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Abstract

This paper proposes growth mixture modeling to assess intervention e®ects in lon-

gitudinal randomized trials. Growth mixture modeling represents unobserved hetero-

geneity among the subjects using a ¯nite mixture random e®ects model. The method-

ology allows one to examine the impact of an intervention on subgroups characterized

by di®erent types of growth trajectories. Such modeling is informative when exam-

ining e®ects on populations that contain individuals who have normative growth as

well as non-normative growth. The analysis identi¯es subgroup membership and allows

theory-based modeling of intervention e®ects in the di®erent subgroups. An example

is presented concerning a randomized intervention in Baltimore public schools aimed

at reducing aggressive classroom behavior, where only students who were initially more

aggressive showed bene¯ts from the intervention.

¤This paper was presented at the 2000 Joint Statistical Meetings in Indianapolis, Indiana, August 13-

17, 2000. It is a revised version of the 1997 paper General Growth Mixture Modeling of Latent Trajectory

Classes: Perspectives and Prospects, an earlier version of which was presented at the Prevention Science

Methodology Group meeting in Tempe, Arizona, May 22-24 1996. The research of the ¯rst author and

his colleagues was supported under grant 1 K02 AA 00230-01 from NIAAA, by grant 1 R21 AA10948-

01A1 from NIAAA, and by NIMH under grant No. MH40859. Work on this paper by the second author

and his colleagues was supported by both NIMH and NIDA under grant MH40859, and by NIMH under

grants No. MH01259, No. MH38725, and No. MH42968, and by NICHD under grant No. HD040051.

The work has bene¯tted from continued discussion of the Prevention Science and Methodology Group,

including presentations by Lawrence Mayer, and Muth¶en's Research Apprenticeship Course. The email

address for the ¯rst author is bmuthen@ucla.edu.
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1 Introduction

This paper presents a novel application of growth mixture modeling (Muth¶en & Shedden,

1999; Muth¶en, 2001a, b; Muth¶en & Muth¶en, 2000, 2001) to preventive intervention trials

in which individuals are randomized into intervention and control groups and measured

repeatedly before and after the start of the intervention. The strength of randomized

repeated measures studies is that they allow the assessment of intervention e®ects on

trajectories rather than merely focusing on overall intervention e®ects at a speci¯c time

point. The analysis better utilizes this strength by allowing for many forms of unobserved

heterogeneity among subjects typically encountered in prevention studies, both with

respect to development in the control group and with respect to the intervention e®ects.

The analysis can also help point out advantageous re¯nements in the design of future

intervention studies.

Development in the control group often needs to be described in terms of unob-

served trajectory classes of development, within which there may be further individual

trajectory variation. For example, some children in early school grades may be on a

developmental path of reading disability, others may show mild forms of reading prob-

lems, while still others progress more normally (Muth¶en, Khoo, Francis, & Boscardin,

2000). Another example involves di®erent trajectories of aggressive/disruptive behav-

ior. Evidence for the existence of three patterns of aggression trajectories - an early

onset, a late onset, and a stable low aggressive pattern - has been reported by Mo±tt

(1993). A third example involves three major trajectory classes of alcohol drinking be-
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havior among young adults with a normative low use class, an early onset class, and

an escalating class (Muth¶en & Muth¶en, 2000). Multiple trajectories are often useful

in medicine; Pearson, Morrell, Landis, Carter, and Brant (1994) considered di®erent

groups of males with linear or exponential growth in prostate speci¯c antigen (PSA).

The average trajectories for the classes in these examples are di®erent from one another

with individual variation around each. It is important to be able to distinguish between

individuals in the di®erent classes because membership in di®erent classes may have

di®erent antecedents, e.g., poverty for reading development, as well as consequences,

e.g., alcohol dependence for more severe drinking behavior (Muth¶en & Shedden, 1999)

and prostate cancer for those with exponential growth in PSA (Pearson et al., 1994).

This paper will study an example from randomized preventive ¯eld trials conducted in

Baltimore by Johns Hopkins University, the Baltimore City Public Schools, and Morgan

State University (Dolan, Kellam, Brown, Werthamer-Larsson, Rebok, Mayer, Laudol®,

Turkkan, Ford, & Wheeler, 1993; Ialongo, Werthamer, Kellam, Brown, Wang, & Lin,

1999). These studies intervene during ¯rst and second grade to improve reading and

reduce aggression with outcomes assessed through middle school and beyond.

Section 2 gives a description of the Baltimore intervention study. Section 3 proposes

two kinds of growth mixture models that allow for di®erential intervention impact among

unobserved subgroups of subjects. Section 4 puts the models in a general framework

and presents maximum-likelihood estimation using the EM algorithm. Section 5 shows

the analysis results. Section 6 concludes.
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2 The Baltimore Intervention Study

The motivation for the analyses is a school-based preventive intervention study carried

out by the Baltimore Prevention Research Center under a partnership between the Johns

Hopkins University, the Baltimore City Public Schools, and Morgan State University.

In this intervention trial, children were followed from ¯rst to seventh grade with respect

to the course of aggressive behavior, and a follow-up to age 18 also allowed for the

assessment of intervention impact on the probability of juvenile delinquency as indicated

by juvenile court records.

One of the interventions applied during the ¯rst and second grade was the Good

Behavior Game (GBG), a universal intervention aimed at reducing aggressive behav-

ior. GBG is a class-room based behavior management strategy for teachers that showed

positive e®ects on short-term aggressive (Dolan et al., 1993), o®-task behavior (Brown,

1993), as well as aggressive behavior in the long-term, i.e., through grade 7 (Kellam,

Rebok, Ialongo & Mayers, 1994). Key scienti¯c questions address whether the GBG re-

duces the slope of the aggression trajectory across time, whether the intervention varies

in impact for children who initially display higher levels of aggression, and whether the

intervention impacts distal outcomes. It has been suggested that GBG may have its

largest e®ect for those who are in the middle trajectory class, showing milder forms of

problems, while not being strong enough to a®ect the most seriously aggressive chil-

dren and not needed for members of the stable non-aggressive group. Analyses of these

hypotheses are presented in this paper. Allowing for multiple trajectory classes in the
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growth model gives a °exible way to assess di®erential e®ects of the intervention. In-

tervention e®ects may di®er across trajectory classes with respect to the rate of change

over time and may also produce changes in trajectory class membership.

The overall design of the study involved random assignment of both schools and class-

rooms after making sure all ¯rst grade classes within a school were balanced on kinder-

garten performance. Schools were ¯rst matched into six triplets and then randomly

assigned within blocks to receive only the standard setting in all ¯rst grade classrooms,

to receive the Good Behavior Game in one or more of its classes, or to receive a separate

learning intervention in one or more of its classes. Within those schools where the Good

Behavior Game was made available, ¯rst grade classrooms were randomly assigned to

recieve either this new intervention or the standard control setting condition. Further

details on the design can be found in Brown and Liao (1999). For the purposes of this

study, the analyses have been limited to the children receiving the Good Behavior Game

and their corresponding controls within the same schools. The primary outcome vari-

able of interest was teacher ratings of each child's aggressive behavior in the classroom

for grades 1 - 7. After an initial assessment in fall of ¯rst grade, the intervention was

administered during the ¯rst two grades, with nearly all children remaining in the same

intervention condition in the second year as they were in the ¯rst. Teacher ratings of a

child's aggressive behavior were made from fall and spring for the ¯rst two grades and

every spring in grades 3 - 7. The ratings were made using the Teacher's Observation of

Classroom Adaptation-Revised (TOCA-R) instrument (Werthamer-Larsson, Kellam &

Wheeler, 1991), consisting of an average of 10 items, each rated on a six-point scale from
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"almost never" to "almost always". Information was also collected on other concurrent

and distal outcomes, including school removal and juvenile court records. The current

analyses focus on boys and intervention status as de¯ned by classroom assignment in

fall of ¯rst grade, resulting in a sample of 119 boys in the intervention group and 80

boys in the control group.

3 Growth Mixture Modeling

To investigate whether or not subgroups of children bene¯t di®erently from the inter-

vention, a ¯nite mixture random e®ects model will be formulated, where the unobserved

subgroups of the mixture are conceptualized as di®erent trajectory classes captured by a

latent class variable with K classes. Two general growth mixture models will be studied.

3.1 Growth Mixture Model 1

Model 1 assumes that intervention e®ects are captured in the average slopes for each

class. The notion is that an individual has a certain trajectory class membership that

does not change over time. The intervention produces a change in within-class trajectory

from that expected for controls.

Assume for individual i in class k (k = 1; 2; : : : ;K),

yit = ´0i + ´1i at + ´2i a
2
t + ²it; (1)

where yit (i = 1; 2; : : : ; n; t = 1; 2; : : : ; T ) are aggression outcomes in°uenced by the
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random e®ects ´0i, ´1i, and ´2i described below. The residuals ²it have a T £ T covari-

ance matrix £k, possibly varying across the trajectory classes (k = 1; 2; : : : ;K). The

intervention begins after the ¯rst measurement occasion. Setting a1 = 0 in (1) de¯nes

´0i as pre-intervention initial status at t = 1, i.e. Fall of ¯rst grade. The remaining at

values are set according to the distance in timing of measurements. It is assumed for

simplicity in (1) that the at values do not vary across class or across intervention groups

so that the growth function is the same.

Let the dummy variable Ii denote the intervention status for individual i (I = 0 for

the control group and I = 1 for the intervention group). The random e®ects are allowed

to have di®erent distributions for individuals belonging to di®erent trajectory classes

and for di®erent intervention status. For class k,

´0i = ®0k + ³0i; (2)

´1i = ®1k + °1k Ii + ³1i; (3)

´2i = ®2k + °2k Ii + ³2i: (4)

The residuals ³i have a 3 £ 3 covariance matrix ªk, possibly varying across classes k

(k = 1; 2; : : : ;K). For simplicity, ªk and£k are assumed to not vary across intervention

groups. As seen in (2) - (4), the control group (Ii = 0) consists of children from di®erent

trajectory classes that vary in the means of the growth factors, ®0k, ®1k, and ®2k.

This represents the normative development in the absence of intervention. Because

of randomization, the control and intervention group are assumed to be statistically

equivalent at t1. This implies that I is assumed to have no e®ect on ´0i in (2) so that ®0

9



represents the mean of the initial status random e®ect, common to both the control and

intervention group. Intervention e®ects are described by °1k, °2k as a change in average

growth rate that can be di®erent for di®erent classes k.

It may be noted that this model assumes that intervention status does not in°uence

class membership. Alternative models were also pursued, however. Regressing class

membership on intervention status, it was found that class sizes did not vary signi¯cantly

across intervention groups. A technical report available from the ¯rst author includes a

model that also allows transitions between classes as a function of the intervention.

3.2 Growth Mixture Model 2

Model 2 is the same as Model 1, but adds a distal outcome that is in°uenced by the

growth process for y. Consider, for example, a categorical outcome u. Model 2 assumes

that the u probabilities are a®ected by the trajectory classes and that the intervention

has a di®erent e®ect on u for di®erent trajectory classes.

With a binary distal outcome the class in°uence is described as the logit regression

logit P (ui = 1jclass k; Ii) = ¡¿k + ·k Ii: (5)

Noting that ¡¿k+·k Ii is the log odds for ui = 1 versus ui = 0 for individual i in class k,

the intervention e®ect is expressed by the corresponding log odds ratio for Ii = 1 versus

Ii = 0 in class k, obtained as the di®erence

¡¿k + ·k ¡ (¡¿k) = ·k: (6)
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An odds ratio estimate and corresponding con¯dence interval are obtained by exponen-

tiating the ·k estimate and con¯dence limits.

The e®ect of class membership on the distal outcome can be expressed by the log

odds for ui = 1 versus ui = 0 for individual i in class k, or by the corresponding log

odds ratio for class k compared to a normative class K,

¡¿k + ·k Ii ¡ (¡¿K + ·K Ii): (7)

It follows from (7) that when the intervention e®ect on the distal outcome is constant

across classes, i.e. ·1 = ·2; : : : = ·K , the log odds ratio for the distal outcome when

comparing class k to class K is ¡¿k + ¿K .

4 Growth Mixture Modeling Framework, Estima-

tion, and Model Assessment

The two growth mixture models proposed for the Baltimore intervention study may be

seen as special cases of a more general modeling framework presented by Muth¶en and

Shedden (1999) and extended by Muth¶en and Muth¶en (2001; see Appendix 8). Following

is a brief review of this work as it pertains to the current models.
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4.1 Modeling Framework

The observed variables are x, y, and u, where x denotes a q £ 1 vector of covariates, y

denotes a p£ 1 vector of continuous outcome variables, and u denotes an r £ 1 vector

of binary outcome variables. In this application r = 1. The latent variable ´ denotes an

m£ 1 vector of continuous variables and c denotes a latent categorical variable with K

classes, ci = (ci1; ci2; : : : ; ciK)
0, where cik = 1 if individual i belongs to class k and zero

otherwise.

The latent classes of c in°uence both y and u. Consider ¯rst the y part of the model.

Conditional on class k,

yi = ¤k ´i + ²i; (8)

´i = ®k + ¡k xi + ³i; (9)

where the residual vector ²i is N(0;£k) and the residual vector ³i is N(0;ªk), both

assumed to be uncorrelated with other variables. Conditional on class k, (8) and (9)

form a conventional latent variable model (see, e.g., Bollen, 1989), where the density

[yijci;xi] is N(¹i;§i), where for class k,

¹i = ¤k (®k + ¡k xi); (10)

§i = ¤k ªk ¤
0
k +£k: (11)

A logistic regression is speci¯ed for the binary u. For class k,

P (ui = 1jxi) = 1

1 + e¿k¡·
0
k xi

: (12)

12



Translating Model 1 and Model 2 into matrix terms corresponding to the general

model form, xi = Ii, yi = (yi1; yi2; : : : ; yiT )
0, ´i = (´0i; ´1i; ´2i)

0, and

¤k =

0BBBBBBB@

1 0 0
1 1 1
1 a3 a23
...

...
...

1 aT a2T

1CCCCCCCA ;®k =
0B@ ®0k
®1k
®2k

1CA ;¡k =
0B@ 0
°1k
°2k

1CA : (13)

With the modeling framework presented above, it is possible to examine a wide vari-

ety of hypotheses involving both the parameters and the dimensionality of c and ´. This

framework is an extension of the mixture mixed-e®ects model of Verbeke and LeSa®re

(1996). It is also more general than the model of Nagin (1999), Roeder, Lynch and Nagin

(1999), and Jones, Nagin, and Roder (1998); in their work ªk = 0, £k = µI. Iden-

ti¯cation of latent variable mixture models of the type presented here is demonstrated

in Lubke, Muth¶en, and Larsen (2001). The modeling framework given above draws on

that of Muth¶en and Shedden (1999) and Muth¶en and Muth¶en (2001; Appendix 8), which

o®ers more generality than is needed here, including a multinomial regression of latent

class membership on covariates, regressions among the random e®ects, time-varying co-

variates, multiple ordinal u variables following a latent class model, and partially known

class membership. Applications to non-intervention settings are given in Muth¶en (2001a,

b), Muth¶en and Muth¶en (2000), and Muth¶en, Khoo, Francis, Boscardin (2000). Appli-

cations to latent class membership representing non participation (noncompliance) in

intervention studies (Angrist, Imbens & Rubin, 1996) are given in Jo (2000), Jo and

Muth¶en (2000).
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4.2 Estimation

With a sample of n independent observations on y;u;x, the latent variable data ´1;´2; : : : ;´n

and c1; c2; : : : ; cn may be viewed as missing data with the complete-data log likelihood

conditional on x expressed as

nX
i=1

(log[uijci;xi] + log[´ijci;xi] + log[yijci;´i;xi]); (14)

where the ¯rst term is de¯ned by (12), and the last two terms are normal densities.

In this way, the bracket notation is used to refer to either probabilities or densities for

simplicity in the presentation. Alternatively, with only c1; c2; : : : ; cn viewed as missing

data, the complete-data log likelihood is

nX
i=1

(log[uijci;xi] + log[yijci;xi]); (15)

The model can be estimated by maximum-likelihood using EM algorithms. Muth¶en

and Shedden (1999) proposed an EM algorithm drawing on (14), while Muth¶en and

Muth¶en (2001) use an EM algorithm drawing on (15). A brief summary of the latter

approach follows.

Consider the conditional probability of individual i belonging to class k, given the

observed data,

pik = P (cik = 1jyi;ui;xi) = P (cik = 1) [yijci;xi] [uijcik = 1;xi]=[yi;uijxi]: (16)

It follows that in (15),

nX
i=1

log[yijci;xi] =
nX
i=1

KX
k=1

cik log[yijxi]k: (17)
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The EM algorithm used in Muth¶en and Muth¶en (2001) computes the expected value

of ci using (16). Given this, the M step maximizes the expected complete-data log

likelihood function, conditional on the observed data, separately for the y;x part of the

model and the u;x part of the model. For the y;x part this is

E(
nX
i=1

log[yijci;xi] jui;yi;xi) =
nX
i=1

KX
k=1

pik log[yijxi]k; (18)

which corresponds to simultaneous estimation of theK groups with posterior-probability

weighted sample mean vectors and covariance matrices. The maximization for the u;x

part of the model is broken down into a multinomial regression optimization for c related

to x (when this part of the model is present),

nX
n=1

KX
k=1

pik log P (cik = 1jxi) (19)

and a logistic regression optimization for u related to c and x,

nX
i=1

rX
j=1

X
k=1

pik log P (uij = 1jci;xi): (20)

This EM algorithm is implemented in the Mplus program (Muth¶en & Muth¶en, 2001),

which is the program used for the analyses. 1 Mplus allows y and u to be missing at

random (MAR; Little & Rubin, 1987). It should be noted that mixture models in general

are prone to have multiple local maxima of the likelihood and the use of several di®erent

sets of starting values in the iterative procedure is strongly recommended.

1Input speci¯cations for the Mplus analyses can be found at www.statmodel.com
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4.3 Model Assessment

For comparison of ¯t of models that have the same number of classes and are nested,

the usual likelihood-ratio chi-square di®erence test can be used. Comparison of models

with di®erent numbers of classes, however, is accomplished by a Bayesian information

criterion (BIC; Schwartz, 1978; Kass & Raftery, 1993),

BIC = ¡2 logL+ r ln n; (21)

where r is the number of free parameters in the model. The lower the BIC value, the

better the model.

The degree to which the latent classes are clearly distinguishable by the data and

the model can be assessed by using the estimated conditional class probabilities for

each individual. By classifying each individual into his/her most likely class, a K £K

table can be constructed with rows corresponding to individuals classi¯ed into a given

class. For individuals in each row, the column entries give the average conditional

probabilities. This will be referred to as a classi¯cation table (Nagin, 1999). High

diagonal and low o®-diagonal values indicate good classi¯cation quality. A summary

measure of the classi¯cation is given by the entropy measure (see, e.g., Ramaswamy,

DeSarbo, Reibstein, Robinson, 1993),

EK = 1¡
P
i

P
k(¡p̂ik lnp̂ik)
n lnK

; (22)

where p̂ik denotes the estimated conditional probability for individual i in class k. En-

tropy values range from zero to one, where entropy values close to one indicate clear
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classi¯cations in that the entropy decreases for probability values that are not close to

zero or one.

The ¯t of the model to the data can be studied by comparing for each class esti-

mated moments with moments created by weighting the individual data by the estimated

conditional probabilities (Roeder, Lynch & Nagin, 1999). To check how closely the es-

timated average curve within each class matches the data, it is also useful to randomly

assign individuals to classes based on individual estimated conditional class probabil-

ities. Plots of the observed individual trajectories together with the model-estimated

average trajectory can be used to check assumptions (Bandeen-Roche et al., 1997).

5 Growth Mixture Analyses

In this section the Baltimore intervention data are analyzed in four steps: using a con-

ventional single-class model; using an initial growth mixture exploration of the control

and intervention groups; using Model 1; and using Model 2. Because children are clus-

tered within classrooms, standard errors of parameter estimates were also estimated

using a sandwich estimator assuming independent observations only across classrooms.

The resulting standard errors were very similar to the unadjusted standard errors which

are reported here.
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5.1 Conventional Single-Class Analyses

As a ¯rst step in the repeated measures analysis it is useful to study the normative

development of aggressive behavior shown in the control group. This establishes the

trajectory shape in the absence of intervention so that e®ects of the intervention can be

more clearly understood. Initial explorations pointed to a quadratic growth curve model.

The random e®ects did not need to be correlated. The time-speci¯c residuals needed

to be correlated for Fall and Spring for each of the two ¯rst grades. Likelihood-ratio

chi-square testing was used to aid in these decisions.

A joint analysis of the 80 control group children and the 120 intervention group

children using a single-class (K = 1) version of the model of (1) - (4), i.e. a conventional

Laird and Ware (1982) model, resulted in an insigni¯cant intervention e®ect with the

estimates (s.e.) °̂1 = ¡0:01 (0:08), °̂2 = 0:00 (0:01). This produces a Spring grade 7

estimated mean di®erence between the control and intervention group of only ¡0:04,

or approximately 0:03 of the aggression score standard deviation at that time point, an

inconsequential e®ect size.

5.2 Initial Growth Mixture Analyses

An initial exploration by growth mixture analysis is important because Model 1 includes

many possible alternatives. The control group is ¯rst analyzed separately to establish

normative growth in the absence of an intervention, followed by a separate analysis of

the intervention group. Alternative variance assumptions were investigated, holding all
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variances equal across classes versus letting the intercept and residual variances di®er

across certain classes. Based on likelihood ratio chi-square testing in the control group

as well as the intervention group, it was found that the intercept and residual variances

needed to be di®erent for a class of children with stable low level of aggression. As a guide

in choosing between models with di®erent number of classes, the Bayesian Information

Criterion (BIC) was used. It is useful to determine the number of classes in separate

analyses of the two groups for two reasons. First, the control group analysis suggests

the number of classes in the absence of an intervention and given that it is assumed that

the intervention does not in°uence class membership, this number of classes should also

hold in the intervention group. Second, the joint analysis of the two groups adds its own

model speci¯cations and it is valuable to establish the number of classes without adding

these speci¯cations.

The BIC values were obtained for 1-5 classes for full and partial variance homogeneity

in the control group and indicated a superior ¯t when allowing non-invariant variances.

The BIC values suggested a considerably better ¯t when allowing more than one class.

With heterogeneous variances, the lowest value was at 4 classes although the 3-, 4-, and

5-class solutions had rather similar values.

The left column of Figure 1 shows the estimated mean growth curves for the 3-, 4-,

and 5-class models for the control group.

INSERT FIGURE 1

The 3-class solution has class probabilities 0:09; 0:52; 0:39, the 4-class solution has
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class probabilities 0:08; 0:38; 0:41; 0:13, and the 5-class solution has class probabilities

0:08; 0:32; 0:45; 0:09; 0:06. Going from three to ¯ve classes provides an increasingly more

elaborate description of the trajectories, while the previously obtained classes do not

change much when adding a new class. The 3- and 4-class solutions will be highlighted

here. The two solutions share three of the classes and they will be named High, Medium,

and Low corresponding to their relative positions. The remaining class in the 4-class

solution will be named Late-Starters.

Considering the 4-class solution, the 8% in the High class show a high aggression

level in early grades that decreases over time. In line with Mo±tt (1993) this group

corresponds to an \early starter" group of aggressive boys. The Late-starters class

contains 13% of the children, showing a low initial aggression level that increases over

time. The Medium class and the Low class have the highest probabilities, 38% and 41%,

respectively, and show low aggression trajectories that do not increase or decrease over

time. The Low class has low intercept and residual variances indicating little °uctuation

in the development. The Low class contains the stable low aggressive children.

The right column of Figure 1 shows the estimated mean curves for the intervention

group using the 3-, 4-, and 5-class models. Here, the High class shows a decline earlier

than for the control group, indicating a bene¯cial intervention e®ect on the highest risk

boys. A bene¯cial intervention e®ect is also indicated for the Late-starters class of the 4-

and 5-class solutions. These intervention e®ects will now be examined in a joint analysis

of control and intervention children.
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5.3 Model 1 Analyses

In Model 1, the joint analysis of the control and the intervention group based on the

model in (1) - (4) uses the speci¯cations arrived at from the initial analyses discussed

above. Both the 3- and 4-class versions are studied for comparison.

In the joint analysis using 4 classes it was found that not only the Low class, but

also the Late-starters class, required a separate speci¯cation of variance parameters.

The Late-starters class was found to have insigni¯cant intercept variance and signif-

icantly smaller residual variances than the High and Medium classes. The resulting

4-class solution had a log likelihood value of ¡1554:34 with the BIC value of 3394:53

(54 parameters). These can be compared to those of the 3-class model: ¡1604:40 and

3420:52 (40 parameters), respectively. The parameter estimates for the 4-class solution

are shown in Table 1.

INSERT TABLE 1

The estimated mean curves for the 3- and 4-class versions of Model 1 are shown in

Figure 2. For the 3-class solution there appears to be a bene¯cial intervention e®ect for

the High class through a lowered aggression trajectory. Although the di®erence in the

means of the linear terms for the High class is sizable, °̂1 = ¡0:45, this is not signi¯cantly

di®erent from zero (95% CI: ¡0:92; 0:02). The Medium class and the Low class show

no intervention e®ects. Thus this model suggests that the intervention a®ects the group

with the highest risk, but does not provide unequivocal evidence.

The intervention impact in the 4-class solution shows a pattern for the High class
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similar to that of the 3-class solution, but the result is again insigni¯cant. A bene¯cial

e®ect is also suggested for the Late-starters class, but is also non-signi¯cant. Overall,

the likelihood-ratio test of any intervention e®ect in terms of the linear and quadratic

means (°1; °2 coe±cients) over the four classes is very small (a likelihood-ratio test gives

Â2(8) = 1:40; p > 0:50 for the 4-class solution). The lack of signi¯cance is perhaps in

large part due to low power given small class sizes in combination with large within-class

variation; for example, the High class contains 15% of the sample, or only 12 boys from

the control group and 18 boys from the intervention group (the within-class variation is

shown in Figure 4 below).

INSERT FIGURE 2

Although the intervention e®ect is not signi¯cant, the estimated mean curves of

Figure 2 show that for the High class, the estimated e®ect size is about one aggression

score standard deviation for grades 2 - 6 in both the 3- and 4-class versions of the model.

The High class contains about the same percentage of children in both the 3- and 4-class

solutions, 14¡ 15%. This is roughly comparable to the percentages of children found in

the separate-group solutions of Figure 1.

In line with Section 4.3, the quality of the classi¯cation can be studied in terms of

estimated probabilities in the classi¯cation table shown in Table 2, each row correspond-

ing to individuals who are most likely to be in the particular class of that row. High

classi¯cation quality is indicated by high diagonal probability values. Table 2 shows the

results for the 4-class solution. The entropy value is 0:83 for the 3-class version and 0:80
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for the 4-class version.

INSERT TABLE 2

Figure 3 shows that the estimated 4-class model appears to ¯t the data well when

compared to the probability-weighted means and variances. An exception is seen in the

variances for the control group in grade 1.

INSERT FIGURE 3

A visualization of how the model matches the individual data is given in Figure 4 for

the 4-class solution. As discussed in Section 4.3, this may be obtained by comparing the

estimated mean curve in each class to raw data trajectories for individuals assigned to

that class by a random draw according to the estimated individual class probabilities.

Figure 4 indicates that although individual trajectories °uctuate greatly, the estimated

mean trajectories in the classes cut through the middle of the collection of individual

trajectories rather well. Also, the smaller variances in the Low class and the Late-

Starters class are evident in the ¯gure.

INSERT FIGURE 4

5.4 Model 2 Analyses

Model 2 adds the distal binary outcome of juvenile delinquency prior to age 18. Only the

4-class version of the model is reported here. The estimated mean curves are essentially

the same as for Model 1. Two versions of Model 2 were used, depending on whether the
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e®ect of intervention on the distal outome of juvenile court record was allowed to vary

across the classes (Model 2a), or not (Model 2b). The classi¯cation table is similar to

that of Model 1 with an entropy value of 0:81 for Model 2a.

The estimated odds ratios based on the results from Model 2a indicate positive

intervention e®ects on juvenile delinquency in the High, Low, and Late-starter classes.

However, none of the classes show a signi¯cant relationship between intervention status

and the distal outcome at the 5% level. Comparing Model 2a to Model 2b, the chi-

squared di®erence is 1:96 with 3 degrees of freedom and a corresponding p > 0:50.

Thus, class-invariance for the e®ects of the intervention on juvenile delinquency cannot

be rejected. Based on the Model 2b results, the estimated common odds ratio for juvenile

delinquency comparing the GBG group to the control group is 0:61 with a corresponding

95% con¯dence interval of (0:32; 1:14). While representing a positive intervention e®ect,

the e®ect is not signi¯cant at the 5% level.

It is also possible to assess the e®ects of class membership on the distal outcome.

Based on Model 2b, boys in the High class are at a signi¯cantly higher risk for having

a juvenile court record compared to boys in the Low class: estimated odds ratio is 8:11

(2:35; 27:97). Boys in the Late-starter and Medium class do not show a signi¯cantly

increased risk.
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6 Conclusions

This paper has discussed growth mixture modeling to assess intervention e®ects in ran-

domized trials. The two model types that were proposed indicate some of the °exibility

of the new methodology and serve as a stimulus for formulating other models. The

methodology allows one to examine in detail the impact of an intervention on unob-

served subgroups characterized by di®erent types of growth trajectories. The analysis

identi¯es subgroup membership and allows di®erent intervention e®ects in the di®erent

subgroups. In addition, the analysis can predict the in°uence of subgroup membership

on distal outcomes.

The growth mixture models described in this paper provide representative examples

of how to determine worthwhile bene¯ts from an intervention and when these e®ects

are likely to appear. In this way, the growth mixture modeling becomes a powerful

analytic tool when applied to randomized trials as well as to non-experimental research.

The techniques illustrated here can be easily expanded to ¯t particular substantive

hypotheses. For example, Model 1 alternatives can examine the number of classes,

the di®erential intervention e®ects on each class mean and variance, as well as basic

assumptions such as balance in intervention and control at baseline. Variations of Model

2 allow us to test di®erential e®ects across classes on distal outcomes as well as indirect

e®ects of the intervention through mediators' latent classes. Further model variations

are described in a technical report available from the ¯rst author.

As a caveat, it should be noted that these techniques should not be used as a substi-
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tute for reporting signi¯cant overall or population level e®ects. In fact, routine reliance

on growth mixture modeling in the absence of main e®ects is likely to result in spurious

¯ndings because of the multiple comparisons problem. It is recommended that growth

mixture modeling be carried out by comparing the empirical trajectories with those

from existing empirical data or theory. In the current situation, the models produced

results that explained previously published ¯nding that pointed to short-term impact

on multiple measures for those boys who began ¯rst grade with high levels of aggression

(Dolan et al., 1993) and signi¯cant bene¯t at sixth grade (Kellam et al., 1994).

The idea of detecting di®erent intervention e®ects for individuals belonging to dif-

ferent trajectory classes has important implications for designing future intervention

studies. It is possible to select di®erent interventions for individuals belonging to dif-

ferent trajectory classes using longitudinal screening procedures. One may attempt to

classify individuals into their most likely trajectory class based on a set of initial re-

peated measurements before the intervention starts. Alternatively, one may administer

a universal intervention and follow up with a targeted intervention for individuals who

show little or no intervention e®ect (Brown and Liao, 1999).
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Table 1.  Parameter Estimates for 4-class Model 1

Model yit = ηoi + η1i at + η2i at
2 + εit                at = 0, 0.5, 1.0, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5

                            η0i = αok + ζ0i
                            η1i = α1k + γ1k Ii + ζ1i
                            η2i = α2k + γ2k Ii + ζ2i

                            V (ζ | class k) = Ψk
                            V (ε | class k) = Θk

                            P(cik) =      eαck

                                          Σ eαck

Aggression Growth Estimates

Parameter
High Class

Estimate  (S.E.)
Medium Class
Estimate (S.E.)

Low Class
Estimate (S.E.)

LS Class
Estimate  (S.E.)

α0

α1

α2

γ1

γ2

V(ζ0)
V(ζ1)
V(ζ2)
V(ε1F)
V(ε1S)
V(ε2F)
V(ε2S)
V(ε3S)
V(ε4S)
V(ε5S)
V(ε6S)
V(ε7S)

C(ε1F,ε1S)
C(ε2F,ε2S)

3.846  (0.256)

0.502  (0.204)

-0.078  (0.034)

-0.329  (0.217)

0.025  (0.040)

0.077  (0.042)

0.002  (0.001)

0.000   (fixed)

1.163  (0.176)

0.700  (0.129)

0.670  (0.111)

0.744  (0.119)

1.266  (0.243)

0.855  (0.146)

0.678  (0.129)

1.269  (0.213)

1.091  (0.200)

0.141  (0.030)

0.219  (0.048)

2.571  (0.108)

0.076  (0.109)

-0.015  (0.018)

-0.045  (0.117)

0.015  (0.021)

0.077  (0.042)

0.002  (0.001)

0.000   (fixed)

1.163  (0.176)

0.700  (0.129)

0.670  (0.111)

0.744  (0.119)

1.266  (0.243)

0.855  (0.146)

0.678  (0.129)

1.269  (0.213)

1.091  (0.200)

0.141  (0.030)

0.219  (0.048)

1.531  (0.079)

-0.144  (0.049)

0.017  (0.049)

-0.079  (0.038)

0.015  (0.006)

0.000   (fixed)

0.002  (0.001)

0.000   (fixed)

0.221  (0.057)

0.175  (0.037)

0.321  (0.078)

0.237  (0.053)

0.018  (0.007)

0.047  (0.018)

0.081  (0.029)

0.050  (0.021)

0.023  (0.014)

0.141  (0.030)

0.219  (0.048)

1.382  (0.059)

0.272  (0.071)

-0.014  (0.014)

-0.074  (0.089)

-0.004  (0.017)

0.000   (fixed)

0.002  (0.001)

0.000   (fixed)

0.141  (0.029)

0.189  (0.040)

0.217  (0.044)

0.328  (0.073)

0.281  (0.089)

0.551  (0.149)

0.475  (0.139)

0.763  (0.214)

0.655  (0.191)

0.141  (0.030)

0.219  (0.048)
Bold values indicate p<0.05



Latent Class Estimates

Parameter Estimate S.E.

αc1

αc2

αc3

αc4

-0.395

-0.190

0.672
0.000

0.302

0.287

0.228

(fixed)

Table 2.  Classification Table for 4-class Model 1

Average Posterior ProbabilitiesMost Likely

Class High  Class Medium
Class

Low   Class LS     Class

High Class

Medium Class

Low Class

LS Class

0.864

0.057

0.000

0.001

0.136

0.903

0.028

0.064

0.000

0.017

0.913

0.092

0.000

0.024

0.059

0.844
   



Figure 1.  Separately estimated mean growth curves for 3-, 4-, and 5-class models for
control and intervention groups
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Figure 2.  Estimated mean growth curves for 3- and 4-class models
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Figure 3.  Probability-weight means and variances for 4-class model
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Figure 4.  Estimated mean growth curves and observed trajectories for 4-class model
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