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ABSTRACT OF THE DISSERTATION

Transverse instability and beam realignment in plasma wakefield acceleration

by

Lance Arthur Hildebrand

Doctor of Philosophy in Physics

University of California, Los Angeles, 2024

Professor Warren B. Mori, Chair

In this dissertation, some of the major obstacles facing the design of a future multi-

stage plasma-based linear collider (LC) are addressed. Plasma-based acceleration (PBA)

is being considered for future LC designs because of large acceleration gradients that may

dramatically reduce the size and cost. A critical challenge for PBA is ensuring the quality,

i.e., the energy spread and emittance, of the witness beam is maintained. This requires

transporting the witness beam in a stable manner even when there is an offset between the

drive and witness beams, both in the plasma and between stages. When the tightly focused,

high charge electron beams required for LCs are matched to the transverse wakefield, the

space charge forces of the beam move the plasma ions significantly within the transit time of

the beam. This ion motion, perturbs the wakefields which can cause degradation to the beam

quality. In this dissertation, the acceleration of electron beams in nonlinear wakefields driven

by electron beams is investigated using both theoretical models and particle-in-cell (PIC)

simulations. Cases where there are misalignments between the drive and witness beam, both

with and without ion motion are considered. Novel ideas to help address these issues are

provided.
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The existing theory for describing the hosing instability is extended to regimes relevant

to future experiments and ultimately the LC regime. An azimuthal mode decomposition

is employed to solve for the fields at the plasma sheath boundary, improving the hosing

theory so that it provides better agreement with PIC simulations. Another issue, that has

largely been unstudied, is beams with asymmetrical transverse sizes. The same azimuthal

decomposition method can be used to characterize the wakefields created by such asymmetric

beams.

Methods to mitigate the hosing instability are discussed and investigated. There have

been many studies recently with different methods to detune the resonance between the beam

and plasma channel and damp the instability. These are based on varying the betatron

frequency (oscillation frequency of the centroid of the beam) or focusing force along the

bunch. The idea of using a sufficient energy chirp on the witness beam that will eventually

be corrected while accelerating because it underloads the plasma wake is discussed, as well

as the idea of using an asymmetric drive beam that causes the focusing force to vary along

the witness beam, both of which will cause the witness beam hosing to be damped.

The issue of plasma ion motion is addressed. The ion density distributions and result-

ing wakefields from tightly focused electron beams are described and a model for how the

emittance evolves in these ion density profiles when the beam is asymmetric or has an off-

set is developed. It was found that when the drive beam induces ion motion before the

witness beam, it can fully eliminate the hosing and realign the witness beam, but at the

cost of large emittance growth in a uniform plasma. Using PIC simulations to study the

LC regime, where ion motion is significant, it is possible to adiabatically match the beams

in the presence of ion motion using plasma density ramps while essentially eliminating any

transverse misalignment of the witness beam and maintaining the beam emittance, enabling

stable transport of high quality electron beams for future PWFA-LCs. A single stage for

which the witness electron beam is realigned, emittance growth is limited to a few percent,

the energy spread is limited to less than a percent, and there is 50 percent drive-to-witness
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energy transfer efficiency is presented.
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CHAPTER 1

Introduction

1.1 Background

One of the most exciting recent successes of physics was the discovery of the Higgs boson,

validating the prediction of the Standard Model of particle physics. This discovery at the

Large Hadron Collider (LHC) [1] was enabled by colliding protons at energies of 7 TeV,

or 14 TeV center of mass (CM) energy. Circular accelerators such as the LHC have been

primarily used over linear accelerators due to the fact that particles can orbit many times,

gaining energy and having many more chances to collide, whereas in a linear collider there

is only one chance to collide beams. However, synchrotron radiation can become significant

in circular accelerators when using low mass particles like electrons and positrons, which is

why hadrons are typically used. The loss from synchrotron radiation during each turn for a

particle of rest mass mb and energy E, in a synchrotron with circumference C scales as

∆E [TeV] ≈ 5.5
(E [100 GeV]/(mb/me))

4

C [km]
, (1.1)

where me is the rest mass of an electron.

Linear accelerators do not suffer from synchrotron radiation and therefore collide leptons

such as electrons and positrons because the collisions between them are easier to analyze

and the strong force does not need to be overcome. There are thus plans to build a next

generation linear collider with existing radio-frequency (RF) accelerator technology, called

the International Linear Collider (ILC) [2]. The plan is for this collider to operate initially

with collision energies of 500 GeV (CM), with potential plans to upgrade 1 TeV (CM) or
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greater in the future, over a length of around 30 km, which is 10 times as long as the longest

existing accelerator at the Stanford Linear Accelerator Center (SLAC). The ILC is meant

to probe beyond the Standard Model in order to answer questions about the nature of the

Higgs boson, dark matter and dark energy, and supersymmetry. The initial proposed cost

estimate was around $7 billion, but the final cost is more likely to end up being closer to $20

billion. And because of these high costs, development has been delayed. For these reasons,

there is also renewed interest in developing a circular lepton collider where muons collide

[3]. Muons are massive enough that their synchrotron radiation is sufficiently low, however

there are still many technological challenges to produce and cool muons. CERN recently

announced plans for a Future Circular Collider (FCC) with a 90.7 km circumference tunnel

[4]. The first phase is planned to be a precision electron-positron collider by 2040, followed

by a 100 TeV hadron-hadron collider by 2070.

The cost of these accelerators is driven by their extremely large size. The reason a linear

collider needs to be tens of km long is that the acceleration gradient within a conventional

vacuum structure is limited due to electric breakdown of the walls of the accelerating struc-

ture, usually to around 20 ∼ 150 MeV [5]. There has thus been an active research effort in

future (advanced) accelerator technology aimed at overcoming this limit, the most successful

of which has been plasma-based acceleration (PBA). Plasmas of course have no breakdown

limit, so they can sustain extremely large acceleration gradients and potentially reduce the

cost of a future linear accelerator.

1.2 Plasma-based acceleration

The concept of plasma-based acceleration (PBA) was first proposed by Tajima and Dawson

in 1979 [6]. When a laser propagates through a plasma, the ponderomotive force pushes

plasma electrons away, thereby creating a charge separation between the electrons and ions.

The resulting electric field pulls the electrons back after the laser passes establishing a plasma
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oscillation. The oscillations are phased such that they produce an axial electric field with

a phase velocity that is the same as the drive beam, vϕ = vb, and its wavelength is λp =

2πvϕ/ωp, where ωp is the plasma frequency. These phased oscillations are referred to as a

wakefield. It was realized the longitudinal electric field can accelerate particles injected into

this wakefield. The lasers required to effectively drive a wakefield need to have high power

and short pulse lengths. This concept is referred to as laser wakefield acceleration (LWFA).

Another PBA concept proposed by Chen et al. in 1985 [7] uses the space charge force of a

charged particle beam to drive the wake and is referred to as plasma wakefield acceleration

(PWFA). In both of these scenarios, the drive beam particles or laser beam lose energy to the

wake, which in turn gives energy to the trailing (witness) beam particles inside the wakefied.

This process can continue until the drive beam or laser loses all its energy and the wakefield

ceases to be excited. The length over which this occurs is called the pump depletion length.

In some cases, the process is limited by dephasing which occurs if the accelerated particles

(moving at the speed of light, c) outrun the wave (which is moving at its phase velocity). In

this dissertation, we will mainly focus on PWFA, but several of the proposed concepts may

also be applied to LWFA. Fig. 1.1 shows a typical PWFA scenario, where an electron bunch

excites a wake and a second bunch is loaded in the back of the wake to be accelerated.

In order to estimate the acceleration gradient that can be achieved in PBA, we can use

Gauss’s Law to calculate the magnitude of the plasma wave electric field. Assuming a 1D

plasma wave driven by a driver traveling at the speed of light, c, that drives a density per-

turbation equal to the background electron density n1 = ne0 and using the Fourier transform

of Gauss’s Law, we have

kpe|E| = 4πene0 =
meω

2
p

e
→ |E| = mecωp

e
. (1.2)

This limit is often called the wave-breaking field, EWB, and is commonly cited in an engi-

neering form

EWB = 0.96 GeV/m
√
ne [1014 cm−3]. (1.3)
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Figure 1.1: Particle-in-cell simulation of a typical PWFA two bunch scenario. The plasma

is preformed. An intense drive bunch blows out the plasma electrons, which are pulled back

to the axis by the ion column. The witness bunch is loaded and accelerated in the back of

the wake, where the accelerating field, Ez, is large.

In reality, the wave has harmonics and the analysis is more complicated for phase velocities

near the speed of light, and the wakefield is far from one-dimensional; nevertheless this

estimate is very useful. Densities used in PBA are typically in the range of 1016 − 1019

cm−3, corresponding to wavebreaking acceleration gradients of ten to hundreds of GeV/m.

Therefore, PBA can be a promising path for making linear accelerators more compact and

affordable.

In the last several decades there has been an extensive research campaign based around

the ideas of PBA. Technology such as chirped pulse amplification [8] led to the development

of short pulse laser systems that in turn led to many demonstrations of energy gain in LWFA

[9, 10, 11, 12, 13, 14, 15]. The advantage of these lasers is that they can be compact (so

called “table-top”) systems.

Alongside the successes of LWFA, PWFA has shown great promise, starting with a series

of experiments performed at SLAC [16, 17, 18, 19, 20, 21, 22]. The acceleration gradient

in these experiments increased over the years: 280 MeV/m [19], 27 GeV/m [20], and 52

4



GeV/m [21]. The last of which demonstrated energy doubling of electrons in the tail of a

single beam over only 85 cm of plasma. An acceleration gradient of 56 MeV/m [18] was

achieved for positrons. Ref. [22] demonstrated that a witness beam can extract energy from

the wake with high efficiency (up to 50%). High energy transfer efficiency is one advantage of

PWFA over LWFA, that has struggled with this due to laser evolution and dephasing. This

progress was possible due to pulse compression techniques developed for the LCLS X-ray

FEL. Electron beams with tens of kA and durations less than 100 fs led to the breakthrough

energy doubling results [21].

Initially theoretical development was limited to the overdense plasma case where the

plasma density is larger than the beam density, also referred to as the linear regime of

PWFA, where the plasma is treated as a fluid. In this regime, the wakefields are assumed to

be sinusoidal and can be solved for using Green’s functions. A one-dimensional linear theory

was provided in the original PWFA paper [7] and expanded upon into multi-dimensions in

a follow on paper [23]. A general multi-dimensional approach for linear theory was given by

Katsouleas et al. [24]. However, in general the linear regime does not have ideal wakefield

properties for focusing and accelerating electron beams unless the witness beam is perfectly

tailored to modify (load) the wake. Rosenzweig et al. [25] instead proposed using the

underdense plasma regime, where a high-intensity electron beam excites a nonlinear plasma

wakefield where all the electrons are blown out of the cavity behind the drive beam. This is

now called the “blowout” or “bubble” regime and is the primary regime considered for PWFA

(as well as LWFA) because of the ideal wakefield properties, namely that the focusing force is

transversely linear and does not vary longitudinally and the acceleration field is transversely

uniform.

In 2005, Lu et al. [26], characterized the breakdown of linear theory in terms of the

beams charge per unit length (also just called current), Λ ≡ nb/np(kpσr)
2 and spot size,

kpσr. Namely, for an electron driver with Λ < 1 and (Λ/10)1/2 < kpσr < 1, fluid theory

will still capture the blowout even if nb/np > 1 because plasma electron trajectories do not
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cross. However, in cases where Λ > 1, trajectories will cross and we need a particle based

model to describe the nonlinear wake. This was done the following year by Lu et al. [27, 28],

by assuming the blown out electrons form a thin, uniform electron sheath. If this sheath is

described phenomenologically, the gauge-invariant wake pseudopotential, ψ ≡ ϕ−Az, where

ϕ is the scalar potential and Az is the axial vector potential, can be calculated in terms of

the blowout radius, rb, i.e., the radius in cylindrical coordinates of the innermost electron

trajectory (where ξ ≡ ct−z is the time-like variable). They were able to determine the total

force for an electron at rb from the electric and magnetic fields of the wakefields and use this

to obtain a differential equation for rb. The forces on a trailing beam particle (moving at c)

can be obtained as gradients of ψ. This phenomenological model will be described in detail

in the next chapter.

High acceleration gradients and efficiency are important features of a PBA that make it

inexpensive and attractive when compared to conventional RF technology. However, when

accelerating particles, it is also important to accelerate them at the same rate, i.e., keep

the beam’s energy spread low. Theoretical developments have shown that beam shaping

and placement within the wake, referred to as beam loading, can flatten the accelerating

field, which minimizes the energy spread growth during acceleration and also leads to higher

efficiency. This was done in the linear regime in Ref. [24] and in the blowout regime in Ref.

[29, 30]. The latter work used the nonlinear blowout theory and described beam loading

in this regime as a modification to the blowout radius in the witness beam region. This

work found a beam shape that is trapezoidal will flatten the wake and placed limits on the

amount of charge that can be loaded. Recently, an improved model for the sheath structure

has been developed which describes the fact that ψ becomes negative in the rear of the wake

[31]. This predicts that the bunch shape is still trapezoidal but can be longer and have more

net charge, for ideal beam loading.

Finally, it is important to maintain the quality of the beam while it is being accelerated.

An important quantity that characterizes the quality of the beam is its geometrical emittance,
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ϵ ≡
√
⟨x2⟩⟨x′2⟩ − ⟨xx′⟩2, which is related to the area in phase space. Actually, the normalized

emittance defined by ϵN ≡ γ̄ϵ, where γ̄ is the average Lorentz factor of the beam, is what

we really want to be conserved during acceleration. Given an initial emittance, there is a

corresponding matched spot size such that the transverse beam envelope will not oscillate

as the beam propagates. In the ideal case, with no misalignments or energy spread, the

normalized emittance will be conserved while the beam is accelerating if it is matched.

These matched spot sizes may be very small and they are often achieved by using plasma

matching sections [32, 33, 34, 35, 36, 37], which consist of an upramp that matches the beam

before the density plateau and a downramp at the end of the acceleration section. However,

there are still many sources of emittance growth that must be controlled when designing a

plasma-based linear accelerator. Ref. [38] summarizes many of these sources of growth both

inside and outside the plasma. Outside the plasma, things such as leaking dispersion from

magnetic dipole chicanes, chromatic focusing of divergent beams, or because of optics such

as plasma lenses can cause emittance growth. Inside the plasma, the main sources of growth

are from mismatches, misalignments, and nonlinear transverse wakefields. A main result

from this dissertation is a concept, presented in Chapter 6, that can potentially address all

of the sources in the plasma in one scheme.

Another thrust of PWFA research has been injection schemes. In this dissertation, we will

focus on external injection, where the electron bunches are spaced properly before being sent

into the plasma. However, there have been a number of promising internal or so-called self-

injection schemes, where a single beam drives a wake and background plasma electrons are

injected/trapped and accelerated in the back of the bubble. Such schemes include ionization

injection [39, 40, 41] and downramp injection [42, 43, 44, 45].

One of the main experimental facilities currently conducting PWFA experiments for

future high-energy physics applications is FACET-II (Facility for Accelerator Experiments

and Tests) at SLAC [46, 47]. Experiments at its predecessor proved that high efficiency and

high gradient acceleration can be simultaneously achieved through PWFA in the blowout
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regime. A major scientific goal of FACET-II will be to demonstrate high efficiency and

high gradient acceleration while also maintaining small witness beam emittance and energy

spread, which is required for future applications, such as a plasma-based linear collider.

1.3 Plasma-based linear colliders

One of the initial concepts for a plasma acceleration stage was to place it at the end of a

conventional linear accelerator (e.g., the ILC), known as an “afterburner”. The high energy

bunches from the accelerator would be injected into the plasma for additional acceleration

and focusing before the interaction point (IP). Ideally, you could double the energy of the final

output beam in a distance of∼ 10 meters. For an electron-positron (e+e−) collider, you would

use two plasma stages, one for electrons and one for positrons. The physics of accelerating

positrons in the plasma wakefields is inherently more difficult than electrons due to the

transverse wakefields in the bubble being defocusing for positive charges. This dissertation

does not consider the positron arm, but there has been much progress on achieving all the

features we described for the electron arm [48, 49, 50, 51, 52, 53, 54, 55, 56].

More recently, designs of a full multi-stage plasma-based LC have been proposed [57, 58,

59], which would involve a witness beam getting accelerated to energies up to a TeV over

a series of plasma stages. Specifically, as envisioned in Ref. [58], a conventional accelerator

could provide a train of 25 GeV bunches to ∼ 20 one meter long plasma cells, where a witness

beam would pick up an additional 25 GeV per stage, therefore acquiring ∼ 500 GeV by the

IP. The positron arm would have the same design so that 1 TeV center of mass (CM) energies

could be achieved. The schematic for this design is displayed in Fig. 1.2. As pointed out

in Ref. [59], a first step could be a 250 Gev (CM) Higgs factory, which would be upgraded

over time with the addition of more plasma cells to reach multi-TeV energies.
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Figure 1.2: Schematic of an envisioned plasma-based linear collider [58]

Besides energy, the main figure of merit for a collider is the luminosity, given by

L =
fN2

4πσxσy
, (1.4)

where f is the repetition rate of collisions, N is the number of particles in each beam, and σx

and σy are the transverse spot sizes of the beams. Essentially the luminosity measures the

ability of a collider to produce the required number of interactions, i.e., it is the proportional-

ity constant between the events per second, dR/dt, and the cross section, σp. For high-energy

physics applications, luminosities of ∼ 1034 cm−2s1 are desired. Thus, for a given charge per

bunch, it is desirable to have small spot sizes at the collision point (CP). For given focusing

elements (beam line) at the final focus, the ability to focus a beam is determined by its nor-

malized emittance (area in transverse phase space) and energy spread. For beams around a

nanocoulomb of charge, we need the beams to have ∼ 100 nm normalized emittances. As we

will discuss, these beams are very intense and their local space charge forces can pull plasma

ions to the axis within their transit time which can have drastic consequences for emittance

preservation.

Another important aspect of colliders is beam-beam interactions at the collision point.
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The physics of colliding beams is complex and we will only summarize some of the main

features here. When an electron and positron beam collide they will undergo a strong

pinching effect from the other beams field, called disruption. The disruption parameter can

be defined by

Dx,y ≡
σz
fx,y

=
2Nreσz

γσx,y (σx + σy)
, (1.5)

where fx,y is the focal length, re is the classical electron radius, and σz is the beam length [60].

There are many implications of disruption. The pinching effect can actually lead to lumi-

nosity enhancement but there may also be deflection, kink instabilities, and beamstrahlung.

Beamstrahlung is the radiation of photons from the curved deflection of beam particles

which will alter the energy and charge of the colliding beams. This can be quantified by the

Lorentz-invariant beamstrahlung parameter χ ≡ E∗/Ecr, which relates the electromagnetic

field in the particle’s rest frame, E∗, with the QED critical field, Ecr = m2c3/(e/ℏ) [61, 62].

When χ ≳ 1, QED effects become important and when χ≫ 1, the QED effects become fully

nonperturbative. The average beamstrahlung parameter for a Gaussian beam is given by

Υ =
5r2eγN

6ασz (σx + σy)
, (1.6)

where α is the fine structure constant [60]. One of the main ways to prevent strong disruption

and beamstrahlung is to use flat beams (σx ≫ σy). Most of the work in this dissertation

will use round beams, but we will address the need for flat witness beams. In regimes where

Υ > 1 (likely in round beam cases), there may be significant dilution of the luminosity

spectrum due to the energy loss which leads to an energy spread [63],

σγ ≃ 1.24
α2σz
reγ

Υ2

(1 + (3Υ/2)2/3)
2 . (1.7)

But this may provide interesting opportunities to study non-linear QED effects above the

Schwinger limit [64, 62]. Another important consideration is beam-beam offsets at the inter-

action point (IP). For rigid beams with an offset in the y direction, the luminosity reduction

is given by
L
L0

= exp

(
−∆y2

4σ2
y

)
, (1.8)
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Figure 1.3: Luminosity as a function of offset for different disruption parameters [65]

however, beam-beam effects strongly affect this, as shown in Fig. 1.3. This means it will be

critical, especially for higher disruption, to limit the transverse beam offset while accelerating

the beam in the PWFA stages. This will be one of the main goals of this dissertation.

Besides an e−e+ collider, another route to pursue could be a γ − γ collider [66]. Beams

of hard photons (as high energy and intensity as the electron beams) could be produced by

the inverse Compton scattering of laser light shone onto the electron beams. This would

completely bypass the positron problem and permit the use of lower energy electron beams.

Fig. 1.4 shows the schematic of a possible set up. This may also be possible without lasers,

where colliding photons are instead generated from beamstrahlung [62]. Another idea is to

use an XFEL to generate the gamma rays [67].

There are many different components of a multi-stage PWFA-LC, all of which must be

considered together in order to minimize the beam emittance and energy spread before the

final focus and maximize the luminosity at the IP. FACET-II at SLAC will undertake many

such studies of both two-bunch PWFA as well as the beam delivery system and eventually

beamstrahlung physics. However, the beam parameters at FACET-II are not as extreme as
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Figure 1.4: Illustration of a γ − γ linear collider with plasma lens focusing elements [68]

would be needed for a PWFA-LC. Particle-in-cell simulations permit exploration of physics

that will only manifest itself for LC beam parameters. Simulations have played a fundamental

role in our understanding of PWFA, helped design and interpret experiments, and will help

in the understanding of the complex beam interactions and non-linear QED effects that arise

from them.

1.4 Particle-in-cell simulation

Computer simulations of plasmas have played a crucial role in the development of plasma

theory, applications, and experiments. There are three broad categories of simulations: fluid

or magnetohydrodynamics, fully kinetic (but continuum) or Vlasov, and fully kinetic (but

discrete) or particle-in-cell (PIC). PIC [69, 70], as its name suggests, is a particle-based

simulation where charged particles are pushed in their self-consistent electromagnetic fields.

The charges and currents are deposited on a grid. Maxwell’s equations are solved on the grid

and then the fields (forces) are interpolated to the particle positions. The particles are then

pushed using the Lorentz force. Because of the relatively few amount of assumptions, PIC

typically captures complex physics most accurately but can be much more demanding than
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fluid but potentially less demanding than Vlasov codes in multi-dimensions. Frequently, PIC

is referred to as a numerical experiment, because all particle trajectories are calculated in

their self-consistent fields. This in part explains the great successes of PWFA and LWFA,

where simulations and experiments worked strongly in tandem with each other. Of course

one typically cannot represent every plasma particle in a simulation, but instead we use

macroparticles that represent many real particles. Interestingly, in some situations, it is

possible to use one macroparticle for every beam particle. Furthermore, it is important to use

small enough cell sizes to resolve the minimum length scale of the problem where important

physics needs to be captured. OSIRIS [71, 72] is a fully-3D PIC code developed originally at

UCLA (now co-developed with the Instituto Superior Técnico at the University of Lisbon)

that has been used and benchmarked for a wide variety of plasma physics problems.

Plasma-based acceleration problems can be very expensive to simulate because often the

physics is inherently three dimensional and beams must propagate long distances, so it can

be beneficial to use reduced models to save computational costs. In PWFA and LWFA, one

way to dramatically speed up PIC codes is to use the quasi-static approximation [73, 74].

This approximation is also widely used in the theoretical analysis of plasma wakefields, as

we will discuss next chapter. QuickPIC, developed by C. Huang et al. [75] in 2006, was the

first fully-3D, quasi-static PIC code. Later the code was improved by W. An et al. [76]. The

quasi-static approximation assumes the beam evolves on a slower timescale than the plasma

and uses the coordinates (x, y, ξ = ct − z, s = z). Each 3D timestep, fixed s, the plasma is

advanced on the fast timescale ξ through the beam, then the beam is pushed forward in s .

By taking advantage of the quasi-static approximation, QuickPIC essentially embeds a 2D

simulation with ξ being the time coordinate (and s fixed) into a 3D one with s being the

time coordinate. The simulation is parallelized with a hybrid MPI domain decomposition in

each 2D slab and there is also OpenMP parallelization within the MPI domain. Additional

parallelization is possible because once a 2D slab has been advanced past some ξ (at a fixed

s) another 2D slab can be initialized for s + ∆s, before the slab at s has finished being
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advanced to ξmax. Thus, multiple 2D slabs can be updated at the same time as long as

they are synchronized. This is referred to as pipelining [77]. Because of the extra level of

parallelization and the fact that the 3D timestep now just has to resolve the beams betatron

wavelength (kβ = kp/
√
2γ), QuickPIC has orders of magnitude speed-up over OSIRIS, while

still being highly accurate for PWFA problems.

Another reduced model is the quasi-3D algorithm [78]. If a problem is completely az-

imuthally symmetric with respect to the propagation axis, then a cylindrical r− z code will

be equivalent to full 3D with the proper geometrical effects, but much faster because you

have reduced the dimensionality. Quasi-3D is an extension of r − z, where the fields and

current are expanded into azimuthal Fourier harmonics (or modes) of ϕ. It can be thought

of as a hybrid approach that uses a PIC description in r− z and a gridless description in ϕ.

The field solve can be decomposed for each m mode, where the fields are now complex 2D

arrays. Explicitly, the decomposition is

F(r, z, ϕ) = R

{∑
m=0

Fm(r, z)eimϕ

}
= F0(r, z) + R

{
F1
}
cosϕ− I

{
F1
}
sinϕ

+ R
{
F2
}
cos(2ϕ)− I

{
F2
}
sin(2ϕ)

+ . . . (1.9)

The particles are advanced in 3D Cartesian coordinates using the total fields. This algo-

rithm has been implemented into OSIRIS [79] and recently has been implemented into the

QuickPIC framework in a separate code called QPAD (QuickPIC with Azimuthal Decompo-

sition) [80]. In QPAD, the 2D part is now 1D in r for each azimuthal mode number. QPAD

has shown orders of magnitude speedup over QuickPIC for mostly azimuthally symmetric

problems, where only a few modes are needed. QPAD is thus very useful for problems with

moderate asymmetry. It is highly accurate even with only 3 modes (meaning m = 0, 1, 2, 3

were included) for problems with small beam offsets, as shown in Fig. 1.5. This example

from Ref. [80] shows a witness beam undergoing transverse oscillations that are resonantly
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Figure 1.5: Beam centroid oscillations of slices (a) +σz, (b) 0, and (c) −σz with respect to

the beam center. Reproduced from [80].

coupled to the wake oscillations, therefore the oscillations grow in time. This is known as

the hosing instability and will be described in detail in the next chapter. Because of the

speedup and more highly resolved r− z grid it has now become possible to simulate PWFA-

LC problems fully self-consistently, which enabled much of the results in this dissertation.

For high asymmetry, as many more modes are needed, eventually the speedup is lost and it

is better to just use QuickPIC.

Finally, we can get substantial speedup by using mesh refinement which has recently

been implemented into QuickPIC [81]. Currently, this is only available in a development

branch of QuickPIC. This is particularly useful for highly asymmetric problems, such as flat
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beams (σx ≫ σy), where QPAD is not effective. When witness beams are very narrow, such

as in PWFA-LC scenarios, the length scale ratio discrepancy between the witness beam spot

size and blowout radius can be as large as 500. So using the same cell size throughout the

simulation is a very inefficient use of computational resources. While this is still possible

in QPAD since only a 1D grid in r is needed, in QuickPIC is not possible as a full 3D grid

is needed. Instead, we can use a fine grid around the witness beam and any ion collapse

and a larger grid around the drive beam and background plasma. This must be done in

a smooth way and iterated to ensure numerical convergence and eliminate spurious signals

when particles cross resolution boundaries [81].

1.5 Dissertation outline

The main goal of this dissertation is to provide theoretical analysis and high fidelity simu-

lations of highly nonlinear beam and plasma interactions important for plasma-based accel-

erators. We heavily rely on quasi-static PIC simulations to verify our models and explore

various ranges of parameters. Furthermore, in this dissertation we are mainly motivated

by describing the electron arm of a PWFA-LC design. In Chapter 2, we review the most

important theories that will be used and referenced throughout this dissertation. In Chapter

3, we begin by describing the hosing instability and asymmetric wakes by using a perturba-

tion theory on the phenomenological model of the nonlinear blowout regime. We show that

using a Fourier azimuthal decomposition of the fields can provide a more accurate hosing

instability model by describing the perturbed plasma sheath fields with them = 1 mode. We

derive a very similar model to the hosing equation for wakes created by asymmetric (ellipti-

cal) beams using the m = 2 mode. In Chapter 4, we describe ways to mitigate the hosing

instability. We rely on methods related to a known technique used for years in conventional

accelerators called BNS damping. Many new studies have identified different mechanisms

that can invoke this damping in plasma accelerators. We discuss how the drive beam may

16



be inherently stable and investigate two methods to mitigate witness beam hosing. The first

using a direct energy chirp on the beam and the second by using asymmetric wakes. In

Chapter 5, we investigate the problem of ion motion in PWFA-LCs. We describe this using

a ring model and calculate the perturbation to the wakefields from this. We then show that

drive beam induced ion motion can eliminate hosing and realign the witness beam with the

drive beam axis, which is important when colliding beams. In Chapter 6, we discuss the

need for plasma matching sections for PWFA-LCs when there is ion motion. We show that

quasi-adiabatic plasma density ramps can simultaneously match the beams to the plasma

in the presence of ion motion and realign the witness beam with the emittance growth lim-

ited to a couple percent. Finally, in Chapter 7, we will summarize our results and provide

directions for future work.
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CHAPTER 2

Review of the nonlinear theory of plasma wakefields

and hosing

This chapter will consist of a review of existing theories to describe plasma wakefields in the

blowout regime. We cover some of the fundamental equations and approximations commonly

used. Then we review the foundational work of Lu et al. [27, 28] that calculated the fields in

the blowout regime, as well as the theories for beam loading and hosing that employed this

model. Finally, we discuss a more recent approach to calculate the equations that describe

hosing. This will set the stage for the following chapter, where we discuss our approach to

modeling hosing in regimes with highly intense beams.

2.1 Betatron motion of electrons in a pure ion column

When the drive beam has a high current, Λ ≡ nb/np(kpσr)
2 ⪆ 1, the plasma electrons are

completely blown out, leaving a pure ion column behind the drive beam. The transverse

(focusing) force an electron will feel in this ion column is given by Gauss’s Law (the focusing

field is actually electromagnetic),

F⊥ = −r

2
mω2

p, (2.1)

where ωp is the electron plasma frequency. We have assumed azimuthal symmetry so the x

and y directions are the same, and so the force is proportional to r. Looking at just the x

direction, we have

Fx =
dpx
dt

=
d(γmvx)

dt
= −x

2
mω2

p. (2.2)
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Assuming the particle moves at the speed of light, we have cdt = dz, and thus

d

dz
(γx′) = −k2p

x

2
, (2.3)

where ′ ≡ d
dz

and kp is the plasma wavenumber. So the electron equation of motion in the

ion column is

x′′ +
γ′

γ
x′ + k2βx = 0, (2.4)

where kβ ≡ kp/
√
2γ is the betatron wavenumber. With no acceleration (γ′ = 0), the

beam electrons will exhibit simple harmonic oscillations at the betatron frequency as they

propagate in the wake, known as betatron motion. If γ′ is not a function of x or y, then the

motion in the two transverse planes is decoupled. The acceleration and energy changes of

the beam typically evolve on a timescale slower than the betatron frequency, so this is the

smallest timescale we need to resolve. Explicitly,

γ′

γkβ
= Ez

√
2

γ
, (2.5)

where Ez is the normalized accelerating field, which is typically on the order of unity, so the

second term in Eq. 2.4 is usually small, but its effect cannot be neglected. In Sec. 2.5, we

discuss collective effects when the beam has an offset.

2.2 Quasi-static approximation and co-moving coordinates

As we mentioned in the introduction chapter, one of the fundamental approximations used in

PBA is the quasi-static approximation (QSA) [73] which was developed to study short pulse

laser-plasma interactions. Whittum et al. [82] also used similar approximations for describing

particle beam-plasma interactions. This approximation is based on the assumption that the

drive beam (moving at near the speed of light) evolves on a timescale (spatial scale) much

slower (longer) than the plasma wake period (wavelength). It can thus be viewed as a sort

of frozen field approximation, where the drive beam is “frozen” while the plasma evolves

around it. It is helpful to make a mathematical transformation to a frame described by the
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co-moving coordinates (x, y, ξ = ct−z, s = z), where we take the speed of the driver and also

the phase velocity of the wake to be the speed of light, c. Then, the QSA implies ∂
∂s

≪ ∂
∂ξ
.

Since the beams evolves on the length scale of their betatron wavelength, λβ = 2π
√
2γb/kp,

the approximation is valid when γb ≫ 1.

Now we can write down Maxwell’s equations in these co-moving coordinates and apply the

quasi-static approximation. We start from the equations for the vector and scalar potentials,

A and ϕ in the Lorenz gauge. In cgs units, we have

(
1

c2
∂2

∂t2
−∇2

)A

ϕ

 = 4π

J/c

ρ

 , (2.6)

where the Lorenz gauge condition is

1

c

∂ϕ

∂t
+∇ ·A = 0. (2.7)

These equations are also accompanied by the continuity equation

∂ρ

∂t
+∇ · J = 0. (2.8)

Now, our coordinate transformation implies

∂

∂t
=

∂

∂ξ

∂ξ

∂t
+

∂

∂s

∂s

∂t
= c

∂

∂ξ
(2.9)

∂

∂z
=

∂

∂s

∂s

∂z
+

∂

∂ξ

∂ξ

∂z
=

∂

∂s
− ∂

∂ξ
≈ − ∂

∂ξ
, (2.10)

where we applied the quasi-static approximation in the very last step. Upon substituting

these into Eq. 2.6, we have

(
∂2

∂ξ2
−∇2

⊥ − ∂2

∂ξ2

)A

ϕ

 = 4π

J/c

ρ


−∇2

⊥

A

ϕ

 = 4π

J/c

ρ

 , (2.11)
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where ∇⊥ = x̂ ∂
∂x

+ ŷ ∂
∂y
. The field equations are now two-dimensional Poisson equations such

that intuition built from electrostatics and magnetostatics for infinitely long lines of charge

and currents can be utilized. The gauge condition and continuity equations reduce to

∂

∂ξ
(ϕ− Az) = −∇⊥ ·A⊥, (2.12)

∂

∂ξ
(ρ− Jz/c) = −∇⊥ · J⊥/c, (2.13)

respectively. We can rewrite Eq. 2.11 as

−∇2
⊥(ϕ− Az) = 4π(ρ− Jz/c), (2.14)

−∇2
⊥A⊥ = 4πJ⊥/c. (2.15)

Now we can define a gauge-invariant pseudopotential, ψ ≡ ϕ − Az, and source term, S ≡

−(ρ− Jz/c). Then, we have
∂ψ

∂ξ
= −∇⊥ ·A⊥, (2.16)

∇2
⊥ψ = 4πS, (2.17)

∂S

∂ξ
= ∇⊥ · J⊥/c. (2.18)

The continuity equation now implies that the source term (which is an effective quasi-charge

density) is conserved locally on a two dimensional grid where time is replaced with ξ. We

can integrate the continuity equation over a transverse slice

d

dξ

∫
rdr S(r, ξ) =

∫
rdr∇⊥ · J⊥/c

=

∮
bd

J⊥/c · dl⊥

= 0, (2.19)

to find that the total quasi-charge is conserved within each slice. Thus, the continuity

equation under the quasi-static assumption tells us for each transverse plasma slice, the
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total quasi (or source) charge is conserved as the wake forms behind the driver. Before the

driver arrives S(r, ξ) = 0, so we have ∫
rdr S(r, ξ) = 0 (2.20)

for all slices. This constraint will be used later. Now, we can express the full fields as

Ez = −∂ϕ
∂z

− 1

c

∂Az
∂t

=
∂ψ

∂ξ
, (2.21)

Bz = ẑ · (∇⊥ ×A⊥) , (2.22)

E⊥ = −∇⊥ϕ− ∂A⊥

∂ξ
, (2.23)

B⊥ = ∇⊥ × (Az ẑ) +∇z ×A⊥. (2.24)

Finally, the QSA implies a conserved quantity for particle trajectories [74]. This follows

from the translational invariance in s = z. In the framework of Hamiltonian mechanics, the

QSA leads to
dH

dt
=
∂H

∂t
= c

∂H

∂ξ
= −c∂H

∂z
= c

dPz
dt

, (2.25)

where H is the Hamiltonian and Pz = pz − e/cAz is the canonical momentum. This leads to

the conserved quantity

H − cPz = γmc2 − eϕ− cpz − eAz = γmc2 − cpz − eψ. (2.26)

We can again assume that the plasma is unperturbed in front of the driver, which leads to

γmc2 − cpz − eψ = mc2

(γ − pz/mc) = 1 + eψ/mc2., (2.27)

In plasma-based acceleration, it is common to use normalized units to simplify the form of

the equations. We normalize charge to the elementary charge e, mass to the electron massm,

lengths to c/ωp, time to ω−1
p , velocities to the speed of light c, charge densities to enp, current

densities to enpc, electric and magnetic fields to mcωp/e, potentials to mc
2/e, and forces to
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mcωp. These dimensionless units are also employed in our simulations. Using normalized

units, the conserved quantity becomes γ − pz = 1 + ψ, and we also have γ2 = 1 + p2⊥ + p2z.

We can combine these and solve for pz to obtain

pz =
1 + p2⊥ − (1 + ψ)2

2(1 + ψ)
. (2.28)

Thus, once ψ and p⊥ are known, pz will also be known.

2.3 Nonlinear wakefields in the blowout regime

We are now in a position to calculate the trajectory for an electron at the boundary of the

plasma sheath and the ion column in the blowout regime as done in Refs. [27, 28]. We

assume that the same electron remains at the innermost location, r = rb(ξ), which is not

rigorously valid in the front of the bubble, but is a good approximation elsewhere. This leads

to a differential equation for rb(ξ) in terms of ψ. Therefore, we will first need to calculate

ψ using a phenomenological model for the source charge density in the sheath utilizing the

fact that the total source charge, S ≡ −(ρ− Jz), within each slice vanishes.

We assume azimuthal symmetry and so the forms of the potentials are solutions to the

Poisson equations derived above. If we consider locations inside the bubble but outside the

beam, these solutions can be written as

ϕ(r, ξ) = ϕ0(ξ)−
r2

4
+ Λ(ξ) ln r, (2.29)

Az(r, ξ) = Az0(ξ) + Λ(ξ) ln r, (2.30)

where Λ(ξ) =
∫∞
0
rdr nb(ξ), ϕ0(ξ) = ϕ(r = 0, ξ), Az0(ξ) = Az(r = 0, ξ), and ϕ(r = ∞) =

Az(r = ∞) = 0. Both ϕ0 and Az0 vary from slice to slice and neither are well-defined globally

since the integral over their source terms also varies from slice to slice. However, a key point

is that neither ϕ0 and Az0 need to be known independently. Subtracting Eq. 2.30 from Eq.

2.29, we get

ψ(r, ξ) = ψ0(ξ)−
r2

4
. (2.31)
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The source term for ψ is the source charge, which is conserved slice to slice. The above

expression is valid inside the beam since ρ − Jz for the beam essentially vanishes. We also

have the solution to Eq. 2.16,

Ar(r, ξ) = −r
2

∂ψ0

∂ξ
. (2.32)

The transverse force on an electron is

F⊥ = −(Er − vzBθ) =
∂ϕ

∂r
− vz

∂Az
∂r

+ (1− vz)
∂Ar
∂ξ

= −r
2
+ (1− vz)

Λ(ξ)

r
− 1

2
(1− vz)

d2ψ0

dξ2
r, (2.33)

where the first term is due to the uniform ion column, the second is due to the beam, and

the third is due to the plasma radial currents. We can see that for electrons with vz = 1,

such as beam electrons, the last two terms vanish and we are left with a linear, radially

inward focusing force. This is often stated as arising from space charge forces in the ion

column. However, those arguments assume translational invariance. This description which

describes the full electromagnetic character of the wake is more rigorous. Using the fact that

dξ
dt

= 1− vz, we have
dp⊥
dξ

= F⊥/(1− vz). (2.34)

The LHS can be rewritten as

dp⊥
dξ

=
d(γv⊥)

dξ
=

d

dξ

(
γ(1− vz)

dr⊥
dξ

)
=

d

dξ

(
(1 + ψ)

dr⊥
dξ

)
(2.35)

and the RHS as

F⊥/(1− vz) = − r

2(1− vz)
+

Λ(ξ)

r
− 1

2

d2ψ0

dξ2
r. (2.36)

Using the constant of motion, Eq. 2.27, we have

1

1− vz
=

γ

1 + ψ
= 1 +

pz
1 + ψ

, (2.37)

and substituting in Eq. 2.28 leads to

1

1− vz
=

1 + p2⊥ + (1 + ψ)2

2(1 + ψ)2
=

1

2

(
1 +

1 + p2⊥
(1 + ψ)2

)
. (2.38)
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Using p⊥ = (1 + ψ)dr⊥/dξ, we can write out the full equation of motion for an electron at

r = rb(ξ),

d

dξ

(
(1 + ψ)

drb
dξ

)
= rb

(
−1

4

[
1 +

1

(1 + ψ)2
+

(
drb
dξ

)2
]
+

Λ

r2b
− 1

2

d2ψ0

dξ2

)
, (2.39)

where ψ is evaluated at rb.

So to close the above equation we need to calculate ψ0(ξ) as a function of rb(ξ). To

calculate this, we need a model for the source term to use in Eq. 2.17. Lu et al. [27, 28]

used a simple constant density for the thin electron sheath given by

S(r, ξ) =


−1 r < rb

n∆ rb ≤ r ≤ rb +∆

0 r > rb +∆,

(2.40)

where ∆ is the width of the sheath, which is a free parameter, and n∆ is the electron density

in the sheath. Using the fact that the total source charge within a given slice must vanish

(Eq. 2.20), a relationship between ∆, n∆, and rb can be found, namely

n∆ =
r2b

(rb +∆)2 − r2b
. (2.41)

This model is illustrated in Fig. 2.1. There have been other models for the sheath that try

to capture the fields outside the bubble more accurately [83] or to more accurately model

the fields at the very rear of the bubble including capturing the negativity of ψ [31]. These

more complicated models are generally necessary to describe important physical effects in

the very rear of the bubble, such as self-injection or optimal beam loading.

Using the simple profile, Lu et al. [27, 28] showed that the solution to the Poisson

equation for ψ gives, ψ0(ξ) =
r2b (ξ)

4
(1 + β) for r ≤ rb, where β ≡ (1+α)2 ln(1+α)2

(1+α)2−1
− 1 and

α ≡ ∆/rb. We can then rewrite Eq. 2.39 and collect terms to obtain

A(rb)
d2rb
dξ2

+B(rb)rb

(
drb
dξ

)2

+ C(rb)rb =
Λ

rb
, (2.42)
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Figure 2.1: (a) Electron density with the defined blowout radius rb(ξ) and (b) −(ρ − Jz/c)

profile from a PIC simulation. Reproduced from [27].
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where

A(rb) = 1 +

(
1

4
+
β

2
+

1

8
rb
dβ

drb

)
r2b (2.43)

B(rb) =
1

2
+

3

4
β +

3

4
rb
dβ

drb
+

1

8
r2b
d2β

dr2b
(2.44)

C(rb) =
1

4

(
1 +

1(
1 + β

4
r2b
)2
)
. (2.45)

In the ultra-relativistic regime, where rb,max ≫ 1 and therefore β ≪ 1, Eq. 2.42 simplifies to

rb
d2rb
dξ2

+ 2

(
drb
dξ

)2

+ 1 =
4Λ

r2b
. (2.46)

This simplified version is similar to the equation for a circle for most of the trajectory when

Λ(ξ) = 0. So we choose an appropriate ∆ and solve Eq. 2.42, or just solve 2.46, to get rb(ξ)

and then calculate ψ(r, ξ), which fully characterizes the fields inside the wake.

2.4 Beam loading in the blowout regime

One important consequence of having a phenomenological model of the wakefields in the

blowout regime is the development of a beam loading theory for nonlinear wakes. As men-

tioned in the last chapter, beam loading is essential to maintain low energy spread which

will be crucial in order to focus beams at the interaction point for linear colliders. Energy

spread may also cause larger emittance growth during acceleration. Beam loading is also

important to absorb as much of the wake energy as possible, both to maximize efficiency

and also to prevent heat escaping and damaging the walls of the plasma chamber.

In this dissertation, we will use existing beam loading theory to determine how to properly

load the witness beam. The first theory of beam loading was developed for the linear regime

[24], where the wakes are sinusoidal and superposition is valid. By placing a second bunch

in the negative phase of Ez, we can flatten it using superposition by using a bunch with

triangular density ρ(ξ) = ρ0(ξf − ξ)/(ξf − ξ0), where ξ0 is the head of the beam and ξf is

the tail.
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In the blowout regime, the wakefield Ez is a function of the blowout radius and its slope,

as discussed in the previous section. Therefore, in order to flatten the wakefield with a

witness beam, we will need to calculate how the witness beam alters the wake shape. This

was done in Refs. [29, 30], and we review the main results from these papers next.

In order to make the analysis tractable, we use the ultra-relativistic limit where ψ ≈ r2b−r
2

4

and therefore

Ez =
∂ψ

∂ξ
=

1

2
rb
drb
dξ
. (2.47)

We first write Eq. 2.46 in terms rb only,

dr′b
drb

=
4λ(rb)− r2b (2(r

′
b)

2 + 1)

r3br
′
b

, (2.48)

where λ(rb) = Λ(ξ). We can then integrate this and substitute the result into Eq. 2.47 to

obtain

Ez = − rb

2
√
2

√
16
∫
rb
λ(ζ)ζdζ + C

r4b
− 1. (2.49)

We can evaluate the constant C by using the condition Ez(rb = Rb) = 0, where Rb = max(rb),

and the fact that λ = 0 in this region. We obtain C = R4
b . Also, we note that Rb can be

shown to roughly scale as Rb ≈ 2
√
Λ0 [26]. We would like Ez to be a constant, −Es, within

the witness beam, i.e., starting at ξ = ξs. Therefore, we have

Es =
rb

2
√
2

√
16
∫ rb
rs
λ(ζ)ζdζ +R4

b − r4b
r4b

, (2.50)

where rs ≡ rb(ξs). The resulting current profile that achieves this is therefore,

λ(rb) = E2
s +

r2b
4

(2.51)

and the magnitude of the loaded wakefield is

Es =
rs

2
√
2

√
R4
b

r4s
− 1. (2.52)

To find how the wake’s shape (rb(ξ) trajectory) is perturbed by the witness beam, we can

integrate Eq. 2.47,

−Es =
1

2
rbr

′
b =

1

4
(r2b )

′ (2.53)
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starting from ξs to obtain r2b = r2s − 4Es(ξ − ξs). Thus, when rb = 0, it follows that

ξ = ξs+r
2
s/(4Es), which determines the end of the loaded wake. The value of blowout radius

at the front of the beam, rs, can be expressed in terms of Es as r
2
s =

√
16E4

s +R4
b − 4E2

s .

Next, substituting the expression for rb within the witness beam region into Eq. 2.51, we

arrive at

Λ(ξ) =

√
E4
s +

R4
b

16
− Es(ξ − ξs). (2.54)

This is the well known trapezoidal shape, which is similar in form to the linear wakefield

result. Fig. 2.2 shows the loaded wake from a beam with this profile from a PIC simulation.

This can be integrated to get the total charge that can be loaded into the wake,

Qs = 2π

∫ r2s/(4Es)

ξs

Λ(ξ)dξ =
πR4

b

16Es
. (2.55)

This has important implications for the acceleration gradient and energy transfer efficiency.

QsEs is the energy absorbed per unit length and because it is a constant there is a trade-off

between the amount of charge that can be accelerated and the gradient with which it can

be accelerated.

An improved beam loading theory was recently developed by Dalichaouch et al. [31]

which better models the rear of the wake using a multisheath model for ψ, which also

explains the negativity of ψ. It provides an improved estimate for the transfer efficiency

and amount of charge that can be loaded. The current profile is only slightly modified; it

remains approximately trapezoidal.

2.5 Hosing theory

The hosing instability and its consequences remains a major obstacle to the development of

a future plasma-based LC and it is one one of the major topics of this dissertation. In this

section we review the existing theories for this instability. Transverse wakefield instabilities

have been studied for decades in conventional RF linear accelerators. Offset beams which
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Figure 2.2: The electron density from a PIC simulation with OSIRIS for kpRb = 5 is pre-

sented. The beams move to the right. The broken black line traces the blowout radius in

the absence of the load. On the bottom, the red (black) line is the lineout of the wakefield

Ez(ξ, rb = 0) when the beam load is present (absent). Reproduced from [29].
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create dipole EM modes in the cavity can result in amplification of the beam oscillation

and eventually beam breakup. The mode is excited at the beam head and results in strong

deflection at the tail. These modes can also excite the instability in subsequent bunches. In

general, there is more deflection with higher current and less with higher energy. The cure

for this instability is called Balakin-Novokhatski-Smirnov (BNS) damping, which in simple

terms breaks the resonance of the instability by introducing a variation in energy or focusing

along the bunch. This phase mixing method can also be applied in the blowout regime

of PWFA, as we will discuss in Chapter 4. Next, we will discuss general transverse beam

dynamics and the theories of hosing for plasma-based accelerators.

2.5.1 Transverse dynamics of a beam slice

We start by considering a beam slice consisting of N particles. The centroid is defined by

xb ≡ ⟨x⟩ = 1

N

N∑
i

xi, (2.56)

where xi is the transverse position of each particle. We assume linear focusing forces so that

the transverse planes are decoupled. The spot size of the slice is defined by

σx =
√
⟨(x− xb)2⟩. (2.57)

The dynamics of the centroid and spot size can be solved for using the equation of motion

derived above, Eq. 2.4, except we now include the resulting plasma channel centroid, xc,

resulting from the offset beam,

x′′ +
γ′

γ
x′ = −

k2p
2γ

(x− xc), (2.58)

where ′ ≡ d
ds
. The centroid equation is therefore

x′′b =

〈
−γ

′

γ
x′ −

k2p
2γ

(x− xc)

〉
= −

〈
γ′

γ
x′
〉
−
〈
k2p
2γ

(x− xc)

〉
. (2.59)
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Next, we assume there is an uncorrelated energy spread and energy change, i.e., γ = γ+∆γ

and γ′ = γ′ +∆γ′, where the bar represents the slice average. We have〈
γ′

γ
x′
〉

=
γ′ +∆γ′

γ +∆γ
x′b

≈ γ′ +∆γ′

γ

(
1− ∆γ

γ

)
x′b

≈ γ′ +∆γ′

γ
x′b −

γ′∆γ

γ
x′b, (2.60)

where we assumed ∆γ ≪ γ and ∆γ∆γ′ ≪ γγ′, and〈
k2p
2γ

(x− xc)

〉
≈ kβ

2
(
1− ∆γ

γ

)
(xb − xc), (2.61)

where kβ = kp/
√
2γ. The equation for the beam centroid becomes

x′′b +
γ′ +∆γ′

γ
x′b +

γ′∆γ

γ
x′b + kβ

2
(
1− ∆γ

γ

)
(xb − xc) = 0. (2.62)

With no energy spread and assuming all particles are accelerated equally, we have

x′′b +
γ′

γ
x′b + kβ

2
(xb − xc) = 0. (2.63)

The spot size evolution can be calculated by taking derivatives of the spot size definition, Eq.

2.57 (assuming ∆γ = ∆γ′ = 0). We define x̃ ≡ x− xb. The first derivative is σ
′
x = ⟨x̃x̃′⟩/σx.

The second derivative is

σ′′
x =

⟨x̃x̃′′⟩+ ⟨x̃′2⟩
σx

− σ′2
x

=
⟨x̃2⟩⟨x̃′2⟩ − ⟨x̃x̃′⟩

σ3
x

+
⟨x̃x̃′′⟩
σx

=
ϵ2x
σ3
x

+
⟨x̃x̃′′⟩
σx

, (2.64)

where ϵx ≡
√
⟨x̃2⟩⟨x̃′2⟩ − ⟨x̃x̃′⟩ is the geometric slice emittance. We can evaluate the last

term in Eq. 2.64,

⟨x̃x̃′′⟩ =
〈
(x− xb)

[
−γ

′

γ
(x′ − x′b)− k2β(x− xb)

]〉
= −γ

′

γ
σxσ

′
x − k2βσ

2
x. (2.65)

32



The evolution of the spot size is therefore given by

σ′′
x +

γ′

γ
σ′
x =

ϵ2x
σ3
x

− k2βσx. (2.66)

The spot size will be constant if each side equals zero, which means the matched spot size

is given by

σ2
m = ϵx/kβ. (2.67)

So we have described the dynamics of the centroid and spot size of beam slice given the

plasma channel offset. The spot size, centroid, and energy are all functions of the longitudinal

coordinate ξ. The challenging part about modeling hosing is predicting the channel centroid

given the beam centroid, i.e., obtaining the equation for xc(ξ) given an xb(ξ). In the next

section, we will take a brief digression to explore beam matching and energy spread in more

detail.

2.5.2 Beam matching with energy spread and offsets

In this section, we describe beam matching when the beam has a finite energy spread and

the emittance evolution when the beam has an energy spread and offset.

In general, when a beam has an energy spread, the particles will orbit with different phases

in trace space, (x, x′), hence leading to a larger area in trace space and thus emittance growth.

However, following Ref. [84], we can show that if the beam starts initially matched, the

emittance will not grow for small energy spreads. We start with the solution to x′′+k2βx = 0,

where k2β is constant for an individual particle (Eq. 2.63 in the absence of acceleration),

x(z) = x(0) cos(kβz) +
x′(0)

kβ
sin(kβz). (2.68)

Taking the derivative gives

x′(z) = −x(0)kβ sin(kβz) + x′(0) cos(kβz). (2.69)
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We define the betatron phase ϕ ≡ kβz and calculate the second order moment

⟨x2⟩ = ⟨x2i ⟩⟨cos2 ϕ⟩+ ⟨x′2i ⟩
〈
sin2 ϕ

kβ

〉
+ ⟨xix′i⟩

〈
sin(2ϕ)

kβ

〉
≈ ⟨x2i ⟩⟨cos2 ϕ⟩+ ⟨x′2i ⟩

⟨sin2 ϕ⟩
kβ

+ ⟨xix′i⟩
⟨sin(2ϕ)⟩

kβ
, (2.70)

where we assume the energy spread is small so we can use the average kβ and take it out of

the average. After the beam phase mixing is complete, we will have

⟨cos2 ϕ⟩ = 1

2
, ⟨sin2 ϕ⟩ = 1

2
, ⟨sin(2ϕ)⟩ = 0, (2.71)

because the particle’s ϕ coordinate will be uniformly distributed. We therefore have

⟨x2⟩ = 1

2

(
⟨x2i ⟩+

⟨x′2i ⟩
kβ

2

)
. (2.72)

Using the same reasoning for x′, we have

⟨x′2⟩ = 1

2

(
kβ

2⟨x2i ⟩+ ⟨x′2i ⟩
)
, (2.73)

and finally ⟨xx′⟩ = 0. So the final geometric emittance is

ϵ =
√

⟨x2⟩⟨x′2⟩ = 1

2

(
kβ⟨x2i ⟩+

⟨x′2i ⟩
kβ

)
=

1

2

(
kβσ

2
xi
+
σx′i
kβ

)
(2.74)

The initial (matched) emittance is given by

ϵi = σxiσx′i = kβσ
2
xi
, (2.75)

where in the last equality, we used the matching condition given by Eq. 2.67. Then, we can

solve for σx′i and substitute this into Eq. 2.74 to arrive at ϵ = ϵi. Thus, we have shown that

for a small energy spread, if the beam is initially matched it will remain matched.

When the beam accelerates, its geometric emittance is no longer conserved, it decreases

with increasing γ. Instead, we care about the normalized emittance, ϵN ≡
√

⟨x2⟩⟨p2x⟩ − ⟨xpx⟩.

When the energy spread is small, we have ϵN ≈ γϵ. Next, we show when the beam is ac-

celerated without energy spread, the normalized emittance is conserved in a linear focusing
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force (p′x = Fx = Kx). We start by taking the derivative of ϵ2N to obtain

2ϵNϵ
′
N = 2⟨xx′⟩⟨p2x⟩+ ⟨x2⟩⟨2pxp′x⟩ − 2⟨xpx⟩ (⟨xp′x⟩+ ⟨x′px⟩)

=
2

γ
⟨xpx⟩⟨p2x⟩+ 2K⟨x2⟩⟨xpx⟩ − 2⟨xpx⟩

(
K⟨x2⟩+ 1

γ
⟨p2x⟩

)
.

= 0. (2.76)

We thus have ϵ′N = 0, which means the normalized emittance is conserved when the beam

is accelerating in a linear focusing force. It can be shown analytically that the normalized

emittance of a matched beam with a small energy spread, but no acceleration, does not grow.

Finally, we can see from simulations that if the beam is initially matched, is accelerating,

and has a small energy spread, the normalized emittance is still conserved [85].

We have shown the importance of matching the beam to the plasma, but what happens

when the beam is offset? It is easy to recalculate the emittance growth when there is energy

spread and offsets. Starting from Eq. 2.74, we add offsets xi = x̃i +∆x and x′i = x̃′i +∆x′,

where ⟨x̃i⟩ = ⟨x̃′i⟩ = 0. We have

ϵsat =
1

2

[
kβ⟨(x̃i +∆x)2⟩+ 1

kβ
⟨(x̃′i +∆x′)2⟩

]
=

1

2

[
kβ(σ

2
xi
+∆x2) +

1

kβ
(σ2

x′i
+∆x′2)

]
=

1

2

[
kβσ

2
xi

(
1 +

∆x2

σ2
xi

)
+
σ2
x′i

kβ

(
1 +

∆x′2

σ2
x′i

)]

=
1

2

[
ϵi

(
1 +

∆x2

σ2
xi

)
+ ϵi

(
1 +

∆x′2

σ2
x′i

)]
. (2.77)

Thus, we obtain
ϵsat
ϵi

= 1 +
∆x2

2σ2
xi

+
∆x′2

2σ2
x′i

, (2.78)

and because ϵN ≈ γ̄ϵ, we have ϵNsat/ϵNi ≈ ϵsat/ϵi. This result intuitively makes sense, when

we think about the beam phase mixing. The beam spreads out in phase space according to

how large the offset is with respect to the initial spot size. So when the beam is oscillating
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Figure 2.3: A beam slice in the ion channel, displaced by an amount ξ [denoted xb in the

text] in the x direction, induces a displacement η [denoted xc in the text] of the channel

wall, which responds as a simple harmonic oscillator with angular frequency ω0, deflecting

follow-on portions of the beam. Reproduced from [86].

with energy spread, the offset decays but at the cost of emittance growth. This will be

examined in more detail in later chapters. We will now return to describing theories for

describing the hosing instability.

2.5.3 Linear fluid theory in a long, adiabatic plasma channel

Before we address the nonlinear theory for the blowout regime, we review the seminal work

by Whittum et al. [86]. This paper derives the equations that describe the hosing instability

for an electron beam in an underdense plasma. It assumes a cold, fluid plasma channel and

a rigid, round beam with a small offset, xb, inside the ion channel, where the electrons have

been adiabatically expelled, i.e., the blowout radius is a constant. Fig. 2.3 shows a diagram

of this setup.

The equilibrium plasma electron density is ρe0 = −eneH(r − b), where b is the channel

radius and H is the Heaviside function. The beam density is assumed to be transversely

uniform with radius a, given by ρb0 = −enb(1−H(r− a)). We can determine the perturbed
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plasma from the cold fluid equations (assuming the motion in z is negligible)

∂ρe1
∂ξ

+∇⊥ · (ρe0ve1) ≈ 0 (2.79)

∂ve1
∂ξ

≈ e

m
∇⊥ϕ1, (2.80)

where ve1 is the plasma electron velocity. We let the shift in the channel be in the x direction

and denote it as xc, from which it follows that ve1 = ∂ξxcx̂. From Eq. 2.79, we have

∂ξρe1 = −ρe0∇⊥ · (∂ξxcx̂)− (∇⊥ρe0) · (∂ξxcx̂)

= −ρe0∂x∂ξxc + eneδ(r − b)∂ξxcr̂ · x̂

= eneδ(r − b)∂ξxc cos θ, (2.81)

where ∇⊥xc = 0 and δ is the Dirac delta function. We can thus see that ρe1 is described as

a surface charge at r = b, given by ρe1 = eneδ(r − b)xc cos θ. Similarly, the beam is rigidly

displaced in x by xb, therefore ρb1 = −enbxbδ(r − a) cos θ. We can then solve the Poisson

equations to get

ψ1 = 2πenexc cos θ

(
b2 − r2

r
H(r − b) + r

)
(2.82)

Az1 = −2πenbxb cos θ

(
a2 − r2

r
H(r − a) + r

)
, (2.83)

where the source term for ψ1 is from the plasma, ρ− Jz ≈ ρe1, and the source term for Az1

is from the beam, ρb1.

We can add Eq. 2.82 and Eq. 2.83 to obtain ϕ1 = ψ1 + Az1 (note we could have solved

for ϕ1 directly using the charge densities for both the plasma and beam) and then solve Eq.

2.79 and Eq. 2.80 for the channel response

∂2

∂ξ2
xc(ξ, s) + ω2

0xc(ξ, s) =

(
nba

2

neb2

)
ω2
0xb(ξ, s) = ω2

0xb(ξ, s), (2.84)

where ω2
0 = ω2

p/2. Using the Lorentz force on the beam, we can solve for the beam response,

∂2

∂s2
xb(ξ, s) +

1

γ

∂γ

∂s

∂

∂s
xb(ξ, s) + k2βxb(ξ, s) = k2βxc(ξ, s). (2.85)
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This is the same equation we derived above, Eq. 2.63. Ignoring the change in energy term

for now and denoting ′ ≡ d
dξ

and ˙≡ d
ds
, we can write the above equations in the compact

form 
x′′c + ω2

0xc = ω2
0xb

ẍb + k2βxb = k2βxc.

(2.86)

These are the equations for two coupled harmonic oscillators. Given an initial beam offset

xb0, we can solve for the channel centroid xc along the beam, then we can evolve the beam

centroid xb given the solution for xc, and so forth. These equations predict a resonant

phenomena where the centroid amplitudes grow exponentially until the beam is lost or other

nonlinearities arise.

Assuming an infinitely long beam and channel, perturbations will vary as exp(iks− iωξ)

and we get the dispersion relation(
1− k2

k2β

)(
1− ω2

ω2
0

)
= 1, (2.87)

which is the same as the two-stream instability dispersion relation if we let ω → ω−kVb and

ω0 → ωpi, ωβ → ωpe. A solution for the beam centroid evolution can be found in the strong

focusing and short bunch/long plasma limit, kβs≫ ω0ξ, assuming a uniform offset,

xb(ξ)

xb0
≈ 0.263

eA√
A

cos

(
kβs−

A√
3
+

π

12

)
, (2.88)

where A = 1.3(kβs)
1/3(ω0ξ)

2/3 [87]. Note that A is related to both the exponential growth

as well as a shift in the betatron wavenumber. In the long bunch/short plasma limit, one

interchanges s and ξ in the expression for A. For stronger beams and wakes with varying

blowout radius, these results overestimate the hosing growth. Next, we address the theory

developed for this regime.

2.5.4 Hosing theory in the blowout regime

Hosing theory in the blowout regime was first developed by Huang et al. [88] in 2007, based

on the nonlinear theory for the blowout regime of Lu et al. [28, 27], discussed earlier. This
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theory modifies the plasma centroid equation but not the beam centroid equation. In the

linear fluid model, the electrons in the unperturbed sheath are assumed to be at rest. Here, we

use the zeroth order trajectory from Ref. [27, 28] and apply a linear perturbation (assuming

a small hosing amplitude). One major assumption of this model is that the channel is rigidly

displaced to a new location and is not deformed (this assumption was also used in Whittum

et al. [86]). So the channel centroid can be defined as xc(ξ) = (r+(ξ)−r−(ξ))/2, where r+(ξ)

and r−(ξ) are the perturbed blowout radii for the top and bottom electron trajectories,

respectively.

We start with the equation of motion for a plasma electron trajectory

dp⊥
dt

= −(Er + vzBθ), (2.89)

and on the LHS we use the same simplification we used in the previous section, leading to

2(1 + ψ)2
d

dξ

(
(1 + ψ)

dr

dξ

)
= −(Er + vzBθ)

(
1 + (1 + ψ)2

(
dr

dξ

)2

+ (1 + ψ)2

)
. (2.90)

Next, we apply linear perturbation theory as follows

r = r0 + r1

Er(r0 + r1) = E0 + E1

Bθ(r0 + r1) = B0 +B1

vz = v0 + v1

ψ(r0 + r1) = ψ0 + ψ1 ≈ ψ0, (2.91)

where the last approximation comes from the rigid channel assumption. Using the convention

′ ≡ d
dξ
, the first order equation is

2(1 + ψ0)
2ψ′

0r
′
1 + 2(1 + ψ0)

3r′′1 = −2(E0 − v0B0)(1 + ψ0)
2r′0r

′
1

− (E1 − v0B1 − v1B0)
(
1 + (1 + ψ0)

2r′20 + (1 + ψ0)
2
)
. (2.92)
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The zeroth order equation is of course equivalent to the Lu et al. result (Eq. 2.39), and we

can use this to simplify the first order equation to

r′′1 +

[
ψ′
0

1 + ψ0

− 1

γ0
((1 + ψ0)r

′′
0 + ψ′

0r
′
0) r

′
0

]
r′1 = − γ0

(1 + ψ0)2
(E1 − v0B1 − v1B0) . (2.93)

In the Huang et al. treatment of this problem, the short-pulse limit was considered where

ψ′
0/ψ0, r

′′
0 , r

′
0ψ

′
0 ≪ r′′1/r

′
1, so the r′1 term in the above equation was dropped.

The self-consistent perturbed force on the boundary electron, −(E1−v0B1−v1B0), is the

sum of the perturbation from the beam fields and plasma fields in the sheath. In Huang’s

dissertation [89], this is quantified through the parameter c1(ξ) (here we will call it cp(ξ)) that

is calculated with simulation data (in the paper this is set to one). In the next chapter, we

will rederive this equation without dropping terms by calculating the self-consistent plasma

sheath fields. We define cp(ξ) as

−(E1 − v0B1 − v1B0) = Fb1 + Fp1 ≡ Fb1cp(ξ), (2.94)

where Fb1 is the perturbed beam force and Fp1 is the perturbed plasma force. The fields of

a transversely bi-Gaussian beam can be quickly derived when the beam is displaced by xb,

Eb1 = Bb1 = − nbσ
2
r

(r0 + r1 − xb)− r0
, (2.95)

and therefore, using |r1 − xb| ≪ r0 and Λ = nbσ
2
r ,

Fb1 ≈ (1− v0)
Λ

r20
(xb − r1). (2.96)

We can now rewrite the first order equation as

r′′1 = cpcrcψ(xb − r1), (2.97)

where cr ≡ Λ/r20 and cψ ≡ 1/(1 + ψ0). The bottom trajectory will be perturbed in a similar

way, so we can write the equation for the channel centroid, xc = (r+ − r−)/2, as

x′′c = cpcrcψ(xb − xc). (2.98)
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This result is of the same form as linear theory (Eq. 2.86) but with the centroid frequency

now the product of three terms, all of which (in normalized units) are less than unity (cp, cr,

cψ < 1), resulting in a smaller growth of the channel centroid and therefore hosing growth.

Furthermore, the coefficients can depend on longitudinal position in the wake, ξ. These

coefficients are typically calculated through simulation data (one 3D timestep), but can be

calculated as a function of the sheath thickness, ∆, using the Lu et al. model. The cψ

term captures how the relativistic mass changes the resonant frequency and the fact that

plasma electrons gain substantial longitudinal momentum. The cr coefficient captures the

difference in charge neutralization radius and the blowout (and variation along the bunch).

Larger beam currents and smaller blowout radii lead to stronger hosing, due to the larger cr

coefficient. Thus, hosing is most severe for high current electron beams loaded in the back

of the wake (which is what we want for beam loading). This leads us to explore methods to

mitigate hosing, discussed later in this dissertation.

Four regimes were identified in Huang et al., namely adiabatic non-relativistic (linear

theory applies), adiabatic relativistic, non-adiabatic non-relativistic, and non-adiabatic rela-

tivistic (the regime of relevance to a LC and future experiments). The simulation setups are

shown in Fig. 2.4 and the results are shown in Fig. 2.5. We can see for the non-adiabatic

relativistic regime there is moderate disagreement between theory and simulation, which is

where we focus on improving the theory in the next chapter.

2.5.5 An approach using moments of the Vlasov equation

In this section, we briefly review another approach for deriving the equation for the plasma

channel centroid in the blowout regime from Mehrling et al. [90]. The aim of this approach

was to provide better agreement with simulations for the non-adiabatic, relativistic regime.

In the next chapter, we will compare our approach, which is a modification of the Huang
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Figure 2.4: The beams (red, moving to the left) and the plasma (blue) in (a) the adi-

abatic non-relativistic regime, (b) the adiabatic relativistic regime, (c) the non-adiabatic

non-relativistic regime, (d) the non-adiabatic relativistic regime. Left-hand (white) and

right-hand (gray) arrows denote where tilts are added and the centroids are measured. Re-

produced from [88].
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Figure 2.5: Hosing growth in four regimes. xb0 is the initial displacement of the beam

centroid. We assume ∆s = 0.1r0, ∆L = c/ωp for the analytic curve in case (d). The slightly

slower hosing growth in simulation (d) is caused by nonlinearity in beam-channel centroid

coupling. Reproduced from [88].
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et al. [88] framework, to this one1. As we will show, our improved theory provides better

agreement with simulations for the regimes we explore in the next chapter.

In the Vlasov approach, the fields outside the bubble also need to be known. They

assumed an exponential model of the plasma sheath of the form

S(r, ξ) =


−1 r < rb(ξ)

S0(ξ)e
−(r−rb(ξ))/∆ρ r ≥ rb(ξ),

(2.99)

where the sheath thickness is ∆ρ. The wakefields and the equation for rb(ξ) for this model

were derived in Ref. [83], where Jz was treated separately from S, i.e., Jz has a separate

exponential profile from S, with thickness ∆J . This implies ρ = Jz − S is made up of two

exponentials with different length scales. We note that neither the profile for ρ nor the

assumption made in the reference that ρ − Jz ≈ ρ are needed to calculate the wakefields

because the force on the plasma electrons, given in Eq. 2.33, only depends on the source

terms S and Jz, not on ρ. Thus, ∆ρ should represent the thickness of S not the electron

density ρ. The fields outside the bubble could also be found using the Lu et al. [27, 28]

model with an assumed profile for Jz. Finally, we note the model for Jz and the fields outside

the bubble are not needed for the Huang et al. treatment of hosing.

Hosing is a challenging problem because it breaks azimuthal symmetry. In the Vlasov

approach, phase space averages of the quasi-static plasma electron distribution are calculated.

From here, we follow Mehrling et al. [90]. The plasma is described by a quasi-static form

for the Vlasov equation,

∂ξfp +

(
p⊥ ·∇⊥

1 + ψ
+
dp⊥

dξ
·∇p⊥ +

dψ

dξ
∂ψ

)
fp = 0 (2.100)

where fp(x⊥,p⊥, ψ; ξ) is the plasma electron distribution and ψ is written as a phase space

variable through the relation ψ = γ − pz − 1, derived earlier. Recall ξ = ct− z is the time-

like, co-moving longitudinal coordinate. For the zeroth order distribution, fp,0, we assume

1These theories were developed around the same time, although our work has yet to be published, but
has been presented at conferences.
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azimuthal symmetry, so it obeys

∂ξfp,0 = − γ

1 + ψ

(
pr
γ
∂r + Fr∂pr + Fψ∂ψ

)
fp,0, (2.101)

where we have defined Fr ≡ dpr
dt

and Fψ ≡ dψ
dt
. The total distribution function is expanded

for small moments ⟨x⟩ and ⟨px⟩ about the zeroth order symmetric distribution function. If

the perturbation is a rigid displacement then the perturbed distribution function can be

written as follows,

fp,1 ≈ − cos θ(⟨x⟩∂r + ⟨px⟩∂pr)fp,0. (2.102)

Then for a general moment of a quantity Φ, we can write the evolution as

∂ξ⟨Φ⟩ =
〈

pr
1 + ψ

∂rΦ

〉
+

〈
γθ̇

1 + ψ
∂θΦ

〉
+

〈
γFr
1 + ψ

∂prΦ

〉
+

〈
γFψ
1 + ψ

∂ψΦ

〉
. (2.103)

What we want is the plasma centroid ⟨x⟩. Using the above equation gives

∂ξ⟨x⟩ = ∂ξ⟨r cos θ⟩ =
〈
pr cos θ

1 + ψ

〉
=

⟨pr cos θ⟩
⟨1 + ψ⟩

+O
[
(∆ρrb)

2
]
, (2.104)

where in the last equality a series expansion of 1/(1+ψ) around ⟨ψ⟩ was used (and only the

zeroth order terms were kept), which will be essential to obtain a closed form solution. We

can use the moment equation again to get

∂2ξ ⟨x⟩ =

〈
γ

1+ψ
Fr cos θ

〉
⟨1 + ψ⟩

− ⟨pr cos θ⟩
⟨1 + ψ⟩2

〈
γFψ
1 + ψ

〉

=

〈
γ

1+ψ
Fr cos θ

〉
⟨1 + ψ⟩

− ∂ξ⟨x⟩
⟨1 + ψ⟩

〈
γFψ
1 + ψ

〉
. (2.105)

Next, we expand the forces as

Fr,b ≈ − cos θxb∂rFr,b,0 (2.106)

Fr,p ≈ − cos θ⟨x⟩∂rFr,p,0, (2.107)

where xb is the beam centroid. Finally, using the expansions and truncating to first order in
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xb, ⟨x⟩, and ⟨px⟩ we have

∂2ξ ⟨x⟩ = − ⟨x⟩
2⟨1 + ψ⟩

〈
γ

1 + ψ
∂rFr,p,0

〉
− xb

2⟨1 + ψ⟩

〈
γ

1 + ψ
∂rFr,b,0

〉
+

⟨x⟩
2⟨1 + ψ⟩

〈
γ

1 + ψ
(∂r + r−1)Fr,p,0

〉
+

⟨x⟩
2⟨1 + ψ⟩

〈
γ

1 + ψ
(∂r + r−1)Fr,b,0

〉
+ ∂ξ⟨x⟩

〈
prFr,0

(1 + ψ)2

〉
− ∂ξ⟨x⟩

⟨1 + ψ⟩

〈
γFψ
1 + ψ

〉
. (2.108)

This can be rearranged to an equation of the form we have seen before,

∂2ξxc + Cd(ξ)∂ξxc +
Cp(ξ)

2
xc =

Cb(ξ)

2
xb, (2.109)

where xc ≡ ⟨x⟩. We can write the coefficients in terms of the wake potentials as follows,

Cp = − 1

⟨1 + ψ⟩

(〈
γ

1 + ψ

∂rΨ

r

〉
+

〈
∂ξAr
r

〉
+

〈
∂rAz,p
r

〉
− ⟨Jz,b⟩

)
(2.110)

Cb =
1

1 + ψ

〈
∂rAz,b
r

+ Jz,b

〉
(2.111)

Cd =
⟨∂ξΨ⟩
⟨1 + ψ⟩

, (2.112)

where Ψ is the pseudopotential. Without going through the details, these can be turned into

radial moments using the cold fluid assumption for the zeroth order distribution. Assuming

the beam is “narrow” such that there is no beam current overlap with the sheath so that

⟨Jz,b⟩r ≈ 0 and the plasma current sheath thickness is ∆J ≈ 1, the coefficients are

Cp =
1− r′2b

4
− ∆ρ

4

(
1 + Λ

rb
+
rb(r

′2
b − r2b − 1)

4
− r2br

′
b

2

)
+O

(
∆2
ρ

r2b

)
(2.113)

Cb =
Λ

r2b

[
1−∆ρ

(
2

rb
+
rb
4

)]
+O

(
∆2
ρ

r2b

)
(2.114)

Cd =
r′b
4

[
rb −

∆ρ

2

(
r2b
2
− 1

)]
+O

(
∆2
ρ

r2b

)
. (2.115)

This model will be compared to our model in the next chapter.
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2.6 Summary

In this chapter, we have reviewed several key concepts in plasma-based acceleration theory.

We first discussed the betatron motion of beam particles in the ion column of a nonlinear

wake. We described the quasi-static approximation and Maxwell’s equations under this

approximation in co-moving coordinates. This set the stage for reviewing the seminal work

of Lu et al. [27, 28]. This work assumed a step function profile for the source S = −(ρ−Jz),

in order to calculate the pseudopotential, ψ, to characterize the nonlinear wakefields inside

the bubble. Then, a differential equation for the blowout radius was derived.

We then reviewed the beam loading theory in the blowout regime based on the Lu et al.

model. This theory predicts a trapezoidal current profile for the witness beam can flatten the

accelerating field so that the witness beam energy spread can be preserved and the energy

transfer efficiency can be maximized.

Next, we reviewed the basic transverse physics of a beam slice to introduce several im-

portant concepts. We derived the equation for the evolution of the slice centroid including

when the slice has energy spread. We also derived the matching condition for the spot size

so that it does not undergo oscillation as it is accelerated. Lastly, we discussed beam match-

ing when the beam slice if offset or has an energy spread. We showed that the normalized

emittance will not grow when the beam is accelerating in a linear focusing force and derived

the saturated normalized emittance if the beam has an initial offset.

We then reviewed the linear fluid theory for hosing in the blowout regime, which predicted

an exponential growth of the beam centroid due to its coupling to the plasma channel

centroid. Next, we reviewed the model for hosing in the blowout regime by Huang et al. [88].

This framework uses a first order perturbation theory for the innermost electron trajectory

that defines the blowout radius. This model predicts a much smaller hosing growth rate

that is more in line with PIC simulations. Finally, we discussed another recent approach

using moments of the quasi-static Vlasov equation. This model was intended to improve the
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Huang et al. model. In the next chapter, we will compare this theory to an improved hosing

theory using the Huang et al. framework.
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CHAPTER 3

Hosing and asymmetric beam theory and simulation

In the previous chapter, we reviewed the existing theories of nonlinear wakefields and electron

beam hosing. In this chapter, we describe an approach to amend the theory of Huang et

al. [88] described in the last chapter. In Huang et al., the perturbed plasma fields were

acknowledged but not calculated, but we will show these are essential to obtain accurate

results for the plasma channel centroid equation that is required to describe the hosing

instability. The beam centroid equation does not need to be amended. We use an m = 1

azimuthal decomposition description to calculate these fields. We compare the predictions

of the improved theory to the analyses of Huang et al. and the Vlasov approach of Mehrling

et al. [90]. We also show how this same formalism can be used for higher modes, such as

the m = 2 mode to describe wakes formed by beams with different transverse spot sizes.

3.1 Correction to the hosing theory in the blowout regime

In the previous chapter, we reviewed two methods for describing hosing in the blowout

regime. The first (Ref. [88]) used a perturbation method of the symmetric blowout of the

innermost electron trajectory described by the equation of motion derived in Ref. [27, 28]

(also reviewed in the previous chapter), and the second [90] used a Vlasov-based moment

method by averaging the fields over all space. The latter was motivated by the deficiency of

the former in the non-adiabatic, relativistic regime. In this section, we will show how the first

method can be amended to be more accurate in this regime. This is done by including terms
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that were originally dropped1, as well as deriving perturbations of the sheath fields based on

an azimuthal mode decomposition. As such, we will be making some similar assumptions,

such as the rigid displacement of the plasma sheath, but also relaxing others, such as the

short beam approximation.

3.1.1 Higher order mode source terms

We employ an azimuthal decomposition in the same way as QPAD or Quasi-3D OSIRIS,

where the fields and charge and current densities are decomposed into azimuthal modes.

This decomposition for a field quantity is explicitly given by

F(r, θ) =
+∞∑

m=−∞

Fm(r)eimθ

= F0(r) + 2
∑
m=1

R {Fm} cos(mθ)− 2
∑
m=1

I {Fm} sin(mθ), (3.1)

where F is an arbitrary vector or scalar field [80]. Because F(r, θ) is real, F−m = (Fm)∗, so

only positive modes need to be considered.

We can describe a beam with a small offset with the m = 1 (and m = 0) mode. To see

this, we can write down the azimuthal expansion of a Gaussian beam with an offset ⟨x⟩ = xb.

The charge distribution is

ρb(x, y) = ρb0 exp

(
−(x− xb)

2 + y2

2σ2

)
. (3.2)

Such a charge distribution provides an asymmetric force (in θ) which leads to a wakefield

(including the blowout radius and electron sheath) that is also asymmetric. It is useful to

decompose the fields from the drive beam and wakefield into azimuthal harmonics, where

the source terms are the charge and current densities of the drive beam and wakefield,

respectively. Under the quasi-static approximation (QSA), these fields are solutions to the

1We note that Ref. [90] stated the model of Huang et al. was unphysical because it did not include these
terms (∂ξxc terms), but these were simply dropped in the short-pulse limit.
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2D scalar Poisson equations of the form

−∇2
⊥f = h, (3.3)

which can be solved through a convolution integral of the Green’s function, G, over the

source term, where

−∇2
⊥G = δ(x⊥ − x′

⊥). (3.4)

It can be shown that [91]

G(x⊥ − x′
⊥) =

∫ ∞

0

dk

2πk

∑
m

Jm(kr)Jm(kr
′)eim(θ−θ′), (3.5)

where Jm(kr) is the Bessel function of the first kind. Therefore,

f =

∫
r′dr′dθ′ h(r′, θ′)

∫ ∞

0

dk

2πk

∑
m

Jm(kr)Jm(kr
′)eim(θ−θ′). (3.6)

If the source, h, is also decomposed as

h(r′, θ′) =
∑
m

hm(r
′)eimθ

′
, (3.7)

it follows that

f =
∑
m

[
eimθ

∫ ∞

0

r′dr′ hm(r
′)

∫ ∞

0

dk

k
Jm(kr)Jm(kr

′)

]
. (3.8)

We find using Mathematica [92], this can be rewritten as

f = f0(r) +
m=∞∑

m ̸=0,m=−∞

eimθ

2|m|

∫ ∞

0

r′dr′ hm(r
′)×


( r
r′

)|m|
r < r′(

r′

r

)|m|

r > r′
(3.9)

Thus, the transverse electric field from an electron beam can be obtained by using h→ ρb/ϵ0

(from Eq. 3.2) and f → ϕ. In what follows, we truncate the azimuthal expansion to lowest

order, so we just keep m = 0, 1. Another way to derive this electric field is by using the

multipole expansion in 2D [93], similar to the standard technique used in electromagnetism

(c.f. Griffiths’ textbook [94]). In 2D, the potential at r for charge distribution ρ(r′) is

ϕ(r) = − 1

2πϵ0

∫
ρ(r′) ln |r− r′|ds′, (3.10)
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where the integral is over the source coordinates. We can write the log term as

ln |r− r′| = ln
√
r2 − 2rr′ cos(θ′ − θ) + r′2

= ln r +
1

2
ln

(
1− 2r′ cos(θ′ − θ)

r
+
r′2

r2

)
(3.11)

and expand in powers of r′/r, as we are interested in the far field where r ≫ σx,y (one could

expand in powers of r/r′ in the opposite limit) to obtain

ln |r− r′| = ln r +
∞∑
m=1

1

m!
(−r′ · ∇⊥)

m ln r

= ln r −
∞∑
m=1

1

m
cos[m(θ′ − θ)]

(
r′

r

)m
= ln r − r′

r
cos(θ′ − θ)− r′2

2r2
cos(2(θ′ − θ)) +O

(
r′

r

)3

. (3.12)

Note this gives the same result as Eq. 3.9 when substitued into Eq. 3.10. We then calculate

the first order (m = 1) potential as follows,

ϕm=1(r) =
1

2πϵ0r

∫
ρ(r′)r′ cos(θ − θ′)r′dr′dθ′

=
cos θ

2πϵ0r

∫
ρ(r′)r′ cos θ′ r′dr′dθ′ +

sin θ

2πϵ0r

∫
ρ(r′)r′ sin θ′ r′dr′dθ′

=
cos θ

2πϵ0r

∫ ∞

−∞

∫ ∞

−∞
ρb0 exp

(
−(x′ − xb)

2

2σ2
− y′2

2σ2

)
x′dx′dy′

+
sin θ

2πϵ0r

∫ ∞

−∞

∫ ∞

−∞
ρb0 exp

(
−(x′ − xb)

2

2σ2
− y′2

2σ2

)
y′dx′dy′. (3.13)

We note that the second term will vanish because the integrand is odd. In the first term, we

can easily integrate the two separate Gaussian integrals to obtain

ϕm=1(r, θ) =
ρb0σ

2

ϵ0r
xb cos θ (3.14)

which, upon using ρb0 = −enb0 and Λ = nb0/np(kpσ)
2, and switching to normalized units,

can be rewritten as

ϕm=1(r, θ) = −Λ

r
xb cos θ. (3.15)
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The m = 1 term for the electric field is therefore

Em=1(r, θ) = −∂ϕm=1

∂r
r̂ − 1

r

∂ϕm=1

∂θ
θ̂ =

Λ

r2
xb

(
cos θr̂ + sin θθ̂

)
. (3.16)

Moreover, using this analysis, it can be shown that ϕm=2,4,6,... = 0 and ϕm=1,3,5,... ∝ xmb .

We can thus describe the beam fields in terms of only the m = 1 mode in an azimuthal

decomposition for small, rigid offsets.

In order to describe the wakefield, we need to calculate the pseudopotential, ψ, for non-

azimuthally symmetric source terms, S ≡ −(ρ−Jz). We use the Lu et al. model [27, 28] for

the plasma sheath, where the thin sheath is described by an inner and outer radial boundary,

rbi = rb0 and rbo = rb0 + ∆, respectively, and S = n∆ is a constant within the sheath. In a

general (non-azimuthally symmetric) description, the boundaries, rbi and rbo, and the value

of S in the sheath would be functions of θ. In order to calculate the source, S, and hence the

pseudopotential, ψ, that results from beam asymmetries we need to make some assumptions.

Thus, we do not attempt a fully general analysis. Rather, we separately consider only the

m = 1 and m = 2 perturbations to the sheath. Although investigations into higher mode

perturbations could be done using this framework.

For each mode, it is important to consider the physical situation that leads to the blowout

perturbation. For example, the m = 1 case describes the displacement of the sheath caused

an offset beam slice. As in Huang et al. [88], we assume that the entire wakefield, i.e., the

ion column and inner and outer sheath boundaries, is displaced rigidly in the x direction

(without loss of generality). Assuming the sheath is not distorted in this displacement, ψ

in the new displaced frame is unchanged. Using this assumption, it is possible to find the

perturbed ψ as follows. In Fig. 3.1, we show the general diagram for a rigidly displaced

channel. We assume the channel is displaced by δr1 = δr1x̂. r1 = r0 + δr1 is the vector

from the origin to the new blowout radius, where r0 = rb0r̂ is the vector to the unperturbed

blowout radius. Assuming ψ remains unchanged, we have

ψ(r1) = ψ0(r0) = ψ0(r1 − δr1), (3.17)
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Figure 3.1: Diagram (not to scale) of a transverse slice of a rigidly displaced plasma channel.

The unperturbed channel (solid black) is shifted upwards by δr1. r1 is the vector to the new

blowout radius (dashed black) from the origin.

where ψ0 is the unperturbed ψ inside the bubble given by Lu et al. [27, 28],

ψ0(r) = ψ0(r = 0)− r2

4
. (3.18)

We can Taylor expand this around the displacement δr1,

ψ(r1) = ψ0(r1)− (δr1 · ∇⊥)ψ0(r1) +
1

2
(δr1 · ∇⊥)

2ψ0(r1) + ..., (3.19)

which leads to

ψ(r1) = ψ0(r1) +
r

2
(δr1 · r̂)−

1

4
(δr1 · r̂)2 (3.20)

and thus the first order perturbed ψ due to the rigid displacement is

ψ1(r1) =
r

2
(δr1 · r̂) =

r

2
δr1 cos θ. (3.21)

Next, we give an alternative description where the sheath (both inner and outer bound-

aries) is displaced purely radially, i.e., δrm = (δrm,c cos(mθ)+ δrm,s sin(mθ))r̂. We will show

that this gives the same result for ψ1 to first order. Using this assumption, it is possible to

model the perturbed source as a function of r. This can be used to solve for the perturbed
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pseudopotential coefficient for each azimuthal mode. This is similar to the way the original

hosing equations were derived in Whittum et al. [86]. We note that a purely radial sheath

displacement implies there is no perturbation to the azimuthal current Jθ, unlike the case of

rigid displacement. This approach should apply for a perturbation with general azimuthal

mode m, but here we just study the m = 1 and m = 2 cases, which we cover in Sec. 4.3, in

detail. In both cases, we will ultimately assume both the value of S in the sheath, n∆, and

the sheath thickness, ∆, remain constant. More accurate descriptions could be obtained if

n∆ and ∆ vary as functions of θ.

We begin by Taylor expanding the source profile to first order in the radial displacement

δrm = δrm cos(mθ)r̂ (this would correspond to an offset in x for m = 1), as follows,

S(r) = S0(r− δr)

≈ S0(r)− δrm cos(mθ)∂rS0(r)

= S0(r)− δrm cos(mθ) [(1 + n∆)δ(r − rb)− n∆δ(r − rb −∆)] , (3.22)

where S0 is given by the Lu et al. [27, 28] profile and δ is the Dirac delta function (not to

be confused with δr). Thus, the perturbed source density is given by

Sm(r, θ) = −δrm cos(mθ) [(1 + n∆)δ(r − rb)− n∆δ(r − rb −∆)] . (3.23)

Now we have to solve the 2D Poisson equation, ∇2
⊥ψm = Sm, to get the pseudopotential.

The general (homogeneous) solution is given by

ψm(r) = C1r
m +

C2

rm
, (3.24)

so we can write pseudopotential as

ψm(r) =


cm,0r

m r ≤ rb0

cm,1r
m +

cm,2
rm

rb0 < r ≤ rb0 +∆

cm,3r
m r ≥ rb0 +∆

(3.25)
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Enforcing the continuity of ψm at r = rb0 and r = rb0 +∆ gives use the conditions

ψm(r = r+b0) = ψm(r = r−b0) (3.26)

ψm(r = (rb0 +∆)+) = ψm(r = (rb0 +∆)−). (3.27)

We integrate over the boundaries at r = rb0 and r = rb0 +∆ to get the jump conditions

∂rψm(r = r+b0)− ∂rψm(r = r−b0) = −(1 + n∆)δrm (3.28)

∂rψm(rb0 +∆)+)− ∂rψm(r = (rb0 +∆)−) = n∆δrm. (3.29)

These four conditions allow us to solve for the coefficients in Eq. 3.25. The solution for the

first coefficient, which gives the field inside the bubble

cm,0 =
δrm
2m

[
(1 + n∆)r

1−m
b − n∆(rb +∆)1−m

]
. (3.30)

Thus, the m = 1 field inside the wake is

ψm=1(r) =
δrm=1

2
r, (3.31)

which is important for describing the perturbed plasma fields at the blowout radius. Assum-

ing the beam is offset in the x direction, this will be the cosine coefficient, so this result is

the same as the rigid displacement result, Eq. 3.21. It is possible to use other profiles for

the source term, such as an exponential profile, but this does not modify the field inside the

wake. However, this may give more accurate results for the fields outside the wake, which

we will discuss later. We note that in the limit that n∆ = ∆ = 0, one recovers the Whittum

et al. [86] result.

3.1.2 Perturbed plasma fields

In order to determine the modified trajectory of sheath electrons, all of the perturbed plasma

fields need to be determined. For radial displacements, we cannot make the same rigid

displacement assumptions for ψ. Instead, we want to evaluate the total pseudopotential
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at the new blowout radius, as this will be what we mainly care about when deriving the

equation for the plasma channel to describe hosing. We will now use the subscript 1 instead

ofm = 1 for brevity. For the azimuthal decomposition, we assumed the channel displacement

is purely radial, so we have δr1 = δr1r̂. And thus, r1 = (rb0 + δr1 cos θ)r̂. Evaluating the

total pseudopotential at the new radius we have

ψ(r1, ξ) = ψ0(r1, ξ) + ψ1(r1, ξ)

= ψ0(r = 0, ξ)− r1 · r1
4

+
δr1 · r1

2

= ψ0(r = 0, ξ)− (rb0 + δr1 cos θ)
2

4
+
δr1
2

(rb0 + δr1 cos θ) cos θ

= ψ0(r = 0, ξ)− r2b0
4

− rb0δr1 cos θ

2
+
δr1rb0 cos θ

2
+O

(
δr21
r2b0

)
= ψ0(r0, ξ) +O

(
δr21
r2b0

)
, (3.32)

where, again, ψ0 is given in Lu et al. [27, 28] and ψ1 is given in Eq. 3.31. Thus, we have

shown that to first order, ψ is unchanged as the channel is rigidly displaced. In other words,

the azimuthal decomposition (with radial displacement) gives the same result as a rigid

displacement to first order. This assumption is validated by simulations, meaning ψm=1 has

the form we derived (you can also explicitly check the top and bottom blowout trajectory,

although this can be tricky to compare for small displacements).

One important effect that was neglected in the initial theory of Huang et al. [88] was the

perturbed plasma sheath fields because these are difficult to calculate. Now that we have the

expression for ψ1, we can derive the vector potentials through the Lorenz gauge condition

∇⊥ ·A⊥ = −∂ψ
∂ξ
. (3.33)

We expand this into azimuthal modes in the typical way - we expand all quantities in terms

of cos(mθ) and sin(mθ), e.g., Ar,m = Ar,m,c cos(mθ) + Ar,m,s sin(mθ). If we assume an offset

in the x direction, the perturbation δr1 will be a cos θ term. Taking m = 1 and separating
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into the cos θ and sin θ terms (using subscripts c and s, respectively), we have

1

r
∂r (rAr,1,c) +

1

r
Aθ,1,s = −∂ξψ1,c = −

δr′1,c
2
r (3.34)

1

r
∂r (rAr,1,s)−

1

r
Aθ,1,c = −∂ξψ1,s = 0. (3.35)

To solve these, we make the ansatz

Ar,1 = f(ξ)r2 cos θ + g(ξ) cos θ (3.36)

Aθ,1 = f(ξ)r2 sin θ − g(ξ) sin θ, (3.37)

which is consistent with what is seen in simulations. Substituting these forms in, we get the

solution

f(ξ) = −
δr′1,c
8
, (3.38)

while g(ξ) is not able to be solved for from these equations. Inside the bubble, because

we have no Jz (and no perturbation), we have ∇2
⊥Az,1 = −Jz,1 = 0, and so Az,1 = a1(ξ)r.

Similar reasoning leads to ϕ1 = b1(ξ)r, thus we have (b1 − a1) = δr1/2. Because of the

nature of the quasi-static equations we cannot solve for a1 or b1 individually with the local

equations. Instead, it requires knowledge of the source outside the bubble. This is similar

to the offset term for the potentials, g(ξ). In simulations, both these terms seem to be first

order in δr1/r0 so they cannot be ignored, although the effect on the hosing equations seem

to be small for many scenarios. Using the expressions for A⊥ and Az, we can calculate the

magnetic field using B⊥ = ∇⊥ × (Az ẑ) +∇z ×A⊥. We have

Bθ = −∂ξAr − ∂rAz (3.39)

Br = ∂ξAθ +
1

r
∂θAz, (3.40)

which for m = 1 gives

Bθ,1 =

(
δr′′1,c
8
r2 − g̃(ξ)

)
cos θ (3.41)

Br,1 =

(
−
δr′′1,c
8
r2 − g̃(ξ)

)
sin θ, (3.42)
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where we have defined g̃ ≡ g′+a1. Bθ explicitly appears in the plasma channel equation when

we consider displacements in the x direction. So in the same way as with the pseudopotential,

we can write the total Bθ (the cosine term) from the plasma evaluated at the perturbed

blowout radius as

Bθ(rb0 + δr1) =
1

2
ψ′′
0(r = 0, ξ)(rb0 + δr1) +

δr′′1
8

(rb0 + δr1)
2 − g̃(ξ)

=
1

2
ψ′′
0(r = 0, ξ)(rb0 + δr1) +

δr′′1
8
r2b0 − g̃(ξ) +O

(
δr21
r2b0

)
. (3.43)

From simulations, we find that for some scenarios, the g̃(ξ) term cancels with the term

1
2
ψ′′
0(r = 0, ξ)δr1 (see Fig. 3.4). However, for other cases there seems to be other dominant

terms.

3.1.3 Perturbed fields outside the bubble

Although in this dissertation we do not use these in the hosing equation, in this section

we calculate the perturbed fields outside the bubble. We cannot solve for these without

introducing another constant due to the fact that we do not have the full profiles for the

perturbed currents outside the bubble. We use an exponential profile for the source profile

because they are more qualitatively similar to those seen in simulations, as we mentioned

before, but one could also use the Lu et al. profile. This gives different results for the

fields outside the bubble, but the fields inside are the same as the Lu et al. profile. The

unperturbed ψ outside the bubble is [83]

ψ0(r > rb0) =
∆r2b0

2(rb0 +∆)

(
1 + er/∆Ei

( r
∆

))
exp

(
−r − rb0

∆

)
≈ ∆r2b0

2(rb0 +∆)

(
1 +

∆

r

)
exp

(
−r − rb0

∆

)
, (3.44)

where Ei(x) is the exponential integral. The expression for the perturbed pseudopotential

outside the bubble can be obtained using the Taylor expansion method (see Eq. 3.19). We

have

ψ1(r > rb0, ξ) =
δr1r

2
b0

2(rb0 +∆)

(
1 +

∆

r

)
exp

(
−r − rb0

∆

)
. (3.45)
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Next, we make a similar ansatz as before

Ar,1(r, ξ) = A(r, ξ) cos θ (3.46)

Aθ,1(r, ξ) = A(r, ξ) sin θ. (3.47)

Substituting this into the gauge condition, we obtain

∂

∂r
A(r, ξ) +

2

r
A(r, ξ) = −b′(ξ)

(
1 +

∆

r

)
e−r/∆, (3.48)

where b(ξ) ≡ δr1r2b0
2(rb0+∆)

erb0/∆ and we have assumed ∂ξ∆ ≈ 0. The solution to this ODE is

A(r, ξ) = b′(ξ)∆

(
1 +

3∆

r
+

3∆2

r2

)
e−r/∆ +

c(ξ)

r2
. (3.49)

We can solve for c(ξ) by matching with the solution inside the bubble, A(r = rb0, ξ) =

−δr′1r2b0/8+g(ξ) 2. Technically, we have ignored the small region between rb0 < r < rb0+δr1,

but this is a reasonable assumption for small δr1 according to simulation. We can now

calculate Bθ,1 outside the bubble

Bθ,1 = −∂ξAr,1 − ∂rAz,1 = −∂ξA(r, ξ) cos θ

=

[
−∆b′′(ξ)

(
1 +

3∆

r
+

3∆2

r2

)
e−r/∆ − c′(ξ)

r2

]
cos θ, (3.50)

where we ignored the contribution from Az,1 outside, which again seems reasonable for small

δr1, but should be included for larger δr1, such as in the rear of the bubble. As we mentioned

earlier, calculating Az,1 for non-zero Jz,1 is not trivial in our formalism. The calculation of

these coefficients in the expression for Bθ,1 can be quite complex, so we use Mathematica

[92] to compute them.

We can compare these expressions for the perturbed fields with results from QPAD

simulations. We compare two of the four scenarios from Huang et al. [88]: case (b), which

2It seems matching Aθ,1 at the boundary gives the opposite sign of g(ξ) than matching Ar,1, so this is
implies it must be zero (or a higher order term). But this does not seem to be borne out in the simulations.
This could be a problem with the ansatz.
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(a) (b)

Figure 3.2: Beam and plasma density for (a) case (b) and (b) case (d) in Table 3.1.

represents the adiabatic, relativistic regime, and case (d), which represents the non-adiabatic,

relativistic regime. The parameters are listed in Table 3.1, and the corresponding wakes are

shown in Fig. 3.2. In Fig. 3.3, we can see broad agreement for the fields inside the bubble

(we have used the on-axis value from the simulation because we have not solved for the

quantity g̃(ξ)). The fields outside roughly agree with simulation for case (b) except for Bθ,1

at ξ = 5.0, which is further back in the bubble where the sheath structure becomes more

complicated and the assumptions are not as good. In case (d), the fields outside do not agree

as well and we see large spikes in the Bθ,1 just outside the bubble. Finally, in Fig. 3.4, we test

the rigid displacement term for the on-axis Bθ,1 against the simulation for case (b). In this

case, the Ez in the beam region is close to zero because the blowout radius is constant. We

see very close agreement with the rigid displacement term, so we believe this is a dominant

term, but in other scenarios there seem to be other dominant terms. Going forward we will

use this term in our derivation of the hosing equation. Future work may calculate the other

terms in Bθ,1(r = 0) and investigate its effect on the plasma channel equation.

3.1.4 Derivation of the plasma channel equation

As mentioned before, we will be using the same formalism as Huang et al. [88], where we

apply a first order perturbation theory around the symmetric blowout described in Lu et al.
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Parameter (b) (d)

np (cm
−3) 5.66 2.0

∆ξ (k−1
p ) 2.3 0.27

γ 55,773 20,000

nb (np) 800/650 4293

σr (10
−3 k−1

p ) 89.8 13

L (k−1
p ) 4.2/8.8 1.06/3.73

Θ (10−3 rad) 0/7.69 0/4.17

Table 3.1: Simulation parameters similar to case (b) and (d) from Huang et al. For both

cases, we use an initial untilted beam for the blowout, the tilted beam is tilted by Θ with

respect to its head, which is ∆ξ behind the end of the initial beam. In both cases, the

initial beam is triangular, ramping up to its maximum density. In case (b) the tilted beam

is uniform and in case (d) the tilted beam is triangular starting at its maximum density and

ramping down to zero. The parameters are listed in the form Beam1/Beam2, or as is if they

are the same.
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Figure 3.3: (a)-(d) m = 1 Ar and Bθ fields (in normalized units) for case (b) in Table 3.1.

(a) Ar,1 and (b) Bθ,1 at kpξ = 1 behind the head of the beam. (c) Ar,1 and (d) Bθ,1 at kpξ = 5

behind the head of the beam. (e)-(h) m = 1 Ar and Bθ fields (in normalized units) for case

(d) in Table 3.1. (e) Ar,1 and (f) Bθ,1 at kpξ = 1 behind the head of the beam. (g) Ar,1

and (h) Bθ,1 at kpξ = 3 behind the head of the beam. In all cases, the on-axis value for the

theory line is taken from the simulation.

Figure 3.4: On-axis value of Bθ,m=1 (shift of parabola) from simulation. The theory line is

the rigid displacement term Bθ,m=1(r = 0) = − r1
2
ψ′′
0(r = 0).
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[27]. However, we will use the potentials ψ ≡ ϕ−Az, Az, and Ar, instead of the electric and

magnetic fields. We start with the relativistic equation motion for a plasma electron in the

radial direction,
dP⊥

dt
=

d

dt

(
γ
dr

dt

)
, (3.51)

where P⊥ is the perpendicular momentum and γ is the Lorentz factor. We normalize mass

to the electron mass m, charge to the elementary charge e, velocities to the speed of light

c, densities to the background plasma density np, and potentials to mc2/e. We employ the

quasi-static approximation [73]. Under this assumption, we have the constant of motion

γ(1− vz) = 1 + ψ and thus d/dt = ((1 + ψ)/γ)d/dξ [74]. So we can write

dP⊥

dt
=

1 + ψ

γ
[(1 + ψ) r′]

′
, (3.52)

where the prime refers to the derivative in ξ. From [27], we also have

dP⊥

dt
=
∂ϕ

∂r
− vz

∂Az
∂r

+ (1− vz)
∂Ar
∂ξ

=
∂ψ

∂r
+ (1− vz)

∂Az
∂r

+ (1− vz)
∂Ar
∂ξ

. (3.53)

So we now have the equation of motion in terms of just the radial coordinate and the

potentials,

[(1 + ψ) r′]
′
=

γ

1 + ψ

∂ψ

∂r
+
∂Az
∂r

+
∂Ar
∂ξ

, (3.54)

where

γ =
1

2

(
P 2
⊥ + 1

1 + ψ
+ 1 + ψ

)
=

1

2

(
(1 + ψ)2 r′2 + 1

1 + ψ
+ 1 + ψ

)
. (3.55)

We use the potentials in the Lorenz gauge as in [27],

ψ = ψ(r = 0)− r2

4
, (3.56)

Az = Az(r = 0) + Λ ln r, (3.57)

Ar = −r
2
ψ′(r = 0), (3.58)
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where Λ(ξ) =
∫∞
0
nb rdr is the charge per unit length of the beam. In the case of a Gaussian

electron beam, we have nb =
(
N/((2π)3/2σ2

rσz)
)
× e−r

2/2σ2
re−ξ

2/2σ2
z , where N is the number

of beam electrons, σr is the beam spot size, and σz is the beam length. In this case, we have

Λ = nb/np(kpσr)
2 = 2Ib/IA, where Ib is the beam current and IA ≈ 17 kA is the Alfvén

current.

We use the m = 0 potentials along with the m = 1 expression for Ar in the equation

of motion Eq. 3.54, and following Huang et al. [88], use a perturbation approximation

where we label the unperturbed (symmetric) solution with a 0 subscript and the first order

quantities with a 1 subscript (these will generally correspond to the mode number)

r = r0 + r1, (3.59)

γ = γ0 + γ1 = γ0 + (1 + ψ0) r
′
0r

′
1, (3.60)

Ar = Ar,0 + Ar,1, (3.61)

Az = Az,0 + Az,1. (3.62)

Keeping the first order terms, we arrive at

(1 + ψ0)r
′′
1 +

r20
8
r′′1 +

(
ψ′
0 +

r0r
′
0

2

)
r′1 +

Λ

r20
(r1 − xb) = 0. (3.63)

We introduce the coefficients defined in Huang et al. [88], cψ ≡ 1/(1+ψ0) and cr ≡ Λ/r20, and

note ψ′
0 = Ez,0. Assuming a rigid channel displacement, and because none of the coefficients

in Eq. 3.63 change sign from the top to bottom trajectory, we replace r1 with the channel

centroid xc. We arrive at(
1 + cψ

r20
8

)
x′′c + cψ

(
Ez,0 +

r0r
′
0

2

)
x′c + crcψ(xc − xb) = 0. (3.64)

We now make several observations about this equation. First, we see it reduces to the

equation in Huang et al. [88] (note the difference in the definition of Λ), in the limit that

Ez,0, r0r
′
0 ≪ r′′1/r

′
1 and cψr

2
0 ≪ 8. The dropped terms are important when you have large

bubbles and accelerating fields, i.e., in the relativistic, non-adiabatic regime. Moreover, these
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additional terms will be non-zero for regions in which Λ = 0, and therefore cr = 0, whereas

the previous model predicted a linear response in those regions.

We can use the values from simulation for zeroth order quantities in order to verify this

equation. But in principle we can calculate these quantities using the Lu et al. [27, 28]

model to first order in ∆/r0. The model for ψ is

ψ(r, ξ) =
r20
4
(1 + β)− r2

4
, (3.65)

where

β =
(1 + α)2 ln [(1 + α)2]

(1 + α)2 − 1
− 1

= α− α2

6
+O(α4), (3.66)

and α ≡ ∆/r0 = (∆s +∆L) /r0, where ∆s corresponds to the sharp peak in the source ρ−Jz

and ∆L corresponds to the region where the electrons act nearly as they would in a linear

wake. We get ∆s values by matching with simulation measurements (where the density falls

off to 1/e of its max value). For the cases presented here, ∆s can be assumed to be roughly

constant but it can get wider as you approach the rear of the bubble. In addition, the sheath

can become multi-valued in the rear of the bubble [31]. Using the Lu et al. model, we

compute the coefficients from Eq. 3.64 to first order in ∆/r0,

crcψ
1 + cψr20/8

=
Λ/r20

1 + r0∆/4 + r20/8
+O

(
∆

r0

)2

(3.67)

cψ (Ez,0 + r0r
′
0/2)

1 + cψr20/8
=

r′0 (r0 +∆/4)

1 + r0∆/4 + r20/8
+O

(
∆

r0

)2

. (3.68)

These expressions can roughly be compared to the ones from the Mehrling et al. [90], except

it should be noted the ∆ here is technically different than the one in Mehrling et al. because

it uses an exponential source to derive the fields (from Yi et al. [83]). The ∆ρ in that

reference should roughly be the same as the ∆s used here.
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3.1.5 Comparison to PIC simulations

We can now compare our model with previous models and PIC simulations, testing both

the plasma channel equation with one 3D timestep simulations and full length simulations

to compare the beam centroid evolution.

First, we compare results for the new equation for the two cases from Huang et al. [88]

described in the previous section. The parameters are listed in Table 3.1. In Fig. 3.5, we

see the results for a single ξ timestep indicate the new model provides much more accurate

results than the Huang et al model (with dropped terms). First, we wish to note an apparent

mistake in the Huang et al. publication [88]. In the paper, Λ was defined as 4Ib/IA instead

of the conventional 2Ib/IA and the term ω2
0 was inserted in a similar fashion to Whittum et

al. [86] so that the equation is the same as we derive (without the extra terms of course).

However, it appears Huang et al. uses Λ = 2Ib/IA when computing xc, so they get a result

much closer to simulation than what is shown in Fig. 3.5a. However, in this case the factor of

2 is coincidentally very close to the term (1+cψr
2
0/8) (the other term is close to zero because

r′0 ≈ 0 and so Ez,0 ≈ 0 too). In case (d) (shown in Fig. 3.5b), we see moderately good

agreement. We also ran a case with four times the beam density for both beams so that the

blowout radius is about twice as large (r0 ∼
√
Λ). In this case, we see much more accurate

results because our approximations become better as the blowout radius is doubled but the

perturbation is similar to the previous case, i.e., r1/r0 becomes smaller. In case (d) (shown in

Fig. 3.5b), we see the Mehrling et al. model result is similar to what was presented in their

paper, which is similar in magnitude to the simulations result but qualitatively different

(more curvature). With twice the blowout radius, we see a more exaggerated curve. We

note the results are sensitive to the chosen value of ∆ρ, e.g., if we use ∆ρ = 0.5 we see large

disagreement, which is not the case in our model with analytic coefficients. This is evident

in case (b) (shown in Fig. 3.5a) where the Mehrling et al. model seems to break down.

We also simulate beam hosing over several betatron oscillations and the results are shown
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Figure 3.5: Plasma channel centroid comparison. (a) Case (b) in Table 3.1. In our model

with analytic coefficients, ∆ = 0.55 + 0.5 was used and for Mehrling et al., ∆ρ = 0.55 was

used. (b) Case (d) in Table 3.1. In our model with analytic coefficients, ∆ = 0.2 + 0.5 was

used and for Mehrling et al., ∆ρ = 0.2 was used. (c) Case (d) with four times the beam

density (both beams) and therefore twice the blowout radius. In our model with analytic

coefficients, ∆ = 0.35 + 0.5 was used and for Mehrling et al., ∆ρ = 0.35 was used. The

simulation line is measured using the x-crossing of the focusing force.
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(a) (b)

Figure 3.6: Beam centroid comparison. (a) Case (b) in Table 3.1. (b) Case (d) in Table 3.1.

In both cases, the centroid is measured kpξ = 3 behind the head of the tilted beam. We turn

off longitudinal acceleration in the simulation to isolate the transverse physics.

in Fig. 3.6. The evolution for the beam centroid is given by

ẍb + k2βxb = k2βxc, (3.69)

where at each timestep in s, xc is solved for along ξ using the previous xb via Eq. 3.64. In

general, we find a strong correlation between the accuracy of the plasma channel centroid

and the accuracy of the full beam centroid evolution.

Next, we consider the FACET-II like parameters listed in Table 3.2. These parameters

correspond to two short tri-Gaussian bunches with the witness beam loaded in the very back

of the wake where the acceleration gradient is large. The results are shown in Fig. 3.7. We

see decent agreement for the shorter beam separation, although this is not changed from

the Huang et al. model. For the ideal beam separation, we see large disagreement between

the updated model and simulation. This may be due to the small blowout radius and larger

perturbation at the back of the bubble and/or a more complicated sheath structure that

may need to be described with a different model (such as in Ref. [31]).

Finally, we test our model with the beam loading parameters from Tzoufras et al. [29],

listed in Table 3.3. The witness beam is trapezoidally shaped to flatten the accelerating

field. The results are shown in Fig. 3.8a. The witness beam is loaded in a region that still
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(a) (b)

(c) (d)

Figure 3.7: FACET-II hosing with a ∆x = 0.1 µm offset witness beam. Plasma channel

centroid for a beam spacing of (a) ∆ξ = 4.89 k−1
p and (b) ∆ξ = 5.65 k−1

p . Full beam centroid

evolution for a beam spacing of (c) ∆ξ = 4.89 k−1
p and (d) ∆ξ = 5.65 k−1

p . We turn off

longitudinal acceleration in the simulation to isolate the transverse physics.
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np = 4× 1016 cm−3 ∆ξ = 5.65/4.89 k−1
p

Parameter Drive Beam Witness Beam

γ 20,000 20,000

nb (np) 93.93 75.15

σr (k
−1
p ) 0.137 0.137

σz (k
−1
p ) 0.48 0.24

xb0 (10−2 k−1
p ) 0 3.76

Table 3.2: Simulation parameters for FACET-II. We list two different spacings, ∆ξ =

5.65 k−1
p is the designed spacing for optimal beam loading.

has large blowout radius, so we see very good agreement with our model.

Additionally, we wish to test the effects of acceleration and energy spread with our model.

Our equation for the plasma channel centroid will not change but the full expression for the

beam centroid allowing for energy evolution is

ẍb +
γ̇

γ
ẋb + k2βxb = k2βxc. (3.70)

The beam gains energy according to

γ(ξ, s) = γ(ξ, s = 0)− Ez(ξ)kps. (3.71)

over the propagation distance, s. If the Ez is flattened all the beam particles will gain the

same amount of energy. We again simulate the ideal beam loading parameters but with a

10% head-to-tail energy chirp and acceleration of the witness beam turned on. The result

is shown in Fig. 3.8b. Again, we see close agreement, but the disagreement becomes larger

for large propagation distances. In this case, we see a much smaller hosing growth over half

a meter (∼ 67% reduced growth). We will explore these effects further in the next chapter.
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np = 1× 1017 cm−3 ∆ξ = 8.2 k−1
p

Parameter Drive Beam Witness Beam

γ 55,773 55,773

nb (np) 30 30→15

σr (k
−1
p ) 0.5 0.5

σz/L (k−1
p ) 1.417 2

xb0 (k−1
p ) 0 0.05

Table 3.3: Beam loading simulation parameters, similar to the ones used in Tzoufras et al.

(a) (b)

Figure 3.8: Beam loading with hosing. (a) Beam centroid evolution with parameters from

Table 3.3, with acceleration turned off. (b) Beam centroid evolution with a 10% head-to-tail

energy chirp on the witness beam (and acceleration turned on).
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3.2 Asymmetric beam theory

This section will follow the same procedures described above, but this time instead of looking

at the m = 1 instability that describes hosing, we will look at the m = 2 (sometimes called

the quadrupole mode) that describes asymmetric wakes. By an asymmetric beam, we mean

a beam with different spot sizes in the x and y directions (sometimes also called elliptical).

As long as the aspect ratio, σx/σy, is small, we only need to use the m = 2 mode to describe

the beam and resulting wakefield. Again, we will use a Fourier azimuthal decomposition to

make this explicit. Then we can use a similar perturbation method to describe the blowout

perturbation and therefore wakefields inside the bubble for an asymmetric beam.

3.2.1 m = 2 source term and pseudopotential

We will again begin by describing the beam density in terms of the azimuthal mode decom-

position. The beam density is

ρb = ρb,0 exp

(
− x2

2σ2
x

− y2

2σ2
y

)
, (3.72)

which can be expanded into

ρb = ρb,0 exp

(
−r

2 (1 + cos(2θ))

4σ2
x

− r2 (1− cos(2θ))

4σ2
y

)
= ρb,0 exp

(
− r2

4σ2
x

− r2

4σ2
y

)
exp

{(
− r2

4σ2
x

+
r2

4σ2
y

)
cos(2θ)

}
. (3.73)

For brevity, we define
1

σ2
≡ 1

2σ2
x

+
1

2σ2
y

,
1

∆2
≡ − 1

2σ2
x

+
1

2σ2
y

. (3.74)
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Using the multipole expanion for the potential from the previous section, Eq. 3.12, we have

ϕm=2(r, θ) =
1

4πϵ0r2

∫
dr′dθ′ρ(r′)r′3 cos(2(θ′ − θ))

=
cos(2θ)

4πϵ0r2

∫
dr′dθ′ρ(r′)r′3 cos(2θ′) +

sin(2θ)

4πϵ0r2

∫
dr′dθ′ρ(r′)r′3 sin(2θ′)

=
ρb,0 cos(2θ)

4πϵ0r2

∫ ∞

0

∫ 2π

0

dr′dθ′r′3 cos(2θ′)e−r
′2/2σ2

e−r
′2/2∆2 cos(2θ′)

=
ρb,0 cos(2θ)

4πϵ0r2

∫ ∞

0

dr′r′3I1

(
− r′2

2∆2

)
e−r

′2/2σ2

=
ρb,0 cos(2θ)

4πϵ0r2
2∆4

(∆4/σ4 − 1)3/2

=
ρb,0 cos(2θ)

4πϵ0r2
σxσy

(
σ2
x − σ2

y

)
, (3.75)

where I1 is the modified Bessel function of the first kind. We define Λ ≡ ρb,0σxσy, switch to

normalized units, and take the gradient to obtain

Em=2 = −∇ϕm=2

=
Λ

r3
(σ2

x − σ2
y)
(
cos(2θ)r̂+ sin(2θ)θ̂

)
. (3.76)

In this analysis, we are interested in the r̂ direction and the cos(2θ) terms (we take the y = 0

slice without loss of generality). Moreover, we note that we are in the far field for a beam

traveling at the speed of light so

Er,m=2(r, θ)− vzBθ,m=2(r, θ) = (1− vz)
Λ

r3
(σ2

x − σ2
y) cos(2θ), (3.77)

which is what we will eventually need to describe the wake shape.

In Sec. 3.1.1, we showed the general Poisson solution for an azimuthal mode m. The

solution for the pseudopotential inside the bubble was

ψm(r) cos(mθ) =
δrm cos(mθ)

2m

[
(1 + n∆)r

1−m
b − n∆(rb +∆)1−m

]
rm. (3.78)

We again only consider the cosine term by assuming σx > σy. For m = 2, we have

ψm=2(r) =
δrm=2

4

[
1 + n∆

rb
− n∆

rb +∆

]
r2. (3.79)
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Using n∆ =
r2b

(rb+∆)2−r2b
and simplifying, we obtain

ψm=2(r) =
δrm=2

4

[
3r2b + 3rb∆+∆2

rb(rb +∆)(2rb +∆)

]
r2 ≈ 3δrm=2

8rb

(
1− ∆

2rb

)
r2, (3.80)

where, in the last step, we expanded to first order in ∆/rb.

3.2.2 m = 2 perturbed plasma fields and wake shape

We use the same method as we did with m = 1 to calculate the vector potentials. We use

the Lorenz gauge condition (Eq. 3.33) for the m = 2 mode,

1

r
∂r (rAr,2,c) +

2

r
Aθ,2,s = −∂ξψ2,c. (3.81)

We use a similar ansatz as them = 1 case but with one higher degree of r (this again matches

what we see in simulation)

Ar,2 =
(
f2(ξ)r

3 + g2(ξ)r
)
cos(2θ) (3.82)

Aθ,2 =
(
f2(ξ)r

3 − g2(ξ)r
)
sin(2θ), (3.83)

and upon substituting this into Eq. 3.81, we obtain

f2(ξ) =
1

16r20

[
δr2r

′
0

(
1− ∆

r0

)
− δr′r0

(
1− ∆

2r0

)]
. (3.84)

Similarly to the m = 1 case, we cannot solve for g2(ξ), and we have Az,2 = a2(ξ)r
2 and

ϕ2 = b2r
2, where b2 − a2 =

3δr2
8r0

(
1− ∆

2r0

)
. We can calculate the azimuthal magnetic field as

follows,

Bθ,2,c = −∂ξAr,2,c − ∂rAz,2,c

=
r3

16r30

[
δr′′2r

2
0

(
1− ∆

2r0

)
− 2δr′2r0r

′
0

(
1− ∆

r0

)

+ δr2

(
r′20

(
2− 3∆

r0

)
− r′′0r0

(
1− ∆

r0

))]
− g̃r, (3.85)
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where we defined g̃ ≡ g′ + 2a2. Again, we cannot solve for this term but we can guess it is

similar to the m = 0 perturbed value, thus we take g̃ ≈ δr2ψ
′′
0(r = 0)/r0.

We can use the azimuthal magnetic field to derive a differential equation for δr2 in a

similar way as we did for hosing. Firstly, the driving term is now (σ2
x−σ2

y)/r0 (see Eq. 3.77).

However, unlike with hosing, the pseudopotential does not cancel out because there is no

change in coordinates. Therefore, we will now have a non-zero term for it in the perturbation

theory, namely ψ = ψ0 +ψ1 (where ψ1 corresponds to ψm=2). So we perturb the equation of

motion for a boundary electron given by Eq. 3.54 and take the first order terms to arrive at

(1 + ψ0)r
′′
1+

(
ψ′
0 +

r0r
′
0

2

)
r′1 +

r1
2
ψ′′
0(r = 0) +Bθ,2

− r0
2(1 + ψ0)3

ψ1 −
2γ0

1 + ψ0

(
r0ψ̃1 −

r1
4

)
=

Λ

r20

(
σ2
x − σ2

y

r0
− xb

)
, (3.86)

where we define ψ̃ ≡ ψ1/r
2. We again use the coefficients cψ ≡ 1/(1 + ψ0) and cr ≡ Λ/r20,

substitute in the expression for ψ1 = ψm=2 and Bθ,2, and denote r1 = δr2 to obtain(
1 + cψ

r20
16

(
1− ∆

2r0

))
δr′′2 + cψ

(
Ez,0 +

3

8
r0r

′
0 +

1

8
∆r′0

)
δr′2

− cψ
16

(
3∆

r0
r′20 + r0r

′′
0

(
1− ∆

r0

)
+ 2(1 + c2ψ)

(
1− 3∆

2r0

)
+ 3c3ψ

(
1− ∆

2r0

)
r20

)
δr2

= crcψ

(
σ2
x − σ2

y

r0
− δr2

)
. (3.87)

Once this differential equation is solved, we know the perturbed wake shape, δr2, and then

can compute the perturbed fields of the asymmetric wake. As we will explore in the next

chapter, the focusing force strength will vary longitudinally which can cause the beam slices

to resonate at different betatron frequencies. And, in accordance with the Panofsky-Wenzel

theorem [95], the accelerating field will vary transversely, which can cause an increase in

energy spread.
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3.2.3 Comparison to PIC simulations

We compare both the field expressions and the wake shape perturbation for asymmetric

witness beam with QPAD simulations. We simulate both case (b) and (d) from Table 3.1,

except instead of the second beam being tilted, it is instead made asymmetric by doubling

its spot size in the x direction and halving its density so that the current stays the same.

First, we compare the fields inside the wake with QPAD simulations, shown in Fig. 3.9.

We have not shown the expressions for the fields outside for m = 2, but they could be

computed in the same way as m = 1. Just as for the m = 1 case, we see essentially perfect

agreement for the fields inside given the linear term gr or g̃r taken from simulation.

Next we compare the wake shape perturbation δr2 from a single 3D timestep simulation

with the value obtained from integrating Eq. 3.87, shown in Fig. 3.10. The simulation value

is measured using δr2(ξ) = 4F⊥,2(r, ξ)r0(ξ)/3 (1−∆/(2r0(ξ))) (r is chosen to be a small

value near the axis), which is analogous to what we did for m = 1. In general, the agreement

is not as good as the m = 1 case, where the details of the sheath do not directly appear in

perturbed pseudopotential expression so a higher accuracy can be maintained. But we still

find a moderate agreement with simulation for this first order approximation.

3.3 Summary

We have shown that by including all terms in the first order perturbation theory introduced

by Huang et al. [88] and properly calculating them = 1 plasma fields, we can more accurately

predict the plasma channel centroid and therefore the beam hosing instability in the non-

adiabatic, relativistic regime of interest to future experiments and applications.

We developed a formalism for calculating the fields for a general m mode, assuming a

small radial perturbation to the sheath. For m = 1, this formalism gives the same result for

the perturbed ψ to first order as the result derived from a rigid displacement of the channel.
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Figure 3.9: (a)-(d) m = 2 A⊥ and B⊥ fields (in normalized units) for case (b) in Table 3.1

except with an aspect ratio of 2 instead of a tilt. (a) A⊥,2 and (b) B⊥,2 at kpξ = 1 behind

the head of the beam. (c) A⊥,2 and (d) B⊥,2 at kpξ = 5 behind the head of the beam. (e)-(h)

m = 2 A⊥ and B⊥ fields (in normalized units) for case (d) in Table 3.1 except with an aspect

ratio of 2 instead of a tilt. (e) A⊥,2 and (f) B⊥,2 at kpξ = 1 behind the head of the beam.

(g) A⊥,2 and (h) B⊥,2 at kpξ = 3 behind the head of the beam. In all cases, the linear term

gr or g̃r is taken from the simulation.
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Figure 3.10: Perturbed wake shape comparison. (a) Case (b) in Table 3.1 but with the an

aspect ratio of 2 instead of a tilt. ∆ = 1.0 was used. (b) Case (d) in Table 3.1 but with the

an aspect ratio of 2 instead of a tilt. ∆ = 0.8 was used. (c) Case (d) with four times the

beam density (both beams) and therefore twice the blowout radius. ∆ = 1.0 was used. The

simulation line is measured using the slope of the m = 2 focusing force.

This was found to agree well with simulations. Knowing the perturbed pseudopotential,

it was then possible to calculate the perturbed potentials and fields (up to an additive

constant). These were also found to match simulations. Using these fields, we then rederived

the equation for the channel displacement. We find this improved equation provides much

more accurate results for a variety of different scenarios. There is still large discrepancy in

some scenarios, where the blowout radius is very small and the sheath structure is more

complicated.

We apply the same formalism to the m = 2 mode to describe wakes made by asymmetric

beams. We calculate the pseudopotential and fields in the same way as m = 1. We can again

use a perturbation theory on the symmetric blowout to predict the new wake shape. In this

case, instead of the channel being displaced, it is widened in the direction of the larger spot

size. The model for the perturbed wake shape was this was found to roughly agree with

simulations. Once the perturbed wake shape is solved for, the wakefields caused by a given

asymmetric beam can be calculated.
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Finally, we discuss improvements one can make to the azimuthal mode model presented

in this chapter. In the seminal work of Whittum et al. [86], an m = 1 like analysis of the

channel was simple because there was assumed to be no electron sheath. In reality, blown

out plasma wakes have finite-width electron sheaths, even in the long pulse limit. Self-

consistently describing how the structure of the sheath is altered due to the perturbation by

an offset beam is challenging. In this chapter, we showed if we assume a simple radial shift

in the sheath, meaning its density and thickness are unchanged and do not vary in angle, θ,

then an analogous result to Whittum et al. for ψ can be derived and used to calculate the

plasma sheath fields. This gave the same result as a simple rigid displacement calculation

to lowest order. We extended the result for the m = 2 case. However, this model does not

rigorously conserve the source charge, S. In reality, the perturbed sheath density/thickness

must vary in a way to conserve the charge. More detailed (and perhaps complicated) models

may include perturbations that are not purely radial and may include the azimuthal current

self-consistently in order to conserve the total source charge.
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CHAPTER 4

Mitigation mechanisms for the hosing instability

In the previous chapter, we presented theoretical models for describing beam hosing and

asymmetric wakes in plasma-based accelerators (PBAs). In this chapter, we show how

the hosing instability can be mitigated, including by driving an asymmetric wake with an

asymmetric drive beam. We first review the basic physics of mitigating hosing (called beam

breakup by the accelerator community) in conventional accelerators. We will introduce the

two-particle model which is useful for investigating mitigation conditions and timescales.

Then, we will review the existing literature for mitigating hosing in PWFAs, including why

the drive beam is inherently stable. We then show two ways of mitigating witness beam

hosing. The first by using an initial energy chirp and the second by using an asymmetric

drive beam. In the next chapter, we will discuss in detail how ion motion can not only

mitigate hosing but even eliminate any misalignments.

4.1 Transverse instability overview

First, we provide some physics background based on conventional accelerators for the trans-

verse or beam breakup instability, including how it was dealt with, and then discuss how

these ideas can be applied to PBA and PWFA in particular. One method to mitigate beam

breakup is to apply an energy chirp on the beam and it turns out the drive beam inher-

ently acquires such an energy chirp. Thus, the necessary condition for stability of the drive

beam can occur naturally during wake excitation and propagation through the plasma. The

witness beam is more challenging to stabilize with these methods.

81



4.1.1 The BBU instability and BNS damping

We will briefly review the transverse physics in conventional accelerator physics because the

same ideas will apply to PBAs, although the equations are more involved. One important

tool for investigating the transverse dynamics of a beam is the two-particle model, where

one macroparticle at the front of the beam drives the wake that the second macroparticle

at the tail of the beam experiences. Of course this is not a realistic description, however, it

captures the essential physics of the resonance condition between the transverse oscillations

of two particles when they are offset from a defined axis. In RF cavities, when a beam is

misaligned it will execute betatron oscillations and induce a dipole mode in the wakefield

that the tail and subsequent bunches may experience. This acts to increase the transverse

oscillations and eventually cause the beam to break up, hence the name beam breakup

(BBU) instability (this is also called the hosing instability, which is more commonly used is

the plasma context).

To introduce the two-particle model, we follow Ref. [96]. With the two-particle model,

we can analyze a beam with initial offset ŷ. The head with oscillate with constant amplitude

y1(s) = ŷ cos kβs, (4.1)

where s is the propagation distance and kβ is the energy-dependent betatron wavenumber. In

PBA, kβ = kp/
√
2γ. The tail particle located a distance z behind the head then is deflected

according to

y′′2 + k2βy2 = −Nr0W1(z)

2γL
ŷ cos kβs, (4.2)

where γ is the Lorentz factor, r0 is the classical electron radius, W1(z) is the transverse wake

function for a cavity with a period L, and N is the number of particles in the bunch. The

transverse wake function is essentially the Green’s function for a beam with an m = 1 mode,

which depends on the properties of the vacuum chamber environment. The solution is

y2(s) = ŷ

(
cos kβs−

Nr0W1(z)

4kβγL
s sin kβs

)
, (4.3)
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where the second term represents the resonant response of the tail particle to the driving

wakefield created by the head. The growth parameter can be defined as

Υ ≡ −Nr0W1(z)L0

4kβγL
, (4.4)

where L0 is the linac length. A more involved analysis that includes acceleration shows the

resonant term growths logarithmically with s instead of linearly [96]. The modified growth

parameter in that case is

Υ = −Nr0W1(z)L0

4kβγfL
ln
γf
γi
. (4.5)

This growth is still quite severe, but as one might guess it is not hard to break this resonance.

As long as the tail particle oscillates at a different frequency than the head, they will not

be in resonance. This method of changing the beam betatron focusing along the bunch is

known as BNS damping after Balakin, Novokhatsky, and Smirnov [97]. The solution to Eq.

4.2, assuming the tail particle oscillates at kβ +∆kβ, where |∆kβ/kβ| ≪ 1, is

y2(s) = ŷ cos(kβs+∆kβs) +
Nr0W1(z)

4kβ∆kβγL
ŷ [cos(kβs+∆kβs)− cos kβs] . (4.6)

We notice that if
∆kβ
kβ

= −Nr0W1(z)

4k2βγL
=

Υ

kβL0

, (4.7)

then the tail will oscillate uniformly with the exact same betatron oscillation as the head,

i.e., the instability has been completely suppressed. This condition is referred to as the

BNS condition. Conventionally, BNS damping as been applied either with a quadrupole

whose strength changes as the bunch passes by or by positioning the bunch relative to the

acceleration voltage such that the tail acquires a lower energy than the head, i.e., by using

chromaticity. In the case of the SLAC linac, a typical energy deviation required by the BNS

condition from head to tail would be around -5.5% [96].

4.1.2 BNS damping in a plasma

Next, we discuss how the idea of BNS damping has been applied to plasmas and the blowout

regime. In the first paper to describe the hosing (or BBU) instability in a PBA, Whittum
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et al. [86], several mitigation techniques were proposed. BNS damping was suspected to

be ineffective due to the large betatron spread required because the wavenumber resonance

is weak. However, because of the strong growth predicted in this seminal paper, i.e., the

beam offset may exponentially grow from noise causing beam breakup, there has been much

effort on studying this instability theoretically, computationally, and experimentally. Ex-

perimentally, no evidence of hosing was found unless specifically seeded [21]. This has been

speculated to be due to BNS damping due to several different possible mechanisms [98]. This

is the main topic of this chapter.

First, we review some of the theoretical advancements on the mitigation of hosing in

PBAs. In the linear regime, hosing was found to be suppressed after a long proton bunch

was self-modulated into a train of beamlets [99]. The suppression mechanism was a BNS-type

mechanism because each beamlet resides in a different focusing region with the amplitude

increasing for each beamlet. As long as the self-modulation instability grows faster than the

hosing instability, the hosing would be suppressed after saturation. In the quasilinear regime

of a PBA, the ions are not fully blown out and therefore the focusing force naturally varies

longitudinally. This variation of focusing along the bunch was found to suppress hosing [100].

In the blowout regime, the drive beam was found to be intrinsically stable due to the energy

variation that results from the decelerating field [98]. Ref. [98] also showed hosing would

be suppressed for a beam with a correlated energy chirp or an uncorrelated energy spread.

Drive beams with widths on the order of the blowout radius are also intrinsically stable due

to the different focusing strengths along the beam [101].

Witness beam stability in the blowout regime is more challenging because we generally

want the beams to be monoenergetic, which we achieve by properly beam loading. There is

a relationship between the energy variation one can impose to suppress witness beam hosing

and the efficiency of the acceleration process [102]. So directly applying a chirp has to be

done carefully, as we will discuss in Sec. 4.2. Longitudinally varying focusing strengths

to induce BNS damping will cause the accelerating field to vary transversely, as stated by
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the Panofsky-Wenzel theorem [95], which causes growth in energy spread. This will be

discussed in Sec. 4.3. Finally, the motion of ions can also introduce a density variation

(both transversely and axially) which causes slightly nonlinear focusing forces and focusing

variation along the bunch, which, as we have discussed, will suppress hosing [103, 104]. If

the ion motion is severe, the hosing will be strongly damped owing to the nonlinear focusing

forces created by the ions [104], or even completely eliminated. The next two chapters will

discuss this in depth.

Next, we review the equations for the beam centroid when we consider energy effects,

derived in Mehrling et al. [98]. The equation for a beam particle is

ẍ+
γ̇

γ
ẋ+ k2βx = k2βxc, (4.8)

where x is the beam particle transverse position, xc(ξ, s) is the channel centroid, γ is the

Lorentz factor, and the derivative is with respect to the propagation distance s. We assume

the energy change is slow relative to a betatron oscillation, i.e., γ̇
γ
ẋ ≪ k2βx, and so we can

solve this equation like the standard Hill-like equation and we can use the Green’s function

solution for the xc term. We have

x(s) =x0A(s) cosϕ(s) +
px,0
γ0kβ,0

A(s) sinϕ(s)

+ kβ,0

∫ s

0

A(s)A(s′) sin[ϕ(s)− ϕ(s′)]xc(s
′)ds′,

(4.9)

where A(s) = (γ0/γ)
1/4, x0 is the initial x coordinate, px,0 is the initial momentum, and

ϕ(s) =
∫
kβds. The energy of a beam electron is given by γ(s) = γ0 − Ezs + δγ, where

the bar refers to the slice average. Note that all three terms may be slice dependent, i.e., a

function of ξ. Expanding kβ for δγ ≪ 1, leads to kβ ≈ kβ(1− δγ/2γ). The phase advance is

then

ϕ(s) = ϕ

(
1− δγ

2γ0

kβ

kβ,0

)
, (4.10)

where ϕ = 2(kβ,0/kβ − 1)/ϵ and ϵ ≡ Ez/(γ0kβ,0). This equation elucidates the phase mixing

of particles with different energies. Finally, we can take the average over each slice to get the
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beam centroid, xb =
∫
xf0dx0dpx,0dδγ, where f0 is the normalized distribution. We assume

the energy is separable and distributed as a Gaussian, fγ = exp
(
−δγ2/2σ2

γ

)
/
√
2πσγ. We

define α ≡ ϕkβ/2kβ,0 and ∆γ ≡ σγ/γ0. The integrals needed are of the form∫
cos

(
ϕ− α

δγ

γ0

)
exp
(
−δγ2/2σ2

γ

)
dδγ = exp

(
−α2∆γ2/2

)
cosϕ, (4.11)

and we neglect the variation of A(s) due to δγ, so upon averaging the first term of Eq. 4.9

one obtains ∫
x0A(s) cosϕ(s)f0dx0dpx,0dδγ = xb,0A(s) cosϕ exp

(
−α2∆γ2/2

)
. (4.12)

We repeat similar procedures for the other terms to arrive at the expression given in Mehrling

et al. [98],

xb(s) =A(s) exp
(
−α2∆γ2/2

)[
xb,0 cosϕ

+ kβ,0

∫ s

0

ds′ xc(s
′)A(s′) exp

(
α(s′)2∆γ2/2

)
sin
(
ϕ(s)− ϕ(s′)

)]
,

(4.13)

where we assume ⟨x0px,0⟩ = 0. There are three main energy effects that can cause decoher-

ence from plasma channel oscillation that are described in this equation. The decoherence

times for these three effects can be calculated with the two-particle model in Ref. [105]. The

first is the acceleration or deceleration of the beam that may be different for different slices

(∂ξEz ̸= 0). Hosing of the beam tail at ξ2 will decohere from the head at ξ1 after a time

kβ,0sdc =

√
3π

∆ϵ
, (4.14)

where ∆ϵ = |ϵ(ξ1)− ϵ(ξ2)| and ϵ ≡ −Ez
√
2/γ0. This time was found to be generally shorter

than that of pump depletion for most scenarios. This fact is why drive beams are intrinsically

stable (as long as they are not shaped so that the deceleration field is flattened). However,

the initial hosing growth before decoherence may be large and even small hosing growth of

the drive beam may seed witness beam hosing. In this case, it may be useful to use a chirped

drive beam so that the decoherence time is shorter. For a chirp χ ≡ ∂ξγ/γb, where γb is the
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average over all beam electrons, the decoherence time is given by

kβ,bsdc =
2π

|χ|(ξ2 − ξ1)
. (4.15)

Finally, for an uncorrelated energy spread ∆γ, the decoherence time is

kβ,0sdc =
2∆γ − ϵ

(∆γ − ϵ)2
. (4.16)

These times given in Ref. [105] are for each isolated effect, but of course these effects

generally occur together. Also it should be noted these predictions from the two-particle

model are rough approximations, and there are important effects from continuous beams are

not captured.

4.2 Witness beam energy chirp

To summarize the previous section, drive beam hosing should be mitigated as long as the

drive beam is not shaped, due to the deceleration at different rates for different slices, or

by a chirp or uncorrelated energy spread. However, any oscillation from the drive beam,

even if stabilized, may seed the hosing of the witness beam. Thus, we also must ensure that

the witness beam itself can be stabilized. However, all three energy effects that induce the

BNS mechanism are undesirable for witness beams. For the witness beam, the beam quality

is important, which makes hosing much more detrimental. Energy spread is undesirable

because the beam becomes harder to focus outside the plasma with conventional optics at

the final focus. Even if hosing is completely damped but the beam is still oscillating, if

there is energy spread on the beam the phase space will fill in as it propagates leading to

potentially large emittance growth. This section includes work published in Ref. [106].

4.2.1 QuickPIC simulation with FACET-II parameters

We start by describing the simulation setup we will refer to throughout this section. The

parameters are similar to those anticipated at FACET-II, given in Table 4.1. Fig. 4.1 shows
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np = 4× 1016 cm−3 ∆ξ = 150 µm

Parameter Drive Beam Witness Beam

E (GeV) 10 10

Ipeak (kA) 15 9

Q(nC) 1.6 0.69

σr (µm) 3.65 3.65

σz (µm) 12.77 6.38

ϵN (µmrad) 50 50

Table 4.1: Simulation parameters for FACET-II

the setup - we use two Gaussian beams with the witness beam loaded in the back of the

bubble. First, we run two simulations, one with both beams aligned on the axis of the wake

and one with the witness beam rigidly offset one micron in the transverse direction from

the axis. We show the hosing of the witness beam and the resulting emittance growth in

Fig. 4.2. With no offset, we see stable acceleration with no growth in the beam centroid

or emittance. With these parameters, the beam propagates through approximately 60 cm

of plasma until pump depletion of the drive beam and the witness beam energy doubles.

However, if the witness beam is misaligned by one micron, the hosing instability is strong

and the emittance grows rapidly.

4.2.2 Simulation with an initial energy chirp on the witness beam

We apply an initial 10% head-to-tail linear energy chirp to the witness beam, while offsetting

it one micron. By 10% energy chirp we mean there is a 10% energy difference between

the head of the beam (−σz) and the tail (+σz) with respect to the average energy, i.e.,
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Figure 4.1: Beam and plasma electron density with the on-axis lineout of the accelerating

field, for FACET-II parameters.
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Figure 4.2: Beam centroid (a) and emittance (b) evolution of an on-axis witness beam and

one offset one micron. The centroid is measured at the tail, ξ = +σz. The large oscillations

in the emittance is caused by some tail particles escaping the bubble because of the strong

hosing.
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Figure 4.3: Initial longitudinal phase space of the witness beam, showing the 10% energy

chirp.

∆γ/γ0 = 0.1. This corresponds to an rms energy spread of 4.4%. Fig. 4.3 shows the initial

chirp where the head is at a higher energy than the tail. Of course, this energy chirp is

undesirable, so we need the beam to dechirp as it propagates through the plasma. We can

do this by underloading the wake. Then the head of the beam will see the lower accelerating

field and the tail will see the larger accelerating field, so the energy chirp will be corrected.

There will still be some emittance growth in this process which places a tolerance on the

beam parameters. We also show in this section that Gaussian beams naturally dechirp

because of the way they load the wake.

Fig. 4.4 shows the suppression of the hosing instability when the witness beam has an

energy chirp and therefore a smaller emittance growth. The decoherence time for this chirp

is around 60 cm because the beam is short which takes longer to decohere. We see an initial

hosing growth followed by the growth starting to saturate. The emittance growth is much

smaller however, even though the centroid oscillation amplitude is only moderately smaller.

Finally, of course we also need the witness beam energy spread to decrease as it propagates

for this mitigation strategy to be useful.

Because we are using a Gaussian witness beam, there will not be perfect loading of the
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Figure 4.4: Beam centroid (a) and emittance (b) evolution of a witness beam offset one

micron with and without a 10% energy chirp. The centroid is measured at the tail, ξ = +σz.

head and tail of the beam. The head of the beam will see a slightly smaller acceleration

field and the tail will see a slightly larger one, as can be seen in Fig. 4.1. So in the case

without an energy chirp there will be about a one percent growth in energy spread due

to this natural underloading. This is mostly independent of the hosing. But if we have a

head-to-tail linear energy chirp, this loading of the witness beam will tend to cancel with

the chirp, as illustrated in Fig. 4.5.

We compare the evolution of the projected energy spread of the beam in Fig. 4.6 for the

two cases. From this figure, we can see the energy spread decrease to about one percent,

less than that for the case with no initial chirp, after 60 cm of propagation. This is because

the chirp corrects the imperfect loading of the Gaussian beam. In Fig. 4.5a, it can be seen

that in the middle of the beam (ξ = 5.5 to 5.9), where the accelerating field is flat, that the

initial chirp is mostly preserved.

In the case of a perfectly-loaded shaped bunch, the chirp would be preserved so that,

even though hosing is mitigated, the beam would be left with an undesirable energy spread.
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Figure 4.5: Final longitudinal phase space of the beam with (a) and without (b) the 10%

energy chirp. The red lines show the ideal acceleration using γ(ξ, s) = γ(ξ, 0) − sEz(ξ). In

both cases, particles in the tail of the beam escape the bubble due to the strong hosing.
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Figure 4.6: Evolution of the witness beam projected (95%) energy spread with and without

the initial 10% energy chirp. Note by 10% energy chirp we are referring to the value of

∆γ/γ0 and by energy spread we are referring to the rms value of σγ/γ0.
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However, it is possible to design a shaped bunch using the beam loading theory from Ref. [29]

that leads to a linearly decreasing Ez field (or any Ez needed to cancel a given initial chirp)

that would exactly compensate the initial linear chirp over some propagation distance, s.

This is shown in Appendix A. Conversely, one could attempt to design an initial chirp on the

beam based on the loaded Ez field that results from its current profile, so that over a given

distance the final energy spread would vanish. However, this is likely to be more difficult

experimentally. A similar method was discussed in Ref. [105]1, except in this proposed

scheme, the beam had no initial chirp, but the loaded wakefield had a linear Ez so that the

beam develops a chirp during the propagation in the plasma. After exiting the plasma, the

beam could potentially be transported with the chirp using optics with appropriate chromatic

dependence. For collider designs and other applications this chirp could also possibly be

removed using, e.g., a plasma-dechirper. Assuming it is straightforward to provide a linear

chirp before the plasma section, the method proposed here would be preferable because

the beam would be monoenergetic after leaving the plasma and would not need achromatic

optics or dechirping. And the chirp is present at the beginning of acceleration, mitigating

any initial hosing growth more strongly.

4.3 Asymmetric drive beams

Drive beams with differing transverse spot sizes (elliptical) will create an asymmetric bubble

[71]. We discussed how to predict the resulting perturbation to the wake shape and therefore

how to calculate the fields of an asymmetric bubble. The focusing force, and thus betatron

oscillation, will vary along the direction of propagation. This axial variation of the betatron

frequency along the beam will lead to BNS damping, similar to the previous section. Ref.

[100] examined the saturation of the hosing instability due to this effect in the quasi-linear

regime of PWFA, where longitudinally varying focusing forces occur naturally. This section

1This reference was published after the work presented in this section, published in the AAC 2018 pro-
ceedings [106]
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Figure 4.7: Beam centroid (a) and emittance (b) evolution with drive beams of various spot

size ratios, σx/σy = 1, 2, 5. The centroid is measured at the tail, ξ = +σz. The drive beam

is initially matched in each direction.

includes work published in Ref. [106].

4.3.1 Mitigation of hosing due to asymmetric wakes

We rerun the simulation setup from Sec. 4.2.1, where now the drive beam is asymmetric.

In Fig. 4.7, we plot the simulation results for a transverse spot size ratio of σx/σy = 1, 2, 5

(the drive beam charge is kept fixed) and the witness beam is offset by one micron in the

x direction. In Fig. 4.7, we observe the damping of the centroid oscillations of the witness

beam and emittance preservation.

A drawback to using asymmetric drive beams as a way to control hosing growth is that

the accelerating field is no longer constant transversely in the bubble, i.e., the Ez now has

a radial dependence, so there will be some slice energy spread growth in the witness beam.

This is a consequence of the Panofsky-Wenzel theorem [95]. However, as shown in Fig. 4.8,

this growth can be small for a range of drive beam parameters. For the parameters listed

94



0 10 20 30 40 50 60
Propagation Dis ance (cm)

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

Pr
oj

. E
ne

rg
y 

Sp
re

ad

Symme ric drive beam
Asymme ric drive beam

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sl
ice

 E
ne

rg
y 

Sp
re

ad

1e−3

Symme ric drive beam
Asymme ric drive beam

Figure 4.8: Projected (95%) and slice (ξ = +σz) energy spread growth in the witness beam,

initially offset one micron, for a drive beam with σx/σy = 2 compared to the symmetric drive

beam case with no hosing seed (hosing has negligible effect on energy spread except when

particles escape the bubble).

in section 4.2.1, we have < 0.5% difference in growth after 60 cm using a drive beam with a

spot size aspect ratio of 2. In this case, we start with no initial energy spread. However if

we start with a small initial energy spread less than the final value (under 1% in this case)

the final energy spread approaches the same value after 60 cm.

If the asymmetry of the drive beam is rotated by π/2, i.e., σy > σx with the witness

beam still offset in the x direction, the effect on hosing mitigation is similar. In this case,

the focusing force perturbation will be negative, but the arguments are the same. As long

as there is a change in the focusing force along the witness beam, the betatron oscillations

in each slice will detune and the hosing will damp. This is also shown in Fig. 4.9 for the

different drive beam aspect ratios. Unlike the previous plots, we do not consider the beam

particles after they leave the bubble, so we no longer see the large emittance oscillations in

the symmetric case. The emittance growth in these cases when the asymmetry is opposite

of the offset direction is larger of course but still saturates with a lower projected emittance

growth than the symmetric case after 60 cm.
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Figure 4.9: Beam centroid (a) and emittance (b) evolution with drive beams of various spot

size ratios, σy/σx = 1, 2, 5. The witness beam is still offset one micron in the x direction.

The centroid is measured at the tail, ξ = +σz. The drive beam is initially matched in

each direction. In this case, beam particles that leave the bubble are not considered when

calculating the beam centroid and emittance.
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Asymmetric witness beams generally do not perturb the fields enough to have an effect on

themselves, because they are often short and narrow. For the parameter regime examined

in this section, we found an asymmetric witness beam with a large spot size ratio has a

negligible effect on its own hosing.

4.3.2 Asymmetric wake field scaling

Next, we explore how the field perturbations scale with drive beam spot size aspect ratio

σx/σy and the absolute value of the spot size normalized to the blowout radius σx/rm, where

rm is the maximum blowout radius (∼ 2.2 in this case, as seen in Fig. 4.1). In Fig. 4.10, we

see for this relatively narrow beam that for aspect ratios of σx/σy > 4, the field perturbations

saturate. On the other hand, for larger spot sizes the fields are perturbed strongly. These

results show that for a narrow beam (σx/rm = 0.0633) and a modest aspect ratio of two

there was drastically reduced emittance growth due to hosing. This is due to the large slope

in the perturbed focusing force at the witness beam tail.

It is important to note that in the simulations over pump depletion distances the evolution

of the drive beam is important and can lead to growth of the field perturbations as it

propagates through the plasma. If we turn off drive beam evolution in the simulation, a

substantial initial perturbation is needed in order to detune the resonance and damp the

hosing. In simulations where the asymmetric drive beam is matched in both transverse

directions, the zeroth order evolution of the beam is dominated by the head erosion, which

tends to increase the projected spot size and cause larger field perturbations. Unmatched

drive beams undergo spot size oscillations and have smaller overall projected spot sizes and

therefore smaller field perturbations. Therefore, in this case the hosing would likely not

be reduced much. One would need a wide drive beam in order to sufficiently perturb the

focusing force.

These results should also apply to laser drivers. With laser drivers the perturbations

should be larger because they are similar to wide particle beams and have smaller spot size

97



0 1 2 3 4 5 6

ξ [c/ωp]

−0.02

−0.01

0.00

0.01

0.02

0.03

δ
F

⊥
 [

m
e
 ω

p
 c

]

σx / σy =  1.5

σx / σy =  2.0

σx / σy =  4.0

σx / σy =  8.0

(a)

−1.0 −0.5 0.0 0.5 1.0

x [c/ωp]

−0.04

−0.02

0.00

0.02

0.04

δ
E

z
 [
m

e
 ω

p
 c

/e
]

σx / σy =  1.5

σx / σy =  2.0

σx / σy =  4.0

σx / σy =  8.0

(b)

0 1 2 3 4 5 6

ξ [c/ωp]

−0.02

0.00

0.02

0.04

0.06

δ
F

⊥
 [
m

e
 ω

p
 c

]

σx /rm=0.0158

σx /rm=0.0317

σx /rm=0.0633

σx /rm=0.1266

(c)

−1.0 −0.5 0.0 0.5 1.0

x [c/ωp]

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04
δ
E

z
 [
m

e
 ω

p
 c

/e
]

σx /rm=0.0158

σx /rm=0.0317

σx /rm=0.0633

σx /rm=0.1266

(d)

Figure 4.10: Scanning of field perturbations from one timestep QuickPIC simulations. The

first row is a scan over the spot size ratio of the drive beam with σx held fixed at 3.65

µm, the second row is a scan of the absolute value of the spot size of the drive beam with

the ratio fixed to σx/σy = 2. The first column shows the focusing force perturbation (the

difference of the asymmetric and symmetric) lineout along 0.5 c/ωp. The second column

shows the accelerating field perturbation as a function of x taken at the tail of the witness

beam ξ = +σz.
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oscillations. As shown in Fig. 4.10, the field perturbations are large for wide beams. Of

course this will also mean the slice energy spread growth will be larger.

In many early PWFA experiments (and still today), many beams had large spot size

asymmetries. This fact along with the other mechanisms described in this section could

explain why no hosing growth was seen in experiments where hosing was not seeded. Un-

derstanding the wakefields and instability mitigation of asymmetric wakes will continue to

be important for current experimental campaigns.

4.4 Summary

In this chapter, we have discussed several methods to mitigate the hosing instability in

plasma wakefield accelerators. These methods are all based on breaking the resonance of the

hosing instability that couples the beam oscillations with the plasma channel oscillations.

This is the same idea used in conventional accelerators, called BNS damping. By changing

the energy or focusing along the beam, the dipole wakefield induced by the head or preceding

bunch will no longer cause resonant oscillations. If the BNS condition is met, the oscillation

at the tail will be the same as the head. The basic physics is often investigated using a

two-particle model.

In a plasma, the equations are more complicated but the fundamental physics is the

same. If each slice acquires a different betatron oscillation, the hosing resonance will be

detuned and the centroid growth will be suppressed. Longitudinal variation of the focusing

force is natural in the linear or quasi-linear regime of PWFA, where the plasma electrons

are not fully blown out, so hosing is naturally suppressed. In the blowout regime, there are

several mechanisms that can invoke BNS damping. These mostly require the beams to not

be monoenergetic. For example, the drive beam energy loss for a Gaussian current profile

is usually different at different longitudinal positions along the beam so it naturally has

different betatron oscillations between slices, and so it is less susceptible to hosing.
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Mitigating witness beam hosing is a little more challenging in that we generally want the

beam to be monoenergetic. We presented a scheme where the beam is initially chirped in

order to suppress the hosing, but is then dechirped naturally as it propagates by using an

underloaded wake. This can be done naturally for a witness beam with a Gaussian current

profile or, to keep the energy spread very low, one could design a witness beam profile that

would exactly cancel the chirp after some propagation distance.

Finally, we discussed asymmetric drive beams that cause a perturbed bubble radius. This

leads to focusing forces that vary along the beam. For the FACET-II case, modest drive

beam aspect ratios were found to lead to significant focusing force variation at the tail of

the witness beam that mitigated the hosing, while only leading to a slightly higher slice

energy spread. The perturbed fields saturated after aspect ratios of around four, whereas

perturbations were much larger for larger spot sizes.

These findings will be important in current and future experiments and potentially linear

collider designs for controlling the beam stability in the plasma and minimizing emittance

growth. However, as we will discuss in the next chapter, ion motion will be the dominant

effect in linear colliders and has significant implications for beam hosing.
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CHAPTER 5

Ion motion in plasma wakefield accelerators

In previous chapters, we described the hosing instability and ways to mitigate it assuming

the plasma ions were immobile and therefore the focusing force is symmetric and linear.

The witness beam spot size could be matched to the linear focusing force to preserve its

emittance, in the absence of hosing, as discussed in Sec. 2.5.2. Matching in more general

nonlinear forces will be discussed in this chapter. A matched beam with parameters in the

LC regime has a large enough space charge force to pull plasma ions into the beam during

its transit time. This ion collapse causes the focusing forces to become nonlinear.

In this chapter, we briefly review a few recent works addressing the consequences of ion

motion in PBAs. We derive the ion density profile that arises from ion motion for a prescribed

electron beam and quantify how this modifies the associated wakefields. Using this profile,

we can then derive an approximately nonlinearly matched spot size for the beam such that

the emittance growth is minimized. Moreover, we discuss how to calculate the exact slice-

by-slice matching distribution. Next, we present a scheme to calculate the emittance growth

when a beam is transversely misaligned in a given perturbed ion column, assuming the ion

density remains fixed for the witness beam. This is the case when the drive beam causes ion

motion and the witness beam is does not cause significant additional deflections to the ions.

Finally, we consider the linear collider (LC) regime, where ion motion will be substantial.

We show that drive beam induced ion motion (with an appropriate beam density) can damp

the centroid oscillations of the witness beam. This chapter considers beams that are focused

directly into a uniform plasma. In the next chapter, we will extend these ideas to beams
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propagating in plasma density ramp matching sections. This chapter covers works to be

published in Ref. [107].

5.1 The problem of ion motion in PWFA

In the LC regime, witness beams must have emittances on the order of hundreds of nanome-

ters and around a nanocoulomb of charge in order to achieve luminosities of L = fN2/4πσxσy ∼

10−34 cm−2s−1, where f is the frequency of collisions, N is the number of particles in each

beam, and σx and σy are the transverse spot sizes of the beam at the interaction point [58].

High current, tightly focused beams required for LCs can cause the plasma ions to collapse

within the transit time of the beam which can cause severe emittance growth. The possibility

of ion motion in the blowout regime was first studied in Ref. [108]. The problem of severe

emittance growth was pointed out in Ref. [109], where flat-top electron beams (transversely

uniform) were assumed. Inside this flat-top beam, Gauss’s Law can be used to derive the

transverse electric field an ion will experience,

Er =
4π

r

∫ r

0

ρbr
′dr′ = −4πenb

2
r, (5.1)

where nb is the beam density and np is the plasma density. We have

F⊥ = ZeEr = −4π
Ze2

2
nbr = −

(
Z

2

nb
np
r

)
mω2

p, (5.2)

where Z is the ion charge state. Thus, the equation of motion for an ion is

r′′ + k2i r = 0, (5.3)

where ′ ≡ d
dξ

and

ki =

√
Znb/np
2M/m

kp, (5.4)

M is the ion mass, and m is the electron mass. The self-force from the ions is assumed to

be negligible. So the ions will move sinusoidally and they will collapse onto the same point
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kiξ = π/2, leading to very large peaks in ion density that significantly alter the focusing

force on a beam electron and thus can potentially cause large emittance growth. The phase

advance of a plasma ion within the length of a beam is given by Φ = kiLb, where Lb is the

length of the beam. We note that if the beam does not have a longitudinal flat-top profile,

then ki = ki(ξ), and Lb will be an effective length based on the exact profile. Thus, when

Φ∼1, ion motion effects becomes important. Since the publication of Ref. [109], ion motion

has been considered a major obstacle for PWFA-LCs and much research has been devoted

to investigating and determining paths to overcome it.

The first work to quantify the emittance growth due to ion collapse was An et al. [110]. In

this work, the ion collapse and resulting focusing forces were characterized using QuickPIC

simulations. As mentioned in Chapter 1, the simulations in this regime are very computa-

tionally expensive. At the time Ref. [110] was published, it was not practical to simulate

the entire simulation box with fine enough resolution to resolve the ion collapse and model

the entire transverse dimensions of the wakefield. So instead, only a small region around the

narrow witness beam was simulated with fine resolution throughout, where only the ions and

witness beam particles were evolved. Such simulations only model how the witness beam

modifies the focusing force but not the accelerating field. The plasma electrons were modeled

as a thin, immobile, and neutralizing sheath at the edge of the simulation box. These results

and conclusions have since been verified by simulations that model the entire domain and

use a refined mesh near the witness beam. Furthermore, QPAD has allowed us to simulate

this regime fully self-consistently with fine resolution throughout the domain while keeping

a limited number of azimuthal modes. It is possible to use a much higher resolution in r as

compared to the full x − y plane and there is significant speed up so that the simulations

are less computationally expensive.

In Ref. [110], theoretical analysis was presented assuming a Gaussian profile was assumed

for the ion collapse, ρi = Ae−r
2/2σ2

. Thus, the resulting (total) focusing force is

F⊥ = −r
2
− Aσ2

r

(
1− e−r

2/2σ2
)
. (5.5)
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Using this model, it is possible to study the evolution of a beam slice. If the spot size of the

beam and the ion collapse are of the same order in size, the emittance growth would scale as
√
A, which would be catastrophic. However, the width of the self-consistent ion collapse was

found to be much smaller than the spot size of the witness beam. So instead of an order of

magnitude emittance growth, QuickPIC simulations found the projected emittance growth

for a tri-Gaussian witness beam with a spot size matched to the unperturbed focusing force

to be around ∼ 80%, assuming no misalignments and a low density (non-evolving) driver.

At the time, it was thought that once the beam achieved this steady state, it could possibly

be transported to subsequent stages and therefore the emittance growth would only occur

in the first stage. This work also mentions using asymmetric witness beams or overfocused

witness beams to decrease this emittance growth. It also employed a 1D analytical model to

predict this emittance growth, that agreed well with simulations.

5.2 Calculating the ion density

In this dissertation, we consider situations where the ion motion from both the drive and

witness beam is important. In order to study the effects of ion motion on the wakefields and

witness beams, we first calculate the trajectories of the ions and from these determine the ion

density. We calculate the ion density collapse for a bi-Gaussian driver, ρb(ξ) = ρb,0(ξ)e
−r2/2σ2

r

(similar analysis can be done for other distributions). This is similar to the derivation in the

previous section, but more general. The radial electric field on the ions from the beam can

be derived from Gauss’s Law as

Er,beam =
4πρb,0(ξ)

r

∫ r

0

e−r
′2/2σ2

rr′ dr′

=
−4πenb(ξ)σ

2
r

r

(
1− e−r

2/2σ2
r

)
, (5.6)

as well as the self-force from other ions, given by

Er,ion =
2πZenpr

2
0

r
, (5.7)
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where r0 is the initial radius of the ion and Z is the charge state. In this model, because

of azimuthal symmetry, the ion trajectories represent rings of charge (as was done in Ref.

[108]). Eq. 5.7 is valid as long as the rings do not cross. Therefore, if we neglect longitudinal

ion motion, the total radial force on an ion is

Fr
mcωp

= −ZΛ(ξ)
kpr

(
1− e−r

2/2σ2
r

)
+
Z2(kpr0)

2

2kpr
, (5.8)

where ωp = ckp is the plasma frequency and Λ(ξ) = nb(ξ)/np(kpσr)
2 is the normalized charge

per unit length of the beam. We again normalize the force to mcωp, lengths to k
−1
p , time to

ω−1
p , and densities to np. The radial equation of motion for an ion with mass M is then

r′′ = −ZΛ(ξ)
M/m

1− e−r
2/2σ2

r

r
+

Z2r20
2(M/m)r

. (5.9)

The second term is typically negligible because Λ ≫ r20 for any ion that will reach the axis

by the time the witness beam arrives. In the limit r ≪ σr, Eq. 5.9 reduces to that of a

harmonic oscillator, assuming a constant Λ, as in Refs. [109] and [108]. The comparison

between integrated trajectories from Eq. 5.9 and tracked particle trajectories from a PIC

simulation is shown in Fig. 5.1.

Now that we know the trajectories, we can calculate the ion density using the ring

model, where each ring (or sheet) represents a ring of ion particles. Each radial position

on the ring follows the trajectory of an individual ion at the corresponding radius. Thus,

as a ring converges, the density is proportional to 1/(r∆r), where r is the radius of the

ring and ∆r is the spacing between neighboring rings. Therefore, the density is given by

n = n0r0∆r0/(r∆r). This same relationship can be obtained by viewing the plasma ions

as a Lagrangian fluid element with charge density ∆σ = 2πn0r0∆r0, where r0 is the initial

radius, ∆r0 is the initial thickness, and n0 is the initial density. As the boundaries of the

fluid element change, the area of the element is compressed to A = 2πr∆r, where r = r(r0, ξ)

is the ion ring trajectory and ∆r is the ring thickness. Therefore, we have

ρi(r, ξ) =
∆σ

∆A
= ρi,0

r0∆r0
r∆r

, (5.10)
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Figure 5.1: Comparison of numerical ion trajectories and tracked ion trajectories from Quick-

PIC for the case of FACET-II like parameters. This shows the region around the tri-Gaussian

drive beam centered at ξ = 0 with one micron emittance. For reference, the transverse spot

size of the beam is σr ≈ 0.02 c/ωp.

for each ring contribution. We sum over each ring to get the total ion density

ρi(r, ξ) = ρi,0
∑
k

rk,0∆r0
rk∆rk

, (5.11)

where ∆rk = rk− rk−1. To calculate the ion density from this we need to introduce a grid in

r− ξ with transverse grid size ∆r (not to be confused with the ring thickness ∆r). The sum

is then over ring trajectories within ∆r of r, similar to a PIC charge deposit. The singularity

at r = 0 and trajectory crossing can be dealt with by setting a cutoff rmin, typically set to

be around rmin∼∆r/4. For the case of the uniform flat-top beam where the trajectories are

harmonic, the density on axis would be ρi(ξ) = 1/ cos2(kiξ), where ki =
√

Znb,0/np

2M/m
. In the

general case, the trajectories can be calculated by numerical integration of Eq. 5.9, then

the charges can be deposited (with area weighting) onto a grid. This procedure somewhat

surprisingly reproduces the self-consistent PIC simulation results even when there is strong

ion motion and significant trajectory crossing. The cutoff acts like an effective zeroth order

particle shape, so it gives similar results to the PIC codes when the ions reach the axis (the
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density spikes are the same). Fig. 5.2 shows the comparison between this method and QPAD

both for FACET-II like parameters with smaller emittances and LC parameters, as well as

a comparison to the analytic result for a flat-top beam. The parameters are listed in Sec.

5.5.1 and Sec. 5.4.1, respectively. This method may be significantly faster than scanning

the densities via a one 3D timestep PIC code, especially if one is only concerned with the

on-axis density or a particular beam slice.

5.3 Calculating the transverse wakefield with ion motion

Next, we calculate the transverse wakefield (or focusing force, F⊥ = −ZeW⊥) using the ion

ring model described above. In Ref. [111] the transverse wakefield was calculated for weak

ion motion (Φ ≪ 1) using an Eulerian fluid model. We can reproduce and extend this result

using the ring model. Starting from Eq. 5.7, we can obtain an expression for W⊥ at radial

position r by replacing r0 with r + δr,

W⊥,ion(r) = Er,ion(r) =
2πZenp(r + δr)2

r
, (5.12)

where δr is the compression of the ion ring from r0 to coordinate r (we define δr > 0

when the ring moves towards the axis) and we assume Bθ = 0 due to azimuthal symmetry.

This expression is fully nonlinear so long as the rings do not cross each other. Taking two

derivatives with respect to ξ we arrive at

∂2W⊥,ion

∂ξ2
=

4πZenp
r

[
(r + δr)

∂2δr

∂ξ2
+

(
∂δr

∂ξ

)2
]
. (5.13)

To lowest order, we assume the velocity term ∂δr
∂ξ

is small and that r ≫ δr, which we note

are equivalent to the weak ion motion assumption in Ref. [111]. Finally, we use the equation

of motion
∂2δr

∂ξ2
=

F⊥

Mc2
=

−ZeE⊥

Mc2
, (5.14)

to obtain
∂2W⊥,ion

∂ξ2
= −Z m

M
k2pE⊥, (5.15)
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Figure 5.2: (a),(b) Ion density for FACET-II like parameters with 1 µm normalized emit-

tances. The drive beam is centered at ξ = 0 and the witness beam at ξw,0 = 5.55. (a) On

axis (r = 0) density. (b) Transverse slice at the center of the witness beam, ξw,0 = 5.55.

(c),(d) Ion density for LC parameters with nb,d = 100 and witness beam emittance of 0.0277

µm. The drive beam is centered at ξ = 6.0 and the witness beam is trapezoidal and starts

at ξ = 12.25 and ends at ξ = 14.05. (a) On axis (r = 0) density. (b) Transverse slice at

the head of the witness beam, ξ = 12.25. (e) Ion density in a uniform electron beam with

nb = 1000 (from ξ = 0 to ξ = 12 and radius r = 5). Numerical means the integrated theory

like in the previous plots and theory means the analytic result ρi(ξ) = 1/ cos2(kiξ).
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which is identical to an equation from Ref. [111]. Then, following Ref. [111], and normalizing

quantities, we obtain

W⊥,ion(r, ξ) =
r

2
+ Z

m

M

∫ ξ

0

dξ′(ξ − ξ′)E⊥(r, ξ
′), (5.16)

where the head of the bunch is at ξ = 0 and the contribution from the uniform background

was added. For reasons given earlier, we assume the beam fields dominate so that E⊥ is

due solely to the beam. For a beam with a transverse distribution g⊥(r, ξ), longitudinal

distribution g∥(ξ), and azimuthal symmetry, the wakefield with weak ion motion is given by

Wr =
r

2
− Z

m

M

nb
np

1

r

∫ ξ

0

dξ′(ξ − ξ′)g∥(ξ
′)

∫ r

0

r′dr′g⊥(r
′, ξ′). (5.17)

Solutions to Eq. 5.16 for a longitudinally flat-top and Gaussian transverse beam are given

in Ref. [111]:

Wr =
r

2

[
1 + Z

m

M

nb
np

ξ2

2
H

(
r2

2σ2
x

)]
, (5.18)

where H(x) ≡ (1 − e−x)/x. In Fig. 5.3, we reproduce Fig. 1 from Ref. [111] for this

distribution using QPAD. We see the weak ion motion approximation breaks down for beams

with densities nb > 2000, where there is a strong perturbation to Wr around the beam core.

For higher density beams, we therefore go back to the original expression for the wake

generated by the ion motion, Eq. 5.12, which is exact assuming ion ring trajectories do not

cross. We can solve Eq. 5.9 to get δr(ξ) (in general we need to solve this numerically).

When ion rings do cross, we must calculate the wakefield by integrating (numerically) over

the ion density obtained in the previous section using

W⊥,ion(ξ) =
1

r

∫ r

0

dr′r′ρion(r
′, ξ). (5.19)

Wakefields obtained through the ring model are compared to the fully nonlinear simulation

result, with nb = 8000 in Fig. 5.4. The ring model provides very accurate results when no

crossing occurs, but of course this is not a closed solution, as the ion trajectory must be

calculated first. When rings cross more numerical errors come in when computing Eq. 5.19,

but the formalism still provides accurate results. This is expected because we found the ion

density based on the ring model agrees well with simulation.
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Figure 5.3: Transverse lineouts of the wakefield for a flat-top beam (L = c/ωp) with Gaussian

transverse profile σ = 0.0015 c/ωp with a np = 1017 cm−3 plasma. Lineouts are taken at

ξ = L. Dotted lines represent the theoretical prediction from Eq. 5.18. This figure is a

reproduction of Fig. 1 from Ref. [111].

110



0.0 0.5 1.0 1.5 2.0 2.5 3.0
r/σx

0.0

0.5

1.0

1.5

2.0

2.5

3.0

W
x/(
E 0
σ x

)

Unperturbed
Simulation
Benedetti et al.
Ring Model

(a)

0 1 2 3 4 5 6
r/σx

0

1

2

3

4

5

6

7

8

W
x/(
E 0
σ x

)

Unperturbed
Simulation
Ring Model

(b)

Figure 5.4: Transverse lineouts of the wakefield for a flat-top beam (L = 2 c/ωp) with

Gaussian transverse profile σ = 0.0015 c/ωp with a np = 1017 cm−3 plasma. (a) Lineout

taken at ξ = c/ωp before ion trajectory crossing occurs (same as Fig. 5.3). Benedetti et al.

refers to the closed form solution, Eq. 5.18. (b) Lineout taken at ξ = 2 c/ωp after trajectory

crossing occurs, therefore the ring model is computed using Eq. 5.19.
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5.4 Beam matching in nonlinear focusing forces

The nonlinear forces created by the ion collapse will cause many of the ideal properties of

the wake to no longer strictly hold, including matching the beam so that the spot size does

not oscillate as it propagates and emittance is preserved. In this section, we will look at

various methods to overcome this.

5.4.1 Modified envelope equation approach

In order to investigate the transverse beam dynamics when the wakefields are modified by

ion collapse, we model the transverse ion density as a Gaussian, ρi = Ae−r
2/2σ2

(we will

discuss other profiles later). The focusing force is then

F⊥ = −r
2
− Aσ2

r

(
1− e−r

2/2σ2
)
, (5.20)

and the pseudopotential is

ψ(r, ξ) = ψ(ξ = 0)− r2

4
+
Aσ2

2

[
Ei

(
− r2

2σ2

)
− ln

(
r2
)
+ γ − ln

(
2σ2
)]
, (5.21)

where Ei(x) is the exponential integral and γ ≈ 0.577 is Euler’s constant (not the relativistic

factor).

The ion motion leads to a nonlinear perturbation to the focusing force so that the usual

beam matching condition, σ2
m = ϵ/kβ, where kβ = kp/

√
2γ and ϵ =

√
⟨x2⟩⟨x′2⟩ − ⟨xx′⟩2, no

longer holds. However, a nonlinear focusing force does not mean that a matching profile

does not exist or that emittance cannot be preserved. To find equilibrium distributions

for nonlinear focusing forces, we look for steady state solutions to the 2D Vlasov equation,

assuming γ is constant,
∂f

∂t
+ v · ∂f

∂r
+

F(r)

γm
· ∂f
∂v

= 0, (5.22)

where f = f(r,v; t) is the distribution function and F(r) is the focusing force [112]. We
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assume separation of variables f(r,v) = R(r)V (v), leading to

v · ∂R(r)
∂r

V (v) +
F(r)

γm
· ∂V (v)

∂v
R(r) = 0. (5.23)

We use azimuthal symmetry to separate this to

1

Fr(r)

R′

R
= − 1

γmvr

V ′

V
= α2, (5.24)

where α is a constant. Thus, we have

R(r) = R0 exp

(
α2

∫
Fr(r) dr

)
= R0 exp

(
α2eψ(r)

)
, (5.25)

V (v) = V0 exp
(
−α2γmv2r/2

)
. (5.26)

This result is consistent with Jeans’s theorem, which states the steady state solutions to

the Vlasov equations are functions of the constants of the particle motion. In this case,

the constant of the motion is just the Hamiltonian for an electron moving in the potential

ψ, which is H =
p2⊥
2γ

− eψ. The matched distribution function in our case for a relativistic

electron beam in the pseudopotential above will be of the form e−γψ(r)/σ
2
p assuming the

momentum distribution is symmetric, i.e., σpx = σpy = σp. Beam matching for Gaussians is

unique in that once the second moment is matched all higher order (even) moments will be

matched too. In general, it is not straightforward to match other distributions. However,

it is observed from self-consistent simulations that the deviation of the distribution function

from Gaussian may be small depending on the ion profile parameters and beam spot size.

Thus, we can derive a correction to the matched spot size for our nonlinear force assuming

the distribution is still close to Gaussian.

We can derive an approximate matched spot size for a Gaussian beam as follows. We

start with the standard derivation for the beam envelope equation in one transverse direction

and later extend the analysis to both directions. The spot size is defined as

σx =
√
⟨x2⟩, (5.27)
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and we take two derivatives to get

σ′′
x =

⟨x2⟩ (⟨x′2⟩+ ⟨xx′′⟩)− ⟨xx′⟩2

⟨x2⟩3/2
=
ϵ2x
σ3
x

+
⟨xx′′⟩
σx

, (5.28)

where ϵx ≡
√
⟨x2⟩⟨x′2⟩ − ⟨xx′⟩2 (note this is the geometric emittance, ϵ = ϵN/γ). Next,

instead of the linear focusing force we use the nonlinear force (Eq. 5.20) to obtain x′′ in

terms of x leading to

⟨xx′′⟩ = −k2β
(
σ2
x + 2Aσ2

(
1−

〈
e−x

2/2σ2〉))
, (5.29)

where

〈
e−x

2/2σ2〉
=

∫∞
−∞ e−x

2/2σ2
e−x

2/2σ2
x dx∫∞

−∞ e−x2/2σ2
x dx

=
σ√

σ2 + σ2
x

, (5.30)

and we assumed the beam’s distribution is Gaussian. The envelope equation is therefore

σ′′
x =

ϵ2x
σ3
x

− k2β

(
σx +

2Aσ2

σx

(
1− σ√

σ2 + σ2
x

))
. (5.31)

We can find the matching condition by setting σ′′
x = 0 and using a root finding method to

solve for σx, given an initial emittance ϵx. For the case σ ≪ σx, the condition becomes a

quadratic and we can solve to obtain σ2
m,NL =

√
A2σ4 + ϵ2x/k

2
β − Aσ2.

Because the nonlinear focusing force couples the motion in the transverse planes, the

above analysis can only be applied to a 2D beam slice if it is azimuthally symmetric (with

pθ = 0). However, we can redo the analysis in 2D Cartesian in a similar way as follows:

⟨xx′′⟩ = −k2β
[
σ2
x + 2Aσ2

〈 x2

x2 + y2

(
1− e−(x2+y2)/2σ2

)〉]
= −k2β

[
σ2
x +

2Aσ2

2πσxσy

∫ ∞

−∞

∫ ∞

−∞
dxdy e−x

2/2σ2
xe−y

2/2σ2
y

x2

x2 + y2

(
1− e−(x2+y2)/2σ2

)]
= −k2β

[
σ2
x +

2Aσ2σ2
x

σ2 + σ2
x +

√
σ2 + σ2

x

√
σ2 + σ2

y

]
. (5.32)
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Therefore, the beam envelope equation is

σ′′
x =

ϵ2x
σ3
x

− k2βσx

(
1 +

2Aσ2

σ2 + σ2
x +

√
σ2 + σ2

x

√
σ2 + σ2

y

)
(5.33)

=
ϵ2x
σ3
x

− k2βσx

(
1 +

Aσ2

σ2 + σ2
x

)
for σx = σy, (5.34)

and the analagous equation for σ′′
y with σx ↔ σy and ϵx → ϵy. In the case σx = σy ≫ σ,

like in 1D, we can find an expression for the matching σx by solving the resulting quadratic

equation after setting σ′′
x = 0, resulting in σ2

m,NL =
√
A2σ4/4 + ϵ2x/k

2
β − Aσ2/2.

In Fig. 5.5, we illustrate the effectiveness of using a nonlinearly matched beam based

on the Gaussian assumption to mitigate the emittance growth. The results are from a 2D

beam slice simulation with a fixed focusing force given by Eq. 5.20. We consider two cases.

The first (Figs. 5.5a - 5.5d) considers FACET-II like parameters with 1 µm normalized

emittances, plasma density of np = 4.0× 1016 cm−3, and γ = 20, 000. For the focusing force,

we set A = 90, σ = 0.0045. The second case (Figs. 5.5e - 5.5h) considers LC parameters with

465 nm normalized emittances, plasma density of 1.0× 1017 cm−3, and γ = 48, 925. For the

focusing force, we set A = 2217, σ = 0.001. In both Fig. 5.5a and Fig. 5.5e, it can be seen

that the emittance growth is significantly reduced when the beam enters the plasma with a

nonlinearly matched spot size compared to the linearly matched spot size. However, there is

still some emittance growth which can be understood from Figs. 5.5c and Fig. 5.5g. These

show the distribution in x deviates from a Gaussian and instead saturates to the equilibrium

distribution. Figs. 5.5d and 5.5h show the momentum remains Gaussian. The deviation

from Gaussian in larger for the LC case due to the much larger A, while the ratio σ/σm,

where σm is the nonlinearly matched spot size, was only slightly smaller. To quantify the

effect of this deviation from Gaussian on the emittance growth, we run a series of beam slice

simulations with A kept fixed. We vary σ in the model, and calculate the corresponding

σm for each case. The results are shown in Figs. 5.5b and 5.5f, where we see the emittance

growth is small for the nonlinearly matched Gaussian beam when either σ ≪ σm or σ ≫ σm.

In the σ ≪ σm case, most beam particles see the r/2 focusing force and thus the profile
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remains Gaussian, while in the σ ≫ σm case, the beam mostly sees the focusing force near

the axis that goes like (A+1)r/2, so it also remains Gaussian. Therefore, larger A will only

increase the error slightly in these limits, but it will increase the error more significantly

when σ ∼ 0.5σm. However, even in this case the emittance growth may be moderate if A is

not large (∼ 20% emittance growth for the FACET-II case). It is worth noting that, even

in the case when σ ∼ 0.5σm, if the beam is initialized with the non-Gaussian equilibrium

profile, the emittance would not grow.

We also tested nonlinear matching with full QPAD simulations. We considered a two-

bunch LC scenario with a Gaussian current profile for the drive beam and a trapezoidal

current profile for the witness beam that optimally loads the wake. The following is what

we will refer to simply as LC parameters for the rest of the chapter. The plasma density

is n0 = 1017 cm−3. Both beams have energy E = 25 GeV and the head of the witness

beam starts 105 µm behind the center of the drive beam. The drive beam has 4.8 nC of

charge, normalized emittance ϵN,d = 59.1 µm, and spot size σr,d = 2.52 µm, and length

σz,d = 30 µm. The witness beam has 1.63 nC of charge, normalized emittance ϵN,w = 0.465

µm and spot size σr,w = 0.223 µm. The beam current linearly decreases from Ib = 27 kA to

Ib = 5.4 kA over Lb = 30.24 µm. The resolution is 10.3 nm × 241 nm and the 3D timestep

is ∆t = 5ω−1
p . A small timestep is needed to capture the beam dynamics in the large ion

densities created when the drive beam seeds the ion motion. We only keep the m = 0 mode

because we are considering round beams. The projected emittance growth is shown in Fig.

5.6. The emittance growth for a linearly matched beam is ∼ 200% while for a nonlinearly

matched beam it is ∼ 50%. Just as for the beam slice simulation presented in Fig. 5.5, the

use of nonlinearly matched beams significantly reduces the emittance growth.

This concept of matching to the nonlinear focusing force created by the ions is what was

alluded to in Ref. [110] when the beam was focused to a smaller spot size than the linearly

matched spot size. It showed that the emittance growth was smaller when the beam was

initialized with an initial emittance corresponding to the saturated value after it evolved in
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Figure 5.5: (a)-(d) Nonlinear matching for FACET-II like parameters with 1 µm normalized

emittances using 2D round beam slice simulation in a fixed nonlinear focusing force. (a)

Normalized emittance growth using A = 90, σ = 0.0045. The beam has γ = 20, 000 and

ϵN,x = 0.037. The spot size matched to the linear focusing force is σx = 0.01942 and

matched to the nonlinear focusing force is σN,x = 0.00949. (b) Scan over ion width with

A = 100, showing the final emittance growth percentage, which is related to the deviation of

the matched distribution from a Gaussian. (c) Spatial distribution for the case in (a) after

saturation. (d) Momentum distribution for the case in (a) after saturation. (e)-(h) Nonlinear

matching for LC parameters with 465 nm normalized emittance (with nb,d = 100) using 2D

round beam slice simulation in a fixed nonlinear focusing force. (e) Normalized emittance

growth using A = 2217, σ = 0.001. The beam has γ = 48, 925 and ϵN,x = 0.028. The

spot size matched to the linear focusing force is σx = 0.0133 and matched to the nonlinear

focusing force is σx = 0.00386. (f) Scan over ion width with A = 2000, showing the final

emittance growth percentage, which is related to the deviation of the matched distribution

from a Gaussian. (g) Spatial distribution for the case in (e) after saturation. (h) Momentum

distribution for the case in (e) after saturation.
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Figure 5.6: Full QPAD simulation showing approximate beam matching to the nonlinear

focusing force, corresponding to the beam slice simulation in Fig. 5.5e.

the nonlinear force. This corresponds to a smaller initial spot size and a larger momentum

spread.

5.4.2 Matching for different transverse ion profiles

For weak ion collapse, the transverse ion density profile looks close to Gaussian (see Fig.

5.2d), but for stronger collapse it looks more like an exponential profile (see Fig. 5.2b).

We plot a couple of profiles in Fig. 5.7 for comparison to the strong ion collapse profile

obtained from PIC simulations. Clearly the Gaussian profile is not the best fit, while both

other profiles do a better job. The 1/(1 + |x|) profile can capture the “fat tail” which is an

important feature with respect to the emittance growth. It is possible to derive the modified

envelope equation (using the Gaussian ansatz for the beam profile) in 1D for the exponential

profile, ρi = Ae−|x|/σ. The focusing force is

F⊥ = −k2p
[
x

2
+
Aσ

x

(
σ − e−|x|/σ(|x|+ σ

)]
. (5.35)

This can be used to obtain

⟨xx′′⟩ = −k2β
[
σ2
x + 2Aσ

(
σ −

〈
e−|x|/σ(|x|+ σ)

〉)]
, (5.36)
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Figure 5.7: Various functions compared to the simulation data for the transverse ion profile:

Gaussian - e−x
2/2σ2

, exponential - e−|x|/a, and 1/(1 + |x|/b). σ = a = 0.003 and b = 0.001

were used.

where

〈
e−|x|/σ(|x|+ σ)

〉
=

1√
2πσx

∫ ∞

−∞
dx e−x

2/2σ2
xe−|x|/σ(σ − |x|)

=
√

2/πσx +
σ2 − σ2

x

σ
eσ

2
x/2σ

2

Erfc

(
σx√
2σ

)
. (5.37)

Thus, for the exponential profile, the envelope equation becomes

σ′′
x =

ϵ2x
σ3
x

− k2β

[
σx +

2Aσ

σx

(
σ −

√
2/πσx −

σ2 − σ2
x

σ
eσ

2
x/2σ

2

Erfc

(
σx√
2σ

))]
. (5.38)

These profiles cannot easily be integrated in 2D Cartesian however, which is necessary

for the calculation of Eq. 5.33. While these other profiles may be useful in some cases, we

generally use the Gaussian profile. It is possible to choose narrower Gaussian profiles to

match the core ion density, but usually we use a wider profile to better match the integral

(charge) over a small radius. This seems to better capture the emittance growth.

Because the ions strongly collapse to the axis, many ions reside within a single cell on axis

in the simulations. This leads to a density spike whose amplitude depends on the resolution.

Even with very fine resolution, the density on axis will still increase, seemingly unresolved.
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Figure 5.8: Transverse lineouts of the (a) transverse wakefield and (b) ion density for different

transverse resolutions. We use ∆x = 0.0012 c/ωp as the largest cell size. We use a flat-top

beam (L = 2 c/ωp) with Gaussian transverse profile (the normalized profile is shown with

the black dashed line) with σ = 0.0015 c/ωp, nb = 8000, and a np = 1017 cm−3 plasma.

However, we have found that the use of very fine resolution with very large density spikes

provides the same focusing force and emittance growth as the relatively lower resolution

simulations, so long as the beam itself is properly resolved. This is due to the fact that

the electric field due to these ions is unchanged for all beam electrons except those within

the cell on axis. Fig. 5.8 shows an example of the ion density and resulting wakefields for

three different resolutions. We can see the ion density on axis, A, changes dramatically with

different resolutions but this has little effect on the transverse wakefields (or focusing force)

within the beam, and therefore on the beam dynamics.
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5.4.3 Exact longitudinally varying envelope approach

In general, the ion collapse will vary axially along the bunch, i.e., A and σ will be functions

of ξ. So the matched beam distribution will be different for each slice. For example, if the ion

density increases as you move further back in the beam, then the matched spot size will also

gradually decrease with ξ, this is sometimes called a taper. Finding the matched distribution

for each slice can be challenging because there is a feedback between this distribution and

resulting ion density profile. In Ref. [111], a theory for obtaining this self-consistent matched

distribution was developed. We will briefly review it in this section as it is relevant for the

exact matching that occurs when we introduce plasma density ramps in a later section.

We will use our notation so as to not cause confusion with different normalizations and

definitions.

We start with the matched distribution from the previous section

f⊥(r, ξ) =
1

N(ξ)
exp

(
− γ

σp(ξ)2
ψ(r, ξ)

)
, (5.39)

where

N(ξ) = 2π

∫ ∞

0

rdr exp

(
− γ

σp(ξ)2
ψ(r, ξ)

)
(5.40)

is a normalization factor and we have assumed azimuthal symmetry and γ is constant. If

we define the head of the beam to be at ξ = 0, then for ξ > 0 the beam’s profile will be

non-Gaussian and we can compute its second order spatial moment as

⟨x2⟩(ξ) = 1

N(ξ)

∫ 2π

0

∫ ∞

0

dr r3 cos2 θ exp

(
− γ

σp(ξ)2
ψ(r, ξ)

)
=

π

N(ξ)

∫ ∞

0

dr r3 exp

(
− γ

σp(ξ)2
ψ(r, ξ)

)
. (5.41)

The momentum distribution will remain Gaussian as we described previously. We now define

a scaling parameter that relates the second order moment to the initial spot size at the beam

head (which is Gaussian)

η(ξ) ≡ ⟨x2⟩(ξ)
σ2
x

. (5.42)
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We look for solutions where the beam is perfectly matched, which means the slice emittance

along the beam is conserved, i.e., at any point the emittance is equal to the initial emittance

at the beam head, given by ϵN,i =
√

γ
2
σ2
x. The emittance for all other slices is given by

ϵN =
√

⟨x2⟩(ξ)σp(ξ) = ϵN,i. Thus, we can relate the second order moments through

σp(ξ)
2 =

γ

2

σ4
x

⟨x2⟩(ξ)
=
γ

2

σ2
x

η(ξ)
. (5.43)

Now, we can solve for the value of η(ξ) by equating Eq. 5.41 with ⟨x2⟩(ξ) = η(ξ)σ2
x and

substitute the above equation into the distribution function to obtain∫∞
0
dr r3 exp

(
−2η(ξ)

σ2
x
ψ(r, ξ)

)
∫∞
0
dr r exp

(
−2η(ξ)

σ2
x
ψ(r, ξ)

) − 2η(ξ)σ2
x = 0. (5.44)

This equation can be iterated numerically to find the value η(ξ) and therefore the matching

distribution along the beam, given an initial spot size at the head, emittance, and the self-

consistent ion profile in order to calculate ψ(r, ξ).

In practice, creating beams with these profiles is not currently possible using conventional

beam optics. Ref. [111] also presented results showing an approximate Gaussian fit to the

ideal distributions. That is each slice would be a Gaussian with the same RMS properties

of the ideal matched distribution (essentially what is seen in Fig. 5.5c). The emittance

growth of such a beam was much smaller (3%) compared to the standard linearly matched

Gaussian bunch (20%). The beam initialized with the exact matching distribution showed

no emittance growth as expected. However, even the approximate equilibrium beam may

be hard to produce in practice (and has not been demonstrated for PWFA yet). It would

require tailoring the beam spot size along the longitudinal direction.

In order to produce a beam with this profile, a plasma-based method is probably the

best candidate, specifically an adiabatic (or quasi-adiabatic) matching method. Ref. [113]

suggests an adiabatic matching technique where an initially untapered beam is injected into

PWFA stage where the energy is low enough such that ion motion effects are small. Then as

the beam is accelerated the ion motion will become stronger and the beam will adiabatically
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find the matching distribution with little emittance growth. For example, it was found that

an injected bunch with ϵx,0 = 0.2µm, E = 50 MeV, and Φ = 1.3 (Φ = kiLb characterizes

the amount of ion motion) adiabatically acquired the desired matching distribution as it is

accelerated to 10 GeV, with a projected emittance growth of ∼ 15%. Higher initial injection

energies or lower initial emittance would increase the emittance growth in this process.

One major issue with this approach is that, while it does create the matched beam within

the first stage, this matched profile must be preserved into the later stages of a multi-stage

PBA-LC. This would require an advanced beam transport system. Moreover, Ref. [113] did

not consider plasma density ramps, which are useful for decreasing the beam spot size to

the small values required for LC plasma stages. In Ref. [114], we proposed to use quasi-

adiabatic plasma density ramps at the entrance and exit of each stage. In this scenario, the

beam is focused to the ramp entrance with a spot size too large to trigger ion motion. The

spot size then adiabatically decreases as it propagates in the upramp, causing the beam to

gradually trigger ion motion. This allows the beam to gradually adjust itself to the nonlinear

wakefields and acquire the desired slice-by-slice matching distribution with little emittance

growth. This adiabatic triggering of ion motion is similar to Ref. [113]. The advantage to

this approach is that the beam exits the plasma through the downramp where the beam will

gradually expand and transition back to a Gaussian with a large spot size. This can then be

transported to the next stage using conventional beam optics. We will present this method

in detail in Sec. 6.2.

5.5 Drive beam induced ion motion

In all previous studies of ion motion in PWFA, such as in Ref. [110], low density drive

beams were used to avoid additional ion motion induced by the drive beam. However, if

allowed to evolve, these drive beams suffer significant head erosion and the wake deteriorates

quickly, as shown in Fig. 5.9. This leads to the distortion of the accelerating field and thus

123



(a) (b)

Figure 5.9: (a) Initial nonlinear plasma wake from [110]. (b) Plasma wake after t = 20,000

ω−1
p = 33.6 cm.

a large increase in energy spread of the witness beam. One solution is to use a precursor

beam to help ease the head erosion of the drive beam by blowing out the initial electrons

and creating a focusing channel for the drive beam. With this approach one has to properly

design the precursor such that it sufficiently suppresses the drive beam head erosion while

not significantly altering the wake or inducing ion motion itself. Another solution is to use

higher density drive beams that do not suffer this severe head erosion. In this case, the drive

beam will cause ions to move to the axis at the location of the witness beam. We consider

two general regimes. The first regime is drive beams with Φ ≲ 1, which only give the ions

an impulse such that they do not reach the axis before the witness beam arrives. The ion

motion is then amplified by the witness beam leading to a larger ion density than from the

witness beam alone, and hence larger emittance growth. The other is drive beams with

Φ ≳ 1, where there is strong ion collapse before the witness beam arrives. We will quantify

these two regimes in the next section.

124



5.5.1 Regime where ion motion is dominated by the drive beam

First, we examine the case where the drive beam ion motion is dominant so that even if

the witness beam is offset, the ions will be centered on axis (defined by the drive beam).

This will be true for beams with relatively small ion parameter, Φ ∼ 1, e.g., short beams or

beams with less charge. The FACET-II parameters we have already mentioned fall into this

regime. We carried out QPAD simulations for this regime with the following parameters:

the plasma density is 4× 1016 cm−3, each beam is 10 GeV and bi-Gaussian with a spot size

σr = 0.516µm = 0.0194 c/ωp and normalized emittances of 1 µm = 0.0376 c/ωp. The drive

beam has a peak density nb/np = 4651.4 and length σz = 12.77µm = 0.481 c/ωp, while the

witness beam has a peak density nb/np = 2790.84 and length σz = 6.38µm = 0.24 c/ωp.

The beam centers are separated by ∆ξ = 150µm = 5.65 c/ωp. We used an r − z grid with

resolution 63.6× 221.5 nm and up to m = 3 azimuthal modes.

There is essentially one parameter we can vary to control the amount of driver induced

ion motion, assuming a fixed beam current, Λ, and a matched spot size. By increasing the

density of the beam, the matched spot size (and emittance) decreases, leading to a larger ion

parameter. However, another important parameter is the location of the focus of the ions

with respect to the location of the witness beam. For relatively large drive beam densities

(Φ ≳ 1), the ions that begin within the beam will focus before the witness beam and then

overshoot. So the ion density the witness beam sees will include ions that start at large

radii compared to the beam spot size and arrive at the axis within the witness beam. In

the limit of very high drive beam density, the ions will focus immediately and the on-axis

ion density behind the drive beam will grow roughly linearly in ξ because each ion ring that

subsequently arrives carries a larger charge. However, in this case many ions overshoot the

axis and move away from it before the witness beam, so there is not a large enhancement to

the ion density from the witness beam. Fig. 5.10 shows the results of a scan over the drive

beam spot size and the resulting ion density (which can be predicted as shown in Fig. 5.2a).

We can see that for relatively larger spot sizes, we get larger ion densities. This is because
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the ions are focusing on top of the witness beam, which amplifies the density.

We can derive a simple scaling law for the location of the first ion peak if we assume the

drive beam focuses the ions as a thin lens, which will be the case as long as the drive beam

is relatively short, which is typical in two bunch scenarios. We consider an ion that starts

at the drive beam spot size, r = σr,d. This ion will pick up an impulse from the drive beam

pr = Fr∆t = FrkpLb/c, (5.45)

directed towards the axis, where Lb is the drive beam length. The force from the drive beam

is

Fr(r = σr) =
Λ

kpσr

(
1− e−1/2

)
mcωp. (5.46)

We can now calculate the location where this ion will reach the axis,

kp(ξpeak − ξd,0) =
Mkpσr
pr

=
M/m

Λ

1

kpLb

σ2
r

1− e−1/2
=
M/m

nb/np

1

kpLb

1

1− e−1/2
, (5.47)

where ξd,0 is the center of the drive beam. For a longitudinally Gaussian beam, Lb ∼=
√
2πσz.

This scaling can be useful to find the location of the first ion peak to ensure it lies either

before or after the witness beam.

5.5.2 Drive beam ion motion in the LC regime

In the LC regime, the witness beams have more charge and lower emittance. Thus, they

have a higher density, smaller matched spot size, and are typically longer. We will consider

a trapezoidally shaped witness beam that optimally loads the wake. In this regime, Φ ≫ 1

for the witness beam, thus it will dramatically impact ion motion.

As with the previous regime, the location where the drive beam focuses the ions is

essential. We want the ions to focus either before or after the witness beam. If the focus

is on top of the beam, the ion density will be greatly amplified and this generally leads to

larger emittance growth. We can thus identify two separate regimes of drive beam induced

ion motion. First, the underfocused regime, shown in Fig. 5.11b, where the ions do not reach
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Figure 5.10: Ion density for FACET-II like parameters with 1 µm normalized emittances.

The drive beam is centered at kpξ = 0 and the witness beam at kpξw,0 = 5.55. (a) On axis

and (b) transverse (ξ = ξw,0) ion density from a parameter scan over transverse drive beam

spot size, kpσr,d, with the drive beam current, Λ, held fixed.
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the axis until well after the witness beam arrives. The ions will still move toward the axis

and the witness beam will finally pull them to the axis, thus the density will be amplified

in the witness beam region. Second, the overfocused regime, shown in Fig. 5.11c, where

the drive beam drives the ions to the axis, thus creating a spike in ion density, before the

witness beam arrives. We can define the overfocused (underfocused) regime by ξpeak ≪ ξw,0

(ξpeak ≫ ξw,0), where ξw,0 is the center of the witness beam.

We consider matched drive beams, as unmatched drive beams have spot size oscillations

that may lead to complicated ion motion that is hard to predict. Moreover, we use hydrogen

plasmas, but in principle higher ion masses will experience less ion motion and in general

have smaller density amplification in the witness region. They will also be less susceptible to

being pulled off axis by an offset witness beam, which may be beneficial in the overfocused

regime. However, the ionization of higher levels by the witness beam may pose a significant

problem. We will talk about heavier ion species and ionization in Sec. 6.4.3.

5.6 Elimination of hosing and witness beam realignment

Although ion collapse can be detrimental to beam emittance, it can help control transverse

instabilities. For example, Ref. [98] showed the inherent stability of the drive beam due

to energy variation along the beam and Ref. [104] showed the witness beam hosing can be

suppressed in the LC regime and argued this was due to a BNS-type mechanism induced by

the ion collapse. In the latter case, ion motion from the drive beam was ignored. In this

section, we will show drive beam induced ion motion not only suppresses hosing but it can

realign the witness beam with the drive beam. However, this occurs at the cost of large

emittance growth for FACET-II like parameters.

In this case, where the drive beam ion motion dominates, the witness beam centroid will

execute betatron oscillations but will not perturb the focusing force too much. In other words,

the witness beam will experience the nonlinear focusing force created by the drive beam ion
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Figure 5.11: Ion density in the witness beam region for various drive beam densities after it

reaches steady state. (a) Low density drive beam so as to not perturb the ions before the

witness beam. (b) The underfocused regime which has similar features to (a) but with an

amplified magnitude. (c) The overfocused regime, which has a more complicated transverse

structure and large on-axis density.
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Figure 5.12: Ion motion with FACET-II parameters with a one micron offset. (a) Beam

centroid evolution with and without ion motion. (b) Projected emittance evolution in trans-

verse directions with ion motion. The centroid is measured at the tail, ξ = +σz.

motion which is centered on axis. As its centroid oscillates, the witness beam will phase mix

in this nonlinear focusing force, thus filling up phase space until the centroid vanishes at the

cost of emittance growth. The final spot size, and hence the emittance, will scale with the

initial witness beam centroid. We first present a proof of principle QuickPIC simulation with

the FACET-II parameters that were given in Sec. 5.5.1 and an initial witness beam offset of

xb,0 = 1µm = 0.0376 c/ωp. We see in Fig. 5.12 that the witness beam is quickly realigned

with the drive beam axis over several betatron periods, but at the cost of the emittance

growing by 200% from 1 to 3µm.

In Fig. 5.13, we present results from two QPAD simulations with FACET-II parameters

using two different drive beam spot sizes: the spot size listed above and double that value

(σr,d = 1.03µm = 0.0388 c/ωp). The larger spot size causes a larger ion density peak in the

witness beam region and therefore larger emittance growth as seen in Fig. 5.13a, but faster

damping of the centroid as seen in Fig. 5.13b. This suggests that there is an optimum drive

beam spot size that damps the centroid within a certain propagation distance that causes
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(a) (b)

Figure 5.13: (a) Projected emittance growth and (b) beam centroid for two different drive

beam spot sizes with FACET-II like parameters. The witness beam starts ∆x = 1µm off

axis.

minimal emittance growth of the witness beam. We note that this conclusion will be slightly

altered when we consider plasma density ramps in the next chapter.

When the beam is not offset, the emittance growth is mostly due to the larger spread in

momentum, σp. As explained in Ref. [110], the max px0 will increase approximately by a

factor of
√
A, because the slope of the focusing force is enhanced by A near the beam center.

However, the full emittance will not scale as
√
A, depending on the size of the ion collapse

σ. When the beam is offset, it spreads out in the offset direction but also in the momentum.

The phase space density for these scenarios can be seen in Fig. 5.14.

We can also examine how the emittance growth scales with the offset magnitude using

2D beam slice simulations, the results are shown in Fig. 5.15. These simulations evolve

particles in a beam slice using a prescribed (fixed) focusing force. These are much faster

than full PIC simulations if one is just investigating transverse dynamics. We find that for

large offsets the centroid takes longer to damp, as expected, and that the emittance growth

scales roughly as x2b,0/σ
2
x,0. In the next section, we will show how we can predict this growth

for many different sets of initial beam parameters.

131



(a) (b) (c) (d)

Figure 5.14: Witness beam x− px phase space density evolution for FACET-II parameters.

(a) Initial phase space with no offset. (b) Saturated phase space with no offset. (c) Initial

phase space with an offset. (d) Saturated phase space with an offset.

(a) (b) (c)

Figure 5.15: (a) Beam centroid and (b) emittance evolution for various beam offsets using

a beam slice (fixed focusing force) simulation. (c) Scaling of the saturated emittance with

initial offset.
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5.7 Predicting the emittance growth of asymmetric or offset wit-

ness beams

In the regime where the drive beam ion motion dominates, i.e., the nonlinear focusing force

is centered on axis, the emittance growth can be predicted. First, it is important to describe

the salient features of the physics that can be inferred from the simulations described in the

previous section. We find that the emittance initially grows in the offset direction x, and

then it subsequently grows in the other transverse direction. Eventually, an equilibrium is

reached where the final emittances and spot sizes reach the same value in both directions.

This is due to the ion density being symmetric about the drive beam axis and the focusing

forces being nonlinear. This leads to coupling between the two planes that acts to make the

witness beam symmetric about the drive beam axis.

As we mentioned in Chapter 1, future PWFA-LCs may require asymmetric beams to

avoid strong beamstrahlung radiation. It may be possible to use an asymmetric drive beam

to cause an asymmetric ion collapse and therefore the saturated witness beam emittance

would be asymmetric. However, this requires very large aspect ratios and therefore QPAD

is not suitable. Future studies of this using QuickPIC with mesh refinement are underway,

including designs for a final focus that will make a high energy symmetric witness beam

asymmetric before the interaction point. We note that some recent work [68] indicates that

the use of symmetric beams at the interaction point may be permissible in some cases.

5.7.1 Asymmetric witness beam evolution

As just described, when a witness beam with an offset oscillates in a fixed nonlinear focusing

force it will rapidly become asymmetric about the drive beam axis and subsequently equili-

brate between the two planes, leading to a symmetric saturated emittance. Thus, we study

asymmetric witness beam evolution in these nonlinear forces. Asymmetric beams are also

worth studying in their own right, as many times the beams produced in experiment are

133



asymmetric. In this analysis, we consider beams with no energy spread.

The evolution of the spot size of an asymmetric witness beam is governed by Eq. 5.33

(coupled to the corresponding equation for σy). We typically do not know the evolution in s

of the geometric emittance terms, ϵx and ϵy, in these two equations. Thus, there is currently

no self-consistent description. Instead, we use beam slice simulations to identify several

conserved quantities. Fig. 5.16 shows the results of four such simulations with the results

showing that the spot size and momentum spread in each plane roughly converge to the root

mean square (RMS) of their initial values in x and y, i.e., σ2
x = σ2

y
∼= 1

2

(
σ2
x,0 + σ2

y,0

)
≡ σ2

sat

and σ2
px = σ2

py
∼= 1

2

(
σ2
px,0 + σ2

py ,0

)
≡ σ2

p,sat. As of yet, we do not have a first principles

argument for why they are conserved. The closer the beam remains to Gaussian (see Fig.

5.5) the less error between the actual saturated value and the RMS result. The saturated

normalized emittance can then be calculated as ϵN,sat = σsatσp,sat. This value is very close

to the average of the initial emittance in each direction, i.e., ϵN,sat ≃ 1
2
(ϵx,0 + ϵy,0) for the

parameters studied. So in summary, beam slice simulations have shown if both directions

start matched to the nonlinear focusing force, i.e., σ′′
x,0 = σ′′

y,0 = 0, then σ2
x + σ2

y, σ
2
px + σ2

py ,

and ϵx + ϵy are conserved assuming the beams stay close to Gaussian in x and y. We note

these findings only strictly apply for parameters similar to those considered in this section,

and have not been tested rigorously for other regimes, although the general principles should

still apply.

5.7.2 Offset witness beam evolution

A witness beam that starts with a centroid offset in a fixed nonlinear force will rapidly

phase mix and the centroid will vanish typically within a couple betatron oscillations. In

other words, the witness beam will become realigned to the drive beam through the ions,

however, this comes at the cost of emittance growth of the witness beam. The smearing out

in the offset direction leaves the beam asymmetric and therefore it will evolve to become

symmetric as we have described above. In reality, this is a continuous process, however, the
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Figure 5.16: Simulations of an asymmetric beam slice in a fixed nonlinear focusing force.

Each direction starts matched to this focusing force. The first row is the beam spot size,

the second row is the momentum spread, and the last row is the slice emittance ϵN . The

first column uses a beam with kpσx = 0.04 and kpσy = 0.02 and ion profile with A = 10

and σ = 0.015 (ion width, not to be confused with the beam spot size). The second column

uses the same beam but with A = 40. The third column uses the same beam but with

σ = 0.06. The fourth column uses the ion profile A = 10 and σ = 0.015 but with kpσx = 0.8,

i.e. the aspect ratio is increased from 2 to 4. The slice emittance is predicted through

ϵN,sat = σsatσp,sat. Using ϵN,sat ≃ 1
2
(ϵx,0 + ϵy,0) gave results that were about 1-2% less than

this for all cases.
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phase mixing of the centroid oscillations generally occurs within the first couple betatron

oscillations, while the coupling between the transverse planes occurs over a much longer

timescale. Thus, we treat this as a two step process. In the first step, taking x to be the

offset direction, the beam smears out to a new σx predicted by 1D theory from [110], and

we typically assume the y direction is unchanged. However, for sufficiently small offsets, the

y direction can also change significantly and must be estimated using the 1D theory as well.

Along with the beam smearing out in x, it also rapidly reaches the matched σpx and σpy

values predicted by Eq. 5.33. The second step will then be the symmetrization of the beams

transverse spot sizes, equivalent to the matched asymmetric beam described above.

5.7.2.1 Calculating the 1D beam phase space with an offset

As discussed earlier, in a uniform plasma, the emittance of an nonlinearly unmatched beam

in a nonlinear force saturates quickly and reaches a steady state where ϵ = σxσpx . Even

if the beam is asymmetric or offset, it will still eventually reach a symmetric steady state

as described above. In Ref. [110], a method for calculating the saturated emittance in

1D was provided. This same method can be straightforwardly modified to calculate the

saturated spot size and emittance when the beam has an offset so we will breifly review this

calculation. Because the beam is in steady state, we can calculate the time average of x2 of

a beam particle orbit as

X2
ave ≡

∫
osc
x2dt

Tosc
=

∫ x0
0

dx
vx
x2∫ x0

0
dx
vx

=

∫ x0
0
dx x2/

√
ψ(x, ξ)− ψ(x0, ξ)∫ x0

0
dx/
√
ψ(x, ξ)− ψ(x0, ξ)

, (5.48)

where x0 is the maximum value of x, and vx =
√
2(ψ(x, ξ)− ψ(x0, ξ))/γ was used, where

ψ(x, ξ) is given by Eq. 5.21, and lastly we assumed γ can be taken out of the integrals

because the energy does not change much during the saturation process. We can calculate

the saturated spot size by integrating over all particles in phase space as follows

σx,f =
1

N

∫ ∞

0

dx0Nx0X
2
ave, (5.49)
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where Nx0 is given by

Nx0 = 2

∫ x0

−x0
f0(x, px)

dpx
dx0

dx, (5.50)

where f0(x, px) is the initial distribution function of the beam. We have integrated over the

positive side of the x − px plane and multiplied by two to capture the negative side, which

is needed where there is an offset (Ref. [110] only used one quadrant and multiplied by 4).

Using the expression for vx given above we can calculate

dpx
dx0

=

√
γF⊥(x0)√

2(ψ(x)− ψ(x0))
, (5.51)

where we used F⊥ = −∂ψ/∂x. We now have all the pieces required to calculate the final

saturated spot size σx,f , given an initial beam slice distribution f0(x, px) and Gaussian ion

profile parameterized by A and σ. Of course, it is straightforward to do the same calculation

for σpx so that you can calculate the saturated emittance. However, this 1D based deriva-

tion only works when there is no offset, as this does not take into account the transverse

plane coupling, and therefore does not capture the symmetrization discussed in the previous

section. Instead, as we laid out before, we can use this approach to calculate the maximum

spot size achieved when the beam oscillates and expands in the x direction, before the beam

symmetrizes.

5.7.3 Calculating the emittance growth of an offset beam

We are now ready to put these approaches together. In Fig. 5.17, we show the validation of

this two step approximation using beam slice simulations for FACET-II parameters with a

witness beam offset of xb,0 = 1µm= 0.0376 c/ωp and ion profile parameterized by A = 90 and

σ = 0.0045. We consider the special case where the beam spreads out to σ2
x → σ2

x,0 + x2b,0,

which corresponds to the beam starting with the matched σp after it has undergone the

initial phase mixing in the offset direction x. The matched σp in each direction is calculated

with the nonlinear matching condition from Eq. 5.33 with σ′′
x = 0 and ϵx = σxσpx/γ (and

analogous condition for the y direction). It then symmetrizes to σ2
sat =

1
2

(
σ2
x,0 + x2b,0 + σ2

y,0

)
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and therefore reaches a final emittance of ϵsat = 1
2

√
(σ2

x,0 + x2b,0 + σ2
y,0)(σ

2
px,0 + σ2

py ,0). We

compare the offset beam slice simulation with another beam slice simulation initialized with

an asymmetric beam (with no offset) with spot sizes σx,asym =
√
σ2
x,0 + x2b,0 and σy,asym =

σy,0, which corresponds to the offset beam after phase mixing (beginning of the second

step). The agreement between these two simulations verifies the two step method is a good

approximation for this parameter regime. In the general case, there may be some discrepancy

between the offset initialization and asymmetric initialization in the spot sizes, while for the

momentum, the disagreement is usually very small - within ∼5% for parameters considered

here. Finally, we use this model to predict the emittance growth in the case from Fig. 5.12,

where the beam is offset with a linearly matched spot size when it enters the plasma. The

results are shown in Fig. 5.18, where we compare the two step method prediction with a

beam slice simulation and a fully self-consistent QPAD simulation (which was presented in

Sec. 5.6). We see the saturated projected emittance from QPAD is close to the predicted

emittance value. Because we have only considered the effect of the ion collapse on the beam

emittance, these results validate our assumption that, in this regime, the transverse beam

dynamics in the fixed ion column dominate and hosing has little effect.

5.8 Suppression and elimination of hosing in a uniform plasma in

the LC regime

In Sec. 5.6, we showed drive beam induced ion motion can realign the witness beam with the

drive beam at the cost of emittance growth for FACET-II like parameters. In this section, we

will expand on this idea for the LC regime and show we can minimize emittance growth of a

misaligned witness beam by choosing an appropriate drive beam density to cause a minimal

amount of ion motion at the witness beam head, while still damping its centroid oscillations.

Subsequently, the rest of the beam will realign behind the beam head.

Ref. [104] showed the witness beam hosing can be suppressed in the LC regime via a

138



(a) (b)

Figure 5.17: Verification of the two step method for calculating the saturated (a) σr and (b)

σp values for a beam slice with FACET-II parameters and a 1 µm offset in the x direction. The

solid lines represent the evolution with the initialization with the beam offset and the green

and red dashed lines represent an initialization with an asymmetric beam slice equivalent to

the offset beam after the spot size expansion σ2
x → σ2

x+x
2
b,0 and the violet dashed line is the

predicted saturated values. The error in the spot size is mostly due to the beams matched

distributions deviation from Gaussian.
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Figure 5.18: Comparison of the emittance from the FACET-II parameter simulation shown

in Fig. 5.12 (both QuickPIC and QPAD with up to m = 3) to the predicted emittance from

the two step method. The beam is initially linearly matched to the plasma.

BNS-type mechanism induced by the ion collapse of the witness beam itself. This work also

derived an equation for the average wakefield (the wakefield is defined as W⊥ = E⊥+ ẑ×B⊥,

so F⊥ = −ZeW⊥) experienced by a beam in the weak ion motion regime (Φ ⪅ 1) and

incorporated it into their model for the plasma channel centroid to predict the mitigation of

hosing in this regime. The expression for the average wakefield is

⟨Wx⟩ =
xb(ξ)− xp(ξ)

2
+ Zi

m

M

Ib
IA

∫ ξ

∞
dξ′ (ξ − ξ′)g∥(ξ

′)
xb(ξ)− xb(ξ

′)

σ2
x(ξ) + σ2

x(ξ
′)
, (5.52)

where Ib is the beam current, IA ≈ 17 kA is the Alfvén current, xb is the beam centroid, xp

is the channel centroid, and g∥ is the longitudinal beam profile. This does not strictly apply

to the strong ion collapse regime that we are interested in, but can provide some physical

insight into the beam and ion dynamics. Namely this equation highlights the longitudinal

variation to the wakefield induced from ion motion. For straight beams (xb(ξ) = xb(ξ
′)), the

average wakefield will be ⟨Wx⟩ = (xb−xp)/2 (this applies to strong collapse because the ions

will oscillate on top of and in phase with the beam). However, if slices become misaligned

with respect to the head of the beam, they will experience different average wakefields. This
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variation along the beam induces the BNS mechanism and detunes the hosing resonance.

We now consider the dynamics of misaligned witness beams in the presence of ion motion

in the LC regime (Φ ≫ 1). Ref. [104] studied a uniform offset witness beam in the LC regime

using a low density (non-evolving) drive beam that causes no ion motion and showed that the

witness beam hosing growth is completely suppressed, i.e., the beam oscillates with constant

amplitude. In this case, the ions collapse directly on top of the witness beam and oscillate in

phase with it, so the emittance growth will be very close to the non-offset case (assuming no

energy spread). To further study this regime, we carry out two QPAD simulations of tilted

beams. The simulations highlight the physics of ion motion suppressing the beam hosing

in the LC regime. We consider a two-bunch LC scenario with a Gaussian current profile

for the drive beam and a trapezoidal current profile for the witness beam that optimally

loads the wake. The plasma density is n0 = 1017 cm−3. Both beams are 25 GeV with no

energy spread and the head of the witness beam starts 105 µm behind the center of the drive

beam. The drive beam has 4.8 nC of charge, normalized emittance ϵN,d = 1 mm and spot

sizes σr,d = 10.37 µm, σz,d = 30 µm. The witness beam has 1.63 nC of charge, normalized

emittance ϵN,w = 0.465 µm and spot size σr,w = 0.223 µm. The beam current linearly

decreases from Ib = 27 kA to Ib = 5.4 kA over Lb = 30.24 µm. The resolution is 10.3 nm ×

241 nm and the 3D timestep is ∆t = 5ω−1
p . A small timestep is needed to capture the beam

dynamics in the large ion densities created when the drive beam seeds the ion motion. We

use up to m = 5 to capture the witness beam hosing.

The results from the simulations are shown in Fig. 5.19. In Fig. 5.19a, it can be seen

that when the entire beam has a uniform offset it oscillates as a rigid body, with no hosing

growth. In Fig. 5.19b, results for the case of a beam tilted about its head so that its head

is on axis (r = 0) are shown. In this case, the head of the beam will pull the ions towards

the axis. The perturbed focusing force that the subsequent beam slice sees will tend to

eventually pull it towards the axis. This argument holds for each subsequent beam slice to

the beam tail such that eventually the beam will be aligned to the drive beam axis, as we
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can see in Fig. 5.19b. We also consider a beam tilted about its center so its head is not

aligned with the axis. In the same way as the previous scenario, the ion collapse will align

behind the location of the head and oscillate with it. Each subsequent beam slice will then

align with the head as can be seen in Fig. 5.19c. Thus, in the case of strong ion collapse

from the witness beam, an arbitrary offset will eventually become uniform, i.e., the beam

will become straight, and oscillate at constant amplitude corresponding to the initial offset

of the head of the beam. Therefore, the key parameter is the offset of the head of the witness

beam relative to the drive beam.

In order to achieve realignment, we thus only need to realign the head of the witness

beam using the ion collapse from the drive beam. The ion density in the witness beam

region, which is a function of the drive beam density, should be high enough to realign the

beam but not too high to cause extra emittance growth. Such an ion density at the location

of the head of the witness beam can be created by a drive beam with a moderate Φ. A drive

beam with a density of nb,d = 100 (corresponding to a spot size of 2.52µm and Φ = 1.4

at the witness beam head) that causes an on-axis ion density at the witness beam head

of A0 ≈ 10 was found to work well. Fig. 5.11b shows the saturated ion density for this

simulation. The damping of the centroid oscillations of the head is due to the phase mixing

in the nonlinear focusing force, as shown in Fig. 5.20, which is different of course from the

BNS-type mechanism responsible for the suppression of hosing when the ions are oscillating

with the beam. Once the head of the witness beam completely phase mixes, its centroid

fully aligns with the drive beam. The rest of slices become aligned with the head so that the

entire beam is realigned, as shown in Fig. 5.19d.

In Fig. 5.21 we show the how the focusing force damps the beam oscillation because the

zero point of the focusing force (and the ion center) is between the beam centroid and the

axis, due in part to the drive beam ion motion, so the average wakefield it will experience

will tend to damp the oscillation. We also note that there is a significant perturbation of the

focusing force compared to the unperturbed one, due to the large ion collapse, which has a
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significant effect on the dynamics. We can see the results in Fig. 5.19d show that the beam

is realigned but at the cost of large emittance growth. This realignment scheme will work

for general positional offsets as well as initial velocity angles as long as there is a sufficient

ion collapse at the beam head.

A method to approximately determine the appropriate drive beam density required to

damp the witness beam head oscillation is as follows. Given the drive and witness beam

parameters, we calculate the ion density using the ring model from Sec. 5.2. Alternatively,

you could run a single 3D timestep (quasi-static) PIC simulation and extract the ion density.

The ion density profile can then be fit to a Gaussian transverse profile (obtain A and σ) and

use this to obtain the corresponding focusing force for a particular slice. This focusing force

can be prescribed in a beam slice simulation to study how this beam slice centroid will damp

in this fixed focusing force. For cases where Φ of the witness beam is large, this procedure

only works for slices near the head as the evolution of the witness beam will change the

focusing force. It is possible to directly import a focusing force profile into a beam slice

simulation, but usually this degree of accuracy is not necessary. We can use this workflow

either in a uniform plasma or a plasma ramp, as we will show in the next chapter.

5.9 Summary

In this chapter, we reviewed the basic physics of ion motion in PWFA. Usually, PWFA theory

neglects ion motion because it is weak for typical beam parameters. However, with more

intense, tightly focused beams that will soon be used in experiments and will be necessary

for future applications, such as a plasma-based linear collider design, ion motion will be a

fundamental challenge that must be addressed.

We reviewed previous work that characterized the basic problem of ion motion and iden-

tified the basic physics associated with ion collapse and how aligned witness beams evolve

in the nonlinear focusing forces created by this collapse. We then calculated the ion density

143



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Propagation Dis ance, s [cm]

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

Be
am

 C
en

 ro
id

, x
b [
c/
ω
p] ξ=12.25

ξ=12.7
ξ=13.15

ξ=13.6
ξ=14.05
Projected

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Propagation Dis ance, s [cm]

−0.020

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

Be
am

 C
en

 ro
id

, x
b [
c/
ω
p] ξ=12.25

ξ=12.7
ξ=13.15

ξ=13.6
ξ=14.05
Projected

(b)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Propagation Dis ance, s [cm]

−0.04

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

Be
am

 C
en

 ro
id

, x
b [
c/
ω
p] ξ=12.25

ξ=12.7
ξ=13.15

ξ=13.6
ξ=14.05
Projected

(c)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Propagation Dis ance, s [cm]

−0.020

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

Be
am

 C
en

 ro
id

, x
b [
c/
ω
p] ξ=12.25

ξ=12.7
ξ=13.15

ξ=13.6
ξ=14.05
Projected

(d)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Propagation Distance, s [cm]

1.0

1.2

1.4

1.6

1.8

2.0

No
rm

. E
m

itt
an

ce
, ε

N
/ε

N
,0

ξ= 12.25
ξ= 12.7
ξ= 13.15

ξ= 13.6
ξ= 14.05
Projected

(e)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Propagation Distance, s [cm]

1.0

1.2

1.4

1.6

1.8

2.0

No
rm

. E
m

itt
an

ce
, ε

N
/ε

N
,0

ξ= 12.25
ξ= 12.7
ξ= 13.15

ξ= 13.6
ξ= 14.05
Projected

(f)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Propagation Distance, s [cm]

1

2

3

4

5
No

rm
. E

m
itt

an
ce

, ε
N
/ε

N
,0

ξ= 12.25
ξ= 12.7
ξ= 13.15

ξ= 13.6
ξ= 14.05
Projected

(g)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Propagation Distance, s [cm]

1

2

3

4

5

No
rm

. E
m

itt
an

ce
, ε

N
/ε

N
,0

ξ= 12.25
ξ= 12.7
ξ= 13.15

ξ= 13.6
ξ= 14.05
Projected

(h)

Figure 5.19: The first three columns show beam centroid and emittance evolution for a low

density (nb,d = 5.9) drive beam. The first column is similar to Ref. [104], that uses a uniform

beam offset ∆x = σx,0. The second column has a witness beam with a linear tilt about the

head, with θ = 0.00739 rad so that the tail is x = σx,0 above the axis. The second column

has a witness beam with a linear tilt about the the center, with θ = 0.0148 rad so that the

tail is x = σx,0 above the axis. The fourth column uses a higher density (nb,d = 100) drive

beam with a uniform witness beam offset, ∆x = σx,0. The final projected emittance growths

are 35%, 40%, 31%, and 268%, respectively.
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Figure 5.20: Phase space density evolution of the head of the witness beam, ξ = 12.25

through ξ = 12.35, from Fig. 5.19d. s = 0, 1.68, 3.36, 5.04, 6.72, 20 cm, respectively.

created by Gaussian electron beams using a ring model. We found we can reproduce the ion

density from simulations even when trajectories cross by using a small cutoff value. This ion

density can then be integrated to calculate the resulting focusing force. When ion motion

is weak, we can use the ring model to calculate the wake analytically assuming a flat-top

longitudinal and Gaussian transverse beam profile.

We reviewed how beam matching is altered when there is strong ion motion. In general,

the beam distribution becomes non-Gaussian, but we found that we can calculate a correc-

tion to the standard envelope equation and therefore matching condition if we assume the

transverse profile remains Gaussian. Beams matched using this nonlinear matching condi-

tion still have a small emittance growth, but it is much reduced from than linear matching.

In general, the beams need to be slice-by-slice matched due to the variation in ion density

along the beam. An iterative procedure for finding the slice-by-slice matching was reviewed.

We noted that this can be achieved using adiabatic matching schemes.
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Figure 5.21: Demonstration of centroid damping for the case with drive beam ion motion,

shown in Fig. 5.19d. The first row is the first 3D timestep, the second row is after one

betatron oscillation, and the third row is the final timestep (after saturation). The left axis

of each plot shows the focusing force in normalized units. The dashed line represents the

unperturbed wakefield and its zero-crossing is the center of the plasma channel. The right

axis shows the beam and ion densities. Their max values are normalized to one and the

beam densities are fitted to a Gaussian.
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We discussed how the physics changes when one considers drive beam ion motion. This

issue has not been addressed previously, likely because it is more complicated and it leads to

larger ion density compression. However, in reality large spot size beams that do not cause

ion motion suffer significant head erosion causing wake deterioration. We found that using

narrower drive beams to prevent head erosion causes ion motion in front of the witness beam

and can actually have a stabilizing effect on head-to-tail instabilities. The on-axis focusing

force created by drive beam ion collapse realigns the witness beam by causing it to phase

mix. This comes at the cost of large emittance growth. In the LC regime, where the witness

beam has Φ ≳ 1, we find that we can realign the head of the beam, using a minimal ion

density. When the head of the beam is on axis, the rest of the beam will realign behind it.

Finally, we presented a scheme for predicting the emittance growth for asymmetric and

offset witness beams in the case when the focusing force is on-axis. A symmetric drive

beam causes a symmetric ion collapse. The symmetric, nonlinear force will tend to make the

witness beam symmetric. When the witness beam is offset, it will quickly become asymmetric

and then symmetrize in a two step process. The scaling of this emittance growth was found

to agree well with simulations.
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CHAPTER 6

Beam realignment via drive beam induced ion motion

in quasi-adiabatic matching sections

In this chapter, we combine the ideas from previous chapters to study a full stage for the elec-

tron arm of a plasma wakefield accelerator linear collider (PWFA-LC) with quasi-adiabatic

plasma matching sections. We start by discussing the importance of matching sections in the

electron arm of a PWFA-LC and the development of plasma density ramps to match intense

electron beams into the plasma, including the basic notation and equations such as Courant-

Snyder parameters. We will discuss how these ramps in the LC regime, in the absence of

any initial beam misalignment, can match beams in and out of a single stage with essentially

no emittance growth. We extend this idea to situations where the drive beam causes ion

motion. We then discuss how the matching section can suppress beam centroid oscillations.

We put this all together and present a scheme where drive beam induced ion motion realigns

a witness beam in the LC regime within one stage, with minimal emittance growth through

the use of quasi-adiabatic matching sections. This stage provides a high transformer ratio

and the witness beam is loaded such that the energy spread remains small. This is a signifi-

cant advance in LC designs that may allow the stable transport and acceleration of electron

beams over many stages. Finally, we discuss some other scenarios for realignment and how

higher levels of ionization may be an issue when using heavier ion species such as lithium.

This chapter covers works to be published in Ref. [107].
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6.1 Matching sections without ion motion

We begin by reviewing the physics of matching sections in the absence of ion motion. It

was recognized that when particle beams with any energy spread enter a plasma with an

unmatched spot size, there is a large normalized emittance growth. Furthermore, when a

tightly-focused beam exits a plasma, there is a large normalized emittance growth when the

beam drifts and expands in vacuum. Thus, matching the beam into and out of the plasma is

a critical. Plasma wakes in the blowout regime provide focusing forces much stronger than

conventional optics. Moreover, in experiments, plasmas naturally will have some density

ramps at the entrance and exits. Therefore, it makes sense to design and tailor the plasma

ramps as matching sections to transition beams from a large (small) spot size to a small

(large) spot size at the entrance (exit) of the uniform plateau section of the plasma. There

has been much recent work on this front [32, 33, 35, 36, 115, 37].

Recall that the envelope equation for the spot size evolution of a beam in a linear focusing

force is

σ′′
x +

ϵ2

σ3
x

(
1− k2β

σ4
x

ϵ2

)
= 0, (6.1)

where kβ = kp/
√
2γ and ϵ is the geometric emittance. Setting σ′′

x gives the matched spot

size

σm =

√
ϵ

kβ
. (6.2)

Now for a plasma matching section, the plasma density will vary as a function of propagation

distance, z. So we can define the local matched spot size as

σm(z) =

(
2

γ(z)

ϵN(z)
2

k2p0

n0

n(z)

) 1
4

, (6.3)

where ϵN = γϵ is the normalized emittance, n0 is the reference density, and n(z) is the local

plasma density. From this, we can see that if we have a plasma upramp where n(z) increases,

the spot size will correspondingly decrease.

For a beam with energy spread that is not properly matched, chromatic effects will cause
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particles of different energies to rotate at different angular frequencies in phase space, leading

to a larger slice and projected normalized emittance.

6.1.1 Courant-Snyder parameters

The beam phase space is typically described in terms of the Courant-Snyder (CS) parameters

[116] (also known as Twiss parameters). Here, we briefly review how these arise from studying

single particle motion and how they are useful for defining matching. The equation of motion

for a beam particle in a linear focusing force is

x′′ +
γ′

γ
x′ + k2βx = 0. (6.4)

If we use the substitution x =
√
γ(z0)/γ(z) x̃, and assume no phase slippage, i.e., γ′′/γ ≪ k2β,

and adiabatic acceleration, i.e., γ′/γ ≪ kβ, we arrive at a Hill like [117, 84] equation

x̃′′ + k2βx̃ = 0. (6.5)

This has an exact solution [116]

x̃(z) = a

√
β

β0
cos

(∫ z

z0

dz′

β(z′)
+ ϕ0

)
, (6.6)

where a and ϕ0 are constants and β(z) is a function that satisfies the differential equation

1

2
ββ′′ − 1

4
β′2 + k2ββ

2 = 1. (6.7)

Moreover, we can define a constant of motion for the Hill like equation [116]

γcsx
2 + 2αxx′ + βx′2 = a2/β0, (6.8)

where α ≡ −β′/2 and γcs ≡ (1 + α2)/β. α, γcs, and β are called the Courant-Snyder

parameters (for a single particle). We have also dropped the tilde, so we are tacitly assuming

the γ remains constant. It is straightforward to modify Eq. 6.8 for cases where γ is changing,

but this is not generally necessary for plasma density ramps. Jeans’s theorem states that
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any function of the constant of the motion of a given potential is a solution to the steady

state Vlasov equation. Therefore, we can use this constant of motion for a single particle to

obtain a distribution function

f(x, x′) =
1

2πϵ
exp

(
−γcsx

2 + 2αxx′ + βx′2

2ϵ

)
, (6.9)

that will be a solution of the steady-state Vlasov equation. We emphasize that this is not

a unique solution, so it is essentially a Gaussian ansatz. Using this distribution function,

we can calculate the moments of this distribution to obtain ⟨x2⟩ = βϵ, ⟨xx′⟩ = −αϵ, and

⟨x′2⟩ = γcsϵ. These can be rearranged as

β =
⟨x2⟩
ϵ

(6.10)

α = −⟨xx′⟩
ϵ

(6.11)

γcs =
⟨x′2⟩
ϵ
, (6.12)

which are the well-known CS parameters for a beam. These CS parameters for a beam are

the same relationships that define the CS parameters for a single particle. So the matching

condition in a uniform plasma is

β = βm =
σ2
m

ϵ
=

1

kβ
(6.13)

α = 0. (6.14)

6.1.2 Matching with an adiabatic density ramp

In a ramp, the matching condition is slightly modified to

β = βm (6.15)

α = αm, (6.16)

where now the matched CS parameters are

βm(z) =
√
2γc/ωp(z) (6.17)
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and

αm(z) = −1

2
β′
m(z). (6.18)

In an adiabatic ramp, the density (and therefore kβ) changes slowly so that the beam can

continuously remain matched as it propagates up or down the ramp. In other words, the

betatron frequency changes little in one betatron wavelength. Based on Eq. 6.7, the adiabatic

conditions are β′′/(k2ββ) ≪ 1 and β′/(kββ) ≪ 1, from which it follows that β ≈ 1/kβ. We can

therefore define an adiabaticity parameter A ≡ |αm|. For the ramp to be strictly adiabatic,

we require A ≪ 1 [36]. Adiabatic density ramps have shown to preserve emittance well even

when there is energy spread [32, 37, 118]. Recently, it has been shown that quasi-adiabatic

ramps where A ≲ 1 (or, in some cases, even A ≲ 5) can also preserve the emittance well

[114].

6.2 Matching in the presence of ion motion

In this section, we will cover the work done with Yujian Zhao in Ref. [114] on adiabatic

plasma ramps in the presence of ion motion. This work only considers ion motion from the

witness beam. We later extend these ideas to the case where the drive beam also causes

ion motion. This will set the stage for the next section, where we will show these ramps

can also help drastically reduce the emittance growth while realigning the witness beam via

drive beam induced ion motion.

The first idea to match a beam in the presence of ion motion was to use a plasma section

with decreasing ion masses so that the ion motion would gradually (adiabatically) increase

as the ions in the plasma became less massive [112]. This would result in the beam being

adiabatically matched to the nonlinear focusing force from the ions (as we have discussed

before). Of course, such a plasma section would be very hard to create in practice even

with a small number of discrete steps. Additionally, this work did not consider the effects

of multiple ionization (something we will discuss in Sec. 6.4.3). However, this was the first
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work to recognize that adiabatic matching is a solution to the nonlinear forces created by

ion collapse.

Instead, we can use adiabatic plasma density ramps to achieve the same effect. Namely,

when the density is low the matched spot size will be very large, and thus the ion motion

will be small. While the spot size decreases, the ion motion will be gradually triggered and

the beam will find the matching distribution. This will work even for large ion collapse as

long as the ramp is adiabatic because the beam can find the ideal matching distribution and

the emittance will not grow, as described in Sec. 5.4.3.

As we discussed in Sec. 5.4.3, there was recently another idea for an adiabatic matching

section proposed [113] that injects a beam into a uniform plasma at low energy. As the beam

accelerates, the spot size adiabatically decreases and the ion motion is gradually triggered,

allowing the beam find the matching distribution. However, this concept if only viable for

the first stage, and this work did not consider plasma density ramps, which are important

to preserve the emittance, as we have discussed.

6.2.1 Adiabatic ramp design

One can imagine many different adiabatic ramp designs. In this dissertation, we will mainly

use a simple design where the αm linearly decreases to zero in the upramp so that the beam

is matched when it enters the plateau. If L is the length of the upramp and αmi is the initial

value, we have

αm(z) = −αmi
z − L

L
. (6.19)

Using the definition of αm, it follows that

βm(z) = βm0 + αmi
(z − L)2

L
. (6.20)
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In the upramp, the acceleration is negligible and so we assume γ is constant. Thus, the

density profile can be written as

n(z)

n0

=
ωp(z)

2

ω2
p0

=
β2
m0

βm(z)2
=

1(
1 +

αmi(z − L)2

βm0L

)2 . (6.21)

Evaluating this expression at the entrance of the plasma (z = 0) we have

n(0)

n0

=
1(

1 +
αmi
βm0

L

)2 . (6.22)

We have two free parameters between n(0), αmi, and L. The above constraint implies several

trade-offs. We want to make n(0) small so that the initial ion motion is as small as possible.

The αmi should be small so that the ramp is adiabatic and emittance growth is limited. And

ideally we want L to be short so that we preserve a high effective acceleration gradient per

stage. In practice, we have to make sacrifices somewhere with these three parameters.

For simplicity, we often mirror the upramp profile for the downramp. However, when the

beam has gained energy in the density plateau, the ideal downramp profile should be slightly

longer to account for this, but this may not be practical in reality. In the next section, we

show a comparison between two profiles from Ref. [114].

6.2.2 An adiabatic ramp stage with PWFA-LC parameters

In Ref. [114], it was shown quasi-adiabatic ramps (at both the entrance and exit) can limit

emittance growth to ∼ 2%, when using a low density (non-evolving) drive beam and on-axis

witness beam with LC parameters. Fig. 6.1 shows results from a self-consistent QPAD

simulation. The parameters for the simulation are as follows: the hydrogen plasma is pre-

formed with a density n0 = 1017 cm−3 in the plateau. Each beam has an energy of 25 GeV

and they are separated by 105.2 µm (from center of the drive beam to head of the witness

beam). The drive beam is bi-Gaussian (in r and ξ) with a charge of Q = 4.8 nC, normalized

emittance ϵN = 1 mm, density nb = 5.89, and spot size σr = 10.4µm, and length σz = 30µm
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(note these are the parameters the beam is designed to have when it gets to the plateau).

The drive beam is non-evolving to isolate the witness beam physics. The witness beam

is transversely Gaussian but has a trapezoidal current profile to optimally load the wake

(using the multisheath beam loading model [31]). It has a charge of Q = 1.6 nC, normalized

emittance ϵN = 100 nm, and spot size σr = 100 nm. The beam current decreases from

Ib = 25.26 kA to Ib = 6.42 kA over a length of 30.3 µm. The loaded accelerating field is

nearly constant at Ez = −1.2 in normalized units. The beams are initialized with no energy

spread. The r−ξ simulation box size has dimensions 201.6×252µm with resolution 8.4×168

nm. The ramp is of the form in the previous section where α linearly decreases to zero in

the upramp so that the beam is matched when it enters the plateau. The ramps have length

3×104 c/ωp0 and the plateau has length 4×104 c/ωp0. A small density of n(0) = 10−4 is used

to so that the ion motion is essentially negligible at the entrance. However, this corresponds

to αmi ≈ 1, which strictly speaking is not adiabatic (we refer to it as quasi-adiabatic).

However, αmi will decrease by the time the ions start significantly modifying the focusing

force. This ramp was found to preserve the emittance well. Of course it would be possible to

make the ramp longer and therefore more adiabatic, but the emittance growth by the end of

the plasma is already very small, so this is not necessary for these parameters, and it would

decrease the average acceleration gradient. Because the beams are axisymmetric, we use only

the m = 0 azimuthal mode, making this simulation computationally inexpensive for the LC

regime. A simulation with modes m = 0, 1, 2 was also done to test if any asymmetry (e.g.,

hosing) grows from noise, and no significant growth of the m = 1, 2 modes was observed.

Another (m = 0) simulation with a longer downramp designed to account for the energy

doubling of the witness beam was performed, and a slightly lower emittance growth was

achieved.

It was found that the projected emittance increases by ∼ 15% in the plateau. This is

due to the slices in the witness beam no longer overlapping in phase space due to slice-

dependent nonlinear focusing forces and matched phase space distributions. However, as
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(a) (b)

Figure 6.1: (a) The resulting adiabatic plasma density profile (solid black) based on a lin-

ear ramp for αm. The profile assumes the witness beam energy remains constant, so the

downramp is symmetric to the upramp. The black dashed downramp takes into account the

energy doubling of the witness beam, thus it is
√
2 times as long as the solid black downramp.

(b) Evolution of the projected emittance (solid black) and selected slice emittances. The

witness beam’s head and tail are located at ξ = 0, 1.8 k−1
p0 respectively. The red dashed curve

shows the evolution of the projected emittance when three azimuthal modes, m = 0, 1, 2, are

kept in a QPAD simulation. The black dashed curve shows the evolution of the projected

emittance for the case where the black dashed downramp in (a) is used. Reproduced from

[114].
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the beam propagates in the downramp, the focusing forces gradually revert back to being

linear and therefore the phase space ellipses of each slice unwind to overlap with each other

again causing the projected emittance to decrease. The slice emittance (and therefore the

final projected emittance growth) grows slightly due to imperfect matching to the nonlinear

focusing forces. This slice emittance growth is stronger for the larger ion densities at the tail

of the beam, however, it is still very modest.

6.2.3 An adiabatic ramp stage with drive beam induced ion motion

As we mentioned before, in reality the drive beams such as the one used in Ref. [114],

described above, will not be straightforward to use because of head erosion. Two possible

solutions to head erosion are a precursor (which we discuss in Sec. 6.3.3) and using a narrower

(higher density, lower emittance) drive beam. The latter solution leads to a larger Φ for the

drive beam and hence substantially larger ion densities in the witness beam region. This

can lead to larger emittance growth as Aσ2 will be larger because many more ions have been

pulled closer to the axis. However, if we can still adiabatically match the witness beam to the

focusing force created by the ion collapse, we may still expect a tolerable emittance growth.

We performed another axisymmetric (m = 0) QPAD simulation to test this. The parameters

are similar to the ones in the previous section. However, for reasons that will become clear

later, we use a higher emittance witness beam, but this is still in the range of interest of

many LC designs [59, 58]. In addition, the beam loading will be slightly different due to the

drive beam spot size and evolution. The plasma density is n0 = 1017 cm−3. Both beams

are 25 GeV and the head of the witness beam starts 105 µm behind the center of the drive

beam. The drive beam has 4.8 nC of charge, normalized emittance ϵN,d = 59.1 µm, density

nb, d = 100, spot size σr,d = 2.52 µm, and length σz,d = 30 µm. The witness beam has 1.63

nC of charge, normalized emittance ϵN,w = 0.465 µm, and spot size σr,w = 0.223 µm. The

witness beam current linearly decreases from Ib = 27 kA to Ib = 5.4 kA over Lb = 30.24 µm.

The resolution is 10.3 nm × 241 nm and the 3D timestep is ∆t = 5ω−1
p . A small timestep
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Figure 6.2: Adiabatic plasma ramp stage with a higher density drive beam, nb = 100. (a)

Slice and projected emittance growth evolution (the head slice emittance decreases in x

because it is transferred to y). (b) Spot size, σx, evolution including the designed linearly

matched value. The final value decreases due to energy gain. (c) Witness beam density

in the center of the plateau (s = 84 cm). The dashed white line shows the spot size, σx

(or technically the second order moment because the distribution is non-Gaussian) with the

expected tapering in ξ.

is needed to capture the beam dynamics in the large ion densities created when the drive

beam seeds the ion motion. The ramp is the same as the one used in the previous section,

with αm linearly decreasing from one to zero in the upramp. In this simulation, both the

drive beam and witness beam are matched to the plasma using this ramp. The results are

shown in Fig. 6.2. We can see we still see a very small emittance growth of ∼ 2%, even with

stronger ion collapse. See Fig. 5.2c for the one timestep ion density.

6.3 Witness beam realignment via drive beam ion motion in an

adiabatic density ramp

We have previously shown that ion motion caused by witness beams in the LC regime can

suppress the hosing instability by a BNS-type mechanism, and moreover, witness beams

will always align themselves behind the head and oscillate more or less rigidly with an
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amplitude equal to the initial offset of the head. We have also shown that drive beam

induced ion motion can fully realign the witness beam with the drive beam. However, in a

uniform plasma, realignment came at the cost of large emittance growth due to the beam

oscillating through very nonlinear focusing forces caused by large ion motion and eventual

phase mixing. In this section, we will show that the adiabatic ramps used in the previous

sections can drastically limit this emittance growth by matching the beams into the plasma

density plateau as they oscillate and adjust to the focusing forces simultaneously.

6.3.1 Centroid suppression due to the density upramp

Plasma density upramps will greatly reduce the hosing seed (centroid oscillation amplitude).

However, this is not a free lunch (except potentially as a plasma-based lens for the final

focus), because the opposite process occurs in the downramp. In the absence of drive beam

ion motion and, for example, a uniform offset witness beam, the centroid will be reduced in

the upramp, remain constant (hosing is suppressed) in the plateau, but return to the same

oscillation amplitude by the end of the downramp.

Refs. [98, 105] explore the reduction of the hosing seed for different density ramp lengths

using full PIC simulations and Ref. [105] provides some analytic analysis including investi-

gating the asymptotic behavior for long ramps. The basic equation for the beam centroid,

when energy spread, acceleration, and channel displacement are neglected, is

d2Xb

dz2
+ kβ(z)

2Xb = 0, (6.23)

which is a harmonic oscillator equation with varying frequency (non-conservative system).

For a plasma density ramp, kβ(z)
2 = k2β0n(z)/n0 is the local betatron wavenumber (we use

frequency and wavenumber interchangeably). As the density increases, the frequency will

increase and the amplitude of oscillation will decrease.

First, we show we can use energy arguments similar to those used in Ref. [105] when

the ramp is adiabatic (|αm| ≪ 1) to calculate the oscillation amplitude suppression. Later,
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we will show a more robust analysis for quasi-adiabatic ramps (|αm| ≲ 1). The energy of a

harmonic oscillator is

E =
1

2
X ′2
b +

1

2
k2βX

2
b . (6.24)

If we assume there is no initial velocity then we have

E

Ei
=
k2β0X

2
b0

k2βiX
2
bi

, (6.25)

where Ei is the initial energy, Xbi is the initial offset, and Xb0 is the amplitude of oscillation

in the plateau. Now the adiabatic invariant of a harmonic oscillator is I = E/kβ, so for an

adiabatic ramp we have
E

Ei
=
kβ0
kβi

. (6.26)

Thus, equating Eq. 6.25 and 6.26, we have

X2
b0

X2
bi

=
kβi
kβ0

=

√
ni
n0

=
1

1 + αmikβ0L
, (6.27)

where ni is the density at the plasma entrance. So the suppression of the amplitude of

centroid oscillations is
Xb0

Xbi

=
1√

1 + αmikβ0L
. (6.28)

For general ramps, where αm is arbitrary, we instead start with the exact single particle

solution to the Hill-like equation, Eq. 6.6. This can be expressed using the initial conditions

at z = 0 as [84]

x(z) =

√
γ0
γ

[
x(0)

√
βm(z)

βm(0)
cos[ϕ(z)]

+
√
βm(z)βm(0)

x′(0) +
(
αm(0) +

γ′0β0
2γ0

)
βm(0)

x(0)

 sin[ϕ(z)]

]
, (6.29)

where ϕ(z) =
∫ z
0
dz′/β(z′). If we assume there is no acceleration in the ramp, we arrive at

x(z) = x(0)

√
βm(z)

βm(0)
cos[ϕ(z)] +

√
βm(z)βm(0)

(
x′(0) +

αm(0)

βm(0)
x(0)

)
sin[ϕ(z)]. (6.30)
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We assume the initial positions are independent of energy, ⟨x′(0)⟩ = 0, and there is no energy

spread, so all particles will have the same ϕ. We take an ensemble average to obtain

⟨x(z)⟩ = ⟨x(0)⟩

√
βm(z)

βm(0)
(cos[ϕ(z)] + αm(0) sin[ϕ(z)]) . (6.31)

Thus, the maximum oscillation amplitude is calculated by taking the maximum of

f(z) ≡ cos[ϕ(z)] + αm(0) sin[ϕ(z)]. (6.32)

The maximum occurs when ϕ(z) = arctan(αm(0)) and so the maximum of f(z) is

max(f(z)) = cos(arctan[αm(0)]) + αm(0) sin(arctan[αm(0)]) =
√
1 + αm(0)2. (6.33)

Reverting to our previous notation, the suppression of the amplitude of oscillation for a

general ramp is

Xb0

Xbi

=

√
βm0

βmi

√
1 + α2

mi. (6.34)

For a general ramp, the βmi can be solved for by integrating Eq. 6.7 backward along the

upramp to achieve the desired βm0 when it enters the density plateau [114]. For an adiabatic

(or quasi-adiabatic) ramp, where
|k′β(z)|2π
k2β(z)

≪ 1, (6.35)

β(z) = 1/kβ(z), and therefore Eq. 6.34 reduces to

Xb0

Xbi

=

(
ni
n0

) 1
4
√

1 + α2
mi. (6.36)

For the adiabatic ramp design we discussed in previous sections, with αm linearly decreasing

from one to zero in the upramp, we have

Xb0

Xbi

=

√
1 + α2

mi

1 + αmikβ0L
, (6.37)

where L is the length of the ramp. For small αm(0), when the ramp is strictly adiabatic, this

reduces to the previous result using energy and adiabatic invariant arguments. The ramp
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we consider in this chapter is quasi-adiabatic as it starts with αmi = 1. For this ramp, we

have
Xb0

Xbi

=

√
2

1 + kβ0L
≈

√
2

kβ0L
, (6.38)

which is compared (the first equality) to numerical integration results in Fig. 6.3c.

Adiabatic ramps may be hard to realize experimentally, such as the one we have described

where αm(z) decreases linearly. In general, real plasma density ramps tend to be smoother

and have regions where α > 1 at low plasma density. Therefore, we study a more realistic

ramp profile provided in Ref. [114] that uses a 5th order polynomial profile given by

n(z)

n0

= 6
( z
L

)5
− 15

( z
L

)4
+ 10

( z
L

)3
, (6.39)

defined for 0 ≤ z ≤ L. Because this ramp starts at zero density, the CS parameters diverge

at the plasma entrance, so this ramp is not adiabatic. However, Ref. [114] determined

this ramp still does a good job at matching LC beams in the presence of ion motion. As we

discussed above, the initial CS parameters at z = 0: βmi, αmi, can be obtained by numerically

integrating the differential equation for β (Eq. 6.7) backwards from the plateau with the

desired matching CS parameters at z = L: βm0 =
√
2γk−1

p0 , αm0 = 0 (in the absence of ion

motion). Then, the amplitude suppression in this ramp can be predicted using Eq. 6.34.

We show the results for integrating Eq. 6.23 with this ramp profile and the adiabatic

ramp profile in Fig. 6.3. In these plots, we can see the centroid actually gets magnified in the

downramp to a larger offset than it started with. This oscillation depends on its phase when

it enters the downramp. However, this does not change amplitude of oscillation in the next

stage. If we import this offset and velocity (actually we must flip the velocity) to the second

stage, we get the same amplitude in the plateau of the second stage and at the end of the

second stage the offset comes back to its initial value. Finally, in Fig. 6.3c, we compare the

oscillation amplitude suppression as a function of ramp length from the numerical solutions

to Eq. 6.23 to the predicted scaling from Eq. 6.37 for the adiabatic ramps, and Eq. 6.34 for

the polynomial ramp.
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Figure 6.3: Numerical integration of the beam centroid equation, Eq. 6.23, with (a) the

adiabatic density ramp, Eq. 6.21, and (b) the polynomial density ramp, Eq. 6.39. The

lengths are normalized to kβ0 and αmi = 1. The ramp lengths are kβ0L = 100 and the

plateau length is kβ0L = 100. (c) Scan over the length of the upramp, measuring the

amplitude of oscillation in the density plateau, using the polynomial ramp and adiabatic

ramp with αmi = 0.1 and αmi = 1. Note that using a smaller αmi will require a longer ramp

to keep the initial density the same, which is important to control ion motion.
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6.3.2 Centroid damping in an adiabatic ramp due to energy spread

We now take a brief digression to explore the effects of energy spread on the offset in adiabatic

density ramps. This was first studied in Ref. [118], where analytic solutions to the single

particle motion with adiabatic density ramps were derived along with beam moments and

emittance expressions.

We start with Eq. 6.31, which describes the centroid evolution in a general density ramp,

except we keep the average over the ϕ terms, i.e.,

⟨x(z)⟩ = ⟨x(0)⟩

√
βm(z)

βm(0)
(⟨cos[ϕ(z)]⟩+ αm(0)⟨sin[ϕ(z)]⟩) . (6.40)

We have assumed there is no acceleration, the only energy dependence is contained in ϕ,

and the initial positions are uncorrelated with energy. We assume the energy is normally

distributed, i.e., fγ = 1√
2πσγ

e−(γ−γ̄)2/2σ2
γ and assume the energy spread is small such that

ϕ ∼ 1√
γ
≈ 1√

γ̄

(
1− 1

2
δγ
γ̄

)
, where δγ = γ − γ̄. Therefore, we can calculate the averages

⟨cos[ϕ(z)]⟩ = exp
(
−σ2

ϕ/2
)
cos ϕ̄ (6.41)

⟨sin[ϕ(z)]⟩ = exp
(
−σ2

ϕ/2
)
sin ϕ̄, (6.42)

where σϕ = ϕ̄
2

σγ
γ̄
. If we make the adiabatic approximation, we have β = k−1

p ∼ n−1/2 and

then the centroid evolution is given by

⟨x(z)⟩ = ⟨x(0)⟩
(
n(0)

n(z)

) 1
4 (

cos ϕ̄+ αm(0) sin ϕ̄
)
exp

(
−
ϕ̄2σ2

γ

8γ̄2

)
. (6.43)

A more general expression for the beam centroid moment is given in Ref. [118].

The saturated emittance can be calculated using the moments derived from the transport

matrix based on the solution to the Hill like equation [84]. This results in the geometric

emittance in terms of the initial distributions for x and x′ and the initial CS parameters,

ϵ =
1

2

(
γmi⟨x2i ⟩+ βmi⟨x′2i ⟩+ 2αmi⟨xix′i⟩

)
. (6.44)
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If we include offsets xi = x̃i+∆x and x′i = x̃′i+∆x′, where x̃i and x̃
′
i have normal distributions

with zero mean. Upon substituting these into the above equation, we get the expression

(details in Ref. [84])

ϵsat
ϵi

=
1

2
(γmiβi + βmiγi − 2αmiαi) +

1

2ϵi

(
γmi∆x

2 + βmi∆x
′2 + 2αmi∆x∆x

′) , (6.45)

where the first term is due to mismatch and the second is due to the offsets. This is similar

to the expression derived in Ref. [118]. We now consider the case where the beam starts

matched to the plasma (αmi = 0) and has only a positional offset, i.e., ∆x′ = 0. In this case,

the emittance growth comes only from one term,

ϵsat
ϵi

= 1 +
∆x2

2σ2
mi

, (6.46)

where σmi is the matched spot size at the plasma entrance. If we neglect acceleration, then

ϵN = γϵ and thus the ratio ϵsat/ϵi = ϵN,sat/ϵN,i. This can be applied to an adiabatic ramp

that is carefully designed so that the beam starts matched at the plasma entrance and is

also matched when it reaches the plateau, i.e., αm(z) ∼ sin(πz/L). We show the results

in Fig. 6.4. We see the projected centroid vanishes due to the amplitude suppression of

the ramp and the phase mixing caused by energy spread, and the normalized emittance

saturates to the predicted value. Thus, an adiabatic ramp can reduce the offset and preserve

the emittance if the beam is matched and has a small energy spread.

This chromatic phase mixing of the beam leading to the vanishing of its centroid may

seem very useful to control the hosing instability and indeed it is for controlling hosing of

the drive beam as explained in Ref. [98]. But in order to align a witness beam in the LC

regime in a single stage, a moderate to large energy spread would be needed. However, in

many applications, including a LC, having a moderate or large energy spread on the witness

beam to damp the projected beam centroid and mitigating hosing can be problematic. Low

energy spreads are required to suppress chromatic effects in conventional beam lines between

stages and at the final focus. For this reason, we need to properly load the beams so that the

energy spread remains below a percent. We thus propose to take advantage of ion motion
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(a) (b)

Figure 6.4: (a) Beam centroid evolution and (b) slice emittance growth (dashed line is the

predicted saturated value) in beam slice simulations with a sinusoidal adiabatic density ramp

and FACET-II like beams. The witness beam is offset ∆x = σm and has initial energy spread

σγ/γ̄ = 2%. The ramp length is 2 × 104 k−1
p0 and the plateau length is 4 × 104 k−1

p0 . Plots

made by Yujian Zhao [93].

induced by the drive beam to control hosing of the witness beam as discussed earlier in this

chapter.

However, one interesting idea would be to use a LC class witness beam with a finite

uncorrelated energy spread only at the head of the beam. The drive beam would be low

density so as to not cause ion motion. Then, in the plateau, the witness beam head would

realign due to the phase mixing caused by its energy spread. The beam would then self-align

behind the head as described previously. In Fig. 6.5, we show a beam slice simulation using

the quasi-adiabatic ramp from Sec. 6.2.1. This shows the head slice of the witness beam

with parameters from Sec. 6.2.3, and offset of the linearly matched spot size in the plateau

xbi = σm,0, and an uncorrelated energy spread, σγ/γ̄, of 3% and 5%. We see the oscillation

is damped within the plateau in both cases. We describe these beam slice simulations with

ramps in greater detail in Sec. 6.5. This idea may be studied in the future with full QPAD

simulations and compared to the scheme with drive beam ion motion as the realignment
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(a) (b)

Figure 6.5: Beam slice simulations using a quasi-adiabatic ramp with αmi = 1 and a beam

slice with LC parameters, an initial offset of xbi = σm,0 and uncorrelated energy spreads of

(a) σγ/γ̄ = 0.03 and (b) σγ/γ̄ = 0.05. The focusing force is unperturbed (linear).

mechanism we present later. However, these witness beams with energy spreads at the head

slice only may be difficult to create in reality.

6.3.3 Linear collider stage with a precursor

A precursor beam placed in front of the drive beam could limit drive beam head erosion,

potentially allowing us to use low density drive beams for many of the stages in a PWFA-LC

design. In this case, when the witness beam is misaligned and there is ion motion, it will

oscillate in the plateau with constant amplitude (the initial offset will be decreased by the

ramp and hosing will be suppressed). However, in the downramp this amplitude would be

amplified. In theory, one could propagate these oscillating beams through all the plasma

stages until the final one, where a higher density drive beam could be used for realignment.

However, a major challenge would be propagating these beams with offsets between stages

and aligning them with the drive beams of the next stages. It should be noted that the

transverse momentum needs to be reversed between each stage with the adiabatic ramp

design because it starts with α = 1 and ends with (approximately) αm = −1. If the
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propagation of misaligned beams can be done effectively between stages then this design

may be preferred.

Another potential concern is the betatron radiation emitted by the oscillating beam. We

can approximate the power radiated from an oscillating beam using the relativistic Larmor

formula

P =
2e2γ4

3c3
a2⊥, (6.47)

where a⊥ is the transverse acceleration. We assume the beam is oscillating at a fixed fre-

quency kβ and amplitude Xb, so we have

a⊥ = −k2βXb cos(kβs). (6.48)

The average acceleration over a period is

⟨a2⊥⟩ = −k4βX2
b ⟨cos2 kβs⟩ =

1

2
k4βX

2
b , (6.49)

so we have

⟨P ⟩ =
e2γ4k4βX

2
b

3c3
=
remc

3γ2k2p(kpXb)
2

12
, (6.50)

where re is the classic electron radius. To calculate the rate of energy loss, we simply divide

by the speed of light to obtain

dWloss

dz
=
remc

2γ2k2p(kpXb)
2

12
= 4.25× 10−13γ2(kpxβ)

2n[1014 cm−3] GeV/m. (6.51)

We can now compare this to the engineering formula for the maximum energy gain in a

nonlinear wake (Eq. 1.3)

dWgain

dz
= 0.96

√
n[1014 cm−3] GeV/m, (6.52)

to obtain

dWloss

dWgain

= 4.43× 10−13γ2(kpXb)
2
√
n[1014 cm−3]. (6.53)
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Assuming a plasma density of np = 1017 cm−3, a beam energy of 1 TeV, an offset of Xb =

σx,0 = 0.0133 c/ωp, the rate of energy loss to gain is dWloss/dWgain ∼ 1%. So this will not

be a major concern for PWFA-LCs until the beam energy approaches ≳ 5 TeV.

We carry out a simulation using the same quasi-adiabatic plasma ramp and beam pa-

rameters from Sec. 6.2.2, namely a witness beam with ϵN = 100 nm and a low density drive

beam, however we use a lithium plasma (we will discuss higher mass ions in Sec. 6.4.3)

with density n0 = 1017 cm−3. The precursor beam is designed to blowout the initial plasma

electrons, while not significantly altering the wake or causing ion motion. The precursor has

an energy of 25 GeV and it is located 67.2 µm in front of the drive beam center. It has

charge Q = 0.13 nC, spot size σr = 2.52µm, length σz = 8.4µm, and normalized emittance

ϵN = 59.1µm in the plasma density plateau. The precursor is also matched to the plasma

entrance. The witness beam has a uniform offset ∆x = σm,0 = 223 nm, where σm,0 is the

linearly matched spot size in the density plateau. The results are shown in Fig. 6.6. We can

see similar dynamics to the idealized beam slice case shown in Fig. 6.3a. Specifically, the

amplitude is suppressed by the upramp, remains constant in the plateau, but then grows

again in the downramp. Recall in the beam slice case, the offset and the offset velocity by

the end of the first stage depend on the phase of the oscillation as it enters the downramp.

However, the offset returns to its initial value (with no velocity) by the end of the second

stage.

6.3.4 Witness beam realignment stage

We are now in a position to put all the pieces together. We can use quasi-adiabatic density

ramps to match LC class beams to the plasma in the presence of ion motion, while signif-

icantly compressing the initial witness beam offset. In the upramp, the ion motion will be

gradually triggered and the focusing forces will gradually become nonlinear. As described

in Sec. 5.5.2, the ions driven to the axis by the drive beam will cause an on-axis nonlinear

focusing force at the witness beam head and therefore the head of the witness beam will

169



0 20000 40000 60000 80000 100000
z (c/ωp0)

−0.002

0.000

0.002

0.004

0.006

x c
(c
/ω

p0
) ξ=12.25

ξ=12.7
ξ=13.15
ξ=13.6
ξ=14.05
Projected

(a)

0 20000 40000 60000 80000 100000
z (c/ωp0)

0.975

1.000

1.025

1.050

1.075

ε n
/ε

ni

ξ=12.25
ξ=12.7
ξ=13.15
ξ=13.6
ξ=14.05
Projected

(b)

Figure 6.6: Adiabatic ramp simulation with a precursor beam and a low density driver.

(a) Beam centroid evolution (b) Normalized emittance evolution. The emittance decreases

because it is transferred to the y direction which has around ∼ 2% emittance growth.

slowly phase mix and become realigned with the drive beam (with no energy spread). The

subsequent beam slices will be realigned due to the focusing force center being located be-

tween the beam center and the axis, i.e., the average focusing force tends to bring the beam

to the axis. This process starts in the adiabatic upramp where the beam slowly adjusts

itself to the evolving nonlinear forces while its oscillation damps. The remaining centroid

oscillation will damp in the plateau.

We carry out the same simulation as in Sec. 6.2.3, but with a uniform initial witness

beam offset, ∆x = σm,0 = 223 nm = 0.0133 c/ωp0, where σm,0 is the linearly matched

spot size in the density plateau. The evolution of the witness beam spot size, centroid,

and emittance are shown in Figs. 6.7b, 6.7c, and 6.7d, respectively. It can be seen that

the witness beam centroid is reduced by 95% by the beginning of the plateau. The final

projected centroid at the end of the downramp is |xb/σm| = 0.01. The beam tail centroid is

amplified in the downramp to |xb,tail/σm| = 0.09. The tail oscillations are mostly due to the

halo particles, not from within the beam core. This small downramp amplification of the tail

may be mitigated by using a smoother (non-adiabatic) downramp, as will be demonstrated

in Sec. 6.5. We correspondingly see a much larger slice emittance growth in the tail slice,
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although this tail slice represents a small fraction of the total beam charge. The projected

emittance growth in the upramp arises because the phase space distributions in each slice

become non-Gaussian and their phase space ellipses do not overlap. Some of this growth can

therefore be reversed in the downramp as the slices revert back to Gaussian and therefore

overlap again [114]. The projected emittance growth by the end of the stage is 4.4%. Due

to the trapezoidal current profile of the witness beam, the energy spread is limited to < 1%

and the drive-to-witness energy transfer efficiency is ∼ 50%.

This realignment stage is an important tool that we can use to control the stability of

the beam transport in multi-stage PWFA-LC designs, with minimal emittance growth while

maintaining low energy spread and high energy transfer efficiency. Because the emittance

growth is still very modest for this stage, it may be preferable to use these stages for every

stage instead of using precursor stages. This would depend on the emittance growth in stages

with even lower emittance witness beams, which we will discuss in the next section.

6.4 Other witness beam realignment scenarios

We have described the physics of beam matching and realignment in the LC regime. In

this section, we will review different parameter regimes including even smaller emittance

witness beams, drive beam densities, and higher mass ion species. As we will show, these

scenarios generally have higher emittance growth compared to the previous section, but may

be required if smaller emittance or higher energy beams are desired, which will be a topic for

future studies. First, we discuss witness beam realignment in the more forgiving FACET-

II regime (with 1 µm emittances), where the witness beam does not have as strong of an

affect on the ion motion. In other words, the nonlinear focusing forces will primarily remain

centered on-axis. This regime is where near future experiments may operate. At the end of

this chapter, we discuss the implications of the ionization of higher charge states by intense

LC beams and we present beam slice simulation scans to explore the effects of different ramp
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Figure 6.7: (a) Adiabatic plasma density ramp with the expected and simulated adi-

abatic parameter, αm. The expected αm is calculated using αm = −1
2
d
dz
βm(z) and

βm(z) =
√
2γc/ωp(z), where γ is taken from simulation. (b) Witness beam spot size evo-

lution. The linearly matched spot size uses γ from the simulation and assumes constant

emittance. The actual spot size is smaller than this because of ion motion. (c) Witness

beam centroid evolution. (d) Projected normalized emittance growth.
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profiles and beam misalignments.

6.4.1 FACET-II like parameters with adiabatic matching sections

In Sec. 5.5.1, we discussed the FACET-II regime with 1 µm normalized emittances (close to

LC regime), where the drive beam ion motion is weakly perturbed by the witness beam. The

parameters for this regime are listed in Sec. 5.5.1 (the witness beam is offset ∆x = 1µm). In

a uniform hydrogen plasma (with no matching section), the witness beam is quickly realigned

but with over 200% emittance growth, which we could roughly predict. We now demonstrate

the effect of an adiabatic matching section for this scenario.

In this case, we assume the beam starts matched to the plasma entrance and reaches

the plateau matched to the plasma, so we choose to model αm in the upramp with a sine,

namely

αm = A sin(πz/L), (6.54)

where A is the peak value and should be less than one. The corresponding plasma density is

n(z)

n0

=
1(

1 +
2AL

πβm0

(1 + cos(πz/L))

)2 . (6.55)

Evaluating the expression at the plasma entrance and solving for A, we get

A =
πβm0

4L

(
1√
ni/n0

− 1

)
. (6.56)

The drive and witness beams start at 10 GeV, so βm0 = 200, and choosing ni/n0 = 0.01

and Lramp = 15, 000, we get A = 0.094. The plateau length is Lplateau = 10, 000 (this can

be longer for acceleration to pump depletion, but the physics we are demonstrating isn’t

affected). This beam ramp was designed for these beam parameters by Yujian Zhao [93].

The results of this simulation are shown in Fig. 6.8. The emittance growth is dramatically

reduced from the uniform plasma case, as expected. We see the centroid is completely

eliminated in this regime. With these parameters, we decided to use the overfocused regime,
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Figure 6.8: Witness beam realignment stage for FACET-II like parameters with a one micron

initial emittance. (a) Adiabatic plasma density ramp and αm design. Witness beam (b) spot

size (c) centroid and (d) normalized emittance evolution.

where the drive beam first focuses the ions to the axis before the witness beam. The ion

density remains roughly constant (and on-axis) along the witness beam. We found that the

longer and higher current witness beams needed in the LC regime are able to move the ions

off axis. We found it was more natural to work in the underfocused regime for hydrogen

plasmas. We explore this further in the next sections.

6.4.2 Smaller drive beam density

In the previous section, we found a drive beam density of nb,d = 100 create an ion density

peak value of A0 ≈ 10 at the witness beam head, which damp its oscillation early in the
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density plateau. Here, we present a simulation with a lower drive beam density of nb,d = 70

(all other parameters the same as the previous section) to examine if we can reduce the ion

density and therefore the nonlinearlity in the focusing force the witness beam experiences

and thus its emittance growth further. In this case, the ion density at the witness beam

head is around A0 ≈ 4. The results are shown in Fig. 6.9. Although the emittance growth

is small, the centroid is not damped and we can see it grows to almost the initial value at

the end of the second stage, similar to what we saw in the precursor simulation. Evidently,

the ion density at the witness beam was not large enough to phase mix the head slice. It

may be possible to use a density between nb,d = 70− 100 to damp the beam slowly over the

plateau and reduce the emittance growth. We have not undertaken these simulations due to

their large computational costs. We leave more parameter scans and optimization for future

work.

6.4.3 Plasmas with higher ion mass

Thus far, we have mostly focused on hydrogen plasmas. Using plasmas with higher ion masses

will reduce the ion motion caused by a given beam, and generally lead to lower ion densities.

In Ref. [110], lithium plasmas were shown to reduce the emittance growth dramatically, all

else being equal, for ion motion caused by only the witness beam (ionization of higher levels

of lithium was not explored). For drive beam induced ion motion with a misaligned witness

beam, the conclusion is not as straightforward. As we discussed before, the ion motion

caused by the drive beam can be focused in front of or behind the witness beam. The higher

ion mass simply changes the density and spot size we must use to achieve either of these

regimes. The biggest difference between hydrogen and higher ion mass species is in how

the witness beam perturbs the ion density. In hydrogen, intense witness beams can quite

easily pull the ions that are on the axis to its centroid, sometimes causing overshooting and

complex dynamics which can cause large emittance growth. This is why we needed to utilize

the underfocused regime, where a minimum amount of drive beam ion motion was provided
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Figure 6.9: LC stage with drive beam density nb,d = 70. (a) Centroid evolution and (b)

normalized emittance growth in the first stage. We import the witness beam from the end

of the first stage to the second stage and reverse the transverse momentum. (c) Centroid

evolution and (d) Normalized emittance growth in the second stage.
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Figure 6.10: Witness beam realignment stage with lithium plasma and 100 nm emittance

witness beam with an initial offset of ∆x = 3σm,0, and drive beam with density nb,d = 4000.

(a) Centroid and (b) normalized emittance evolution.

only to damp the head, and the rest of the beam aligns itself behind the head. However, in

the FACET-II case, where the witness beam does not pull the ions off axis, we can use the

overfocused case. With higher ion masses, it is possible to again use the overfocused regime

because these ions will not be pulled off axis by the witness beam.

We consider a lithium plasma where the ions are approximately seven times as massive

as hydrogen. The beam charges, energy, and profiles as well as the ramp parameters are the

same as Sec. 6.2.3. But now the drive beam density is nb,d = 4000 and the witness beam has

spot size and normalized emittance of 100 nm and initial offset of ∆x = 3σm,0. These beam

parameters are much more extreme than Sec. 6.3.4. We can see in Fig. 6.10, the emittance

growth (∼ 50%) is much higher than the case from Sec. 6.3.4. The slice emittance growth is

still very high for the tail slices, which may be a problem, if they continue to grow in later

stages. We also see the centroid amplification effect of the downramp because there is some

jitter of the tail slices in the plateau. This effect needs to be investigated further.

Next, we simulate a lithium plasma in the underfocused regime. The drive beam density

is nb,d = 561. At this density, the witness beam is not fully realigned in the first stage, as

demonstrated in Fig. 6.11. Therefore, we import this beam to the second stage (reversing the
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transverse momentum). We increase the length of the ramp, corresponding to the increase in

energy (both the upramp and downramp, kept symmetric). By the end of the second stage,

the beam is realigned. In the first stage, we see only a couple percent projected emittance

growth, but in the second stage, we see emittance growth of a little over 20%. Thus, this

scheme is preferable to the overfocused case, assuming the beam can be transported between

stages in the prescribed fashion. Unless the oscillation after the first stage is very small, it

may be difficult to align the drive beam for the second stage to the witness beam, as we

have discussed previously. Thus, instead of slowing damping the beam centroid over many

stages, in reality, more misalignments may be introduced in each stage defeating the purpose.

The fact that the emittance growth is much smaller in the first stage implies that it may

be advantageous to only use these stages every several stages as misalignments build up in

order to keep them under a certain threshold. The final stages could include several of these

stages back-to-back, similar to what we have shown here, to fully realign the beam before

the final focus. Of course these designs would be constrained by the experimental tolerances

and the beam transport systems between stages.

There is still a lot of room for optimization with higher mass ion species. Each scenario

must be investigated separately because of the interplay between many different physical

mechanisms we described in this chapter. It may be possible in the future to run these

simulations much faster and more efficiently to scan parameters and minimize the emittance

growth. For example, these speedups could be achieved by adding mesh refinement into

QPAD and/or porting it to run on GPUs. It will be important to investigate the accumula-

tion of emittance over several stages for these different schemes.

6.4.4 Ionization of higher charge states

In many recent studies of ion motion that considers higher ion mass plasmas, the potential

further ionization of the plasma ions is not considered, as we have done in this section. But

in reality, the witness beams required for LCs can easily ionize all levels lithium, as we can
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(a) (b)

(c) (d)

Figure 6.11: Two stage witness beam realignment scheme with lithium plasma with 100

nm emittance witness beam with initial offset ∆x = 3σm,0, and drive beam with density

nb,d = 561. (a) Centroid and (b) normalized emittance evolution for the first stage. (c)

Centroid (note the change of scale) and (d) normalized emittance evolution for the second

stage.
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(a) 1st ionization (b) 2nd ionization (c)

Figure 6.12: (a), (b) Fraction of ionized gas vs electric field (assumed to be constant for 50

fs). Reproduced from [119]. (c) Radial electric field at the head of the 100 nm emittance

witness beam (normalized units).

see in Fig. 6.12, noting the units of Er are mcωp/e ≈ 10
√
np/1016 [cm−3] [GeV/m] ≈ 31.6

GeV/m for np = 1017 cm−3.

If we wish to utilize these plasmas in future studies, it is crucial we study the effect of

higher ionization of the plasma ions on the wakefields. Thus, we carry out single 3D timestep

QPAD simulations with the parameters used in the previous section with the a lithium gas.

We use a particle-based ionization method and allow all three levels of lithium to be ionized.

The preliminary results shown in Fig. 6.13 reveal a high ion density due to the extra

ionization and a more complex transverse structure. Moreover, we see a large electron density

in the witness beam region as a result of the ionization by the witness beam. These have a

dramatic impact on the accelerating field experienced by the witness beam. This problem

must be addressed in future studies.

Of course we can also use helium instead of lithium. It may also be possible to ionize

both levels of helium using powerful lasers, so that the higher ionization by the witness

beam is not an issue. This may be the most immediate area for future realignment stage

designs for witness beams with ϵN ≲ 500 nm1. Many current designs and experiments are

1We have done a few simulations with helium but these show large emittance growth because the drive
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Figure 6.13: (a) Preionized (1st level only) lithium plasma ion density in the witness beam

region. (b) Particle-based ionization (all levels) of lithium gas - total ion density in the

witness beam region. (c) Beam-ionized plasma wake. (d) Accelerating field for the preionized

and the particle-based beam ionization cases.

considering lithium, but if these effects are substantial and unavoidable, it may be required

to use helium or hydrogen instead for realignment stages. Finally, we note that this further

ionization might be an approach for focusing positron beams in the ion channel.

6.5 Beam slice simulations with a prescribed focusing force

Full stage QPAD simulations with up tom = 5 azimuthal modes can be very computationally

expensive, costing on the order of 105 core hours (around 3×104 core hours with no azimuthal

modes). In the case with no beam offset, the dynamics are dominated by the beams evolution

in the nonlinear focusing force. Therefore, much can be learned by evolving beam particles

in the prescribed focusing force, as described earlier, to capture the transverse dynamics of

a beam slice in a very simple and fast code. To model the evolution in a plasma density

ramp, we can simply scale the ion density by the local plasma density, as done in Ref. [84].

Assuming the Gaussian model for the transverse ion profile we have,

nion(r, z)/n0 = n(z)/n0 + A(z) exp
(
−r2/2σion

)
, (6.57)

beam density wasn’t properly chosen.
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Figure 6.14: Centroid evolution for a beam slice in a prescribed focusing force corresponding

to the ion density from Fig. 5.2d.

where

A(z) = A0
n(z)− n(0)

n0 − n(0)
, (6.58)

such that A(0) = 0. The focusing force is then

F⊥(r, z) = −r
2

n(z)

n0

− A(z)σ2
ion

1− e
−r2

2σ2
ion

r
. (6.59)

First, we can use this beam slice simulation to help predict the appropriate drive beam

density for the underfocused regime in hydrogen. Recall that the head of the witness beam

experiences the on-axis focusing force caused only by the drive beam ion motion, thus we

can simulate the damping of the head slice with the beam slice simulation. With the beam

parameters we presented in Sec. 6.3.4, we find A0 ≈ 10 to work well. Fig. 6.14 shows the

centroid is suppressed in the upramp and then damps in the plateau. Of course to really

capture the full physics of the realignment and resulting emittance growth one must run the

full simulation, but this can be used for parameter scans to find feasible sets of parameters.

We can also use these beam slice simulations for the overfocused regime with lithium

because the focusing force is mostly fixed on-axis. The simulations are very fast (typically

a couple of minutes) so they lend themselves to parameter scans for testing various ramps

and beam parameters. Thus, we scan the witness beam offset, initial centroid velocity, and
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ramp length. The witness beam offset scan is shown in Fig. 6.15. The beam slice is aligned

in the upramp even for very large offsets. The final emittance growth still scales roughly as

(∆x/σmi)
2, but with a small prefactor, so the emittance growth is relatively small even for

large offsets. In Fig. 6.16, we see that if we instead initialize the beam slice with an initial

average velocity, we still get realignment by the plateau with moderate emittance growth.

Finally, Fig. 6.17 shows that the longer ramp, and therefore smaller αmi, sees less emittance

growth as expected, but there is not much effect on the realignment. Even very short ramps

can realign in this regime. Long downramps can cause the beam oscillation amplitude to

grow larger from the small oscillations in the plateau. Therefore, we present an additional

simulation with a smoother downramp to see if this mitigates the issue. We use the 5th order

polynomial ramp, given by Eq. 6.39, for the downramp and the adiabatic ramp with αmi = 1

for the upramp. In Fig 6.18, we see that the centroid growth in the downramp is suppressed,

while the emittance growth is only marginally higher than the adiabatic downramp.

6.6 Summary

We have reviewed the design of plasma matching sections that use density ramps at the

entrance and exit of the plasma to match the beam to the plasma so that it does not

undergo spot size oscillations. In the ideal case with no ion motion or misalignment, the

emittance will be preserved. We reviewed the solution to the Hill equation for single particle

motion with varying kβ and the Courant-Snyder parameters used to characterized the beam

distribution and phase space.

We reviewed the recent work [114] that showed quasi-adiabatic density ramps can match

the beams (without offsets) to the plasma in the presence of strong ion motion with small

emittance growth. This is due to the beam slowly adjusting itself to the nonlinear forces that

become stronger as the beam propagates in the upramp. The beam can then be accelerated

in the density plateau with minimal emittance growth and finally the beam will return to
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(a) ∆x = σm (b) ∆x = 3σm (c) ∆x = 5σm (d) ∆x = 10σm

(e) ∆x = σm (f) ∆x = 3σm (g) ∆x = 5σm (h) ∆x = 10σm

Figure 6.15: Beam slice simulation scan over witness beam offset for the lithium realignment

simulation in Fig. 6.10. The ion model parameters are A0 = 332, σion = 0.001. (a)-(d)

Centroid and (e)-(h) normalized emittance evolution.

(a) ∆px = 0.05 (b) ∆px = 0.1 (c) ∆px = 0.05 (d) ∆px = 0.1

Figure 6.16: Beam slice simulations with initial average beam velocity for the lithium re-

alignment simulation in Fig. 6.10. The ion model parameters are A0 = 332, σion = 0.001.

(a)-(b) Centroid and (c)-(d) normalized emittance evolution.
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(a) kpL = 6× 104 (b) kpL = 3× 104 (c) kpL = 15× 103 (d) kpL = 7.5× 103

(e) kpL = 6× 104 (f) kpL = 3× 104 (g) kpL = 15× 103 (h) kpL = 7.5× 103

Figure 6.17: Beam slice simulation scan over ramp length for the lithium realignment sim-

ulation in Fig. 6.10. The αmi is adjusted so that the ni/n0 is the same. αmi = 0.5, 1, 2, 4

for kpL = 6× 104, 3× 104, 15× 103, 7.5× 103, respectively. The ion model parameters are

A0 = 332, σion = 0.001. (a)-(d) Centroid and (e)-(h) normalized emittance evolution.

(a) (b) (c)

Figure 6.18: Beam slice simulation with polynomial downramp (kpL = 3×104) for the lithium

realignment simulation in Fig. 6.10. The ion model parameters are A0 = 332, σion = 0.001.

(a) Plasma density profile and (b) centroid and (c) normalized emittance evolution.
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Gaussian in the density downramp. These ramps will be required for PWFA-LCs because

conventional optics cannot transport the beams without large emittance growth.

We showed that with an evolving, higher density drive beam, these quasi-adiabatic ramps

can still match the beams with small emittance growth ∼ 2%. We then showed how plasma

density ramps will suppress the amplitude of beam centroid oscillations. We calculated the

scaling of this suppression with ramp length for adiabatic ramps. This effect is reversed

in the downramp if additional damping is not imparted. This suppression effect combined

with the realignment due to the drive beam ion motion allows us to realign witness beams

with very small emittance growth in the first stage of a PWFA-LC. With an offset of one

matched spot size (in the plateau), we achieved an emittance growth of ∼ 4% with witness

beam realignment, for ∼ 500 nm emittance beams. This stage provides an energy transfer

efficiency of ∼ 50%, an average acceleration gradient (including the matching sections) of

15.8 GeV/m, while keeping the witness beam energy spread < 1%. There is still room for

optimization of this realignment stage. In later stages, this emittance growth will be larger

if realignment is required, such as before the final focus. It may be possible to use these

ideas in the design of a plasma-based final focus.

We presented other scenarios of witness beam realignment including FACET-II like pa-

rameters, a precursor with low density drive beam, and scenarios using a lithium plasma.

We discussed the possibility of using heavier ion plasma species, which cause smaller ion

densities but further complications. These may be necessary for realigning very small emit-

tance beams. Finally, we discussed the issues with higher ionization by the witness beam

and presented some single particle simulation parameter scans.
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CHAPTER 7

Conclusion

This dissertation has explored several topics in the theory and simulation of plasma-based

accelerators that will play an important role in understanding the nonlinear physics of the

beam and plasma interactions in future experiments and applications such as plasma-based

linear collider designs. Much of this research was enabled by advances in particle-in-cell

codes that allow us to simulate extreme regimes over full plasma stages by using reduced

models. The quasi-static approximation based PIC code, QPAD [80], was used extensively

due to its very large speedups over full 3D PIC codes. Theoretical advancements were also

inspired by the azimuthal decomposition used in QPAD. These reduced models will continue

to be crucial in simulating and modeling the complex plasma physics in PWFA experiments

at SLAC and in the design of PWFA-LCs.

In Chapter 2, we described the initial theoretical descriptions for nonlinear plasma wake-

fields given in Lu et al. [27, 28]. This phenomenological model describes the innermost

plasma electron trajectory (blowout radius) by modeling the plasma electron sheath and

calculating the pseudopotential ψ, which fully characterizes the wakefields. Using this the-

ory for the blowout regime, both a beam loading theory [29, 30] and hosing theory [88] have

been developed to describe two very important aspects of PWFA. Properly beam loading

the wake is crucial to limit energy spread and increase energy transfer efficiency. The hosing

instability must be understood and controlled because it is arguably the most devastating

instability for PWFA, as it can cause beam loss, emittance growth, and alignment issues.

In Chapter 3, we expand on this theory of hosing in the blowout regime to more ac-
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curately describe the instability in non-adiabatic, highly-relativistic regimes of interest to

future experiments and LC applications. We found the m = 1 plasma sheath fields were cru-

cial in understanding the plasma channel motion. However, a full, self-consistent description

of Bθ,1 (which appears explicitly in the plasma channel equation) was not found due to the

need for a description of the perturbed plasma fields outside the bubble. In the future it may

be possible to describe these fields using a perturbed current description, which will allow

one to solve for the additive constant needed for Bθ,1 at the blowout radius. For regimes

with more complicated sheath structures in the back of the wake, it may be required to use

a more accurate description such as Ref. [31] which allows for ψ < 0, as seen in simula-

tions. We also described the structure of asymmetric wakes using an analogous theory but

including m = 2 perturbations. In general, this was slightly less accurate than the results for

hosing, but it is the first description of asymmetric wake structure which will be important

for describing PWFA experiments and LC design where asymmetric beams may be used to

avoid beamstrahlung at the final focus.

In Chapter 4, we discussed ways to mitigate the hosing instability. We discussed BNS

damping in PWFA via direct energy variations in the beam and by variations of the focusing

force along the beam. Although, the drive beams may be inherently stable, they can seed

hosing of the witness beam. Witness beam stability can be controlled by direct energy

chirps only if the chirp can be eliminated by underloading the wake or by dechirping after

the stage. It is possible to design a witness beam profile to perfectly cancel the initial chirp

for a given propagation distance. Although we have derived the profile for this scheme, it

was not implemented into PIC simulations. This should be straightforward to study for

different misalignments and initial chirps. Next, we looked at asymmetric drive beams as a

way to mitigate witness beam hosing. This seems to be more effective for the parameters we

studied. Although we were able to describe and explain the wake structure and mitigation

mechanism, the details of drive beam evolution and optimal focusing variation was not

rigorously explored. These different mitigation methods could be used together and full
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plasma stages can be simulated to test offset tolerances. The main reason we did not pursue

some of these research routes was the realization that in regimes with high current, tightly

focused beams ion motion will dominate the transverse beam dynamics. Of course these

mitigation methods will still be very useful for other regimes and applications, especially for

current PWFA experiments that have large asymmetries and misalignments.

In Chapter 5, we discuss the basic physics of ion motion in PWFA. The possibility of

ions moving within the transit time of a matched beam was first explored in Ref. [108]

and the possibility that this would lead to significant emittance growth was described in

Ref. [109]. The ion collapse and the emittance growth of the witness beam was quantified

using theory and simulation in Ref. [110]. We first described the ion density collapse for a

given electron beam and the resulting wakefields using a ring model. In the weak ion motion

regime, our results reduce to the analytic model in Ref. [111], and in the regime of strong

ion collapse where trajectories cross, the ring model becomes a reduced numerical model

that can accurately reproduce PIC simulation results. We then expand on the theory of Ref.

[110] to cases where the offset beam oscillates in a fixed nonlinear focusing force, which is

the case when the drive beam causes ion motion. We showed how the witness beam phase

space saturates to be centered on-axis (no centroid offset) with symmetric distributions in

transverse phase space. However, this realignment and coupling between the two planes

leads to emittance growth. Although the rough scalings were explained, a closed-form model

including derivation of the conserved quantities is an area for future work.

In Chapter 6, we first discussed the concept of using quasi-adiabatic plasma density

ramps to match LC class beams to the plasma with minimal emittance growth [114]. We

then described how these matching sections can also reduce the offset between the drive

and witness beam. Analytic expressions for the reduction in oscillation amplitude when the

beam is propagating in the upramp were presented. If there is full suppression of hosing due

to ion motion [104] in the density plateau (but not realignment), then for an anti-symmetric

downramp at the exit, the misalignments will re-emerge. Therefore, it is necessary that
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hosing not only be suppressed but that the witness beam aligns itself behind the drive beam

in the plateau. Thus, we presented a scheme for witness beam realignment using drive beam

ion motion. A drive beam density can be chosen such that a minimal amount of ion density

at the witness beam head will eliminate its oscillations and subsequently the witness beam

will self-align behind the head. We found that after the witness beam offset amplitude was

decreased by ∼ 95% in the upramp, the ion motion could realign the beam with a very

low final emittance growth by the end of the stage (∼ 4% compared to almost 250% in a

uniform plasma). This result shows the main two issues of PWFA-LCs can be overcome by

combining drive beam ion motion and density ramps leading to a stable design for a single

plasma stage. These ideas may also be used in the design of a plasma-based final focus.

Moreover, we have assumed round beams in these simulations, but flat (very asymmetric)

beams may be needed to avoid beamstrahlung. Studying how to produce very asymmetric

beams would require using QuickPIC with mesh refinement [81] to provide enough speedup

for full stage simulations. The realignment scheme we have suggested is a novel concept and

so there is much room to explore. We have discussed the problems with higher ion mass

species, but this may be overcome in the future. With more advancements in PIC codes and

machine learning techniques, it will be possible to explore more parameters and optimize the

beam parameters for smaller witness beam emittances.

This dissertation has focused on the electron arm of a PWFA-LC design. This may enable

experiments with extreme beam parameters so that QED effects may be explored, potentially

though beam-beam interactions [62] or via a γ − γ collider [66, 68]. In order to explore the

Higgs Boson, supersymmetry, and dark matter/energy, it is desirable to collide electrons

and positrons. There are still many challenges associated with the positron arm of a PWFA-

LC, however, recently there have been extensive research efforts exploring how to focus and

accelerate positron beams in nonlinear blowout wakes [48, 49, 50, 51, 52, 53, 54, 55, 56]. These

innovative ideas will soon be explored in experiments at SLAC and elsewhere. Experiments

are underway to show emittance preservation in two-bunch PWFA scenarios to prove the
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theoretical understanding amassed in the last couple decades. Soon, real beams will have

high enough current to see ion motion in experiments and the work in this dissertation can

be tested. The strong ties between theoretical models, high-fidelity PIC simulations, and

experiments is what has led to the successes of plasma-based acceleration and will continue

to do so in the future.
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APPENDIX A

Beam loading theory to achieve a linear Ez

In this appendix, we calculate the beam longitudinal profile that results in a linear Ez for the

witness beam using the theory from Tzoufras et al. [29]. This could be used to cancel a linear

energy chirp in order to achieve a monoenergetic beam after some propagation distance, while

invoking the BNS mechanism to mitigate beam hosing. More accurate profiles can be found

using the improved beam loading theory of Dalichaouch et al. [31], but for our purposes the

theory of Tzoufras et al. suffices.

In the witness beam region we want the accelerating field to have the form

Ez = −Es −m(ξ − ξs), (A.1)

where m ≡ |∂ξEz|, and the s subscript refers to the start of the witness beam. Using the

ultra-relativistic blowout assumption, we have Ez = rbr
′
b/2. Setting this equal to the above

equation and integrating both sides we obtain

r2b = r2s − 4Es(ξ − ξs)− 2m(ξ − ξs)
2. (A.2)

From the standard beam loading theory, we have

r2s
4

=

√
E4
s +

R4
b

24
− E2

s , (A.3)

where Rb is the maximum blowout radius. We also have

rbr
′′
b = −r′2b − 2m, (A.4)

192



and after substituting this into the differential equation for the blowout radius and rearrang-

ing terms, we obtain

λ(ξ) =
r2b
4
(1 + r′2b − 2m). (A.5)

We can substitute in the expressions for rb and r′b in terms of rs and Es into the above

equation, yielding

λ(ξ) =
r2s
4
(1− 2m) + E2

s + (2mEs − Es(1− 2m))(ξ − ξs)

+ (m2 − (1− 2m)m/2)(ξ − ξs)
2.

(A.6)

Finally, upon using the expression for rs and then simplifying, we obtain

λ(ξ) = (1− 2m)

√
E4
s +

R4
b

24
+ 2mE2

s + (4m− 1)Es(ξ − ξs)

+
m

2
(4m− 1)(ξ − ξs)

2.

(A.7)

This is the beam profile that will result in the accelerating field having a negative slope m.

We can immediately notice an interesting case: when m = 1/4, the beam current profile is a

flat-top. Of course we recover the standard beam loading result when m = 0. The amount

of charge that can be accelerated is

Qs = 2π

∫ ξ̂f

0

dξ̂ λ(ξ̂) (A.8)

= 2π

∫ ξ̂f

0

dξ̂

[
(1− 2m)

√
E4
s +

R4
b

24
+ 2mE2

s + (4m− 1)Esξ̂ +
m

2
(4m− 1)ξ̂2

]
(A.9)

= 2π

[(
(1− 2m)

√
E4
s +

R4
b

24
+ 2mE2

s

)
ξ̂f +

1

2
(4m− 1)Esξ̂

2
f +

m

6
(4m− 1)ξ̂3f

]
, (A.10)

where ξ̂ ≡ ξ − ξs and

ξ̂f =
1

m

(√
E2
s + 2m

(√
E4
s +R4

b/2
4 − E2

s

)
− Es

)
, (A.11)

for m ̸= 0, which corresponds to the ξ where rb → 0. We plot the normalized profiles in Fig.

A.1. We can see these profiles are very close to trapezoids, thus they can be approximated

as such when trying to create these beams in practice.
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Figure A.1: Normalized profiles for beam loading that acquire different slopes m ≡ ∂ξEz,

over the beam region. Es = 2 and Rb = 5 are used, ξs is set to zero.

A given chirp can be eliminated over some propagation distance, kps, as follows. The

initial energy is

γ0(ξ) = γs,0 −mγ(ξ − ξs), (A.12)

where mγ ≡ (∆γ/γb)γb
kpLb

, ∆γ/γb defines the chirp (0.1 corresponds to a 10% chirp), and Lb is

the beam length. The energy evolves according to

γ(ξ, s) = γs,0 + Eskps− (mγ −mkps)(ξ − ξs), (A.13)

where m = (∆E/Es)Es

kpLb
. In order for the beam to remain monoenergetic, we want mγ−mkps =

0, so the chirp will be eliminated after kps = mγ/m. If, for example, we want the beam to

be uniform longitudinally, we choose m = 1/4, and thus kps = 4mγ. For a 10 GeV beam

with a 10% chirp and length kpLb = 1, the chirp would be eliminated after kps = 8000. For

a plasma density of np = 4× 1016 cm−3, this corresponds to about 20 cm. For m = 0.1, the

chirp would be eliminated after about half a meter. Usually, the propagation distance is set

by the pump depletion of the driver, so one could instead design the witness beam shape to

remove the chirp needed to suppress hosing. For a propagation of one meter, the slope of

Ez would need to be m = 0.053 for the beam parameters above.
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