
UC Davis
UC Davis Previously Published Works

Title
Projecting 21st century snowpack trends in western USA mountains using variable-
resolution CESM

Permalink
https://escholarship.org/uc/item/2174f6bw

Journal
Climate Dynamics, 50(1-2)

ISSN
0930-7575

Authors
Rhoades, Alan M
Ullrich, Paul A
Zarzycki, Colin M

Publication Date
2018

DOI
10.1007/s00382-017-3606-0
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2174f6bw
https://escholarship.org
http://www.cdlib.org/


Vol.:(0123456789)1 3

Clim Dyn (2018) 50:261–288 
DOI 10.1007/s00382-017-3606-0

Projecting 21st century snowpack trends in western USA 
mountains using variable‑resolution CESM

Alan M. Rhoades1   · Paul A. Ullrich1 · Colin M. Zarzycki2 

Received: 22 August 2016 / Accepted: 26 February 2017 / Published online: 24 March 2017 
© Springer-Verlag Berlin Heidelberg 2017

−27%. Contrary to CMIP5-BCSD and NARCCAP, VR-
CESM highlights a more pessimistic outcome for western 
USA mountain snowpack in latter-parts of the 21st cen-
tury. This is related to temperature changes altering the 
snow-albedo feedback, snowpack storage, and precipita-
tion phase, but may indicate that VR-CESM resolves more 
physically consistent elevational effects lacking in statisti-
cally downscaled datasets and teleconnections that are not 
captured in limited area models. Overall, VR-CESM pro-
jects by 2075–2100 that average western USA mountain 
snowfall decreases by −30%, snow cover by −44%, SWE 
by −69%, and average surface temperature increase of +5.0 
◦C. This places pressure on western USA states to preemp-
tively invest in climate adaptation measures such as alterna-
tive water storage, water use efficiency, and reassess reser-
voir storage operations.

Keywords  Climate change · Western USA · Mountain 
snowpack · Regional climate modeling · Variable-
resolution climate modeling · Elevation-dependent 
warming

1  Introduction

The 21st century will continue to see unprecedented and 
irrefutable changes to the climate system (Field et al. 2014). 
These trends are well understood at the global scale but 
can be difficult or impossible to use for informing conclu-
sions at regional and/or local scales, in large part because 
of topographically-driven microclimatic effects. Unfortu-
nately, the majority of presently available climate projec-
tions using global climate models (GCMs) are constrained 
to resolutions of 1◦ for multi-decadal and large ensemble 
modeling endeavors (Taylor et al. 2012; Kay et al. 2015). In 

Abstract  Climate change will impact western USA water 
supplies by shifting precipitation from snow to rain and 
driving snowmelt earlier in the season. However, changes 
at the regional-to-mountain scale is still a major topic of 
interest. This study addresses the impacts of climate change 
on mountain snowpack by assessing historical and pro-
jected variable-resolution (VR) climate simulations in the 
community earth system model (VR-CESM) forced by pre-
scribed sea-surface temperatures along with widely used 
regional downscaling techniques, the coupled model inter-
comparison projects phase 5 bias corrected and statisti-
cally downscaled (CMIP5-BCSD) and the North American 
regional climate change assessment program (NARCCAP). 
The multi-model RCP8.5 scenario analysis of winter sea-
son SWE for western USA mountains indicates by 2040-
2065 mean SWE could decrease −19% (NARCCAP) to 
−38% (VR-CESM), with an ensemble median change of 
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recent years there has been a push towards finer resolutions, 
and some long-term simulations have achieved resolutions 
of 0.5–0.25◦; however, for many of these studies the output 
fields and focus are limited to a specific scientific inquiry 
(Wehner et  al. 2010; Kinter et  al. 2013; Bacmeister et  al. 
2014; Small et al. 2014b; Harris et al. 2016). This resolu-
tion barrier has largely been due to constraints in comput-
ing power, simulation throughput and data storage. Thus, 
climate projections necessary for management and plan-
ning at the regional level are still needed.

The unmet need for local-scale data poses additional 
risks within the western USA where regional climate 
change is directly altering snowpack totals. Snowpack is 
intrinsic to western USA hydrology representing three-
fourths of the freshwater supply (Palmer 1988; Cayan 
1996). Under global climate change projections over the 
coming century, temperatures will continue to rise, snow-
pack totals will decline, higher precipitation-to-snowfall 
ratios will occur, peak snowpack accumulation will occur 
earlier in the season, record-setting low snowpack totals 
will continue to be set, and natural freshwater storage [i.e., 
snow water equivalent (SWE)] will continue to diminish 
(Mote et  al. 2005; Bales et  al. 2006; Barnett et  al. 2008; 
Pavelsky et  al. 2011; Kapnick and Hall 2012; Pavelsky 
et al. 2012; Salzmann and Mearns 2012; Wise 2012; Ash-
faq et al. 2013; Diffenbaugh et al. 2013; Pierce and Cayan 
2013; Rupp et  al. 2013; Berghuijs et  al. 2014; Klos et  al. 
2014; Berg et al. 2015; Lute et al. 2015; Belmecheri et al. 
2016). This will impact both the timing and magnitude of 
summer streamflows, which are essential in meeting agri-
cultural water demand, providing a steady energy sup-
ply, and sustaining ecosystem function. For example, the 
2014–2015 snow season was the driest year on record in 
California (5% of normal) over a 500 year period (Bel-
mecheri et  al. 2016), with water reserves at record lows 
and repercussions felt throughout California, especially in 
low-income agricultural communities in the Central Valley 
such as the Tulare Basin. Snowpack decline is especially 
important in the western USA energy sector where renewa-
bles (e.g., hydroelectric power) provide 56% of generating 
capacity and energy development plans haven’t included 
future climate impacts, potentially disrupting the ability 
of energy providers to consistently meet future electric-
ity demand (Bartos and Chester 2015). If anthropogenic 
emissions continue unabated, the drivers of hydroclimatic 
change could accelerate (Ashfaq et  al. 2013), resulting in 
an increased number of low-to-no snow total years (Diffen-
baugh et al. 2013) by the late 21st century.

Climate change will directly impact mountain snow-
pack in three ways. First, warmer temperatures will lead 
to an earlier spring thaw, increasing spring season runoff 
from snowmelt and decreasing late summer water avail-
ability. Second, in accordance with the Clausius–Clapeyron 

relationship, warmer air holds more water and so leads to 
potential increases in large-scale precipitation in areas with 
forced orographic uplift and warmer temperatures also tend 
to favor rainfall over snowfall. This is of particular impor-
tance to the western USA where 20–40% of precipitation 
events occur at or around freezing (−3 to 0 ◦C) (Bales et al. 
2006), making snowfall particularly susceptible to end-of-
century projections of warming between +1.4 and 5.4 ◦C 
(National Climate Assessment 2016). Along the leeward 
(eastern) portion of the Sierra Nevada, an increase of 6 °C 
would threaten the majority of Sierra Nevada snowpack 
(above 3000 m) and a 2 ◦C increase could shorten the snow 
season by a full month (Bales et  al. 2014). Rising sur-
face temperatures are particularly important in the spring 
months at mid- to high-elevations, which would normally 
be below freezing throughout the winter period (Cayan 
1996; Stewart 2009). These changes are further enhanced 
by the snow-albedo feedback, which plays a pivotal role in 
determining the local and global radiative balances (Ander-
son 1976; Hall 2004; Qu and Hall 2014). The global radia-
tive forcing associated with this feedback, shown in recent 
GCM simulations for the IPCC (CMIP5), was found to 
be between 0.03 and 0.16 W/m2/K (Qu and Hall 2014). 
Although not as substantive as the cloud-albedo (−0.55 W/
m2) and aerosol (−0.27 W/m2) feedbacks, the snow-albedo 
feedback is nonetheless important, especially in the north-
ern latitudes (Field et al. 2014).

Regional climate models (RCMs) have been an instru-
mental stopgap in addressing the discrepancy between 
coarse-resolution global simulations and the need for 
local-scale climate information. However, these models 
have their own limitations (and associated uncertainties) 
derived from the necessity of using a GCM forcing data-
set (bias propagation), lateral boundary relaxation strat-
egies (introducing artificial noise), and lack the global-
to-regional dynamic coupling that may be required to 
understand multi-decadal climate change feedbacks, such 
as atmosphere-ocean teleconnections. Methods such as 
bias correction have been employed to alleviate some 
of the uncertainty associated with coupling global data-
sets with regional models (Ashfaq et  al. 2013; Pierce and 
Cayan 2013), but these corrective techniques are often only 
applicable in a limited context and are difficult to apply to 
future projections without assuming stationarity [i.e., that 
historical trends can describe future trends; Velázquez 
et  al. (2015)], or adding compensating biases (Cannon 
et al. 2015; Pierce et al. 2015). Statistical downscaling has 
also been useful for generating climate data at high resolu-
tions, and has been invaluable to management and planning 
organizations due to its low computational cost (Groves 
et  al. 2008; Maurer et  al. 2010; Pierce et  al. 2013; Chen 
et al. 2014b; Berg et al. 2015). However, statistical down-
scaling typically relies on stationarity assumptions which 
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may not hold under a changing climate. Further, it has been 
shown that using relatively coarse GCM data can lead to 
incorrect statistical inference and biased regional informa-
tion, especially for precipitation (Chen et  al. 2014b; Berg 
et al. 2015) due to differences in seasonality and phenom-
enon causing extreme precipitation at different GCM reso-
lutions (van der Wiel et  al. 2016). Thus, the development 
of accurate regional climate change projections remains a 
major scientific problem and the associated uncertainties 
associated have yet to be fully constrained, especially in the 
hydrologic sector (Groves et al. 2008).

To advance the scientific understanding on this topic, 
and further constrain the magnitude, extent, and spatial 
distribution of snowpack change, the authors have utilized 
a global-to-regional downscaling technique known as var-
iable-resolution (VR) within the community earth system 
model (VR-CESM). This technique utilizes a global coarse 
resolution grid which is then horizontally refined over a 
specific area of interest; hence, VR-CESM often requires 
10% of the computing power of a conventional uniform 
resolution global model simulated at high resolution. VR 
capabilities have now been incorporated in operational 
GCMs across many major modeling centers (Skamarock 
et  al. 2012; Harris and Lin 2013; Zarzycki et  al. 2014b; 
McCorquodale et al. 2015). To date, VR has been proven 
effective for assessing regional climate (Rauscher et  al. 
2013; Huang et al. 2016; Rhoades et al. 2016; Huang and 
Ullrich 2016), large-scale weather systems (Rauscher and 
Ringler 2014), and tropical cyclones (Zarzycki and Jab-
lonowski 2014; Zarzycki et  al. 2014a, 2015). The multi-
scale approach of VR-CESM allows it to serve as a bridge 
between GCMs and RCMs and overcome many of the 
known issues with conventional downscaling methods. 
Namely, VR has the ability to provide high-resolution in a 
desired area, eliminates multi-model lateral boundary forc-
ings (and propagated bias) used in conventional global-to-
regional modeling pursuits, captures global teleconnec-
tions, and has a higher simulation throughput and smaller 
data storage demand when compared to standard uniform-
resolution GCMs. Added benefits of VR-CESM are also 
discussed in greater detail in Rhoades et al. (2016), where 
multi-year climate integrations were performed using a 
small university server (<1000 cores), with 20–40 day 
turnarounds on 25 year simulation periods at resolutions of 
0.25◦ (28 km) to 0.125◦ (14 km). The VR grid used for this 
study focuses on the western USA and is shown in Fig. 1, 
telescoping from a globally quasi-uniform 1◦ resolution to 
a refined 0.25◦ region. Like other downscaling strategies, 
VR-CESM sub-grid-scale physics are still being vetted 
down to extremely high-resolutions (i.e., <28 km) to assess 
scale sensitivity (Zarzycki et al. 2014b) and, currently, VR-
CESM is not supported to be run at non-hydrostatic (<10 
km) scales. Therefore, if VR-CESM data is to be used for 

assessment and planning at local scales it may be advanta-
geous to use a bias-correction technique prior to using the 
VR-CESM data in any impact study.

The structure of the remainder of the paper is as follows: 
Sect. 2 contains information about the experimental design 
including specifications about VR-CESM, the VR-CESM 
forcing datasets, and the ensemble of datasets used to inter-
compare the magnitude, extent, and spatial distribution of 
change facing western USA snowpack totals in relation to 
VR-CESM. Section 3 highlights the pre-2005 climate daily 
average comparisons between the various datasets to iden-
tify potential bias originating from structural uncertainties. 
Section  4 presents the graphical and statistical intercom-
parion of SWE between the global-to-regional datasets. 
Section 5 provides a more comprehensive analysis of VR-
CESM snowpack trends at both seasonal and multidec-
adal time frames. Lastly, Sect. 6 discusses conclusions and 
future work.

2 � Experimental design

2.1 � CESM specifications

The community earth system model (CESM), version 
1.2.2, was utilized for this research. CESM is a widely-
used and community-supported climate model developed 
at the National Center for Atmospheric Research (NCAR) 
and the US Department of Energy (DoE). Representations 
of each of the major Earth system components, including 
the atmosphere, land surface, land-ice, ocean, ocean-wave, 
river run-off and sea-ice, are available in CESM. This study 
used the F-component set, FAMIPC5, which is standard 
practice for the atmospheric model intercomparison project 
(AMIP) (Gates 1992). The F-component set couples the 
prognostic atmosphere (community atmosphere model ver-
sion 5.3, CAM5) (Neale et al. 2010) and land-surface (com-
munity land model version 4.0 with satellite phenology, 
CLM4-SP) (Oleson et al. 2010) while using prescribed sea-
surface temperatures (SSTs) and sea-ice extent in place of 
dynamic ice and ocean models. The use of prescribed SSTs 
allows for more accurate surface forcing when compared to 
simulations with dynamic ocean and sea-ice and reduces 
computational and data storage space requirements.

Within CAM5, the spectral element (CAM5-SE) 
dynamical core was used for this work (Taylor et al. 1997; 
Dennis et  al. 2011). CAM5-SE is built with a continuous 
Galerkin spectral finite-element method to solve the hydro-
static atmospheric primitive equations. CAM5-SE has sev-
eral demonstrable benefits compared with the other CAM 
dynamical cores, including unstructured grid support that 
eliminates grid singularities at higher latitudes, and near-
perfect multi-processor scalability (Taylor and Fournier 
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2010; Dennis et al. 2011; Zarzycki et al. 2014a, b; Zarzy-
cki and Jablonowski 2014). Physical parameterizations in 
CAM5, which simulate forcing due to sub-grid scale pro-
cesses, include aerosols (Ghan et  al. 2012), deep convec-
tion (Neale et  al. 2008), macrophysics (Park et  al. 2014), 
microphysics (Morrison and Gettelman 2008), radiation 
(Iacono et  al. 2008), and shallow convection (Park and 
Bretherton 2009). Further details regarding CAM5-SE can 
be found in Neale et al. (2010).

CLM4-SP uses a subdivision scheme to represent the 
heterogeneous distribution of glaciers, lakes, urban land-
scapes, vegetation, and wetlands (Oleson et al. 2010; Law-
rence et  al. 2011). To accurately describe each grid cell’s 
unique land surface distribution, the moderate resolution 
imaging spectroradiometer (MODIS) satellite data at 0.5◦ 
resolution is used for vegetation and high-resolution surface 
datasets for soil types, urban expanse, and water bodies. 
The satellite-derived values for vegetation are aggregated 
into 16 unique plant functional types (PFTs), including 
non-vegetated. A detailed PFT representation within each 
land-unit is critical in capturing snowpack trends, as inter-
actions between the canopy and snowpack are PFT spe-
cific for biogeochemical, radiative, and hydrological pro-
cesses such as interception, throughfall, canopy drip, water 
removal via transpiration, and optical property interactions 
based on leaf angle (Lawrence et al. 2011).

The CLM4-SP snowpack model is based on several well 
established methods including Anderson (1976), Jordan 
(1991), and Yongjiu and Qingcun (1997). The snowpack 
model is regarded as one of the more complex (Cai et al. 
2014) and is among the best at representing key snowpack 
variables, such as SWE (Chen et al. 2014a), in the suite of 
available coupled land-surface models. This is due, in large 
part, to the discretization of five distinct snow layers that 
dynamically compact and exchange energy and water. The 
five-layer model simulates the total life cycle of snowpack 
including aging and compaction, black carbon and mineral 
deposition, ice mass, layer thickness, optical properties, 
temperature profiles, and, importantly for water resources, 
water mass. As shown, CLM4-SP accounts for many of 
the key drivers and processes that influence the snowpack 
life-cycle, however the CLM4-SP snowpack module does 
have limitations in its ability to represent peak snowpack 
timing (too early) and melt rate (too fast), especially when 
compared to point-location in-situ observations (Chen et al. 
2014a; Toure et al. 2016; Rhoades et al. 2016).

2.2 � VR‑CESM forcing datasets

For the VR-CESM simulations, historically prescribed SST 
and sea-ice fractions were derived from the Hadley Centre 
sea ice and SST dataset version 1 (HadISST1) and version 
2 of the National Oceanic and Atmospheric Administration 

(NOAA) weekly optimum interpolation (OI) SST analysis 
(Hurrell et al. 2008) and the future SSTs and sea-ice forc-
ings were derived from a future 1◦ RCP8.5 bias-corrected 
dataset (Small et al. 2014a), both of which were developed 
at NCAR. The bias-correction compares simulated and 
observed SSTs and assumes that model errors from the his-
torical simulation will be similarly present in future simula-
tions (i.e., quantile mapping). After the bias-correction is 
applied, the SST and sea-ice fractions were then assessed 
and quality controlled to ensure consistency between tem-
perature and fractional area coverage were satisfied. Care-
ful consideration of how to best represent future SSTs 
and sea-ice are crucial as they influence ocean-forced tel-
econnections that are simulated by the global dynamic 
atmosphere-land framework of VR-CESM. Teleconnec-
tions are key drivers of regional scale variability in western 
USA wintertime precipitation and snowpack trends (Wal-
lace and Gutzler 1981; Glantz et  al. 1991; Dettinger and 
Cayan 1995; Cayan 1996; Cayan et al. 1999; Pandey et al. 
1999). Importantly, several studies have shown that CESM 
has skill in representing the El Niño Southern Oscilla-
tion (ENSO) (DeFlorio et al. 2013; Wang et al. 2014), the 
Pacific Decadal Oscillation (PDO) (DeFlorio et  al. 2013), 
and the Pacific-North American (PNA) pattern (Li and For-
est 2014), all important for the western USA. These tele-
connection representations are expected to carry over into 
VR-CESM.

2.3 � VR‑CESM model grid and topographical fields

The VR grid was generated using SQuadGen (Ullrich 
2014), which uses paving to apply localized refinement 
to a basic equiangular cubed-sphere followed by spring 
dynamics for smoothing. An identical grid is used for 
both CAM and CLM in this research (Fig. 1). To gener-
ate the topography for the VR-CESM28 simulation, the 
ETOPO2v2 (2 km resolution) satellite derived dataset 
was employed (National Geophysical Data Center 2006). 
Due to the high-order properties of the dynamical core, 
smoothing is required to avoid spurious high-frequency 
noise from the sampled topography. Thus, the original 
ETOPO2v2 dataset resolution (2 km) was regridded and 
smoothed slightly beyond the native VR grid resolu-
tion (28 km) for numeric stability. This particular issue 
was discussed in Zarzycki et  al. (2015) where exces-
sive terrain roughness in CAM5-SE was shown to pro-
duce spurious vertical velocities and numerical artifacts. 
Therefore, to alleviate this artificial noise the c param-
eter from Eq. (1) in Zarzycki et  al. (2015) was used to 
smooth the ETOPO2v2 topographic dataset along with 
repeated applications of fourth-order hyperviscosity. 
This process produces a topographic representation of 
the western USA with more smoothing applied in regions 
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of coarser grid resolution. The resulting topography is a 
vast improvement over the excessively smoothed topogra-
phy typically employed by 1◦ uniform-resolution GCMs 
(Fig. 2).

2.4 � Statistical methods

A key objective of this assessment is to understand the 
snowpack trends produced by VR-CESM28 from 2025 
to 2100 and compare them to widely-used GCM and 
RCM ensembles. A tabulation of the established cli-
mate change datasets used for this intercomparison can 
be found in Table 1. To standardize the various datasets, 
climate data operators (CDO), NetCDF operators (NCO), 
and the NCAR command language (NCL) were used 
(Schulzweida et al. 2007; Zender 2008). The climate and 
seasonal averages were computed using a mask of the 
Cascades, Klamath, Rockies, Sierra Nevada, and Wasatch 
and Uinta (see Fig.  3). These masks were derived from 
the EPA’s Ecoregions classification system (Ecoregion 
Level III).

The datasets were further remapped to similar map 
projections and to the highest resolution needed for 
proper intercomparison (i.e., 4 km for pre-2005 PRISM 
comparisons and 14 km for NLDAS/BCSD-CMIP5 
RCP8.5 climate change comparisons). Remapping from 
coarser to finer horizontal resolution was chosen to allow 
for equal comparisons between western USA mountain 
shapefile masks without degrading high-resolution spatial 
information and to ensure that proper statistical sampling 
of 250–500 m elevational band trends could be made. To 
do this, the earth system modeling framework (ESMF) 
capabilities in the NCAR command language (NCL) and 
TempestRemap (Ullrich and Taylor 2015; Ullrich et  al. 
2016) software suites were used. Summary statistics 
for the five mountain ranges were calculated for each of 
the datasets, including mean, standard deviation, lower 
quartile, median, upper quartile, and maximum. The 
Wilcoxon–Mann–Whitney rank-sum test was applied to 

assess statistical significance of differences between time 
periods.

2.5 � Climate change datasets used for western USA 
intercomparison

To robustly assess the range of potential outcomes that 
the RCP8.5 scenario may have on western USA mountain 
snowpack an intercomparison of the various modeling 
methodologies (e.g., dynamical, statistical and traditional 
GCM) was conducted. The datasets were chosen based on 
public availability and use in the literature. Brief descrip-
tions of the various climate datasets are outlined below.

VR-CESM28 was executed on the local UC Davis Cli-
mate Cluster from 1980 to 2005 and 2025 to 2100, under 
the IPCC RCP8.5 scenario. Daily average outputs were 
created for select variables in CAM and CLM, including 
those featured in the analysis of this paper. Additional cli-
matological simulations have been produced by varying 
the initial conditions, but are not included in this analysis 
(Rhoades et al. 2016; Huang et al. 2016; Huang and Ullrich 
2016). Importantly, in the VR-CESM analyses mentioned it 
was found that it takes approximately 20–30 DJF simulated 
months (7–10 simulated years) for the median California 
precipitation trends to converge around a median value 
(across a multitude of VR-CESM resolutions). Thus, it is 
inferred that these trends will hold throughout all western 
USA mountain ranges and the 26 year historical baseline 
simulation is sufficient to ensure that natural variability 
(e.g., ENSO and PDO) is taken into account.

The Coupled Model Intercomparison Project, Phase 5, 
(CMIP5) incorporates over 20 modeling centers world-
wide. For the model intercomparison, the eight CESM fam-
ily ensemble members were utilized to create an ensemble 
average. The ensemble consists of six community climate 
system model (CCSM) 4.0 members (an earlier version 
of CESM), one CESM1 Biogeochemistry (BGC) member 
(the full carbon cycle version of CESM), and one CESM1 
CAM5 member (the latest production version of CESM).

The North American Regional Climate Change 
Assessment Program (NARCCAP) is an RCM ensemble 

Table 1   Western USA climate 
datasets

Climate dataset Snowpack variable Spatial reso-
lution (km)

Temporal resolution Assessed timeframes

VR-CESM28 PRECT, SNOW-
FALL, SNOWC, 
SWE, 2 mST

28 Daily 1980–2005, 2025–2100

NLDAS SWE 14 Daily 1980–2005
PRISM PRECT, 2 mST 4 Daily 1980–2005
BCSD-CMIP5 SWE 14 Monthly 1975–2000, 2040–2065
NARCCAP SWE 55 Hourly 1975–2000, 2040–2065
CMIP5 SWE 111 Monthly 1980–2005, 2040–2065
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composed of a matrix of five driving GCMs with six RCMs 
over the Continental United States (CONUS) at 0.5◦ (55 
km) resolution (Mearns et  al. 2009). In Phase I (Mearns 
et  al. 2012), pre-2005 simulations (1970–2000) were per-
formed and in Phase II (Mearns et al. 2013), the future pro-
jections (2040–2070) were simulated. All of the available 
RCM-GCM coupled members were utilized to create an 
ensemble average for the intercomparison.

The Downscaled CMIP3 and CMIP5 Climate and 
Hydrology Projections dataset consists of an ensemble of 
model projections using a monthly bias-corrected and spa-
tial disaggregation (BCSD) technique (Maurer et al. 2007; 
Brekke et al. 2013). For the CMIP5 hydrologic projections 
(BCSD-CMIP5), the BCSD method was utilized along 
with the use of the Variable Infiltration Capacity (VIC) 
hydrologic model, version 4.1.2, to provide 0.125◦ (14 km) 
resolution model outputs for both pre-2005 (1970–2000) 
and future (2040–2070) timeframes. Three of the CESM 
family ensemble members (i.e., CCSM4, CESM1 BGC, 
and CESM1 CAM5) were used to create an ensemble aver-
age for the model intercomparison.

The North America Land Data Assimilation System 
Phase 2 (NLDAS) reanalysis dataset was created via the 
incorporation of observational and model reanalysis data-
sets into three non-atmosphere coupled land-surface mod-
els (i.e., NASA’s Mosaic Land Model, NOAA’s Noah Land 
Model, and Princeton’s implementation of the VIC Land 
Model) over the continental US at 0.125◦ (14 km) resolu-
tion for the years 1980–2005 (Xia et al. 2012a, b). Rhoades 
et  al. (2016) showed that the NLDAS ensemble closely 
approximated the SWE lifecycle (i.e., accumulation, peak 
timing, and melt rate) of 19 SNOTEL stations in the central 
Sierra Nevada over 1980–2005, warranting its use in this 
current analysis.

The Parameter-elevation Relationships on Independ-
ent Slopes Model (PRISM) was developed at Oregon State 
University and consists of a spatially continuous high-reso-
lution (800 m and 4 km) dataset spanning 1970 to present 
day for the US (Daly et al. 2008). Using a digital elevation 
model (DEM), 13,000 precipitation and 10,000 tempera-
ture observational stations, and several key regional cli-
mate indicators (i.e., location, elevation, coastal proximity, 
topographic orientation and position, vertical atmospheric 
layer, and terrain slope) the PRISM precipitation and sur-
face temperature dataset was constructed. Of interest to 
western USA hydroclimatological research in coastal and 
mountainous regions, PRISM showed great improvement 
compared to other reanalysis datasets (e.g., Daymet and 
WorldClim) due to its better characterization of coastal 
effects, cold air drainage, elevational gradients, inversion 
layers, and rain shadows in these environments (Daly et al. 
2008). Although PRISM is widely regarded and used in 
the mountain climate community it still has known biases, 

particularly over the California Sierra Nevada at high-
elevations on windward facing slopes, when streamflow 
observations are utilized as a check on the PRISM total 
water mass balance (Henn et al. 2016).

It should be cautioned that all of the SWE datasets avail-
able have inherent bias. This is due to the use of land-sur-
face models to address the discontinuity of in-situ meas-
urements which only represent a small sub-sample of the 
total snow covered area. Thus, they should not be viewed as 
exact “truths”. Interestingly, a few new high-resolution spa-
tially continuous observational datasets are becoming more 
readily available for select mountain regions (in particular 
the Sierra Nevada and Rockies), but at this time are not yet 
publicly available. These datasets utilize new techniques 
including an 50 m resolution airplane lidar measurement 
(Painter et  al. 2016) and a Landsat-era reanalysis prod-
uct that utilizes the remotely sensed fractional snow cover 
area along with Bayesian statistical inference techniques to 
derive a 90 m spatially continuous product (Margulis et al. 
2016a, b).

3 � Hydroclimate trends in western USA mountain 
ranges within VR‑CESM28

Constraining historically simulated model bias is impor-
tant in understanding how to best represent the processes 
governing mountain snowpack within a model. To this end, 
the VR-CESM28 1980–2005 simulation is assessed against 
the best available datasets for all western USA mountain 
ranges regions for total precipitation (PRECT), SWE, and 
two-meter surface temperature (2 mST). Positive (negative) 
simulated model biases compared to the 4 km-resolution 
PRISM data are highlighted in Fig. 4 in blue (red) for daily 
climate averages of accumulated PRECT and 2 mST. For 
SWE, several datasets are presented, including the NLDAS 
three-member ensemble (14 km), the NARCCAP nine-
member ensemble (55 km) and the three-member BCSD-
CMIP5 ensemble (14 km).

PRISM, used for PRECT and 2 mST, is both a widely 
used and high quality reanalysis dataset for mountainous 
regions. Agreement between VR-CESM28 and PRISM is 
apparent for accumulated daily climate average precipita-
tion in the western USA mountains. A slight positive bias 
is apparent and consistent across most mountain ranges, but 
the bias is low, with peak accumulated precipitation of 818 
mm for PRISM and 872 mm for VR-CESM28 (+7% bias). 
Otherwise there is general agreement within the 1980–2005 
daily climate normal accumulated precipitation rates for the 
entire western USA mountain region. Within individual 
mountain ranges, the Klamath had the highest negative 
bias (−16%), which can be attributed to the Klamath being 
the smallest mountain range within the western USA with 
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rapidly varying orography that is poorly represented even 
at 28km.

A wide spread among different models is apparent in 
total simulated SWE, indicative of the difficulty in accu-
rately representing mountainous precipitation deposition 
and phase as well as the life cycle of mountain snow pro-
cesses. This variability in simulated vs observed SWE is in 
part due to the fact that snowpack datasets at sufficiently 
high resolution and quality are non-existent (notably, mod-
els from both the NLDAS and NARCCAP ensemble exhibit 
unphysically persistent SWE even through the summer sea-
son). As highlighted in Rhoades et al. (2016), the NLDAS 
three-member ensemble was found to be one of the best 
quality datasets when compared to 19 SNOTEL stations 
in the Sierra Nevada; however, this may not hold through-
out the western USA as each mountain range has a distinct 
character with respect to aspect, orientation, slope, proxim-
ity to the ocean, source precipitation region, and vegetation 
cover. Thus, it is particularly difficult to assess bias in SWE 
with no accurate and validated “truth”. Nonetheless, it is 
encouraging to observe that VR-CESM28 appears to fall in 
the mid-range of the available high-resolution datasets. VR-
CESM28 had a peak DJF average accumulation SWE value 
of 135 mm within the total western USA mountain region, 
well within the range of values shown by other regional 
downscaling techniques. The three-member NLDAS 
ensemble had the lowest peak DJF average accumulation 
SWE value at 73 mm, followed by the NARCCAP nine-
member ensemble at 148 mm and the BCSD-CMIP5 at 172 
mm (although this value was derived from monthly, rather 
than daily averages). As noted by Rhoades et  al. (2016), 
VR-CESM28 also tends to have a early peak accumulation 
bias associated with an enhanced melt rate leading to total 
melt occurring too early.

For 2 mST, VR-CESM28 generally shows an enhanced 
seasonal cycle with increased bias in summer (JJA, max 
of +1.9 ◦C) and winter (DJF, min of −2.7 ◦C) throughout 
the western USA mountain region, except for the Klamath 
region where a cold bias is found throughout (min of 
−2.1 to max of −2.7 ◦C). For the 2025–2050 period, the 
VR-CESM28 RCP8.5 simulation still oscillates within 
the range of bias for PRISM 2 mST, however over the 
2075–2100 period temperature values are well outside the 
1980–2005 range for simulation bias. This suggests that 
the climatological signal by end-of-century is beyond the 
range associated with model bias. The amplified end-of-
century warming leads to dramatic reductions in western 
USA mountain SWE (−69%), with an associated earlier 
peak snow accumulation and complete melt a month earlier 
(May), a slightly amplified total accumulated precipitation 
(+15%), with more rain and less snow (discussed later), 
and an amplified minimum (+5.8 ◦C), average (+5.0 ◦C), 
and maximum (+4.9 ◦C) 2 mST.

4 � SWE climate change dataset intercomparison 
for the western USA

To quantify the magnitude and variability of changes in 
snowpack (SWE) and how VR-CESM28 fits among already 
widely used downscaling strategies, the VR-CESM28, 
BCSD-CMIP5, NARCCAP, and CMIP5 climate change 
datasets were assessed over their overlapping simulation 
temporal range of 2040–2065 (under RCP8.5) for SWE 
within the five major western USA mountain ranges. For 
each of the datasets only CESM derived ensemble mem-
bers were used, save for NARCCAP where all ensemble 
members were used. Each of the datasets were separately 
averaged over their pre-2005 and 2040–2065 periods. Sum-
mary statistics across the four global-to-regional downscal-
ing datasets are provided in Table  2 and the pre-2005 vs 
2040–2065 percent change summary statistics are provided 
in Table 3.

The winter season (DJF) climate average for each data-
set is plotted in Fig.  5. The datasets all highlight a net-
negative change in SWE by 2065, although the magnitudes 
of change and seasonal variability exhibit some differ-
ences. The net change in SWE among the three regional 
datasets varied from −19% (NARCCAP) to −38% (VR-
CESM28). Individual mountain ranges exhibited even 
more variation in the near-coastal regions (e.g., Cascades 
and Klamath) with the Klamath showing the most disagree-
ment. The Cascades, Klamath, and Sierra Nevada mean 
net-SWE loss ranged from −36% (BCSD-CMIP5) to −63% 
(VR-CESM28), −22% (BCSD-CMIP5) to −74% (VR-
CESM28), and −30% (BCSD-CMIP5) to −60% (NARC-
CAP), with an ensemble mean change of −50, −49, and 
−44%, respectively. Conversely, more resiliency in snow-
pack to climate change was seen in the interior mountain 
ranges (e.g., Rockies and Wasatch and Uinta) across all 
of the regionally downscaled datasets with net-average 
changes in SWE ranging from −8% (NARCCAP) to −33% 
(VR-CESM28) and −21% (NARCCAP) to −41% (BCSD-
CMIP5), with an ensemble mean change of −20 and −33%.

The ensemble of CMIP5 simulations poorly characterize 
the magnitude of 1980–2005 SWE depths (maximum depth 
of 18.9 mm) and thus highlight an inaccurate and dramatic 
change (−69%) in SWE totals by 2065. This is largely a 
consequence of the poor topographic representation which 
inhibits orographic precipitation and an inaccurate 0 ◦C 
isotherm.

Winter season (DJF) variability (standard deviation) 
for SWE is plotted in Fig.  5 and quantified in Table  3. 
Compared to the pre-2005 time-frame, most datasets and 
mountain ranges exhibit a diminished seasonal variabil-
ity with an overall net-change in SWE variability ranging 
from +0.3% (NARCCAP) to −20% (BCSD-CMIP5), with 
an ensemble mean change of −9.4%. This effect was most 
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pronounced in coastal ranges, especially in the Klamath 
which exhibited a net-change of −9.8% (BCSD-CMIP5) 
to −43% (VR-CESM28). This is explained by the negative 
shift in maximum SWE coupled with an overall collapse of 
the lower-to-upper quartile ranges in most of the regional 
downscaling datasets, highlighted in the DJF seasonal aver-
ages in Fig. 6. To further quantify this, uncentered Pearson 
pattern correlations were computed for the ratio of the DJF 
climate average and seasonal variability for pre-2005 and 
2040–2065 for the entire western USA mountain region. 
Across all datasets, a high-correlation (>0.91) was found 
for the aforementioned ratio, indicating that a decrease in 
the climate average DJF SWE corresponds to a decrease in 
the seasonal variability (i.e., collapse of the interquantile 
ranges).

5 � DJF climate trends in snowfall, snow cover, 
SWE and 2 mST in VR‑CESM

Changes in SWE are a function of a number of topographi-
cally dependent variables including snowfall, snow cover, 
and 2 mST (and their associated variabilities). To better 
understand the character of the western USA snowpack, the 
impact of climate change on these quantities must also be 
understood. Summary statistics for these quantities from 
VR-CESM28 are given in Table 4 and are only representa-
tive of the mountainous regions in Fig. 3.

An assessment of the statistical significance (p = 0.05) 
of the VR-CESM28 simulated winter (DJF) season fre-
quency change for the 1980–2005 compared to the RCP8.5 
2025–2050 and 2075–2100 simulation results within the 
western USA mountain region across all hydroclimate vari-
ables was performed using the Wilcoxon–Mann–Whitney 
rank-sum test. This statistical significance test is useful 
for data that may not be normally distributed and helps to 
identify when significant changes associated with RCP8.5 
begin to take effect on the simulated results. As can be 
seen in Table 4, significant (p < 0.05) changes from 1980 
to 2005 PDFs for each of the hydroclimate variables are 
varied in the 2025–2050 results, but are unanimous in the 
2075–2100 results across all mountain ranges. As expected, 
this implies a significantly more pronounced climate 
change signal by 2075–2100 compared with 2025–2050.

DJF climatological averages for snowpack variables 
are plotted in Fig.  7 for 1980–2005, 2025–2050, and 
2075–2100 under the RCP8.5 scenario in VR-CESM28. 
Additionally, the DJF seasonal average summary statistics 
are provided in Table  4 which represent only the moun-
tainous regions depicted in Fig.  3. The climatological 
anomalies (difference between 1980–2005 and post–2025) 
are plotted in the bottom two rows. Clear trends are seen 
throughout the western USA for all of the hydroclimate 

variables, with an amplified trend by 2075–2100. For 
snowfall (d, e), a small decrease (−4%) is projected for the 
entire western USA mountain region by 2025–2050, with 
both positive (Intermountain West) and negative (Coastal 
Ranges) tendencies. By 2075–2100, the climate change 
signal is more apparent with an average decrease of −30% 
in total western USA mountain snowfall that is amplified 
along the Pacific coast due to a precipitation transition from 
snow-to-rain. This net decrease in snowfall helps to explain 
the substantial decrease in both snow cover (i, j) and SWE 
(n, o). As with snowfall, snow cover (−10%) and SWE 
(−25%) only exhibit a weak response to climate change 
through 2025–2050; however, by 2075–2100 average snow 
cover decreases by nearly half (−44%) and SWE by two-
thirds (−69%) throughout the study domain. These changes 
are associated with an average increase in western USA 2 
mST anomalies (s, t) of +1.3 ◦C over the 2025–2050 period 
and +5.0 ◦C over the 2075–2100 period. Notably, there is 
a clear spatial signal in the surface temperature anomaly, 
with larger increases in average temperature at high eleva-
tion associated with elevation-dependent warming (dis-
cussed later).

An expected shift in precipitation phase from snow to 
rain has been posited throughout the literature due to cli-
mate change induced increases in air temperature (Bales 
et  al. 2006; Berghuijs et  al. 2014; Klos et  al. 2014; Lute 
et  al. 2015). This result is apparent in the VR-CESM28 
simulations (Fig. 8), which exhibit a clear shift from snow-
to-rain (a–e) along with more wet snow deposition (f–j) 
(i.e., decreased liquid-to-snow ratio). The snow-to-rain 
plots (a–c) are DJF climate average ratios of snowfall over 
total precipitation and the liquid-to-snow ratio plots (f–h) 
are DJF climate average ratios of snow water equivalent to 
snow depth. 1980–2005 DJF climate average VR-CESM28 
total precipitation was 3.5 mm/day and snowfall was 2.3 
mm/day, but by 2025–2050 (2075–2100) DJF climate 
average total precipitation increased to 3.6 mm/day (4.00 
mm/day) and DJF climate average snowfall decreased to 
2.2 mm/day (1.6 mm/day). The alteration in the precipita-
tion phase within the western USA mountainous region 
resulted in a −4% (−24%) drop in the snow-to-rain ratio 
by 2025–2050 (2075–2100) coupled with a mean increase 
in total precipitation of +7% (+20%). The statistical sig-
nificance of the change in snow-to-rain and liquid-to-snow 
ratios for 2025–2050 were mixed in all of the mountain 
ranges; however, by 2075–2100 the statistical significance 
in these changes become unanimous across all moun-
tain ranges at the p = 0.05 and p = 0.01 threshold. Sen-
sitivity of coastal ranges to precipitation phase alterations 
was evident. By 2075–2100, both the Cascades and Sierra 
Nevada showed a drop of −32 and −30% in their snow-to-
rain ratios. A slightly wetter snowpack emerges as the DJF 
climate average liquid-to-snow ratio drops by −3%, with a 
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Table 4   Winter season (DJF) average anomalies within western USA mountain ranges for RCP8.5 2025–2050 and 2075–2100 VR-CESM28 
simulations

Winter season anomalies Wilcoxon rank-
sum test p value 
(p = 0.05)

Mean Standard 
deviation

Min Lower quartile Median Upper quartile Inter-
quartile 
range

Max

Western USA mountains
 Snowfall (% change)
  2025–2050 0.577 (False) −4.39 9.53 −18.9 −14.6 1.44 −1.88 12.7 21.8
  2075–2100 1.69 × 10−4 (True) −29.8 1.22 −43.5 −39.1 −35.0 −13.9 25.2 −24.4

 Snow cover (% change)
  2025–2050 0.0371 (True) −10.2 29.0 −39.4 −11.7 −9.44 −4.47 7.23 −0.28
  2075–2100 3.16 × 10−14 (True) −44.2 22.7 −68.3 −68.3 −42.9 −35.6 17.0 −31.8

 Snow water equivalent (% 
change)

  2025–2050 3.97 × 10−3 (True) −24.9 1.81 −58.5 −29.2 −19.7 −20.1 9.15 3.63
  2075–2100 4.30 × 10−12 (True) −68.9 −23.4 −88.3 −79.0 −70.8 −57.7 21.3 −55.7

 Surface temperature [anomaly 
(◦C)]

  2025–2050 0.0320 (True) 1.31 0.21 0.76 0.61 0.75 1.67 1.05 2.34
  2075–2100 1.90 × 10−13 (True) 5.03 0.01 5.83 4.85 4.65 5.08 0.23 4.91

Cascades
 Snowfall (% change)
  2025–2050 0.289 (False) −10.7 8.68 −34.1 −32.1 −0.84 7.98 40.1 14.5
  2075–2100 6.97 × 10−8 (True) −54.9 −8.60 −87.0 −72.6 −56.3 −44.9 27.7 −40.9

 Snow cover (% change)
  2025–2050 0.0247 (True) −20.3 4.88 −55.0 −33.5 −17.1 −10.5 23.0 −5.33
  2075–2100 3.09 × 10−12 (True) −71.5 −18.5 −94.0 −82.4 −71.5 −68.3 14.1 −51.0

 Snow water equivalent (% 
change)

  2025–2050 1.86 × 10−3 (True) −44.3 −11.8 −82.3 −68.7 −45.8 −39.9 28.8 −4.11
  2075–2100 4.30 × 10−12 (True) −90.1 −61.0 −99.0 −96.3 −92.6 −90.1 6.21 −83.4

 Surface temperature [anomaly 
(◦C)]

  2025–2050 0.108 (False) 0.91 0.04 1.25 0.64 0.76 0.41 −0.23 1.23
  2075–2100 1.06 × 10−12 (True) 4.17 −0.12 4.96 4.09 4.02 3.89 −0.19 3.38

Klamath
 Snowfall (% change)
  2025–2050 0.271 (False) −18.3 −5.91 −31.7 0.26 −19.0 −13.9 −14.2 4.64
  2075–2100 4.29 × 10−11 (True) −78.3 −42.2 −95.0 −87.6 −78.6 −77.0 10.6 −72.6

 Snow cover (% change)
  2025–2050 0.0494 (True) −32.7 −20.2 −62.5 −20.9 −19.3 −34.9 −14.0 −21.4
  2075–2100 1.54 × 10−12 (True) −87.9 −57.6 −99.5 −94.2 −87.6 −87.7 6.43 −84.3

 Snow water equivalent (% 
change)

  2025–2050 0.0741 (False) −43.1 −7.31 −79.6 −30.2 −47.8 −49.4 −19.2 2.49
  2075–2100 1.54 × 10−13 (True) −96.1 −78.8 −99.9 −97.6 −96.1 −97.0 0.61 −96.3

 Surface temperature [anomaly 
(◦C)]

  2025–2050 0.0679 (False) 0.82 0.02 1.56 1.23 0.23 0.60 −0.63 1.22
  2075–2100 1.90 × 10−13 (True) 3.69 −0.06 4.48 3.84 3.47 3.59 −0.25 3.21

Rockies
 Snowfall (% change)
  2025–2050 0.672 (False) −2.29 4.56 −3.59 −6.04 1.41 1.60 7.65 8.28
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The Wilcoxon rank-sum test p values are also given with a true (false) indication if the p value is below (above) the 0.05 significance level

Table 4   (continued)

Winter season anomalies Wilcoxon rank-
sum test p value 
(p = 0.05)

Mean Standard 
deviation

Min Lower quartile Median Upper quartile Inter-
quartile 
range

Max

  2075–2100 9.01 × 10−3 (True) −16.4 6.03 −23.9 −23.3 −19.9 −6.87 16.5 −9.22
 Snow cove (% change)
  2025–2050 0.0621 (False) −7.72 42.9 −42.5 −9.66 −8.25 −3.64 6.02 0.34
  2075–2100 1.58 × 10−14 (True) −38.1 47.2 −67.4 −48.8 −38.1 −27.6 21.2 −27.5

 Snow water equivalent (% 
change)

  2025–2050 0.0108 (True) −22.8 −3.78 −61.8 −26.2 −17.5 −30.8 −4.59 −5.29
  2075–2100 4.29 × 10−11 (True) −64.9 −18.0 −85.7 −77.1 −65.3 −58.6 18.6 −42.6

 Surface temperature [anomaly 
(◦C)]

  2025–2050 0.0371 (True) 1.41 0.26 0.95 0.75 0.60 1.99 1.24 2.36
  2075–2100 1.90 × 10−13 (True) 5.32 0.05 6.41 4.75 4.91 5.82 1.07 5.46

Sierra Nevada
 Snowfall (% change)
  2025–2050 0.603 (False) −2.64 11.7 −65.7 14.1 −15.5 −5.69 −19.8 70.0
  2075–2100 1.83 × 10−5 (True) −54.8 −20.1 −68.0 −62.1 −59.6 −51.0 11.1 −34.0

 Snow cover (% change)
  2025–2050 0.0494 (True) −18.9 1.53 −71.9 −23.0 −25.7 −19.0 4.02 8.18
  2075–2100 4.03 × 10−9 (True) −66.8 −17.5 −89.5 −78.1 −69.6 −63.8 14.3 −43.1

 Snow water equivalen (% 
change)

  2025–2050 0.0994 (False) −18.7 24.9 −83.5 −34.1 −52.6 −44.3 −10.2 73.1
  2075–2100 1.70 × 10−7 (True) −83.3 −33.8 −94.6 −96.1 −94.2 −86.6 9.46 −53.8

 Surface temperature [anomaly 
(◦C)]

  2025–2050 0.0353 (True) 1.06 0.10 1.46 0.92 0.73 0.75 −0.17 3.18
  2075–2100 4.75 × 10−13 (True) 4.18 0.00 4.72 3.91 3.95 4.39 0.48 4.21

Wasatch and Uinta
 Snowfall (% change)
  2025–2050 0.893 (False) 1.23 10.7 −61.2 −5.07 −1.07 0.95 6.02 27.3
  2075–2100 5.50 × 10−3 (True) −22.8 4.12 −24.5 −29.5 −30.5 −33.7 −4.21 6.50

 Snow cover (% change)
  2025–2050 0.0472 (True) −13.1 14.6 −64.4 −18.6 −14.1 −17.9 0.73 4.28
  2075–2100 1.04 × 10−9 (True) −51.0 8.10 −80.8 −61.7 −54.9 −49.8 11.9 −16.7

 Snow water equivalent  (% 
change)

  2025–2050 0.0136 (True) −24.1 14.8 −67.5 −37.5 −35.0 −13.5 24.0 19.1
  2075–2100 4.03 × 10−9 (True) −70.3 −14.4 −86.8 −85.9 −80.2 −65.9 20.0 −44.8

 Surface temperature  [anomaly 
(◦C)]

  2025–2050 7.51 × 10−3 (True) 1.83 0.20 1.30 1.45 1.09 2.04 0.59 2.70
  2075–2100 1.06 × 10−12 (True) 5.83 0.02 5.90 5.73 5.68 6.09 0.36 4.75
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decrease of −5% (lower quartile) to −11% (minimum) in 
parts of the study domain by 2075–2100.

5.1 � Winter season variability in 2 mST, snowfall, SWE, 
and snow cover

Winter season snowpack interannual variability plays a cru-
cial role in water resource planning in the western USA. 
An understanding of this variability is required to ensure 
sufficient water availability during inevitable drought peri-
ods. The DJF interannual variability from VR-CESM28 
for the four hydroclimate variables of interest is appar-
ent in Fig. 9 for several of the western USA mountainous 
regions as a Hovmöller diagram of DJF latitudinal aver-
ages. The Hovmöller diagrams are useful in character-
izing not only the seasonal variability, but the latitudinal 
dependence of these changes too. The anomalous devia-
tions from the 1980–2005 DJF average are represented in 
each figure with the 1980–2005 time period on the left, a 
gap filled 2005–2025 in the middle (not simulated), and, 
finally, the RCP8.5 scenario results from 2025 to 2100 on 
the right. Anomalously high (low) DJF seasons compared 
to the 1980–2005 climate average are represented via blue 
(red), whereas the 2 mST anomaly trend colors are flipped 
for reader intuition.

In Fig.  9, historical (1980–2005) hydroclimate trends 
within the region oscillate from season-to-season about the 
mean with even distributions of high and low events. As 
the RCP8.5 climate change signal intensifies by the mid-
to-end of century, a clear reduction in anomalously high 
winter season snowfall, snow cover, and SWE occurs with 
a coupled increase in anomalously high 2 mST. Notably, 
by the 2050s anomalously high winter season snowfall, 
snow cover, and SWE become effectively non-existent with 
anomalously high 2mST (+3 to +6 ◦C) becoming the new 
normal. The anomalously high 2 mST in the western USA 
mountainous region is correlated with the demise of snow 
cover.

5.2 � Elevation‑dependent warming

Elevation-dependent warming is associated with an 
increased warming signal in mountain regions due to a 
combination of the snow-albedo feedback, changes in 
vertical humidity profiles of the lower atmosphere, and/
or cloud-feedback processes (Group et  al. 2015). To 
understand the character of  this phenomena within our 
simulations, Figs.  10 and 11 show 250 m interval eleva-
tional profile plots of the DJF climate average and 500 
m elevational band trends for the DJF seasonal average 
time-series, respectively. For the 250 m elevational pro-
file plots, three selected mountain ranges [Cascades (e–h), 
Rockies (i–l), and Sierra Nevada (m–p)] are included with 

the total western USA mountainous region (a–d). These 
three mountains were selected as they represent the major 
mountainous regions for water management and each 
spans the largest range of latitudes within the western 
USA. Additionally, the 500 m elevational band summary 
statistics were compiled in Table 5, along with the stand-
ardized regression coefficients, for each of the time-series 
and hydroclimate variable. Historically, it is the case that 
elevations with maximum snowfall often do not co-locate 
with maximum snow cover. In fact, western USA snow-
fall seems to be most pronounced around an elevation of 
∼ 1000 m (except for the Sierra Nevada), whereas snow 
cover increases approximately monotonically with eleva-
tion. The California Sierra Nevada trends may differ from 
the other mountain ranges of the western USA as it has a 
unique combination of atmosphere-ocean factors which 
could alter precipitation phase and deposition location. 
These features include its close proximity to the ocean, 
high perpendicularity to the coastline, highest elevations 
in the conterminous United States and precipitation trends 
dependent on the semi-permanent large-scale meteorologi-
cal pattern (e.g., Aleutian Low), association with extreme 
meteorology (e.g., atmospheric rivers), and, in the southern 
portion, precipitation that is highly dependent on telecon-
nection patterns (e.g., the ENSO and the North American 
Monsoon).

Several hydroclimatic trends further emerge from this 
dataset. Examining Fig.  10, although it is clear that the 
RCP8.5 climate change signal is much more apparent in 
the 2075–2100 DJF climate average than the 2025–2050 
period, the actual impacts are not distributed uniformly 
across elevation categories. Throughout most of the west-
ern USA, only elevations below 2000 m exhibit a clear cli-
mate signal with respect to snowfall (again except for the 
Sierra Nevada). Over the entire western USA mountain-
ous region (a), peak average snowfall at 1250 m elevation 
is diminished from 3.16 mm/day (1980–2005) to 2.87 mm/
day (2025–2050), or −9%, and finally to 1.85 mm/day, or 
−41% (2075–2100). Interestingly, peak snowfall eleva-
tion (1250 m) is maintained across all of the time-series 
in the total western USA mountainous region; however, in 
2075–2100 the peak snowfall magnitude is maintained over 
a broader range of elevation bands with a slight increase in 
snowfall at higher elevations compared to the 1980–2005 
and 2025–2100 time periods. In response to the decrease in 
low-elevation snowfall, snow cover and SWE also decrease 
dramatically below ∼2000 m. Higher elevations are also 
impacted by warmer surface temperatures which reduce 
snow cover and SWE, but these regions appear to be more 
strongly buffered against climate change.

Elevation-dependent warming is also apparent in the 
simulations as a consequence of the snow-albedo feedback. 
Namely, an increased DJF climate average 2 mST warming 
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emerges by 2075–2100 (Fig. 10d) which is maximal around 
an elevation of 2000 m (Fig. 11). The freezing line (high-
lighted with a dotted line at 273.14 K) shifts upwards in ele-
vation from 750 to 1500 m from 1980–2005 to 2075–2100 
within the total western USA mountainous region. How-
ever, the elevation-dependent sensitivity to increases in 2 
mST is not uniformly distributed. Interior mountain ranges 
(e.g., Rockies) maintain their freezing line at elevations that 
the coastal ranges (e.g., Cascades) showed an increased 
sensitivity to warming. For example, the 1980–2005 freez-
ing line moved up in the Cascades from 750 to 1750 m, in 
the Rockies from 500 to 1000 m, and in the Sierra Nevada 
from 1500 to 2250 m by 2075–2100. By 2075–2100, the 
Cascades’ DJF climate average 2 mST was above the freez-
ing line throughout all elevations, with the Sierra Nevada 
showing a similar trend save for the highest elevation class.

The upslope shift in elevation of the freezing line 
directly impacted the snow covered area and, importantly, 

the stored water content (SWE) of the snowpack. From 
1980–2005 to 2075–2100, the average accumulated SWE 
(i.e., stored water content or the area under the curve) 
is diminished by −21% by 2025–2050 and −63% by 
2075–2100 within the total western USA mountain region. 
Further, 1980–2005 accumulated SWE diminished in 
the Cascades by −43% (−89%), in the Rockies by −22% 
(−63%), and in the Sierra Nevada by −18% (−82%) within 
2025–2050 (2075–2100).

The 500 m elevational band winter (DJF) climate aver-
age anomaly trends for 1980–2005 and 2025–2100 are 
plotted in Fig. 11 and statistically summarized in Table 5. 
As anticipated with 2 mST increases due to climate change, 
the largest decreases found in the VR-CESM28 simulations 
from 2025 to 2100 were at lower elevations, likely due to 
the phase shift from snow-to-rain seen in Fig. 8 and upward 
shift in freezing line elevation. Resiliency of snowfall to 
climate change was shown at higher elevations starting at 

Table 5   VR-CESM28 simulated winter season (DJF) average 500 m elevational anomalies within the total western USA mountain range for 
1980–2005 and 2025–2100 under the RCP8.5 climate forcing

Average winter anomaly Elevation (m) Min Mean Max Interquartile range Standardized 
regression coef-
ficient

Snowfall (% change)
1980–2005 (2025–2100) >500 −56.3 (−94.5) 0.00 (−50.1) 113 (91.8) 42.0 (47.2) −0.03 (−0.64)

>1000 −36.1 (−78.8) 0.00 (−29.2) 51.5 (90.7) 23.0 (43.0) −0.20 (−0.50)
>1500 −32.4 (−50.4) 0.00 (−12.6) 30.3 (61.1) 29.7 (36.8) −0.30 (−0.36)
>2000 −35.1 (−48.4) 0.00 (−1.92) 38.6 (59.7) 28.6 (36.0) −0.25 (−0.20)
>2500 −37.4 (−48.8) 0.00 (5.88) 62.4 (70.9) 22.3 (29.7) −0.15 (−0.04)
>3000 −39.5 (−54.9) 0.00 (7.88) 78.9 (93.0) 25.1 (43.2) −0.05 (0.04)

Snow cover (% change)
1980–2005 (2025–2100) >500 −73.3 (−97.7) 0.00 (−58.7) 97.4 (43.6) 61.7 (53.5) 0.10 (−0.67)

>1000 −35.9 (−89.2) 0.00 (−39.8) 37.8 (35.8) 27.3 (47.0) −0.04 (−0.66)
>1500 −32.9 (−82.9) 0.00 (−33.0) 23.1 (32.2) 22.0 (36.0) −0.17 (−0.61)
>2000 −24.1 (−73.5) 0.00 (−26.3) 22.2 (23.5) 15.3 (33.1) −0.14 (−0.61)
>2500 −32.2 (−65.8) 0.00 (−20.6) 28.4 (25.4) 15.3 (27.2) −0.20 (−0.53)
>3000 −24.0 (−66.3) 0.00 (−14.3) 11.9 (13.5) 12.1 (21.3) −0.14 (−0.44)

SWE (% change)
1980–2005 (2025–2100) >500 −90.2 (−99.8) 0.00 (−74.7) 230 (102) 70.7 (32.2) 0.01 (−0.50)

>1000 −64.3 (−99.1) 0.00 (−62.9) 147 (174) 42.3 (43.0) −0.06 (−0.53)
>1500 −63.9 (−97.2) 0.00 (−51.0) 88.0 (120) 54.2 (41.0) −0.14 (−0.54)
>2000 −54.4 (−92.3) 0.00 (−42.6) 69.0 (86.5) 34.5 (48.7) −0.04 (−0.58)
>2500 −54.2 (−85.0) 0.00 (−32.1) 141 (99.2) 42.2 (52.9) 0.01 (−0.46)
>3000 −52.2 (−88.7) 0.00 (−17.5) 123 (220) 51.9 (52.9) 0.08 (−0.32)

2 mST [Anomaly (◦C)]
1980–2005 (2025–2100) >500 −2.95 (−0.76) 0.00 (0.97) 3.05 (2.35) 1.69 (1.18) 0.02 (0.66)

>1000 −3.29 (−2.38) 0.00 (2.85) 3.11 (7.01) 1.65 (3.58) 0.04 (0.63)
>1500 −3.15 (−2.78) 0.00 (3.29) 3.23 (8.28) 1.87 (3.76) 0.13 (0.61)
>2000 −3.60 (−2.33) 0.00 (3.81) 3.71 (9.25) 1.39 (4.32) 0.21 (0.62)
>2500 −3.36 (−1.63) 0.00 (3.55) 3.70 (8.85) 1.48 (3.52) 0.28 (0.62)
>3000 −2.73 (−1.67) 0.00 (3.50) 3.74 (9.43) 1.33 (3.54) 0.29 (0.60)
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around 2000–2500  m where nominal positive or negative 
trends occurred. Elevational trends indicated a nonlinear 
negative change in snowfall of −10.7% from 2000 to 1500 
m, −16.6% from 1500 to 1000 m, and, finally, −20.9% 
from 1000 to 500 m. This was further shown in the stand-
ardized regression coefficients which steadily decreased 
towards negative one with every 500 m decent with coef-
ficients ranging from 0.04 (>3000 m) to −0.64 (500–1000 
m).

As shown in Fig.  11b, c, from 2025 to 2100 a clear 
negative trend in SWE and snow cover, regardless of eleva-
tion, was found. This is further shown in the standardized 
regression coefficients in Table 5. Interestingly, when com-
pared to snowfall, both SWE and snow cover more linearly 
decreased downslope. Winter season average snow cover 
trends indicated a −5.7%/500 m to −6.8%/500 m, save 
for the change from 1000 to 500 m of −18.9%/500 m, and 
SWE trends showed a −11%/500 m to −15%/500 m.

Anti-correlated to the aforementioned trends, average 
winter season 2 mST anomalies showed a steady increase 
and plateau upslope in the western USA mountain region 
(Fig.  11). Average winter season 2 mST anomalies high-
lighted a +0.97 ◦C from 500 to 1000 m and then a more 
rapid increase of +2.85 to +3.81 ◦C from 1000 to >3000 
m. Further, the average maximum 2 mST anomaly at 
the 500–1000m elevation band was +2.35 ◦C; whereas, 
the 1000 m to >3000m ranged from +7.01 to +9.43 °C. 
As shown in Table  5, the magnitude of the interquantile 
ranges (i.e., an indication of seasonal variability) for 2 mST 
increased by 101–210% from 1980–2005 to 2025–2100 
from 1000 to >3000 m and decreased by 30% from 500 to 
1000 m.

6 � Discussion and conclusion

Water managers, particularly in the western USA, have 
been increasingly demanding accurate projections of moun-
tain snowpack in the coming century. To address this need, 
this paper has leveraged the highest quality publicly avail-
able snowpack projections (e.g., BCSD-CMIP5, CMIP5, 
and NARCCAP) to understand historical and projected 
21st-century western USA mountain snowpack, augmented 
by cutting-edge climate simulations of the coming century 

Fig. 1   The VR-CESM grid used for this study utilized a quasi-uni-
form 111 km (1◦) base-resolution in a cubed-sphere grid structure. 
The smooth VR refinement region is depicted via the convex poly-
gons with the highest grid resolution of 28 km (0.25 ◦) over the East-
ern Pacific and the western USA

Fig. 2   Comparison of topographical distributions between a standard uniform-resolution 111 km (1◦) CESM and b VR-CESM 28 km (0.25◦) to 
c the satellite derived ETOPO2v2 1 km (2′) dataset
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with the variable-resolution CESM model at 28 km (0.25◦). 
The conclusions from this analysis are as follows.

First, the multi-model analysis of winter season SWE 
for the entire western USA mountain region showed that 

by 2040-2065 average SWE could decrease between −19% 
(NARCCAP) and −38% (VR-CESM). More resiliency in 
snowpack to climate change was seen in the interior moun-
tain ranges (e.g., Rockies and Wasatch and Uinta) compared 

Fig. 3   The five EPA Ecoregion 
III sub-regions used in this 
assessment, delineated by color 
and emboldened lines

Fig. 4   VR-CESM28 climate daily average (pre-2005) values for 
accumulated precipitation (top), SWE (center), and two-meter surface 
temperature (bottom) against PRISM, BCSD-CMIP5, NLDAS, and 
NARCCAP within the total western USA mountain ranges (first col-
umn) and all of the individual mountain ranges. VR-CESM28 model 

bias is highlighted in blue (red) for over (under) accumulation in pre-
cipitation and red (blue) for positive (negative) 2-m surface tempera-
ture. VR-CESM28 climate daily averages for RCP8.5 2025–2050 and 
2075–2100 results are superimposed over the 1980–2005 results in 
light and dark green
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to the coastal ranges (e.g., Cascades, Klamath, and Sierra 
Nevada) across all of the regionally downscaled datasets. 
This resiliency to the climate change signal is likely due to 
higher average elevation in the Rockies and Wasatch and 
Uinta mountain ranges, a larger distance to relatively warm 
ocean waters (which stabilizes surface temperatures), and 
less dependence on equatorial derived winter storm sys-
tems (particularly atmospheric rivers) compared to the 
coastal mountain ranges. Last, all of the regional downs-
caling models exhibited diminished interquartile ranges 
and maximum values, meaning that the snow distributions 
will diminish and snow deposition magnitudes will also 

decrease. This implies that seasonal snow deposition will 
become more predictable (as the variation collapses around 
the median), but total snow deposition will diminish over-
all. Regardless of the winter season variability differences, 
the collective median SWE value from all three datasets 
dropped by 27% throughout the western USA mountain 
ranges by 2065. The CMIP5 CESM global model ensem-
ble, with no regional downscaling strategy, had negligible 
snowpack totals and was unusable for this analysis.

Second, the VR-CESM28 1980–2005 results were com-
pared to several of the most high-quality and high-reso-
lution spatially continuous datasets within the mountain 

Fig. 5   The climate and seasonal (DJF) distributions and percent 
changes of SWE across the western USA within four global-to-
regional climate change datasets. SWE climate average totals within 

pre-2005 (a–e) and RCP8.5 2040–2065 (e–h), SWE anomalies (i–l) 
and 2040–2065 seasonal (DJF) variability (m–p) are shown
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research community. Compared to PRISM, peak accumu-
lated precipitation within the total western USA mountain 
region was found to be positively biased in VR-CESM28 by 
+7% (818 mm for PRISM and 872 mm for VR-CESM28) 
and 2 mST is minimally biased in transitory seasons [i.e., 
Northern Hemisphere spring (MAM) and fall (SON)] and 
maximized in summer (JJA) and parts of the winter (DJF). 
By 2025–2050, the VR-CESM28 RCP8.5 climate change 
signal is within the range of bias for PRISM for PRECT 
and 2 mST, whereas by 2075–2100 the observed signal 
was outside this range. No quantitative conclusions were 
made about SWE bias in our simulations due to the lack of 
coherence in available datasets. The wide model spread is 
likely attributed to the use of land-surface models to abate 
spatial discontinuities in in-situ observations, the sparsity 
of in-situ observations in sampling the range of elevations 
and latitude/longitudes within a given mountain range, and, 
specifically to regional climate models, a lack of resolu-
tion of both topography and vegetative cover. In Rhoades 
et  al. (2016), VR-CESM28 showed the tendency to have 
a early peak accumulation bias associated with too fast of 
a melt rate and too early total melt in a sub-region of the 
California Sierra Nevada when compared to SNOTEL in-
situ observations. With that said, the VR-CESM28 SWE 
results fell in the middle of the available high-resolution 
SWE climate datasets analyzed, although deviations in the 
overall snowpack lifecycle (i.e., accumulation, peak timing 
and melt-rates) were observed. Therefore, the biased timing 
of peak snow accumulation and complete snow melt may 
partially explain the lack of agreement between simulated 
and observed hydroclimate variables. The simulated bias 
may be directly modulating 2 mST which in turn impacts 
the snow-albedo feedback.

Third, VR-CESM28 results were further analyzed over 
the 2025–2100 time period across several hydroclimate 

variables including snowfall, snow cover, SWE, 2 mST, 
and total precipitation. This was done to ensure a com-
prehensive assessment of the winter season western USA 
mountain hydrologic changes associated with RCP8.5 
within a global-to-regional modeling framework. Accord-
ing to the Wilcoxon–Mann–Whitney rank-sum test, signifi-
cant (p < 0.05) change from 1980 to 2005 PDFs for each of 
the hydroclimate variables varied by mountain range when 
assessing the 2025–2050 results, but were unanimous in the 
2075–2100 results. Overall, VR-CESM28 projects a two-
thirds reduction (−69%) in average mountain SWE with 
associated decrease in snow cover by nearly-half (−44%), 
an associated earlier peak snow accumulation and com-
plete melt a month earlier (May), an uptick in mountainous 
total precipitation (+20%), with more rain and less snow 
(−24% drop in snow-to-rain ratio) and, lastly, and an ampli-
fied minimum (+5.8 ◦C), average (+5.0 ◦C), and maxi-
mum (+4.9 ◦C) mountain 2 mST. Notably, by the 2050s 
anomalously high winter season snowfall, snow cover, and 
SWE become almost non-existent with anomalously high 
2 mST (+3 to +6 ◦C) becoming the new normal. The non-
linear jump in 2 mST found in the VR-CESM28 projection 
simulations are likely indicative of a shift in the variability 
of the freezing line and a modification of the local snow 
cover. This variability is explained, in part, by the increase 
in magnitude of the interquartile ranges (i.e., the variabil-
ity between colder and warmer seasons) and the diminished 
minimum anomalies (i.e., historically cold years). The 
increased variability of the freezing line and modification 
of snow cover creates a positive feedback loop by which the 
regional albedo is diminished and leads to more radiation 
being absorbed at the surface, positively amplifying the 2 
mST.

Fourth, VR-CESM28 hydroclimate variables were fur-
ther analyzed for elevational dependency within western 

Fig. 6   The winter (DJF) season average box-and-whisker distribu-
tions of SWE across each of the western USA mountain ranges and 
each of the simulation periods. The blue box-and-whisker represents 

the 25 DJF seasons of pre-2005 simulations and the red box-and-
whisker represents the 25 DJF simulated seasons from 2040 to 2065 
forced by the business-as-usual (RCP8.5) scenario
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USA mountain ranges. A notable nonlinear change in 
temperatures among the highest mountainous regions 
(i.e., the Rocky Mountains and the southern portion of 
the Sierra Nevada) was evident and supports the hypoth-
esized phenomena known as elevation-dependent warming. 
For example, average (maximum) winter season 2 mST 
anomalies were +0.97 ◦C (+2.35 ◦C) from 500 to 1000 
m and +2.85 ◦C (+7.01 ◦C) to +3.81 ◦C (+9.43 ◦C) from 
1000 to >3000 m, with a maximized elevational warming 

between 2000 and 3000 m. In addition, the snowfall max-
ima did not always co-locate with the maxima snow cover 
elevation. This is likely a result of the variability of 2 mST 
around the freezing-line where peak snowfall is deposited 
in a region of high variability where at-or-below freezing 
2 mST were not maintained and snow cover becomes more 
ephemeral. Snowfall at higher elevations (2000 to >2500 
m) was nominally positive or negative; however, nonlin-
ear negative change in snowfall was found as you progress 

Fig. 7   A panel of VR-CESM28 winter (DJF) climatological averages 
of snowfall (a–c), snow cover (f–h), SWE (k–m), and 2-m surface 
temperature (p–r) for 1980–2005, 2025–2050, and 2075–2100 under 

the RCP8.5 scenario over the western USA. Climatological anomalies 
for the RCP8.5 scenario versus 1980–2005 are highlighted in the bot-
tom two rows
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Fig. 8   Similar to Figure 7, 
however for snowfall-to-rainfall 
(a–c) and liquid-to-snow (f–h) 
ratios, with percent changes in 
each ratio highlighted under the 
DJF climatological averages (d, 
e and i, j)
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Fig. 9   Hovmöller diagram of the latitudinal average DJF total west-
ern USA mountain range (a), Cascades (b), Rockies (c), and Sierra 
Nevada (d), snowfall, snow cover, SWE, and 2 mST anomalies from 

the 1980–2005 DJF average. Regions of red (blue) indicate negative 
(positive) seasonal trends, save for 2-m surface temperature which 
has opposite color indication



283Projecting 21st century snowpack trends in western USA mountains using variable‑resolution…

1 3

downslope. Over 500 m intervals, snowfall dropped by 
−10.7% from 2000 to 1500 m, −16.6% from 1500 to 1000 
m, and −20.9% from 1000 to 500 m. Interestingly, when 
compared to snowfall, both SWE and snow cover more lin-
early decreased downslope. Winter season average snow 
cover trends indicated a -5.7%/500 m to -6.8%/500 m, 
save for the change from 1000 to 500 m of −18.9%/500 
m, and SWE trends showed a −11%/500 m to −15%/500 
m. The average freezing line elevation in the western USA 

mountainous region shifted upwards from 750 m to 1500 m 
from 1980–2005 to 2075–2100. The 750 m upslope migra-
tion of the 1980–2005 freezing line was not uniform 
throughout each mountain range. Interior mountain ranges 
(e.g., Rockies and Wasatch and Uinta) maintain their freez-
ing line at lower elevations compared to coastal ranges 
(e.g., Cascades, Klamath and Sierra Nevada). For example, 
the 1980–2005 average freezing line in the Cascades moved 
from 750 to 1750 m, the Rockies from 500 to 1000 m, and 

Fig. 10   Panel plot of western USA mountain range 250m DJF tem-
poral and spatial average elevational profiles for snowfall, snow cover, 
SWE, and surface temperature for 1980–2005 (blue), 2025–2100 
(green), and 2075–2100 (red) within VR-CESM28. The 250 m pro-
files for the total western USA mountain region are highlighted in 
a–d, Cascades in e–h, Rockies in i–l, and the Sierra Nevada m–p. 

To help in assessing historical simulated variability in comparison to 
the RCP8.5 forcing, sample standard-error bars were added at each 
elevation interval onto the historical simulation elevation profile. For 
surface temperature, a 0 ◦C temperature threshold (freezing-line) is 
plotted with a dotted line for visual guidance
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Fig. 11   Panel plot of 500 m 
interval elevation bands within 
the western USA mountain 
region for 1980–2005 and 
RCP8.5 2025–2100 DJF trends 
for a snowfall, b snow cover, c 
SWE, and d surface temperature 
anomalies for the VR-CESM28 
simulations. The winter season 
variability for each 500 m 
elevation band are highlighted 
in a lighter-to-darker grayscale 
dashed line based on lower-
to-higher elevation bands. A 
dashed line is drawn at the zero 
anomaly y-intercept for visual 
guidance
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the Sierra Nevada from 1500 to 2250 m by 2075–2100. 
Overall, this implies that cities that fall within 750–1500 m 
(2450–4920 ft), such as those in the foothills of the western 
USA mountains (e.g., Reno, NV, Salt Lake City, UT, Idaho 
Falls, ID, and Yosemite Valley, CA), will experience less 
maintained snow accumulation than historically observed.

To continue the assessment of VR-CESM and its 
applicability to real world problems further research is 
needed. VR-CESM28 was only run at one resolution (28 
km) with one topographic representation with the maxi-
mum elevation for these simulations at 3274 m across 
the western USA mountain region, or 1150 m below the 
highest peak in the western USA (Mt. Whitney). This 
singular topography choice was largely due to compu-
tational restraints as the focus was placed on running 
longer simulation time-frames. Therefore, the effects of 
orographic resolution and its associated forcing sensitiv-
ity will be assessed in future research. As shown in this 
study, VR-CESM28 may be too sensitive to orographic 
uplift as snowfall precipitates out too quickly at lower 
elevations and is not disbursed over larger bands of eleva-
tion, save for the Sierra Nevada. Thus, work is needed to 
understand how the variation in topographic resolution in 
VR-CESM impacts the hydroclimate trends in mountain-
ous regions and the associated sensitivity to orographic 
uplift, rainfall transport and deposition. Coupled to this, 
a bias in the lifecycle of simulated SWE was found, but 
a complete analysis of the origin and development of this 
bias was out of the scope of this paper. As such, a tar-
geted resolution increase in VR-CESM will be utilized 
over a selected mountain range to understand how CAM 
and CLM perform at a myriad of resolutions and where 
simulated bias begins to originate (or diminish).

Overall, VR-CESM28 results highlight a stronger cli-
mate change signal than other conventionally used datasets 
and, if the projections hold, will result in large ramifica-
tions for hydrologic managers of the western USA in the 
near-future. These changes will undoubtedly pressure west-
ern USA states to preemptively invest in climate adaptation 
measures such as alternative water storage, water-use effi-
ciency, and reassess reservoir storage operations to ensure 
that a proper balance of allocations between the human-
energy-environment nexus are maintained. Some of these 
climate adaptation strategies have already started in states 
such as California with the onset of its recent 2011-to-pre-
sent unprecedented drought. With strong backing of policy 
and management, coupled with insights from the research 
community, California has taken pro-active steps to work 
towards better water management strategies. These strate-
gies include more informed and targeted agricultural water 
allocations, mandatory reductions in urban water use, more 
stringent groundwater management and monitoring, and, 
finally, the reassessment of dated water right law from the 

18th to 19th century Spanish settlement era which lead to 
large guaranteed appropriations of surface and groundwa-
ter to present day land owners and large cities (Hanak et al. 
2011). More water management initiatives like this will be 
needed to ensure proper resiliency to unprecedented hydro-
climate changes due to anthropogenic climate change.
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