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Prolonged exposures can have complex relationships with health outcomes, as timing, duration, and intensity of expo-
sure are all potentially relevant. Summary measures such as cumulative exposure or average intensity of exposure may
not fully capture these relationships. We applied penalized and unpenalized distributed-lag nonlinear models (DLNMs)
with flexible exposure-response and lag-response functions in order to examine the association between crystalline silica
exposure andmortality from lung cancer and nonmalignant respiratory disease in a cohort study of 2,342 California diato-
maceous earth workers followed during 1942–2011. We also assessed associations using simple measures of cumula-
tive exposure assuming linear exposure-response and constant lag-response. Measures of association from DLNMs
were generally higher than those from simpler models. Rate ratios from penalized DLNMs corresponding to average daily
exposures of 0.4mg/m3 during lag years 31–50 prior to the age of observed cases were 1.47 (95% confidence interval
(CI): 0.92, 2.35) for lung cancer mortality and 1.80 (95% CI: 1.14, 2.85) for nonmalignant respiratory disease mortality.
Rate ratios from the simpler models for the same exposure scenario were 1.15 (95% CI: 0.89, 1.48) and 1.23 (95% CI:
1.03, 1.46), respectively. Longitudinal cohort studies of prolonged exposures and chronic health outcomes should explore
methods allowing for flexibility and nonlinearities in the exposure-lag-response.

chronic disease; cohort studies; distributed-lag nonlinear models; exposure-lag-response; longitudinal studies;
silica

Abbreviations: AIC, Akaike’s Information Criterion; CI, confidence interval; DLNM, distributed-lag nonlinear model; NMRD,
nonmalignant respiratory disease.

Long-term occupational exposure to crystalline silica has
been associated with lung cancer and nonmalignant respiratory
disease (NMRD) (1–5). However, little is understood about the
relative importance of intensity, duration, and timing of exposure
in relation to these diseases. Studies with quantitative exposure
information most commonly use a cumulative exposure metric
that bundles duration with intensity. Exposure metrics for aver-
age exposure remove the influence of duration, but they also
lack information regarding the time-varying intensity of expo-
sure. Duration of exposure, another common metric, does not
include any quantitative information about exposure intensity,
other than the minimum intensity required for classification as
exposed. While cumulative exposure, average exposure, and
duration of exposure are all attractive metrics in terms of imple-
mentation and interpretation, none take full advantage of what

are often rich work-history data sets with temporal resolution on
the annual level.

Lung cancer and NMRD are characterized by latencies, in that
both outcomes usually occur a long time after initial silica ex-
posures (6–8). Latency periods for lung cancer are taken into
account by lagging cumulative or average exposure, as is often
done in studies of cancer outcomes in occupational epidemi-
ology (9). Recent studies of lung cancer mortality with quan-
titative silica exposure have presented results with no lag (4,
10–13) and also for lags of 10 (4, 10, 11), 15 (4, 11–13), and
25 (12) years. Studies ofNMRDmortality typically present results
from unlagged analysis only (10, 14–16). However, in 2 recent
papers in which results from lagged exposure analyses were pre-
sented, the associations between silica exposure andNMRDwere
strengthened with 10- (4) and 15- (4, 13) year lags, indicating that
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timing of exposure may be an important consideration when as-
sessing associations between silica and both malignant and non-
malignant respiratory disease.

To explore the relative contributions of the intensity, duration,
and timing of crystalline silica exposure to lung cancer and
NMRD, we analyzed data from a cohort of California diatoma-
ceous earth workers (3) using distributed-lag nonlinear models
(DLNMs). In a recent study with applied examples of DLNMs,
including an example using longitudinal occupational cohort data,
Gasparrini (17) summarized the temporal relationships between
exposure and risk of a health outcome as the “exposure-lag-
response.” DLNMs allow for a nonlinear exposure-response, as
well as a nonlinear lag-response, and they can use the participant’s
full work history to estimate the exposure-lag-response. By com-
paring the results from exposure scenarios in which one aspect of
intensity, duration, and timing of exposure is held constant while
the others vary, the health effects of these 3 moving parts of pro-
tracted exposure can be disentangled. The method also allows for
nonlinearities, which have been reported in relation to exposure-
response in this cohort (18). In the current study,we aimed to parse
out the complicated aspects of silica exposure with regard to both
outcomes by usingDLNMs as an estimation approach.

METHODS

Study population

Analyseswere performed on data froma cohortmortality study
of diatomaceous earth workers; the cohort is described in greater
detail elsewhere (3). Briefly, the cohort consisted of 2,342 male
workers from 2 diatomaceous earth plants in Lompoc, California.
Inclusion criteria were cumulative employment for at least 1 year
at either plant and having worked for at least 1 day between
January 1, 1942, and December 31, 1987. Work histories and
silica exposure assessments were available from the beginning
of plant operations (1902 and 1946 for the 2 plants, respectively)
through 1994. Mortality follow-up extended from January 1,
1942, to December 31, 2011, for a maximum follow-up time
of 70 years, andwas based onNational Death Index data, state dri-
ver’s license bureaus, and commercial credit bureaus (4). Com-
plete mortality follow-up was not available for 183 participants.
These subjects contributed person-time until their last observed
dates of employment. Demographic information on the cohort
included work history data (year of hire, duration of employment
at study sites, and dates of specific jobs held) and ethnicity. Infor-
mation on smoking status (ever/never) was also available for 50%
of the cohort (n = 1,171). Deaths due to lung cancer or NMRD
were classified using the underlying cause of death according to
International Classification of Diseases (Revisions 5–10) codes,
as determined in theNational Institute for Occupational Safety and
Health’s Life TableAnalysis Systemmortality program (19, 20).

Exposure assessment

Quantitative estimates of silica dust exposure were determined
primarily from industrial air monitoring measurements made
between 1962 and 1988, with archived company data providing
some additional information for the period between 1948 and
1962 (21). Job-specific estimates of respirable crystalline silica
concentrations (mg/m3), mostly in the form of cristobalite, and

respirable dust exposure were generated on the basis of avail-
able measurements. Exposures incurred before 1948 were based
on extrapolated job-specific exposures that accounted for inter-
ventions to reduce dust exposure and other changes over time (1).
The estimates for crystalline silica were derived from the percent-
age of silica contained in a given diatomaceous earth product and
the amount of time exposed to that product for a given job.
Detailed work history information was available through 1994,
by which time 88% of the cohort had left work (1, 21).

Because of 2 small operations involving chrysotile asbestos
in the plants that occurred during the study period, asbestos ex-
posures (fibers/mL) were also derived. Estimates were based on
monitoring data and records of quantities of asbestos in mixed
products from 1930 onwards, and extrapolated data were used to
determine exposures for earlier years (1). Approximately 54%
of cohort participants were exposed to asbestos at some point in
their work history. In the current study, age was the time scale of
interest, so exposures for each age (in 1-year periods) were esti-
mated for both respirable crystalline silica and asbestos. The age-
specific exposure values were estimated as a time-weighted sum of
the time-varying, job-specific exposure values based on the job(s)
held at different ages during employment for each participant.
Age-specific exposures incurred during age periodswithout active
employmentwere set to zero.

Statistical analyses

Cross-basis functions. Application of DLNMs relies on
“cross-basis” functions, as described in more detail by Armstrong
(22) and Gasparrini (17). Briefly, in a longitudinal cohort setting,
derived exposure variables for each person-year i are generated
based on nonlinear functions (such as spline functions) for the ex-
posure and lag-response. These can be envisioned with a general
notation of

∑
=

−l x ,
l

L

p b i l

0

,

where xb is a basis function for the exposure of interest (e.g., a nat-
ural cubic spline with b degrees of freedom) and, similarly, lp is a
basis function for the lag (where l = 0, . . .,L). Thus, these derived
exposure variables are the sum of products of the basis functions
for exposure and lag, or “cross-basis” functions. For each person-
year, the number of exposure variables derived is equal to the
product of the degrees of freedom ×b p of the basis functions for
the exposure and lag-response. These cross-basis–derived
variables (or the cross-basis exposure matrix) are entered into
regression models, and the resulting coefficients and their stan-
dard errors can collectively be used to summarize the exposure-
lag-response.

Unpenalized DLNMs. In the current study, the cross-basis
exposure variables were derived from an initial exposure matrix
consisting of annual exposures corresponding to lag l = 1, . . .,
50 for each person-year. We applied DLNMs using various
combinations of exposure-response and lag-response functions,
including a linear term for exposure-response, a constant lag-
response, categorical terms for both lag- and exposure-response
functions, and natural cubic splines for both functions. For ap-
plications of unpenalized DLNMs, Cox proportional hazards
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models using age as the time axis were fitted. Analyses were per-
formed in separate nested case-control samples for each of the 2
outcomes considered. Risk sets were created based on the failure
times (measured as age in years) of the cases and a maximum
number of time-matched eligible controls to restrict follow-up
to a manageable number of observations (maximum of 300 con-
trols per lung cancer case and 200 controls per NMRD case, re-
sulting in similar numbers of total person-time observations in
each nested case-control sample). Cross-basis exposure matrices
were created (as described above) for each person-time observa-
tion comprising each of the created risk sets. Model fit for unpe-
nalizedDLNMswas assessed on the basis of Akaike’s Information
Criterion (AIC).

Penalized DLNMs. We also applied penalized DLNMs, as
described in more detail by Gasparrini et al. (23). In the case of
the penalized DLNMs, the cross-basis matrix for exposure was
created on the basis of penalized cubic regression splines within
generalized additive model frameworks (24). A highly parame-
terized cross-basis exposurematrix based on natural cubic spline
functions for the exposure and lag-response was created, and
in addition, a penalty matrix was also defined. The penalties
smooth the overall functions to avoid overfitting and effectively
reduce the total number of degrees of freedom, with the degree of
smoothness decided by maximizing the penalized log-likelihood
of the fitted generalized additive model (23, 24). We varied the
degree of penalization in the lag dimension of the exposure-lag-
response by introducing additional penalties for more recent (l =
1, . . ., 10) and earlier (l = 40, . . ., 50) lags. These additional pen-
alties correspond to specific assumptions about the nature of the
lag-response, such as a diminished association or no associa-
tion at more recent lags due to a latency of the outcome and
diminished associations at earlier lags given survival since last ex-
posure. For the penalized DLNMs, generalized additive Poisson
models (approximating Cox proportional hazards models) were
fitted, separately for each outcome of interest (lung cancer and
NMRD mortality). We also repeated analyses using a pooled
logistic model to approximate hazard ratios, by fitting general-
ized additive binomial models, as opposed to the additive Poisson
models described above.

Cross-basis exposure matrices were entered into the regression
models along with other covariates. All models were adjusted for
calendar time (as a linear term), an indicator variable for Hispanic
ethnicity, a categorical variable for smoking (ever smoking, never
smoking, or missing data), and a cubic spline for baseline risk
with age in the case of generalized additive Poisson or binomial
models. We also controlled for asbestos exposure by modeling
asbestos as a cross-basis matrix created using a natural cubic
spline for the exposure-response and a 3-level category for the
lag-response. All analyses were performed in R, version 3.3.3
(R Foundation for Statistical Computing, Vienna, Austria) using
the “dlnm” package (25).

Measures of association under each model considered were
summarized by predicting the association between different expo-
sure scenarios (defining both exposure and lag values) and out-
comes, as compared with a referent exposure value. Here we
generated measures of association for various exposure scenarios,
allowing for comparisons for different values of intensity, timing,
or duration of exposure, with a common reference value of zero

(unexposed at all times). Figure 1 presents examples of such dif-
ferent exposure scenarios in a hypothetical open cohort, with
values for intensity and duration of exposure within the ranges
observed in the current study.

RESULTS

Summary statistics for the study population are presented in
Table 1. Themedian duration of employment at the participating
facilities was 5 years (range, 1–50), while the median duration
of follow-up was 39 years (range, 1–70). The median age for
lung cancer deaths was 66 years (interquartile range, 59–74),
while the median age for NMRD deaths was 73 years (inter-
quartile range, 64–79).

The complete list of unpenalized DLNMs considered, with
corresponding AIC values, is presented in Table 2. Model fit
based on the AIC suggested that the best-fitting unpenalized
DLNMs were models with a constant lag-response and a nat-
ural spline for the exposure-response for lung cancer and natu-
ral splines from both the lag-response and exposure-response
for NMRD. Models with categorical terms tended to have the
worst fit according to the AIC.

Estimates of hazard ratios for mortality under different expo-
sure scenarios (including the scenarios in Figure 1) obtained from
selected models and from penalized DLNMs are shown in
Tables 3 and 4 for lung cancer and NMRD, respectively. Specif-
ically, we present results from 1) a “naive” model assuming a
constant lag-response and a linear exposure-response (equiva-
lent to a simple cumulative exposuremetric); 2)models with cat-
egorical terms for the lag-response (with 10-year categories) and
a natural spline for the exposure-response, as representatives of
a more detailed “standard” analysis that considers lags; 3) mod-
els with natural spline terms for both the lag-response and the
exposure-response; and, lastly, 4) penalized DLNMs, with both
the lag-response and the exposure-response based on penalized
cubic regression splines. In the case of penalized DLNMs, rate
ratios from generalized additive Poisson models are presented in
Tables 3 and 4 instead of hazard ratios. Estimates from general-
ized additive binomial models (results not shown) were similar
to those from Poisson models in terms of the shape of the lag-
response and exposure-response curves and in the quantitative
measures of association for the different exposure scenarios
considered.

Results from the simple “naive” models tended to underesti-
mate associations for both outcomes as compared with the alter-
natives. For example, the hazard ratio for lung cancer mortality
corresponding to 20 years of exposure (lag 31–50 years) at
0.40 mg/m3 per year, resulting in 8mg/m3-years of cumulative
exposure from the simple model assuming a linear exposure-
response and a constant lag-response, was 1.15 (95% confidence
interval (CI): 0.89, 1.48), while the rate ratio from the penalized
DLNM for the same exposure scenario was 1.47 (95%CI: 0.92,
2.35).With NMRDmortality as the outcome of interest, the haz-
ard ratio corresponding to 20 years of exposure (lag 31–50
years) at 0.40mg/m3 per year from the simpler model was 1.23
(95% CI: 1.03, 1.46), while the rate ratio from the penalized
DLNM corresponding to the same exposure scenario was 1.80

Am J Epidemiol. 2018;187(7):1539–1548

Exposure-Lag-Response in Longitudinal Cohorts 1541



(95% CI: 1.14, 2.85). Results from penalized DLNMs also
tended to result in less extreme values and narrower confidence
intervals compared with models with a categorical lag-response
or simple natural splines for the lag-response. Results from the

penalized DLNMs also maintained associations above the null
for the entire range of lag and exposure.

Figure 2 shows a 3-dimensional representation of exposure-
lag-response from penalized DLNMs for lung cancer (Figure 2A)

Table 1. Characteristics of a California Cohort of 2,342Male Diatomaceous EarthWorkers Exposed to Crystalline
Silica and Followed for Mortality Between 1942 and 2011

Characteristic No. of Men % Median (Range) Mean (SD)

Hispanic ethnicity 546 23.3

Ever smoking (yes)a 861 73.5

Age at beginning of follow-up, years 27 (17–61)

Year of hire 1952 (1908–1986)

Year of birth 1927 (1881–1966)

Duration of employment, years 5 (1–50)

Duration of follow-up, years 39 (1–70)

Mortality during follow-up

All deaths 1,219 52.0

Lung cancer deaths 113 4.8

NMRD deaths 165 7.0

Cumulative silica exposure, mg/m3-yearsb 2.15 (3.51)

Yearly silica exposure, mg/m3c 0.15 (0.21)

Cumulative asbestos exposure, fibers/mL-yearsb 1.40 (4.36)

Abbreviations: NMRD, nonmalignant respiratory disease; SD, standard deviation.
a Smoking data were available for 1,171 participants. Number and percentage of ever smokers were based on this

subset of participants.
b Cumulative exposure at the end of follow-up.
c Yearly silica exposure statistics were based on actively employed person-time only.

0.4 × 10
0.8 × 10

0.8 × 20

0.2 × 20

Time

0.4 × 40

0.4 × 40

0.4 × 20

50 0

30 0

50 0

40 0

20 0

Figure 1. Representation of different exposure scenarios over time for different participants in a longitudinal cohort study. Each line represents a
hypothetical cohort participant, with the lag dimension labeled on each line (with increasing numbers in the opposite direction of the follow-up) and the
participant’s exposure represented by the rectangle(s) above each line. The height of each rectangle represents the intensity of exposure proportional
to the decimal numeral inside the rectangle (e.g., in mg/m3), and the width represents the duration proportional to the integer number inside the rectan-
gle (in years), while the product of the two represents the cumulative exposure for each rectangle. Circles represent participants who are censored
after experiencing an outcome of interest, and arrows represent participants who are still at risk at the administrative end of follow-up.
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andNMRD (Figure 2B)mortality in this cohort. The lag-response
at various exposure intensities and the exposure-response at different
lags from these models are summarized in Figure 3 for both out-
comes. The lag-response and exposure-response from selected

unpenalized DLNMs are depicted in Web Figure 1 (available at
https://academic.oup.com/aje), while Web Figure 2 shows the lag-
response at various exposure intensities and the exposure-response
at different lags from the best-fittingmodels according to theAIC.

Table 2. Response Functions and AIC Values for UnpenalizedModels Considered for Estimation of Lung Cancer
and Nonmalignant Respiratory DiseaseMortality According to Occupational Crystalline Silica Exposure in a
Diatomaceous Earth Cohort, California, 1942–2011

Model AIC

Exposure-Response Lag-Response dfa Lung Cancer NMRD

Linear Constant 1 1,254.0 1,777.1

Linear Piecewise-constantb 4 1,259.8 1,776.5

Linear Splinec 3 1,257.2 1,770.3

Piecewise-constant Piecewise-constant 12 1,266.4 1,780.4

Spline Constant 2 1,253.4 1,776.1

Spline Piecewise-constant 8 1,261.4 1,780.3

Spline Spline 6 1,259.4 1,770.3

Abbreviations: AIC, Akaike’s Information Criterion; df, degrees of freedom; NMRD, nonmalignant respiratory disease.
a Total number of df for the exposure-lag-response function.
b Piecewise-constant functions for the lag-response were based on a categorical variable with a category per

decade of lag, and for the exposure-responsewith categories based on quartiles of exposure.
c Spline functions were based on natural cubic splines, with 2 df for the exposure-response (inner knot at the mean)

and 3 df for the lag-response (inner knots at lags of 20 and 40 years).

Table 3. Hazard Ratios for Lung Cancer Mortality AssociatedWith Different Scenarios of Occupational Crystalline Silica Exposure UsingModels
With Varying Exposure-Lag-Response Functions in a Diatomaceous Earth Cohort, California, 1942–2011

Scenario

Exposure

Model

Simple “Naive”
Modela

Categorical
Lag-Responseb

Natural Spline
Lag-Responsec Penalized DLNMd

Exposure
Intensity,
mg/m3

Timing of
Lag, years

Cumulative
Exposure,

mg/m3-years
HR 95%CI HR 95%CI HR 95%CI RR 95%CI

1 0.2 1–20 4 1.07 0.94, 1.22 1.52 0.66, 3.50 1.27 0.76, 2.11 1.11 0.94, 1.31

2 0.2 1–40 8 1.15 0.89, 1.48 2.32 0.90, 6.01 1.83 0.93, 3.63 1.49 0.98, 2.27

3 0.2 11–50 8 1.15 0.89, 1.48 2.02 0.74, 5.54 2.58 0.93, 7.19 1.54 0.99, 2.40

4 0.4 11–30 8 1.15 0.89, 1.48 1.39 0.43, 4.41 1.81 0.72, 4.53 1.61 0.93, 2.79

5 0.4 31–50 8 1.15 0.89, 1.48 2.48 0.67, 9.12 2.73 0.66, 11.36 1.47 0.92, 2.35

6 0.8 31–40 8 1.15 0.89, 1.48 1.06 0.38, 2.95 1.87 0.89, 3.93 1.55 0.94, 2.53

7 1.0 31–40 10 1.19 0.86, 1.63 1.29 0.45, 3.71 2.08 0.95, 4.55 1.40 0.93, 2.10

8 1.0 41–50 10 1.19 0.86, 1.63 1.84 0.47, 7.22 1.04 0.22, 4.86 1.12 0.87, 1.44

9e 0.2 11–30 8 1.15 0.89, 1.48 2.80 0.81, 9.71 2.78 0.69, 11.20 1.43 0.96, 2.14

0.4 31–40

0.8 41–50

Abbreviations: CI, confidence interval; df, degrees of freedom; DLNM, distributed-lag nonlinear model; HR, hazard ratio; RR, rate ratio.
a The simplemodel was based on a constant lag-response and a linear exposure-response (1 df).
b Unpenalized DLNM with a categorical lag-response with a category for each decade of lag and a natural spline function for the exposure-

response (10 df combined).
c Unpenalized DLNMwith natural cubic spline functions for both the lag-response and the exposure-response (6 df combined).
d Estimates from the penalized DLNMs are rate ratios from a Poisson generalized additive model aiming to approximate a Cox proportional

hazardsmodel. (The number of effective degrees of freedom for the exposure lag-response was 1.02.)
e Scenario 9 represents time-varying exposure intensities: 0.2 mg/m3 during lag 11–30 years, 0.4 mg/m3 during lag 31–40 years, and 0.8mg/m3

during lag 41–50 years.
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DISCUSSION

We applied DLNMs to longitudinal data from a cohort of dia-
tomaceous earth workers to examine the roles of intensity, dura-
tion, and timing of exposure to crystalline silica with respect to
lung cancer and NMRD mortality. Exposure-lag-response esti-
mates from DLNMs were generally higher for a variety of differ-
ent exposure scenarios than for estimates from “naive” models
assuming constant lag-response and linear exposure-response
(equivalent to a simple linear term for cumulative exposure). Dif-
ferent exposure scenarios resulting in the same overall cumulative
exposure, but with varying elements of timing and intensity of
exposure, yielded varying association measures under DLNMs.
These findings suggest that both timing and intensity of exposure
are factors contributing to the overall relationship between crystal-
line silica exposure and mortality from malignant and nonmalig-
nant respiratory disease. Nonlinearities of the exposure-response
were also evident for both outcomes of interest.

Pathophysiological processes linking exposures to health out-
comes are often complex mechanisms, with exposure effects
persisting over varying timewindows depending on the exposure-
outcome relationship in question. It is also possible that latency of
certain outcomes will correspond to delayed effects of exposure,
with outcomes observed only after a certain amount of time has
passed since initial exposures (9, 26, 27). These potential temporal
aspects of exposure-response may complicate modeling of

relationships between an exposure and an outcome of interest in
studies with time-varying exposure histories extending over long
periods of follow-up, since both timing and intensity of exposure
are relevant to disease risk. This is often the case in occupational
epidemiologic studies in which detailed exposure histories are
available, with exposure varying between people aswell aswithin
persons over time. Measures of cumulative exposure or average
intensity are often used in studies of prolonged exposures and
chronic health effects (28–30). There are strong implicit assump-
tions behind modeling of exposure-response as a function of
either or even both of these measures: Cumulative exposures do
not distinguish between exposure intensity and duration, while
average intensity measures do not account for cumulative expo-
sure. Even if both measures are used together, the time-varying
nature of intensity is still not accounted for. (Note that in the cur-
rent study we did not explicitly consider measures like average
intensity of exposure in our comparisons.)

Timing of exposure is often considered in occupational epide-
miology; lagging of exposure is common in order to account for
disease latency (9). In most applications, exposure is lagged by
the duration of the assumed minimum latency of the outcome.
Previous applications of lagged exposures with respect to silica
exposures and lung cancer or NMRD have used this simple lag-
ging approach, considering various lengths of lags (4, 10–13).
Although less common, other, more flexible approaches focus-
ing on lag-response, including applications in occupational

Table 4. Hazard Ratios for Nonmalignant Respiratory DiseaseMortality AssociatedWith Different Scenarios of Occupational Crystalline Silica
Exposure UsingModelsWith Varying Exposure-Lag-Response Functions in a Diatomaceous Earth Cohort, California, 1942–2011

Scenario

Exposure

Model

Simple “Naive”
Modela

Categorical
Lag-Responseb

Natural Spline
Lag-Responsec Penalized DLNMd

Exposure
Intensity,
mg/m3

Timing of Lag,
years

Cumulative
Exposure,

mg/m3-years
HR 95%CI HR 95%CI HR 95%CI RR 95%CI

1 0.2 1–20 4 1.11 1.02, 1.21 0.78 0.35, 1.75 1.11 0.77, 1.60 1.03 0.80, 1.34

2 0.2 1–40 8 1.23 1.03, 1.46 1.03 0.42, 2.54 1.73 0.97, 3.07 1.18 0.83, 1.68

3 0.2 11–50 8 1.23 1.03, 1.46 2.53 1.34, 4.79 2.09 1.18, 3.69 1.46 1.04, 2.06

4 0.4 11–30 8 1.23 1.03, 1.46 2.21 0.84, 5.85 1.63 0.76, 3.48 1.19 0.72, 1.97

5 0.4 31–50 8 1.23 1.03, 1.46 2.51 1.29, 4.91 2.42 1.27, 4.60 1.80 1.14, 2.85

6 0.8 31–40 8 1.23 1.03, 1.46 1.55 0.65, 3.70 1.59 0.83, 3.04 1.39 0.84, 2.30

7 1.0 31–40 10 1.29 1.04, 1.61 1.57 0.62, 4.01 1.39 0.70, 2.77 1.48 0.86, 2.55

8 1.0 41–50 10 1.29 1.04, 1.61 3.62 1.59, 8.24 3.61 1.63, 7.98 2.51 1.31, 4.81

9e 0.2 11–30 8 1.23 1.03, 1.46 2.75 1.48, 5.14 2.31 1.26, 4.23 1.73 1.17, 2.55

0.4 31–40

0.8 41–50

Abbreviations: CI, confidence interval; df, degrees of freedom; DLNM, distributed-lag nonlinear model; HR, hazard ratio; NRMD, nonmalignant
respiratory disease; RR, rate ratio.

a The simplemodel was based on a constant lag-response and a linear exposure-response (1 df).
b Unpenalized DLNM with a categorical lag-response with a category for each decade of lag and a natural spline function for the exposure-

response (10 df combined).
c Unpenalized DLNMwith natural cubic spline functions for both the lag-response and the exposure-response (6 df combined).
d Estimates from the penalized DLNMs are rate ratios from a Poisson generalized additive model aiming to approximate a Cox proportional

hazardsmodel. (The number of effective degrees of freedom for the exposure lag-response was 3.39.)
e Scenario 9 represents time-varying exposure intensities: 0.2 mg/m3 during lag 11–30 years, 0.4 mg/m3 during lag 31–40 years, and 0.8mg/m3

during lag 41–50 years.

Am J Epidemiol. 2018;187(7):1539–1548

1544 Neophytou et al.



epidemiology such as use of weighting functions for past expo-
sures, have been described in the literature (26, 27, 31). There
have also been approaches using flexible and smooth spline
functions (32–34), as well as applications for time-to-event
data (35). Richardson et al. (36) thoroughly summarize the lim-
itations of the more traditional ways of modeling exposure-
response and offer alternative options allowing for estimation of
exposure-rate effects, thus evaluating cumulative effects of
exposure in the presence of effect modification by exposure
rate. They also describe different ways to deal with effects as
they relate to time since exposure, including what are, essen-
tially, distributed-lag functions.

Distributed-lag models have primarily been used in time-series
studies of environmental exposures such as ambient air pollutants
(22, 37–39). Recent studies have presented extensions ofDLNMs
beyond time-series designs, including survival data (17), as well
as a penalized framework for DLNMs (23). These functions
allow the joint estimation of exposure-response and lag-response,
with potential for time-dependent nonlinear effects. Differences
in exposure-response at different lags were evident when using
both penalized and unpenalized DLNMs (both with categorical
and spline terms for the lag-response). Models with categorical
terms for the lag-response tended to have worse fit according to
the AIC compared with models with natural cubic splines for the
lag-response. In general, results from unpenalized DLNMs
tended to be more prone to potential problems due to fewer ob-
servations at higher levels of exposure and/or lag periods com-
pared with results from penalized DLNMs in our study. Results
from penalized DLNMs maintained measures of association
above or at the null for the entire windows of the lag and in-
tensity dimensions, while confidence intervals were also more

stable compared with those from unpenalized DLNMs, which
tended to result in less well-behaved functions with potentially
unrealistic protective associations at certain ranges of exposure
intensity and imprecise confidence intervals (as evidenced in
Web Figures 1 and 2). Measures of association from unpena-
lized DLNMs for various exposure scenarios were also more
extreme, depending on the values of intensity and lag selected,
compared with penalized DLNMs.

Based on the results from themore flexible penalizedDLNMs,
models for lung cancer mortality were sensitive to the introduc-
tion of additional penalties. Associations for lung cancer mor-
tality seemed to increase with increasing lag (indicative of a
latency period), reaching an apparent maximum followed by a
small decline in the association at lags greater than 30 years. The
smaller association measures at more recent lags (1–10 years)
compared with the maximum observed at greater lags were
sensitive to additional penalties imposed for this section of the
lag dimension, with associationmeasures approaching null when
those penalties were implemented. The decrease in the asso-
ciation at greater lags, compared with the maximum observed,
would indicate a decline in risk of past exposures, conditional
on survival for a given minimum duration. Decline of lung can-
cer risk in association with increased time since last exposure
has been reported in the smoking literature. Decrease in
lung cancer risk with years after smoking cessation has
been reported in many studies, though the degree of reduction
in risk and the durations associated with it vary across studies
(40–45).

There were increases in associations with increasing lag
for NMRD mortality as well, which were also sensitive to
additional penalties at earlier lags. There did not appear to be

0

10

20
30

40
50

0.0

0.5

1.0

1.5

2.0

2.5
0.90

0.95

1.00

1.05

1.10

1.15

1.20

Lag, years

Annual Crystalline Silica

Exposure, mg/m 3

R
at

e 
R

at
io

R
at

e 
R

at
io

0

10

20
30

40
50

0.0

0.5

1.0

1.5

2.0

2.5
0.90

0.95

1.00

1.05

1.10

1.15

1.20

Lag, years

Annual Crystalline Silica

Exposure, mg/m 3

A) B)

Figure 2. Three-dimensional representation of the exposure-lag-response for penalized distributed-lag nonlinear models of lung cancer mortality
(A) and nonmalignant respiratory diseasemortality (B) in California diatomaceous earth workers, 1942–2011.
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a comparable decrease associated with older exposures (greater
lags) for NMRD, however; rather, association measures seemed
to continue to increase with increasing lag in the window con-
sidered in this study. This may indicate initial and persisting lung
damage, which eventually may lead to clinical manifestations
andmortality. Potential trajectories of chronic obstructive pulmo-
nary disease development suggest that lower lung function earlier
in life, even when followed by normal rates of decline over time,
is a more likely scenario for disease progression than a rapid
decline later in life (46–48). This is consistent with the observed
absence of a diminished risk of potentially harmful exposures at
greater lags, as well as the observed latency at earlier lags.

Applications of DLNMs do have limitations, especially in the
case of unpenalized DLNMs, where functions of both exposure-
response and lag-response are fully defined a priori, with some
strong parametric assumptions. Model fit assessment and selec-
tion from a variety of a priori–defined combinations of functions
based on information criteria does not have a well-established
theoretical basis (23). PenalizedDLNMs better address this issue,
as model selection is built in. The smooth functions through

penalized splines within generalized additive model frameworks
are also part of an improved extension of the strong parametric
forms of functions in unpenalized applications. General limita-
tions do remain, however, and are summarized more thoroughly
by Gasparrini et al. (23). In the current study, our choice of addi-
tional penalties on the lag dimension, to which the lag-response
was particularly sensitive for lung cancer mortality, relied on as-
sumptions that may be unverifiable (such as the length of a
latency period and the timing of diminishing risk) about the
nature of the lag-response. Furthermore, we lacked the statistical
power to examine penalized spline functions with additional
knots and/or penalty terms, as they tended to result in much sim-
pler functions (usually resulting in linear lag-response).

In addition to allowing for disease latency, lagging exposures
has been used to address healthy worker survivor bias (49). Lag-
ging exposure is typically not enough to adequately address issues
of time-varying confounding affected by previous exposure (such
as healthy worker survivor bias) unless strict assumptions about
the length of the minimum latency period and time from unde-
tected early-stage disease to mortality are met (50, 51). However,
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Figure 3. Rate ratios for lung cancer mortality (upper panels) and nonmalignant respiratory diseasemortality (lower panels) according to occupa-
tional crystalline silica exposure, at lags of 0–50 years, among California diatomaceous earth workers, 1942–2011. A) Lag-response for lung can-
cer mortality at various (annual) exposure intensities; B) exposure-response of annual exposures at various lags from penalized distributed-lag
nonlinear models; C) lag-response for nonmalignant respiratory disease mortality at various (annual) exposure intensities; D) exposure-response
of annual exposures at various lags from penalized distributed-lag nonlinear models.
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lagging exposure may help diminish the impact of the healthy
worker survivor bias; thus, it is possible that the increasing asso-
ciations observed with increasing lag of exposure may be partly
due to reduced survivor bias rather than a true lag-response. Ex-
tending currentmethods for addressing time-varying confounding
affected by prior exposure (52) to include a flexible exposure-lag-
response estimation framework such asDLNMswould be a bene-
ficial avenue for future research.

In summary, we applied DLNMs to assess aspects of crystal-
line silica exposure accrued over time in relation to both lung can-
cer and NMRD. Our findings indicate that intensity, timing, and
duration are all potentially relevant aspects of exposure, and that
approaches relying simply on cumulative exposure may under-
estimate associations as compared with more flexible DLNM
approaches. Different lag-response shapes were observed for
malignant respiratory disease mortality than for NMRDmor-
tality, but our findings were suggestive of latency in the asso-
ciations with exposure for both outcomes. Use of this flexible
approach to model the exposure-lag-response can help re-
searchers understand the relative contributions of exposure
timing, intensity, and duration to the risk of chronic disease.
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