriched in 

downregulated DEGs (Fisher’s test, p-value < 2.2×10−16 for both transitions) (Fig. S13B), 

suggesting that differential activity of the identified enhancers is indeed driving differential 

gene expression across organoid development.
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Gene/enhancer network analyses

To study the temporal dynamics of gene expression and enhancer activities across the three 

developmental time points, we used Weighted Gene Co-expression Network Analysis 

(WGCNA) (21). The resulting networks grouped gene transcripts in 54 co-expressed 

modules (MG1-MG54) and gene-associated enhancers into 29 co-active modules (ME1-

ME29) each showing a specific trajectory along organoid differentiation (Fig. 2A,B and 

Tables S12, S14). Unsupervised hierarchical clustering of module eigengenes, which are the 

representative of gene expression/enhancer activity of each module, grouped samples by 

differentiation time point. Using k-means clustering of module’s eigengenes we grouped the 

gene and enhancer modules into six and four “supermodules”, respectively, which represent 

higher order clustering of the modules (Fig. 2C,D).

Supermodules exhibit specific profiles of activities during the two transitions (8) and 

functional annotations (Table S14). The monotonically upregulated gene supermodule G1up 

comprised modules related to neurons, synapses, cell adhesion and axon guidance, and was 

hence dubbed as governing synapse/transport. Conversely, the supermodule G4down, with 

downregulation at the first transition, comprised modules enriched in DNA repair and cell 

cycle-related genes, and was thus dubbed as governing cell cycle/DNA repair (Fig. 2C) 

reflecting the cell cycle annotation of TD0-to-TD11 downregulated DEGs (Fig. S12). Other 

supermodules exhibited transition-specific changes. G2up, which exhibited peak upregulated 

gene expression at TD11, was enriched in genes related to ribosome, translation, protein 

folding, and degradation. The transcription supermodule G5down, downregulated at the 

second transition, included major transcription factors expressed by cortical progenitor cells, 

which show downregulation at TD11-to-TD30 (Fig. S12). By contrast the G3up 

supermodule, upregulated at the second transition, was enriched in G-protein receptor 

signaling, implying a novel role of these molecules for the earliest stages of cortical neuron 

differentiation. Patterns of gene expression and enhancer activity in the modules and 

supermodules were further confirmed by enrichment analysis of DEG and DAEs (Fig. 2E,F). 

Specifically, gene modules and linked genes of enhancer modules were enriched with DEGs 

for which gene expression changes were generally in the same direction as enhancer activity 

change.

Further evidence for functional relevance of the modules and supermodules arise from 

intersection with genes relevant to neuropsychiatric diseases. Genes within the SFARI 

dataset, a curated list of genes associated with ASD, including both rare mutations and 

common variants (22) were significantly overrepresented in the MG4 and MG5 neuronal/

synaptic modules and the MG51 cell cycle module (Fig. 2G; Table S14). SFARI gene were 

also enriched within gene targets of four enhancer modules (ME9 and ME29 in supermodule 

E1up, and ME2 and ME13 in supermodule E2up) with upregulated patterns of activity 

across development, one of which, the ME2 module, was also enriched in developmental 

brain disorder genes (23) (Fig. 2H). Enrichment analysis also showed that a set of 

transcription factors (TFs) pertinent to human cortical neurogenesis (24) was preferentially 

associated with gene targets of two enhancer modules (ME3 and ME19, both in 

supermodule E3down) that have downregulated enhancer activity across organoid 

development (Fig. 2H). This evidence supports that organoids culture can capture dynamic 
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gene regulatory events present in early human brain development, and that such early events 

are potentially involved in disease pathogenesis.

To assess the correspondence between the gene network and the enhancer network, we 

examined whether enhancers linked to a gene module are over-represented in one or a small 

number of enhancer modules. Such convergence between a gene module and an enhancer 

module would suggest that co-expressed genes are likely regulated by enhancers with 

correlated patterns of activity. To mitigate the ambiguity caused by multiple enhancers per 

gene, we focused on the strongest A-reg/R-reg of a gene, defined by the most positive/

negative correlation between enhancer activity and gene expression. Indeed, we find that A-

regs and R-regs of 14 and 12 gene modules, respectively, are over-represented in a small 

number of enhancer modules, (FDR < 0.05, Fig. 2I). Not surprisingly, A-reg and R-reg 

linked to the same gene module are over-represented in different enhancer modules with 

opposite trajectories over time, e.g. A-reg of MG3 in G1up converges with ME10 and ME2 

in E2up but its R-reg converges with ME28 in E3down. Such convergence between the gene 

network and the enhancer network suggests that co-expressed genes likely share a set of co-

regulated enhancers. Moreover, enhancers discovered in organoids hint to upstream elements 

that regulate the expression of disease-associated genes. For example, ASD-associated MG4, 

MG5 and MG51 gene modules converge with ME9, ME29 and ME2, enhancer modules that 

are associated with ASD genes as well (Fig. 2G,H,I, black circles). ME29 is particularly 

interesting as it contains both A-reg and R-reg for all three ASD-associated gene modules, 

suggesting that it may be responsible for the coordinated up- and down-regulation of genes 

modules involved in autism pathogenesis.

The ASD-associated gene modules – MG4, MG5, MG51 – were in significant overlap with 

previously published ASD modules identified by in vivo analyses of differential gene 

expression between ASD patients and normal individuals (Fig. 3A; Table S14). Our MG4 

and MG5 modules were annotated by neuronal and synaptic terms (Fig. 3B) and overlapped 

with neuronal/synaptic modules downregulated in the ASD postmortem cerebral cortex (25) 

as well as with a synapse module upregulated in brain organoids from ASD individuals with 

macrocephaly (6). In contrast, our downregulated MG51 module was annotated by cell cycle 

and DNA repair terms (Fig. 3B), and overlapped with M3, a module harboring protein-

disrupting, rare de novo variants in ASD (4). No overlap was observed with modules related 

to immune dysfunction and microglia in ASD (25) (Fig. 3A). Within each ASD-associated 

gene module, the distribution of genes that are implicated in ASD and are targets of a 

member of the ME9, ME29, ME2, ME13 ASD-associated enhancer modules appears, 

overall, to be skewed towards the central part of each module (i.e. the “strongest” hubs) 

(Figs. 3C,D, S14). Given that hub genes are the drivers of a module, one may speculate that 

mutations disrupting these genes are more likely to be penetrant and/or syndromic. Looking 

at the first 100 hub genes (Table S14), the MG4 module shows two confident and two 

syndromic ASD associated genes (respectively DSCAM, MYO5A, CAMK2B, SMARCA2); 

the MG5 module shows three confident and three syndromic ASD associated genes 

(respectively ANK3, STXBP1, ACHE, WDR26, ATP1A3); while the MG51 module only 

shows DIAPH3, a lower confidence gene (Figs. 3C, S14). Orthogonal analyses by qPCR 

confirmed the expression level of these and other ASD genes in the organoid dataset (Fig. 
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S15). Overall, the results suggest that our organoid model may be used to unravel the roles 

of early prenatal neurodevelopment/genetic factors in ASD.

Relevance of the organoid model to understand human brain evolution

To see whether the organoid model is useful to understand the genetic mechanisms driving 

human brain evolution, we assessed the overlap of our enhancers with a list of 8,996 human-

gained enhancers (HGEs). These HGEs showed increased activity at very early stages of 

brain development (7-12 PCW) in the human lineage, compared with their homologs in 

rhesus macaque and mouse brains at similar developmental time points (26). The majority 

(70%, 6,295 out of 8,996) of published HGEs overlapped with 9,915 enhancers in our 

dataset, and among the latter 3,310 are associated with genes (Table S15). Out of 3,310 

gene-associated HGEs, 2670 (85.3%) have differential activity between organoids and fetal 

brains, suggesting a dynamic role during brain development (Fig. S16). The largest fraction 

of gene-associated HGEs are progressively declining in activity along organoid 

differentiation and from organoids to fetal brain. Among eight enhancer modules enriched 

with HGEs, six (all in the supermodule E3down) had decreasing activity along organoid 

differentiation (Fig. 2H). Genes targeted by HGEs in these 6 downregulated modules were 

enriched in signalling pathways related to cell proliferation and cell differentiation/

communication and included extracellular growth factors such as FGF7 and FGF6, 

FGFRL1, ERBB4, IGF2, EGFL7, VEGFA, and PDGFA (Table S15). Overall, among all 

2908 HGE-linked genes, 824 are differentially expressed between human and macaque brain 

in at least one of the three brain ages – 438 in fetal brains, 346 in postnatal brains and 724 in 

adult brains (27). Together, these findings suggest that HGEs are likely to be important 

regulators of genes controlling cell proliferation and cell-to-cell interactions in the human 

cerebral cortical primordium during the very early stages of cortical morphogenesis. These 

data are consistent with ATAC-seq from in vivo human brain (24) which demonstrates that 

HGE are active in germinal zones, and especially enriched in outer radial glia (oRG), which 

are expanded in humans (28).

Gene regulation and relevance to disorders

Over 24% of the ASD genes in the SFARI dataset are differentially expressed in the 

organoid system across time and over 80% are linked to enhancers active in organoids or 

fetal brain (Table S16). To understand whether enhancers active in organoids or fetal brain 

can inform about common and rare genetic variants that underlie the disorders, we selected 

three subsets from the 96,375 gene-associated enhancers: 11,448 early enhancers only active 

in all organoid stages, 8,999 late enhancers, only active in fetal brain and 7,865 constant 

enhancers, active in all stages of organoid differentiation and in fetal brain (Fig. 4A). These 

enhancers were analyzed for enrichment with personal variants inherited from either parent 

in 540 families of the Simons Simplex Collection (SSC). Each family consisted of 

phenotypically normal parents, an ASD male proband, and a normal male sibling (Fig. 4A). 

Out of average 3.6 million inherited SNPs per person, 3,327 with <5% minor allele 

frequency (MAF) were located within early, late or constant enhancers (Fig. S17A-C). 

Among these, low allele frequency SNPs (MAF 0.1%-5%) were significantly enriched in 

probands relative to siblings in early but neither late nor constant enhancers (p-value = 0.02 
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by one sample t-test, Figs. 4B). These SNPs were also enriched in the ME2 and ME29 

enhancer modules (p-value respectively 0.05 and 0.03 by one-sample t-test) (Fig. 4B), which 

converge with ASD-associated gene modules (Fig. 2I). These variants are relatively 

common, thus our results support the hypothesis of etiology of ASD via superposition of 

multiple inherited variants of low effect size (29-32).

Contrary to numerous inherited SNPs, there are only a few dozen de novo mutations (DNM) 

in probands, which must have deleterious effects in order to contribute to ASD phenotypes. 

We compared DNMs of probands and siblings of the same family cohort (33). Out of 66,306 

total DNMs, 2,422 were located in our dataset of gene-associated enhancers. There was a 

trend of having a larger fraction of probands’ DNMs in constant enhancers, which are active 

during a prolonged period of development (Fig. 4C and S17D). We next elucidated the effect 

of individual DNMs in the gene-associated enhancers on transcription factor (TF) binding. 

Around 24% of DNMs (out of 1240 and 1184 from proband and sibling respectively) 

overlapped with at least one TF motif (Fig. S17E,F and S18). Overall, there was a larger 

number of TFs with greater count of motif-breaking DNMs in probands than in siblings 

(more circles below the diagonal than above in Fig. 4D). A significant difference (p-value < 

0.05 by binomial test) was observed for TFs such as homeodomain, Hes1, NR4A2, Sox3, 

and NFIX (Table S17), which were implicated in development, ASD or mental disorders 

(34, 35). De novo CNVs at the NR4A2 gene locus at 2.q24.1, in particular, have been 

associated with ASD with language/cognitive impairment across multiple datasets (35). 

These observations provide genetic support for the relevance of enhancer elements in the 

complex etiology of ASD and link non-coding variants to ASD etiology, as previously 

proposed (36). Enhancers discovered in this study also inform about the possible regulatory 

role of SNPs that underlie the etiology of schizophrenia (37) (Fig. S17G).

Discussion

Using forebrain organoids, we provide an initial map of enhancer elements and 

corresponding transcripts that are dynamically active in the transitions between human 

cortical stem cells, progenitors and early cortical neurons. Although the catalogued 

functional elements may require further validation of their in vivo activity, our findings 

suggest that human brain organoids provide an avenue to approach the study of the 

molecular and cellular events underlying brain development. Indeed, our brain organoids 

patterned to forebrain, on both transcriptome and regulatory levels, mimic the longitudinal 

development of the embryonic and early fetal cortical primordium. Since all organoid 

preparations (from other studies and with different protocols) patterned to the dorsal 

forebrain are derived from neural stem cells, it is likely that they share similar gene 

dynamics specific to the embryonic brain described here. Thus, our gene and enhancer 

analyses have wide implications and the described map can aid the identification of sets of 

genes, enhancers, and genomic variants underlying neurodevelopmental disorders and ASD 

in particular, since brain development is nearly complete at the time of diagnosis (38).

The majority of enhancer elements active in our organoid system are not shared with 

isogenic mid-fetal brain tissue, which suggests that they play a role in earlier events, i.e., 

progenitor proliferation and the specification of neuronal lineages. However, it remains 
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unclear whether organoids fully recapitulate developmental processes, particularly those at 

later stages. Organoid preparations grown for longer periods in vitro may show greater 

overlap with mid-fetal human brains (39, 40), although a unique aspect of the organoid 

system is its ability to span very early developmental transitions, which map to stages earlier 

than those commonly available in postmortem human tissue. This is confirmed by single cell 

transcriptome analyses, which revealed a wide diversity of radial glia and progenitor clusters 

throughout organoid development. All but one organoid-specific cell clusters find 

correspondence to cell clusters in embryonic-fetal human brain. The one that did not could 

be the result of in vitro culturing. Through longitudinal analyses we show that many genes 

and their enhancer elements are differentially active in a stage-specific fashion from radial 

glial stem cells to neuronal progenitors and to young neurons. The first transition, from 

neural stem cells to early cortical progenitors, has the largest number of DEGs (71%) and 

DAEs (76%), the majority of which are unique to that step, which implies that in vivo 
transition from the embryonic to the fetal brain is a vulnerable step for normal brain 

development. Such changes reflect dynamic transitions in proliferation-related genes and 

transcription factors, together with the upregulation of neuronal lineage and synaptic genes 

as cortical stem cells (i.e., RG) progressively stop dividing and acquire different neuronal 

identities. Interestingly, we found that HGEs exhibit their highest activity in RG cells, after 

which their activity progressively declines with differentiation. Consistent with previous 

findings (24), this observation implicates HGEs as regulators of the earliest phases of human 

brain development. Although the exact function of HGEs remains to be determined, based 

on enrichment for growth factors signaling pathways, their time course and the comparison 

with other studies, we hypothesize that they are involved in the regulation of radial glial cell 

proliferation in the cerebral cortex.

Global integrative analyses of transcriptome and enhancer elements allowed us to classify 

the gene-associated enhancers into elements that activate or repress gene transcription, in 

which activity changes in A-reg and R-reg are correlated with changes in the expression of 

their gene target at each developmental transition. Since a third of those regulators likely 

acted as gene repressing elements, our results point out an underappreciated layer of trans-

repression during early brain development. This level of integration allows the construction 

of a complex regulatory network with convergent and concordant patterns of activity 

between gene and enhancer modules, where enhancers of co-expressed genes also exhibit 

correlated activity. We propose that this network portrays fundamental developmental 

programs in embryonic/fetal brain.

Three gene modules were enriched in genes implicated in ASD, two of which, MG4 and 

MG5, regulated neuron and synapses and progressively increased in expression during 

development; whereas the other, MG51, regulates the cell cycle, whose expression 

progressively declines. Those modules overlap gene modules previously implicated in ASD 

based on in vivo postmortem data (25). Additionally, we found that ASD-associated gene 

modules converged with three ASD-associated enhancer modules, implying that other genes/

enhancers in those modules may also be related to ASD by shared expression and perhaps 

function. This supports the validity of the organoid model for the discovery and analysis of 

regulatory elements whose variation may underlie the risk for neuropsychiatric disorders. 

Indeed, enhancers active in organoids, and, by extension, embryonic and early fetal cerebral 
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cortices, were enriched for low population frequency personal variants carried by ASD 

probands relative to unaffected siblings. Furthermore, DNMs in ASD probands more 

frequently disrupted binding motifs of specific transcription factors within regulatory 

elements active at those stages. Those TFs, their disrupted binding motifs, and the gene 

targets of the enhancers with the motifs can be the subject of future functional studies on the 

etiology of ASD. Altogether, the evidence corroborates previous suggestions that single 

nucleotide variants in non-coding regions contribute to ASD (36) and points to genes and 

regulatory elements underlying its onset. Thus, organoids can offer mechanistic insights into 

early human telencephalic development, brain evolution, and disease.

Methods summary

Detailed materials and methods can be found in the supplementary materials. hiPSC lines 

were derived from skull fibroblasts of three male fetal specimens aged between 15 and 17 

PCWs, from which two cerebral cortical samples were also collected for comparative 

analyses. iPSCs were differentiated into telencephalic organoids patterned to the dorsal 

forebrain as previously described (6). Organoids were collected at three TDs for downstream 

analyses. Immunohistochemistry using proliferation, glutamatergic and GABAergic 

neuronal markers were used for organoid’s differentiation quality control (QC). Cells/nuclei 

from iPSCs, iPSC-derived organoids, and fetal cerebral cortical regions were used for total 

stranded RNA-seq, snRNA-seq, and ChIP-seq for three histone marks (H3K4me3, 

H3K27ac, and H3K27me3). We used edgeR (41) and trended dispersion estimates to infer 

differentially expressed genes and differentially active enhancers. We used the Seurat 

pipeline (42) for single cell RNA-seq clustering and the Monocle pipeline (43) for single cell 

trajectory. ConsensusPathDB (44) and ToppGene (45) were used for functional annotation. 

Quantitative real-time PCR was used to cross-validate RNA-seq and DEG analyses using a 

random subset of the DEGs as well DEGs implicated in ASD. ChIP-seq peaks were called 

by MACS2 (46), and chromatin segmentation was done by chromHMM (47). Peaks were 

merged into consensus peaks and annotated by the corresponding chromatin states at each 

TD or in the fetal cortex. We used physical proximity and published chromatin conformation 

(Hi-C) data (16) from the fetal brain to link enhancers to genes. Gene and enhancer modules 

were identified by WGCNA (21), and super modules were defined by K-means clustering of 

module eigengenes. To assess the relevance of the organoid model to study non-coding 

pathological mutations, personal genomic variants across the whole genome were obtained 

from the SFARI (Simons simplex collection) dataset in 540 families with ASD probands and 

normal siblings. We also used de novo SNPs identified in Werling et al. from the same 

cohort (33). Transcription factor binding site motifs were obtained from the JASPAR 

database (48).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Comparison of transcriptome and epigenome of organoid and isogenic fetal brain.
(A) Dataset and sample annotation. Samples are from both our project (hiPSCs lines, 

organoids, fetal brain samples), other PsychENCODE projects, and the Roadmap 

epigenomics project. Colors correspond to datasets represented in B-D. (B-D) Hierarchical 

clustering dendrograms of samples by transcriptomes (B) and ChIP-seq peaks of H3K27ac 

(C) and H3K4me3 (D). (E) Hierarchical clustering of organoids and isogenic postmortem 

cortexes by transcriptomes and gene-associated enhancer elements. Organoid and brain 

samples used for clustering are shown on top. Colors and shapes correspond to the datasets 

represented in the panels below. (F) Transcriptome-based classification of organoids and 
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isogenic cortexes by age (8) against the tissues from the PsychENCODE developmental 

dataset (PCW = post-conceptional week) from Li et al (9). For each sample, red shading 

indicates the average of correlation coefficients above the cut off as defined in (8) between 

the sample and those in Li et al. (9). White boxes indicate correlations below the cut-off. 

Correlations to brains older than 2 years of age where all below the cut-off, and thus were 

not displayed. (G) Overlap of differentially expressed genes (DEGs) and differentially active 

enhancers (DAEs) between organoids at each differentiation time point and isogenic fetal 

cortex (CTX). (H) tSNE scatterplot of 17,837 nuclei, colored by cluster. Clusters arising 

predominantly from fetal cortex are circled. RG = radial glia; MGE = medial ganglionic 

eminence; IPC = intermediate progenitor cells; OPC = oligodendrocyte precursor cells. 

Novel means no correspondence to previous annotations. (I) Counts of DEGs and DAEs 

between organoids at different stages of development.
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Figure 2. Modules of co-expressed genes and co-active enhancers during organoid 
differentiation.
(A) Unsupervised hierarchical clustering of gene modules (1 through 54) by expression 

eigengenes. Rows and columns represent gene modules and samples, respectively. (B) 

Unsupervised hierarchical clustering of enhancer modules (1 through 29) by activity 

eigengenes. Rows and columns represent samples and enhancer modules, respectively. (C,D) 

Mean module eigengenes (lines) across differentiation times grouped by gene (C) and 

enhancer (D) supermodules, respectively. Dots represent values of eigengenes for individual 

modules. (EH) Enrichment of gene (E,G) and enhancer (F,H) modules for DEGs/DAEs and 

for various enhancers/genes of interest from the literature, including HGE – human-gained 
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enhancers (26), TF – genes encoding transcription factors during human fetal brain 

development (24), ASD – genes pertinent to autism spectrum disorder (22), and DBD – 

genes pertinent to developing brain disorder (23). (I) Correspondence between the gene and 

enhancer networks. The strongest A-reg (pink dots) and R-reg (cyan dots) for a subset of 

gene modules are overrepresented in a number of enhancer modules. Black circles 

emphasize converging genes and enhancer modules, both of which are ASD-associated (as 

shown in G and H). Panel (E-I) are aligned by gene and enhancer modules shown in panels 

A,B.
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Figure 3. ASD associated genes modules.
(A) Overlap of ASD gene modules MG4, MG5, and MG51 from this study with transcript 

modules associated with ASD from postmortem brain studies or enriched in ASD de novo 

mutations (DNM) (green, violet) (4, 25) and from an ASD patient-derived organoid study 

(brown) (6). Rows are modules from this study and columns are modules from other studies. 

Red shading represents the degree of enrichment between pairs of modules. Corrected p-

values of significant overlaps (hypergeometric test) are numerically indicated as -log10(p-

value). (B) Bar plots of the top scoring biological process terms for the ASD associated 

modules shown in (A). (C) Graphical representation of the strongest interacting hub genes in 

the MG4 module network. Circles: genes; lines: topological overlap above 0.95. Colors in 

circles annotate each gene as hub (red), DEG (green), SFARI gene (blue), and enhancer 

target (yellow). Enhancer target: genes targeted by enhancers in the ME9, ME29, ME13, and 
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ME2 ASD-associated enhancer modules (Fig. 2I). (D) Frequency plots within the MG4 

module showing that enhancer targets, DEGs, and SFARI genes have higher intramodular 

connectivity. X-axis shows the weighted gene connectivity, from low (peripheral genes) to 

high (central hub genes).
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Figure 4. Enrichment of variants in gene-associated enhancers.
A) Three subsets of enhancers were selected from all gene-associated enhancers. Early: 

enhancers active (denoted by +) in all organoid stages but inactive (denoted by −) in fetal 

brain (red), late: enhancers active in fetal brain but inactive in all organoid stages (blue), 

constant: enhancers active in all organoid stages and fetal brain (green). Variants in 540 

families from the Simons Simplex Collection were analyzed for enrichment in these 

enhancer sets. B) Comparison of inherited personal SNPs between ASD probands and 

normal siblings from the SSC revealed significant enrichment in probands versus siblings (p-

value ≤ 0.05 by one-sample t-test) of low allele frequency SNPs (MAF 0.1%-5%) in early 

enhancers (red) and enhancer modules ME2 and ME29 (black). Dashed line at value of 0 

represents no difference between probands and siblings. * means p-value < 0.05. C) 

Fractions of DNMs in enhancers were compared in probands and siblings across the whole 

genome. P-values (shown above the bars) were calculated using the chi-square test. D) 

Count of motif-breaking DNMs in all gene-associated enhancers were compared between 

probands and siblings. Circles represent TFs with counts of broken motifs in probands and 

siblings plotted on X- and Y-axis. The size of the circles is proportional to the number of 

TFs. Circles away from diagonal represent TFs enriched with motif-breaking DNMs in 

probands or siblings. A few TFs in the probands (colored circles) but not in the siblings were 

significantly enriched (p-value < 0.05 by binomial test) with motif-breaking DNMs.
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