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Cancer is an important long-term risk for astronauts exposed to protons and high-energy charged 
particles during travel and residence on asteroids, the moon, and other planets. NASA’s Biomedical Critical 
Path Roadmap defines the carcinogenic risks of radiation exposure as one of four type I risks. A type I risk 
represents a demonstrated, serious problem with no countermeasure concepts, and may be a potential 
“show-stopper” for long duration spaceflight. Estimating the carcinogenic risks for humans who will be 
exposed to heavy ions during deep space exploration has very large uncertainties at present. There are 
no human data that address risk from extended exposure to complex radiation fields. The overarching 
goal in this area to improve risk modeling is to provide biological insight and mechanistic analysis of 
radiation quality effects on carcinogenesis. Understanding mechanisms will provide routes to modeling 
and predicting risk and designing countermeasures. This white paper reviews broad issues related to 
experimental models and concepts in space radiation carcinogenesis as well as the current state of the 
field to place into context recent findings and concepts derived from the NASA Space Radiation Program.

© 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. This is an open access 
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Space radiation carcinogenesis and risk

The programmatic research goals of NASA’s space radiation ele-
ment are to assess the consequences of a complex space radiation 
environment using studies in experimental models, ‘omics and sys-
tems biology to provide an improved new mechanistic basis for 
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risk prediction. Since cell and tissue studies in humans are dif-
ficult to obtain, estimates of risk from human space travel need 
to be based on a mechanistic understanding of complex effects 
elicited by radiation exposure across time and level of organiza-
tion. The radiation risks of concern are cancer and degenerative 
pathologies of the central nervous system and other tissues. Defin-
ing the radiobiology of space radiation is critical to understanding 
long-term risks, including how space radiation exposure at middle-
age modulates diseases associated with increased age such as the 
development of invasive cancer and neurodegenerative diseases.

Astronauts traveling in space are exposed to several types and 
energies of ionizing radiation estimated to total approximately 
50–2000 mSv, depending on whether they are spending 6 months 
on the International Space Station, or the surface of the moon 
or of Mars (Cucinotta and Durante, 2006; Cucinotta et al., 2008;
Durante and Cucinotta, 2008). Concern is greater for deep-space 
td. This is an open access article under the CC BY-NC-ND license 
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missions since radiation dose rates are higher than in low-Earth 
orbit and the duration of such missions will typically be longer 
(Zeitlin et al., 2013). However it is important to point out that 
these dose rates are considerably lower compared to those at 
which human populations show increased rates of cancer follow-
ing γ -radiation or x-rays and that irradiation with particles is both 
qualitatively and quantitatively distinct.

The radiation encountered in space is encompassed by the 
term galactic cosmic rays (GCR), which include protons of low-, 
medium- and high-energy, particle nuclei of high energy and 
charge (HZE), and neutrons of diverse dose rates and energy levels 
produced in secondary radiation interactions within the spacecraft 
(Guo et al., 2015). Estimating the risk of fatal cancers induced by 
these chronic mixed radiation exposures, which is estimated to 
total 50 mSv, is the focus of current NASA radiation research us-
ing experimental models since no epidemiology of cancer exists 
for humans exposed to the GCR, secondary radiation from parti-
cle fragmentation within the spacecraft, or the radiation from SPE 
(Cucinotta, 2015).

Particle irradiation results in non-homogeneous dose distribu-
tion such that at low fluence some cells in a complex organism 
are traversed and some are not, and that particle traversed cells 
are essentially acutely irradiated, which means that dose and rate 
concepts used for sparsely ionizing radiation are misleading. The 
fluence rates during space travel correspond to tissue doses of 
about 0.3–0.6 mGy/d and effective dose-rates of 1–1.8 mSV/d, re-
spectively (Cucinotta et al., 2008; Zeitlin et al., 2013). Over the 
course of a solar particle event (SPE), dose rates within the vehicle 
can fluctuate between 0–100 mGy/hr and can also differ between 
tissue sites because the variable energy spectra of particles have 
different depth distributions.

The current model of cancer risks used by NASA, NSCR 2012, 
scales cancer incidence and mortality rates estimated from epi-
demiology data using a dose and dose-rate effectiveness factor 
and radiation quality factor, to estimate the effects for the low 
dose-rates and radiation types in space respectively (Cucinotta et 
al., 2012). The large uncertainties, in order of decreasing impor-
tance, in this model are: the radiation quality factors, dose and 
dose-rate dependencies, the transfer or risk across populations, the 
determination of space radiation organ exposures, and the various 
errors in human data sources. In addition, there are uncertainties 
related to the underlying assumptions of the model due to pos-
sible qualitative differences between high- and low-linear energy 
transfer (LET) radiations, the validity of the assumptions of linear-
ity and additivity of effects for different radiation components, and 
the possible synergistic risks from other flight factors on radiation 
risks.

The carcinogenic effects of radiation became apparent soon af-
ter Roentgen’s discovery of radiation in 1896 (NCRP, 1993). No-
tably, neither morphologic nor biochemical characteristics uniquely 
identify a neoplasm as radiation-induced compared to sporadic 
cancer. Early studies of the pathogenesis of neoplasia using chem-
ical carcinogens resulted in the description of four stages of the 
natural history of tumors: initiation, promotion, progression, and 
metastasis (Pitot, 1993). Initiation by genotoxic agents such as ra-
diation is often ascribed to DNA damage, whose misrepair can 
generate oncogenic mutations. Advances in molecular oncology un-
derscore the complexity of molecular events that create the ge-
nomic ‘landscape’ of cancers (Vogelstein et al., 2013). A myriad 
of genomic mutations, rearrangements, and deletions occur in an 
ongoing process during the molecular evolution of many cancers. 
The high frequency of genomic changes in some cancers argues for 
early mutations in surveillance mechanisms or genomic instability 
that allow the accumulation of a critical number of events.

Radiation is considered a “complete carcinogen”, i.e. able to 
both initiate and promote (Fry et al., 1982). Radiation directly in-
duces DNA damage, usually in proportion to dose, whose misrepair 
in epithelial cells may create oncogenic mutations Although ra-
diation’s promoting activity is less well characterized compared 
to experimental models using chemical carcinogens, radiation also 
affects phenotype and signaling that modifies the surrounding mi-
croenvironment; this class of actions is referred to as non-targeted 
effects (NTE) and often exhibit switch-like or threshold dose-
responses (Barcellos-Hoff et al., 2014). Promotion of initiated cells 
may result from various radiation-induced molecular and cellular 
signaling events. Radiation rapidly triggers cell cycle checkpoints, 
initiates DNA damage processing cascades, and/or cell death pro-
grams. Long-term changes are also evident in cells, including well-
documented stress and oxidative signaling that may be mediated 
by mitochondrial dysfunction (Spitz et al., 2004). Radiation expo-
sure can perturb tissue homeostasis by activating innate immune 
system reactions, such as macrophage activation, that persist, lead-
ing to a cycle of sub-clinical tissue damage due to smoldering 
inflammation, which itself is capable of promoting cancer by al-
tering cell interactions, as well as contributing to mutations due 
to oxidative processes (Mukherjee et al., 2014; Coates et al., 2008). 
Intestinal epithelial cells show pro-inflammatory markers and in-
creased oxidative stress up to a year after irradiation (Datta et al., 
2012). There is evidence for increased pro-inflammatory signaling 
in the survivors of the atomic bomb (A-bomb) cohort even decades 
later (Hayashi et al., 2012).

Significant dose-dependent evidence for the human risk of can-
cer from radiation exposures has come from the A-bomb survivors 
and a select number of medical or accidental high-dose/dose-
rate exposures. Data from these cohorts indicate tissue-specific 
radiation-induced cancer mortality (Shimizu et al., 1990). For ex-
ample, epidemiology suggests excess leukemia, breast and skin 
cancer among U.S. radiological technologists working before 1950 
under high-dose limits (Mohan et al., 2003; Sigurdson and Jones, 
2003).

In contrast, there is no evidence of increased cancer risk with 
chronic occupational exposures to conventional radiation under 
current occupational limits in medical workers (Yoshinaga et al., 
2004), in nuclear workers in the U.S. (Berrington de Gonzalez et al., 
2009), in a combined study of nuclear workers in the U.S., United 
Kingdom and Canada (Cardis et al., 1995), or European airline flight 
crews (designated as radiation workers since 1996) (Langner et al., 
2004; Sigurdson and Ron, 2004; Zeeb et al., 2003). Cancer mortal-
ity among U.S. nuclear power industry workers after chronic low 
dose exposure to ionizing radiation actually shows a significant 
“healthy worker” effect with a reduced mortality compared to the 
general population (Howe et al., 2004).

The occupational exposures incurred by astronauts in deep 
space have no terrestrial parallels on which to base risk estimates. 
Radiotherapy with neutrons and charged particle beams has pro-
vided only a few reports of particle-radiation-induced tumors with 
limited follow-up times, and case reports with inadequate statis-
tical evaluations (Chung et al., 2013; Marta et al., 2015). Charged 
particles are used to treat cancer because their physical character-
istics of dose distribution allows more sparing of normal tissues 
than conventional radiation therapy, but to date neither the use 
of proton nor carbon radiation therapy is associated with an in-
creased risk of second malignancy compared with photon therapy, 
however the number of studies with long-term follow up times is 
limited.

Laboratory animal studies with neutrons and charged parti-
cle beams have provided important information on dose-, dose-
rate, and dose-fractionation-dependent cancer latency, incidence, 
genetic susceptibilities, and aggressiveness. Compared to low-LET 
radiation, such as γ -rays, early animal model studies using neu-
trons or HZE ions have raised the troubling concern that their 
relative biologic effectiveness (RBE) for tumorigenesis may well 
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be more than a magnitude greater (Cucinotta et al., 2013; Fry et 
al., 1983). Unique aspects of the particle-induced DNA lesions, in-
cluding gene-specific susceptibilities, and immune responses are 
discussed below. Carcinogenesis studies in animal models have be-
gun to elucidate underlying mechanisms of action involved in the 
generation of space radiogenic tumors, which may provide leads to 
effective countermeasures. Therefore, we need to address the fol-
lowing questions as we move forward experimentally:

1. What mechanisms underlie radiation carcinogenesis for the 
major tumor types that threaten astronauts on long duration 
missions?

2. Do high-LET and low-LET radiation exposures induce cancers 
by the same mechanisms?

3. How efficient are low dose rate exposures for carcinogenesis?

The goal of this paper is to provide an expert’s review of the 
current status of the field of space radiation carcinogenesis, and a 
summary of the research questions and challenges requiring fur-
ther study. Documenting radiation quality differences in experi-
mental systems and defining the underlying biological mechanisms 
are necessary for understanding the potential risk of space travel.

2. Cancer paradigm

For more than half a century, the multi-stage model for carcino-
genesis has been the paradigm for carcinogenesis (Armitage, 1985;
Armitage and Doll, 1954). This model states that initiation, pro-
motion, and progression are sequential stages occurring within 
cells that result in a malignant cancer. More recently, the im-
portance of concomitant cell-extrinsic events that include the es-
tablishing a tumor microenvironment and evading immune re-
sponses during carcinogenesis has come to be more appreciated 
(Barcellos-Hoff et al., 2013; Dunn et al., 2004). There are no hu-
man data available to estimate the cancer risk on the effects of 
high LET particles in the space radiation environment, thus, cur-
rent risk models of space radiation-induced carcinogenesis depend 
mainly on low-LET human data and animal experiments. Many 
mathematical models of radiation-induced carcinogenesis focus ei-
ther on short-term processes involved in initiation of carcinogene-
sis or longer term processes involved in promotion; more recently, 
models have been developed that integrate the short and long-
term processes (Shuryak et al., 2006, 2009, 2010a; Little, 2000;
Mothersill and Seymour, 2003).

2.1. Initiation

Carcinogenesis is a chronic, complicated process that involves 
gene mutation, genomic instability, over-activated oncogenes, in-
activation of tumor suppressors, epigenetic changes, abnormal 
metabolism and changes in microenvironment (Hanahan and 
Weinberg, 2011). However, the mechanisms underlying carcino-
genesis have yet to be completely understood. The Life Span 
Study (LSS) cohort of atomic-bomb survivors is a primary source 
for quantitative risk estimates that underlie radiation protection 
(Preston et al., 2003). The data derived from A-bomb survivors 
suggests that a single exposure to radiation tends to increase the 
incidence across the spectrum of cancers that are common in a 
population rather than increase the frequency of specific tumor 
types. Such information suggests that radiation may promote some 
cancers, thereby via shortening the overall latent period and sub-
sequently speeding up the general carcinogenesis process. Notably, 
shortened latency is not seen in all experimental models in which 
cancer incidence is increased, suggesting that different mecha-
nisms likely contribute.
Initiation of carcinogenesis is defined as the induction of ge-
netic changes, such as mutations, that create a premalignant state. 
HZE particles induce clustered DNA damage in which multiple 
complex double-strand breaks occur within one or two helical 
turns of the DNA, which is more challenging to repair than individ-
ual, widely dispersed lesions (Georgakilas et al., 2013). In fact it is 
difficult to completely separate initiation from promotion and pro-
gression since radiation-induced DNA damage can activate myriad 
pathways that result in genomic instability and may be involved 
in multiple stages of carcinogenesis. The initial complexity of HZE 
damage contributes in as yet poorly understood manner to the 
phenotypes observed in irradiated cells that include induction of 
reactive oxygen species, DNA damage signaling and inflammation 
(Sridharan et al., 2015).

2.2. Promotion and progression

Classically, promotion and progression describe the conversion 
of premalignant cells to cancer cells and their expansion and 
acquisition of additional traits (Hanahan and Weinberg, 2000). 
Importantly, it is now recognized that cancer involves the co-
option of normal cellular pathways (Hanahan and Weinberg, 
2011). Again, radiation is thought to be a “complete carcino-
gen” as it is both an initiator and a promoter (Fry et al., 1982;
Shuryak et al., 2009). With increasing age at radiation exposure, 
cancer promotion and progression assume more importance due to 
the larger number of already-initiated, premalignant cells in older 
individuals. This concept was recently demonstrated in treatment-
related acute myeloid leukemia occurring after chemotherapy 
and/or chemotherapy combined with radiation therapy for other 
cancers. The authors showed that the same TP53 mutations found 
in some leukemias were present in blood or bone marrow sam-
ples obtained more than 3 years prior to diagnosis and in two 
cases prior to receiving chemotherapy (Wong et al., 2015). More-
over, nearly half of peripheral blood samples from healthy elderly 
individuals harbored low frequencies of functional TP53 mutations 
(Wong et al., 2015).

Long latency between exposure and solid tumor development 
is considered evidence of relative importance of promotion and 
progression, in contrast to hematopoietic cancers with short la-
tencies ascribed to the primacy of radiation-induced initiation. 
Long latency is characteristic of ovarian tumors induced by ra-
diation (Jeng et al., 2007; Furth and Boon, 1947; Gardner, 1950;
Clapp, 2016). Interestingly, depletion of germ cells in mice by sev-
eral methods, including administration of ovotoxic chemicals and 
radiation exposure, leads to the development of epithelial and/or 
stromal ovarian cancers (Capen et al., 1995; Vanderhyden et al., 
2003). Germ cell depletion results in loss of ovarian negative 
feedback, leading to elevated levels of the pituitary gonadotropin 
hormones, follicle stimulating hormone and luteinizing hormone. 
Chronic gonadotropin stimulation of the ovarian surface epithelial 
cells, which possess both hormone receptors, has been proposed 
as the common pathway by which experimental paradigms that 
result in germ cell depletion cause ovarian tumors (Capen et al., 
1995; Vanderhyden et al., 2003). These data support the impor-
tance of ovarian tumor promotion and progression as a result of 
chronic gonadotropin hyperstimulation.

2.3. Extrinsic processes

It is generally accepted that carcinogenesis involves cell intrin-
sic and extrinsic processes. Radiation-induced effects that manifest 
away from the irradiated target (e.g. bystander or abscopal effects) 
are evidence of systemic consequences of irradiation (Kadhim 
et al., 1994; Lorimore et al., 2003; Wright and Coates, 2006;
Hei et al., 1997; Wu et al., 1999; Zhou et al., 2000, 2005). An 
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important example is the immune response. How the interplay be-
tween inflammatory cells and mutated neoplastic cells promotes 
cancer development and progression remains a subject of intense 
investigation. Several important pathways have been identified. 
Among them, IL-6 signaling pathways play a major role (Naugler 
and Karin, 2008). Macrophages are the main source of IL-6 during 
acute inflammation, and T cells during chronic inflammation. Im-
portantly, IL-6 orchestrates the transition from acute inflammation, 
dominated by granulocytes, to chronic inflammation, dominated 
by monocytes/macrophages and regulates, together with TGFβ , the 
differentiation of naive T cells to the Th17 pro-inflammatory phe-
notype, thus influencing the type of adaptive immune response 
(Bettelli et al., 2006).

At ionizing radiation doses of 0.5 Gy or less there is minimal 
cell death in most tissues. However, irradiated cells release oxygen 
and nitrogen free radicals that activate both normal cells and in-
nate immune cells (such as macrophages) to release cytokines and 
chemokines (Barcellos-Hoff, 1998). This can lead to chronic inflam-
mation initiating a pro-tumorigenic role of the immune system 
(Wright and Coates, 2006). At higher doses of radiation leading to 
significant cell death, radiation induces signals that are sensed by 
the innate immune cells (e.g. dendritic cells), resulting in an adap-
tive immune response. Immune-modulating effects of radiation are 
influenced by many factors including total doses, dose-rates and 
cell autonomous and micro-environmental cellular responses to 
both normal and tumor initiating cells (Hall, 2006). The complex 
relationships among DNA damage, cell death, the microenviron-
ment and the host immunological responses, and their dependence 
on radiation exposure dose, dose-rate and quality continue to be 
areas of intense research.

Recent studies of radiation carcinogenesis have implemented 
methods to isolate tissue-mediated processes from initiation per se. 
For example, mammary cancers that developed after transplanta-
tion of Trp53-/- mammary gland tissue into hosts irradiated before 
transplantation with densely ionizing charged particles had shorter 
latencies to appearance of palpable tumors, grew more rapidly 
and had different immunohistochemical and gene expression pro-
files compared to tumors arising in sham or γ -irradiated mice 
(Illa-Bochaca et al., 2014b).

Epidemiological studies have associated obesity and psycholog-
ical effects of environmental enrichment or stress with increased 
cancer risk. Experimental studies have demonstrated that these as-
sociations may be largely due to effects on promotion and progres-
sion mediated by neuroendocrine and immune systems. Obesity is 
associated with systemic inflammation, as well as local inflamma-
tion in white adipose tissue, and there is evidence that both of 
these enhance progression of breast cancer (Howe et al., 2013;
Arendt et al., 2013). Provision of environmental enrichment to 
mice decreases tumor growth in implanted and spontaneous tumor 
models via brain-derived neurotrophic factor activation of sympa-
thetic nervous system signaling to decrease leptin and increase 
adiponectin production in adipocytes (Cao et al., 2010). On the 
other hand, chronic psychological stress and depression have been 
found to correlate with increased risk of metastasis of several types 
of cancer and with increased tumor angiogenesis, growth, adhe-
sion, and invasion (Moreno-Smith et al., 2010).

What is currently lacking is a broad understanding of the ef-
fect of microgravity, stress, and the different types of radiations 
to be encountered during space travel despite the adequate space-
craft shielding from low energy protons (85% of the space radia-
tion field). It is generally believed these combinatorial effects can 
lower immune responses but little is known about the reversibil-
ity, if any, of these effects upon return to earth. Moreover, on a 
long-term flight to Mars and back there are likely to be signifi-
cant effects of HZE particles that cannot be protected against by 
shielding. Based on the measurements from the radiation assess-
ment detector aboard the spacecraft that carried Curiosity to Mars, 
it was estimated that an astronaut would likely have an exposure 
close to the 3% REID limit of exposure now permissible for an as-
tronaut’s entire career, even with shielding (Kerr, 2013).

Excess relative risks are higher for those exposed earlier in life, 
with attained age-specific risks changing by about 20% per decade, 
but tend to decrease with increasing attained age, roughly in pro-
portion to for any age at exposure (Preston et al., 2003). However, 
the risk models incorporate this prediction based on the assump-
tion that HZE carcinogenesis is not qualitatively different for the 
now-older astronaut (on average, 45). Recent data from experimen-
tal models suggest this may not be correct and that promotional 
processes become increasingly important as the age at exposure 
increases (Shuryak et al., 2010b). As older astronauts are likely to 
have some initiated precancerous lesions and an ageing immune 
system, they may have increased (not decreased) risk of life threat-
ening cancer from exposure to space radiation. On the other hand, 
that the aging host can have a powerful net suppressive effect on 
cancer progression was demonstrated in one study (Beheshti et al., 
2015), and is in line with findings by Preston (Preston et al., 2007)
for non-lung solid cancers, to the extent such suppression may 
delay diagnosis for greater ages at exposure. Noting the possible 
exception reported by Preston et al. for lung cancer, it may be im-
portant to distinguish between cancer diagnosis and mortality due 
to lung cancer, given that death from cancer, rather than incidence, 
is the risk endpoint. Understanding the combinatorial effects of 
space flights in which GCR exposure, as well as physiological and 
psychological effects of confined quarters and microgravity, con-
tribute to cancer risk will require additional experimental data and 
modeling.

3. Evaluating carcinogenesis in experimental models

Animal models provide an opportunity to examine risks and 
mechanisms of HZE particle exposure to inform carcinogenesis 
risks in astronauts. Radiation carcinogenesis studies with HZE ions 
have been performed with rat strains and stocks, inbred mouse 
strains and their F1 hybrids, genetically diverse stock, and geneti-
cally engineered mouse models. Here we describe important recent 
findings from studies with conventional and genetically engineered 
rodents, discuss the limitations of these models, and outline chal-
lenges for future research.

3.1. Conventional mice and rats

Carcinogenesis studies using conventional, non-engineered mice 
and rats have focused on radiation quality effects and to a lesser 
extent on dose-rate/fractionation effects. The poorly understood 
impact of different radiation qualities (e.g., different LETs and track 
structures) on radiation carcinogenesis is a major source of uncer-
tainty in risk calculations. Animal studies comparing the carcino-
genic efficacies of radiation qualities encountered in space with 
γ -rays or X-rays, for which the risk of carcinogenesis is better un-
derstood, are used to generate relative RBE values for radiation car-
cinogenesis. These RBE values strongly influence the determination 
of quality factors used in risk estimation models. The advantage 
of such comparative studies is that information regarding the risk 
of carcinogenesis from HZE particles can be developed without a 
mechanistic understanding of how HZE particles cause cancer.

There have been relatively few large-scale carcinogenesis studies
with HZE ions as described in recent reviews (Bielefeldt-Ohmann 
et al., 2012; Rivina and Schiestl, 2013). HZE ions have been shown 
to be highly effective in inducing mammary tumors, lung adeno-
carcinoma, Harderian gland tumors and hepatocellular carcinoma, 
but are no more effective than γ -rays for inducing acute myeloid 
leukemia or increasing lung cancer in certain genetically modified 
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mice, in rodent models that have known susceptibility to certain 
malignancies. The disparity in RBE for leukemia and solid tumors 
has been interpreted to indicate different underlying mechanisms 
for induction of these tumor types. It also underscores the impor-
tance of microdosimetry in HZE ion carcinogenesis (Peng et al., 
2009; Weil et al., 2014).

Patterns are beginning to emerge from carcinogenesis studies. 
In the rat mammary tumor model, the radiation quality effect ap-
pears to be on latency. Almost all female Sprague Dawley rats 
develop spontaneous mammary tumors, generally more than one 
tumor per rat. Rats irradiated with either γ -rays or Fe ions develop 
them sooner. In the mouse hepatocellular carcinoma model, the 
radiation quality effect is on tumor incidence relative to genetic 
background. CBA or C3H mice have about a 12% incidence of spon-
taneous hepatocellular carcinoma. Irradiation with iron or silicon 
ions greatly increases the background tumor incidence compared 
to γ -rays, but does not decrease latency. In the mouse model of 
acute myeloid leukemia, the spontaneous incidence is very low 
(essentially zero), but leukemia is induced with roughly equal effi-
cacies by HZE ion or γ -ray radiation.

Molecular and cytogenetic characterizations of radiation-
induced acute myeloid leukemia suggest that similar lesions oc-
cur in leukemia from HZE ion and γ -ray irradiated mice, but the 
results are based on small numbers of cases. Similar characteriza-
tions have not yet been reported for solid tumors (with the ex-
ception of minimal data on mammary cancer Imaoka et al., 2007;
Illa-Bochaca et al., 2014a), but may reveal radiation signatures or 
even radiation quality signatures. For example the gene expression 
profile of Trp53 null mammary tumors arising in irradiated mice 
compared to controls can cluster not only human breast cancers 
into prognostic subtypes but can also cluster radiation-preceded 
from spontaneous human thyroid cancers and sarcomas (Nguyen 
et al., 2013). Such signatures could have profound implications on 
human radiation epidemiology studies because they may be used 
to distinguish radiogenic tumors from spontaneous tumors of the 
same histology.

Another benefit of characterizing tumors at the molecular level 
is that it may allow for better extrapolation of results between 
tumor types, something now based on histopathology. For exam-
ple, the Harderian gland tumor model provides the largest data 
set for the LET to RBE relationship, but Harderian gland tumors do 
not occur in humans (humans lack Harderian glands). However, if 
molecular characterization of Harderian gland tumors revealed a 
fusion protein or an activated pathway associated with a human 
tumor, the LET to RBE data may also be applicable to that tumor 
type.

Results from fractionation studies have varied from no effect 
on tumor incidence, to a decrease in incidence, and a potential 
increase in incidence (Bielefeldt-Ohmann et al., 2012; Weil et al., 
2014). The inconsistencies may be due to the different model sys-
tems and fractionation schedules employed and to small group 
sizes in some experiments.

A number of insights have emerged from carcinogenesis stud-
ies using conventional rodents. Two of the more important ones 
are that differences in genetic susceptibility to radiation carcino-
genesis observed in low LET exposures extend to HZE ion expo-
sures and that the proportion of malignant tumors induced may be 
greater for HZE ions than γ -rays. Murine strain differences in sus-
ceptibility to radiation-induced cancers have been known at least 
since the 1950s (Kaplan et al., 1956) and were highlighted in a 
large-scale survey of four strains reported 30 years later (Storer 
et al., 1988). In a few cases sequence polymorphisms responsible 
for the strain differences have been identified (Mori et al., 2001;
Perez-Losada et al., 2012; Rosemann et al., 2014; Yu et al., 2001).

The studies of genetic susceptibility thus far have involved low 
LET radiation (and alpha particles in the case of osteosarcoma 
Rosemann et al., 2002) and it is by no means a foregone con-
clusion that strain differences also exist in susceptibility to HZE 
ion-induced tumors. However, two recent reports, one showing rat 
strain and stock differences in carbon ion-induced mammary tu-
morigenesis (Imaoka et al., 2007) and the other showing murine 
strain differences in iron ion-induced hepatocellular carcinoma 
(Bielefeldt-Ohmann et al., 2012), suggest that susceptibility to HZE 
ion carcinogenesis is under genetic control. Research to determine 
if the same genetic polymorphisms that determine susceptibility 
to spontaneous or gamma ray-induced tumors also determine sus-
ceptibility to HZE ion-induced tumors is ongoing. This is of interest 
because some risk estimates assume that the incidence of HZE 
ion-induced tumors will be a multiple of spontaneous or gamma 
ray-induced tumors. That is a reasonable assumption if gamma ray 
and HZE-ion induced tumors arise through substantially the same 
processes, in which case they should be controlled by the same 
susceptibility loci.

The carcinogenic effects of high LET radiation may be distinct 
in terms of magnitude, duration or quality compared to those 
following low LET radiation. In the Harderian gland model, pitu-
itary isographs are used to increase incidence and decrease latency, 
but omitting this procedure doesn’t appear to affect HZE ion-
induced Harderian gland tumors, suggesting that HZE irradiation 
has promotional effects not elicited by low LET radiation. Com-
pared to spontaneous or γ -ray-induced, HZE-induced hepatocellu-
lar carcinoma metastasizes to the lung more frequently (Weil et 
al., 2014), a finding presaged by observations of increased metas-
tasis of Harderian gland tumors induced by neutron irradiation 
and earlier lethality of neutron-induced tumors (Fry et al., 1983;
Grahn et al., 1992). There is, however, a caveat. Higher radiation 
doses are also associated with increased frequencies of Harderian 
gland tumor metastases and radiation dose effects have not yet 
been unraveled from radiation quality effects for HZE ion-induced 
tumors.

3.2. Genetically engineered mice

Genetically engineered mouse models are powerful tools to 
unravel the mechanistic underpinnings of radiation carcinogene-
sis, tumor aggressiveness and metastatic propensity. These models 
have recently been employed in studies of space radiation carcino-
genesis to define the roles of specific proteins, such as the tumor 
suppressor p53 and pathophysiological pathways, such as inflam-
mation. They are also being used to study the effects of space 
radiation on specific steps in carcinogenic pathways in lung cancer, 
the role of NTE in breast carcinogenesis and to identify the “cell of 
origin” for malignant transformation in glioblastoma and lung can-
cer. Evidence is also emerging from studies of engineered mice for 
enhanced aggressiveness following HZE exposure as measured by 
the proportion of carcinomas over total tumors (i.e. including ade-
nomas) (Datta et al., 2013). The spectrum of mammary carcinomas 
arising from Trp53 null epithelium in HZE irradiated mice shifts 
to more aggressive cancers as estimated by gene signatures and 
rapid growth rate compared to those arising in γ -irradiated mice 
or controls (Illa-Bochaca et al., 2014a).

Genetically engineered mouse models introduce mutation(s) 
that make the mice susceptible to carcinogenesis (Moding and 
Kirsch, 2012). In some cases, the mutation causes the activation 
of an oncogene and is sufficient to initiate tumor development by 
itself. For example, KrasLA1 mice develop a large number of lung 
adenomas even in the absence of radiation. This mouse model can 
therefore be used to study the impact of HZE particles on lung 
tumor progression (Delgado et al., 2014). Lung cancer accounts 
for the most cancer related deaths worldwide, estimated at 1.3 
million deaths each year. The large surface area/size of the lung 
makes it a prominent target for terrestrial and space radiation ex-



M.H. Barcellos-Hoff et al. / Life Sciences in Space Research 6 (2015) 92–103 97
posure (Doll and Peto, 1978; Darby et al., 2006; Shay et al., 2006;
Bruske-Hohlfeld et al., 2006).

The KrasLA1 mouse model is a well characterized genetically 
engineered mouse that is susceptible to lung adenomas and ade-
nocarcinomas similar to the major type of lung cancer common 
in humans, non-small cell carcinoma (Johnson et al., 2001). This 
model has been used to examine the effects of heavy ion (56Fe) 
and simulated solar particle events (SPE) on cancer progression 
(Kim et al., 2014). The long term goal of this study was to as-
sess the risk of developing invasive cancers in this mouse model 
and to extrapolate the data to human risk projections. The murine 
model (KrasLA1) randomly expresses mutated KRAS in a subset 
of lung cells resulting in initiation and formation of lesions that 
mimic lung cancer progression in humans. Greater than 50% of the 
mice with oncogenic K-ras expression die in less than a year with 
a small percent of mutant mice living to a maximum of ∼600 
days (Delgado et al., 2014). About 9% of KrasLA1 mice on a 129 
strain background spontaneously develop invasive non-small cell 
lung adenocarcinomas. While the risk of normal mice to tumori-
genesis upon exposure to low and high-LET radiation has been 
studied in the past, genetically engineered models have been help-
ful in that very limited data are available on progression of cancer 
susceptible mice to more advanced, perhaps fatal, invasive cancers.

Initial studies in this area included administrating whole body 
proton irradiation as a simulated SPE, of 2.0 Gy over 2 hours with 
a wide range of energies (50 MeV–150 MeV) compared to single 
dose protons and x-rays (Kim et al., 2014). Histopathological anal-
ysis of the irradiated KrasLA1 mice 70–100 days post-radiation re-
vealed an increase in both the number and size of lung hyperplas-
tic lesions and adenomas. In addition, histopathological analysis of 
the irradiated KrasLA1 mice one year post-radiation demonstrated 
an increase in tumor grade to invasive adenocarcinomas (Delgado 
et al., 2014). Thus, 2.0 Gy of SPE spectrum protons demonstrated 
a significant increase in occurrence of invasive adenocarcinomas 
compared to x-ray. The KrasLA1 mouse model 70 days post frac-
tionated (0.2 Gy × 5) exposure to 1 GeV/n 56Fe increased expres-
sion of inflammatory factors within the lung about 200 days prior 
to the observation of invasive cancer. This suggests that chronic in-
flammation may be important in the progression of invasive cancer 
in the lung. Interestingly, the microarray signature of the lungs in 
these irradiated mice was compared to transcriptomic analysis of 
early stage lung cancer in patients and was predictive of human 
lung and breast cancer patient survival across multiple datasets 
(Delgado et al., 2014).

Alternatively, “sensitized” animal models with deletions of tu-
mor suppressor genes can be used to expeditiously study the tu-
mor promoting effects of HZE particles relative to low LET radia-
tion. For example, Apc(Min/+) mice, which carry one mutant copy 
of the Apc tumor suppressor gene are predisposed to develop gas-
trointestinal tract tumors and develop an increased number and 
higher grade of intestinal neoplasias after HZE ion exposure (Datta 
et al., 2013).

In contrast, genetically engineered mice with brain-targeted 
deletions of Ink4a, Ink4b, and Arf (Nestin-Cre; Ink4a/b−/−; Arff/f) 
do not present with spontaneous gliomas throughout their lifes-
pan but readily develop radiogenic gliomas following irradiation 
with 56Fe ions (Camacho et al., 2015). Ionizing radiation has been 
shown to increase the risk of GBM development in humans ex-
posed to doses as low as 50 mGy of X-rays (from CT scans) mak-
ing the study of HZE-driven gliomagenesis particularly relevant for 
extraterrestrial exploration (Pearce et al., 2012). The histopathol-
ogy of the radiogenic tumors in the Ink4/b−/−; Arff/f mice closely 
resemble that of high grade human gliomas, and the mouse tu-
mors are driven by oncogenic activations seen in human GBM. 
This clinical relevance together with the lack of background le-
sions and short latency makes such mouse models highly suit-
able for comparative evaluation of HZE particles with a range of 
LETs. Preliminary studies with the Ink4/b−/−; Arff/f mouse com-
paring the tumorigenic potential of charged particles of increasing 
Z with that of X-rays suggest a strong radiation quality effect on 
glioma frequency but with no effect on latency or clinical progres-
sion (Burma, personal communication). Another advantage of using 
transgenic mouse models is that complementary mouse models 
with different genotypes can be used to corroborate results ob-
tained for a particular cancer, thereby bolstering confidence in the 
risk estimates being made.

In yet other genetically engineered mouse models, the timing of 
activating an oncogene and/or mutating a tumor suppressor gene 
can be controlled by delivering a virus expressing a recombinase, 
such as Cre (Kirsch et al., 2007), or by delivering a ligand such as 
tamoxifen to activate Cre-ER (Blum et al., 2013). Such models could 
be used to study the non-targeted effects of HZE particles, i.e., the 
effects on the tissue microenvironment rather than on the incipi-
ent cancer cell. Thus far, non-targeted effects of HZE particles have 
been studied in a mammary chimera model in which p53-null ep-
ithelia are transplanted into an irradiated host (Illa-Bochaca et al., 
2014b). In the chimera model, the irradiated host stroma has been 
shown to accelerate tumor development, indicating that HZE par-
ticles can also indirectly promote carcinogenesis by altering the 
tumor microenvironment. Such non-targeted effects could be more 
directly examined in genetically engineered mouse models by ex-
posing the mice to HZE particles before the gene mutation is initi-
ated.

Genetically engineered mouse models can also be used to in-
vestigate the impact of “cell-of-origin” on HZE particle carcino-
genesis. For this purpose, the use of cell type specific promoters 
allows for the introduction of mutations only in a desired cell 
population within the target organ rendering them susceptible 
for transformation by radiation. For example, one way to address 
the question of “cell-of-origin” of radiation induced gliomas is to 
use brain cell-type specific promoters driving Cre-ERT2/Rosa26-YFP 
expression. Upon induction, e.g. by administration of tamoxifen, 
depending on the promoter of choice (for example, Nestin to tar-
get neural stem cells and Cystatin C to target astrocytes), tumor 
suppressor genes of interest are deleted only in the targeted cell 
population (Balordi and Fishell, 2007; Niu et al., 2013). The in-
clusion of the Rosa26-YFP reporter allows for the permanent la-
beling of the cells that have undergone Cre-driven recombina-
tion such that tumors arising from the targeted population would 
be YFP-positive. Glioblastomas are postulated to arise both from 
stem cells as well as from mature astrocytes (Dunn et al., 2012;
Chen et al., 2012), so it will be important to elucidate which cell 
type is most susceptible to malignant transformation by HZE parti-
cles. For instance, tumors arising from a stem cell population may 
turn out to be similar to cancer stem cells and thus more re-
sistant to therapy (Adorno-Cruz et al., 2015). In sum, addressing 
radiation-induced carcinogenesis at the cellular level and identi-
fying the susceptible populations within a specific organ may be 
crucial for the ultimate development of preventive or therapeutic 
strategies.

Recent experiments with engineered models have focused on 
identifying the type and means by which normal cells mediate 
the development of cancer (Kuperwasser et al., 2004; Bhowmick 
et al., 2001; Maffini et al., 2004; de Visser et al., 2006). In a Ptch-1
heterozygous mouse model, studies by Saran and colleagues found 
that partial body irradiation at a young age promotes Ptch mutant 
meduloblastoma (Mancuso et al., 2008). A radiation-chimera mam-
mary model was developed to evaluate NTE by irradiating only 
the mice before orthotopically transplanting Trp53 null mammary 
epithelium (Illa-Bochaca et al., 2014a; Nguyen et al., 2011). The ab-
sence of p53 from the epithelium primes the cells to undergo high 
efficiency transformation and gives rise to diverse types of carci-
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nomas over the course of 12–18 months. Unexpectedly not only 
the timing and frequency but the types of cancers are affected by 
irradiating the host; moreover there is a distinct radiation quality 
effect increasing that result in more aggressive tumors. This model 
demonstrates that the response of normal cells to radiation acts 
to promote carcinogenesis. A recent study using a low (10 cGy) 
dose of γ -radiation to irradiate genetically diverse host mice iden-
tified two genetic loci that associate with cancer latency in controls 
and an additional 13 loci that affect latency in irradiated mice 
(Zhang et al., 2015). Further mapping will provide both impor-
tant insight into mechanisms by which radiation perturbs systemic 
controls and enable comparison to genetics of human susceptibil-
ity.

3.3. Limitations

The NASA Radiation Program Element supports translational re-
search to evaluate risk in healthy astronauts. As discussed above, 
engineered mice provide good models for determining the gene 
functions for tumor suppressors or oncogenes but must be used 
with caution for evaluating the risk of radiation-induced cancer 
unless the results can be shown to be relevant to risk in human 
populations. The engineered gene mutations that increase sponta-
neous cancer, thereby increasing the ‘signal’, can also change the 
biological response to radiation, which may result in a different 
stress response as compared to wild type mice.

The use of mutant mouse models is usually based on an un-
derlying hypothesis in which the genetic manipulation is meant 
to mimic that observed in human predisposition (e.g. APC) or fre-
quently found in human tumors (e.g. K-Ras) or has a fundamental 
role in cancer suppression (e.g. P53). Using such models for es-
timating radiation risks in humans is not one-to-one, particularly 
for evaluating the risk of HZE particle radiation for which there 
are no human data on cancer incidence. In some instances, mutant 
mouse models may provide unexpected results, indicative of more 
complex mechanisms or unknown biology. For example, miR-21 
(an oncogene) is induced by radiation, so a deletion model was 
used to test its role in radiation carcinogenesis. Consistent with 
an oncogenic role, miR-21 knock-in mice have a high incidence 
(∼40%) of spontaneous lung adenocarcinoma, which radiation ex-
posure decreased (Chen et al., 2015). Surprisingly, irradiation de-
creased miR-21 expression in these mice, in contrast to the effect 
in wildtype mice. Another example is that of mice in which a lung 
tumor suppressor, Gprc5a, is deleted. The spontaneous incidence 
(10%) of lung adenocarcinoma is increased by radiation to ∼35%, 
however there was no difference in the lung tumorigenesis in-
cidence between high and low-LET irradiated Gprc5a null mice. 
In contrast, wild type mice show >6 fold greater lung tumori-
genesis at 1 Gy after exposure to HZE particles (iron, silicon and 
oxygen) compared to X-ray (Wang et al., 2015). These results sug-
gest that though transgenic mouse models can be used to explain 
the functions of these modified genes in spontaneous tumorigen-
esis, radiation effects may be more complex. Such considerations 
may support studies in wild type mouse models, but a very low 
cancer incidence or rate requires significantly more time and mice. 
This limits the numbers of ions and doses that can be assayed.

The endpoint, a malignant cancer, is usually given greater 
weight than a surrogate endpoint such as a change in gene ex-
pression. Nevertheless, the tumor is a rodent tumor, not a human 
tumor, and for most tumor types the extent of the similarities 
between the rodent tumor and the human tumor it is meant to 
mimic is not fully established. Moreover, risk of mortality from 
cancer is a critical barrier to space flight; thus it is important to 
distinguish in experimental models between the broad class of tu-
mors, which may include benign tumors such as adenomas, versus 
carcinomas, and those cancers with characteristics that associate 
with poor prognosis (e.g. invasion, metastasis). Better characteri-
zations of radiogenic tumors in humans and mice (and potentially 
other species) are needed to ensure extrapolation of results from 
rodents to human is appropriate for key tumor types. Humanized 
mice (mice bearing human tissues) are another likely bridge be-
tween the species.

3.4. Challenges

Astronauts on deep space explorations will be exposed to radia-
tion over many months, with a Mars mission envisioned that could 
extend to three years. The consequences of protracted low fluence 
exposure during travel in deep space on carcinogenesis are not 
well understood. Most cellular traversals involving protons would 
not be more frequent than daily occurrences (Cucinotta and Du-
rante, 2006; Cucinotta et al., 2013). Thus, the reality of the space 
radiation environment suggests the need to focus studies at lower 
total doses and protracted exposure to provide more meaningful 
information relevant to risk estimates. It is possible that the rel-
atively high fluences employed for animal experiments may not 
accurately capture the risk from more protracted radiation expo-
sure in space, but both the technical limitations for protracting HZE 
exposure and the relatively short life spans of rodents currently 
complicate risk extrapolation to humans. Once a means to deliver 
low fluence HZE particles over a long period is feasible, research 
may need to be undertaken in a second, longer lived, non-rodent 
species to address issues of scaling to lifespan in highly protracted 
exposures.

4. Current challenges to reconciling the biology with risk 
modeling

Cancer is an important long-term risk for astronauts exposed to 
protons and HZE particles during deep space travel and residence 
on other planets and the moon. There are no human data on the 
risk from the extended exposure to complex radiation fields that 
will occur during space travel. Although the prevailing radiation 
health paradigm focuses on radiation-induced DNA damage lead-
ing to mutations, numerous studies over the last 50 years have 
provided evidence that radiation carcinogenesis is more complex 
than generally appreciated (reviewed Barcellos-Hoff, 2005).

As discussed above, models of cancer risk and mitigation are fo-
cused on ‘targets’, i.e. the cell that will undergo neoplastic transfor-
mation or the genetic alterations that initiate and promote cancers 
via four interdependent stages. The first stage, initiation, is typi-
cally irreversible and heritable and alters the cell genome resulting 
in an enhanced growth potential. This potential is only realized, 
however, if the cell later undergoes promotion, the second stage of 
carcinogenesis. Promotion is often thought to be the rate-limiting 
step in carcinogenesis since it has been shown that initiation alone 
is not sufficient to induce cancer (Berenblum and Shubik, 1949). 
Integration of mutations in a specific tumor suppressor gene was 
originally introduced by Knudson (Knudson, 1971). In order to ac-
count for the observed power of age dependence in carcinomas, 
a multi-stage theory of carcinogenesis was introduced (Armitage 
and Doll, 1954; Armitage and Doll, 1957). However this model 
suggested 5 to 7 rate-limiting stages, in contradiction with bi-
ological data. Some approaches addressed this contradiction by 
introducing the two-stage clonal expansion model where a cell 
leads to a tumor by two separate mutations and clonal expan-
sion (Moolgavkar et al., 1988; Moolgavkar and Knudson, 1981;
Moolgavkar and Luebeck, 1990).

Carcinogenesis initiated by aberrant cells may continuously 
evolve fitness-improving properties under the selective constraints 
imposed by the host. As a consequence of the tendency of the host 
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to restore homeostasis, multiple clonal populations compete to re-
sist the suppression, advancing their fitness against this challenge 
to varying degrees. Malignancy usually fails at this point through 
an extinction event (e.g. barrier phase). If a population succeeds 
in traversing this barrier, clonal competition continues, with cell 
numbers now advancing to a level where extinction is only a re-
mote possibility. These populations continue to compete to find 
host weaknesses that positively intersect with their features (e.g. 
selection model). At this point, suppressive influences from the 
host paradoxically serve to refine overall population fitness as the 
less fit clones are pruned away. In so doing, tissue-level effects 
operate to predispose the relative successes of clones, eventually 
driving reciprocal interactions amongst the clones and host that 
sub serve tumor expansion (e.g. coercion model). In these ways, 
the cancer population demonstrates the property of “emergence” – 
the expression of population-level capacities that exceed those at-
tributable to individual cell changes. Consequently, the importance 
of individual cell contributions is soon overshadowed by the tu-
mor/host interaction network as cancer progresses.

Cancers produce unique biology that is co-determined by con-
text and components. Emergence is thus more than the quest to 
identify the parts, but is rather an effort to understand how in-
teractions result in novel behaviors. By modeling the irradiated 
tissue/organ/organism as a system rather than a collection of non-
interacting or minimally interacting cells, cancer can result as 
an emergent phenomenon of a perturbed system (Barcellos-Hoff, 
2007). A biological model in which radiation risk is the sum of 
dynamic and interacting processes could provide the impetus to 
reassess assumptions about radiation health effects in a healthy as-
tronaut population and spur new approaches to countermeasures.

Systems radiation biology seeks to integrate information across 
time and scale that are determined by experimentation. For ex-
ample, the application of systems biology uncovered an expected 
central hub for inflammation in skin cancer. While a positive as-
sociation exists between chronic inflammation and cancer, the 
innate immune system is itself a network that can be disrupted 
by both positive and negative stimuli. Anti-inflammatory drugs 
can have contradictory effects on skin tumor development (Viaje 
et al., 1977; Fischer et al., 1980) and over-expression of pro-
inflammatory cytokines such as IL-1 can prevent skin tumor 
formation in mouse models of chemically induced skin cancer 
(Murphy et al., 2003). In contrast, germline deletion of TNF-α, 
another potent pro-inflammatory cytokine, also confers resistance 
to skin tumor formation (Moore et al., 1999). The role of inflam-
mation in cancer is therefore very complex, with different conse-
quences associated with acute or chronic inflammatory conditions.

4.1. Modeling in context

The concept that inflammatory responses are necessary com-
ponents of cancer development has recently been formalized by 
Mantovani et al. (2008) in a two-pathway model: the intrinsic ver-
sus extrinsic. In the intrinsic pathway, genetic mutations lead to 
release by the transformed cells of pro-inflammatory factors re-
cruiting innate immune cells. For example, oncogenic Ras activates 
the transcription of the inflammatory cytokine interleukin-8 (IL-8). 
Other oncogenes such as Bcl2 inhibit apoptosis leading to necrotic 
tumor cell death and release of damage associated molecular pat-
tern molecules that activate innate immune cells via toll-like re-
ceptors (Mantovani et al., 2008; Sparmann and Bar-Sagi, 2004). In 
both circumstances, the resulting host response is a chronic in-
flammation that promotes tumor growth and invasion (Mantovani 
et al., 2008; Zeh et al., 2005). In the extrinsic pathway, the chronic 
inflammation results from inability of the immune system to re-
solve an infection (e.g., hepatitis B) or from a dysregulated immune 
response as in autoimmune diseases (e.g., inflammatory bowel dis-
ease). The persistent inflammation cooperates with pre-existing 
oncogenic mutations by providing the microenvironment that pro-
motes cancer progression, but it may also induce DNA damage 
resulting in the acquisition of new mutations (Guerra et al., 2007;
Farber et al., 1990).

Wright and colleagues demonstrate that radiation-induced ge-
nomic instability in hematopoietic stem cells can results from spe-
cific cell interactions (reviewed in Lorimore et al., 2003). A recent 
study shows that macrophages from irradiated mice can induce 
chromosomal instability in non-irradiated hematopoietic cells and 
that production of TNFα and reactive oxygen and nitrogen species 
by the macrophages are responsible for this effect (Lorimore et al., 
2008). Furthermore, Coates et al. showed that the mouse geno-
type affects macrophage phenotype, designated as M1 or M2 and 
that radiation exposure further amplifies the differential effect of 
genotype (Coates et al., 2008). Together, these data support the hy-
pothesis that certain radiogenic cancer risk may be augmented by 
alterations in a network of cellular interactions, at the center of 
which is the innate immune system. The aging process has been 
shown to be associated with increased levels of chronic inflam-
mation, which are thought to contribute to many age-associated 
diseases, including cancer, and increased serum levels of IL-6 have 
been reported in older individuals (Sarkar and Fisher, 2006). Inter-
estingly, the LSS of A-bomb survivors has also been associated with 
significant increases in serum IL-6 levels that are still detectable 
after many years (Hayashi et al., 2003). Studies in experimental 
models suggest that diet is a significant player in radiation car-
cinogenesis. Burns and colleagues have shown that chronic dietary 
exposure to vitamin A acetate can prevent 90% of the malignant 
and benign tumors that occur in rat skin exposed to electron ra-
diation and 50% of 56Fe ion induced tumors (Burns et al., 2007). 
Gene expression analysis suggested that 56Fe ion radiation signif-
icantly induced inflammation-related genes, many represented in 
the categories of ‘immune response’, ‘response to stress’, ‘signal 
transduction’ and ‘response to biotic stress’, which vitamin A re-
duced or blocked (Zhang et al., 2006). These data are consistent 
with the hypothesis that HZE NTE induce inflammatory processes 
that contribute to carcinogenesis.

4.2. Limitations and challenges

Cancer is really a multi-scale problem, in which corruption of 
normal cell and tissue function is a gradual but unstable pro-
cess of self-amplification via recruitment of reinforcing tissue and 
systemic cell interactions across a long duration (Hlatky and Hah-
nfeldt, 2014). The contribution of each process may vary in mag-
nitude, timing and composition, making each tumor type and, in-
deed, each tumor unique. Modeling carcinogenesis is a significant 
challenge while modeling space radiation carcinogenesis must take 
into account the complexity of radiation effects across these scales. 
The NASA Space Radiation Program Element has successfully gen-
erated a critical mass of physical and radiobiological research over 
the last 20 years. Delineation of operational signaling pathways 
and definition of cellular and tissue level effects are supported by 
various high throughput data in response to simulated space radi-
ation exposure. Events in radiobiology can be integrated with epi-
demiologic evidence from irradiated humans and detailed genomic 
and molecular knowledge of human cancers using systems biology 
to provide mechanistic models of how cancer is increased follow-
ing exposure. Combining a multi-scale systems biology model of 
epithelial carcinogenesis with risk modeling to generate predic-
tions is now feasible.

Chronic exposure to HZE ions at a space relevant dose rate 
over the course of months is not technically feasible. A very 
large and meticulously conducted study with low LET gamma 
rays found no increase in cancer incidence in mice irradiated at 
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0.05 mGy/d (20 mGy total dose) or 1.1 mGy/d (400 mGy total 
dose), but increased incidences of several tumor types affecting 
both sexes at 21 mGy/d (8000 mGy total dose) (Tanaka et al., 
2007). Mice have been exposed to chronic neutron irradiation, 
which has high LET effects, at dose rates about 10 fold higher 
than those in space. The results varied by tumor type ranging 
from tumor sparing to an increased tumor incidence as com-
pared to acute exposures (Ullrich et al., 1977; Ullrich et al., 1976;
Ullrich, 1984). While chronic exposures to HZE ions over weeks 
or months isn’t possible, attempts have been made to simulate 
these exposures by delivering fractionated doses of HZE ions to 
rats and mice. As with neutron exposures, the results are not con-
sistent across tumor types (Burns et al., 2007; Burns et al., 1989;
Alpen et al., 1994; Dicello et al., 2004).

Ultimately risk estimates are limited by theoretical understand-
ing of both radiation quality effects (Kim et al., 2015), and the 
carcinogenic process (Shay et al., 2006; Barcellos-Hoff, 2007). Since 
epidemiology in humans is not in the foreseeable future, estimates 
of risk from human travel in space need to be based on a mecha-
nistic understanding of complex effects elicited radiation exposure 
across time and level of organization. Defining the radiobiology of 
space radiation is critical to understanding these long-term risks 
that include the malignant and degenerative diseases associated 
with age itself. Thus, NASA programmatic research goals to assess 
the consequences of a complex space radiation environment us-
ing ‘omics and systems biology should identify clinically-relevant 
cellular and molecular networks underlying carcinogenesis. It is 
hoped that this information will inform cancer risk regulatory 
models and provide the means to mitigate health consequences 
of space flight in the future.
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