
UCLA
UCLA Electronic Theses and Dissertations

Title
Imputation is a Hyperparameter: Imputation Deep Learning Model Selection and Evaluation
on Large Clinical Datasets

Permalink
https://escholarship.org/uc/item/2108b03d

Author
Zamanzadeh, Davina

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2108b03d
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Imputation is a Hyperparameter:

Imputation Deep Learning Model Selection and Evaluation on Large Clinical Datasets

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Davina Jasmine Zamanzadeh

2023

© Copyright by

Davina Jasmine Zamanzadeh

2023

ABSTRACT OF THE DISSERTATION

Imputation is a Hyperparameter:

Imputation Deep Learning Model Selection and Evaluation on Large Clinical Datasets

by

Davina Jasmine Zamanzadeh

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2023

Professor Majid Sarrafzadeh, Chair

Many real-world datasets suffer from missing data, which can introduce uncertainty into

ensuing analyses. To address missing data, researchers have been developing, analyzing,

and comparing statistical and machine learning techniques for missing data estimation or

imputation. In this context, we built an original framework, Autopopulus, and performed

novel analyses that explored predictive pipelines using flexible autoencoder-led imputation.

Our work examines autoencoder-led imputation with a deeper regard for the taxonomy

of missingness scenarios and mixed feature data of large real-world clinical datasets. In

this dissertation we quantify, in a direct manner, the extent to which different methods of

imputation affect downstream tasks, and therefore provide rationale for how to choose a

solution for a particular dataset and task. We illuminate important decision-making points

when assembling a data processing pipeline that handles missing data, while our framework

itself allows researchers to apply and compare solutions directly in a unified way for any

large dataset. We find that there are different imputation traits under a more granular

classification of missingness scenarios, and that trends between imputation performance

ii

superiority and predictive performance superiority do not align. Based on our exploration,

we believe that the characterization of missingness in the literature must be expanded and

that imputing accurately is not always necessary for predicting accurately. We are just

beginning to have a clearer view of just how wide the gap is in our understanding and

classification of missingness and have hope that this new information will lead to progress

in comprehending both the unknown and the unknowable.

iii

The dissertation of Davina Jasmine Zamanzadeh is approved.

Yizhou Sun

Guy Van den Broeck

Alex Anh-Tuan Bui

Majid Sarrafzadeh, Committee Chair

University of California, Los Angeles

2023

iv

Data can lead to information and information can lead to knowledge and knowledge can

lead to power. But sometimes the data are .

v

TABLE OF CONTENTS

1 Introduction . 1

2 Background . 5

2.1 Data . 5

2.1.1 Tabular Data . 5

2.1.2 Electronic Health Records (EHR) . 7

2.2 Missing Data . 9

2.3 Imputation . 11

2.4 Machine Learning . 12

2.4.1 Evaluation of Performance . 13

2.5 Deep Learning . 16

2.5.1 Neural Networks . 17

2.5.2 Autoencoders . 18

2.5.3 Regularization . 20

2.5.4 RNNs . 22

2.5.5 Long-Short Term Memory . 23

2.6 Related Work . 23

2.6.1 Static Imputation with Deep learning 24

2.6.2 Longitudinal Imputation with Deep Learning 27

2.6.3 Summary . 28

3 Creating a Framework for Autoencoder-led Imputation 30

vi

3.1 Building the Pipeline . 31

3.1.1 Adding New Imputation Methods . 34

3.2 Enabling Experiments to Compare Imputation Methods 35

3.3 Use Case: CURE-CKD . 37

3.3.1 The CURE-CKD Dataset . 37

3.3.2 Imputation Performance . 40

3.3.3 Predictive Performance . 40

3.3.4 Takeaways . 44

4 Autopopulus . 46

4.1 Updated Pipeline . 47

4.1.1 Data Processing . 47

4.1.2 Imputation . 51

4.1.3 Prediction . 57

4.1.4 Implementation . 57

4.2 Amputation . 58

4.3 CURE-CKD Updated . 58

4.4 Evaluating CURE-CKD Under a Microscope 60

4.4.1 Missingness Scenarios . 60

4.4.2 Imputer Models and Feature Mappings 61

4.4.3 Evaluation . 62

4.4.4 Model Selection . 70

5 Expanding to Raw EHR . 82

vii

5.1 The CRRT Dataset . 82

5.2 Evaluation . 87

5.2.1 Imputation Performance . 87

5.2.2 Predictive Performance . 90

5.2.3 Model Selection . 91

5.2.4 A Deeper Dive into Prediction . 92

5.3 CURE-CKD vs CRRT: Building a Profile . 97

6 Conclusion . 101

6.1 Reframing Imputation as a Task . 102

6.2 Occam’s Razor: Imputation . 102

6.3 The Taxonomy of Missingness . 103

6.4 Technical Takeaways and Pitfalls . 104

6.4.1 Computational Resource Management 105

6.4.2 Validating and Testing a Data Pipeline 105

6.4.3 Pitfalls with Masks . 107

6.4.4 Coordinating and Tracking Many Experiments 107

6.4.5 Be a Part of Open Source . 108

6.5 Future Work . 108

References . 115

viii

LIST OF FIGURES

2.1 An Example of an Autoencoder . 19

2.2 A RNN Cell . 22

2.3 A LSTM Cell . 24

3.1 Autopopulus Training Pipeline . 32

3.2 Predictive Task Pipeline . 36

3.3 Goals for eGFR Trajectories with Various Interventions 38

3.4 Imputation Performance on Static Data . 41

3.5 Predictive Performance for Various Imputation Methods 42

4.1 Illustration of the Data Processing and Imputation Step of Autopopulus 71

4.2 Illustration of the Prediction Step of Autopopulus 72

4.3 Outcome Breakdown of CKD Patients by Ethnicity and Sex 73

4.4 Percent Missing Data Across CURE-CKD Study Years 74

4.5 Missing Data Visualized in the CURE-CKD Dataset at Entry Period 75

4.6 Imputation Performance for the Mixed CW Metrics in Original Feature Space on

the CURE-CKD Dataset . 76

4.7 Imputation Performance for the Mixed MAAPE Metric, Combined with Cate-

gorical Error on the CURE-CKD Dataset . 77

4.8 Imputation Performance for the Mixed CW MAAPE Combined with Categorical

Error Metric in Both the Original and Mapped Feature Space 78

4.9 Validation Loss in the Mapped Feature Space of the CURE-CKD Dataset 79

4.10 Number of Final Epochs for Training Convergence on the CURE-CKD Dataset 79

ix

4.11 Average Duration of Each Training Epoch on the CURE-CKD Dataset 80

4.12 Predictive Performance on the CURE-CKD Dataset 81

5.1 Outcome Breakdown of CRRT Patients by Ethnicity and Sex 85

5.2 Missing Data Visualized in the CRRT Dataset 86

5.3 Validation Loss in the Mapped Feature Space of the CRRT Dataset 88

5.4 Number of Final Epochs for Training Convergence on the CRRT Dataset 89

5.5 Average Duration of Each Training Epoch on the CRRT Dataset 90

5.6 Predictive Performance on the CRRT Dataset 91

5.7 Predictive Performance on the CRRT Dataset By Subgroup 94

5.8 Predictive Performance on the CRRT Dataset Over a Rolling Window 96

6.1 An Example of an Autoencoder With LSTM Layers 109

x

LIST OF TABLES

3.1 Accuracy Over Bins (only APnew) . 43

4.1 Example of Age Data . 56

4.2 Example of Age Data Discretized with Bounded Bins 56

4.3 Example of Age Data Discretized with Unbounded Bins 57

4.4 Outcome Breakdown for CURE-CKD Dataset 59

4.5 Bootstrapped Test Imputation Performance for Best Autoencoder Imputation

Methods per Mechanism . 66

4.6 Predictive Performance on Best Autoencoder Imputation Methods per Mecha-

nism on Semi-Observed Remaining Subset . 69

5.1 Outcome Breakdown for CRRT Dataset . 87

xi

LIST OF ACRONYMS

ACEI angiotensin-converting enzymes in-

hibitor 39

AI artificial intelligence 1

ARB angiotensin receptor inhibitor 39

ASHA automatic sweep of hyperparameters

with asynchronous hyberband scheduling 33,

53

BCE Binary Cross Entropy 19, 20, 33, 34,

52

BRITS bidirectional recurrent imputation

for time series 27, 28, 110

CE Cross Entropy 52

CKD chronic kidney disease ix, 37–39, 59,

70, 73

CPU central processing unit 105

CRRT continuous renal replacement ther-

apy viii, x, xi, 4, 82–99, 101, 110, 113

CS Cedars-Sinai 83

CURE-CKD Center for Kidney Disease Re-

search, Education and Hope vii–xi, 3, 4, 37–

39, 58, 60, 61, 66, 70, 75–79, 81, 82, 84, 89–

92, 97–99, 101, 110, 113

CW column-wise ix, 53–55, 63, 65, 66, 76–

78, 98

DAE denoising autoencoder 1, 2, 18, 26, 33,

36, 61, 90, 91

DM diabetes 39

DVAE denoising variational autoencoder 61

eGFR estimated glomerular filtration rate

ix, 37–39

EHR electronic health records vii, 1, 2, 4, 5,

7–9, 23–25, 30, 31, 38, 82–84, 101

EW element-wise 52–55, 63, 65, 66, 77, 98

FFNN feed forward neural network 17

FN False Negative 13, 14

FP False Positive 13, 14

FPR False Positive Rate 15

GAIN generative adversarial imputation

network 25

GAN generative adversarial network 25, 28

GPU graphical processing unit 16, 105

GRU gated recurrent unit 27

GRU-D gated recurrent unit with decay 27

HTN hypertension 39

ICD International Classification of Diseases

8, 93

KL Divergence Kullback-Leibler Diver-

gence 20, 26, 33, 52

xii

KNN k-nearest neighbors 11, 36, 43, 62, 65,

68, 92, 100, 110

LGBM light gradient-boosting machine 57,

63, 64, 68, 70, 90–92, 99

LR logistic regression 92

LSTM long short-term memory ix, x, 23, 24,

27, 109, 110

MAAPE Mean Arctangent Absolute Per-

cent Error ix, 16, 35, 40, 41, 52, 54, 55, 63,

65, 66, 77, 78, 98

MAE Mean Absolute Error 16

MAPE Mean Absolute Percent Error 16

MAR missing at random 10–12, 24, 31, 32,

35, 40, 43, 44, 46, 48, 60, 61, 68, 99, 110–113

MCAR missing completely at random 10,

11, 24, 26, 31, 35, 40, 43, 44, 46, 48, 60, 61,

67, 68, 99, 110–113

MDL minimum description length 34, 45,

50, 57

MICEmultiple imputation by chained equa-

tions 11, 36, 40, 43, 44, 62

MIDA Multiple Imputation using Denoising

Autoencoders 25, 36, 43

ML machine learning 1, 30, 101, 102

MNAR missing not at random 4, 10–12, 24,

32, 35, 40, 43, 44, 46, 48, 60, 61, 65–68, 99,

110–113

MRI magnetic resonance imaging 5

MSE Mean Squared Error 15, 16, 33

NaN not a number 9, 31, 32, 106

PPV Positive Predictive Value 14, 15

PR-AUC Precision-Recall - Area Under the

Curve 15, 36, 37, 40, 43, 44, 68, 70, 90, 91,

93, 95, 97, 99

PSJH Providence St. Joseph Health 39, 59,

73

ReLU rectified linear unit 18, 19, 61

RF random forest 63, 64, 68, 90, 92

RKFD rapid kidney function decline 37–39,

59, 61, 70, 73

RL reinforcement learning 1

RMSE Root Mean Squared Error 16, 35, 40,

41, 54, 63, 65, 66, 98

RNN recurrent neural network vi, ix, 22, 23,

109

ROC-AUC Receiving Operator Character-

istic - Area Under the Curve 15, 36, 40, 43,

44, 68, 70, 90, 93, 95, 97, 99

SAITS self-attention-based imputation for

time series 28, 110

TN True Negative 13

TNR True Negative Rate 14

xiii

TP True Positive 13

TPE tree-structured parzen estimator 93

TPR True Positive Rate 14, 15

uACR urine albumin-creatinine ratio 39

UCLA University of California, Los Angeles

39, 59, 73, 83–85, 87

uPCR urine protein-creatinine ratio 39

VAE variational autoencoder 2, 18–20, 24,

26, 28, 33, 36, 40, 44, 61, 66

XGB extreme gradient-boosted decision tree

92, 93

xiv

ACKNOWLEDGMENTS

This work was funded by the UCLA CTSI grant (UL1 TR001881), CKD grant (R01

MD014712), T32 training grant (T32 EB016640), and NIH grants (TL1 DK132768 and

U2C DK129496).

I thank my advisor Dr. Majid Sarrafzadeh for seeing my potential and providing me

resources throughout my academic career. I appreciate the unlimited freedom I had to

pursue the projects that interested me and the encouragement to follow my own passion

project when I first started as a PhD student. I thank my mentor Dr. Alex Bui for providing

me technical guidance and pushing me to be the best researcher I could be. I do not know

where I would be without you. Thank you for pulling me onto interesting and rewarding

projects and for helping me find funding throughout most of my PhD. I am eternally grateful

to have been under your wing and part of your lab, and made long-lasting connections with

you and through you. I thank my clinical mentors Drs. Susanne Nicholas and Ira Kurtz.

Your willingness to dive into and learn a new topic and technical savvy impressed me. I am

so grateful for the time you invested in me in discussing clinical aspects for my curiosity, or

helping me with presentations. Thank you to my committee members Drs. Yizhou Sun and

Guy Van den Broeck for being a part of my journey.

I thank all those that I have worked with over the years who mentored me, listened to

me, and supported me: Dr. Panayiotis Petousis, Drs. Kenrik Duru and Keith Norris on

behalf of the CURE CKD team, and the Medical Imaging and Informatics Group. Thank

you Panayiotis for being a mentor and peer to me throughout my entire PhD, for helping

me pick my thesis topic, and for always mirroring to me my positive qualities when I felt

down and unsure about my research. Thank you Dr. Anders Garlid for also being there for

me from the start, I appreciated all of our chats and how you always invested time for me

no matter the topic. Thank you to my lab-cousins Henry Zheng, Samir Akre, Al Rahrooh,

and Jeffrey Feng for being my labmates from another lab, for collaborating with me on

xv

projects, and for volunteering your time to help me with practice presentations and paper

revisions. Thanks to my labmates as well, Ghazaal Ershadi, Shayan Fazeli, Tyler Davis, and

Anaelia Ovalle for collaborating with me on projects and running the occassional game of

Call of Duty. Thank you Clifford Kravit for all your technical help with AWS, you always

moved quickly for me and I am very grateful for that. I thank the KUH-ART committee for

welcoming me as an intersectional addition to the fellowship group. I am grateful for the

connections I made, shout-out to Meagan Jenkins and Kevyn Hart. Thank you Meagan for

accompanying me to Chicago and providing amazing feedback on my work.

I also thank my family and friends for their infinite patience, pride, and encouragement.

I thank my parents for supporting me in my endeavor, and encouraging me to be a life-long

learner. Thank you to my dad, Dr. Behzad Zamanzadeh, who laughed when I told him I

realized I had made a mistake that resulted in three months of experiments going down the

drain and that I had to restart. You set the example for me to be interested in learning, to

enjoy my PhD, and that sometimes you can only laugh when you are down on your luck.

Also, thank you for telling me to take a computer science class when I had an empty summer

in high school. Thank you to my mom, for being the honorary Dr. in a family of PhDs,

and for expressing interest in my work even though you did not always understand what I

was talking about. Thank you for bragging about me and making sure I had no anxieties

about having a roof over my head, my health, and having the financial support to live very

comfortably. Both of you helped ensure I had as smooth process through graduate school as

possible and I am very lucky and grateful. Thank you to my sister, Dr. Nicole Zamanzadeh,

who did so much for me and was my biggest cheerleader. Also shout-out for helping me

name my framework Autopopulus. You were my role model as a child, throughout your own

PhD, and consequently still a role model to me now. Thank you to my brother-in-law Jarrett

Gorlick for telling me not to do my PhD. I learned from you to proceed with intentionality,

which helped me many times during my PhD. I appreciate the skepticism and sense of choice

you helped me understand to hold true for myself throughout the process. I thank my uncle

xvi

Ramin Nekoukar for encouraging me to be a scientist my whole life and always engaging

with curiousity for my work.

I thank this important quote: “Suficiente! Ahora hablara. Corre, corre, corre, que nadie

te pueda alcanzar, no me podras atrapar, soy el hombre de jengibre! Eres un monstruo! El

único monstruo aqúı eres tu! Tu, y esos personajes de cuentos de hadas que arruinan mi

mundo perfecto. Ahora dime, donde estan los otros? Cerdo! He tratado de ser paciente con

ustedes pero mi paciencia a llegado a su limite. Dime! O te arrancare. No! Mis botones,

no! Mo mis botones de gomita. Entonces, cuentame! Quién los oculta? De acuerdo, te lo

cuento. ¿Tú conoces a pin pon? ¿A pin pon? Si pin pon. Si, es un muñeco muy guapo y

de cartón. Si, se lava su carita con agua y con jabón. ¿Con agua y con jabón? Si, se lava

la carita! Se lava la carita con agua y con jabón.”

Thank you to my PhD-brother, Eli Jaffe, who has made it with me from start to finish,

only defending five days apart. You have become my lifelong friend and have been a strong

pillar of support and understanding throughout this process. I valued our support-group

sessions with Paul Lou, and being menaces to our professors when we took the same classes.

Thank you to my best friend and cousin Ashley Selki for being my partner in crime and always

being interested in updates for my PhD and reminding me to be proud of my work. I thank

all my not-yet-mentioned cousins, my tribe, all the Selkis and the Zamanzadehs. Thank you

to my best friend Danielle Robinson for also being there to laugh with me, complain with

me, and encourage me to get through the downturns. Thanks to my friend Bijan Semnani

for being the first to star Autopopulus on Github. Thank you to all my friends who allowed

me to have fun and celebrated wins with me! The list includes, but is not limited to: Ariana

Sedighpour, Kayvon Benyamin, Dr. Kevin Hakimi, Andre Askarinam, Rachel Kamran, Ariel

Dankner, Dr. Brenda Asilnejad, Yasmine Mzayek, Maggie Marazita, Andrea Alcaraz, Iliana

De Hoyos, Andy Williams, Michelle Rosen, Ashley Hannani, Jasmine Gass, Daniel Raban,

Andrea Alcaraz, Chris Fiore, Jessie Kahle, Nima Gadhimi, and Morgan Trezek. I thank

(and blame!) my previous mentors, ex-labmates, and lifelong friends from UCSB, Dr. Kyle

xvii

Dewey and Mika Gavrilov for kickstarting my academic career. Thank you Mika for pushing

me to be better, lending me an ear, and reminding me of my strengths. Also shoutout to

my Overwatch crew for winning and losing games with me, and more importantly, keeping

me sane when I worked late nights and odd hours.

xviii

VITA

2022–2023 National Institutes of Health Kidney, Urologic, and Hematologic-Advanced

Research TL1 Training Grant; University of California, Los Angeles.

2021 Master of Science in Computer Science; Department of Computer Science,

University of California, Los Angeles.

2018–2020 T32 National Institutes of Health Training Grant; University of California,

Los Angeles.

2018–2019 Graduate Dean’s Scholar Award; Department of Computer Science, Uni-

versity of California, Los Angeles.

2018 Bachelor of Science in Computer Science; Summa Cum Laude; Department

of Computer Science, University of California, Santa Barbara.

2017–2018 Undergraduate researcher for the Programming Languages Lab; Depart-

ment of Computer Science, University of California, Santa Barbara.

PUBLICATIONS AND PRESENTATIONS

Zamanzadeh, D., Feng, J., Petousis, P., Vepa, A., Bui, A., Kurtz, I. “Improving contin-

uous renal replacement therapy outcome predictions with machine learning” Manuscript in

preparation for Nature Portfolio.

Zamanzadeh, D., Bui, A., Sarrafzadeh, M. “Autoencoders for Imputation: A Closer Look

at Mixed Feature Imputation Under Different Missingness Mechanisms.” IEEE Transactions

on Neural Networks and Learning Systems. In Submission.

xix

Schouten, R., Zamanzadeh, D., Singh, P. “pyampute: a Python library for data amputa-

tion.” 21st Python in Science Conference, 2022

Wong, M.S., Wells, M., Zamanzadeh, D., Akre, S., Pevnick, J.M., Bui, A.A.T., and

Gregory, K.D. “Applying Automated Machine Learning to Predict Mode of Delivery Us-

ing Ongoing Intrapartum Data in Laboring Patients.” American Journal of Perinatology,

December 2022.

Zamanzadeh, D.J., Petousis, P., Davis, T.A., Nicholas, S.B., Norris, K.C., Tuttle, K.R.,

Bui, A.A.T., and Sarrafzadeh, M. “Autopopulus: A Novel Framework for Autoencoder

Imputation on Large Clinical Datasets.” Annual International Conference of the IEEE

Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology

Society. Annual International Conference, 2021:2303–2309, November 2021

Fazeli, S., Zamanzadeh, D., Ovalle, A., Nguyen, T., Gee, G., and Sarrafzadeh, M.

“COVID-19 and Big Data: Multi-faceted Analysis for Spatio-temporal Understanding of

the Pandemic with Social Media Conversations.”, April 2021.

Zamanzadeh, D., Petousis, P., Davis, T.A., Garlid, A., Wang, X., Norris, K.C., Duru, K.,

Tuttle, K.R., Bui, A.A.T., Nicholas, S.B. “Using autoencoders for imputing missing data

in estimated glomerular filtration rate (eGFR) decline trajectories of patients with chronic

kidney disease (CKD)”. American Society of Nephrology (ASN) Kidney Week, 2020.

Hosseini, A., Zamanzadeh, D., Valencia, L., Habre, R., Bui, A.A.T., and Sarrafzadeh,

M. “Domain Adaptation in Children Activity Recognition.” In 2019 41st Annual Interna-

tional Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.

1725–1728, 2019.

xx

CHAPTER 1

Introduction

The widespread adoption of electronic health records (EHR) has ushered in a new age of

data-driven medicine. Researchers are beginning to explore artificial intelligence (AI)-based

methods (e.g., machine learning (ML); reinforcement learning (RL)) to provide new insights

from the growing number of patient records. However, the variation in healthcare delivery

complicates the analysis of such datasets, especially resulting issues like missing data. Many

real-world datasets suffer from missing data, which can introduce uncertainty into ensuing

analyses. Furthermore, mathematical models cannot intrinsically handle missing data or do

not manage missing data well.

Among the possible approaches to handling missing data, the most advisable and most

used one is generally imputation, or the estimation of missing values. However, in the

broader view of data processing pipelines, imputation is a step that is either glossed over or

handled in only one specific way with much scrutiny. Of the growing body of methodologies

to handle imputation, deep learning models such as autoencoders have gained popularity.

Autoencoders are good candidates for imputation due to their ability to impute on big data

(such as EHR datasets) as a whole at once, quickly learn multi-variate and nonlinear rela-

tionships between the data, and operate on mixed features—both continuous and categorical.

However, despite the appeal of autoencoders for imputation, there are no theoretical proofs

on their behavior. Most autoencoder-led imputation methods developed only deal with par-

ticulars: they define a specific arrangement of an autoencoder (e.g., denoising autoencoder

(DAE)) on a particular dataset with only a singular type of data (i.e., only continuous data).

1

However, real-world data, and particularly EHR data, are never so confined; variables are

a combination of continuous and categorical and there may be a mix of longitudinal and

static variables. For example, a patient may have multiple systolic blood pressure measure-

ments (a continuous longitudinal variable), or multiple risk level assessments (a categorical

longitudinal variable), but also a single age (a continuous static variable) and ethnicity (a

categorical static variable).

Autoencoders encompass a wide range of models; their constraints are that the network

must be symmetric, and the output should closely resemble the input without memorizing it.

When evaluating autoencoders as a class of imputation methods on tabular data, the same

way we consider the different configurations of the variables in the data, we must consider

different configurations of autoencoders such as DAEs or variational autoencoders (VAEs).

We may look at particular types to compare to each other, but we may also look at their

similarities to draw a picture of autoencoders as an umbrella class of networks. We would

also like to efficiently compare different autoencoder methods, in addition to assisting in

identifying the best technique for the given dataset and task at hand. We provide a series

of flexible frameworks that enable us to:

• Highlight the variability of imputation performance across models and datasets, and

thus treating imputation as a hyperparameter to tune.

To many, imputation is a fixed step in the data wrangling pipeline. However, the

line between imputation and estimation is thin. If we view imputation as prediction of

missing values, rather than just a menial data-processing step, it would make sense that

the process for choosing a model would need tuning the same way one might choose

a model for a downstream predictive task. Most works in the literature do not view

imputation this way. We investigate and show that the choice of imputation model

depends on the dataset, task, and downstream model for that task, and ultimately the

choice needs to be tuned to each scenario.

2

• Establish an empirical profile of autoencoders (across their spectrum of configurations)

that work on all types of static data for imputation via a unified training and evaluation

pipeline.

While there is no theoretical understanding established of autoencoders as imputation

models, we begin to understand them by empirically evaluating and comparing differ-

ent versions of them. To our knowledge, no other work has approached autoencoders

as a whole for imputation to characterize them. Rather, most works develop a partic-

ular autoencoder model and pit it against other methods in a competition, or compare

autoencoders widely for other tasks. Additionally, we begin to establish which char-

acteristics of datasets are useful for imputation model selection. We focus on static

clinical datasets, as opposed to longitudinal ones, which would require an equal, if not

greater, amount of analysis and effort compared to this work. However, we enable

future work to expand this analysis into the time domain.

• Enable researchers and applied practitioners to easily compare and choose a deep

learning imputation model that best suits their dataset.

If there are many options for autoencoders that need to be evaluated widely and tuned,

we ultimately need to select the model that best lends itself to the current task. The

frameworks developed in this work then assist in autoencoder model selection that best

suits the data and task by making evaluating and comparing them easy.

The dissertation is organized as follows. In Chapter 2, we provide terms and concepts

necessary in order to understand our work. We discuss concepts about data, imputation,

and machine and deep learning, before summarizing the current state of imputation as it

relates to our context. In Chapter 3, we dive into why we created Autopopulus, our first

attempt at building the framework and its pipelines, demonstrate it on the Center for Kid-

ney Disease Research, Education and Hope (CURE-CKD) dataset, and highlight what we

learned through this process. We review our experimental pipeline which first evaluated the

3

imputation performance of various imputation methods under controlled but simple missing-

ness scenarios, and then separately evaluated the predictive performance after training and

applying an imputation model on the entire semi-observed dataset. Using what we learned

from our first iteration of Autopopulus, we created a fully mature form of the framework. In

Chapter 4, we highlight why we needed to make changes to Autopopulus, what changes we

made, and demonstrate our framework on an updated version of the CURE-CKD dataset.

This time, we consider more parameters of the imputation task and we look at those param-

eters with more granularity and scrutiny. We review our experimental pipeline which now

split the missing not at random (MNAR) scenario into three different ones: a non-recoverable

MNAR mechanism, and two recoverable ones using latent features drawn from a categorical

and continuous distribution, respectively. We also explore different feature mappings so that

the data contained mixed features (continuous categorical), purely continuous features, or

purely categorical features. This time, we primarily analyzed predictive performance under

each missingness scenario, rather than on the entire dataset as-is. To bridge the gap, we

would evaluate predictive performance of the best imputation models on the remaining semi-

observed subset of data. In Chapter 5 we apply Autopopulus to a raw real-world electronic

health records (EHR) dataset, the continuous renal replacement therapy (CRRT) dataset, in

contrast to the curated EHR-derived CURE-CKD dataset. Combining our analyses on both

datasets, we draw a profile of autoencoders. Finally, in Chapter 6 we share what we learned

from our journey in imputation and how we best believe one could continue to expand on

this work.

4

CHAPTER 2

Background

With the ever-growing availability and capability to capture, store, and compute on data,

data-driven analysis, and specifically machine learning, has become a prominent tool and

school of thought in science. Machine learning techniques are tools that are meaningless

in-and-of themselves, as they rely on data. Consequently, the field and sub-fields of machine

learning largely exists in a multidisciplinary or intersectional context, depending on the

domains of data in which they dwell. While our methodology can be applied to a wide

variety of domains, we evaluated our work on two tabular clinical datasets. Clinical data

can present in many forms: tabular data such as electronic health records (EHR) or sensor

data from wearables, imaging such as magnetic resonance imaging (MRI), free text such as

doctor’s notes, or even audio recordings such as those from an ultrasound. Our datasets in

particular are EHR or EHR-derived data, and therefore our methodology revolves primarily

around tabular data and missingness in tabular data. Below we will dive into the structure

of our data, what missingness looks like in those data, relevant machine learning and deep

learning concepts and techniques, followed by relevant imputation methods.

2.1 Data

2.1.1 Tabular Data

Tabular data contains entries (referred to as observations, samples, or examples) as rows with

various features, or equivalently, variables as the columns. The variables can be of various

5

types. We typically classify features based on their ranges, or the set of possible values they

can take.

• Categorical features, sometimes referred to as qualitative or nominal features, can take

on a discrete finite set of values. They include:

– Binary : features that can take on only two values, usually {0, 1}, or {no, yes}

semantically. An example of a binary feature is whether a patient is an adult or

not.

– Ordinal : features that can take on a discrete, finite set of values that are ordered.

An example of an ordinal feature is a risk level that could be low, medium, or

high.

– Multicategorical : features that can take on 3 or more discrete values that have no

relative order. An example of a multicategorical feature is a patient’s ethnicity.

• Continuous features, sometimes referred to as quantitative features, can take on an

infinite set of values, usually numerical. Some examples of continuous feature are a

patient’s age or height.

Datasets can be classified in many ways, we enumerate the most relevant ones to this

work here:

• Mixed : data contain features that are both categorical and continuous. They are

sometimes also referred to as heterogeneous data, which is overloaded to also refer to

multimodal data, which include data from multiple modalities such as images, text,

audio, etc. For our purposes, we exclusively refer to homogeneous data as those that

contain categorical and continuous features.

• Longitudinal : data where features are sampled or measured multiple times, at or not at

regular intervals. Longitudinal data are equivalently referred to time-series or sequen-

tial data. Longitudinal data may also contain either continuous or categorical features.

6

We may refer to features themselves as longitudinal as shorthand. An example of lon-

gitudinal data is multiple measurements of a patient’s blood pressure. Variable-length

data arise when a given feature is measured a different number of times per example.

2.1.2 Electronic Health Records (EHR)

Clinical and health data are collected in what is called electronic health records (EHR).

The EHR behave as a digital patient chart including patient’s medical history, diagnoses,

medications, treatments, allergies, labs, etc. While data can be collected in any form (e.g.,

images, text, audio), a large portion of EHR consists of tabular data.

Structure Typically, the EHR may contain a single row per patient or a single row per

event in a hospital, where an event may be, but is not limited to, a diagnosis, procedure, or

prescription. Features may be continuous (a real value such as age, or weight), or categorical

(a discrete value such as sex or ethnicity). They could also be repeated measurements, which

are considered series or longitudinal data, like repeated blood pressure measurements. We

differentiate between longitudinal data and those that are only observed or measured once

(e.g., sex) by referring to the latter as static data. EHR data may consist of both static and

longitudinal data, such as a table with patient demographic information and other tables

for labs that may be taken multiple times at different points in time. Longitudinal data, or

sequential data may be variable per sample or per patient, which is commonly referred to as

variable length or unequal length sequences. For example, in a study that draws labs from

patients at 3, 6, and 12 months, some patients may only participate at one time point, or

only have 2 of 3 measurements.

Although the EHR has modernized healthcare and enabled a new era of medical analytics,

analyzing the consequent data is almost always a complex process. Datasets tend to be

afflicted with various issues such as missing data or highly correlated features. To properly

assess and combat these challenges, it is necessary to understand how EHR are generated

7

and why we may see such characteristics (e.g., missing data).

Compared to the history of healthcare systems globally, the EHR is a relatively new

concept. Namely, in the United States, the EHR had approximately a 20.8% adoption

rate across office-based physicians in 2004 [Hea19]. Due to former President Bush’s and

former President Obama’s initiatives in 2004 and 2009 respectively, the EHR adoption rate

amongst office-based physicians expanded to 85.9% by 2017 [Ath11], and adoption amongst

non-federal acute care hospitals rose from 12.2% in 2009 to 83.8% by 2015 [Doe]. However,

the rapid adoption of the EHR was just one battle in the overall effort towards modernizing

healthcare. Adjusting to the EHR systems (e.g., converting physical records for millions of

patients, training healthcare providers to use the EHR systems) in the early years of adoption

led to the corresponding data from those time periods to be less reliable and more error-

prone. Learning EHR systems and constant documentation required of healthcare providers

has proven to be a continued burden [CKH18]. This may lead to errors or gaps in data as

medical professionals struggle to juggle their role as care providers and additionally to record

everything that transpires.

In addition to the recentness of the EHR, issues in analysis arise given variations in

healthcare delivery and particularly in data capture. Although there are efforts towards

standardization for medical care (e.g., sliding-scale protocol for regular insulin use [RHJ04])

and EHR structuring/coding (e.g., International Classification of Diseases (ICD) codes),

there is no one way to provide care for a patient, and no one way to document their history

and current processes of care. Data themselves may physically look different in datasets

across healthcare institutions or even within a single institution, for example, due to usage

of different encodings (e.g., ICD-9 vs ICD-10), different standards for what information is

required to be documented, or different software for recording information (e.g., manual vs.

automatically parsed dictation) [CKH18]. Data distributions may shift within a dataset due

to a constant flux of healthcare providers (physicians, nurses, technicians, etc.) on a day-to-

day basis. Some physicians may be more or less strict about putting a patient on a certain

8

type of care, or different hospitals may impose a more or less strict protocol on particular

procedures.

2.1.2.1 Nephrology

The particular domain of medicine in which we analyze EHR is nephrology. Nephrology is

the study of the kidneys. Normally, most people have two kidneys, and they are recognizable

by their bean-like shape. The kidneys are the chemists of the body: they work to keep all the

chemicals in your blood balanced by filtering the blood for waste, excess fluids, and regulate

compounds such as potassium.

2.2 Missing Data

Missing data plague most datasets across multiple domains and can occur for a wide variety

of reasons: human error, machine error, random chance, etc. Missing data introduces uncer-

tainty that affects any downstream tasks on those datasets, whether it be statistical analysis

or prediction. Additionally, many mathematical models cannot handle missing data well, if

at all. Missing data are stored or referred to as not a number (NaN) so that they may be

treated differently computationally.

One way missing data are commonly dealt with is by removing the rows or features with

missing data. Dropping observations with missing data poses issues such as: reducing the

dataset size significantly or introducing bias by limiting the dataset to observations with

features that are well-populated but may not be randomly distributed. For example, in an

EHR dataset, sicker patients require more tests and visits than healthier patients and are

less likely to have missing values, so dropping patients with missing values might bias the

dataset towards these less healthy patients. These biases can be pernicious, particularly for

data disadvantaged populations (e.g., lower income patients miss appointments more often

due to lack of access to care, transportation, etc.) [GC20]. Alternatively, removing features

9

with missing data is not always tenable, as those features might be important predictive

factors.

Another common approach to handling missing data is substituting missing values with

estimates of the missing values, which is known as imputing. While imputation seems more

appealing than dropping potentially useful information, using the wrong imputation method

may degrade the quality of prediction. To properly impute missing data, it is important that

the method impose a reasonable assumption about the missingness mechanism for the data.

The literature follows the missing mechanism paradigm of [Rub76] that divides all cases of

missingness into three categories: missing completely at random (MCAR), missing at random

(MAR), and missing not at random (MNAR). Data are MCAR when the probability of an

observation missing for a particular variable is unrelated to any other variable, observed or

unobserved, meaning, there is no systematic difference between samples that are missing

data and those that are not [MSW18]. For instance, equipment fails for a day and the

values are lost. Data are MAR when the probability of data missing for a particular variable

is related to one or more observed variables in the dataset. For instance, in the United

States, patients under the age of 21 years may be less likely to report alcohol use to their

care providers. In this scenario, age is observed, which explains a trend over the missing

values for alcohol use. Data are MNAR when the probability of data missing for a particular

variable is related to either the unobserved value itself or another unobserved variable. For

example, a patient refuses testing due to religious reasons, but religion is not recorded. In

this scenario, the patient’s religion explains the missing test results, but the religion itself it

unobserved. Another example of MNAR may be that the equipment does not register values

over 100. In this scenario, the true value of the missing entry itself (being some value over

100) explains the missing data.

Though we maintain that is important to impute according to the mechanism under

which the missingness occurs, it is not a simple task. One issue is that real-world datasets are

complicated and do not follow a single missingness mechanism. Features may be missing due

10

to the influence of a combination of other features, or certain features may be missing under

different mechanisms. Even with making the simplifying assumption that a dataset is missing

data under only one particular mechanism, another complication arises with distinguishing

between different mechanisms within a given dataset. Currently, it is only possible to test

for MCAR in a dataset using Little’s MCAR test [Lit88]. It is not possible to distinguish

between data MAR and MNAR.

Additionally, the understanding of missingness in the domain of data analysis while not

nascent is not necessarily robust. There is only one paradigm available of understanding

missingness in data, which to our knowledge has not been challenged until recently. More

researchers are beginning to expand on and reconsider this existing paradigm of reasoning

about missingness. In particular, Mohan et al. demonstrated that there is a partition of

the space of MNAR scenarios that have distinct missingness characteristics [MP21]. There

are certain MNAR scenarios that are recoverable, where the missing value can be estimated

consistently from observed data, while others are not recoverable and there are no algorithms

that can provide that guarantee.

2.3 Imputation

Many imputation techniques exist and are frequently used. The simplest forms of imputation

are those such as mean or mode, (stochastic) regression, k-nearest neighbors (KNN), and

carry forward/backward imputation. While these are simple, fast, and easy to implement,

they underestimate standard error by reducing variability and ultimately produce biased

estimates [End10].

Another approach involves maximum likelihood and/or multiple imputation, such as

multiple imputation by chained equations (MICE). Multiple imputation involves repeatedly

imputing the same values multiple times to account for the uncertainty in single point esti-

mates for missing values. While these methods are guaranteed to produce unbiased estimates

11

under MAR, they are computationally expensive and time-consuming and will produce bi-

ased estimates under MNAR. Existing methods that can model data MNAR in addition

to MAR, such as pattern mixture models [FHB17], rely on Monte Carlo methods that are

computationally slow.

2.4 Machine Learning

Machine learning is the process of using data and a learning algorithm to train a model

to generalize to unseen data on a given task. Common tasks include, but are not limited

to, (binary or multi-class) classification, regression, or clustering. Towards this end, models

undergo two phases in their lifetime: 1) training or learning, and 2) inference. During

training, the model parameters change to adjust its performance on its given task. During

inference, data are simply passed to the model for its output, and the model does not change.

There are many types of learning algorithms. At a high level, learning algorithms are

categorized depending on when the learning takes place, and how it might (or might not)

use labels. With offline algorithms, learning takes place before the execution of the task.

In contrast, with an online algorithm, learning takes place as a task progresses. Supervised

learning algorithms provide labels in addition to the data, where the labels are the ground

truth, or the correct answers for each sample. Semi-supervised learning algorithms provide

only some labels, while the rest are unknown. Reinforcement learning algorithms provided

occasional and delayed information. Lastly, unsupervised learning algorithms provide no

direct labels.

There are also different types of models. A discriminative model simply learns to produce

an output based on existing data as input in order to make a prediction or estimation. On

the other hand, a generative model can produce outputs that do not rely on existing data

as an input. Both require data to train, but the latter can generate new data.

12

2.4.1 Evaluation of Performance

What makes a model “good” largely depends on the context of a given task and dataset.

Many metrics for evaluating models exist that capture different notions of “performance”.

To produce a robust evaluation of a given model, in addition to proper data handling, it is

important to choose appropriate metrics that can capture performance from different angles.

Keep in mind, the metrics used to evaluate a model may not be the same metrics used to

aid in training the model.

Binary classification. Binary classifiers aim to discriminate between examples in the

positive class and negative class. By way of illustration, a binary classifier might classify

(or discriminate between) patients with cancer and patients who do not have cancer. The

choice for which class is the positive class is entirely context-dependent. For example, with

cancer prediction, it may make more sense for a patient with cancer to be a positive example.

Binary classifiers output either a 1 or 0, or yes or no for the positive class. Therefore, the

classifier can, for a given positive instance, predict yes correctly (True Positive (TP)), or no

incorrectly (False Negative (FN) or Type II Error). Similarly, for a given negative instance,

the classifier can predict no correctly (True Negative (TN)), or yes incorrectly (False Positive

(FP) or Type I Error). A Type I Error (FP) can be thought of as a false alarm, while a Type

II Error (FN) can be thought of as failing to alert. We can evaluate binary classification

tasks using the following metrics and highlight their strengths, where the abbreviated names

represent the count, and Pest and Nest are the counts of the positive class and negative class

respectively that were predicted by the model:

• Accuracy measures how many samples (regardless of if they are positive or negative)

were guessed correctly. It is useful if the dataset is balanced (almost equal number of

positive and negative samples in the dataset). If a dataset is imbalanced (few positive

examples), it is possible to cosmetically achieve a high accuracy if the model guesses

13

everything is negative. Accuracy can be computed as

TP + TN

P +N

• True Negative Rate (TNR) or Specificity measures, of the instances that were truly

negative, how many did the model predict / believe to be negative. Formulated as

a probability, Pr(Predict Negative | Is Negative). Specificity focuses on the negative

class and penalizes FP. Specificity can be computed as

TN

N
=

TN

TN + FP

• True Positive Rate (TPR) or Sensitivity or Recall measures, of the instances that

were truly positive, how many did the model predict to be positive. Formulated as a

probability, Pr(Predict Positive | Is Positive). Recall focuses on the positive class and

penalizes FN more heavily, compared to penalizing FP. This renders recall as a useful

metric for imbalanced datasets. Recall can be computed as

TP

P
=

TP

TP + FN

• Positive Predictive Value (PPV) or Precision measures, of the instances the model

predicted to be positive, how many were guessed correctly. Formulated as a probability,

Pr(Is Positive | Predict Positive). Precision focuses on the positive class and penalizes

FP more heavily. This renders precision as a useful metric for imbalanced datasets.

Precision can be computed as

TP

Pest

=
TP

TP + FP

• F1 Score is the harmonic mean of precision and recall, which, compared to the arith-

metic mean, punishes extreme values more. There is a variant that allows a hyperpa-

rameter to dictate how much more to weight recall over precision. F1 Score can be

computed as
2 · TP
P + Pest

14

• Receiving Operator Characteristic - Area Under the Curve (ROC-AUC) measures the

area under the curve of plotting the ROC (plots TPR vs FPR) across different proba-

bility thresholds for the positive class. The ROC-AUC is equivalent to the probability

of correctly ranking a positive example above a negative example.

• Precision-Recall - Area Under the Curve (PR-AUC) measures the area under the curve

of plotting the precision vs. recall (plots PPV vs TPR) across different probability

thresholds for the positive class.

• Brier Score measures the calibration of a model. When a model is well calibrated, you

can interpret the predicted probability as a confidence level (e.g., 85% of samples with

probability of 85% of being in the positive class should actually be positive). Brier

score suffers a similar problem to accuracy on imbalanced datasets, where the model

can inflate its score by naively predicting the majority class with 100% probability.

Note though that it acts as a loss, so compared to the other metrics, a lower Brier

score is better. Brier score, for N samples, predicted label ŷi, and true label yi, can be

computed as
N∑
i=1

(Pr(ŷi)− yi)
2

Regression. Regression models aim to predict continuous values (as opposed to the dis-

crete yes or no of binary classifiers). For example, a regression model may predict a person’s

height, or the dollar value of a United States stock. In contrast to binary classifiers which

can be “right” or “wrong”, regression models are evaluated as a matter of distance, or how

close the predicted value (ŷ) is to the true one (y).

• Mean Squared Error (MSE) computes the squared difference between the true and

estimated label. The squared term penalizes larger aberrations from the true value

more. Optimizing on squared values results in finding the mean error, which is sensitive

15

to outliers. MSE can be computed as

1

N

N∑
i=1

(yi − ŷi)
2

• Root Mean Squared Error (RMSE) is a smoothly differentiable function that computes

the sample standard deviation of the error terms. RMSE can be computed as√√√√ 1

N

N∑
i=1

(yi − ŷi)2

• Mean Absolute Error (MAE) is a non-differentiable, but more interpretable error.

Optimizing on absolute value results in finding the median error, which is more robust

to outliers. MAE can be computed as

1

N

N∑
i=1

| yi − ŷi |

• Mean Arctangent Absolute Percent Error (MAAPE) is an extension of the Mean Ab-

solute Percent Error (MAPE), which is scale-independent and interpretable, that is

less biased and well-behaved when values are zero or near zero [KK16a]. MAAPE can

be computed as

1

N

N∑
i=1

arctan

(∣∣∣∣yi − ŷi
yi

∣∣∣∣)

2.5 Deep Learning

Deep learning is a sub-branch of machine learning that has added representation learning

(feature extraction and dimension reduction) in the process. It requires more data and

computation power and focuses on network architectures with multiple layers. Deep learning

has become popular for large datasets due to their ability to: scale to large sample sizes,

harness the now-more-accessible graphical processing unit (GPU) for efficient computation,

and formulate complex relations in the data such as non-linear dependencies or multivariate

time-series data [GBC16].

16

2.5.1 Neural Networks

Neural networks form the basis of many deep learning architectures. They are modeled after

the network of neurons of the human brain, which connect to each other in complex webs

to share and pass information as computational units. In neural networks, a neuron is a

computational unit that takes a set of inputs of N entries and D features, a weights matrix

that maps all N samples from D dimensions to D′ dimensions, a bias vector that behaves as

class priors for all N samples, and outputs a set of scalars, or activations, for all N samples.

The weights and biases are parameters that are learned by the network via an optimization

procedure and loss function. Optimization procedures are algorithms that dictate how a

network might learn or update its weights. A loss function is a penalty function that is used

when the model is incorrect to drive weight updates.

2.5.1.1 Activation Functions

As is, feed forward neural networks (FFNNs) can only learn linear functions or boundaries.

This is because each layer computes linear combinations of the input and weights, and a

linear function composed with a linear function is still linear. Additionally, particularly with

deep networks, the extra layers could be reduced to a single linear transform, rendering

useless the utility of multiple layers being able to approximate more complex functions.

Activation functions allow us to introduce non-linearity into neural networks. The only time

linear-activation (or identity) functions are useful is if the output variable or target is a

continuous real number, warranting use in the output layer.

Commonly used activation functions are:

• Sigmoid activations: convert any real number into a value between 0 and 1 (inclu-

sive), which can be interpreted as probabilities. The mean of the activations will be

close to 0.5. Aside from introducing non-linearity, the sigmoid activation function is

useful for the output layer if a network’s task is binary classification. The sigmoid

17

function, notated as σ(·) can be computed as

σ(x) =
1

1 + e−x
=

ex

ex + 1

• Rectified linear unit (ReLU) activations: bottom-cap the values at 0. While this

does not produce values that could be interpreted as probabilities, it is more likely to

create sparse representations, less likely to suffer from the vanishing gradient problem,

and is computationally faster. The ReLU function can be computed as

ReLU(x) = max(0, x)

2.5.2 Autoencoders

Autoencoders [Lea] are a type of neural network that are used to recreate the original dataset

without memorizing the data, essentially aiming to learn an approximation of the identity

function. Formally, an autoencoder f(· | W, b) tries to learn weights and biases W, b such

that for an input x, f(x) = x̂ ≈ x. Autoencoders, as depicted in Figure 2.1, are symmetric

networks with multiple layers, composed of two halves: an encoder and a decoder. The

encoder outputs a latent representation, or code, of the data. The latent representation is a

“hidden”, compressed representation of data, which is hopefully more meaningful or useful

towards downstream tasks. The code is then passed to the decoder, which attempts to

reconstruct the original input. Formally, with encoder e(·) and decoder d(·), the autoencoder

computes f(x) = d(e(x)).

Autoencoders have evolved greatly since their inception, and their architecture can be

adjusted to achieve different results. An autoencoder is undercomplete when the code is

smaller than the input, acting as lossy compression, and is overcomplete when the code is

larger than the input. A denoising autoencoder (DAE) [VLB08] is a type of autoencoder that

partially corrupts (e.g., set to zero or adding noise) the inputs. In an imputation context,

a DAE would treat missing values as noise. A variational autoencoder (VAE) [KW14] is a

type of autoencoder whose encoder outputs two additional vectors: one of means and one

18

Input
Layer (x⃗)

Hidden
Layer (⃗h)

code

Hidden
Layer (h⃗′)

Output
Layer (ˆ⃗x)

Encoder Decoder

ReLU

Sigmoid

Figure 2.1: An example of an undercomplete autoencoder architecture that takes input data

with D features; using rectified linear unit (ReLU) activations at each hidden layer, and a

Sigmoid activation at the final layer.

of standard deviations, detailing a Normal distribution for each feature. Due to this nature,

VAEs also require an additional loss term to penalize differences between the learned and

true distribution, and they are considered generative models. For a deeper dive, refer to

[Mic22].

Due to their nature, at their simplest, autoencoders do not require separate labels, in-

stead, the data themselves behave as the labels. Therefore, many learning algorithms for

autoencoders are unsupervised. To guide the training and update the weights, autoencoders

require a reconstruction loss or reconstruction error. That is, a metric that measures how well

the autoencoder recreated the original dataset. Commonly used metrics for reconstruction

loss include:

• Binary Cross Entropy (BCE), also known as log-loss, measures accuracy of binary

19

classifiers that output a probability, or in the case of autoencoders: BCE loss, J(·) in

Eq. 2.1, where f(·) is the autoencoder, x⃗i is one sample of D features or dimensions,

ˆ⃗x is the reconstructed input, and N is the total number of samples, can be computed

as:

J(ˆ⃗x, x⃗) = − 1

N

N∑
i=1

[
x⃗i log(ˆ⃗xi) + (⃗1− x⃗i) log(⃗1− ˆ⃗xi)

]
ˆ⃗x, x⃗ ∈ X ∈ RN×D

(2.1)

• Kullback-Leibler Divergence (KL Divergence), also known as relative entropy, measures

the difference between two probability distributions [KL51]. Technically it is not a true

distance metric since it is asymmetric, and instead it is referred to as a divergence,

which is where it gets its name. KL Divergence is used as a component of the loss

function for VAEs which computes the divergence between the multivariate normal

distribution defined by the means and standard deviations learned in the model, and

the multivariate standard normal distribution (all means of 0 and standard deviations

1). KL Divergence, KL(· || ·) in Eq. 2.2, where N is the normal distribution, x⃗i is

a sample from the distribution N (µ⃗, Σ⃗), µ⃗ and Σ⃗ are from the means and standard

deviations learned by the autoencoder, and z⃗i is a sample from the distributionN (⃗0, I):

KL(N (µ⃗, Σ⃗) || N (⃗0, I)) =
1

N

N∑
i=1

[
z⃗i · log

(
z⃗i
x⃗i

)]
(2.2)

2.5.3 Regularization

Deep learning models as-is can learn very complex functions. However, too much complexity

can be difficult to hone for particular tasks. Regularization techniques add constraints or

operations that adjust or simplify the model in order to tailor the model’s performance.

20

2.5.3.1 Batch Normalization

Batch normalization (Batch-norm) is a regularization technique that standardizes the output

of a layer using the mean of and variance of that layer’s outputs for the current batch for each

feature, in order to combat the gradient explosion or vanishing problem in deep networks

[IS15a]. Batch-norm can confer faster model convergence, higher accuracy, and allow the

model to tolerate higher learning rates.

2.5.3.2 Dropout

Dropout temporarily deactivates or ignores neurons in input and/or hidden layers so that

they do not contribute to learning model weights during training [SHK14]. By prevent

complex interactions between neurons by simply disallowing some percentage of interaction,

dropout may help force the network to learn better representations.

Batch-norm and Dropout There is literature that suggests that combining Batch-norm

with dropout can cause problems for training deep learning models [LCH18]. Dropout

changes the variance of a layer’s outputs during training but not when evaluating, therefore

causing a shift in neuron variance between training and evaluation. Batch-norm however

uses the statistics learned during training and applies the same variance when evaluating,

which has now changed due to dropout. There are some suggestions on particular order of

operations that can assuage this issue.

2.5.3.3 Early Stopping

Sometimes models struggle with convergence and their performance may stray away from

the local or global optima. Early stopping evaluates the model on a validation dataset after

each epoch, and stops the training process if the performance of the model on the validation

dataset starts to degrade.

21

RNN Cell ... RNN Cell ... RNN Cell

x⟨1⟩ x⟨t⟩ x⟨T ⟩

h⟨0⟩

h⟨1⟩ h⟨t−1⟩ h⟨t⟩ h⟨T−1⟩
h⟨T ⟩

Figure 2.2: Depiction of multiple RNN cells rolled out over a time-series with T time points.

2.5.3.4 Batch Swapping

Batch swapping is a similar corruption-style regularization technique as dropout [Mue]. Dur-

ing training, values are swapped between rows within a batch at random for a random set

of features.

2.5.4 RNNs

A recurrent neural network (RNN) is a type of neural network that can handle time series

data of varying sequence lengths. Instead of a basic computational unit being a neuron, a

basic computational unit of an RNN is an RNN Cell. Each cell takes two inputs at a time

t: the previous hidden state h⟨t−1⟩, and the input x⟨t⟩. What is special about the RNN cell

is that it passes through some form of “memory” to each subsequent cell, therefore passing

information along time points (Fig. 2.2).

There are many types of RNN cells. A shortcoming with vanilla RNN cells is that they

tend to “forget” old information as new measurements for each time point come in, and can

suffer from the vanishing or exploding gradient.

22

2.5.5 Long-Short Term Memory

Long short-term memory (LSTM) models [HS97] are a type of RNN that are designed to

deal with the vanishing/exploding gradient problem. Each cell takes three inputs at a time

t: the previous cell state c⟨t−1⟩, the previous hidden state h⟨t−1⟩, and the input x⟨t⟩. The

cell depicted in Fig. 2.3 contains four gates that provide specific functionality to the cell,

where ⌢ represents concatenation: the forget gate f ⟨t⟩ (Eq. 2.3), the input gate i⟨t⟩ (Eq.

2.4), the update cell state gate c̃⟨t⟩ (Eq. 2.5), and the output gate o⟨t⟩ (Eq. 2.6). Ultimately,

the LSTM computes the new cell state c⟨t⟩ (Eq. 2.7) and hidden state h⟨t⟩ (2.8) for the

current step, potentially passing them both to the next cell, and outputting h⟨t⟩. The cell

state behaves like an information conveyor belt, with the gates interacting along the way

to regulate (by removing, modifying, and adding) information. In this setup, the cell state

behaves like long-term memory and the hidden state behaves like short-term memory, which

is where the model gets its name.

f ⟨t⟩ = σ(Wf · [h⟨t−1⟩ ⌢ x⟨t⟩] + bf) (2.3)

i⟨t⟩ = σ(Wi · [h⟨t−1⟩ ⌢ x⟨t⟩]) + bi) (2.4)

c̃⟨t⟩ = tanh(Wc · [h⟨t−1⟩ ⌢ x⟨t⟩] + bc) (2.5)

o⟨t⟩ = σ(Wo · [h⟨t−1⟩ ⌢ x⟨t⟩] + bo) (2.6)

c⟨t⟩ = f ⟨t⟩ ⊗ c⟨t−1⟩ + i⟨t⟩ ⊗ c̃⟨t⟩ (2.7)

h⟨t⟩ = o⟨t⟩ ⊗ tanh(c⟨t⟩) (2.8)

2.6 Related Work

We apply deep learning architectures, in particular, autoencoders, for imputation on EHR

datasets in a static setting so that we may then carry out a downstream clinical decision-

making task. In general, deep learning autoencoders were popularized for computer vision

23

σ σ tanh σ

× +

×

×

tanh

c⟨t−1⟩

Previous Cell State

h⟨t−1⟩

Previous Hidden State

x⟨t⟩Input

c⟨t⟩

New Cell State

h⟨t⟩

New Hidden State

h⟨t⟩Output

f ⟨t⟩ i⟨t⟩ c̃⟨t⟩

o⟨t⟩

Figure 2.3: Depiction of a single LSTM cell, where × is element-wise product, + is element-

wise addition, σ is the sigmoid function, and or ⌢ is concatenation.

tasks on image data. However, these types of models have found success in other applications

on tabular data. We explore existing work on deep learning, focusing on autoencoder meth-

ods, for imputation on static data. To enable other researchers to explore the longitudinal

setting in future work, we include existing works that employ longitudinal imputation.

2.6.1 Static Imputation with Deep learning

Particular configurations of VAEs have seen success in imputation on data MNAR and

MCAR in myriad domains including traffic forecasting [BVM19], synthetic and simulated

milling circuit data MCAR [MKA18], and facial image data MAR [WNN19]. Unlike biomed-

ical and EHR data, however, these datasets involve automated data collections systems and

can be modeled with clear Gaussian distributions. Camino et al. [CHS19] explored the

effectiveness of variational autoencoders across tabular data in different domains such as

breast cancer data, credit card data, and optical character recognition data. For high di-

mensional data, Chen et al. [CS19] proposed sparse convolutional denoising autoencoders

to impute yeast and human genotypic data. They leveraged the added complexity of con-

24

volutional layers and a sparse weight matrix to make imputation of high dimensional data

tractable. Gondara et al. proposed MIDA, an approach that used an overcomplete denoising

autoencoder with the assistance of simple imputation methods such as mean or mode impu-

tation [GW18]. Beaulieu-Jones et al. proposed denoising autoencoders for the imputation

of EHR data on patients diagnosed with Lou Gehrig’s disease [BM16].

While the use of autoencoders for imputation has been previously explored, the context

in which any of these techniques may be optimal is unclear. This observation prompted our

development of an open framework that would enable the rapid implementation of different

autoencoder imputation methods on a dataset, comparing imputation performance and the

sensitivity of a given predictive task relative to inferred missing values [ZPD21].

Generative adversarial network (GAN) Aside from autoencoders, another popular

deep learning model architecture for imputation is the generative adversarial network (GAN)

[GPM14]. Generative adversarial networks are a type of neural network made of two parts:

a generator and discriminator. The generator attempts to generate believable samples (that

could be confused to be from the original dataset), and the discriminator attempts to distin-

guish between generated and real/original samples. The intuition behind the use of GANs for

imputation is like that of autoencoders; while autoencoders attempt to learn to recreate the

original dataset using relevant information from other samples and features, GANs attempt

to generate samples that could believably be from the input domain. While autoencoders

follow a simple reconstruction loss, GANs train with an additional game-theory-driven loss

that comes from the discriminator. Also, while autoencoders produce a latent representa-

tion, not all of them are generative models. GANs are generative models and can produce

new samples given a random vector of inputs. Yoon et al. proposed generative adversarial

imputation network (GAIN), an imputation procedure using a modified GAN, where the

discriminator aimed to distinguish which data was originally missing [YJS18].

25

2.6.1.1 Mixed Feature Imputation

Some researchers have begun to develop methodologies for particular autoencoder versions

to address imputation on mixed feature datasets. Simple techniques added an extra layer to

act as an embedding layer to the categorical feature space [Mue]. Valera et al. developed

Bayesian non-parametric latent feature models with Gibbs sampling for imputation [VPL17].

They assigned a different likelihood and metric for the following feature types: real, positive

real, count, categorical, and ordinal. Nazábal et al. expanded on Valera’s work in applying

a similar concept to VAEs such that each feature was represented by a different likelihood

depending on the feature type when learning the parameterization [NOG20]. Nazábal’s work

inspired a slew of other work such as Gootjes-Dreesbach et al. who combined VAEs with

modular Bayesian networks in order to generate simulated data and model missing data,

though they did test on a real world dataset with missing values they did not control the

missingness scenarios [GSS20]. Akrami et al. used β-divergence instead of KL Divergence

for computing the reconstruction term for continuous and categorical features in a VAE

[AAL20]. Ma et al. trained a VAE per feature and combined the latent representation from

all of them into another VAE, though they only tested on MCAR [MTT20]. While VAEs

are popular for this task as they can be modified to model different distributions depending

on the feature type, others such as Li et al. passed the data through stacked denoising

autoencoders (DAEs), and Hou et al. did not address the different feature spaces in their

work [LMX18, Hou20].

2.6.1.2 Collection Frameworks

Understanding imputation methods as a whole and making techniques more easily available

is a growing need. Projects like jenga provide collections of data corruption methods and a

workflow for understanding how those corruptions, such as missing data, and various solu-

tions to those corruptions affect downstream prediction [JAB21]. Projects like autoimpute

26

provide collections of statistical imputation methods [KBB19]. Some existing works com-

pared different statistical and machine-learning-based imputation methods in a wide variety

of domains, though they did not provide a framework for others to do so [JPR19, PC23, SS23].

There are other works that made a usable framework available, serving as a collection of deep

learning imputation methods. Tilman et al. similarly implemented a framework to compare

a wide variety of autoencoders toward applications in computer vision [Kro21]. Jarrett et

al. developed clairvoyance [JYB21], a framework for end-to-end time series tasks such as

imputation and classification, among others. clairvoyance implemented a series of deep

learning techniques as well as some baseline methods such as interpolation or mean impu-

tation. PyPOTS is a toolbox containing the implementation of specific deep learning tech-

niques published in the literature that handle time series imputation and classification tasks

[Du23]. Our work enabled the implementation and comparison of several existing methods

in published work, was more generally about robustly comparing autoencoders for imputa-

tion rather than a collection of specific implementations, and only focused on imputation on

static datasets.

2.6.2 Longitudinal Imputation with Deep Learning

Aside from basic extensions of commonly known imputation methods such as simple impu-

tation to the longitudinal settings, most remaining techniques for multivariate longitudinal

imputation involve deep learning. Che et al. proposed gated recurrent unit with decay

(GRU-D) [CPC18], a longitudinal imputation technique based on an altered GRU cell for

clinical data. GRU-D imputed values to the last observation, but decayed towards the mean

over time by incorporating a temporal decay mechanism in the recurrent cell. GRU-D made

assumptions specific to clinical data, e.g., the human body tends to want to stay in home-

ostasis. Cao et al. proposed bidirectional recurrent imputation for time series (BRITS)

[CWL18], which expanded upon the temporal decay mechanism in the recurrent cells from

GRU-D. Compared the GRU-D, BRITS instead used LSTM cells, trained the same model

27

on the imputation and prediction task jointly, was bidirectional, and imputed the value of a

variable at time t using a weighted sum of a variable’s “history” (the previous time step’s

hidden values ht−1) versus the values of other features at time t. Du et al. proposed self-

attention-based imputation for time series (SAITS) [DCL22]. Like BRITS, SAITS imputed

missing values using temporal (or historical) data and feature information. However, SAITS

achieved this by using two diagonally-masked self-attention blocks in a transformer model,

foregoing the use of a recurrent network for imputation. SAITS separated the tasks of impu-

tation and original data reconstruction that we considered the same task in this work, and

jointly trained the model on these separate tasks.

2.6.3 Summary

Researchers are increasingly employing Autoencoders to handle imputation tasks. There are

both particular configurations of autoencoders and collections of particular configurations in

the literature. VAEs tend to work best for automatically collected data that tend to follow a

Gaussian distribution (e.g., sensor data). While other specific implementations exist in the

static setting and for mixed feature data, we are not aware of any collections of them, and

many do not consider the consequences of imputation on a downstream task or across a wide

range of missingness mechanisms. In contrast, our work served as a flexible autoencoder that

could take on many forms rather than a collection of specialized methods, and evaluated all

of them in a unified way on both the imputation task and downstream predictive task. The

other popular deep learning architecture used for imputation was GANs. Similar to VAE,

GANs are generative models, however, our work focused on understanding autoencoders as a

whole for imputation rather than searching for the best class of deep learning architectures.

Additionally, autoencoders did not involve creating an extra model that would later be

discarded (i.e., the discriminator in the GAN). In addition to static data imputation, there

are a growing number of deep learning methods to impute longitudinal data. However,

most of these methods did not look at missingness mechanisms, since there is no established

28

paradigm for reasoning with missingness in the time dimension. We did not address this

gap in the literature directly, but rather opened it up for discussion and direction for the

future.

29

CHAPTER 3

Creating a Framework for Autoencoder-led Imputation

Recognizing that the adoption of EHRs had made patient data increasingly accessible, we

were tasked with the development of various clinical decision support systems and data-

driven models to help physicians. However, we would soon learn that missing data were

pervasive in EHR-derived datasets, which introduced significant uncertainty, if not invali-

dating the development of a predictive model for these clinical decision-making tasks. We

wanted to salvage the data we did have under information poor conditions to perform well

on our predictive tasks, without compromising the integrity and reliability of analyses. We

approached the topic of imputation with deep learning, and in particular, autoencoder mod-

els, based on the growing body of work demonstrating the power and promise of ML-based

imputation methods. We believed autoencoders were fit for imputation over other methods

due to their ability to rapidly impute on large datasets, such as EHR datasets, and quickly

learn nonlinear relationships. However, despite the appeal of autoencoders for imputation,

there were no theoretical proofs on their behavior.

We wanted to characterize how autoencoders would behave as imputation models, and

to compare and choose between which model may be best for a particular dataset and task.

To achieve this, we needed a framework that could train and evaluate a wide array of au-

toencoder configurations and could compare to other commonly used models for imputation.

Additionally, we needed a framework that could control different missingness scenarios so

that we could begin to define the characteristics of autoencoders under each of the missing-

ness mechanisms and at what percent of missingness. We expanded upon prior literature

30

by taking a closer look at not only how accurately autoencoders could learn to impute an

EHR dataset with missing values, but also how that imputation would affect downstream

predictive performance.

As such, we developed an initial version of Autopopulus to empirically study the potential

of autoencoders for imputation. To demonstrate Autopopulus, we used the Center for Kidney

Disease Research, Education and Hope (CURE-CKD) dataset [NDA19, TAD19] to identify

individuals at-risk for and with chronic kidney disease (CKD). We implemented several

existing autoencoders for imputation, as well as our own approach for imputation that utilizes

a completely discretized formulation of the data.

3.1 Building the Pipeline

With Autopopulus, we aimed to provide an extensible framework for developing, testing,

and ultimately comparing different autoencoder imputation methods. Our first foray into

building the pipeline was influenced by existing works that used autoencoders for imputation.

We drew on the work of McCoy et al. [MKA18], Gondara et al. [GW18], and Beaulieu-

Jones et al. [BM16] in addition to implementing a novel autoencoder imputation technique.

We designed Autopopulus so it could be used in the same fashion as a Scikit-learn [PVG11]

imputation model. This lent itself to easy and intuitive use for future datasets, as it interfaced

well with widely used tools with minimal overhead. The initial form of the imputer training

pipeline is shown in Fig. 3.1, and we describe key elements below.

Simple Amputation At the time of building the initial version of Autopopulus, pyampute

(Section 4.2) had not been implemented yet. Instead, we implemented a simple amputation

procedure. For data MCAR, we replaced a value with NaN uniformly at random for selected

variables. For data MAR we created a cutoff, determined by the percentage of missingness

specified, on an observed variable. If a given data entry fell above the cutoff, the value for the

31

Filter

Training

Original
Dataset

Fully
Observed

Subset

Autoencoder

Ground Truth

Input Data
Temporary Fill
Missing Values

Fill Missing
Values

Ampute

Masked Data

Metrics

Figure 3.1: The initial pipeline for training the autoencoder. After training the autoencoder,

its output was only used to fill originally missing values.

chosen missing variable would be NaN, simulating the scenario where the value was missing

due to another observed variable. For data MNAR we created lower and upper cutoffs based

on the variables that would be missing themselves (e.g., a historically normotensive patient

opted to not have their blood pressure measured). If a patient fell inside the cutoff range,

the value would be missing, simulating the scenario where the value was missing due to the

value itself. Under MAR we could choose which observed features we wanted to control the

missingness of each of the missing features.

Data processing The input to our model would be a dataset X̂ and labelX, which was the

unaltered or true version. We standardized all continuous variables using a min-max scaler,

and one-hot encoded all categorical variables. Autoencoders are not designed to handle

missing values by default, so we first performed a “warm start” imputation: initializing the

missing values in X̂, and also X if the true dataset also had missing values, with some initial

estimate. We could choose to fill in missing values with 0 or with per-batch simple imputation

(mean imputation for continuous variables and mode for categorical variables), or data (only

originally continuous variables) might be discretized with a uniform distribution imposed

over missing values. Note if the latter was true, the ground truth was also discretized before

being fed to the autoencoder, and the autoencoder output was undiscretized.

32

Autoencoder architecture As mentioned prior, autoencoders come in many flavors. De-

pending on the nature of the dataset or problem, we needed to specify a type of autoencoder.

This initial form of Autopopulus supported common architectures such as DAE and VAE.

Additionally, it supported undercomplete and overcomplete networks by allowing users to

specify layer dimensions explicitly or by implicitly by the proportion of the original number

of features.

Loss The reconstruction losses supported by Autopopulus were BCE, MSE, and a com-

bination that applied BCE only to categorical variables and MSE to continuous variables.

When the autoencoder was not a VAE, loss was purely reconstruction-based. When the

autoencoder was a VAE, we added an extra KL Divergence error term in addition to the

reconstruction loss. We could also choose the option to only evaluate the loss on originally

non-missing data instead of all the data.

Training Unless specified, we tuned the number of layers and nodes per layer, learning rate,

L2 penalty, maximum epochs, and early stopping patience on the validation set using an auto-

matic sweep of hyperparameters with asynchronous hyberband scheduling (ASHA) [LJR18].

Output Once the loss had been calculated, the model output was further processed before

computing imputation performance metrics. The same steps were employed when using the

model for imputation after training. If the data had been discretized, we undiscretized the

data, which only affected the originally continuous variables that had been discretized. We

applied the sigmoid function only to the categorical variables. Lastly, all methods were only

used to fill in missing values, so the original values were otherwise kept.

33

3.1.1 Adding New Imputation Methods

Alongside existing autoencoders used for imputation, we used Autopopulus to design a new

technique for comparison, showing how the framework could be extended. In this method,

the data were discretized (into one-hot features) and a uniform distribution was imposed

across the discretized variables wherever a value was missing as a data preprocessing step.

The goal of the autoencoder was to take the uncertainty, modeled by a uniform probability,

for any given missing variable and learn to shift weight onto the discrete bin that most

likely represented the true value. For example, if age was discretized into 10 bins and

its value was missing, then each bin had a 10% probability of being the “true” bin. We

replaced the missing value with this uniform probability. The data X̂ were passed through

the autoencoder model and the result was then compared to the label X according to a

given loss function to train the model. We employed minimum description length (MDL)

discretization via the Orange package to automatically create bins [FI93, DCE13]. MDL

discretization is a supervised algorithm that recursively decides the split that minimizes

entropy and minimum description length principles, as well as the labels assigned to each

sample. We chose this discretization method to be able to employ Autopopulus on a wide

array of datasets quickly and because it had been used successfully on clinical data in the

literature [MPL13].

When discretizing, we chose a vanilla autoencoder with BCE loss for the reconstruction

error and trained using the Adam optimizer [KB14]. We used BCE instead of mean-squared

error because our inputs were either binary due to discretization, or continuous between 0

and 1 after imposing a uniform distribution across bins for a missing variable. Imposing a

uniform probability across missing values maximized entropy for the missing value, which

was then penalized by the BCE loss, forcing the autoencoder to focus on correcting for

missing values.

To allow a more direct comparison to other imputation methods, we first “undiscretized”

34

the output. To undiscretize the data, we mapped the originally-continuous variables down

to the mean of their most likely bin (the one with the highest score). For example, if age was

discretized into 10 bins, and the autoencoder yielded the highest score for the range (50,60],

then the patient’s age would be estimated to be 55 years.

3.2 Enabling Experiments to Compare Imputation Methods

To create a profile for autoencoders as imputers, we needed to comprehensively evaluate them

in a way that enabled fair comparison and explored relevant and useful aspects of what we

expected to gain from incorporating an imputation step. An important aspect of imputer

behavior was its estimation accuracy. However, imputation does not occur in a vacuum; most

of the time imputation is not the end goal, but rather the end goal is some downstream task

such as regression or classification. Aside from evaluating the imputation models themselves,

we wanted to characterize and analyze any effects of imputation on downstream tasks. We

developed an experimental pipeline with a consistent interface and unified training pipeline

both on the immediate imputation task, and downstream predictive task.

We conducted two sets of experiments to answer two investigative questions: the ability

for various imputation methods to create an accurate representation of the dataset (Fig. 3.1);

and the impact of missingness and imputation on downstream prediction (Fig. 3.2).

Imputation Accuracy In our first set of experiments, we explored an imputation method’s

ability to create an accurate representation of the data and can control for performance given

different levels of missingness and mechanisms. We filtered the dataset down to the fully

observed subset of data and amputed according to different mechanisms and at different

missingness rates. In this set of experiments, we tested the MAAPE and RMSE by am-

puting at both a low and high percentage of missingness (33% and 66%) across all three

missingness mechanisms (MCAR, MAR, and MNAR).

35

Original Dataset

Impute

Random
Forest

Logistic
Regression

Predictions

Predictions

Metrics

Figure 3.2: The data flow for the predictive task. Imputation was done with either baseline

methods such as k-nearest neighbors (KNN), or an autoencoder-led method. All imputers

were trained (or fitted) first and then used to impute the dataset.

We compared various types of autoencoders: DAE, VAE, and our new method based on

a vanilla autoencoder which we labelled (APnew) (Section 3.1.1). We followed the configu-

rations of the following works for their respective autoencoder types to tie our work to the

literature. For the DAE we followed Beaulieu-Jones et al. [BM16] and MIDA [GW18], and

for the VAE we followed McCoy et al. [MKA18]. Baseline methods for static imputation

included simple, k-nearest neighbors (KNN), and MICE imputation. We refer to simple im-

putation as mean imputation for continuous variables and mode imputation for categorical

variables.

Downstream Predictive Performance In the second set of experiments, we used the

entire dataset “as is” to explore the effect of imputation on predictive performance via

the Brier score (calibration), PR-AUC, and ROC-AUC for classifying rapid decline. We

used a train, validation, test split of 60%, 20%, and 20% respectively both for training the

autoencoder and for training the predictive models.

36

To explore whether linear or non-linear predictive models were better suited for the

static predictive task, we trained both a logistic regression model and a random forest model

on top of the autoencoder outputs. We trained the models to be sensitive to the positive

class due to the dataset being highly imbalanced by taking advantage of class weights.

Hyperparameters for the logistic regression and random forest models were tuned during

validation automatically via Scikit-learn. Each predictive model was trained on 100 stratified

bootstrapped samples. The logistic regression and random forest models were implemented

via Scikit-learn [PVG11]. The 95% confidence intervals and means for each classification

performance metric, such as PR-AUC, were produced from this bootstrapping process.

3.3 Use Case: CURE-CKD

We evaluated our framework using a clinical dataset, as motivated by a real-world clinical

decision-making problem we had first set out to tackle. In particular, we first used Autopop-

ulus on the CURE-CKD dataset, detailed below.

3.3.1 The CURE-CKD Dataset

Amongst its many goals, the Center for Kidney Disease Research, Education and Hope

(CURE-CKD) project (and its subsequent Registry [NDA19, TAD19]) aims to use machine

learning to assist with preventative care for patients with chronic kidney disease (CKD).

CKD is marked by a gradual loss of kidney function. However, there are a subset of patients

that experience a sudden drop in kidney function, which is called rapid kidney function

decline (RKFD) or rapid decline. The prevailing method for testing for CKD and tracking

disease progression is measuring the estimated glomerular filtration rate (eGFR) [Cla12].

RKFD is normally defined as an average of greater than or equal to 5 ml/min/1.73 m2/year

decline in eGFR, compared to an average of 1 ml/min/1.73 m2/year for those diagnosed with

CKD [Cha13]. For the purposes of our work, we defined RKFD as a 40% decline in eGFR

37

(a)
R
K
F
D

(b)
R
egular

care
(c)

Flagged
early

(d) Normal progression

years

eG
F
R

Figure 3.3: This graph visualizes simplified eGFR trajectories for a patient (a) with RKFD,

(b) who might have experienced RKFD but received treatment without any early flagging,

(c) who might have experienced RKFD but flagged and treated early, and (d) with normal

CKD progression. With prediction and intervention we hope to push CKD patients towards a

more normal rate of decline (solid arrow) compared to not predicting for RKFD and reacting

with intervention at a later time (dotted arrow). Note, this is the goal, rather than a current

observation. For more details refer to [KSR17].

over two years [LTS14].

We aimed to elucidate if it was possible to improve CKD patient outcomes, who might

have RKFD to motivate future trials for intervention. Towards this aim, we built a model

to predict which patients would experience RKFD two years after the entry period. Figure

3.3 depicts a simplified representation of how we hope or expect that future intervention

could positively impact patients. In a future study, we would flag these patients and do

preventative work to improve their eGFR trajectories and observe if their outcomes could

be improved with intervention.

To train a model and make predictions, we used the CURE-CKD Registry. The CURE-

CKD Registry comprised a comprehensive, real-world, longitudinal dataset of EHR-derived

38

data from two large healthcare systems (Providence St. Joseph Health (PSJH) and Uni-

versity of California, Los Angeles (UCLA) Health) over a period of 12 years (2006-2017).

Patients entered and exited the registry that generated the dataset at different points over

the 12-year period, resulting in different history lengths for each patient. The CURE-CKD

dataset consisted of two cohorts: patients diagnosed with CKD or flagged as “at-risk” for

CKD (diagnosed with diabetes (DM), hypertension (HTN), or pre-DM), based on diagnostic

administrative codes, laboratory data, vital signs, and medications. We included patients

over 18 diagnosed with CKD, and excluded patients that were “at-risk” in order to focus

on rapid decline prevention in the CKD population. We defined study-entry as the date of

the first serum creatinine measurement during the observation period for a patient, and the

entry period as the 90 days following study-entry.

We used vitals and labs (eGFR, A1c, systolic blood pressure, and number of ambulatory

and inpatient visits) in addition to demographic information (age, sex, ethnicity, and rurality

status) and risk factor information (diagnosis of HTN, DM, or pre-DM, and use of ACEIs

and ARBs) to predict RKFD. The registry reported these features as per-year aggregates.

For example, systolic blood pressure was recorded as an average over the entry period and

each following year, but as a sum for ambulatory visit count. All multicategorical features,

such as patient race, were one-hot encoded. We dropped features missing more than 89%

data: the entry period urine albumin-creatinine ratio (uACR) and urine protein-creatinine

ratio (uPCR) means.

There were 4, 067 patients in the positive class (experiencing rapid decline), which made

up 4.59% of the 88, 560 patients diagnosed with CKD. There were 9, 062 (10.23%) patients

that were not missing any data. Notably, 74.5% of A1c entries were missing at study-entry

and 71.9% at entry-period. 60% of systolic blood pressure entries are missing at study-entry

and 60.5% at entry-period.

39

3.3.2 Imputation Performance

We reported metrics computed only where the data were originally missing for imputation

performance. Values that were not originally missing were kept at the end of the pipeline,

so we were largely interested in the performance on originally missing values only. Fig.

3.4 shows that different imputation methods created more accurate representations of the

missing data under different missingness mechanisms, and those patterns remained similar

across the amount of data missing. All models achieved lower error under MNAR compared

to MAR and MCAR. Under MAR, the RMSE under 33% missing was minutely larger than

66% missing. Under MCAR and MAR, MICE achieved the lowest MAAPE. However, under

data MNAR, the VAE achieved the lowest error. In general, under MNAR the autoencoder

imputation models tended to achieve lower error than the baseline models, aside from APnew.

APnew produced a large error across all missingness scenarios.

APnew uniquely discretized and then undiscretized the data. Therefore, only for this

approach were we interested in the amount of times the autoencoder correctly guessed a bin

for an originally continuous feature before undiscretizing. We evaluated this accuracy over

the bins for missing values only in Table 3.1. We observed that the autoencoder was fairly

accurate under MCAR and MNAR for both percentages of missingness, but struggled more

with data MAR.

3.3.3 Predictive Performance

Fig. 3.5 shows that the logistic regression model was in general less calibrated than the ran-

dom forest model, regardless of which imputation method was used. Though the difference

was small, the autoencoder-based imputation methods tended to be slightly less calibrated

than the baseline methods; however, APnew was the best calibrated autoencoder imputation

method.

The imputation method used did not have a large impact on the PR-AUC and ROC-AUC

40

Figure 3.4: Imputation performance captured via MAAPE and RMSE for each imputation

method across missingness scenarios, computed only on the missing values. Every column is

a different missingness mechanism, and each row is a single imputation metric. The y-axis

range differs between MAAPE and RMSE for a closer inspection of the performance under

each metric. Note that MAAPE is a percentage reported as a decimal value, while RMSE

is a non-negative decimal score.

41

Figure 3.5: Average predictive performance for each imputation method on the entire dataset

as-is for the predictive models across bootstraps. The true negatives, false positives, true

positives, and false negatives are all reported as counts. The remaining metrics are percent-

ages reported as decimal values. Note that the Brier score is in fact a loss, where smaller is

better.

42

Table 3.1: Accuracy Over Bins (only APnew)

Mechanism Percent Accuracy Over Bins

MAR 33.0 0.626

66.0 0.699

MCAR 33.0 0.804

66.0 0.842

MNAR 33.0 1.000

66.0 0.864

when using a random forest model. But in general, the baseline predictive methods produced

better results when using a logistic regression. Markedly, the PR-AUC and ROC-AUC for

MIDA almost exactly mirrored simple imputation no matter which predictive model was

used, which called into question whether MIDA offered much advantage beyond simple im-

putation for the downstream task on this dataset. The remaining three autoencoder-based

imputation methods performed similarly across both predictive models. The most calibrated

predictive models were trained on data imputed with either MICE or APnew. Across all

imputation methods, the logistic regression model offered tighter confidence intervals and

better Recall, but overall poorer performance regarding calibration (Brier score), Precision,

PR-AUC, and ROC-AUC. Do note that the Brier score acts as a loss, where a larger value

means poorer calibration. MICE imputation produced a very similar PR-AUC, whether us-

ing a logistic regression or a random forest model for prediction. KNN imputation produced

a very similar ROC-AUC, whether using a logistic regression or a random forest model for

prediction. Another point of interest was the relatively poor PR-AUC across all imputation

methods and predictive models. Upon closer inspection, we noticed that the precision was

extremely poor while recall was more acceptable. Both the logistic regression and random

forest struggled with false positives (i.e., Type I errors) on this dataset.

43

3.3.4 Takeaways

Autopopulus enabled us not only to easily implement multiple autoencoders with a consistent

interface and unified training pipeline, but also allowed us to explore their performance on

the same dataset and under different missingness scenarios, including MAR and MNAR.

We could identify patterns across missingness mechanisms, on the hypothesis that each

mechanism behaves differently. For example, when comparing imputation metrics across

methods we saw better imputation performance on data MNAR over data MAR across

imputation methods, even though MNAR is famously difficult to handle. In this case,

this observation might have been due to the steps Autopopulus took to simulate MNAR,

which could have been too simplistic compared to real-world series of events. Autopopulus

also allowed us to easily test which imputation methods would perform best in different

missingness scenarios. Per prior findings in the literature, under MCAR and MAR, MICE

consistently performed best, though sometimes only marginally. However, under MNAR

the VAE performed best. This finding may have been due to how we simulated MNAR

by specifying lower- and upper-bound cutoff thresholds on the missing variables themselves.

The encoder portion of a variational autoencoder produced means and standard deviations,

defining a normal distribution for each input. This likely made it “easier” for the VAE to

guess that the missing values were in the tails of the distributions, if its inferred means and

standard deviations were accurate enough.

Through Autopopulus, we were also able to investigate how the different imputation

methods might affect a predictive model’s ability to handle class imbalance. Though we at-

tempted to deal with class imbalance in the predictors by weighting samples, we did see the

imbalance severely affecting performance. It is likely the ROC-AUC was significantly larger

than the PR-AUC due to the large number of samples in the negative class (not experiencing

rapid kidney decline). Overall, we saw that no one imputation method significantly helped

remedy the missing data problem. Markedly, by comparing methods we identified the im-

putation method with the consistently largest errors, which turned out to be APnew. This

44

result was to be expected, as the bins produced by automated MDL discretization on this

dataset were wide. We do note that the predictive performance was for the unknown miss-

ingness scenario of the original dataset, as we did not evaluate the predictive performance

for each missingness scenario.

45

CHAPTER 4

Autopopulus

We previously built an initial form of Autopopulus, a novel open-source framework that en-

abled the design and evaluation of various autoencoder architectures for efficient imputation

on large datasets. Autopopulus implemented a wide variety of types of autoencoder and

demonstrated a workflow that helps users make an informed decision on an appropriate im-

putation method. We could use Autopopulus to identify not only which imputation methods

could most accurately impute on a large clinical dataset, but to also identify the imputation

methods that enabled downstream predictive models to achieve the best performance for a

given task. However, we explored autoencoder-led imputation under three different missing-

ness mechanisms, missing completely at random (MCAR), missing at random (MAR), and

missing not at random (MNAR), with little regard for mixed feature data.

After reading the work by Mohan and applying Autopopulus to other datasets, we real-

ized there were two key components missing from our framework and analysis that required

a deeper dive: the taxonomy of missingness scenarios, and handling mixed feature data. We

had previously implemented a very simple amputation scheme. However, this time we used

pyampute in order to impute under more granular missingness scenarios. Additionally, our

previous pipeline computed the loss separately based on feature type, but did not evaluate

the metrics based on feature type. We realized to properly evaluate on mixed feature data,

we needed to use different metric functions for the different feature types. We also previously

considered discretization a “novel” technique for imputation that we called APnew in Chap-

ter 3. With the new context of feature-type handling, discretization was not a new addition

46

to an otherwise undeviating pipeline, but rather a specific realization of a feature mapping

component. Under that view, we understood that the mixed data could be transformed to

have all continuous or all categorical features.

4.1 Updated Pipeline

In its mature form, Autopopulus consisted of a similar three-step pipeline: 1) the data

pipeline, 2) the imputation pipeline, and 3) the prediction pipeline. The data processing

portion of the Autopopulus workflow when investigating missing scenarios is illustrated in

the top-most bolded square, Fig. 4.1, labeled Data Pipeline. The imputation portion of the

Autopopulus workflow is illustrated in the bottom-most bolded square, Fig. 4.1, labeled

Impute Pipeline. Diamond blocks represent operations or models. The unfilled diamond

blocks with dotted lines represent operations that are applications of the operation block

they are connected to, trained with incoming data to the sister block. The dark squares on

all datasets represent missing values, and unfilled squares with solid lines represent imputed

values for originally missing ones. The prediction portion of the Autopopulus workflow is

illustrated in Fig. 4.2.

We reframe the pipeline in full while highlighting the major changes from its earlier

iteration.

4.1.1 Data Processing

First, we ingested a one-hot encoded dataset and the corresponding labels for the downstream

predictive task. For datasets with a fully-observed subset where we could ampute the data,

we separated the samples between the fully-observed subset and the remaining semi-observed

subset. The fully observed subset encapsulated all the samples in the original dataset that

had no missing values, while the remaining data were semi-observed: all the samples had at

least one value missing or unobserved.

47

When investigating different missingness scenarios, we used only the fully-observed sub-

set, where one copy of the data was saved as the ground truth, and the other copy was

amputed according to the given missingness scenario to produce input data with missing

values. In a special case of evaluation, we tested the trained imputer model on the remain-

ing semi-observed subset of data. In this case, we split the fully observed subset into train

and validation, and we designated the remaining semi-observed subset as test data. Other-

wise, we split the ground truth and input data into train, validation, and test splits. When

we were not investigating missingness scenarios, we used the entire original dataset as-is as

both the ground truth and the input data, and there were no subsets.

4.1.1.1 Ampute

We amputed the fully-observed subset of data via the pyampute package (refer to Sec. 4.2)

[SZS22a, SLV18]. Amputing masked or injected NaN (not a number) into the dataset accord-

ing to a specified pattern or missingness scenario.

Missingness Scenarios A missingness pattern or scenario was defined by a missingness

mechanism, the percentage of missing data, a score-to-probability function, and the set of

features that should be masked. If we chose the data to be MAR, we also included the set

of observed features to influence the missingness of the target to-be-masked features. The

missingness mechanisms were any of MCAR, MAR, or different versions of MNAR. Here,

MNAR alone referred to the scenario where the data were missing because of the values

themselves, making it not-recoverable. For the other two MNAR scenarios, we generated

a latent feature not based on any other features that explained the missingness of the to-

be-missing target features, making them recoverable. MNAR(Y) generated a latent feature

using a sample from a Yule-Simon distribution with α = 1.5. In clinical data, there tend

to be highly skewed categorical data (e.g., some procedures are more common than others),

and Yule-Simon allowed us to create a skewed discrete distribution. MNAR(G) generated a

48

latent feature using a sample from a standard normal Gaussian distribution N (0, 1). The

Gaussian distribution allowed us to create a continuous latent feature to ampute, as opposed

to the discrete latent feature from Yule-Simon. The percent missing requested resulted in

x% of the samples missing values.

Amputation Procedure pyampute would assign a missingness score to each sample by

computing a dot product between the sample and a set of weights for each feature, where the

missingness mechanism and features involved defined the weights. The score-to-probability

function then took the missingness score and converted the score into a probability for that

sample to have missing values. The framework would draw from a binomial distribution

B(n = 1, p) to convert the probability p of a sample to be missing values for the target

to-be-missing features into a missing indicator. pyampute then would apply the missingness

indicator, inserting NaNs for all the specified target features and samples.

4.1.1.2 Data Transform Setup

We then learned the parameters for the data transforms on the train split of the input data

and applied it to the train, validation, and test splits for both the input data and ground

truth. We could not use separately trained data transforms for the ground truth as it would

leak unseen (observed) data in the model training and would have left the two datasets

misaligned and incomparable. If the input data were semi-observed, as a subset or the entire

dataset, we set the data transforms using the observed values, which passed the missing

values forward untouched.

4.1.1.3 Scale Continuous

Same as before, we first applied minimum-maximum scaling on the continuous features,

where the minimum and maximum were obtained from the train split of the input data.

49

Usually, this scaling method is guaranteed to produce outputs between 0 and 1 in the input

dataset. But because there were unseen values in the ground truth data that were not

amputed, we could have produced values less than 0 and greater than 1 in the ground truth

dataset as a result.

4.1.1.4 Feature Map

After the continuous features were scaled, we optionally applied a feature mapping in order

to train the model on data in the same feature-type space, because data for continuous and

categorical features follow different distributions. We independently applied the following

feature mappings:

• No mapping; keep mixed categorical (binary and one-hot encoded multicategorical)

and continuous features to impute in mixed feature space.

• Discretize continuous features to impute entirely in categorical space.

• Target encode categorical features to impute entirely in continuous space.

Discretization We continued to use minimum description length (MDL) discretization.

Here, we did not impose a uniform distribution on the missing values after in order to keep

the feature mapping component aligned with its continuous counterpart. The lowest and

highest value-ranges learned by MDL were bounded by the minimum and maximum values

observed in the input dataset (0 and 1 after scaling). However, this time, when we applied

the learned bins, the bins at the edge of the ranges were unbounded at the low and high

ends, respectively. For example, if the smallest bin was [0, 0.2) and the largest was [0.829, 1],

the discretization rule applied for those bins were (−∞, 0.2) and [0.829,∞), respectively.

This rule allowed us to discretize both the input data and ground truth with equivalent bins,

using bins learned on the input dataset, even though the ground truth might have had values

outside the strictly bounded ranges learned on the input data.

50

Target Encoding Unlike our previous iteration, we included target encoding. Target

encoding would map each categorical value to a probability estimate based on the prediction

task labels, producing a continuous feature that correlates with the target [Mic01]. For each

categorical feature, categorical values for each sample n were encoded with a mixture of

the posterior probability of the target yn given the category cn Pr(yn | cn) and the prior

probability of the target Pr(yn).

4.1.2 Imputation

We passed the scaled and potentially feature-mapped data and ground truth to the autoen-

coder model. However, autoencoders cannot inherently handle missing values, so we first

temporarily filled in missing values in the input data with 0. In previous work, we also

tried temporarily filling values with a per-batch simple imputation (mean impute contin-

uous features and mode impute categorical features) to enable Autopopulus to implement

and compare existing autoencoder-led imputation literature. However, we only filled missing

values with 0 in this work to disentangle the performance of the autoencoder for imputation

with the simple imputation, as we saw in Sec. 3.3.4.

4.1.2.1 Autoencoder Architecture

We used Autopopulus to flexibly build many types of autoencoders. Autoencoders may be

adjusted by:

• The number of layers (depth) and the size of each layer (overcomplete vs. undercom-

plete).

• Variational structure that adds two layers at the code index to output the learned

means and log-variances, transforming the autoencoder into a generative model.

• Non-linear activation functions.

51

• Deep learning regularization techniques such as interlayer dropout or batch normaliza-

tion, or corruption of the input layer either by batch-swap or replacing values with 0

(denoising) [IS15b, Mue].

In this iteration, we introduced batch normalization and batchswap corruption, while

the rest were also parameters available for flexibly building an autoencoder in the previous

iteration of Autopopulus.

4.1.2.2 Loss

We passed the output of the autoencoder model on the input data into the loss. This time,

we treated the binary and one-hot encoded features differently. The reconstruction loss

(Eq. 4.1a) could be any differentiable function for each loss component. We weighed each

component in Eq. 4.1a equally. When the autoencoder was variational, we added an extra

Kullback-Leibler Divergence (KL Divergence) error term in addition to the reconstruction

loss (Eq. 4.1b) [KL51].

Lreconstruction = Lmulticategorical + Lbinary + Lcontinuous (4.1a)

Lvariational = Lreconstruction + LKL-div (4.1b)

We used Cross Entropy (CE) for each one-hot encoded multicategorical feature, Binary

Cross Entropy (BCE) for binary features, and element-wise (EW) Mean Arctangent Ab-

solute Percent Error (MAAPE) for continuous features (see 4.1.2.4 for more on EW met-

rics) [KK16b]. If we target encoded the features so that all features were continuous, then

Lmulticategorical + Lbinary = 0 and Lreconstruction = Lcontinuous. If we discretized the features to

be categorical, then Lcontinuous = 0 and Lreconstruction = Lmulticategorical + Lbinary. If we applied

a feature map, the loss was computed in feature-mapped (target encoded or discretized)

space, not in the original feature space. We wanted to train the model in mapped space, and

additionally, the feature mapping inversions were not differentiable. When we did not use

the fully-observed subset to train the model, the ground truth would have missing values.

52

In this case, we only computed the loss on the observed values, training the model on the

data we did have.

4.1.2.3 Training

We ran training on the training split with the Adam optimizer [KB14]. We tuned the model

using the validation split on the number of layers and size of layers, learning rate, L2 penalty,

and batch normalization layers using automatic sweep of hyperparameters with asynchronous

hyberband scheduling (ASHA) [LJR18]. While Autopopulus supports batch normalization

and dropout, we only used batch normalization for the purposes of our experiments as it is

not advised to use both together, and batch normalization helps the model converge more

quickly [LCH18]. Additionally, we manually tuned the model on the maximum number of

epochs, early stopping patience, activation function, and batch-size.

4.1.2.4 Model Output and Metric Evaluation

If we applied a feature map, we produced the output and evaluated the imputation perfor-

mance in both the feature-mapped and original feature space. All our metrics were evalu-

ated under two different reductions: column-wise (CW) and EW, which could potentially

be different. Otherwise, the metrics were always in the original feature space. If we were

evaluating in the original feature space when the data were feature-mapped, we first applied

a feature-mapping inversion to the model output. Note that it was unnecessary to invert the

original input data and ground truth, as we already had those data in the original feature

space. The following steps applied to both mapped and original-space metrics. We used the

sigmoid function for all binary features and the softmax function for each one-hot encoded

multicategorical feature. We kept the originally observed values in the input data as-is, and

we only filled in values from the model where they were missing in the input data. Note

that this diverged from how the loss was computed on all data, which was meant to train

53

the model to learn the data manifold. Conversely, the task of imputation only required us to

estimate the missing values. We then compared these imputed data to the (either original

or mapped) scaled ground truth data to evaluate imputation performance.

Column-wise (CW) versus Element-wise (EW) Metrics Assume a dataset D of N

samples and M features, where all values are observed, notated with (obs), except for three

values. The difference between the true values in D and the imputed dataset D̂ results in

errors yi:

D̂− D =

· · · y1 (obs) y3 · · ·

· · · y2 y4 · · ·
...

...
...

...

 (4.2)

The column-wise (CW) RMSE for only the missing values in this example would be√
y22

N−1
+

√
y23+y24

N

M
(4.3)

On the other hand, the element-wise (EW) RMSE for only the missing values in this

example would be: √
y22 + y23 + y24
N ·M − 1

(4.4)

If y2 = 4, y3 = 9, and y4 = 2, then the CW-RMSE would be 1.753, while the EW-RMSE

would be 3.030.

The scaled CW-MAAPE for only the missing values in this example would be

2

π

arctan
(
| y2
d2+ϵ

|
)

N−1
+

arctan
(
| y3
d3+ϵ

|
)

N

M
(4.5)

On the other hand, the scaled EW-RMSE for only the missing values in this example

would be:

2

π

arctan
(
| y2
d2+ϵ

|
)
+ arctan

(
| y3
d3+ϵ

|
)
+ arctan

(
| y4
d4+ϵ

|
)

N ·M − 1
(4.6)

54

If under the same errors, then the CW-MAAPE would be 0.333 while the EW-MAAPE

would be 0.273.

Feature Map Inversion To invert discretized data, we selected the bin with the highest

score or pseudo-probability and took the mean of the range. Recall that the bins at the

lowest and highest ends were unbounded when applying discretization to both the input

data and ground truth. However, upon inversion of the model output, we used the strict

bounds to produce a continuous value from the bin. Concretely, if the smallest bin was

[0, 0.2) and the largest was [0.829, 1], the inversion for those bins were 0.1 and 0.9145.

To invert target encoded data, we selected the encoded value most similar to the model

output value based on L1 distance and then replaced the encoded value with its corresponding

category. For example, consider the case where we mapped category A to 0.1, category B

to 0.5, and category C to 0.9, and the model output for that feature was 0.428. We would

invert the value 0.428 to category B, as 0.5 would be the closest matching encoded value

based on L1 distance.

Validity of Discretization Inversion We cannot directly apply the discretization learned

on the train split of the input data on the ground truth when amputing because it has unseen

or observed value that are missing in the input data.

Given some mock data in Table 4.1, say a discretizer learns the following bins for age:

[10, 15), [15, 20), and [20, 25]. Note that the ground truth has values 59 and 3 that are unseen

in the input data, which are both outside the ranges of the strict 2-sided bins. Attempting to

directly apply these ranges will result in the data in Table 4.2, where the values not within

any ranges are unable to be inverted and are replaced with NaN. If we unbound the edge

bins such that the discretization instead applies < 15, [15, 20), and ≥ 20, the discretization

will result in Table 4.3.

Semantically, ground truth has the same number of bins, but the outer edges represent

55

Table 4.1: Example of Age Data

Ground Truth Age Data Age

59 NaN

10 10

25 25

3 NaN

Table 4.2: Example of Age Data Discretized with Bounded Bins

Ground Truth Age Discretized Data Age Discretized

NaN NaN

[10, 15] [10, 15]

[20, 25] [20, 25]

NaN NaN

a potentially wider range of values than for the input data (i.e., contains the sub-range that

is observed in the input data). For the same discretization of the ground truth (if the bins

were literally larger), the input data would still fall into the same bin and be discretized the

same way. In other words, the unbounded version still refers to the same categorical classes

for both ground truth and the input data, however the input data only has access to its own

observed minimum and maximum bounds that are realized upon feature inversion.

For example, if the model estimates that the age for the first sample falls in the bin ≥ 20,

upon inversion the model will map that bin to the continuous value 22.5 as the mean of the

strict bounded bin [20, 25]. Although the original value was 59 and dramatically far away

from the guessed 22.5, this discrepancy is acceptable because it reflects the blind spots to

the discretization caused by amputation.

56

Table 4.3: Example of Age Data Discretized with Unbounded Bins

Ground Truth Age Discretized Data Age Discretized

≥ 20 NaN

< 15 < 15

≥ 20 ≥ 20

< 15 NaN

4.1.3 Prediction

We applied the tuned and trained autoencoder imputation model to the train, validation,

and test splits. If we applied a feature map, we only saved the imputed data in the original

space, not the mapped space. We passed the scaled imputed data to a predictor model,

which needed to handle mixed feature types (as the data are in the original space). We

trained the predictor on the train set, tuned on the validation set, and evaluated on the test

set. We then compared the predictions to the corresponding labels to evaluate downstream

predictive performance.

4.1.4 Implementation

We implemented the system1 using Python, Pandas [McK10] and NumPy [Oli06] for data

processing, Scikit-learn [PVG11] for baseline models and basic data transforms such as

minimum-maximum scaling, lightgbm [KMF17] for the LGBM models, Orange [DCE13]

for MDL discretization, and category encoders for target encoding, PyTorch-Lightning

[PGM19, Fa19] for deep learning model implementation and training execution, Ray [MNW18]

for model tuning, pyampute for amputation [SZS22b], guildai [Smi23] and MLflow [ZCD18]

for experiment tracking, and hypothesis [MHm19] for unit testing. All methods were de-

1The code for the Autopopulus framework is open-source and available at
https://github.com/davzaman/autopopulus.

57

https://github.com/davzaman/autopopulus

terministic where allowed by the framework/hardware with a seed of 42.

4.2 Amputation

Amputation is the inverse of imputation; it is the process of masking or removing data,

and therefore introducing missingness. To properly evaluate and characterize imputation

models, we needed to be able to control the missingness scenarios under which those models

would impute. Multivariate amputation was originally developed by Schouten et al. in

the statistical language R with the function ampute [SLV18] in the package mice [VG11].

pyampute2 implements multivariate amputation in Python, and extends it with additional

functionality [SZS22c]. We assisted Schouten et al. in transferring the functionality to

Python and expanding features.

We were able to impose a single type of missingness for chosen features jointly at vary-

ing amounts of missingness in order to characterize imputers under particular missingness

mechanisms. However, in real-world processes and consequently in real-world data, there is

usually a multitude of missingness mechanisms occurring at once on different combination

of variables. This flexible framework also allowed us to dictate multiple patterns of missing-

ness within a single dataset to evaluate imputation on these mixed-mechanism missingness

scenarios. We are currently developing future features and methodology.

4.3 CURE-CKD Updated

While the target task and features did not change, when we refreshed the CURE-CKD

Registry, the statistics of the data changed. Instead of 12 years of data from 2006-2017, our

data now included 15 years of data from 2006-2020. We provide a more detailed breakdown

of the updated CURE-CKD Registry below.

2The implementation is available at https://rianneschouten.github.io/pyampute/.

58

https://rianneschouten.github.io/pyampute/
https://rianneschouten.github.io/pyampute/

Site Source Providence UCLA

Patient Cohort At-Risk CKD At-Risk CKD

Rapid Decline No RKFD 1,924,650

(99.49%)

447,970

(98.29%)

380,968

(99.60%)

86,452

(98.68%)

RKFD 9,957

(0.51%)

7,813

(1.71%)

1,520

(0.40%)

1,156

(1.32%)

Table 4.4: Details the counts and percentages of outcome breakdown of RKFD for patients

across UCLA and PSJH, and whether they have or are at-risk for CKD.

4.3.0.1 Descriptive Statistics

Table 4.4 elucidates the breakdown of outcomes per site source and CKD diagnosis, while

Fig. 4.3 shows a deeper breakdown by race and ethnicity across both sources of data only

for CKD patients. On a macro-level, there were N = 2, 860, 486 patients in the registry

across the two healthcare systems. UCLA patients made up 16.43% (N = 470, 096) of those

patients. In total, there were 543, 391 (19%) patients with CKD, and 20, 446 (0.71%) patients

that experienced RKFD, making this dataset largely imbalanced.

During the entry period there were 310 features total, 308 features missing less than 89%

data, and 41, 611 CKD patients who were not missing any data. Of those fully-observed

patients, 318 were from UCLA (0.76%), 41, 293 were from PSJH (99.24%), and 877 (2.11%)

experienced rapid decline while 40, 734 (97.89%) did not. When the data were discretized

into categorical features (see 4.1.1.4), there were 336 features, and when the data were target

encoded into continuous features (see 4.1.1.4), there were 31 features.

Missingness Profile While the overall dataset was missing 20.15% of data, there were

high levels of missingness across certain patients and features in the data. For example, Fig.

4.4 shows systolic blood pressure and A1c, both significant clinical risk factors for CKD,

59

were missing a significant number of values even in the earlier years of the registry where

patient dropout was much less. Other features were much less sparse, such as age or the

count of ambulatory visits. A deeper breakdown is shown in Fig. 4.5.

4.4 Evaluating CURE-CKD Under a Microscope

We evaluated Autopopulus across ten missingness scenarios, five autoencoder variations,

and two baseline imputation methods. Compared to our first application of Autopopulus

to the CURE-CKD dataset, we were more focused on predictive performance under the

missingness scenarios rather than separately evaluating predictive performance on the entire

dataset. Therefore, while functionally, we could execute the same analyses before, we used

a different: flow of data, metric scheme, baseline methods, and predictive models.

4.4.1 Missingness Scenarios

Like before, we amputed at low and high percent missingness (33% and 66%, respectively)

across all mechanisms. However, this time, we investigated five missingness mechanisms:

MCAR, MAR, MNAR, MNAR(Y), and MNAR(G). MCAR and MAR here both refer to

their normal definitions. However, we broke up MNAR into recoverable and non-recoverable

scenarios (see Sec. 4.1.1.1).

To convert the score into a probability of being missing, we used sigmoid-mid and sigmoid-

tail. The former assigned higher probabilities to be missing to more average scores (in the

middle). In comparison, the latter assigned higher probabilities to be missing to the more

extreme scores (in the tails).

We selected the HbA1c entry period mean and hypertension indication at study entry to

be missing. When data were MAR, we used the age at entry and the average ambulatory

visit count at entry period (the first 90 days of observation) to jointly influence the miss-

ingness of the HbA1c and hypertension features. The features we selected to be missing are

60

clinically important factors for predicting RKFD, and the features we selected to influence

the missingness are reasonable causal factors validated by nephrologists.

As a summary experimental grid for exploring missingness scenarios with more scrutiny

on the CURE-CKD dataset:

• Percent missing: 33%, 66%.

• Missingness mechanism: MCAR, MAR, MNAR, MNAR(Y), MNAR(G).

• Score to probability function: sigmoid-mid, sigmoid-tail.

• Features missing: HbA1c mean during entry period, hypertension indication at study

entry.

• Observed features that influence missingness: age at entry, ambulatory visit count

during entry period.

4.4.2 Imputer Models and Feature Mappings

Whereas before, we implemented other existing instantiations of autoencoder-led imputation

in the literature, here, we compared generic autoencoder variations. We evaluated across a

vanilla autoencoder, denoising autoencoder (DAE), autoencoder with batchswap corruption,

variational autoencoder (VAE), and denoising variational autoencoder (DVAE). For all the

autoencoder methods except the variational ones (VAE and DVAE), we tried all three fea-

ture spaces: mixed categorical and continuous, categorical only through discretization, and

continuous only through target encoding. However, as VAEs all assume each feature follows

a normal distribution, it imposes that all features must be continuous. Therefore, for VAE

and DVAE, we only applied target encoding and did not allow mixed or categorical-only

feature spaces.

We limited training to 100 epochs, with early stopping patience of 2, rectified linear

unit (ReLU) activation function, and batch size of 256. These were determined by manually

61

tuning, otherwise the following were dynamically tuned per experiment. We tuned the hidden

layers between {[0.5, 0.25, 0.5], [0.5], [1.0, 0.5, 1.0], [1.5], [1.0, 1.5, 1.0]} where the decimal

values represent a fraction of the original sample size. For example, [0.5, 0.25, 0.5] would

have two hidden layers in the encoder: one to reduce from all N features to 0.5 · N , then

another to reduce that in half again 0.25 ·N . The decoder would mirror that in reverse. We

tuned the inclusion of batchnorm regularization. We tuned the learning rate, sampling from

a log-uniform space between 1 · 10−5 and 1 · 10−1. Lastly, we tuned the L2 penalty sampling

from a log-uniform space between 1 · 10−5 and 1. We sampled from the tuning grid for 30

trials for each experiment.

4.4.2.1 Baseline Imputation Methods

Our baseline methods for imputation similarly included simple imputation and KNN, how-

ever, since we needed to handle mixed feature data we removed MICE. Both simple impu-

tation and KNN have continuous and categorical versions that can be applied. We did not

employ feature mappings, as these methods served as a basic comparison. KNN for contin-

uous features was tuned between using [3, 5, 10] nearest neighbors and treating all neighbors

uniformly versus weighing their contribution by distance. KNN for categorical features only

used the nearest neighbor but was tuned on uniform versus distance weights. The data

processing, imputation, and prediction pipeline look similar to Figs. 4.1 and 4.2, however,

there was no feature mapping and no inverse feature mapping step, no fill 0 step, and no

loss.

4.4.3 Evaluation

Imputation Performance We evaluated the imputation models on the validation and

test splits of the data in both original and mapped space. All metrics, except for the loss,

were computed on the missing values only. All metrics have a continuous and categorical

62

component, where if we applied a feature map, the corresponding non-existing component

will have become 0. We computed the Root Mean Squared Error (RMSE) and Mean Arc-

tangent Absolute Percent Error (MAAPE) for continuous features and categorical error for

categorical features. The MAAPE was scaled between [0, 1] by multiplying by 2
π
. If we

applied a feature-mapping, we computed the metrics in both the mapped feature space and

the original feature space (after inverting). Additionally, we computed the metrics both

column-wise (CW) and element-wise (EW). CW metrics were first aggregated per column

and then averaged over all columns. EW metrics were aggregated over all elements.

We ran an extra set of experiments to evaluate the best imputation model per missingness

mechanism for imputation performance, which we did not do before. We ran bootstrap

evaluation of the imputation model on the test set from the fully observed model on 100

bootstrap samples. We limited to the best per mechanism instead of for all models in the

interest of time and storage limitations.

When bootstrap evaluating, we report 95% confidence intervals as symmetric intervals

with a magnitude of 1.96 · standard error.

Imputation Performance Legend Key Each legend for graphs depicting imputation

performance follows the same structure, described as follows. Each color represents a dif-

ferent feature space: brown corresponds to mixed continuous and categorical, blue to target

encoded, and red to discretized. Each shape size represents the amount of missingness:

smaller for 33% and larger for 66%. Each shape represents a different score to probability

function: a filled in circle for sigmoid-mid and a hollow X for sigmoid-tail.

Prediction Performance We similarly used random forest (RF) as a predictor model,

however, instead of a logistic regression we used a light gradient-boosting machine (LGBM).

We picked RF and LGBM as they can handle mixed features and perform well across a wide

set of tasks. The RF model was tuned over the grid: [5, 10, 15, 20, 25, 30, 35] estimators,

63

and a maximum depth between 3 and 10 inclusive. The LGBM model was tuned over the

grid: [5, 10, 15, 20, 25, 30, 35] estimators, a maximum depth between 3 and 10 inclusive, and

a learning rate of [1 · 10−5, 1 · 10−3, 1 · 10−1]. Like before, we bootstrapped our predictive

performance by bootstrap sampling the model outputs 100 times and evaluating (test-set

bootstrap only).

While we did not run predictive performance experiments on the entire dataset as-is

as before, we ran an extra set of experiments to evaluate the best autoencoder imputation

model per missingness mechanism for predictive performance. To mirror the previous ex-

periments more closely to inform predictive performance changes based on the imputation

method chosen, we retrained the best autoencoder model per missingness mechanism on the

fully observed subset and applied it to the remaining semi-observed subset for downstream

prediction.

Predictive Performance Legend Key Each legend for predictive performance follows

the same structure, described as follows. Each color represents a different feature space:

brown corresponds to one-hot mixed continuous and categorical, blue to target encoded,

and red to discretized. Each shape size represents the amount of missingness: smaller for

33% and larger for 66%. Each shape represents a different predictor model: a filled in plus

sign for LGBM and a hollow diamond for RF. The 95% confidence intervals are represented

by the horizontal bars.

4.4.3.1 Imputation Performance

We compared imputation performance across multiple parameters. The parameters from

the missingness scenarios were the mechanism, missing percentage, and score to probability

function. The parameters from the imputation methods were the models and the feature

mappings. Lastly, the parameters from the evaluation methods were the different continuous

feature metrics (since we only used one metric for categorical features), reduction methods,

64

and feature spaces. When controlling for a particular metric characteristic, the default would

be the CW RMSE metric in the original space. For example, when comparing the different

continuous feature metrics, they would be CW in the original space, but when comparing

CW and EW metrics, they would be MAAPE in the original space. We chose this default

as CW is semantically more intuitive as a reduction for metrics than EW, and MAAPE is

differentiable and therefore also used in the loss compared to RMSE, and we were interested

in imputing the original dataset, not the mapped version. All metrics are reported on the

test set except for the loss, which is reported for the validation set.

Imputation performance was slightly different depending on the imputation method used,

and varied depending on the metric used (Fig. 4.6). Of all the imputation methods, the KNN

tended to perform the worst, with the autoencoders generally outperforming both baseline

models. Of the autoencoder methods, the vanilla autoencoder tended to perform the best

and variational flavors tended to perform the worst. Similarly, those that target encoded

the categorical features tended to have the worst imputation performance, while leaving the

features mixed tended to perform the best or similarly to discretizing continuous features.

With a few rare exceptions, the models performed better when fewer data were missing.

The baseline methods were generally very similarly behaved across missingness mechanisms,

while there were slight variations in performance for the autoencoder imputers across the

mechanisms. When target encoding, the vanilla and batchswap autoencoder methods that

impute under sigmoid-tail tended to perform worse than sigmoid-mid under MNAR(Y) and

MNAR(G). However, this trend reversed for the other mechanisms.

Imputation Performance by Metric (Fig. 4.6) Under MAAPE, the baseline methods

performed more poorly relative to the other methods than when evaluated using RMSE for

the continuous features. Under RMSE, KNN performed similarly for 33% and 66% missing,

while there was a more pronounced difference under MAAPE. The autoencoder methods

had more consistent trends between the two metrics, though the performances were slightly

65

Table 4.5: Bootstrapped Test Imputation Performance for Best Autoencoder Imputation

Methods per Mechanism

Mechanism
Percent

Missing

Score to

Probability

Missing

Method
Feature

Mapping

MAAPE &

CategoricalError

MCAR 33.0 Sigmoid (Mid) Batchswap Mixed Features 0.5225 +/- 0.0017

MAR 33.0 Sigmoid (Mid) Vanilla Mixed Features 0.5093 +/- 0.0018

MNAR 33.0 Sigmoid (Mid) Vanilla Mixed Features 0.5229 +/- 0.0019

MNAR(G) 33.0 Sigmoid (Mid) Vanilla Mixed Features 0.5131 +/- 0.0018

MNAR(Y) 33.0 Sigmoid (Mid) Vanilla Mixed Features 0.5016 +/- 0.0018

more spread out for RMSE.

Imputation Performance by Metric Reduction (Fig. 4.7) It seems that for CURE-

CKD, there were no differences between CW and EW reductions, even though, in theory,

they can produce different values.

Imputation Performance by Feature Space (Fig. 4.8) There were no mapped per-

formances for the baselines as we did not use feature mappings for the baseline models.

We observed a notable improvement in performance for the target encoded methods in the

mapped space, or rather, a drop in performance after inverting to the original space. In the

mapped space, the target encoded methods generally outperformed their discretized coun-

terparts. There seemed to be a spike in performance loss for VAE under MNAR(Y). Overall,

the error in the mapped space was less than in the original space.

Bootstrapped Imputation Performance (Table 4.5) We selected the best performers

based on the default metric: the CW MAAPE and categorical error metric in the original

66

feature space. We saw the worst performance over each mechanism under MNAR. The

second worst performance was under MCAR. All models tended to have very similar 95%

confidence intervals, though the widest was under MNAR. The confidence intervals were

tight relative to the averages. As noted above, the vanilla autoencoder performed best under

most mechanisms, except for batchswap. We also observed that the lower missing percentage

tended to have a lower error, as well as metrics in the mixed feature space.

Loss (Fig. 4.9) We report the last recorded validation loss for the autoencoder methods

in the mapped space. The target encoded methods generally converged to the smallest loss,

while the discretized methods usually struggled the most.

Training Convergence with Early Stopping (Fig. 4.10) The models tended to con-

verge most quickly when data were MCAR, except for discretized data missing at 66% under

sigmoid-mid. The variational autoencoders tended to converge more quickly than the other

models. This trend did not hold for target encoded data imputed by the other autoencoder

types. There were more models that took longer to converge under MNAR and MNAR(Y).

Training Speed (Fig. 4.11) The most noticeable difference in training speed for the

autoencoder methods was dictated by the feature mapping chosen. The slowest training was

driven by discretization, followed by target encoding, and then the fastest training was in

the mixed feature space where there was no feature mapping and inversion to be done. The

feature mappings were also most variable in the confidence intervals of time following the

same order, with discretized imputation being the most variable, followed by target encoding,

and then finally mixed feature imputation with very little variability in training time. Across

the autoencoder methods, batchswap tended to be a little slower than the rest.

67

4.4.3.2 Predictive Performance

Predictive performance (Fig. 4.12) proved to be different depending on the imputation

method used. The baseline models led to the best predictive performance, and LGBM was

generally the better predictor. The confidence intervals for all the methods were the tightest

for the baseline methods. Simple imputation led to the best PR-AUC when data were MAR

compared to the other missingness mechanisms. However, imputation performance differ-

ences were not visibly distinguishable for ROC-AUC and the Brier score across missingness

mechanisms. Each of the autoencoder method configurations varied greatly in performance

for each missingness mechanism. The PR-AUC was quite poor compared to the ROC-AUC.

The baseline models had very slight differences in ROC-AUC and PR-AUC under the

different amounts of missingness. However, when fewer data were missing, the calibration of

the predictive models improved greatly. Interestingly, the LGBM was better calibrated under

simple imputation compared to the RF, but less calibrated under KNN imputation. For the

denoising, batchswap, and vanilla autoencoders, target encoding with RF tended to lead

to some of the poorest ROC-AUC performance across mechanisms, except for MNAR(G).

The variational methods had less spread of ROC-AUC and Brier-score performance across

missingness scenarios, however they were equally spread out for PR-AUC. There was no

consistent pattern between the feature mapping and Brier-score for the autoencoder methods.

The bootstrapped results on the best autoencoders on the semi-observed remaining subset

(Table 4.6) similarly showed LGBM outperforming RF. The LGBM performed best under

MCAR and MNAR and worst under MNAR(Y), with the widest 95% confidence interval

under MCAR, MNAR, and MNAR(Y). The RF performed best under MNAR and worst

under MCAR, with the widest 95% confidence interval under MNAR.

68

Table 4.6: Predictive Performance on Best Autoencoder Imputation Methods per Mechanism

on Semi-Observed Remaining Subset

Mechanism Percent

Missing

Score to

Probability

Missing

Method Feature

Mapping

Predictor ROC-AUC

MCAR 33.0 Sigmoid

(Mid)

Batchswap Mixed

Features

LGBM 0.7260 +/-

0.0005

RF 0.4887 +/-

0.0006

MAR 33.0 Sigmoid

(Mid)

Vanilla Mixed

Features

LGBM 0.6961 +/-

0.0004

RF 0.5448 +/-

0.0006

MNAR 33.0 Sigmoid

(Mid)

Vanilla Mixed

Features

LGBM 0.7268 +/-

0.0005

RF 0.6558 +/-

0.0007

MNAR(G) 33.0 Sigmoid

(Mid)

Vanilla Mixed

Features

LGBM 0.6961 +/-

0.0004

RF 0.5448 +/-

0.0006

MNAR(Y) 33.0 Sigmoid

(Mid)

Vanilla Mixed

Features

LGBM 0.6319 +/-

0.0005

RF 0.6046 +/-

0.0006

69

4.4.4 Model Selection

On the CURE-CKD dataset, we aimed to predict RKFD on CKD patients. Despite the

various trends in imputation performance, we saw the best predictive performance when we

simple-imputed the data, and particularly when using the LGBM predictor. Due to the

simple imputation with the LGBM predictor leading to the best performance across ROC-

AUC, PR-AUC, and the Brier-score, we would select that combination moving forward for

that dataset and predictive task. If we only cared about imputation, we would likely choose

the vanilla autoencoder without any feature mapping. This imputation scheme consistently

achieved low errors across missingness scenarios and different evaluation metrics, and trained

the fastest.

70

Original Dataset

Data Label

Filter

Fully-Observed Subset
Data Label

Remaining Semi-
Observed Subset
Data Label

Ground
Truth

Masked
Data

Copy Ampute

Scale
Continuous

Scale
Continuous

Feature
Map

Feature
Map

Data Transforms

Fill 0

Autoencoder
Imputer

Scaled
Mapped
Imputed

Data

Feature
Map

Inversion

Scaled
Imputed

Data

Mapped
Imputation

Performance

Imputation
Performance

Data
Pipeline

Impute
Pipeline

Figure 4.1: Illustration of the data processing and imputation steps of the updated Au-

topopulus workflow when a fully observed subset of the data was available, and we applied

a feature mapping.

71

LabelScaled Imputed Data

Predictor

Predicted
Labels

Predictive
Performance

Figure 4.2: Illustration of the prediction step of the Autopopulus workflow.

72

4297 28731 31498 3432
63022

387790

96 685 694 147 1081 6001
American Indian or Alaska Native

Asian
Black or African American

Native Hawaiian or Other Pacific Islander

Unknown

White or Caucasian

0

100k

200k

300k

400k
No RKFD
RKFD

Ethnicity

co
un

t

286437

247897

4446 4523

Female Male
0

50k

100k

150k

200k

250k

300k
No RKFD
RKFD

Sex

co
un

t

Figure 4.3: The counts of the number of CKD patients at both UCLA and PSJH with and

without RKFD broken down by ethnicity and sex.

73

Entry 1 2 3 4 5 6 7 8 9 10 11 12 13

0

20

40

60

80

100

Systolic Blood Pressure
HbA1c
ACEI and ARBs
Ambulatory Visits
Age

Year

Pe
rc

en
t M

is
si

ng

Figure 4.4: Percent of missing data for all patients across time. For all years of the study, a

large portion of patients were missing their systolic blood pressure and A1c.

74

Figure 4.5: Missing values visualized in the CURE-CKD dataset at the entry period. The

dark blocks represent observed values, while otherwise white or empty blocks represent miss-

ing values.

75

Simple

KNN
DVAE

VAE
DAE

Batchswap

Vanilla

0.5

0.55

0.6

Simple

KNN
DVAE

VAE
DAE

Batchswap

Vanilla

0.5

0.55

0.6

Simple

KNN
DVAE

VAE
DAE

Batchswap

Vanilla

0.5

0.55

0.6

Simple

KNN
DVAE

VAE
DAE

Batchswap

Vanilla

0.5

0.55

0.6

Simple

KNN
DVAE

VAE
DAE

Batchswap

Vanilla

0.45

0.5

0.55

0.6

0.5

0.6

0.7

0.5

0.6

0.7

0.5

0.6

0.7

0.55

0.6

0.65

0.7

0.75

0.5

0.6

0.7

MCAR MAR MNAR MNAR(G) MNAR(Y)

R
M
SE&

C
ategoricalError

M
A
A
PE&

C
ategoricalError

Feature Mapping
Mixed Features Target Encode Discretize

Percent Missing
33% 66%

Score to Probability Function
Sigmoid-mid Sigmoid-tail

Figure 4.6: Imputation performance for the mixed column-wise (CW) metrics in original

feature space on the originally missing values on the test split of the CURE-CKD dataset.

Each metric is a row, and each column is a missingness mechanism. The mixed feature-space

metric name is represented by <continuous metric>&<categorical metric>. The x-axis

represents each imputation method, including both baselines and autoencoders. The y-axis

represents the metric value. See 4.4.3 for more.

76

Simple

KNN
DVAE

VAE
DAE

Batchswap

Vanilla

0.5

0.6

0.7

Simple

KNN
DVAE

VAE
DAE

Batchswap

Vanilla

0.5

0.6

0.7

Simple

KNN
DVAE

VAE
DAE

Batchswap

Vanilla

0.5

0.6

0.7

Simple

KNN
DVAE

VAE
DAE

Batchswap

Vanilla

0.5

0.6

0.7

Simple

KNN
DVAE

VAE
DAE

Batchswap

Vanilla

0.5

0.6

0.7

0.5

0.6

0.7

0.5

0.6

0.7

0.5

0.6

0.7

0.5

0.6

0.7

0.5

0.6

0.7

MCAR MAR MNAR MNAR(G) MNAR(Y)

EW
C
W

Feature Mapping
Mixed Features Target Encode Discretize

Percent Missing
33% 66%

Score to Probability Function
Sigmoid-mid Sigmoid-tail

Figure 4.7: Imputation performance for the mixed Mean Arctangent Absolute Percent Error

(MAAPE) metric combined with categorical error on both column-wise (CW) and element-

wise (EW) metrics in the original feature space on the originally missing values on the test

split of the CURE-CKD dataset. Each metric is a row, and each column is a missingness

mechanism. The x-axis represents each imputation method, including both baselines and

autoencoders. The y-axis represents the metric value. See 4.4.3 for more.

77

Simple

KNN
DVAE

VAE
DAE

Batchswap

Vanilla

0.5

0.6

0.7

Simple

KNN
DVAE

VAE
DAE

Batchswap

Vanilla

0.5

0.6

0.7

Simple

KNN
DVAE

VAE
DAE

Batchswap

Vanilla

0.5

0.6

0.7

Simple

KNN
DVAE

VAE
DAE

Batchswap

Vanilla

0.5

0.6

0.7

Simple

KNN
DVAE

VAE
DAE

Batchswap

Vanilla

0.5

0.6

0.7

0.1
0.15
0.2
0.25
0.3

0.15
0.2
0.25
0.3

0.15
0.2
0.25
0.3

0.15
0.2
0.25
0.3

0.1

0.2

0.3

0.4
MCAR MAR MNAR MNAR(G) MNAR(Y)

original
m
apped

Feature Mapping
Mixed Features Target Encode Discretize

Percent Missing
33% 66%

Score to Probability Function
Sigmoid-mid Sigmoid-tail

Figure 4.8: Imputation performance for the mixed CWMAAPE combined with categorical

error metric in both the original and mapped feature space on the originally missing values

on the test split of the CURE-CKD dataset. Each feature space is a row, and each column

is a missingness mechanism. The x-axis represents each imputation method, including both

baselines and autoencoders. The y-axis represents the metric value. See 4.4.3 for more.

78

DVAE
VAE

DAE
Batchswap

Vanilla

0

2

4

6

DVAE
VAE

DAE
Batchswap

Vanilla

0

2

4

6

DVAE
VAE

DAE
Batchswap

Vanilla

0

2

4

6

DVAE
VAE

DAE
Batchswap

Vanilla

0

2

4

DVAE
VAE

DAE
Batchswap

Vanilla

0

2

4

6

MCAR MAR MNAR MNAR(G) MNAR(Y)

loss

Feature Mapping
Mixed Features Target Encode Discretize

Percent Missing
33% 66%

Score to Probability Function
Sigmoid-mid Sigmoid-tail

Figure 4.9: Last recorded validation loss in the mapped feature space on all values only in

the CURE-CKD dataset. Each column is a missingness mechanism. The x-axis represents

each autoencoder imputation method; there are no baselines, as those are trained differently.

The y-axis represents the metric value. See 4.4.3 for more.

DVAE
VAE

DAE
Batchswap

Vanilla

0

50

100

DVAE
VAE

DAE
Batchswap

Vanilla

0

50

DVAE
VAE

DAE
Batchswap

Vanilla

0

50

100

DVAE
VAE

DAE
Batchswap

Vanilla

0

50

DVAE
VAE

DAE
Batchswap

Vanilla

0

50

100
MCAR MAR MNAR MNAR(G) MNAR(Y)

epoch

Feature Mapping
Mixed Features Target Encode Discretize

Percent Missing
33% 66%

Score to Probability Function
Sigmoid-mid Sigmoid-tail

Figure 4.10: Number of final epochs for training convergence when training with a maximum

of 100 epochs, and early stopping with patience of 2 epochs. Each column is a missingness

mechanism. The x-axis represents each autoencoder imputation method; there are no base-

lines, as those are trained differently. The y-axis represents the metric value. See 4.4.3 for

more.

79

DVAE
VAE

DAE
Batchswap

Vanilla

5

10

15

20

25

DVAE
VAE

DAE
Batchswap

Vanilla

5

10

15

20

25

DVAE
VAE

DAE
Batchswap

Vanilla

5

10

15

20

25

DVAE
VAE

DAE
Batchswap

Vanilla

5

10

15

20

25

DVAE
VAE

DAE
Batchswap

Vanilla

5

10

15

20

25

Av
er

ag
e

Ti
m

e
Pe

r E
po

ch
 (s

)

MCAR MAR MNAR MNAR(G) MNAR(Y)

Feature Mapping
Mixed Features Target Encode Discretize

Percent Missing
33% 66%

Score to Probability Function
Sigmoid-mid Sigmoid-tail

Figure 4.11: The average duration of each training epoch for the autoencoder imputer mod-

els. Each column is a missingness mechanism. The x-axis represents each autoencoder

imputation method; there are no baselines, as those are trained differently. The y-axis rep-

resents the average duration of each epoch in seconds. See 4.4.3 for more.

80

Simple

KNN
DVAE

VAE
DAE

Batchswap

Vanilla

0

0.1

0.2

Simple

KNN
DVAE

VAE
DAE

Batchswap

Vanilla

0.1

0.2

Simple

KNN
DVAE

VAE
DAE

Batchswap

Vanilla

0.6

0.7

0.8

0.9

0

0.1

0.2

0.1

0.2

0.6

0.7

0.8

0.9

0

0.1

0.2

0.1

0.2

0.6

0.7

0.8

0.9

0

0.1

0.2

0.05

0.1

0.15

0.2

0.25

0.7

0.8

0.9

0

0.1

0.2

0.1

0.2

0.6

0.7

0.8

0.9

Brier-score PR-AUC ROC-AUC
M
N
A
R
(Y
)

M
N
A
R
(G
)

M
N
A
R

M
A
R

M
C
A
R

Feature Mapping
Mixed Features Target Encode Discretize

Percent Missing
33% 66%

Predictor
LGBM RF

Figure 4.12: Predictive performance on the test split of the CURE-CKD dataset. Each

missingness mechanism is a row, and each column is a different predictive metric. The x-

axis represents each imputation method, including both baselines and autoencoders. The

y-axis represents the metric value.

81

CHAPTER 5

Expanding to Raw EHR

We previously built and demonstrated Autopopulus using the CURE-CKD dataset, which

originated from the CURE-CKD Registry. The registry, while real-world, was derived and

already aggregated from raw EHR and also had a large subset of fully-observed samples.

However, in many instances, curated data is not common, and neither do they have fully-

observed subsets available. We chose to demonstrate the tuning and model selection process

of Autopopulus on a raw, real-world EHR dataset, as well as use those results to help build

a larger profile of autoencoders for imputation on an external dataset to the CURE-CKD

registry. Toward that end, we applied Autopopulus to the continuous renal replacement

therapy (CRRT) dataset. The CRRT dataset had no fully observed subset and was drawn

directly from the raw EHR available to us. In this case, we could not control the missing-

ness scenarios and therefore could not evaluate imputation performance under the different

settings we produced. Instead, we provide a more comprehensive analysis of the predictive

task at hand on the CRRT dataset.

5.1 The CRRT Dataset

When kidneys no longer function adequately, many patients are placed on a treatment called

dialysis, which filters the blood in place of the kidney. Most patients that require dialysis

are placed on hemodialysis, a process which may only take a few hours. However, this

type of dialysis pushes a high volume of blood in and out of the system, causing large fluid

shifts. An alternative treatment, continuous renal replacement therapy (CRRT), is a 24/7

82

gentler form of dialysis that a hospitalized patient might receive because they cannot tolerate

regular hemodialysis due to issues with low blood pressure that might be caused by severe

infection, liver disease, or heart disease. Due to its nature, CRRT is more costly: it is more

invasive and uncomfortable, it requires more time, it requires personnel to monitor for longer,

and ultimately there are few machines that need to service a given healthcare institution’s

population. With the COVID-19 pandemic, CRRT machine allocation became an even

more pressing issue. According to [AMF21], “During the first 6 months of the pandemic,

the United States is believed to have experienced a shortage of 1088 CRRT machines, with

demand outweighing supply in up to eight states.” Healthcare providers are then required

to solve limited resource allocation issues: who should be put on CRRT, and if someone is

on CRRT should they stay on it another day?

We aimed to predict whether we should initiate CRRT for a patient, meaning whether

we recommended CRRT. Toward this aim, we collected the largest CRRT dataset to date.

It comprised a comprehensive, real-world, longitudinal dataset of raw EHR data of patients

from two large healthcare systems (UCLA Health, and Cedars-Sinai (CS)) over a period of 8

years (2014-2021) and their corresponding outcomes on CRRT. The CRRT dataset consisted

of three cohorts. The first cohort was the UCLA: CRRT population, which contained adult

patients treated at UCLA that were all placed on CRRT. The second was the UCLA: Control

population, which contained adult patients treated at UCLA that were considered for CRRT

but were not placed on it. This control group was matched to the UCLA: CRRT cohort

based on age, sex, and disease status (via the Charlson Comorbidity Index). The last cohort

was the CS: CRRT population, which contained adult patients treated at Cedars that were

all placed on CRRT.

In this work, we included patients 21 and over and focused only on patients at UCLA

who were placed on CRRT, as investigating the wider scope of cohorts is currently under

active investigation. We created the binary outcome of recommending CRRT from more

granular ones. If a patient’s kidney function recovered, or they stabilized to the point of

83

transitioning to regular hemodialysis, we recommended initiating CRRT for a patient. In

contrast, if a patient transitions to palliative care or passes away, we did not recommend

CRRT.

We used a patient’s demographics, labs, procedures, documented problems, diagnoses,

vitals, and medications to predict the outcome. As the EHR were not preprocessed, we

first aggregated the longitudinal features over a 7-day window before the start date of each

patient’s treatment. For continuous feature aggregates, we reported the 7-day mean, stan-

dard deviation, number of entries, skew, minimum, and maximum. For categorical feature

aggregates, we reported the 7-day total count. All multicategorical features, such as patient

race, were one-hot encoded. Due to the sparseness of the data, we dropped features missing

more than 80% data.

Descriptive Statistics The UCLA: CRRT population included N = 3, 666 patients.

Compared to the CURE-CKD dataset, this dataset was well-balanced as seen in Table 5.1.

There were 9, 787 features missing more than 80% data, such as height, diastolic blood

pressure, and multiple labs. We were left with 1, 398 features, which was a much higher car-

dinality than the CURE-CKD dataset. When the data were target encoded into continuous

features (see 4.1.1.4), there were 1, 392 features, and when the data were discretized into

categorical features (see 4.1.1.4), there were 2, 679 features.

Missingness Profile This dataset was more scarce compared to the CURE-CKD dataset.

The overall dataset was missing 31.16% of data. Since the data were aggregated over a

single window of 7 days, we do not present an over-time missingness sketch. However, we

can visualize how different features have various levels of missingness (Fig. 5.2).

84

11
151 165

14 6

486

844

4
151

189 22 8

634

981

American Indian or Alaska Native

Asian
Black or African American

Multiple Races

Native Hawaiian or Other Pacific Islander

Unknown

White or Caucasian

0

500

1000
Not Recommended
Recommended

Ethnicity

co
un

t

682

995

808

1181

Female Male
0

200

400

600

800

1000

1200
Not Recommended
Recommended

Sex

co
un

t

Figure 5.1: The counts of the number of CRRT patients at UCLA and whether we recom-

mended CRRT broken down by ethnicity and sex.

85

Figure 5.2: Missing values visualized in the CRRT dataset for three features with various

missingness levels. The dark blocks represent observed values, while otherwise white or

empty blocks represent missing values.

86

Recover Renal

Function

Transition to

Hemodialysis
Comfort Care Expired

Cohort Recommend CRRT Do Not Recommend CRRT Total

UCLA: CRRT
501 (13.67%) 1488 (40.59%) 1064 (29.02%) 613 (16.72%)

3666

1989 (54.26%) 1677 (45.74%)

Table 5.1: Breakdown of Outcomes for the UCLA: CRRT cohort. All numeric values are

reported as N (%), their raw count and their percentage, aside from the reported totals.

5.2 Evaluation

5.2.1 Imputation Performance

We can only report the loss, number of epochs, and training speed on CRRT dataset as we

did not have the true values.

Loss (Fig. 4.9) We report the last recorded validation loss for the autoencoder methods

in the mapped space on the observed values only. The target encoded methods generally

converged to the smallest loss, while the discretized methods usually struggled the most. The

mixed feature performance was slightly worse than target encoded, but it was not obviously

visible in the graph. The discretized performance was much worse here when there were four

times as many features.

Training Convergence with Early Stopping (Fig. 4.10) The models training on data

in the discretized feature space seemed to converge around the same epoch across the non-

variational autoencoders. The variational-type autoencoders converged at a similar epoch to

the autoencoders that did not use any feature mapping. However, the vanilla autoencoder

87

DVAE
VAE

DAE
Batchswap

Vanilla

0

100

200

300

loss

Feature Mapping
Mixed Features Target Encode Discretize

Percent Missing
33% 66%

Score to Probability Function
Sigmoid-mid Sigmoid-tail

Figure 5.3: Last recorded validation loss in the mapped feature space on observed values only

in the CRRT dataset. The x-axis represents each autoencoder imputation method; there are

no baselines, as those are trained differently. The y-axis represents the metric value. See

4.4.3 for more.

88

DVAE
VAE

DAE
Batchswap

Vanilla

10

20

30

40

epoch
Feature Mapping

Mixed Features Target Encode Discretize

Figure 5.4: Number of final epochs for training convergence when training with a maximum

of 100 epochs, and early stopping with patience of 2 epochs. Each column is a missingness

mechanism. The x-axis represents each autoencoder imputation method; there are no base-

lines, as those are trained differently. The y-axis represents the metric value. See 4.4.3 for

more.

converged the slowest in the mixed feature space. These patterns overall aligned with the

CURE-CKD dataset patterns for convergence.

Training Speed (Fig. 5.5) Though the CRRT dataset had a higher cardinality than the

CURE-CKD dataset, the mixed feature space and the target encoded feature space completed

each epoch with similar timing to the CURE-CKD dataset. Here we also see that discretizing

was the slowest, followed by target encoding, followed by no feature mapping. Though, the

difference in epoch time for the discretized feature space was much more pronounced in this

dataset than in the CURE-CKD dataset. The discretized data was almost four times as slow

89

DVAE
VAE

DAE
Batchswap

Vanilla

0

20

40

60

80

100

Av
er

ag
e

Ti
m

e
Pe

r E
po

ch
 (s

)

Feature Mapping
Mixed Features Target Encode Discretize

Figure 5.5: The average duration of each training epoch for the autoencoder imputer models

on the CRRT dataset. The x-axis represents each autoencoder imputation method; there

are no baselines, as those are trained differently. The y-axis represents the average duration

of each epoch in seconds. See 4.4.3 for more.

per epoch, with eight times as many features.

5.2.2 Predictive Performance

Predictive performance (Fig. 5.6) proved to be different depending on the imputation method

used. Refer to 4.4.3 for a deeper explanation of predictive performance legends in each figure.

Like in the CURE-CKD dataset, the LGBM tended to outperform the RF, and the base-

lines outperformed the autoencoder models. Particularly, the simple imputation method led

to the best predictive performance for both ROC-AUC and PR-AUC. Overall, the perfor-

mance on PR-AUC and ROC-AUC were both good and similar to each other, which was not

the case for the CURE-CKD dataset. However, for CRRT, for the DAE, RF outperformed

LGBM. Out of all autoencoder methods, the DAE could achieve the best ROC-AUC perfor-

90

Simple

KNN
DVAE

VAE
DAE

Batchswap

Vanilla

0.21

0.22

0.23

0.24

0.25

0.26

Simple

KNN
DVAE

VAE
DAE

Batchswap

Vanilla

0.55

0.6

0.65

0.7

0.75

Simple

KNN
DVAE

VAE
DAE

Batchswap

Vanilla

0.5

0.55

0.6

0.65

0.7

0.75

Brier-score PR-AUC ROC-AUC

Feature Mapping
Mixed Features Target Encode Discretize

Predictor
LGBM RF

Figure 5.6: Predictive performance on the test split of the CRRT dataset. Each column is

a different predictive metric. The x-axis represents each imputation method, including both

baselines and autoencoders. The y-axis represents the metric value.

mance in mixed feature space, while the batchswap autoencoder model performed the best

for PR-AUC. DAE and vanilla autoencoders discretizing the data performed poorly when

predicting using an LGBM.

The LGBM was consistently more calibrated for all the baseline imputation methods,

which was not the case for the CURE-CKD dataset. However, like in the CURE-CKD

dataset, there was no consistent pattern otherwise across the autoencoder imputation meth-

ods. There was also no pattern between feature mapping and the Brier-score. The variational-

flavor autoencoders tended to perform the worst, although the others did better when target

encoding.

5.2.3 Model Selection

On the CRRT dataset, we aimed to predict if a patient would do well on CRRT and if we

should therefore start that patient on CRRT. Similarly, we saw the best predictive perfor-

91

mance across all metrics when we simple-imputed the data and used an LGBM for prediction.

Therefore, we would also select the same combination for the CRRT predictive task as for

the CURE-CKD task. Though there was no imputation performance on this dataset, if we

were to pick based off of the autoencoder learning ability, we would probably go with any of

the methods but with target encoding.

5.2.4 A Deeper Dive into Prediction

Given that simple and KNN imputation led to the best predictive performance, and that

we could not control the missingness to perform a more extensive analysis of imputation

performance on the CRRT dataset, we present a deeper analysis of predictive performance.

The data and training pipelines differed slightly as part of ongoing work on a wider set

of experiments across all cohorts mentioned in 5.1. We present 95% confidence intervals,

but computed them using percentiles rather than the normality assumption that produces

symmetric bounds we used for the other analyses. We can better visualize asymmetries in

these analyses, whereas before we were concerned with overall interval size, where we had

more parameters for comparison.

Training Pipeline In these sets of analyses, we trained and validated our models on

patients who were on CRRT for 7 days or fewer and evaluated on all patients. We produced

the “best” model over the following hyperparameter grid. We selected the look-back window

size, or the number of days before each patient’s treatment start date from which to aggregate

data, from the options 1, 2, 3, 4, 5, 6, 7, 10, and 14 days. We selected a model from the

options: light gradient-boosting machine (LGBM), extreme gradient-boosted decision tree

(XGB), random forest (RF), or logistic regression (LR). Note that each model type has

its own (possibly different) hyperparameters that we tuned depending on which model was

selected. We selected an imputation method between simple and KNN imputation. We

also decided on a feature selection procedure based on the Pearson correlation coefficient

92

between each feature and the target variable by selecting the top features (high correlation)

for a particular number of features (k Best) or by using a correlation threshold. We ran 50

trials of tuning by sampling from the above hyperparameter grid using the tree-structured

parzen estimator (TPE) algorithm [BBB11]. We then selected the model with the best

(highest) recorded Receiving Operator Characteristic - Area Under the Curve (ROC-AUC)

on the validation dataset, and evaluated its performance on the testing data split. Note

that since we tuned the model, we did not compare across different models, but rather more

deeply explored the best one. We found that the best model was the XGB model, on a 5-

day window, using simple imputation, and correlation threshold of 0.08. This largely aligned

with our setup from our previous analyses on predictive performance, with gradient-boosting

algorithms and simple imputation producing the best outcomes, though the other parameters

either did not exist (such as feature selection) or slightly differed (such as 5 instead of 7 day

window) due to differences in the training pipelines.

5.2.4.1 Performance by Subgroup (Fig. 5.7)

We evaluated our model more deeply on subgroups of the dataset based on different charac-

teristics. One set of characteristics was a patient’s medical indication for requiring CRRT,

based on the most common conditions that may lead a patent to be hemodynamically un-

stable and therefore require CRRT. We classified patients having indications of heart issues,

liver issues, infection, and none of the above via ICD code diagnoses. Note that these groups

were not mutually exclusive, for example, a patient may have had a heart condition and was

also suffering from a severe infection. Other characteristics were based on sex, race, and age

groups.

Among the metrics, the PR-AUC is the least stable, with the widest confidence intervals

across all subgroups. Among the patient indicators, we are able to predict slightly better on

the infection, liver, and heart patients compared to patients who did not have any indications

for all metrics. The models are more calibrated for those groups, and more accurate under

93

0 0.5 1
20 To 30 (N=24)
30 To 40 (N=94)

40 To 50 (N=145)
50 To 60 (N=251)
60 To 70 (N=411)
70 To 80 (N=323)
80 To 90 (N=142)
90 To 100 (N=44)

0 0.5 1 0 0.5 1

Hispanic Or Latino (N=399)

Not Hispanic Or Latino (N=1035)

American Indian Or Alaska Native (N=1)

Asian (N=121)

Black Or African American (N=189)

Native Hawaiian Or Other Pacific Islander (N=5)

Multiple Races (N=53)

Unknown (N=237)

White Or Caucasian (N=828)

Female (N=508)

Male (N=926)

Heart (N=1050)

Liver (N=769)

Infection (N=913)

No Heart,Liver, Infection (N=307)

Mean Mean Mean

Brier-score PR-AUC ROC-AUC

A
ge R

ange
Ethnicity

R
ace

Sex
Patient-Indicator

Figure 5.7: Predictive performance on the CRRT dataset by subgroup. Each column is

a different predictive metric. The x-axis represents the average metric value. The y-axis

represents the category for each subgroup. The vertical dotted line is the average metric

value for all patients, and the gray rectangle is the 95% confidence interval for all patients.

94

both PR-AUC and ROC-AUC. There is almost no difference between male and female pa-

tients, although the model is slightly better calibrated for female patients. We see multiple

artifacts under the subgroup concerning race. Particularly, there were very few Americans

Indian or Alaska Natives and we did not have any positive samples and therefore our model

struggled on those patients and could not evaluate metrics on them. Performance on Native

Hawaiian or Other Pacific Islander or Multiple Race patients was poorer than the average

had the widest confidence intervals, meaning our model was the least confident on them.

This can also be heavily attributed to the very small subsample size (Fig. 5.1) for those

subgroups. The model performed slightly better on Black or African American patients,

as well as Asian patients, compared to the overall average. Regarding ethnicity, the model

performed slightly worse on Hispanic or Latino patients compared to Non-Hispanic or Latino

patients. The model performed increasingly better on all metrics as the patients got older,

with it being least calibrated and accurate on the youngest age range of patients. While

the graph labels the range as 20 to 30 it was actually 21 to 30. The confidence intervals

presented more of a bell-curve shape, being the widest at the extremes, and the tightest

towards the middle-aged patients.

5.2.4.2 Rolling Window Performance (Fig. 5.8)

Our model could only make a prediction on data from a patient before they may or may not

have started CRRT, otherwise we would be leaking information that we would not have for

new and unobserved samples. During that time, patients were under active care and their

condition may have fluctuated due to their own biological processes or because of direct

medical intervention. A patient’s outcome may have stemmed from events that occurred

after they began treatment, meaning we would not be able to capture that data for new

patients, and therefore we could not train our model on that data. However, we could

evaluate our model on future data.

We implemented a rolling window analysis, evaluating the model (without retraining) on

95

−2 0 2 4 6

0.7

0.8

0.9

1 Metric
ROC-AUC
PR-AUC

Days from Start

Figure 5.8: Predictive performance on the CRRT dataset by rolling a 5-day window forward

and backward from the treatment start date of each patient. The x-axis represents the

number of days the window was displaced from the treatment start. The y-axis represents

the metric value. The filled in sections represent the 95% confidence intervals.

the same sized window some number of days displaced from the start date, starting from

3 days before to 6 days after the start of treatment. Each CRRT patient was on CRRT

for a disparate number of days, so we would be predicting on an outcome horizon 4 days

out or even 14 days out from the start of treatment. Therefore, we limited the evaluation

to patients who were on CRRT for a maximum of 7 days to match the maximum number

of days we would slide forward in this analysis to get as close to each patient’s outcome

horizon as possible. This way, we were not predicting potentially a week out from one

patient’s outcome but 1 day before the other, where the former is much more likely to be

less accurate. By monitoring metrics over each window, we could analyze how the predictions

and the performance of the model changed as the data neared the outcome horizon. Do note

that this was not a dynamic model, as this procedure was completely unaware of previous

days or how measurements change overtime, which would be used in an ongoing day-by-day

predictive task.

We observed a change in performance, and inferred that the model’s predictions did

96

change for some patients on later days, which we could reason implied that their outcomes

were influenced by events after they started CRRT. The performance of the model improved

each day as it was evaluated closer and closer to the outcome horizon without retraining,

indicating that the model learned meaningfully. We see the steepest decline in performance

just one day before starting CRRT, and the steepest increase in performance just one day

after start CRRT. While the performance overall gradually continued to trend in the same

direction, the day-to-day performance does not change as much. There was a slight dip in

performance at day 5, but otherwise no breaks in the positive trend of performance for both

metrics. The PR-AUC was always higher than the ROC-AUC. The 95% confidence interval

for the PR-AUC narrowed by day 0 and then slowly widened as it approached the outcome

horizon. Similarly, the confidence intervals for the ROC-AUC narrowed by day 0 and then

widened as the model approached data at the outcome horizon, however, for ROC-AUC, the

model became much more uncertain than for PR-AUC. This may be connected to how the

performance of ROC-AUC dropped more dramatically at day 5 than PR-AUC.

5.3 CURE-CKD vs CRRT: Building a Profile

There are noticeable differences in imputation and predictive performance depending on

the imputation method, the feature mapping, and the missingness scenario. Although the

baseline methods tend to see worse imputation accuracy, they lead to better predictive

performance. This might be because a simpler estimation smooths out the data in a way

that makes it easier for the predictor model to delineate between the two classes. Inversely,

the autoencoder methods tend to achieve better imputation accuracy but lead to worse

predictive performance. We believe a deeper dive into comparing different deep learning

regularization techniques would expand more on this hypothesis. While overall consistent for

the autoencoders, the different metrics produced slightly different imputation performance

rankings for the baseline models. We believe some of these differences can be attributed to

97

the difference in possible output ranges between RMSE, which can be potentially infinite,

and MAAPE, which caps at 1.0. We expected but did not observe a difference in CW versus

EW metrics, which may be because our amputation procedure is quite simple compared to

the space of missingness possibilities —although it is complex compared to what is being

used in the literature.

In the original space, the vanilla autoencoder seems to perform the best. However, in

mapped space, the mapped methods achieve better imputation accuracy. While under target

encoding, we would see a reduction in cardinality, i.e., for one-hot encoded multicategorical

features which would be condensed into a single continuous feature, which might explain

the better performance. However, we also find better performance when discretizing, which

would instead grow the cardinality of the data since it would take a single continuous fea-

ture and expand it into two or more one-hot encoded categorical ones. Poorer imputation

performance when feature mapping the data in the original space is likely due to the loss of

information when inverting the feature mappings, as none of the mappings is one-to-one and

cannot be directly and precisely reconstructed. This trend is not as clear in the predictive

performance on the CURE-CKD dataset, but is consistent in the predictive performance on

the CRRT dataset. In the future, we would also experiment with training and evaluating

the predictive model on the mapped data. The imputation performance patterns for the

autoencoder methods are not reflected by the validation loss. We believe the discretized

methods have a more unstable loss trajectory due to their high cardinality. Therefore, they

tend to be stopped earlier and achieve worse loss even though their predictive performance

is better.

The trends of imputation performance across the missingness mechanisms vary between

the other characteristics of missingness and the imputation models, with the trend some-

times reversing under certain mechanisms. From the confidence intervals (Table 4.5), we

can account for some of this variability due to the size of the confidence interval. How-

ever, sometimes the difference in performance is much wider than what we would expect to

98

be reasonable variation, in which case we would explore further in future work. For each

missingness mechanism, we achieve the best imputation performance when there are fewer

missing data, the score to probability function is sigmoid-mid, and there is no feature map-

ping. The best performing mechanisms in this context are MAR and MNAR(Y), while the

worst are MCAR and MNAR. Though the differences are minimal, this validates the idea

that non-recoverable MNAR can be detrimental to imputation accuracy.

Although the gap in imputation performance across missingness patterns is slight in the

CURE-CKD dataset, the variation in performance in addition to relatively narrow confidence

intervals suggest that these different mechanisms do behave differently. In fact, there are

sometimes differences in predictive performance depending on if average or extreme values

are more likely to be missing from the score to probability function within the same mecha-

nism. These findings lead us to believe that not only are the three traditional mechanisms

potentially not granular enough, but rather a wider, more robust paradigm that accounts

for missingness linked to distribution tendency (e.g., extreme values) might be more useful.

There are potentially more dimensions or characteristics that would help better characterize

and understand missingness behavior in data, however, these factors serve as a launching

point to explore further.

The predictive performance rankings are inconsistent across datasets, highlighting that

there is no one method that performs better than all the others for all situations. In general,

the LGBM tends to perform better and be more robust. Strangely, while the imputation

performance is the poorest and least confident under MNAR, it leads to the best predictive

performance. It may be that the samples with data MNAR are more distinct and easier to

delineate, although their exact values are harder to recover. The ROC-AUC is higher for the

CURE-CKD than CRRT. This is likely due to how imbalanced the CURE-CKD outcome is

compared to the very balanced CRRT outcome, and therefore the models can inflate their

ROC-AUC on the negative samples. We saw in Chapter 3 that the Precision-Recall - Area

Under the Curve (PR-AUC) on the CURE-CKD dataset is quite poor.

99

Our results are somewhat consistent with Jäger et al. who report a wide comparison

between multiple machine learning imputation methods and simpler baseline ones [JAB21].

Like we see in our analysis, simple imputation method tends to not perform as well for

imputation accuracy as the other deep learning models, aside from one, on their benchmark

datasets. In contrast to our work, Jäger et al. observe that KNN tends to perform better

compared to other methods. Both of our works observe that machine learning imputation

could sometimes lead to worse downstream predictive performance compared to their simpler

alternatives. We believe there is legitimate divergence between faithful data recreation and

producing data on which prediction is easier. Ultimately, both our work and Jäger’s work

highlight variability in imputation and downstream predictive performance across tasks and

imputation methods.

100

CHAPTER 6

Conclusion

The adoption of EHR has made patient data increasingly accessible, precipitating the devel-

opment of machine learning models to help physicians. ML-based imputation methods have

shown promise in various domains for the task of estimating values and reducing uncertainty

to the point that a predictive model can be employed. To address missing data, researchers

have been developing, analyzing, and comparing statistical and machine learning techniques

for missing data estimation or imputation. In this context, we first built an early version

of our original framework, Autopopulus. We aimed to tune imputation for each dataset

and task, create a profile by comparing imputation methods widely on controlled missing-

ness scenarios, and enable other researchers to easily tune imputation and select a model.

Based on what we learned from our first attempt in Chapter 3, we expanded Autopopulus

to push beyond the current understanding of autoencoder-led imputation in a deeper, more

meaningful way. We showed in Chapters 4 and 5 how we tuned imputation for the respec-

tive predictive tasks on the CURE-CKD dataset (predicting rapid decline), and the CRRT

dataset (recommending a patient start CRRT). We ran a suite of experiments to build a

profile of autoencoders on the CURE-CKD dataset, which had a fully observed subset. We

also ran another suite of experiments to show the Autopopulus workflow for model com-

parison and selection on the CRRT dataset. Based on these outcomes, we built a profile of

autoencoders. Finally, we will outline lessons learned during this process, mistakes to avoid,

and how this work may be expanded upon in the future.

101

6.1 Reframing Imputation as a Task

For many, imputation is seen as a data transformation step completely separate but necessary

for their main task, be it clustering, prediction, or any other possible machine-learning task.

Typically, data transformation and data wrangling is considered a side note to a larger, more

attractive spectacle, which is the main ML task. However, we believe imputation may be

more of a “predictive” task than we regard it to be. We typically regard predictive tasks for

machine learning to be predicting a continuous or categorical target, or maybe even multi-

label targets. Imputation is quite similar: predicting many continuous or categorical targets

at once. The main caveat being that we typically do not have any labels or true values for

the missing values. Imputation is a bit like predicting in the dark. It is certainly a less

than ideal problem, but a reality one that most practitioners have to solve. We believe there

should be a shift in attitude regarding imputation; rather than thinking that you must do

something to the data so that you can do the “more interesting” task, you are predicting on

the data now so you can predict on the data later. That shift in attitude and perspective

might incline more practitioners to regard imputation with more care, and actually tune the

methods to their needs.

6.2 Occam’s Razor: Imputation

It may be ironic for a dissertation dedicated to the use and analysis of deep learning im-

putation methods to conclude with the remark that other, simpler methods may be more

desirable for downstream tasks. Had we only analyzed imputation accuracy, we would not

have come to this conclusion. We repeatedly saw, not only in our work, but in other work,

that simpler imputation methods tended to perform better for predictive tasks even if they

were not as accurate at recreating the missing data. We believe that more accurate data

imputation is not necessary for more accurate downstream predictive performance. In other

words, the imputers that are better at recovering reality are not the same ones that can facil-

102

itate better predictive performance. There may be information in the more uniform, but less

accurate, imputed values from simpler imputers. In a way, they may behave as an indicator

beyond the values themselves. Perhaps encoding values that are decently accurate but in a

part of the data manifold that might communicate that they both have a quantitative value

and a qualitative latent quality, which is that they were originally missing.

As with any set of tools, the standard is not that one is always better than the rest.

Within our current understanding of missingness, it seems as though empirically, simpler

methods tend to lend to better predictive performance. We believe that while we should

continue to explore autoencoders for imputation, in an applied context, we would recommend

reaching for simpler imputation methods first before expanding to more complex ones. More

importantly, that imputation exists in larger contexts and should be considered for their

behavior in each setting. We have room to learn more about autoencoders and other deep

learning methods for imputation, and in which circumstances more exactly are they less

useful than simpler imputation methods.

6.3 The Taxonomy of Missingness

In conjunction with the work of Mohan et al., our extensive experimentation using the

more fine-grained missingness scenarios calls into question the current taxonomy we have for

reasoning about missingness. Researchers have been relying on understanding and dealing

with missingness using the three mechanisms of missingness of Rubin’s work since 1976.

While it certainly is a powerful tool and has allowed researchers like us to tackle the problem

of missing data, we are increasingly aware of its limitations. It may not be difficult to

believe that data can be missing in forms and patterns that themselves require a whole body

of characterization, the way we do for observed distributions of data. When we reason about

observed data in order to handle them, the causal characteristics are not always impactful.

We have many other tools to distinguish different types of data: such as continuous and

103

categorical. As of now, the only factors available to describe missingness rely solely on the

causality of the missingness.

Just the same, this idea itself is too broad and difficult to transform into actionable

statements. With our work, we believe we may have found a few of the missing puzzle

pieces. The trends that manifest in missingness are important as well, such as the difference

between extreme or average values being more likely to be missing. There may not be

a Normal distribution equivalent in missing data, however. Missing data are unique in

that they live in both a discrete and continuous world. There is discrete qualities to them:

whether missingness exists or not, and where it exists. But there is also quantitative qualities

to them: the quantity of missing data, and the tie to a latent value that itself could be either

categorical or continuous. Missing data is challenging and unique in this way compared to

observed data.

Researchers comparatively have a very strong grasp of qualities of observed data them-

selves. However, there is a large gap when in comes to missing data. We believe that this

gap is an opportunity for progress, and that development in this area will provide a strong

benefit to all the sciences that rely on data. A more robust paradigm for reasoning about

missingness can enable not only directed iterations of existing methods, but also the creation

of new imputation methods. These methods lead to both more accurate imputation methods

and provide values that can be used for predictive tasks more easily.

6.4 Technical Takeaways and Pitfalls

In creating and maintaining such a large and extensible framework, through failure and in

turn through success, we have become familiar with common pitfalls in implementing and

working with machine learning and particularly deep learning code.

104

6.4.1 Computational Resource Management

One particular challenge was with compute resource management and data input/output

between hardware components. While having more GPUs available can allow for faster

computation, the dataset needs to be large enough to warrant the overhead of setting up the

data on each one and synchronizing the results between each one. While it is inevitable that

the data must be passed between the two components upon transferring to and from the

central processing unit (CPU), doing so more than once is costly. Taking care to minimize

the amount of data passed between the CPU and GPU on the machine can vastly improve

training time. This includes not only the data passed to the model but also any auxiliary

data as well. For example, one challenge was ensuring certain computations were executed

on specific columns, such as continuous ones only. In order for this to be done on the GPU,

we needed the auxiliary data of which columns were continuous to be on the GPU as well.

Other challenges included the feature map inversions. While they were not differentiable,

most of the mappings were trained on the CPU when preparing the data. Transferring the

imputed data to the CPU to compute the feature map inversions, and then additionally

computing the metrics on the CPU proved to be slow. A workaround we used for this was

auxiliary data from the mappings themselves, and recreating the computational abilities for

those data transformations with the more limited set of GPU instructions. While not a

straightforward endeavor, the time saved during training was multiplicative.

6.4.2 Validating and Testing a Data Pipeline

How to validate and test complex data pipeline and machine learning models is not straight-

forward. Aside from lessons learned shared from other researchers attempting a similar feat

such as Tilman et al.’s work, guidance is sparse [Kro21]. Testing requires isolated function-

ality and integration tests. When isolating, you might mock data and/or functions.

105

The Challenge of Mocking Data Mocking data has many more degrees of freedom

compared to regular programming objects with limited fields. Data can have any number of

features, any order of features, any combination of types of features, any number of samples,

and so on. Each of those features can have any range of values: missing values, integers, large

float-point numbers, negative scalars, and so on. Mocking data can prove to be a delicate

balance between creating data complex enough to match the functionality or behavior you

would expect to see on real world data, but also data simple enough to be able to know the

expected behavior ahead of time.

When mocking data and writing tests, start simple, and ensure that the mocked values are

also tested to be in the format you expect. For example, ensure the function was called with

the arguments you expect, or the data indices are the same, or the columns are formatted

the same. Importantly, do not adjust the data pipeline code or test code to that specific

simple example. For example, you may end up accidentally encoding some expected column

order or column name format that does not exist in the real data. Similarly, your test should

not pass because some auxiliary piece of information was convenient to the test, but fails on

real data. We found that packages like hypothesis help to catch edge case examples (i.e.

NaNs, infinities, etc.) [MHm19].

While tests are meant to explicitly encode assumptions, usage, and intended behavior of

the code, it may help to also insert breaking lines of code such as assertions from Python

into the main body of logic. This is particularly helpful for layer-style pipelines.

Layer-Style Pipelines Many frameworks such as pandas or sklearn offer functionality

for and encourage the use of chained and/or layered applications of operations. While this

approach makes the code more readable and leads to fewer errors, it can be harder to debug

depending on how the operations are applied. For example, sklearn pipelines are trained

and applied with fit() and transform(), however, if there is an error there is sometimes no

direct way to know which step failed. For example, at a certain point of a multistep pipeline,

106

you might expect there to be no missing values. If the pipeline breaks because of that, it

will simply fail as a whole, and it will be clear which step failed. It might be difficult to test

the output of an incomplete pipeline, but you can include an assertion in the pipeline. This

also helps make debugging chained or layer-style pipelines easier, as the assertion will fail

directly at the step where it is expected.

6.4.3 Pitfalls with Masks

When working with missing data in particular, data masks will be used throughout the

project. Surprisingly, working with masks can be rather tricky, and how and where you

create and name a mask matters. Create and use masks right where you plan to use them.

Passing the same mask through and adjusting based on your needs—perhaps in one place

you need the inverse mask—is an easy way to confuse what the purpose of the mask is

or accidentally mutate it. It is not always obvious if the mask that has been applied is

inverse of what you intended to use. Naming masks properly will also help avoid this issue.

Some masks keep values where the indicator is 1, while others will drop values at those

locations. Rather than simply naming masks * mask, label them by what they indicate. For

example, use where fully observed instead of fully observed mask. The latter does not

communicate if the mask will be used for ignoring and keeping fully observed data. Similar

to the pitfall revolving around masks, it is advisable to use filtered or altered versions of

data right where you need them, unless that version of the data is the only version of the

data you will use for the rest of the pipeline. If you need both, carefully name and separate

the two versions so that it is clear.

6.4.4 Coordinating and Tracking Many Experiments

When coordinating a large set of experiments, it is important you:

• organize and design all the experiments properly.

107

• test the whole process from start to finish, including initial visualization and analysis.

In order to move quickly, it helps to do the initial runs on a small subset of data, with any

variations cut down to a minimum. For example, limiting the number of training epochs,

or tuning samples. Simple visualization is not enough to validate results, as corrupt results

can be obscured by other reasonable ones. Attempt some form of result validation, such as

whether it is acceptable if all your errors are 0 or 1.

6.4.5 Be a Part of Open Source

A lot of open source frameworks are either new or recently well-established. Over the course

of this work, many frameworks vastly changed in their functionality and API. We recommend

you be a part of the community, recommend or implement new features, or make existing

ones more robust. Sometimes you may need to implement your own version of functionality

that you can either submit as a feature, or find that a more polished version has been

made available in the latest package release. Being involved, and keeping up with new

developments, vastly improved our framework. In fact, some crucial documentation was not

made available until later after users asked questions. For example, the specific circumstances

under which all metrics, data, and auxiliary data would be placed on the correct device was

not made explicit or clear until more recently for pytorch-lightning. It was because we

checked in later that we found the answers to some mysteries surrounding slow performance

in our framework.

6.5 Future Work

To our knowledge, autoencoders are beginning to be used for multivariate longitudinal im-

putation, but have not been profiled at all as imputation models. Longitudinal amputation

procedures do not exist, and our current experimental pipeline does not account for datasets

108

LSTM LSTM LSTM LSTM

Input
Layer (x⃗)

Hidden
Layer (⃗h)

code

Hidden
Layer (h⃗′)

Output
Layer (ˆ⃗x)

Encoder Decoder

ReLU

Sigmoid

Figure 6.1: An example of an undercomplete autoencoder architecture that can handle

longitudinal data of T time points and D features by swapping fully connected layers with

LSTM networks.

missing data according to a mixture of missingness mechanisms.

Experimental Results for Longitudinal Imputation For longitudinal imputation we

can combine autoencoders with LSTMs, such that, instead of fully connected layers as in

Fig. 2.1, each layer is an LSTM which is updated in Fig. 6.1.

We chose LSTM layers due to their ability to handle multivariate longitudinal data of

unequal or variable sequence lengths. We chose LSTMs over a more general RNN due as

they do not suffer from the exploding/vanishing gradient problem, and they can easily be

extended to be bidirectional which could leverage data moving forward and looking backward

towards imputation, which could be particularly useful for missing longitudinal data.

109

To handle sequences of unequal or variable lengths, we pad the data to the maximum

sequence length per batch. Not pictured in Fig. 6.1 is the cell and hidden states that each

LSTM network outputs. Within the encoder or within the decoder, the output cell and

hidden states of each LSTM layer are fed forward as the input cell and hidden states to

the following LSTM layer. The states are not shared across the encoder and decoder. It is

possible to use a stacked LSTM instead of multiple LSTM layers, however, with the current

available tools it becomes more difficult to control each subsequent hidden layer size which

in turn makes the bottle-necking shape of an undercomplete autoencoder harder to achieve.

Additionally, the cell and hidden states will refresh, or be reinitialized, for each subsequent

layer instead of passing them forward across layers. For this reason, we believe it is more

useful to separate layers as proposed.

While this is currently implemented in Autopopulus, it has not been used for experiments.

We will run experiments for both static and longitudinal imputation on both the CURE-CKD

and CRRT dataset for validation and using the pyampute package for amputation. Until

longitudinal amputation is fully fleshed out, we will follow a simple amputation procedure

that amputes per time point. Analogous to the experiments we have run for static imputation

with autoencoders, we will complete running all the experiments for longitudinal imputation.

This will explode our experiments in the following way:

Time× Loss: All/
Observed

×
(
Imputation
Model Type ×

(
Missingness
Mechanism × Missingness

Percent + All Data
No Ampute

)
+ No Impute

Fully Observed

)
× Classifier

Model Type

A challenging aspect of the data is that we need comparative models that can deal with

multivariate longitudinal data with unequal sequence lengths. Due to the complex nature

of the problem, there are less non-deep learning methods that can meet this requirement for

both imputation and classification. Our decisions for the imputation model types are formed

from a combination of autoencoder types and baseline comparisons {simple, KNN, BRITS

[CWL18], SAITS [DCL22]}. The mechanisms are {MCAR,MAR,MNAR}. The percentages

are {33%, 66%}. Finally, the static classification models are {KNN, shapelet time series

110

classifier}.

Longitudinal Amputation Previously, we discussed the importance and utility of ampu-

tation (4.2). With pyampute we are able to achieve multivariate amputation, however, it is

currently only possible with static data. Currently, there is no known paradigm to describe

missingness in the domain of longitudinal data. In fact, a large body of the literature for

longitudinal imputation either ignores evaluating their methods across different missingness

mechanisms or proposes a simplistic approach to amputation that ignores the time dimen-

sion. The first step to ampute longitudinal data is to extend the traditional missingness

mechanism paradigm to a longitudinal setting. Since time introduces a new dimension,

we much be able to model a relationship of missingness in the new time dimension. One

approach would be to nest the mechanisms into the time dimension itself, such that for a

particular variable:

• MCAR would imply that missingness for any time-point is completely unrelated to any

other time-point.

• MAR would imply that missingness for a time-point is explained by some combination

of other time-points.

• MNAR would imply that missingness for a time-point is missing due to the value itself,

or due to some unobserved time-point or measurement.

We could then apply a similar methodology that ensures joint missingness probabilities

according to these mechanisms across sequences of data.

Another challenge we aim to address is generating useful amputation schemes. While we

currently hand-pick combinations of features for the given experiments, a more regimented

scheme for amputation scenarios may be aid in being able to uncover data characteristics

that are useful for imputation model selection. For instance, we may decide to ampute based

111

on covariance or correlation, variability of feature values across samples, or we may decide

to incorporate and compare different mixtures of missingness mechanisms (e.g., MAR and

MNAR vs. MAR and MCAR). These schemes would behave analogous to automatic and

systematic ablation experiments to help us generate imputation profiles.

Imputing by Mechanism Missingness mechanisms in real-world datasets are never clean-

cut: there may be multiple mechanisms at play across different combinations of variables.

Instead of training a single network to impute a single dataset, we can take the approach

of creating a singular imputation expert per mechanism. That is, an expert on MCAR, an

expert on MAR, and an expert on MNAR. If we can learn to impute by mechanism, we can

then transfer their expertise to a single student that attempts to impute a dataset that may

consist of missing data caused by various mechanisms. Each teacher, or expert, model would

be trained on a stream of data consistently amputed according to a particular mechanism.

The variables involved and the amount missing may vary, but the mechanism would remain

the same. After training the experts, we would train the student on a separate stream of data

that is amputed using multiple missingness mechanisms in a multi-teacher single-student

transfer learning schema. A potential drawback of this approach is it is computationally

expensive. One workaround would be to pre-train the models on a large dataset, and then

allow an additional projection layer to project any dataset dimensionality onto the space of

the pre-trained expert models.

Predicting in Feature-Mapped Space As seen in Sec. 4.4, inverting a feature mapping

lost information and affected imputation performance. In order to take advantage of the

cohesive feature space, a natural subsequent analysis is to analyze a predictive pipeline that

is also in the mapped feature space. There are trade-offs to this approach, namely, that

some problems require examination or results directly based on the inputs as-is. In such a

case, this analysis would not be desirable. However, there are benefits to predicting in a

mapped feature space, since the feature mappings may act as feature engineering and make

112

classification easier. For example, the continuous age value for patients may not be as strong

of a predictor compared to bins of certain age ranges.

Autoencoder Artifacts Compared to other deep learning techniques, autoencoders have

a unique property in that they leave behind a special artifact: the code, or latent represen-

tation of the data. We can then further investigate how using the code compares to using

the imputed data itself for downstream tasks. In the fully-observed case, we expect that

the code contains a more succinct, compressed representation of the data that represents

useful extracted features from the more granular and possibly noisy original input space.

However, this has not been explored for data with missing values and the difference between

the behavior of the code itself versus the imputed data itself is not apparent.

Advanced Patterns of Missingness Our experiments served as a starting point for

understanding imputation under complex amputation patterns. We did not explore mixing

mechanisms of missingness within the same sample subsets when amputing data in our

experiments. An important next step in this line of analyses is to explore further into

more advanced patterns of missingness, since real-world data are much more complex than a

single mechanism at a time. A principled comparison of the mechanisms would try different

combinations of mechanisms, for example, MCAR combined MAR, or MCAR combined

with MNAR(Y). Other dimensions of comparison would dive into the number of features

influencing the missingness of another under MAR.

Warm Start Imputation When we first implemented and experimented with Autopop-

ulus we followed work we had seen in the literature in using a per-batch simple imputation

procedure as warm start for imputation. We found that the performance of the autoencoder

got heavily entangled with the performance of the warm start imputation. When we later

used Autopopulus on the CURE-CKD and CRRT datasets, we used a fill-0 procedure as to

isolate the performance and behavior of the autoencoder itself for imputation. However, the

113

same way the different initializations of weights can greatly assist model training, it may

be a more intelligent warm start procedure may provide a substantial boost to autoencoder

performance.

114

REFERENCES

[AAL20] Haleh Akrami, Sergul Aydore, Richard M. Leahy, and Anand A. Joshi. “Robust
Variational Autoencoder for Tabular Data with Beta Divergence.”, June 2020.
arXiv:2006.08204 [cs, eess, stat].

[AMF21] Michael S. Anger, Claudy Mullon, Linda H. Ficociello, David Thompson,
Michael A. Kraus, Pete Newcomb, and Robert J. Kossmann. “Meeting the De-
mand for Renal Replacement Therapy during the COVID-19 Pandemic: A Man-
ufacturer’s Perspective.” Kidney360, 2(2):350–354, February 2021.

[Ath11] Jim Atherton. “Development of the Electronic Health Record.” AMA Journal of
Ethics, 13(3):186–189, March 2011.

[BBB11] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. “Algorithms
for Hyper-Parameter Optimization.” In Advances in Neural Information Process-
ing Systems, volume 24. Curran Associates, Inc., 2011.

[BM16] Brett K. Beaulieu-jones and Jason H. Moore. “Missing Data Imputation In The
Electronic Health Record Using Deeply Learned Autoencoders.” Pacific Sympo-
sium on Biocomputing. Pacific Symposium on Biocomputing, 22:207–218, 2016.

[BVM19] Guillem Boquet, Jose Lopez Vicario, Antoni Morell, and Javier Serrano. “Missing
Data in Traffic Estimation: A Variational Autoencoder Imputation Method.” In
ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 2882–2886, 05 2019.

[Cha13] “Chapter 2: Definition, Identification, and Prediction of CKD Progression.” Kid-
ney International Supplements, 3(1):63–72, January 2013.

[CHS19] Ramiro D. Camino, Christian A. Hammerschmidt, and Radu State. “Improving
Missing Data Imputation with Deep Generative Models.” 02 2019.

[CKH18] Enrico Coiera, Baki Kocaballi, John Halamka, and Liliana Laranjo. “The Digital
Scribe.” NPJ Digital Medicine, 1:58, October 2018.

[Cla12] “Classification Systems for Acute Kidney Injury: Background, RIFLE Classifica-
tion, Acute Kidney Injury Network.” 2, 03 2012.

[CPC18] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan
Liu. “Recurrent Neural Networks for Multivariate Time Series with Missing Val-
ues.” Scientific Reports, 8(1):6085, April 2018.

[CS19] Junjie Chen and Xinghua Shi. “Sparse Convolutional Denoising Autoencoders
for Genotype Imputation.” Genes, 10(9):652, 08 2019.

115

[CWL18] Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. “BRITS: Bidirec-
tional Recurrent Imputation for Time Series.” In Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc., 2018.

[DCE13] Janez Demšar, Tomaž Curk, Aleš Erjavec, Črt Gorup, Tomaž Hočevar, Mitar
Milutinovič, Martin Možina, Matija Polajnar, Marko Toplak, Anže Starič, Miha
Štajdohar, Lan Umek, Lan Žagar, Jure Žbontar, Marinka Žitnik, and Blaž Zu-
pan. “Orange: Data Mining Toolbox in Python.” Journal of Machine Learning
Research, 14:2349–2353, 2013.

[DCL22] Wenjie Du, David Côté, and Yan Liu. “SAITS: Self-Attention-based Imputation
for Time Series.” arXiv:2202.08516 [cs], February 2022.

[Doe] “Does Hospital EHR Adoption Actually Improve Data Sharing?”
https://www.definitivehc.com/blog/hospital-ehr-adoption.

[Du23] Wenjie Du. “PyPOTS: A Python Toolbox for Data Mining on Partially-Observed
Time Series.” 2023.

[End10] Craig K. Enders. Applied Missing Data Analysis. Methodology in the Social
Sciences. Guilford Press, New York, 2010.

[Fa19] WA Falcon and .al. “PyTorch Lightning.” GitHub. Note:
https://github.com/PyTorchLightning/pytorch-lightning, 3, 2019.

[FHB17] Mallorie H. Fiero, Chiu-Hsieh Hsu, and Melanie L. Bell. “A Pattern-Mixture
Model Approach for Handling Missing Continuous Outcome Data in Longitudinal
Cluster Randomized Trials.” Statistics in medicine, 36(26):4094–4105, 2017.

[FI93] U. Fayyad and K. Irani. “Multi-Interval Discretization of Continuous-Valued
Attributes for Classification Learning.” In IJCAI, 1993.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016.

[GC20] Yan Gao and Yan Cui. “Deep Transfer Learning for Reducing Health Care
Disparities Arising from Biomedical Data Inequality.” Nature Communications,
11(1):5131, December 2020.

[GPM14] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative Adver-
sarial Networks.” arXiv:1406.2661 [cs, stat], June 2014.

[GSS20] Luise Gootjes-Dreesbach, Meemansa Sood, Akrishta Sahay, Martin Hofmann-
Apitius, and Holger Fröhlich. “Variational Autoencoder Modular Bayesian Net-
works for Simulation of Heterogeneous Clinical Study Data.” Frontiers in Big
Data, 3:16, May 2020.

116

[GW18] Lovedeep Gondara and Ke Wang. “MIDA: Multiple Imputation Using Denoising
Autoencoders.” 02 2018.

[Hea19] Office of the National Coordinator for Health Information Technology. “Office-
Based Physician Electronic Health Record Adoption Health IT Quick-
Stat #50.” https://www.healthit.gov/data/quickstats/office-based-physician-
electronic-health-record-adoption, January 2019.

[Hou20] Xiurui Hou. Hybrid Deep Neural Networks for Mining Heterogeneous Data. PhD
thesis, New Jersey Institute of Technology, 2020.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory.” Neural
Comput., 9(8):1735–1780, nov 1997.

[IS15a] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift.”, March 2015.
arXiv:1502.03167 [cs].

[IS15b] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift.”, March 2015.

[JAB21] Sebastian Jäger, Arndt Allhorn, and Felix Bießmann. “A Benchmark for Data
Imputation Methods.” Frontiers in Big Data, 4:693674, July 2021.

[JPR19] Anil Jadhav, Dhanya Pramod, and Krishnan Ramanathan. “Comparison of Per-
formance of Data Imputation Methods for Numeric Dataset.” Applied Artificial
Intelligence, 33(10):913–933, August 2019.

[JYB21] Daniel Jarrett, Jinsung Yoon, Ioana Bica, Zhaozhi Qian, Ari Ercole, and Mihaela
van der Schaar. “Clairvoyance: A Pipeline Toolkit for Medical Time Series.” In
International Conference on Learning Representations, 2021.

[KB14] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-
tion.”, 2014.

[KBB19] Joseph Kearney, Shahid Barkat, and Arnab Bose. “Autoimpute.” https://

github.com/kearnz/autoimpute, 2019.

[KK16a] Sungil Kim and Heeyoung Kim. “A New Metric of Absolute Percentage Er-
ror for Intermittent Demand Forecasts.” International Journal of Forecasting,
32(3):669–679, July 2016.

[KK16b] Sungil Kim and Heeyoung Kim. “A new metric of absolute percentage error for
intermittent demand forecasts.” International Journal of Forecasting, 32(3):669–
679, July 2016.

117

https://github.com/kearnz/autoimpute
https://github.com/kearnz/autoimpute

[KL51] S. Kullback and R. A. Leibler. “On Information and Sufficiency.” The Annals of
Mathematical Statistics, 22(1):79 – 86, 1951.

[KMF17] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. “Lightgbm: A highly efficient gradient boosting
decision tree.” Advances in neural information processing systems, 30:3146–3154,
2017.

[Kro21] Tilman Krokotsch. “The Great Autoencoder Bake Off.” https://github.com/

tilman151/ae_bakeoff, 2021.

[KSR17] Andrzej S. Krolewski, Jan Skupien, Peter Rossing, and James H. Warram.
“Fast Renal Decline to End-Stage Renal Disease: An Unrecognized Feature of
Nephropathy in Diabetes.” Kidney International, 91(6):1300–1311, June 2017.

[KW14] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes.”
arXiv:1312.6114 [cs, stat], May 2014.

[LCH18] Xiang Li, Shuo Chen, Xiaolin Hu, and Jian Yang. “Understanding the Dishar-
mony between Dropout and Batch Normalization by Variance Shift.”, January
2018. arXiv:1801.05134 [cs, stat].

[Comment: 9 pages, 7 figures.]

[Lea] “Learning Internal Representations by Error Propagation — Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cognition, Vol. 1.”
https://dl.acm.org/doi/10.5555/104279.104293.

[Lit88] Roderick J. A. Little. “A Test of Missing Completely at Random for Multivari-
ate Data with Missing Values.” Journal of the American Statistical Association,
83(404):1198–1202, December 1988.

[LJR18] Lisha Li, Kevin Jamieson, Afshin Rostamizadeh, Katya Gonina, Moritz Hardt,
Benjamin Recht, and Ameet Talwalkar. “Massively Parallel Hyperparameter Tun-
ing.”, 2018.

[LMX18] Tianyu Li, Yukun Ma, Jiu Xu, Björn Stenger, Chen Liu, and Yu Hirate. “Deep
Heterogeneous Autoencoders for Collaborative Filtering.” In 2018 IEEE Inter-
national Conference on Data Mining (ICDM), pp. 1164–1169, November 2018.

[LTS14] Hiddo J. Lambers Heerspink, Hocine Tighiouart, Yingying Sang, Shoshana
Ballew, Hasi Mondal, Kunihiro Matsushita, Josef Coresh, Andrew S. Levey, and
Lesley A. Inker. “GFR Decline and Subsequent Risk of Established Kidney Out-
comes: A Meta-Analysis of 37 Randomized Controlled Trials.” American Journal
of Kidney Diseases, 64(6):860–866, 2014.

118

https://github.com/tilman151/ae_bakeoff
https://github.com/tilman151/ae_bakeoff

[McK10] Wes McKinney. “Data Structures for Statistical Computing in Python.” In
Stéfan van der Walt and Jarrod Millman, editors, Proceedings of the 9th Python
in Science Conference, pp. 56 – 61, 2010.

[MHm19] David R. MacIver, Zac Hatfield-Dodds, and many other contributors. “Hypoth-
esis: A new approach to property-based testing.” November 2019.

[Mic01] Daniele Micci-Barreca. “A preprocessing scheme for high-cardinality categorical
attributes in classification and prediction problems.” ACM SIGKDD Explorations
Newsletter, 3(1):27–32, July 2001.

[Mic22] Umberto Michelucci. “An Introduction to Autoencoders.” arXiv:2201.03898 [cs],
January 2022.

[MKA18] John T. McCoy, Steve Kroon, and Lidia Auret. “Variational Autoencoders for
Missing Data Imputation with Application to a Simulated Milling Circuit.” IFAC-
PapersOnLine, 51(21):141–146, 01 2018.

[MNW18] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. “Ray: A Distributed Framework for Emerging AI Applications.”,
September 2018.

[MP21] Karthika Mohan and Judea Pearl. “Graphical Models for Processing Missing
Data.” Journal of the American Statistical Association, 116(534):1023–1037,
April 2021.

[MPL13] David M Maslove, Tanya Podchiyska, and Henry J Lowe. “Discretization of
Continuous Features in Clinical Datasets.” Journal of the American Medical
Informatics Association : JAMIA, 20(3):544–553, 2013.

[MSW18] Christina Mack, Zhaohui Su, and Daniel Westreich. Types of Missing Data.
Agency for Healthcare Research and Quality (US), February 2018.

[MTT20] Chao Ma, Sebastian Tschiatschek, Richard Turner, José Miguel Hernández-
Lobato, and Cheng Zhang. “VAEM: A Deep Generative Model for Heterogeneous
Mixed Type Data.” In Advances in Neural Information Processing Systems, vol-
ume 33, pp. 11237–11247. Curran Associates, Inc., 2020.

[Mue] Zachary Mueller. “Using AutoEncoders with Tabular Data.”
https://walkwithfastai.com/tab.ae.

[NDA19] Keith C. Norris, O. Kenrik Duru, Radica Z. Alicic, Kenn B. Daratha, Susanne B.
Nicholas, Sterling M. McPherson, Douglas S. Bell, Jenny I. Shen, Cami R. Jones,
Tannaz Moin, Amy D. Waterman, Joshua J. Neumiller, Roberto B. Vargas, Alex

119

A. T. Bui, Carol M. Mangione, Katherine R. Tuttle, and CURE-CKD investi-
gators. “Rationale and Design of a Multicenter Chronic Kidney Disease (CKD)
and at-Risk for CKD Electronic Health Records-Based Registry: CURE-CKD.”
BMC nephrology, 20(1):416, 11 2019.

[NOG20] Alfredo Nazábal, Pablo M. Olmos, Zoubin Ghahramani, and Isabel Valera.
“Handling incomplete heterogeneous data using VAEs.” Pattern Recognition,
107:107501, November 2020.

[Code: https://github.com/probabilistic-learning/HI-VAE VAEs to adapt to het-
erogeneous data + MCAR.]

[Oli06] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

[PC23] Steven Pan and Sixia Chen. “Empirical Comparison of Imputation Methods for
Multivariate Missing Data in Public Health.” International Journal of Environ-
mental Research and Public Health, 20(2):1524, January 2023.

[PGM19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, et al. “PyTorch: An
Imperative Style, High-Performance Deep Learning Library.” In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché Buc, et al., editors, Advances in Neural
Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc., 2019.

[PVG11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn: Ma-
chine Learning in Python .” Journal of Machine Learning Research, 12:2825–
2830, 2011.

[RHJ04] John D. Rozich, Ramona J. Howard, Jane M. Justeson, Patrick D. Macken,
Mark E. Lindsay, and Roger K. Resar. “Standardization as a Mechanism to Im-
prove Safety in Health Care.” Joint Commission Journal on Quality and Safety,
30(1):5–14, January 2004.

[Rub76] Donald B. Rubin. “Inference and Missing Data.” Biometrika, 63(3):581–592, 12
1976.

[SHK14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting.” Journal of Machine Learning Research, 15(56):1929–1958, 2014.

[SLV18] Rianne M Schouten, Peter Lugtig, and Gerko Vink. “Generating missing val-
ues for simulation purposes: a multivariate amputation procedure.” Journal of
Statistical Computation and Simulation, 88(15):2909–2930, 2018.

[Smi23] Garrett Smith. “guildai.” https://github.com/guildai/guildai, 2023.

120

https://github.com/guildai/guildai

[SS23] Heajung Suh and Jongwoo Song. “A Comparison of Imputation Methods Us-
ing Machine Learning Models.” Communications for Statistical Applications and
Methods, 30(3):331–341, May 2023.

[SZS22a] Rianne M Schouten, Davina Zamanzadeh, and Prabhant Singh. “pyampute: a
Python library for data amputation.”, August 2022.

[SZS22b] Rianne M Schouten, Davina Zamanzadeh, and Prabhant Singh. “Pyampute: A
Python Library for Data Amputation.”, August 2022.

[SZS22c] Rianne M Schouten, Davina Zamanzadeh, and Prabhant Singh. “pyampute: a
Python library for data amputation.” Scientific Computing with Python confer-
ence, 2022.

[TAD19] Katherine R. Tuttle, Radica Z. Alicic, O. Kenrik Duru, Cami R. Jones, Kenn B.
Daratha, Susanne B. Nicholas, Sterling M. McPherson, Joshua J. Neumiller, Dou-
glas S. Bell, Carol M. Mangione, and Keith C. Norris. “Clinical Characteristics
of and Risk Factors for Chronic Kidney Disease Among Adults and Children:
An Analysis of the CURE-CKD Registry.” JAMA Network Open, 2:e1918169–
e1918169, 2019.

[VG11] Stef Van Buuren and Karin Groothuis-Oudshoorn. “mice: Multivariate impu-
tation by chained equations in R.” Journal of statistical software, 45(1):1–67,
2011.

[VLB08] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
“Extracting and Composing Robust Features with Denoising Autoencoders.” In
Proceedings of the 25th International Conference on Machine Learning - ICML
’08, pp. 1096–1103, Helsinki, Finland, 2008. ACM Press.

[VPL17] Isabel Valera, Melanie F. Pradier, Maria Lomeli, and Zoubin Ghahramani. “Gen-
eral Latent Feature Models for Heterogeneous Datasets.” June 2017.

[WNN19] Christopher K. I. Williams, Charlie Nash, and Alfredo Nazábal. “Autoencoders
and Probabilistic Inference with Missing Data: An Exact Solution for The Factor
Analysis Case.” 02 2019.

[YJS18] Jinsung Yoon, James Jordon, and Mihaela Schaar. “GAIN: Missing Data Imputa-
tion Using Generative Adversarial Nets.” In Proceedings of the 35th International
Conference on Machine Learning, pp. 5689–5698. PMLR, July 2018.

[ZCD18] M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S. Hong, A. Konwinski, Siddharth
Murching, Tomas Nykodym, Paul Ogilvie, Mani Parkhe, Fen Xie, and Corey
Zumar. “Accelerating the Machine Learning Lifecycle with MLflow.” IEEE Data
Eng. Bull., 2018.

121

[ZPD21] Davina J. Zamanzadeh, Panayiotis Petousis, Tyler A. Davis, Susanne B. Nicholas,
Keith C. Norris, Katherine R. Tuttle, Alex A. T. Bui, and Majid Sarrafzadeh.
“Autopopulus: A Novel Framework for Autoencoder Imputation on Large Clinical
Datasets.” Annual International Conference of the IEEE Engineering in Medicine
and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual
International Conference, 2021:2303–2309, November 2021.

122

