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Performance Assessment of a Custom, Portable, and
Low-Cost Brain-Computer Interface Platform

Colin M. McCrimmon1, Student Member, IEEE, Jonathan L. Fu2∗, Ming Wang3∗, Lucas Silva Lopes4, Po T.
Wang1, Member, IEEE, Alireza Karimi-Bidhendi3, Student Member, IEEE, Charles Y. Liu5,6,7, Payam Heydari3,

Fellow, IEEE, Zoran Nenadic1,3, Senior Member, IEEE, An H. Do2

Abstract—Objective: Conventional brain-computer interfaces
(BCIs) are often expensive, complex to operate, and lack portabil-
ity, which confines their use to laboratory settings. Portable, inex-
pensive BCIs can mitigate these problems, but it remains unclear
whether their low-cost design compromises their performance.
Therefore, we developed a portable, low-cost BCI and compared
its performance to that of a conventional BCI. Methods: The BCI
was assembled by integrating a custom electroencephalogram
(EEG) amplifier with an open-source microcontroller and a
touchscreen. The function of the amplifier was first validated
against a commercial bioamplifier, followed by a head-to-head
comparison between the custom BCI (using 4 EEG channels)
and a conventional 32-channel BCI. Specifically, 5 able-bodied
subjects were cued to alternate between hand opening/closing
and remaining motionless while the BCI decoded their movement
state in real-time and provided visual feedback through a light
emitting diode. Subjects repeated the above task for a total of 10
trials, and were unaware of which system was being used. The
performance in each trial was defined as the temporal correlation
between the cues and the decoded states. Results: The EEG
data simultaneously acquired with the custom and commercial
amplifiers were visually similar and highly correlated (ρ=0.79).
The decoding performances of the custom and conventional
BCIs averaged across trials and subjects were 0.70±0.12 and
0.68±0.10, respectively, and were not significantly different.
Conclusion: The performance of our portable, low-cost BCI is
comparable to that of conventional BCIs. Significance: Platforms,
such as the one developed here, are suitable for BCI applications
outside of a laboratory.

I. INTRODUCTION

Brain-computer interface (BCI) systems have been designed
for diverse applications, such as smart living, entertainment,
and neuroprostheses. Recent studies have also examined

∗These authors contributed equally
1Dept. of Biomedical Engineering, University of California, Irvine, CA

92697 USA
2Dept. of Neurology, University of California, Irvine, CA 92697 USA
3Dept. of Electrical Engineering and Computer Science, University of

California, Irvine, CA 92697 USA
4CAPES Foundation, Brası́lia, DF, Brazil
5Dept. of Neurosurgery, Rancho Los Amigos National Rehabilitation

Center, Los Angeles, CA 90033 USA
6Center for Neurorestoration, University of Southern California, Downey,

CA 90242 USA
7Dept. of Neurosurgery, University of Southern California, Los Angeles,

CA 90033 USA
This work was funded by the American Academy of Neurology and

National Science Foundation (grants #1160200 and #1446908)
Copyright (c) 2016 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

whether BCIs can facilitate neurorehabilitation after neurolog-
ical injuries by improving residual motor function. However,
these studies often employ conventional BCIs that rely on
expensive commercial amplifier arrays and bulky computers
(e.g. [1], [2], [3], [4], [5]). These factors inevitably drive up
the cost, complexity, and setup time of BCI systems, while
reducing their portability. Consequently, these BCI systems
are not ideal for at-home use by the community.

One way to decrease the setup time associated with conven-
tional BCIs is to reduce the number of EEG channels. Prior
studies have demonstrated that EEG-based motor BCIs could
be successfully operated with as few as 1 channel [6], although
some applications may require at least 8 channels [7]. Reduc-
ing the number of channels in a cost-effective way requires
the replacement of commercial bioamplifiers (typically with
dozens of channels) with custom, low-channel-count amplifier
arrays. Similarly, further enhancement of portability and cost
reduction could be achieved by replacing full-size computers
in conventional BCIs with low-cost embedded systems. These
strategies have been employed in several studies, where cus-
tom portable BCIs were developed for applications ranging
from drowsiness detection [8], [9], smart living environments
[10], and multimedia navigation [11], to prosthesis control [12]
and motor rehabilitation [13]. However, reducing a BCI’s bulk-
iness, cost, and complexity in this manner may consequently
decrease its decoding performance. Many of the above studies
compared their decoding performance to previous work, but,
to date, no head-to-head performance comparison between
portable, cost effective BCIs and conventional BCIs has been
reported in the literature. Maintaining a high decoding accu-
racy is critical in applications such as drowsiness detection
and prosthesis control.

In this study, we developed a portable, low-cost BCI system
based on [13], and then performed a head-to-head comparison
of its decoding capability against that of a conventional BCI
system. Our findings demonstrate that there need not be a
trade-off between decoding performance and portability, cost,
and simplicity. This suggests that portable and low-cost custom
systems, such as the one developed here, may be ideally suited
for BCI applications outside of a laboratory setting.

II. METHODS

A. Overview
A low-cost, embedded BCI system was developed by inte-

grating a custom EEG amplifier and a commercial microcon-
troller unit (MCU) with a touchscreen (see Fig. 1). Custom
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Fig. 1. Top Left: Exploded view of the individual components of the custom BCI system. Top right: The fully assembled custom BCI system connected to a
handheld battery and EEG cap. Bottom: Graphical user interface navigation map for operating the custom BCI system. Note the simple and straightforward
interface design.
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software was developed and uploaded to the MCU to control
all facets of the system’s operation. The real-time decoding
performance of the custom BCI was compared to that of a
conventional BCI system in able-bodied subjects. Both BCI
systems were trained to recognize, from EEG, when a subject
was opening/closing their right hand or remaining motionless.
The subject received feedback in the form of a red light-
emitting diode (LED) that was turned on when hand movement
was decoded, and turned off when idling was decoded. The
correlation between cues and decoded states for each trial
was calculated and used to determine whether the custom
BCI’s performance was significantly inferior to that of the
conventional BCI.

B. Hardware
The custom BCI system consisted of 3 main hardware

components: an 8-channel EEG amplifier array (details below),
an open-source Arduino Due MCU (Arduino, Ivrea, Italy),
and an LED touchscreen with integrated micro SD card
slot (Adafruit Industries, New York, NY). The entire system
was ∼13×9×3 cm3 in size, and consumed 1 W of power
during normal operation. This enabled it to be powered by a
rechargeable 5V battery. Each channel of the EEG amplifier
array (see Fig. 2) consisted of a cascade of one instrumentation
amplifier (Texas Instrument INA128, Dallas, TX) followed by
two operational amplifiers (Texas Instrument OPA 4241) to
achieve a total of gain of >89 dB with >80 dB common
mode rejection ratio (CMRR). Active low-pass and high-pass
filters provided a banded response between 1.6-32.9 Hz. The
amplifier array circuit was implemented on a printed circuit
board that interfaced with the MCU and touchscreen as well
as with the EEG electrodes. The MCU’s ADC unit had a
resolution of 12 bits.

The amplifier array was empirically validated by com-
paring its output to that of a commercial amplifier system
(EEG100C, BIOPAC Systems, Goleta, CA) with a 1-35 Hz
banded response. Specifically, one EEG channel derived by
referencing electrode Cz to AFz (nomenclature consistent with
the international 10-10 EEG standard [14]) was simultaneously
amplified by both the custom and commercial amplifiers. The
output of each amplifier was acquired simultaneously at 250
Hz by a commercial data acquisition system (MP150, BIOPAC
Systems, Goleta, CA) over the course of 1 min. The gain of
EEG100C was ∼86 dB with 110 dB CMRR, and the MP150’s
ADC resolution was 12 bits. Different software filters were
applied to the data from the custom and commercial amplifiers
to account for their different hardware filter settings. Finally,
the lag-optimized correlation coefficient (Pearson) between the
signals was calculated.

The conventional BCI system has been used extensively in
previous studies [15], [16], and consisted of a commercial 32-
channel EEG amplifier (NeXus-32, Mind Media, Netherlands),
a desktop computer, and the MP150 data acquisition system
for aligning the EEG and cue signals. The gain of the NeXus-
32 amplifier was ∼26 dB with >90 dB CMRR, and its ADC
resolution was 22 bits.

A cost breakdown of both BCI systems (excluding the
EEG cap) is shown in Table I. The cost of the custom BCI

Fig. 2. Circuit diagram for each channel of the custom amplifier array.
The mid-level VCC/2 is connected to a bias electrode as well as to all the
electrodes’ active shielding.

was <1/20th of the cost of an equivalent 8-channel version
of the conventional system (using per channel costs). The
conventional system’s amplifier, however, has medical CE and
FDA certifications, which may account for its high cost.

TABLE I
COST BREAKDOWN OF THE CUSTOM AND CONVENTIONAL BCI SYSTEMS.
THE COST OF THE CUSTOM BCI’S 8-CHANNEL EEG AMPLIFIER INCLUDES

PCB MANUFACTURING, ASSEMBLY, AND COMPONENTS. THE COST OF
THE CUSTOM BCI’S COMPUTER INCLUDES THE COST OF THE MCU,

BATTERY, AND MICROSD CARD. THE COST OF THE CONVENTIONAL BCI
SYSTEM DOES NOT INCLUDE THE COST OF THE SEPARATE DATA

ACQUISITION SYSTEM FOR ALIGNING THE EEG AND CUES.

Component Custom BCI Conventional BCI

EEG Amplifier ∼$210 ∼$22,500
(∼$26.25/channel) (∼$703.13/channel)

Computer ∼$65 ∼$1,500
Display/Human Interface ∼$35 ∼$200

Total ∼$310 ∼$24,200

C. Software

Specialized software was written in C++ and uploaded to
the custom BCI’s MCU to render the graphical user interface
(GUI) and perform the following BCI functions: 1. EEG
training data acquisition, 2. generation of the BCI decoding
model, 3. real-time decoding to control an output device. The
simple GUI is depicted in the bottom panel of Fig. 1. The
effector output can be manually controlled on the home screen.
In training mode, the screen alternates between displaying
“GO” (during movement epochs) and a blank screen (during
idling epochs), and then displays the accuracy of the generated
BCI decoding model. Lastly, before the end of training, a small
number of calibration cues (“GO”/blank screen) are presented
to the user. Back at the home screen, the user can enter cal-
ibration mode to manually select thresholds for the decoding
model (based on histograms from data collected during the
calibration cues). During real-time BCI decoding, the user is
presented with the same “GO”/blank screen cues as before and
their decoded brain state is used to control the effector output.
The software developed to operate the BCI, including the GUI,
is publicly available at https://github.com/cbmspc/ucibci.
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Fig. 3. Experimental procedure for the head-to-head comparison of the custom and conventional BCI, depicting the order of each system’s training, decoding
model generation (Dec. Mod.), binary state machine calibration (Cal.), and real-time decoding trials. The entire procedure lasted around 1.5 h.

The conventional BCI system utilized custom Matlab scripts
to perform the same functions as the custom BCI system.
These were originally described in [15].

D. Subject Recruitment

The use of human subjects was approved by the University
of California, Irvine Institutional Review Board. Able-bodied
individuals with no history of neurological disease were re-
cruited for the study.

E. Setup

The general experimental procedure for each subject is
depicted in Fig. 3. Subjects were first fitted with and EEG cap
(Waveguard, ANT-Neuro, Germany) with 64 actively-shielded
electrodes. Only a subset of 33 electrodes was used (see Fig.
4), and their impedances were reduced to <10 kΩ using
conductive gel. The conventional BCI utilized 32 channels
(32 electrodes all referenced to AFz), while the custom BCI
used only 4 channels (C1, C3, C5, and CP3, all referenced to
AFz). Specifically, AFz was the V- electrode in Fig. 2 for
every channel of the custom BCI. In addition, the custom
BCI used a bias electrode (Fz) during testing. For subject S3,
FC3 was used instead of C5 due to excessive noise in that
channel. The 4 channels used by the custom BCI were chosen
based on their proximity to the expected hand representation
area of the primary motor cortex. Although the custom BCI
could accommodate up to 8 channels, preliminary post-hoc
analysis of foot movement data from a previous BCI study
[17] demonstrated no significant loss of decoding accuracy
when only ∼4 (albeit well chosen) EEG channels were used
instead of all 32. In addition, our results from [13] suggested
that high decoding performance was attainable with only 4
EEG channels. Therefore, we used only 4 of the 8 channels
for this study.

F. BCI Training

In order to train the BCI systems to distinguish the pres-
ence/absence of hand movements, users followed verbal cues
to alternate between repetitively opening/closing their right
hand for 6 s (“move” epochs) and remaining motionless for 6 s
(“idle” epochs). EEG data from 4 (custom BCI) or 32 (conven-
tional BCI) channels were acquired at 240 Hz (custom BCI) or
256 Hz (conventional BCI) per channel. The sampling rate for
the custom BCI was chosen simply because it was close to 256
and produced many software parameters that were divisible
by 10, and changing it to 256 Hz did not affect decoding
performance. Each channel’s EEG data were digitally filtered
either into the α (8-13 Hz) and β (13-30 Hz) physiological

Fig. 4. Electrode locations for the international 10-10 EEG system. The
electrodes used by the conventional BCI are colored grey, while those used
by the custom BCI are outlined in red.

bands by the custom BCI or into 2 Hz bands covering the
same 8-30 Hz range by the conventional BCI. The custom
BCI utilized the entire α and β bands, instead of smaller
frequency bands, due to its limited memory space (96 kB) and
to simplify the subsequent decoding steps. The average power
at each channel and frequency band was calculated for every
6-s-long “move” and “idle” epoch. To prevent movement state
transitions from affecting the subsequent decoding models, the
custom and conventional BCIs discarded the first 1-s of EEG
data from each epoch. The conventional BCI also discarded
the last 1-s of EEG data from each epoch. However, doing
the same for the custom BCI had no impact on its decoding
performance, and therefore, it was not implemented in this
study.

For each subject, the custom BCI was trained first, followed
by the conventional BCI (see Fig. 3). To minimize the total
time that each subject spent training, the training sessions
for the custom BCI lasted only 5 min. However, the training
sessions for the conventional BCI lasted 10 min and could not
be reasonably reduced further because of the high dimension-
ality of its data (32 EEG channels × 11 frequency bands).
The custom BCI was trained for 5 min instead of 10 min
because it made no difference in its decoding capability during
preliminary tests. During training, subjects were positioned
facing away from the experimenters/BCI systems and were
not told of the training time discrepancy in order to blind
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them to which BCI was being used. The BCI cues were
relayed verbally to the subjects by the experimenters, who
also performed mock typing and mouse clicking (to mimic
the sounds of operating the conventional system) before the
use of the custom system.

G. Decoding Model

The custom BCI extracted hand movement features from
its 8-dimensional EEG training data using linear discriminant
analysis (LDA) [18], while the conventional BCI first reduced
its training data’s dimensionality (down from 352) using
classwise principal component analysis (CPCA) [19] before
extracting hand movement features with either LDA or approx-
imate information discriminant analysis (AIDA) [20]. The con-
ventional BCI’s initial CPCA step was necessary to perform
LDA/AIDA. Next, both BCI systems generated a Bayesian
classifier to calculate the probability of the movement state
(hand opening/closing) from extracted features (f ), denoted
as P (M | f). Each system also performed leave-one-out cross-
validation to predict the accuracy of the decoding model. If the
cross-validation accuracy was <85%, the subject repeated the
training for that system. If the accuracy was ≥85%, the subject
performed an additional 2-min calibration session of cued hand
opening/closing and idling (in alternating 6-s epochs) with
that BCI system to provide data for calibrating a binary state
machine.

H. State Machine Calibration

For each BCI system, histograms of P (M | f) from “move”
and “idle” epochs of the 2-min calibration session were
generated to calibrate a binary state machine that classified
users’ underlying movement states (“move” or “idle”) from
P (M | f). Specifically, for each BCI, the values of two
thresholds, TM and TI (where TM > TI ), were manually
selected by the experimenters to be used by its state machine
as follows. When P (M | f) < TI , the state machine entered
the “idle” state; when P (M | f) > TM , the state machine
entered the “move” state; when TI < P (M | f) < TM , the
state machine remained in its previous state. This binary state
machine design reduces noisy state transitions and alleviates
users’ mental workload, and has been successfully used before
[15], [16]. If a BCI system’s histograms from “move” and
“idle” calibration epochs appeared highly similar, the training
session for that BCI was repeated.

I. Real-Time Decoding

During real-time operation, both the custom and conven-
tional BCI systems employed a 0.75 s sliding analysis window
(0.25 s overlap) for determining P (M | f) from the users’
EEG. To further prevent noisy state transitions, the posterior
probabilities over the most recent 1.5 s of EEG data (6 values)
were averaged to generate P (M | f). P (M | f) was used
by the systems’ state machine to decode users’ underlying
movement state every 0.25s. This decoded state was used
by each system to control an LED which turned on during
decoded “move” states and turned off during decoded “idle”
states.

Subjects participated in five, 2-min-long trials for each
BCI system (total of 10 trials). During each trial, subjects
followed alternating 6-s cues to open/close their right hand
or remain motionless. Subjects were positioned facing away
from the experimenters/BCI systems and towards the single
LED light that provided real-time visual feedback from both
systems. Experimenters provided verbal cues for subjects to
“move” and “idle” based on the computerized cues displayed
by each system. In addition, the experimenters performed
mock typing and mouse clicking during use of the custom
BCI. Subjects were told that the order of the 10 trials was
randomized, although the custom and commercial systems
were actually used in an alternating fashion (starting with
the custom system). The alternating utilization of the BCI
systems was intended to avoid subject learning or fatigue.
For each trial, the performance of the system was assessed as
the lag-optimized correlation (Pearson) between the cues and
the decoded state. Then, for each subject, a left-sided Mann-
Whitney U test (α=0.05) was performed between the decoding
correlations of the custom and conventional BCI.

III. RESULTS

A. Custom Amplifier Validation

EEG (Cz referenced to AFz) from one human subject was
simultaneously passed to both the custom and commercial
amplifiers. The correlation between the 1-min-long signals ac-
quired from both amplifiers was 0.79. Moreover, both signals
appeared visually similar. See Fig 5 for a representative 3-s
example of each amplifier’s output.

Fig. 5. 3-s example from the 1 min of human EEG data simultaneously
acquired by the custom and commercial amplifiers. Note the high degree of
similarity between the signals.

B. Decoding Performance

Five able-bodied subjects (S1-5) gave their informed con-
sent to participate in this study. Three of the subjects had
prior BCI experience. Anecdotally, the setup time for the
custom BCI system required ∼10 minutes, as opposed to
∼30-40 minutes for the conventional BCI system, due to its
lower number of channels. All subjects successfully operated
both the custom and conventional BCI systems. The overall
cross-validation accuracy across all subjects was 93.6±4.3
and 96.2±1.8 for the custom and conventional BCI systems,
respectively. In the meantime, the custom BCI’s processor was
still able to generate the decoding model and perform cross-
validation in a timely manner (<1 min for each subject). For
each subject, the conventional BCI utilized features around C3
in the α and/or β bands, so the 4 channels used by the custom
BCI may have been an appropriate choice in these subjects.
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For example, the average of all S2’s β band features is shown
in Fig. 6.

Fig. 6. The average β band features used by the conventional BCI for
decoding S2’s hand movements. Areas in red represent highly weighted
features, while those in blue are less important. As expected, the region around
C3 was important for decoding.

The average lag-optimized correlation between cues and de-
coded states across all subjects and trials was 0.70±0.12 (av-
erage lag of 2.22±0.27 s) for the custom BCI and 0.68±0.10
(average lag of 2.23±0.37 s) for the conventional BCI. Train-
ing cross-validation accuracies and decoding correlations for
both systems are provided for each subject in Table II and
Fig. 7, respectively. No subject demonstrated a significantly
lower BCI performance with the custom system compared to
the conventional system.

TABLE II
SUBJECT DEMOGRAPHICS AND CROSS-VALIDATION ACCURACY FOR EACH

BCI SYSTEM.

Subject Age/ Prior BCI Custom BCI Conventional BCI
Sex Experience Training Accuracy Training Accuracy

S1 23/M N 90% 96%
S2 46/M Y 96% 99%
S3 21/M N 96% 96%
S4 28/M Y 98% 97%
S5 35/M Y 88% 95%

IV. DISCUSSION

This study demonstrates that low-cost, embedded EEG-
based BCI platforms, such as the one tested here, can achieve
similar performance to a conventional BCI system with sub-
stantially more channels and computational resources. Low-
cost, easy-to-use, standalone systems make BCIs more acces-
sible to researchers, clinicians, and patients, and increase the
feasibility of large clinical trials involving BCI use. The small
profile and minimal power requirements of embedded EEG
systems make them highly portable, increasing the number of

Fig. 7. The correlation between cues and the decoded state for each real-time
decoding trial using the custom and conventional (conv.) BCI systems. For
each subject, trials 1-5 are represented by a cross, circle, square, diamond,
and plus sign, respectively. In addition, p-values from the Mann-Whitney U
tests are provided. The performance of the custom BCI was not significantly
inferior (p<0.05) to the conventional system in any subject.

applications in which BCIs can be used. Some of these include
smart environment control, gaming/entertainment, and mobile
solutions to neurological deficits, such as BCI-controlled neu-
roprostheses, wheelchairs, and robotic exoskeletons. It may
even be possible in the future to develop fully implantable
BCI systems with onboard processing.

Although the custom EEG amplifier did not perform iden-
tically to a commercial system (0.79 correlation), the custom
BCI still achieved high decoding performance. In fact, the
decoding performance of both systems was generally higher
than what we have previously reported for motor execution
tasks in able-bodied [15], [21] and stroke subjects [17] using
an equivalent conventional BCI. We believe that the different
hardware and software filters used with the custom and com-
mercial amplifiers may have reduced the correlation between
the output signals. In particular, the custom amplifier’s output
was observed to be contaminated with environmental noise,
possibly because its 60 Hz notch filter was of lower order
than that of the commercial amplifier.

Our finding that a low-cost, embedded BCI using only
4 EEG channels can achieve a high decoding performance
and does not perform significantly worse than a conventional
system is encouraging, but not wholly unexpected. For exam-
ple, high BCI decoding performance with few channels has
been observed previously [13] and is consistent with previous
channel-dropping studies [6], [7]. Although a moderately long
decoding delay (∼2 s) was observed for both BCIs in this
study, a significant fraction of this delay in both systems may
have been caused by the experimenters’ translation of visual
computer cues into verbal cues for the subjects.
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Custom, embedded BCI platforms, such as the one de-
veloped in this study, can be highly modifiable. Not only
are the software libraries readily customizable, but even the
system hardware can be adapted by community users for a
variety of applications. For example, with this BCI platform,
the bandwidth and gain of the custom amplifier array can
be changed by adjusting its resistive and capacitive compo-
nents. In addition, surface-mount components can replace the
large dual-inline packages to further reduce the system’s size.
Based on the software execution time, the current Arduino
Due MCU can tolerate an increase in channel number and
sampling rate without causing delays during its operation.
Therefore, this system is even practical for applications where
higher frequencies (beyond the β band) are desired. Lastly, an
expensive (∼$2500) EEG cap was used in this study out of
convenience, but this may not be appropriate for community
users. Instead, dry electrodes, which offer shorter setup time,
could be used. However, dry electrodes may still be inferior to
wet electrodes [22], and in preliminary testing, we observed
them to be highly sensitive to movement artifacts. A great
alternative is high quality, individual EEG cup electrodes (wet)
that are inexpensive (∼$50 each).

Many portable, reasonably low-cost BCI systems have al-
ready been developed academically ([23], [24], [25], [26],
[27], [28]) and commercially (OpenBCI, Emotiv, and Neu-
roSky). However, these BCI systems do not perform onboard
signal analysis and decoding. Yet, if these devices are modified
(e.g. paired with a microcontroller for decoding), the results
of this study suggest that they may be suitable for mobile
BCI applications and could demonstrate similar decoding
performance to conventional BCIs. Wang et al. [29] developed
a portable, 4-channel BCI that transmitted EEG data to a
smartphone for signal analysis and decoding. While the system
was specifically designed to decode occipital steady-state
visually evoked potentials (SSVEPs) and is unlikely to work
for sensorimotor rhythm modulation, its performance may not
be inferior to SSVEP-based conventional BCIs. Likewise, the
BCIs that utilize embedded processing units for signal analysis
in [8], [9], [10], [11] may perform similarly to expensive,
full-size, conventional BCIs. However, these BCIs rely on
commercial DSPs or FPGAs without user-friendly open-source
development tools, so it may be hard for community users to
modify them for other BCI applications.

A. Limitations

While many BCI systems are intended for use by individ-
uals with neuromotor deficits, such as those resulting from
stroke or spinal cord injury (SCI), only able-bodied subjects
participated in this study. Thus it is unclear how low-cost,
embedded BCI systems with few channels will fare against
conventional BCIs in subjects with neurological disease. In
the future, we intend to test the functionality of our custom
BCI platform against a conventional system in stroke and
SCI populations. We envision that systems like this one could
be applied for BCI-based at-home physiotherapy or mobile
neuroprosthetics. In addition, we did not explicitly assess the
system’s feasibility for use outside of a laboratory setting

(e.g. at-home) and further studies are required. Lastly, the
decoding performance in this study focused on a simple motor
paradigm, i.e. the presence or absence of hand movements.
However, it is unclear whether these results will generalize
to more elaborate movement tasks where a higher number of
EEG channels and/or complex decoding algorithms may be
necessary to maintain sufficiently high BCI performance.

V. CONCLUSION

Current BCI systems are not practical for use outside
research laboratories due to their complicated setup/operation,
prohibitive costs, and lack of portability. The custom BCI
system tested here utilized 4 EEG channels as well as a
low-cost, open-source MCU for decoding, but still performed
similarly to a conventional BCI system. The findings of this
study indicate that a high number of EEG channels and
extensive computational resources are not always necessary
for BCI systems to operate with high accuracy, and many of
the portable, inexpensive academic or hobby-level commercial
BCIs may perform similarly to conventional systems. In addi-
tion, these platforms are more practical and cost-effective than
conventional BCIs for large scale studies, as well as for motor
rehabilitation or hobby applications outside of a laboratory
setting.
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