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On the Three-Parameter Representation 
of the Equation of State 

Otto Redlich 
Inorganic Materials Research Division, Lawrence 
Berkeley Laboratory, and Department of Chemical. 

Engineering, Universityof California, Berkeley, 94720 

Abstract 

Almost all small, nonpolar molecules satisfy the 
. 

theorem of corresponding states; their P-V-T-relation is 

quite"well represented by a two-parameter equation proposed 

in 1949. A third individual parameter is known to be 

required for long chains and polar molecules. 

The quality of the three-parameter representation 

has been examined by means of an equation.of state based 

solely on the critical constants. The equation is 

reasonably convenient for practical applications, including 

the derivation of the fugacity coefficient. 

Mean de,·iations for 13 widely different substances 

confirm a fairly satisfactory algebraic representati.:m l:ly 

three individual parameters. A few exceptions, such as water, 

hydrogen and helium, are well known. 



-2-
i, 

1. Introduction 

The practical interest in an equation of state rests 

preponderantly in the various thermodynamic properties that 

are derived fro~ it, especially the fugacity coefficient. It 

has been pointed out long ago that we measure almost always 

the P-V-T-relations but actually need the fugacity coefficient. 

For this reason and also for convenient use.with computers an 

adequate algebraic representation is desired. 

The problem seemed to be close to its .solution 25 years 

ago when a simple equation of state was proposed1 From the 

beginning it was manifest that the "old equation" could not 

constitute a really satisfactory solution because it contained 

only two individual parameters; thus it was in accord with the 

theorem of corresponding states, which had been known to be 

deficient. In fact, the old equation was surprisingly 

satisfactory for a large group of small, nonpolar molecules, 

but it did not well represent long chains and polar molecules. 

Moreover, the work of Pitzer2 and his coworkers and of Riedel3 

showed that three individual parameters are necessary and 

sufficient for a good representation of all substances with 

the exception of very f~w, such as hydrogen, helium and water. 

It was obvious to hope that the reasonable introduction of a 

third parameter into a suitable modification of the old 

equation would solve the problem. Horvath's review4 of the 

old eq~ationcontains 34 references to attempts at improving 

its accuracy without too great a loss of simplicity and 
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convenience. So far none of .the results has been generally 

adopted. Perhaps it may be concluded that we should search .. 

more systematically for a new approach to this problem. 

Unquestionably the most difficult part is the repre~ 

sentation of the critical point and its neighborhood. It 

occurred to us that the most promising way might be to catch 

the bull by its horns, i.e., to start by constructing a 

three~parameter equation with the critical compressibility 

ratio as one parameter. The two other· parameters are 

determined, as before, by the critical data. One 

cannot expect, of course, that a reasonably simple equation 

of this kind will result in sufficient accuracy. But one 

may hope to obtain a "main term" which reproduces approxi~ 

mately the peculiarities of the problem. ·The remaining 

discrepancies must then be eliminated as far as possible by 

additional terms. As a matter of course, these terms must 

not contain any new individual parameters. 

In the following only the reduced temperature, pressure 

and volume will be introduced; they will be denoted by T, P 

and v. The critical temperature and pressure will not 

explicitly appear and only the critical compressibility 

factor will. 

Since most applications will be carried.out by 

automatic co~putation,.it will be convenient to make a 

concession to computer language in order to deal with the 
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shortcoming of our usual language, namely, ·. the: lack pf 

suitable symbols. We shall therefore write two (and 

occasionally even three) capital letters for a single 

quality, e.g., ZC for the critical compressibility factor. 

Multiplication wiJ..l be indicated by a dot when necessary to 

avoid ambiguity. 

The choice of ZC as the third parameter is not seriously· 

different from the use of Pitzer's acentric factor w since 

there exists a fairly good relation 

ZC = 0.291 - 0.082w (1) . 

between the·two quantities. 

The primary basis of observed data was given by Pitzer's 

tables, supplemented by Lu and coworkers5 for the reduced 

temperatures 0.5 to 0.8. An array of 288 data was prepared 

according to the schedule: 

Reduced Temperatures 

o.s 
0.6 

. o. 7 

o·.8 
0.9 

1.0 

1.1 
1.2 

1.6 

2.0 

3.0 

4.0 

Reduced Pressures 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1.6 

2.0 

3.0 

s .. o 
7.0 

9.0 

Critical 
Compressibility Factors 

0.291 

0.250 
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It will be seen that the "difficult" critical region is most 

closely covered; this should be taken into account in judgi'ng 

. the magnitude of deviations. 
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2. The Main Term 

For the development of the main term Z of the 

compressibility factor, one will of course follow the general 

guidelines that have been useful for the old equation. In 

other words, one concludes from Wegscheider's discussion6 

that only a cubic equation with a reduced limiting volume B 

is acceptable. Thus the search for the term can start from 

an equation of the van der Waals type. The (reduced) 

relation 

p.zc· = T 00 

v2 + F·V + G V-B 
(2) 

containing a function QQ of the temperature and the constants 

B,F and G is general enoUgh to serve as a starting point., 

In the critical.conditions 

zc = 1 '- 0 (3) 
1 - B 1 + F + G 

0 = 1 Q(2 + F) 1 

(1 Bl 2 (1 + F + G) 2 
(4) 

0 .1 
·. 2 

0(3 + 3F + F ~ G) 

(1 + F + G) 
3 

(5) 

we have written Q for the value of the function QQ at 

the critical temperature. The conditions (3), (4),(5) are 

satisfied if the constants conform with the relations 
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F = 1/ZC - 3 + B (6) 

G = B(3 - 2B - 1/ZC) + ZC(l- B) 3 (7) 

0 = [1 - ZC (1 - B)] 3 • (8) 

This leaves only the value B of the limiting volume 

open. In the old equation we had chosen the value 0.26, 

which is a fair average of individual values (Kuenen 7 quote's 

values between 0.242 and 0.282). The satisfactory behavior 

of the old equation at very high pressures is a consequ~nce 

of the choice of the value of B. 

Unfortunately the value 0.26 did not give good results 

in the equation (2). A series of systematic tests led to 

the value 

B = 0.352 . ( 9) 

which is significantly higher. But the difference is 

expected to be harmful only at extreme pressures. 

For the representation of the temperature function 00 

and other functions, we introduce a number of abbreviations. 

The symbols 

A'l' = 1, if T < 1 '(10) 

AT = 0, if T > 1 (11) --
AP = 1, if p < 1 (12)' 

AP - 0, if p > 1 (13) -
help in a concise notation. We write 
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TS = T-0.5 ; TD = 1 - TS (14) 

AU = 0.291 - zc (15) 

With the auxiliary function 

QW - 1 - 0.26TD + 1.60TD2 . AV•TD(l3. 7 + 1.60TD2) 
' 2 

+ 16.0 ·AT •AU•TD ' (16) 

the best representation turned out to be 

QQ = QW[l - ZC(l - B)] 3TS/ZC • (17) 

Introducing relations (6) to (1:7) into· (2), we obtain 

a reduced equation of state which contains (in addition to 

the critical temperature and pressure) only the single 

individual parameter ZC. 

The comparison of this .equation (Main Term) with the 

old equation by means of two sets of 144 points from the 

tables of Pitzer and of Lu is shown in Table 1. The old 

equation (R and K) furnishes for small, non-polar molecules 

(ZC= 0.291) a representation that is nearly the best one 

can expect. Actually_ only the isotherms for T = o .• s and 

0.6 show serious discrepancies; if we restrict the tempera-. . 

ture range to 0.7-4.0, the root of the mean square deviation 

drops from 0.0132 to 0.0097. But the old equation fails for 

less "normal" substances as shown for the example with 

zc = 0.250. 

The main term is better for this case, but still by. 

·. no means satisfactory. Additional terms are required to 

reduce the deviations. 
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Table 1. Deviations in Z 

Maximum Deviation 

R and K 

0.066 

0.381 

Main Term Final 

0.071 

0.350 

0.030 

0.044 

Mean Deviation 

R and K Main Term Final 

0.013 

0.102 

0.022 

0.058 

0.011 

0.011 
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3. Additional Terms 

A plot of the deviations from the main term reveals 

a picture of such capriciousness that we have not even tried 

to t.;Lke account of them by means of a single, comprehensive 

function. Instead, a number of additional functions was 

devised, each of which covered only part of the T-P range. 

This method has some advantages. The additional terms 

can be simple, well-behaving ·functions, which can be fairly 

easily constructed and adjusted. If an improvement is later 

found to be desirable, an amendment can be easily introduced. 

The selection of the proper function for each partial 

range by the computer does not present any serious difficulty. 

Moreover~ non-automatic computation is by no means impossible. 

Often only a small range of the independent variables need 

be covered; one canthen restrict the number of additional 

functions and also dispense with the computer. In this case, 

one evades solving the cubic equation (2) by plotting P as 

a func;:tion of Z at given T. 

The various ranges are indicated in Table · 2 • A 

distinction must be made at subcritical temperatures between 

gas and liquid; the computer recognizes the p_hase by the 

magnitude of the solution Z of the main term (higher or 

lower than ZC). Some auxiliary functions are defined in 

Table 3, in which the symbols (10) to (lS).are used. With 

all these abbreviations, the additional terms are given in 

Table 4. The main term Z is converted to the .final value 

ZF by addition cf the terms given~ 
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The additional functions have been chosen such that 

their first derivatives with respect to temperature and 

pressure are continuous (except for some breaks at T = 1.0 

and 1. 6) • No at tempt, however, has been made to avoid 

discontinuity in the second derivatives. 

Neither the calculation of the fugacity coe.fficien t 

nor that of the first derivatives presents any difficulties. 

But numerical differentiation may be taken into consideration 

as a more convenient method for obtaining the derivatives. 
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Table 2. Ranges for the Additional Terms 

Range T p z State 

A T<l.O <_1. 0 >ZC Gas 

B T<l.O <ZC Liquid 

c l.O<T5_1.12 <4.0 

D 1.12<T~l.6 

E 1.6<T~4.0 <1.0 

F 1.6<T<4.0 l.O<P<4.0 
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Table 3. Auxiliary Functions 

TL = (T-1)/0.12; TJ = {T-1.12)/0.48; 

PL = 
. . 3 

[(l-P)/(l-0.85P)) ; PK = (1-P-1)3 

GA = 0.128 - 0.226TD + AU(l.44 + 4. 3TD) 

.GB = -(0.0518 + 6. 61AU) (1 - T)3 

GC = 0.128 + 1.44AU 

GD = 0.081 + 0.98AU 

GE = -0.0085 ·- 0.382AU 

GF - -0.070 1. 85AU 

GG = -0.029 + 0.22AU 

GH = 0.200 + 1.20AU + (3.38·- 80.8AU)TK + (-9.5 + 262.0AU)TK2 

GJ = 0.071 - 9.74AU + (-2. 62 + 262.0AU)TK + (8. 65 - 803.0AU)TK2 

HL = AP•GC•P•PL 

(For P~1.;38) HM = GD(l.38 - P)P . . . 
(For P>1.38) HM =· GE(l- 1.38/P){26.4/P- 290.0AU/P - 1) 

BU = (1. - AP) (GF •PK + GG.PK2) 
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Table 4. Additional Terms 

Additional Term {ZF - Z) 

GA·PL 

.GB•P 

[1 + 4TL(l- TL)] [HL(l - TL} 2 + HM•TL2 ] 

(1 + 4TJ (1 - TJ)] [HM (1 - T"l) 
2 + HU •'l'J2] 

0.0 

GH•PK + GJ•PK2 
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4. Computing 

For the solution of a cubic equation a SHARE~program, 

VIETA (A,Y,MTYPE), has been convenient. It solves the equation 

A(l)·Y3 + A(2)·Y2 + A(3)·Y + A(4) = 0 (18) 

accordirig to Cardan's procedure and furnishes three 

values for Y and one of the values -1, 0, 1 for MTYPE, in 

dicating the case of three real roots, thecase of two roots 

equal, and the case of a real root Y(l) and a complex root. 
; 

The program has been modified in the case of three real roots 

by ordering the solutions according to magnitude. 

The old equation as ~ell as relation (2) furnishes 

solutions for both the gaseous and the liquid phases in a 

range in whichone of the two phases is metastable. The 

stability determination requires the calculatio.n of the 

fugacity coefficient. In the modified VIETA-program Y(l) 

represents the result for the gaseous phase and Y(J) for 

the liquid phase if three real roots are found. 

Table 5 shows the essential steps·of the computer 

program used. The individual parameter ZC must be intro­

duced at the start of the "substance cycle", the (reduced) 

temperature for the section "T-functions", and the pressure 

for the section "Rand K", in which the results of the old 

equation are computed for a comparison. The subroutine 

VIETA is used in this section for the computation of the com-

pressibility factor ZK and, if two phases are indicated, of 
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Table 5: Essential Computing Steps 

AC1)=l.O 
B=n.-:a.::;, 

-- . - C SUqS T ANCE. CYCLE 
ZR=l.O/ZC . 

________ A.U=O. 2 91-ZC 

_ C T -FUNC T 10'15 
36 T$=1.0/SQRTCT) 

_ -----------·---·- TD=l.O-TS ... ___ ... 
F=Z~-'3.0+B 

G=B*C3.0-2.0•B-ZRl+ZC*Cl.O-BI**3 
QU=1.o~zc•ct.n-9> 
Q~=l.O-Oe26*TD+l.60*T~*TD~AU*TD*Cl3e7 
IF (TelTeleOI 0'"=01 . .,+16.0*A1J*TD**?. 
QO=ZR*TS*~W*QU**3 
GA=0.128-0.2?6*TD+AIJ*C1.44+4.3*TO) 
IF CT.GT~l.Q) GO TO 38 
G 8= - ( 0 • 0 5 1 8 + 6 • 6 1 *AU ) * C 1 •· 0 ~ T I * * 3 

. GO T'l ~9 

GC=O.l28+1.44*Al) 
GD=n.08l0+0·98*AU 
GE=-0.0085-0.382*AU 
GF=-0.070-1.85*AU 
GG=-O.D29+0.22*AU 
TL= (T-1. 0) /0.12 
TJ=(T-1.12)/0.48 
GO TO 39 . 

+173.2*TDI 

40 TK=TD**2 
GH=-Oe200+l•'0*AU+('3.'3A-80.8*AUJ*TI<+C-9.5+262eO*AUI*TK**2 
GJ=0.071-9~74*AU+(-2.66+262.0*AUI*TK+C8.65-803.0*AUI•TK**2 

~9 CONT("''JE 

C R AND I( 

_A ( :? ) =-1 • 0 
A~=n.4278*P*TS/CT*T) 
B~=()e0~6667*P/T 
1\C~l=~'<-gK~Cl.O+qK) 

AC4)=-AK*9K 
CALL VIETACA,Y,~T) 

· l'< =Y C 1 ) 

Z'<L=0·0 
l F C "'1 T. G T. -1 ) G0 T 0 ~ 3 
Z'<L=YI'31 

'3'3 CO'JTI·-w~ 

-I-··- -
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C '~ATN TF::"R'..! 
PP=l~/D 

Af2)=F~9-T*PD 

A(1)=G-8*F+DD:!-(()Cl-F*T) 

Af4l=-G*o-PP•CB*QQ+G*Tl 
CALL VIETACA,Y,~Tl 
Z=ZC*P*Yf!l/T 
ZL=O.() 
IF f""T.GT.-1) G0 TO 34 

. IF C Y f 3 J • LE • 0. 0 l GO TO 34 
ZL=ZC*P*Y(3)/T 

34 _CO\ITINUE 

____ ( ADDITIO~AL..TER~S . --------·······. 
PK=Ct.o~l.O/Pl**3 

..... PL=().____________ ----

-17-

IF (P.LT•l•OI PL=P*Cfl.O-PJ/Cle0-0e85*Pll**3 
. __ IF ___ tT-I.Ol 41,42t43_____ __ .. ________ _ 
42 IF (P.GE.I.OI ZF=Z 

______ .... ------------ ___ .J f_ ___ (p. LT .• l •. O J ZF.=.Z +GA.*P L 
G'> TO 49 

__________ 41 If _cP.GE·l·Ol GO TO 44 
IF fZ•LT·ZCl GO TO 44. 

____ .... _ ZF=Z+GA.*PL _________ ..... . 
GO TO 49 

. ___________ 44 _ ZF_=Z+GB*P-~~------·--·-------·- . --------------------------·-------------· ______ . __ 
GO TO 49 

.. __ .... 43. IF. CT.GT;.l.6l GO JO 4_6 
HL=O.O 

___ .IF (P.LTeleOl. HL=GC*PL .. 
H~=(Q.081+0·9~*AUJ*Cle3B-PJ*P 

__________ . _______ .,. _______ .! f __ J ~ • G T!t.le.3.8.L_HM~.:::l0.• 008 5~0 • 3 8 2 ~,AU.l~J.l• 0::1• 38/J?.J~J J 2 6 • 4-.290 • O~AUI . 
2/~~1.01 . 
_ H'J= (') • 0 __________________________________ ······--·--·····-· .. __ _ ·········- _____________________________________________ _ 
·1F (DeGTeleO) HIJ:(GF+GG*PKJ*PK 

IF cr.c;:r..t.12J.GO_T0_45 ______________ .... 
ZF=Z+fle0+4•d*TL*Cl.O-TL)l*CHL*Cle0-TLJ**2+HM*TL**21 

·····------------GO ... T0 .. 4.9 ... --------~-----·- ---------------------········--- ·------------------------ ------------·-- ------ ---- ... -- .... -- --·- ----
45 ZF=l+Cle0+4•0*TJ*Cl.O-T~)}*(HM*fl·0-TJl**2+HU*TJ**21 

GO TO 49 
46 CO~TINUE 

ZF=Z - .. ····-- .. ·-··· . -. . . . ~ . 

IF (P.GT.t.Ol ZF=Z+CGH+GJ*PKI*PK 
...... A9 CO \I TI ~wE________ _ _ ......... . 
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ZKL for the liquid. In the section "Main Term" the solutions 

Y{l) and Y{3) furnish the reduced volumes, from which the 

corresponding compressibility factors Z and ZL are computed. 

The final results ZF and ZFL are obtained by 

addition of the appropriate additional terms to Z and ZL. 

The program can be looped for pressure inside a 

temperature-loop inside a substance-loop. 
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5. · Results 

As indicated in Table 1, the mean deviation of the 

final results is reduced to 0.011. 

Table 6 summarizes the deviations for 13 substances 

("Mean Deviation" is the rqot of the average deviation square) . 

It is very difficult to furnish a "true" picture of the 

quality of an equation of state. There are extended ranges in 

which any reasonable equation leads to very small errors. On 

the other hand, the accuracy of the best equation cannot .be 

high near the critical point since here dZ/dP is infinite. 

The choice of Z as a function of P may be questioned for 

judging the deviations; percentage deviations would furnish 

a somewhat different picture. But the main difficulty lies 

in the "unbiased" s~lection of observed data; a constant 

interval in P, for instance, certainly would not lead to a 

true picture. The "maximum deviations" in Table 6 occurred ·' 

for the final equation almost always near the critical point. 

The results for the final equation are believed to 

indicate the limits of accuracy for a three-parameter relation. 

Most of the deviations in the last colUmn of Table 6 are not 

much larger than the.mean deviation 0.011 for the tables of 

Pitzer and of Lu. The differences can be interpreted as 

illustrating the efficiency of the three-parameter represen-

tation. · 

Replacing the critical compressibility factor by the 

acentric factor does not, in general, appreciably change the 
I 



Table 6. 

Substance zc TemEerature 
from to 

Methanes 0.2SS1 1.63 2.6S 

·. Pentane8 .2745 .94 1.09 

Nonanes .254 .52 0.86 

Decanes .2473 . .so O.S3 

Propylene9 .2730 .75 1.57 

1-ButeneS .279 .74 1.51 

.Benzenes .274 .55 0.91 

Xenon10 .2926 1.00 1.9S 

Oxygen11 .2921 1.77 2.09 

Hydrogen Sulfides .2833 .74 1.19 

Carbon Dioxides .2745 .• 91 1.6S 

Sulfur Dioxide12 .2697 .75 1.22 
" 
.Ammonia13 .2425 .7S 1.4S 

Examples of Deviations 

Pressure No. of Maximum Deviations 
' to Points · R and K Final 

10.40 19 0.026 0.025 

10.12 51 .099 • 027 

. 9. 04 28 .299 .049 

9.81 21 .374 .068 

1.SO 55 .oss .063 

S.50 27 .056 .040 

1.00 14 .OS7 • OlS 

7 .02. 20 .045 .• 071 

2.46 16 .009 • 020 

7.66 25 .035 .016 

9.35 29 .06S ~046 

3.S6 19 .066 .047 

0.97 23 .065 • 040 

Mean Deviations 
R and K 

o. 012 

.049 

.11S 

.1S2 

. 025 

~026 

.051 

.027 

.006 

.OlS 

.02S 

.031 

.026 

F~nal 

0.015 

I 
N 
0 
I 

.012 

.015 

.026 

• 016 

.017 

~oos 

•. 030 

• 016 

.010 

.014 

.015 

.023 
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deviations. Only for ammonia the mean deviation is reduced 

from 0.023 to 0.015 if the acentric factor {corresponding 

to a ·fictitious value ZC = 0.2707) is introduced. 

It does not appear to be likely that a fourth parameter 

would result in a considerable improvement. 

Relations containing1 mOre than three parameters are in 

general overdetermined. They may be very useful in represen-

ting data within a limited range of observation. Beyond 

th .' t' t . ' . d . bl 14 
~s range grea. cau ~on ~s a v~sa e. • 
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