
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
ONE-CLASS DETECTION OF CELL STATES IN TUMOR SUBTYPES

Permalink
https://escholarship.org/uc/item/2127105x

Authors
Altman, Russ B
Dunker, A Keith
Hunter, Lawrence
et al.

Publication Date
2016

DOI
10.1142/9789814749411_0037
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2127105x
https://escholarship.org/uc/item/2127105x#author
https://escholarship.org
http://www.cdlib.org/


ONE-CLASS DETECTION OF CELL STATES IN TUMOR 
SUBTYPES

ARTEM SOKOLOV*, EVAN O. PAULL, and JOSHUA M. STUART*

Department of Biomolecular Engineering, University of California Santa Cruz

Abstract

The cellular composition of a tumor greatly influences the growth, spread, immune activity, drug 

response, and other aspects of the disease. Tumor cells are usually comprised of a heterogeneous 

mixture of subclones, each of which could contain their own distinct character. The presence of 

minor subclones poses a serious health risk for patients as any one of them could harbor a fitness 

advantage with respect to the current treatment regimen, fueling resistance. It is therefore vital to 

accurately assess the make-up of cell states within a tumor biopsy. Transcriptome-wide assays 

from RNA sequencing provide key data from which cell state signatures can be detected. However, 

the challenge is to find them within samples containing mixtures of cell types of unknown 

proportions. We propose a novel one-class method based on logistic regression and show that its 

performance is competitive to two established SVM-based methods for this detection task. We 

demonstrate that one-class models are able to identify specific cell types in heterogeneous cell 

populations better than their binary predictor counterparts. We derive one-class predictors for the 

major breast and bladder subtypes and reaffirm the connection between these two tissues. In 

addition, we use a one-class predictor to quantitatively associate an embryonic stem cell signature 

with an aggressive breast cancer subtype that reveals shared stemness pathways potentially 

important for treatment.
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1. Introduction

Precision medicine in cancer has seen significant advances for treating patients based on 

molecular subtypes revealed by DNA and RNA-based analyses. Some examples include the 

now classic use of Gleevec to virtually cure the BCR-ABL form of Chronic Myeloid 

Leukemia, the more recent use of crizotinib for cancers beyond lung cancers with ALK 

fusions, including pediatric neuroblastoma, and the development of targeted inhibitors in 

breast cancer for both estrogen expressing and HER2-amplified forms. Despite these 

successes, many patients recur with disease as new tumor sub-populations emerge with 

evolved resistance or harbor even minor fractions of tumor subtypes refractory to treatment.
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One promising future direction for cancer therapy is to catalog all subtypes for which such 

options are available. A patient’s treatment can then be tailored according to their particular 

tumor’s makeup. The problem with this approach is that many tumors consist of a 

heterogeneous collection of cell types, either those that have evolved through mutation and 

selection from the initial primary, or are “normal” cells such as those from the immune 

system or stroma that coexist with tumor cells in either antagonistic or synergistic ways. 

Tumor biopsies contain a mixture of various cell types. High-throughput data collected from 

the biopsy, such as RNA-sequencing data, reflects a superposition of the contributing cell 

sub-populations in the sample.

Several methods have been developed to deconvolute gene expression data, collected on a 

possibly mixed sample, into a set of distinct profiles representing separate cell types.1 The 

most popular approach is to use unsupervised methods such as those based on non-negative 

matrix factorization2 or other matrix decomposition techniques (e.g. independent component 

analysis). However, unsupervised methods attempt to identify all tumor subtypes in a single 

optimization, which is a difficult problem.

On the other hand, traditional supervised approaches require the presence of two or more 

classes to train models. In these kinds of situation, there is no definitive negative class, just a 

set of classes we wish to detect and some that are unknown. Often, we would like to contrast 

a particular subtype against all/any other subtypes, not any one in particular. One solution, 

albeit cumbersome, involves training k − 1 dichotomous classifiers in which one-class is 

chosen as the positive set and each of the other k − 1 classes are used separately or together 

as the contrasting negative set. It is unclear how the classes in the negative set should be 

weighted, either during training (if they are combined) or in the predictor (if k − 1 separate 

classifiers are used). One drawback is that the negative classes have as much influence as the 

positive class on the ability to detect whether a sample represents an example from the 

positive set, which may be undesirable.

Our approach in this paper is to instead frame the problem as a detection task: given a 

particular known cell type, can we identify whether it is present at some appreciable level in 

a sample that contains possibly numerous cell types? This formulation fits naturally into the 

precision medicine framework as it can make suggestions based on disease subtypes of 

interest; e.g. those that are particularly aggressive, or those that have specific treatment 

options. Some possible approaches for one-class detection might use gene set enrichment 

approaches to detect if a set of genes is significantly upgregulated. However, we focus the 

work here on methods that provide an abstraction layer of the data to reach a higher-level 

understanding of the cell states under study.

We compare the ability of one-class methods against comparable two-class methods to learn 

a signature for a “pure” class and then detect it in possibly mixed samples. Our experiments 

compare two established one-class methods based on support vector machines (SVMs) 

against a binary SVM. We also introduce one-class logistic regression (OCLR) and measure 

its performance against standard binary logistic regression. We show that the one-class 

methods are able to outperform the standard two-class methods in simulated mixed data sets. 

In particular, when positive examples are among the negative examples in the training set, 
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the one-class methods remain accurate However, the two class methods drop significantly in 

their performance.

We compare OCLR against SVM-based one-class predictors by training models for breast 

cancer subtypes. The empirical results show that OCLR achieves comparable performance 

while offering a more flexible formulation that can be extended to incorporate regularization 

schemes to, e.g., produce sparse models or integrate pathway information.

Lastly, we apply one-class models to recognize a specific molecular signal to new data 

where the presence of that signal is suspected. Specifically, models trained to recognize 

breast cancer subtypes are applied to bladder cancer samples, confirming transcriptome-level 

similarity between subtypes of the two diseases. We also investigate the level of de-

differentiation in breast cancer subtypes by applying a one-class model trained to recognize 

embryonic stem cells. Our experiments reveal enrichment of a specific stemness program in 

breast basal tumors that illuminate the proliferative, metabolic, and developmental pathways 

that could suggest alternative targets.

2. Methods

We consider three one-class methods. Two of them are ν-SVM3 and Support Vector Data 

Description (SVDD),4 both based on the maximum-margin principle of SVMs. The former 

method aims to maximize the margin between the data and the origin. SVDD, on the other 

hand, finds a sphere with the smallest radius that fully encapsulates the data. Other 

approaches are possible, but the SVM-based approaches have been shown to perform well 

on a wide variety of tasks.

In addition to the two SVM-based methods, we propose the one-class logistic regression 

(OCLR) model. The proposed method functions similarly to ν-SVM, where it aims to 

identify the direction from the origin towards the data. Unlike the ν-SVM, however, logistic 

regression has a differentiable loss function, allowing for natural application of 

regularization schemes, such as group LASSO5 and Elastic Nets,6 to build sparse models 

and integrate pathway information. While some of these regularization schemes have been 

derived for Support Vector Machines, the general non-differentiability of the hinge loss 

requires the use of optimization methods that are not always straightforward.

Formally, given a set of n samples  = {xi}, we define a one-class logistic regression model 

by a weight vector w that maximizes the log-likelihood , where 

the likelihood is modeled with the logistic function:

(1)

By itself, the logistic function is not enough to model the data, as setting w to infinity gives a 

degenerate solution of p(xi|w) = 1.0 for all data samples. To make the problem well-defined, 

we impose a regularizer, ℛ(w), on the weights w to obtain the modified objective function:
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(2)

or equivalently

(3)

where λ is a regularization meta-parameter that controls the tradeoff between model 

accuracy and complexity, and the factor of  is introduced to keep the values of λ 

comparable across datasets of varying size.

Note the absence of a constant bias term commonly found in linear models. Similarly to the 

discussion above, the bias term requires regularization to avoid producing a degenerate 

solution. The ν-SVM formulation does utilize such a regularizer.3 However, folding the bias 

term into a regularizer is equivalent to solving Equation (3) in a homogeneous coordinate 

space, where an auxiliary dimension is introduced to the data, and all samples are given a 

coordinate of 1.0 along that dimension. Because of this equivalence, we don’t explicitly 

model the bias term.

To solve the optimization problem in Equation (3), we follow the Newton-Raphson method 

proposed by Friedman, et. al.7 The approach constructs iteratively reweighted least squares 

estimates of the loss function using a Taylor series expansion. Let ŵ be the current model 

estimate. The second-order Taylor series approximation of the log-likelihood is given by

(4)

where the sample weights ai and the working response yi are computed using the current 

model estimate via

(5)

To iterate on the model estimate itself, we now simply solve

(6)

which is a standard regularized weighted linear regression problem. The specifics of solving 

this problem depend on the regularization scheme used. We stress that because the vast 

majority of novel regularization methods are initially derived for linear regression, their 

application to the proposed one-class logistic regression model is much more 

straightforward than to the hinge loss of ν-SVM.
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One of the main draws to using Support Vector Machine methods is their generalization to 

reproducing kernel Hilbert spaces.8 One-class logistic regression models maintain this 

advantage. Specifically, when the regularizer is a ridge penalty ( ), constructing 

and solving the Lagrangian of the optimization problem in Equation 6 yields the following 

saddle point constraint: , where αi are the Lagrange multipliers. The 

constraint allows us to compute the probability of any sample z given the model w as

(7)

Since this probability computation is at the heart of the optimization problem in Equation 6, 

replacing the dot products  with kernel computations K(xi, z) allows us to learn a one-

class logistic regression model in the Hilbert space corresponding to the kernel function K 
without explicitly mapping the data to that space.

The implementation of the one-class logistic regression method, including the kernel variant 

are available as part of our gelnet package in R. The package is available for download as 

open source from https://cran.r-project.org/web/packages/gelnet/index.html.

3. Results

3.1. Detection of stemness signal in mixed populations of cells

We tested the ability of the methods to detect the presence of a subtype of interest embedded 

in a mixture. The cancer stem cell hypothesis posits that a small fraction of a tumor’s cells 

harbor stem cell-like properties and that these cells may exhibit more aggressive phenotypes 

such as the ability to resist treatment, maintain proliferative potential even through oxidative 

stress conditions, and exhibit the ability to metastasize via cells of different character than 

the originating primary. Our simulation models the situation in which a tumor sample may 

contain a collection of cell types, some more or less differentiated than others. While it is 

possible the simulation might miss nuances present in actual patient data, for example if sub-

clones mix in a non-linear fashion. However, the synthetic data offers the advantage of 

complete control so that the detection of latent cell states embedded into a simulated sample 

can be evaluated clearly.

For this experiment, we used the data from the Progenitor Cell Biology Consortium (PCBC) 

project on Synapse (syn1773109). The dataset contains RNAseq for 14 embryonic stem cells 

(ESCs) and 34 cells committed to a lineage. We performed a leave-one-out experiment by 

withholding each ESC sample in turn. The remaining 13 samples comprise the positive set, 

while the left-out sample was mixed into randomly selected half of the 34 background 

samples (Figure 1). The resulting machine learning task is to build a model that can correctly 

rank the background samples containing the stemness signal above those that do not. The 

accuracy is evaluated via Area under the ROC curve (AUC), which can be interpreted as the 

probability that the predictor correctly ranks a mixture sample above a non-mixture sample.
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We evaluated the performance of ν-SVM, SVDD and our newly-proposed one-class logistic 

regression method. LIBSVM9,10 was used to train ν-SVM and SVDD models using a linear 

kernel and the recommended parameter settings of ν = 0.5 and C = 2/n (where n is the 

number of training samples.) Note that parameters ν in ν-SVM and C in SVDD have a 

reciprocal relationship3,4 and the values stated above provide exactly the same level of 

regularization. For consistency, we used the logistic regression model defined in Equation 

(3) with λ = 1/4 and , which yields an identical regularizer to the one used by 

ν-SVM and SVDD.

In addition to the three one-class models, we also considered two binary predictors: logistic 

regression and binary SVM. Binary predictors require a negative set of samples for training, 

and several methods exist for identifying “true” negative examples in an unlabeled set.11,12 

Many of these methods begin by using the entire unlabeled set as the negative set to train the 

initial binary predictor. The initial predictor is then used to rank the unlabeled set, and the 

ranking is analyzed to select samples to be used as negative examples for subsequent 

retraining of the binary predictor. In this paper, we consider only the initial step of using the 

entire unlabeled background set as negative examples to highlight the issue binary predictors 

face in the absence of “true” negative data. LIBSVM was used to train binary SVM models, 

while logistic regression models were trained using the R package gelnet. The regularization 

parameter was kept at 1.0 for both types of binary predictors.

Figure 2 presents the performance of all methods as a function of the mixing coefficient α. 

We note the general upward trend in the performance of one-class models as α increases. 

This is expected, since a larger mixing proportion of the left-out ESC sample makes the 

mixtures look more like the positive class, yielding an easier detection task. The trend is not 

shared by ν-SVM models, which are unable to identify samples with mixed stemness signal 

from others in the background. A potential explanation for the poor performance comes 

from sample locality in high-dimensional feature spaces. An SVM can be viewed as a 

mechanical system, where the decision plane is a “stiff sheet” in mechanical equilibrium, 

upon which the training samples exert forces and torques.13 Because the high-dimensional 

space of RNAseq is vastly undersampled by the PCBC dataset, the training data is 

effectively localized to a tiny fraction of that space. Thus, tiny perturbations in the training 

samples will create giant “swings” of the “stiff sheet” in other portions of the feature space. 

This effectively makes the model highly sensitive to noise and reduces its generalization to 

the unsampled portions of the feature space.

As mixture samples gain similarity to the positive class, it also throws off the binary 

predictors, as observed by their decreased performance for higher values of α. This 

highlights the challenge binary predictors face when presented with positive and unlabeled 

data: unlabeled data may contain a strong representation of the positive signal, leading to a 

skewed decision boundary. The challenge acts as a motivating factor for finding high-quality 

negative sets in the unlabeled data and iterative re-training of the binary predictors using 

those sets. The issue is completely side-stepped by the one-class methods, because they 

require positive samples only.
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3.2. One-class models distinguish breast cancer subtypes

We next applied the one-class predictors to an established classification task in cancer 

genomics – that of determining the major breast cancer subtypes from gene expression 

profiles. The transcription-derived subtypes in breast cancer have demonstrated prognostic 

value that have led to the establishment of FDA-approved tests including Oncotype-DX and 

the mammoprint. Defining treatment decisions based on gene expression subtypes has been 

shown to improve greatly over the use of pathology information alone.14 The luminal 

subtype is associated with better prognosis and the expression of estrogen and progesterone 

receptors that can be targets of therapy (e.g. tamoxifen or aromatase inhibitors). The 

luminals can be further divided into three subclasses including the luminal-As, luminal-Bs, 

and the HER2-amplified sets. Luminal B tumors display somewhat more basal-like 

characteristics and tend to have higher levels of TP53 mutations. HER2-amplified tumors, 

which have a greater number of genomic copies of the amplicon on which the HER2 growth 

receptor gene resides, respond effectively to agents that block the receptor. The basal 

subtype, on the other hand, exhibits a much more aggressive character. Basal tumors are 

often further subdivided into tumors that either do or do not express the gene Claudin as the 

Claudin-low group display an even more severe outcome than the other basal tumors.

Most importantly, new evidence has revealed that primary tumors can be comprised of many 

different sub-populations of cells, exhibiting different subtype characters.15 Indeed, it has 

been postulated that cancer cells have the ability to transdifferentiate from one subtype to 

another such as adenocarcinomas of the lung or prostate into neuroendocrine-like cells.16 

Taken together, the accurate assessment of a primary tumor’s subtype or its mixture of 

possibly many subtypes, is currently perhaps the most important step in planning treatment 

for breast cancer patients.

We therefore applied the one-class predictors to the task of defining gene expression-based 

signatures of the four major breast cancer subtypes: Basal, Her2-amplified (Her2), Luminal 

A, and Luminal B. For every subtype, the one-class methods were evaluated via leave-one-

out cross-validation, and the AUC score was computed to capture the probability that a 

sample withheld from the positive class was scored higher than a sample from another 

subtype. We investigated the effect of regularization on performance by sweeping across the 

meaningful values of the regularization parameters: ν ∈ (0, 1) for ν-SVMs,3 C ∈ [1/n, 1] for 

SVDD10 and λ = 10k with k ∈ [−4, 4] for one-class LR. As seen in Figure 3, the level of 

regularization had a marginal impact on performance of ν-SVM and one-class LR, while 

SVDD was more sensitive to the parameter value choice.

As expected, all of the methods achieved high levels of accuracy for an interval of parameter 

choices, but the ν-SVM and logistic regression approaches outperformed SVDD in this 

prediction setting (Figure 3). The logistic regression-based approach performed as well as 

the top SVM-based strategy in both simulation and in this real-tumor application (SVDD in 

the former and ν-SVM in the latter). Because logistic regression has comparable 

performance to the SVM-based method but can be used to identify sparse and interpretable 

sets of features due to its differentiable loss, we elected to use it for the remainder of this 

study.
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3.3. Breast cancer one-class models detect molecular similarity in bladder cancer

While the location in the body of a primary tumor contributes a dominant influence on gene 

expression signatures, the disease subtype can be revealed through Pan-Cancer comparisons 

that reflect cell-of-origin commonalities across tissues.17 Recently, transcriptome- and 

genome-wide analyses from three independent groups have revealed the similarity between 

bladder and breast subtypes.18–20 In particular, muscle-invasive bladder cancers can also be 

distinctly grouped into Claudin-low, basals, P53-enriched luminals, and non-P53-enriched 

luminals.

We asked if one-class predictors could connect cancer subtypes across tissues. Specifically, 

we investigated the hypothesis that bladder cancer subtypes share common cell-of-origin 

signatures with breast cancer subtypes. The subtype assignment of TCGA bladder 

carcinoma (BLCA) samples was taken from the molecular characterization literature,21 and 

the corresponding RNAseq data was obtained from the Broad Institute’s Firehose pipeline 

(2014-10-17 run). Indeed, the one-class predictors confirm the connection of major subtypes 

between bladder and breast cancers (Figure 4). Strikingly, a classifier trained to recognize 

BRCA basal cancers can predict type III bladder cancers with nearly 90% accuracy (AUC 

0.89; p < 10−5 label permutation test). This strongly supports the notion of an intrinsic 

connection between these disease. We also find a smaller, but still significant association 

between the luminal-A and the type II bladder cancers (AUC 0.78; p < 10−5), which could 

suggest an estrogenor other hormone-driven component to the type II bladder cancers. 

Interestingly, the Her2-Amplified breast signature matched best with class III. Some bladder 

cancers have been found with amplification of the ERBB2 locus,21 so it would be interesting 

to check if the type III are indeed enriched for this copy number event.

3.4. One-class models identify a stemness signal in Basal breast cancer

We applied a one-class logistic regression model trained on PCBC embryonic stem cell 

samples to score TCGA breast cancer (BRCA) samples. The scores are presented in Figure 

5. Note the enrichment of Basal samples on the positive side and Luminal samples on the 

negative side. To measure the significance of this enrichment, we applied a Kolmogorov-

Smirnov (KS) test similar to the one used by the Gene Set Enrichment Analysis method.22 If 

there were no association with stemness we would expect the Basal, Luminal and Her2 

samples would be equally likely to be encountered anywhere in the distribution of scores. 

We used Bioconductor package piano (http://www.sysbio.se/piano/) to compute the 

deviation between the expected probability of encountering a sample from the subtype of 

interest and the observed frequency as one “sweeps” across the score values. The largest 

deviation was reported as the enrichment score. The enrichment scores were positive for 

Basal (p-value < 1e-5), Her2 (p-value < 0.0069), and Luminal B (p-value < 5e-5) and 

negative for Luminal A (p-value < 1e-5).

Given the significant association between basal tumors and the stemness signature, we used 

the result to probe what processes might be shared in basals with undifferentiated cells. To 

reveal possible mechanisms of reprogramming at work in basal tumors, we took the 

componentwise product of the weights from the stemness predictor with the basal predictor 

to help uncover genes predictive of both cell types. This resulted in a list of genes reflecting 
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specific involved pathways underlying the transformation processes in basal breast tumors. 

We then identified a connected mechanism using the GeneMANIA tool.23 A few themes 

emerged from this analysis. First, and not surprising, several genes were identified that 

reflect the proliferative potential of the basal tumors including KIF1A and STMN1 (Figure 

6).

The well-known OCT4 transcription factor (POU5F1), one of the Yamanaka factors with the 

ability to reprogram cells into a pluripotent state, and PROM1 have been shown to be 

correlated with aggressive cancers. In the case of PROM1, expression of this surface glyco-

protein actively suppresses differentiation pathways and is associated with poor survival in 

colorectal cancers and recently in malignant papillary breast cancers.24 Lower expression of 

differentiation genes such as FOXA1 and some of the HOX-family genes are also 

documented to play roles in aggressive forms of the disease.

Several genes reflect the metabolic state shared between stem cells and basal cancers. Stem 

cells often occupy low-oxygen niches and use anaerobic means to break down sugars. 

Intriguingly, the PHGDH gene identified as a common predictor by the one-class method, 

which catalyzes the first step in metabolizing serine downstream of glycolysis, was also 

recently implicated in breast cancers as a survival mechanism in hypoxic conditions.25 Its 

expression has also been shown to be associated with ER-negative tumors, consistent with 

our results26 even though its role is non-essential, suggesting tumors have a way to bypass 

this mechanism.

4. Conclusions

The collection and summarization of cell type signatures for precision medicine 

applications, especially in cancer, promises to greatly enhance the treatment of patients. For 

example, some patients present “cancers of unknown primary” (CUP) where metastatic 

advanced disease has already manifested itself when a patient first reports to a hospital. 

Often these cases are treated with generic protocols, but evidence suggests their outcomes 

could be improved significantly by first identifying the tissue of the primary tumor. 

Similarly, the detailed characterization of cell-of-origin signatures in heterogeneous biopsy 

specimens would improve the resolution by which treatments or treatment combinations 

could be matched to tumor subtypes.

A clear data science-inspired direction for precision medicine is to amass “dictionaries” of 

disease and normal signatures to help characterize patient specimens. Previous approaches 

have shown the power of this idea. For example, signatures trained from published 

expression datasets can be used to suggest repurposing drugs for new diseases.27 Error 

correcting belief propagation has been used to predict normal and disease cell states in a 

comprehensive compilation of gene expression signatures.27–30 These approaches use 

standard machine-learning classifiers as inputs to the inference strategy. To our knowledge, 

little investigation of the optimal approaches has been done to determine the best base-level 

classifiers. Instead, most approaches choose either a custom (e.g. standardized differential 

vectors as in27,28) or a popular standard (e.g. SVMs29,30). Thus, an open question remains 

about how best to build signature dictionaries.
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One-class models provide a scalable approach to contribute cell type signatures to such 

dictionaries. Because they have no need for a set of negative examples in training, they can 

be updated in an online fashion without the need for a representative background set. Indeed, 

not requiring a contrasting set makes the learned models less arbitrary to nuances in any 

particular database, so one can expect the models to remain robust as more samples are 

added to a training dataset.

We demonstrated the strength of the one-class approach for detecting latent cell types in 

cancer samples. One-class predictors clearly outperform the use of dichotomous classifiers 

in our study that simulated “contamination” of the negative set with an unknown amount of 

positive examples. As the proportion increases, the dichotomous classifiers’ performance 

degrades due to a loss in the distinction between the classes during training. However, one-

class methods are immune to this influence because they use only the positive class for 

training.

One-class signatures had a clear advantage for use in the cell type detection problem in our 

study here of the major breast cancer subtypes. These models confirmed the recently 

reported commonality between the breast and bladder cancer subtypes. Finally, one-class 

signatures could detect stemness signatures in breast cancer tumor samples, supporting the 

observation that basal breast cancers are more likely to exhibit stem cell-like properties. The 

association suggests the wiring of basal cells may be set up to respond to similar 

developmental queues as progenitor cells with increases pluripotency. The genes identified 

as common between the basal and stemness signatures could therefore suggest novel 

putative targets for therapy.
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Fig. 1. 
A depiction of the leave-one-out experimental setup. Each of the Embryonic Stem Cells 

(ESCs) in turn was mixed into one half of randomly-chosen background samples with a 

predefined mixing coefficient α. A predictor is then given the remaining 13 ESC samples 

and asked to identify which of the 34 background samples contain the mixture.
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Fig. 2. 
The accuracy of predictors plotted against the mixture coefficient. The solid lines represent 

the mean performance across 30 trials. The dashed lines are one standard deviation away 

from the mean.
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Fig. 3. 
The accuracy of the one-class methods plotted against the regularization parameter. Each of 

the four panels corresponds to a specific TCGA BRCA subtype.
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Fig. 4. 
One-class models trained on TCGA BRCA applied to TCGA BLCA. For each BRCA 

subtype, we present the distribution of scores from the corresponding one-class model across 

the four bladder subtypes. Bladder subtypes known to have molecular similarity to the given 

breast cancer subtype are highlighted in red.
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Fig. 5. 
TCGA BRCA samples scored by a one-class logistic regression model trained on 

Embryonic Stem Cells. The samples are ordered by score from highest to lowest and colored 

by the breast subtype.
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Fig. 6. 
Top 30 most-concordant genes between the stemness and the basal one-class models. Genes 

with positive weights in both signatures are shown in red, while those with negative weights 

are in blue. The size of the node represents the level of concordance (absolute value of the 

weight product). GeneMANIA23 was applied to the 30 selected nodes to identify protein-

level interactions. “Linker” genes identified by GeneMANIA are shown in gray.

SOKOLOV et al. Page 17

Pac Symp Biocomput. Author manuscript; available in PMC 2016 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	1. Introduction
	2. Methods
	3. Results
	3.1. Detection of stemness signal in mixed populations of cells
	3.2. One-class models distinguish breast cancer subtypes
	3.3. Breast cancer one-class models detect molecular similarity in bladder cancer
	3.4. One-class models identify a stemness signal in Basal breast cancer

	4. Conclusions
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6



