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Professor Dan Ruan, Co-chair

Biological processes often produce signals detectable by multiple means, but with entirely

different information content. For both research and clinical applications concurrent multi-

modality data collection plays an important role in understanding the signal sources. Elec-

troencephalography (EEG) and functional magnetic resonance imaging (fMRI) are partic-

ularly interesting examples, in that each offers largely independent yet complementary in-

formation on neuronal activity. While we and others have made great strides in making

concurrent EEG-fMRI recordings possible, the EEG data, in particular, still contain signal

artifacts of cardiac origin (ballistocardiogram) that make EEG analysis difficult, or even

impossible.

To date, no satisfying means to separate brain EEG signal and ballistocardiogram (BCG)

exist especially for non-event-related-potential experiments and under 3-T MR scanner. The

BCG presents high temporal non-stationarity due to variation in cardiac cycles [BPJ02,

DSS07], and its amplitude scales with magnetic field strength [MHB13, YMG10]. This

explains the considerable variation of success levels among studies, with more successful

applications achieved at lower field strength. Previously published methods used one of blind
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source separation methods to remove the BCG. All such blind source separation approaches,

as reviewed in [GVK07, VDR10], are limited to performing component extraction based

on the contaminated data alone, agnostic of the structural difference between BCG and

EEG. Another kind of approach [BPJ02, MAF07, CMG14] is to utilize reference signals for

the artifact itself. However, this requires purpose-built hardware and exploits no further

denoising step besides a simple subtraction.

We have developed three algorithms to separate EEG signal and BCG artifacts. Firstly,

we have designed a Direct Recording - Prior Encoding (DRPE) method to maximally incor-

porate prior knowledge of BCG/EEG subspaces described by bases learned from a modified

recording configuration, and of the group sparsity characteristics in the signal. To further

promote subspace separability, a Direct Recording Joint Incoherent Basis (DRJIB) method

is proposed to learn a representative and sparse set of BCG and EEG bases by minimiz-

ing a cost function consisting of group sparsity penalties for automatic dimension selection

and an energy term for encouraging incoherence. Reconstruction is subsequently obtained

by fitting the contaminated data to a generative model using the learned bases subject to

regularization. The third algorithm takes advantage of currently available high-density EEG

cap, to reliably estimate the full-scalp BCG contribution from a near-optimal small subset

(20 out of 256) of channels and a corresponding weight through our modified experimental

setup using Orthogonal Matching Pursuit (OMP).

We show in carefully constructed simulations that the residual artifacts are reduced by

several orders of magnitude to a tiny fraction of the true signal. In human studies we

show that the methods work effectively, and validate our quantitative results. Beyond the

application to the EEG-fMRI challenge, we expect that our algorithmic methods will have

impact in many other domains where signal and contaminant have distinct information

structures. Digital signal, imaging, or even financial data are also contaminated with noises

so that studying and characterizing the information structures of desired and undesired

signals would greatly improve the modeling power.

iii



The dissertation of Hongjing Xia is approved.

Dario L. Ringach

Elliot M. Landaw

Dan Ruan, Committee Co-chair

Mark S. Cohen, Committee Co-chair

University of California, Los Angeles

2014

iv



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background of EEG and fMRI . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Electroencephalography . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Functional Magnetic Resonance Imaging . . . . . . . . . . . . . . . . 4

1.1.4 Simultaneous EEG-fMRI . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Technical Challenges of Simultaneous EEG-fMRI . . . . . . . . . . . . . . . 5

1.2.1 MR Gradient Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Ballistocardiogram (BCG) Artifacts . . . . . . . . . . . . . . . . . . . 7

1.3 Previous Publications about BCG Artifact Removal . . . . . . . . . . . . . . 9

1.3.1 Blind-source separation-based BCG Removal . . . . . . . . . . . . . . 9

1.3.2 Reference-signal-based BCG Removal . . . . . . . . . . . . . . . . . . 12

1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Separation and Reconstruction of BCG and EEG Signals during Continu-

ous EEG and fMRI Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Generative Model for Contaminated Data . . . . . . . . . . . . . . . . . . . 18

2.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Experimental Session I: Acquisition of EEG-only Data . . . . . . . . 19

2.4.2 Experimental Session II: Acquisition of BCG-only and Contaminated

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

v



2.5 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Stage I: Basis Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.1 Justification of BCG Prior Basis Vectors . . . . . . . . . . . . . . . . 23

2.6.2 Justification of EEG Prior Basis Vectors . . . . . . . . . . . . . . . . 23

2.7 Stage II: Separation and Reconstruction . . . . . . . . . . . . . . . . . . . . 25

2.7.1 Regularizations for Reconstruction . . . . . . . . . . . . . . . . . . . 25

2.7.2 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.8 Results from Synthesized Contaminated Data . . . . . . . . . . . . . . . . . 28

2.8.1 Assessment of validity of orthogonal assumption between subspaces . 29

2.8.2 Performance Evaluation of Reconstruction . . . . . . . . . . . . . . . 29

2.9 Results from Real Contaminated Data . . . . . . . . . . . . . . . . . . . . . 32

2.9.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.9.2 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.9.3 Effects of States from Reconstructed Signals . . . . . . . . . . . . . . 33

2.10 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.11 Supplementary Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Coupled Basis Learning and Regularized Reconstruction for BCG Artifact

Removal in Simultaneous EEG-fMRI Studies . . . . . . . . . . . . . . . . . . . 41

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Generative Model for Contaminated EEG Data . . . . . . . . . . . . 44

3.3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.3 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

vi



3.3.4 Basis Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.5 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Experimental Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1 Performance Evaluation of Basis Learning . . . . . . . . . . . . . . . 51

3.4.2 Performance Evaluation of Reconstruction . . . . . . . . . . . . . . . 54

3.5 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Removing ballistocardiogram (BCG) artifact from full-scalp EEG acquired

inside the MR scanner with Orthogonal Matching Pursuit (OMP) . . . . . 58

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Generative Model for Contaminated EEG Data . . . . . . . . . . . . . . . . 60

4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.1 Acquisition of BCG-only data: . . . . . . . . . . . . . . . . . . . . . . 61

4.4.2 Acquisition of Contaminated EEG and BCG-only data : . . . . . . . 62

4.5 General Inference Logic and Work Flow . . . . . . . . . . . . . . . . . . . . . 63

4.5.1 Stage I: Model Building . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5.2 Stage II: Reconstruction of clean EEG . . . . . . . . . . . . . . . . . 66

4.5.3 Construction of Synthetic contaminated EEG data . . . . . . . . . . 67

4.5.4 Consistency of the Inference Relationship . . . . . . . . . . . . . . . . 68

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6.1 Performance Evaluation on EEG Reconstruction . . . . . . . . . . . . 69

4.6.2 Performance Evaluation of the Inference Model . . . . . . . . . . . . 76

4.7 Discussions and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.8 Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

vii



4.8.1 Proof of the inference matrix recalculation method . . . . . . . . . . 86

4.8.2 Supplementary Figures . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Future Work and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.1 Extending BCG removal methods . . . . . . . . . . . . . . . . . . . . 103

5.2.2 Extending Simultaneous EEG-fMRI combining methods . . . . . . . 104

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

viii



List of Figures

1.1 Different scales of brain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Illustration of recorded EEG signals . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Illustration of BCG artifact . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Illustration of BCG spatial variability . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Spectrogram (µV 2) of BCG artifacts (from one channel) . . . . . . . . . . . 26

2.5 Coefficient matrix (Ce prior) of the EEG prior data . . . . . . . . . . . . . . . 27

2.6 Simulation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 Demonstrating the non-orthogonality of BCG and EEG basis . . . . . . . . . 30

2.8 Comparison of the reconstruction results from DRPE and OBS . . . . . . . . 31

2.9 Comparison of the frequency spectra of reconstructed BCG and EEG signals 31

2.10 Reconstructed EEG in eyes open/close events . . . . . . . . . . . . . . . . . 34

2.11 Comparison of performance in eyes open/close states . . . . . . . . . . . . . 38

3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Diagram of the inserted two layers . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Power changes of BCG artifacts (from one channel) in time-frequency domain 50

3.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Orthogonal Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Relative errors using different number of PCs. . . . . . . . . . . . . . . . . . 54

3.7 Comparison reconstruction results from DRPE and OBS . . . . . . . . . . . 55

4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

ix



4.2 Illustration of BCG traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Three patterns for insulating channels . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Topographic maps of nRMSE(%) . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Temporal traces of reconstructed BCG and EEG . . . . . . . . . . . . . . . . 72

4.6 Frequency spectra of reconstructed BCG and EEG . . . . . . . . . . . . . . 73

4.7 Reconstructed EEG in eyes open/close events . . . . . . . . . . . . . . . . . 74

4.8 BCG estimation errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.9 Mean ave nRMSE(%) of 12 validation sets as a function of “budget” size. . 81

4.10 Random patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.11 Topographic BCG estimation error . . . . . . . . . . . . . . . . . . . . . . . 83

4.12 Impedance maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.13 The amount of full-scalp BCG variance explained by PCs . . . . . . . . . . . 90

4.14 Comparison of performance for eyes open/close states . . . . . . . . . . . . . 92

4.15 Comparison of performance from subject 2 . . . . . . . . . . . . . . . . . . . 93

4.16 Comparison of performance in visual event-related potentials . . . . . . . . . 94

4.17 Comparison of performance in visual event-related potentials from subject 2 95

4.18 BCG estimation errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.19 BCG estimation errors from three different subjects . . . . . . . . . . . . . . 97

4.20 BCG estimation errors from different testing segments . . . . . . . . . . . . 98

4.21 BCG estimation errors from different testing segments of different subjects . 99

4.22 BCG estimation errors from recalculated inference matrix . . . . . . . . . . . 100

4.23 BCG estimation errors from recalculated inference matrix from different subjects101

x



List of Tables

2.1 Cross validation results from 3 groups . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Cross validation results from 3 groups . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Statistical results of one occipital channel from 3 subjects . . . . . . . . . . . 76

4.2 Mean values of the error matrices whose element is the BCG estimation error 78

4.3 Mean values of the error matrices from three subjects . . . . . . . . . . . . . 78

xi



Acknowledgments

This thesis would not have been possible without the help, support and patience of my ad-

visors, Professor Mark S. Cohen and Professor Dan Ruan. Their good advice and friendship

has been invaluable on both an academic and a personal level, for which I am extremely

grateful.

I feel very fortunate to have the opportunity to work with the world-class students and

researchers in our research groups over the past five years. Special thanks to Edward Lau

who have always been reliable, resourceful, patient and fun to collect data with.

I gratefully acknowledge the support from Professor Martin M. Monti and John Dell’Italia

for collaboration on the simultaneous EEG-fMRI projects, Professor Stanely Osher, Professor

Wotao Yin and Professor Andrea Bertozzi at University of California, Los Angeles and

Professor Jian-Feng Cai at University of Iowa for their time and mathematical expertise.

I thank Professor Elliot M. Landaw and Professor Dario L. Ringach, for their time and

patience while serving on my PhD qualifying, candidacy and thesis committee.

To my good friends outside the lab: Teresa, James, Dankai, Yan, Zhe, Yi, Hoshun,

Wenyang, Lichao, Peggy, Wei, Jesse, Dianna, Xi, Jennifer. Thank you for your companion-

ship and constant support.

Finally, I thank my parents and my dearest Ran for your unconditional support, love and

understanding, and for all of the sacrifices that you have made for me.

xii



Vita

2005–2009 B.S. Dept. Electrical Engineering, Nanjing University.

2009–2014 Research Assistent, Biomedical Engineering, UCLA.

2014 Machine Learning Scientist Intern, Amazon corporation LLC, Seattle.

Publications

Hongjing Xia, Dan Ruan, Mark Cohen. “Separation and Reconstruction of BCG

and EEG Signals during Continuous EEG and fMRI Recordings,” in Frontiers

Brain Imaging Methods, 2014.

Hongjing Xia, Dan Ruan, Mark Cohen. “Removing ballistocardiogram (BCG) ar-

tifact from full-scalp EEG acquired inside the MR scanner with Orthogonal

Matching Pursuit (OMP),” in Frontiers Brain Imaging Methods, 2014.

Hongjing Xia, Dan Ruan, Mark Cohen. “BCG Artifact Removal for Reconstruct-

ing Full-scalp EEG inside the MR Scanner,” in Pattern Recognition in NeuroImaging

(PRNI), 2013 International Workshop.

Hongjing Xia, Dan Ruan, Mark Cohen. “Coupled Basis Learning and Regularized

Reconstruction for BCG Artifact Removal in Simultaneous EEG-fMRI Studies,”

in Biomedical Imaging: From Nano to Macro, 2013 IEEE International Symposium.

Hongjing Xia, Dan Ruan, Mark Cohen. “Regional Variations in the time course

of EEG-fMRI Signal coupling,” in Program 2012 Neuroscience Meeting Planner. New

Orleans, LA: Society for Neuroscience, 2012. (OHBM 2012)

Hongjing Xia, Dan Ruan, Mark Cohen. “Method to remove Ballistocardiogram

xiii



(BCG) artifact from full-scalp EEG acquired inside MRI scanners,” Patent Pend-

ing

Kerr, W.T., Anderson, A., Hongjing, Xia, etc. “Parameter Selection in Mutual Information-

Based Feature Selection in Automated Diagnosis of Multiple Epilepsies Using

Scalp EEG,” in Pattern Recognition in NeuroImaging (PRNI), 2012 International Work-

shop.

xiv



CHAPTER 1

Introduction

1.1 Background of EEG and fMRI

1.1.1 Motivation

The human brain is likely one of the most complex systems in nature. It is able to self-

organize and perform an enormous variety of functions ranging from basic ones like home-

ostatic control to higher-order ones such as perception, action programming, emotion and

consciousness. Even with substantial knowledge of the behaviors of individual neurons,

progress in understanding the global organization has remained elusive largely because of

the multi-scale nature of brain activity. From single neurons at the microscopic scale to

cortical columns at the mesoscopic level and finally to the whole brain at the macroscopic

level (See Figure 1.1), neuroscientists have tried to capture various aspects of the cerebral

activity, particularly bioelectric, metabolic and hemodynamic attributes.

As discussed in [BPM11], there exist direct and indirect measurements of neural activity.

Electrophysiological recordings directly measure the electric signals of neural activity and

can be collected invasively and non-invasively with intracranial recordings [Mou57], electro-

corticogram (ECoG) [Cat75] and electroencephalogram (EEG) [Ber29]. Recording hundreds

of cells simultaneously, intracranial recordings have high temporal and relatively spatial res-

olutions, depending on the arrangement of electrodes, with the potential to resolve single-cell

level activity. Placing electrodes directly on the cortex, ECoG is a minimally invasive elec-

trophysiological measurement which provides slightly higher spatial resolution than EEG

which recordes electric signals from the scalp. An indirect measurement of neural activity is

through recording metabolic response like the blood oxygen-level dependent (BOLD) signal.
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Figure 1.1: Overview of the study of brain at different scales [RS10] (Reprinted with per-

mission).

Intrinsic optical imaging (ISOI) [GLF86] invasively measures hemodynamic activity (BOLD

signal) which is measured noninvasively by functional magnetic resonance imaging [HSM04]

and NIRS [Job77]. Although invasive methods generally can achieve high spatio-temporal

resolution, non-invasive techniques provide the observation of brain activity across the en-

tire brain volume and are available to experimental and clinical neuroscientists to study

from in-vivo measures of brain electrical activity, often not feasible with invasive recordings.

The most widespread noninvasive brain mapping techniques, including Electroencephalog-

raphy (EEG), Magnetoencephalography (MEG), Functional Magnetic Resonance Imaging

(fMRI), Positron Emission Tomography (PET), Single-Photon Emission Computed Tomog-

raphy (SPECT), and Near-Infrared Spectroscopy (NIRS), have witnessed an explosive de-

velopment during recent decades.
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1.1.2 Electroencephalography

More than a century ago Caton [Cat75] discovered the existence of the electrical activity of

the brain (the electroencephalography (EEG)), and Berger [Ber29] later demonstrated that

we could directly record EEG from the scalp. Mainly contributed from the summed electrical

signals of neuron populations and modestly from glial cells, scalp EEG records the voltage

fluctuations of the brain electric activity versus time by placing the electrodes at a long

distance from the sources on the scalp. More specifically, neurons contributing to EEG are

excitable cells with intrinsic electrical properties that can produce electrical and magnetic

fields. These fields depend on the synchronicity of neurons and require many neurons to

generate significant amount of electric activity which eventually becomes detectable by the

electrodes on the scalp. The strongest signals arise mainly from pyramidal neurons that

are perpendicularly oriented to the scalp (See e.g., [NS05] and [ML09] for a more detailed

review on the physiological origin of EEG signals). As an electrophysiological brain response

to a stimulus, an event-related potential (ERP) can be reliably measured directly by means

of EEG. Averaged from a large number of events, ERPs have different shapes for different

types of stimuli, providing valuable information in evaluating brain functioning and a cheap

noninvasive alternative to more expensive fMRI, PET studies. Non-ERP studies require

high-quality EEG recordings as averaging around events is not feasible to suppress noise.

The main advantage of EEG is that EEG has very high temporal resolution, on the order

of milliseconds when EEG data collection systems are capable of recording at sampling rates

between 250 to 2000 Hz. However, even with sufficient coverages of electrodes over the whole

head surface, the spatial resolution of EEG is much lower than that of intracranial recordings

not only because EEG captures mostly dendritic currents as apposed to axonal currents, but

also because EEG measures a summation of electric activity of neurons which renders source

reconstruction an ill-posed inverse problem.The number and configurations of possible EEG

sources become infinite given a set of measured scalp potentials without specific assumptions

concerning the physical, geometric and anatomical properties of sources, conductive media

and recording electrodes.
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1.1.3 Functional Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) scanners use a strong magnet, radio frequency and

gradient coils to form images to non-invasively investigate the anatomy and physiology of

the body in both health and disease without involving any use of ionizing radiation or

radioactive tracers.

Determined by scanner hardware and the signal-to-noise ratio (SNR), the spatial reso-

lution of fMRI can reach the order of sub-centimeter or even higher level with advanced

imaging sequence and scanner hardware. The order of fMRI voxel dimensions is typically 2

to 4 mm, far superior to EEG. Despite that fMRI offers 3D coverage of the human brain,

it has much lower temporal resolution than EEG, mostly limited by the intrinsic properties

of BOLD fMRI. For the slow response of the vascular system to the glucose demands of the

brain processing, the hemodynamic response generally lags its triggering neuronal events by 1

to 2 seconds and reaches its peak between 5 to 10 seconds. The BOLD signal, determined by

the hemodynamic response, cannot capture fast neuronal changes and appears as a delayed,

low-pass-filtered version of the neurophysiological response. As mentioned in [KRU97], the

ultimate limitation of the temporal resolution may be the blurred intrinsic hemodynamic

responses due to neuronal activation and a finite signal-to-noise ratio rather than the imag-

ing techniques. Slow non-neuronal-related drifts (< 0.01Hz) also impose limitations on the

temporal sampling frequency.

1.1.4 Simultaneous EEG-fMRI

Different imaging methods and experiments aim to understand the description of the brain

dynamics at different scales, but simultaneously acquisition is scare and the integration

of the data can be particularly difficult to interpret in such a complex dynamic system.

Noninvasive unimodal methods such as EEG and fMRI have been very successful, but each

of these methods can map only certain aspects of brain functions. The main sources of scalp

EEG signals are postsynaptic currents associated with large pyramidal neurons, which are

oriented perpendicular to the cortical surface [Nun81]. Despite the excellent millisecond-

4



range temporal resolution, reconstruction (inverse problem) of the location of the underlying

bioelectrical activity cannot have a unique solution without prior information. On the other

hand, being an indirect measure through metabolism, oxygenation and blood flow, BOLD

signals appear to be temporally smoothed correlates of neuronal activity with abundant

spatial resolution. As both EEG and BOLD signals are linked functionally with different

temporal and spatial resolution, they are considered to hold complementary information

regarding the underlying brain activity. It is of great value to integrate EEG and fMRI.For

example, the temporal dynamics of epileptic activity can be captured with high temporal

resolution by EEG, but the origin of the seizure in the brain cannot be determined with

high spatial resolution. At this point, it should be mentioned that the we cannot expect

a one-to-one relationship between scalp EEG/ERP and BOLD signal changes even though

neural activity may be related to BOLD signal.

1.2 Technical Challenges of Simultaneous EEG-fMRI

Concurrent acquisition of EEG in the MR scanner environment has many technical and

safety related challenges. While there exist different commercially available MRI compatible

EEG technical setups, EEG instrumentation generally consists of three major parts: EEG

electrodes, an acquisition system to filter, amplify and digitize the EEG signals, and some

display/post-processing facilities. We use the term “EEG electrode” to describe the combi-

nation of the electrode head and connecting lead. The EEG electrodes have to be electrically

conducting to collect voltage changes, as the EEG measures the electric signals from brain

activity. However, one common thing to all EEG instrumentation is that the EEG electrodes

are exposed to three major artifact-inducing causes: the strong homogeneous static magnetic

B0 field of the scanner, the rapidly varying magnetic fields from gradient switching and the

radio frequency (RF) energy emitted during the imaging sequence [UD10, ML09]. According

to the Faraday’s law, we have that the electromotive force (emf) induced in a conductive

loop is proportional to the rate of changes of magnetic flux cutting the loop and the loop
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area:

Vinduced = −d(B · S)

dt
= −dΦ

dt
, (1.1)

where Vinduced is the emf induced in the loop, S is the loop area perpendicular to the field,

d(B·S)
dt

is the rate of changes of magnetic flux cutting the loop and Φ is the magnetic flux

through the loop. Hence, not only changing magnetic fields cutting a loop can induce

unwanted EEG artifacts, but so does the variation of loop area in the static field. This leads

to two major kinds of EEG artifacts, the first MR gradient artifact is from rapidly changing

magnetic fields due to imaging sequences; the second ballistocardiogram (BCG) artifact can

result from the movement of the electrodes, small head movements, scanner vibration and

motion of the blood (Hall effect). In comparison to the extremely detrimental effects of MRI

on the quality of EEG recordings, there is no significant adverse degradation of the MR

Image quality caused from the presence of properly designed and tested EEG equipment

[UD10, ML09].

1.2.1 MR Gradient Artifacts

According to the above equation 1.1, the quality of recorded EEG data inside the MRI

scanner depend on the MRI scanner field strength (B0), the time-varying MR imaging se-

quence, the subjects’ movement and behavior in the scanner and the EEG instrumentation.

It was observed early that the MR scanning sequence results in completely indiscernible EEG

recordings mainly due to the rapidly varying magnetic field gradients for spatial encoding of

the MR signals and radio frequency (RF) pulses for spin excitation. Because RF artifacts

appear at a much higher frequency than that of the normal brain EEG signal, it can be ef-

fectively filtered by a proper analog low pass filter which is already a mandatory component

in the EEG amplifier system designed to avoid saturation and aliasing. Hence, the gradient

switching induced artifacts (GA) completely dominates the EEG recordings and it has a

broad spectrum overlaps with the frequency range of normal brain signals, as illustrated in

Figure 1.2 showing EEG recordings of a few channels from a 3 Tesla MR scanner during

BOLD echo planar imaging (EPI) sequence. Visual inspection is not sufficient to identify
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EEG patterns.

However, due to the preprogrammed nature of the gradient switching sequence, the EEG

artifacts induced by the scanning process are strongly deterministic. As a result, the gradient

artifacts are relatively easy to manage using template-based correction methods [HBM95,

AJT00, GSE00, CGS01, Coh02, NBI05] while another artifacts called ballistocardiogram

(BCG) appearing in the EEG data recorded inside the scanner presents a more challenging

obstacle [UD10, MHB13] due to the magnetic influx changes from unpredictable subjects’

movement and non-stationary cardiac pulses.

Figure 1.2: Illustration of recorded EEG signals during a fMRI EPI acquisition sequence.

1.2.2 Ballistocardiogram (BCG) Artifacts

As the ballistocardiogram (BCG) is always present, its contribution becomes clearly visible

and dominant after gradient artifact removal. In the absence of any scanning sequence,

BCG contributes to the frequency range that overlaps with normal EEG signals [UD10]. As

shown in Figure 1.3, BCG traces synchronize with the simultaneously recorded electrocar-

diogram (ECG). But ECG, representing the cardiac rhythm, fluctuates over time and across

subjects and is under autonomous nervous system control, resulting in significant temporal
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non-stationarity in BCG. In addition to the temporal variability, BCG also presents channel-

by-channel spatial variations that cannot be completely accounted for by linear scaling. The

variability in both time and space is a key consideration and obstacle for artifact removal

methods. [DMN08] has studied in details the spatial-temporal features of BCG.It is observed

that a low spatial frequency can characterize the BCG topography which also varies substan-

tially over time. It seems that moving, rotating and polarity-inverting contribute significantly

to the dynamic activity of BCG. Although still under discussion, the types of motion that

contribute to ballistic effects may be associated with electrodes movements from a rocking,

nodding head motion [DMN08, NAM06, ASY02] and/or pulsation effects from nearby blood

vessels.As the electrodes cut the magnetic field spatially differently depending on the lo-

cations, the BCG artifacts certainly differ across experimental sessions and subjects. The

temporal and spatial complexity of the BCG significantly increases the difficulty of remov-

ing them thus impedes the wide-spread applications of simultaneous EEG-fMRI techniques.

Moreover, experimental results with monkey recordings in [TGM83] demonstrated that the

amplitude of the BCG artifacts scaled approximately linearly with the static magnetic field

strength B0 [DMN08], in agreement with the above equation 1.1.

Based on the Faraday’s law of induction and the equation 1.1, motion related to cardiac

activity (ballistic effects) and the blood movement (Hall effect) can give rise to the induced

artifact signals formed by the circuit of the electrodes and subjects. The moving blood

is probably electrically conductive and its abrupt changes (acceleration) could lead to Hall

effect which dictates that when placed in a strong magnetic field a voltage difference would be

created on opposite sides of a moving conductor, which may be a source of current induction

that contributes to the BCG artifact.
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Figure 1.3: Illustration of BCG artifact in EEG signals without MRI scanning in a 3T MRI

scanner. BCG is present in all channels and appear to have different morphologies.

1.3 Previous Publications about BCG Artifact Removal

1.3.1 Blind-source separation-based BCG Removal

One of the major attempts to remove the BCG focused primarily on channel-wise denoising

from the point of view of blind source separation. Principal component analysis (PCA) and

independent component analysis (ICA) are two blind sources separation methods based on

distinct assumptions, as reviewed in [GVK07, VDR10].

There are many ways to explain and formulate principal component analysis (PCA). In

terms of analysis, PCA sequentially projects the data on subspaces that explain the largest

fraction of the variance of the data. In terms of synthesis, PCA finds a basis or orthogonal

dictionary, such that all signals observed admit decompositions with low reconstruction error.

For regular PCA, the two views are equivalent. The analysis view of PCA is about finding

a projection v ∈ Rp that maximizes variance of signal X ∈ Rn×p, where n and p are the
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number of samples and the number variables:

max
vi∈Rp

vTi X
TXvi

s.t. vTi vi = 1

vTj vi = 0, j < i;

(1.2)

The synthesis view of PCA is about finding V=[v1,...,vm] s.t. xi which gives low reconstruc-

tion error on span(V ) [ZHT06]:

min
V ∈Rp×m

∥∥X −XV V T
∥∥2

F
+ λ ‖V ‖2

F

s.t. V TV = I

(1.3)

The analysis interpretation leads to sequential computation of the principal components that

captures the maximum variability and guarantees minimal information loss. The resulting

principal components are uncorrelated and orthogonal to each other. The synthesis inter-

pretation leads to global formations which estimate simultaneously all principal components

using a singular value decomposition (SVD), and are referred to as a matrix factorization

problem in machine learning and dictionary learning in signal processing.

The most widely used Optimal Basis Sets method (OBS) [NBI05] is a PCA-based ap-

proach that regresses out the mean effects and its first few principal components from the

contaminated data on a heartbeat-by-heartbeat basis. This PCA-based algorithm, allows

for more variations in the shape of successive BCG artifacts than reconstructing BCG from

averaging [APK98]. OBS assumes orthogonality between the BCG and EEG subspaces and

that the selected principal components span the BCG subspace. Other widely used adaptive

template approaches for BCG suppression such as [FF05] can be interpreted as weighted

PCA to incorporate temporal model updates.

Independent component analysis (ICA) aims to decompose the time series into statis-

tically independent components, assuming that the observed time series signals are un-

known linear mixtures of statistically independent source signals. As a data driven method,

ICA has been used successfully and extensively in removing physiological or movement-

related noise. Mathematically, let us assume we observed a m-dimensional data vector
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x(k) = [x1(k), ..., xn(k)]T at time instant k linearly mixed by unknown sources s(k) with the

mixing coefficients A:

x(k) =
∑
j

ajsj(k) = As(k), (1.4)

The collected signals (EEG) X can be represented with

X = A · S +N, (1.5)

where N is assumed to be uncorrelated Gaussian noise with zero-mean. The goal becomes

estimating both unknown source S and unknown mixing coefficient A from collected sig-

nals X. Recovering the source signal S in principal is done through inverting the mixing

coefficients as the following

Y = Ŝ = WX = WAS, (1.6)

where W ≈ A−1 is an unmixing matrix. With the constraint of statistical independence,

it becomes possible to determine A and S. In [BAW03, SCL05, MPC07, GNM10, LZG12],

ICA-based methods have been shown to be relatively efficient in removing BCG-related

components. However as reviewed in [VDR10], there are at least three concerns limiting the

application of ICA-based BCG removal methods : 1) there exist many ICA algorithms that

rely on different assumptions of statistical independence and implementations, generating

different results; 2) The number of BCG-related components is crucial but undetermined; 3)

The criteria of selecting BCG-related components is also relatively subjective.

Attempts to incorporate spatial information have also been made with spatial PCA

and ICA by [BAW03, SCL05]. However these PCA/ICA-based approaches are based on

strong orthogonality/independence assumptions and subject to manual selection of number

of components to be included. All such blind source separation approaches, as reviewed in

[GVK07, VDR10], are limited to performing component extraction based on the contami-

nated data alone, agnostic of the structural difference between BCG and EEG.
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1.3.2 Reference-signal-based BCG Removal

Another major focus on BCG suppression is to use reference signals to remove the artifacts.

With an extra piezoelectric motion sensor located over the temporal artery [BPJ02], Bon-

massar et al. obtained an indirect measure of the BCG waveforms and applied an adaptive

Kalman filter approach to filter the BCG based on the correlation between the motion sensor

signal and the EEG. The Kalman adaptive filter estimates the coefficients of the Finite Im-

pulse Response (FIR) filter from minimizing a linear minimum mean square using a one-step

predictor algorithm [BPJ02]. A similar method has been proposed by [MAF07] to record

motion using wire loops as motion sensors on an electrode cap, claiming a more complete

model of head movements with a linear adaptive filter technique. However the Kalman fil-

ter technique relies on the questionable assumption that the EEG signal has a white noise

characteristics and appears to be computationally demanding [ILP06].

More recent developments apply an insulating layer to directly acquire BCG-only artifact

signals from channels that are electrically isolated from the scalp. A technically innovative

fEEGTM system from (Kappametrics Inc., Chantilly, USA) is developed to reduce the arti-

facts even before the data reaches the amplifier. Their special cap has several layers. The

one that is connected to the scalp is the measurement layer, and another layer not connected

to the scalp is the reference layer. There is a third layer that creates an ionic-conductive

reference loop that is co-located with (on) its scalp electrodes but not in contact with the

scalp. Therefore theoretically this layer measures the same amount of artifacts without ac-

tual EEG signals. The difference signals between the scalp electrodes and its local reference

counterpart in theory becomes artifact-free EEG when the impedance and changes of the

impedance in conductivity matches perfectly to that at the scalp electrodes over time at

the reference electrodes . [CMG14, MHB13, XRC13b] have published artifact cleaning re-

sults based on similar insulation-layer-related acquisition idea but using different hardware

modifications and removal methods. Although the measured artifact reference signals are

probably not identical to the BCG [MHB13], significant suppression has been achieved by

reference layer artifact subtraction (RLAS) [CMG14]. However, RLAS and fEEGTM both
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require purpose-built hardware and exploit no further denoising steps than a simple sub-

traction. Admittedly, there exists some discrepancy between each of these reference signals

and the “ground-truth” BCG signals, as a result of either insulation or sensing process. As

mentioned in [UD10], these signal differences may become the limiting error term when used

simply for linear subtraction.

1.4 Organization of the thesis

This thesis presents three algorithms to separate BCG and EEG and improve the quality

of reconstructed EEG. Adapted from our published work [XRC14b], Chapter 2 first pro-

poses a new experimental setup to acquire artifact-only signals. Our modified recording

configuration allows us to obtain representative bases of the BCG- and EEG-only signals.

With the prior knowledge of BCG/EEG subspaces, we then introduce an optimization-based

reconstruction approach to maximally incorporate prior knowledge of the BCG/EEG sub-

spaces, and of the signal characteristics within them. This Direct Recording Prior Encoding

(DRPE) method outperforms the OBS method by nearly 7 fold in separating the continuous

BCG and EEG signals. Chapter 3, adapted from [XRC13b], further improves the subspace

separability by minimizing a cost function consisting of group sparsity penalties for auto-

matic dimension selection and an energy term for encouraging incoherence. Extracted from

[XRC13a, XRC14a], chapter 4 introduces an integrated learning and inference approach

to reliably estimate the full-scalp BCG artifacts from a near-optimal small subset (20 out

of 256) of channels identified through our modified experimental setup. A corresponding

weight is also learned. Subsequent recordings can reconstruct BCG-only signals with BCG-

only signals from the subset of channels and previously learned weight. The reconstruction

of the EEG is performed with a direct subtraction and an optimization scheme. We evalu-

ate the performance on both synthetic, and real contaminated recordings, and compare the

performances to the ones from the benchmark Optimal Basis Set (OBS) method. In the

non-event-related EEG studies, our reconstruction can yield more than 14-fold improvement

in reducing the normalized RMS (nRMS) error of EEG signals. Chapter 5 concludes the
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three algorithms and provides some suggestions for future work.
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CHAPTER 2

Separation and Reconstruction of BCG and EEG

Signals during Continuous EEG and fMRI Recordings

2.1 Abstract

Despite considerable effort to remove it, the ballistocardiogram (BCG) remains a major

artifact in electroencephalographic data (EEG) acquired inside magnetic resonance imaging

(MRI) scanners, particularly in continuous (as opposed to event-related) recordings. In

this study, we have developed a new Direct Recording-Prior Encoding (DRPE) method to

extract and separate the BCG and EEG components from contaminated signals, and have

demonstrated its performance by comparing it quantitatively to the popular Optimal Basis

Set (OBS) method. Our modified recording configuration allows us to obtain representative

bases of the BCG- and EEG-only signals. Further, we have developed an optimization-

based reconstruction approach to maximally incorporate prior knowledge of the BCG/EEG

subspaces, and of the signal characteristics within them. Both OBS and DRPE methods

were tested with experimental data, and compared quantitatively using cross-validation. In

the challenging continuous EEG studies, DRPE outperforms the OBS method by nearly 7

fold in separating the continuous BCG and EEG signals.

2.2 Introduction

Concurrent acquisition of EEG and functional magnetic resonance imaging (fMRI) is an

approach with great potential for studying different, yet connected aspects of cerebral ac-

tivity, particularly bioelectric and hemodynamic attributes. With their different tempo-
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ral and spatial resolutions, EEG and fMRI are understood to be linked functionally, and

yet to hold complementary information regarding underlying brain activity. Simultane-

ous acquisition of both signals has proven its value in many applications, such as studies

of spontaneous brain rhythms [GSE02], and the analysis of event-related brain responses

[MJS04, DUS05, DUS06, ECM08, MEN08, SGA11, DWS12].

While artifacts in the simultaneously acquired MRI data now are relatively easy to man-

age [HBM95, AJT00, GSE00, CGS01, Coh02], artifacts appearing in the EEG data recorded

inside the scanner presents a more challenging obstacle [UD10, MHB13]. The most prominent

magnetically induced artifact in EEG acquired inside the scanner is the ballistocardiogram

(BCG) [UD10, YMG10, MHB13]. The BCG is especially difficult to suppress in protocols

using continuous recordings, such as studies of the EEG rhythms. The BCG presents high

temporal non-stationarity due to variation in cardiac cycles [BPJ02, DSS07], and its ampli-

tude scales with magnetic field strength [YMG10, MHB13]. This explains the considerable

variation of success levels among studies, with more successful applications achieved at lower

field strength.

Previously published methods to remove the BCG have approached the problem as one

of blind source separation. At the time of this writing, the most widely used means of

suppressing the BCG artifacts likely is the Optimal Basis Sets (OBS) method [NBI05],

which uses principal component analysis (PCA) to identify components in the contaminated

recordings, then adaptively removes the linear regression of the mean effect and a fixed

number of components. This PCA-based algorithm therefore assumes orthogonality between

the BCG and EEG subspaces, and that the selected principal components span the BCG

subspace. Other widely used adaptive template approaches for BCG suppression such as

[FF05] can be interpreted as weighted PCA to incorporate temporal model updates. Methods

based on independent component analysis (ICA) [SCL05, GNM10, LZG12] also are used

widely. All such blind source separation approaches, as reviewed in [GVK07, VDR10], are

limited to performing component extraction based on the contaminated data alone, agnostic

of the structural difference between BCG and EEG.

Another approach to BCG suppression is to utilize reference signals for the artifact itself.
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Motion sensors [BPJ02] and wire loops [MAF07] have been proposed to generate such refer-

ence signals. Recent developments [CMG14, MHB13, XRC13b] utilize an insulating layer to

directly acquire artifact signals from across the scalp. Although the measured artifact refer-

ence signals are not identical to the BCG [MHB13], significant suppression can be achieved

by a simple reference layer artifact subtraction (RLAS) [CMG14]. However, RLAS requires

purpose-built hardware and exploits no further denoising step besides a simple subtraction.

We propose a method that has an experimental setup with no hardware modification and in-

cludes an additional denoising step using prior knowledge of EEG to further reduce residual

BCG signals for continuous (non-ERP) experiments.

More specifically, we address the challenge of BCG artifact removal in spontaneous EEG-

fMRI experiment from the perspective of subspace separation. Our method consists of two

novel steps: (1) a basis analysis phase where representations of the BCG signal subspace

and spontaneous (continuous) EEG signal subspace are characterized separately, and (2) a

reconstruction phase where contaminated EEG data are decomposed into BCG and EEG

components utilizing the learned bases, as well as structures of corresponding coefficients.

For the basis analysis stage, we designed a new and simple recording configuration to obtain

BCG-only signals directly inside the scanner, and clean EEG signals outside the scanner,

alleviating the risk of model mismatches introduced by strong (and possibly impractical)

assumptions about subspace relationships. In the reconstruction phase, we designed and

implemented an optimization scheme that incorporated prior knowledge, more specifically

the structures we discovered from studying pure BCG noise and clean EEG data individually,

derived from our novel experimental setup. To assess the improvements we quantified the

performance of the proposed method, and compared it with the OBS method, using both

simulated and real contaminated data. In so doing, we demonstrated large improvements in

BCG artifact removal.
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2.3 Generative Model for Contaminated Data

Though the exact cause of the BCG artifacts is not known completely, EEG and BCG signals

are believed to originate from independent sources of different nature, as EEG arises from the

brain, while BCG comes from physical movements of the head and blood. Basic electricity

and magnetism dictates that the two signals should add linearly without interaction terms.

Therefore, the contaminated measurements can be modeled as a superposition of BCG and

EEG signals subject to noise contamination according to

Y = Xbcg +Xeeg + σ (2.1)

where Xbcg, Xeeg and σ ∈ RC×T represent the BCG artifacts and the uncontaminated normal

EEG brain signals acquired from our high-density system with noise σ. The dimension

C = 256 is the number of channels in an EEG system, and T is the time points of the

recordings. Moreover, the “independence” is in the sense of physics and physiology, rather

than statistical. This generative model makes no presumption about the existence of their

subspace relationships such as orthogonality or independence. This superposition model has

been applied implicitly in many previous studies [AJT00, GSE00, NBI05, GVK07, VDR10].

2.4 Experimental Setup

Three healthy adult volunteers, (2 males and 1 female, all right-handed, age between 24 to

26 yrs), gave informed consent for participation in this study according to the guidelines of

the UCLA medical investigational review board. For our experiments, we used a 3T Siemens

Tim Trio scanner (Siemens Medical Solutions, Erlangen, Germany). We acquired EEG data

from both inside and outside the scanner using a GES300MR system (Electrical Geodesics,

Inc., Eugene OR). This 256-channel apparatus made contact with the scalp via KCL-filled

sponge contacts mounted in plastic pedestals with a contact-impedance of 20kΩ or less. EEG

data were sampled at 250Hz and amplifier gains were kept constant. To focus on only BCG

artifacts, no MRI scanning took place during the acquisition inside the scanner. The overall

protocol was designed to record spontaneous brain activity with the focus on the variations
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of the alpha (8-13 Hz) EEG rhythm.

2.4.1 Experimental Session I: Acquisition of EEG-only Data

Outside of the scanner room, we acquired EEG from one subject who lay comfortably inside

an MR scanner simulator with earphones in place; sponge cushions were used to minimize

head movements. The other two were studied in our electromagnetically-shielded EEG

acquisition lab. All recordings were carried out in a darkened quiet environment, while the

subjects lay supine on a carpet with a blanket, with a pillow made of viscoelastic foam placed

under his head. They were asked to stay awake, with their eyes closed, during the whole

acquisition. The simulator acquisition was designed to mimic closely the environment inside

the scanner (subject posture and claustrophogenic aspects of the MR environment).

2.4.2 Experimental Session II: Acquisition of BCG-only and Contaminated

Data

Inside the scanner, BCG-only and contaminated data were acquired at the same time from

different channels in this session.

Acquisition of BCG-only data: On the channels chosen to collect BCG-only signal, two

layers of material were inserted between the scalp and the electrodes.

1) Insulating Layer: To collect BCG-only artifacts, we first isolated a subset of electrodes

from the scalp with a plastic insulating barrier to block brain signals from conduction, as

shown in Figure 2.1(A).

2) Semi-conducting Layer: In order to properly collect signals from insulated electrodes, a

semi-conductive layer was then inserted between the insulating layer and electrodes. We

chose a piece of thin paper dampened with saline (Figure 2.1(B)) as the semi-conductive

layer, to provide proper impedance and to avoid any short circuit or alteration of BCG

signals.
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Figure 2.1: (A) Insulation layer: a shower cap (B) Semi-conducting layer: paper layer (C) A

piece of thin paper dampened with saline placed on top of the insulation layer (D) A picture

with all channels blocked (E) Sandwich diagram of construction (F) Unblocking one channel.

Acquisition of Contaminated EEG data: Inside the scanner, the unblocked channels

recorded real EEG data corrupted by the BCG artifacts, simultaneously with the acquisi-

tion of BCG artifact-only signals from the blocked channels. We chose to block all channels

globally, as shown in Figure 2.1(D), and then unblock selected channels by removing the in-

sulation and paper layers (see Figure 2.1(F)). As most experiments use standard low-density

10-20 systems to investigate the spontaneous brain rhythms, we chose to unblock 20 con-

ventional channels, leaving 236 out of 256 channels blocked. This electrode-blocking pattern

was chosen principally for its simplicity to demonstrate the feasibility of our new frame-

work. One can determine which channels to block in advance and use the setup in Figure

2.1(F) to maximize the number of EEG channels that collect EEG signals. Figure 2.2(A)

shows the measured impedance when all electrodes were blocked, including the reference and

ground electrodes. Figure 2.2(B) is the measured impedance when the reference and ground

channels are unblocked along with the 20 conventional channels. The impedance difference

before and after unblocking is shown in Figure 2.2(C). Note that the impedance of blocked

and unblocked channels were all 20kΩ or less, ensuring the quality of collected BCG-only
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signals.

Figure 2.2: The numbers shown on the topographic maps are channel numbers. The con-

ventional channels along with the reference and ground channels are highlighted with black

circles. The color indicates the measured impedance number in kΩ. (A) Measured Impedance

when all channels are blocked. (B) Measured impedance when reference and ground chan-

nels along with conventional 20 channels are unblocked. (C) The difference of impedance

between (A) and (B).

2.5 Data preprocessing

Generally, we use x ∈ RT to represent any collected data from one channel. We followed

exactly the preprocessing procedure implemented in EEGLAB plug-in fMRI version 1.2

[NBI05] to divide a channel-wise 1-D signal into a data matrix. First, the slow drifts were

removed with a high pass filter with a cutoff frequency at 1Hz. Second, the filtered data

x was segmented into k (k=number of heartbeats) segments, xi ∈ Rm, for each detected

heartbeat retrieved from the ECG channel. Each of these segments is an m × 1 column

vector, where m is the number of time points of the signal segment which is centered around

the heartbeat and 1.5 times the median length of detected R-R intervals. Third, all segments

were aligned in a matrix X̃ = [x1|x2|...|xk] ∈ Rm×k. Finally, the mean effect x̄ = 1
k

∑k
i=1 xi ∈

Rm was calculated for all segments and removed from the data matrix before a PCA was

applied to the residual artifacts, X. The same procedure was applied to all collected data

including BCG-only, EEG-only and contaminated signals. While alignment to the heartbeats
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facilitates learning of the BCG bases by reducing the data complexity caused by the non-

stationary heartbeats, it has no obvious advantage for the EEG data.

Unlike the OBS method, where the mean effect along with the first several PCs were

fitted to, and subtracted from, each segment of contaminated data (we now denote the

contaminated data Ỹ) to generate the estimated EEG signals, our method operated by

separating the demeaned BCG, Xb, and EEG, Xe, matrices from the demeaned contaminated

data, Y. The mean effect derived from Ỹ, was added back to the recovered BCG matrix

under the assumption that the EEG signals are close to zero-mean, as EEG segments should

be relatively uncorrelated with the heartbeats. The same assumption is made in the OBS

method [NBI05].

We use X [:, j] to denote the jth column vector, and X [i, :] for the ith row vector of matrix

X. Subscripts are used to indicate the type of signals. As prior information for the BCG and

EEG signals, the pure BCG from one channel (B) in session II is denoted as Xb prior ∈ Rm×k1

and the EEG in session I, from another channel (A or B), is denoted as Xe prior ∈ Rm×k2 .

To minimize spatial variations of the BCG artifacts we chose the BCG prior data from a

channel adjacent to the contaminated data as well as the BCG data used in the following

simulation. This adjacent channel was placed to avoid major surface vessels.

2.6 Stage I: Basis Construction

Unlike the OBS method, where basis vectors are retrieved from contaminated data, our

direct-recording prior encoding (DRPE) approach generates them from the experimentally

acquired BCG-only and EEG-only signals. We expect direct characterization of the BCG

and EEG subspaces to be advantageous, in that they remain more faithful to each signal

type. We use principal component analysis (PCA) in this pilot investigation. The prior data

matrices for BCG (Xb prior) and EEG (Xe prior) correspond to the following decomposition:

Xb prior = Bb priorCb prior

Xe prior = Be priorCe prior

(2.2)
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where Cb prior and Ce prior are coefficient matrices, and Bb prior and Be prior are full-rank

basis matrices with orthonormal columns. The resulting PCA basis, Be prior, expands a

subspace that best incorporates all possible phases presented in this training session. One

may envision the basis set as a set of typical temporal signatures, and the specific phase in

each segment is captured by the variation in the weighting coefficients.

2.6.1 Justification of BCG Prior Basis Vectors

BCG artifacts can be caused by the magnetic flux changes from either the magnetic field

or wire loop movement from either local electrodes movement or more global head rotation

[YMG10]. Surface blood flow is an example of the former, while the latter include respiration-

induced movement of electrodes, and pulsation of blood vessels. In the our experimental

setup, using the 256-channel collection net, we expect surface blood flow velocities, and the

electrode movements, to be locally consistent, given the close placement of the neighboring

electrodes in the dense net. With the BCG from the fully blocked net, the relative errors

(RE) between BCG signal from each target channel (here we use conventional 20 channels

for illustration-purposes), and those from the remaining channels, are calculated. We show

in Figure 2.3(A) that each target channel has a corresponding neighboring channel that gives

the smallest relative error. Figure 2.3(B) reveals the similarities of BCG traces among four

neighboring channels. It is therefore safe to assume that for any channel under examination,

there exists a neighboring blocked channel whose BCG reading closely resembles the BCG

artifact from the unblocked channel. This is ensured further by creating blocking patterns

that provide a sufficient number of adjacent ground-truth BCG signals as candidates for this

purpose.

2.6.2 Justification of EEG Prior Basis Vectors

Although the EEG measurements recorded inside and outside of the MR scanner may not

be exactly equivalent [SBG05, DUS06], potentially being affected by the posture, and by the

magnetic and claustrophobogenic MR scanner environment, it still is reasonable to assume
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Figure 2.3: (A) We are able to find a channel (green circle) that gives the smallest relative

error in the neighborhood of each target channel (black circle). (B) BCG temporal traces

from four neighboring channels are displayed with highlighted channel location in red circles.

that the brain EEG generates consistent recordings both inside and outside the scanner,

produces similar EEG characteristics, such as the dimensionality of normal brain EEG data

and global power spectrum. For ERP-type EEG signals, a different prior should be con-

sidered, as the timing of triggering events is available. For continuous EEG signals, we opt

for an approximate prior in terms of a consistency requirement. In continuous EEG, one

does not have access to strong structural alignment references such as trigger timing in ERP,

and has to rely on weaker consistency type priors for signal modeling. Here we assume the

EEG signal representation space is approximately consistent, and extrapolate from the bases

learned from outside the scanner to estimate the EEG-only signal inside the scanner. The

difference in the signal, per se, and the temporal non-stationarity, is characterized by the

variation in the weighting coefficient with respect to the basis. In other words, we utilize

the same set of basis functions for EEG signal acquired outside and inside scanner, but with

different composition weightings.

On the experimental level, we have tested our signal separation power (see the Result

Sect. 2.9.3) with bases learned from different subjects under different acquisition environ-

ments (with or without a mock scanner), keeping only the posture of subjects the same.

Furthermore, on the theoretical level, we use the basis function, rather than the data them-

selves, from EEG-only collected data outside of the scanner, to facilitate inside scanner
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reconstruction and analysis: this requires only a rough consistency of signal space, rather

than strict equivalence.

2.7 Stage II: Separation and Reconstruction

Based on the assumption that the characteristics of continuous EEG signals generated in-

side and outside the scanner are reasonably consistent for the same subject, and that the

BCG signals acquired from our insulated channels are similar to the BCG components in

the unblocked channels, we propose to reconstruct the BCG/EEG components from the con-

taminated data by estimating the coefficients for the bases from BCG (inside the scanner)

of a neighboring channel and EEG (outside the scanner) from the same subjects.

2.7.1 Regularizations for Reconstruction

2.7.1.1 BCG:

Significant temporal variations exist in the BCG artifacts, as illustrated in Figure 2.4. Based

on the premise that the reconstructed BCG should be similar to the concurrently acquired

BCG-only signals from the blocked electrodes (Xb prior), we chose an `2 penalty as the first

term in the minimization objective in Equation (2.5).

2.7.1.2 EEG:

To incorporate the likely temporal non-stationarity of the continuous EEG signal (as shown

in Figure 2.5), we impose a flexible prior based on a general low-dimensionality argument.

We expect the EEG signals to span only a small number of bases. This not only is consistent

from the perspective of dipole model, but it can be validated further by analyzing the non-

white continuous EEG data acquired from outside the scanner, which have low intrinsic

dimensionality. Furthermore, the variation of coefficients across different segments (rows)

may be due to phase changes, which we attempt to preserve: Segments with similar phases

would correspond to similar distribution patterns of significant coefficients, as the bases
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Figure 2.4: Spectrogram (µV 2) of BCG artifacts (from one channel)

are the same for all segments. Therefore, 1) each EEG segment should be represented

as the superposition of a few bases (corresponding to sparsity along column direction of

the coefficient matrix); and 2) the distribution of the significant coefficient values is dense

along the temporal (segment-indexing) direction, represented as dense rows, because the

same bases are involved in the generation of phase shifts. These considerations gave rise

to a structural regularization of the group-sparsity type [DYZ11] whose columns are sparse,

and whose rows are dense. Mathematically, this can be achieved by imposing a weighted

group sparsity penalty with `2,1 norm, ‖Ce‖2,1

def
=
∑m

i=1 ‖Ce[ i, : ]‖2, on the reconstructed

EEG coefficient Ce, where m is the number of rows in Ce. Given these considerations, we

expect the group-sparsity regularization to help steer the coefficient estimates towards a

more favorable reconstruction.

2.7.2 Objective Function

Let Y denote the contaminated data from a target channel, A, with unknown BCG com-

ponent, Xb, and unknown EEG component, Xe. A neighboring channel, B, is blocked, and

its BCG-only signals are recorded concurrently to provide prior BCG basis Bb prior, and
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Figure 2.5: Coefficient matrix (Ce prior) of the EEG prior data. The black column and row

highlights show that Ce prior is sparse in basis vector representation (column) and dense

across segments (row).

coefficients Cb prior. The prior EEG basis, Be prior, (from either channel A or B) comes

from the recordings made in experimental session I. These considerations yield an overall

reconstruction model:

min
Cb,Ce

λ ‖Cb prior −Cb‖2
F + ‖Ce‖2,1

s.t.Y = Bb priorCb + Be priorCe

(2.3)

where λ is a parameter to balance the BCG and EEG prior contributions. We apply the

alternative direction method of multipliers (ADMM) to solve the augmented Lagrangian

problem of our reconstruction model (see the supplementary material). After obtaining the

estimated coefficients (Cb and Ce), we proceed to recover the BCG and EEG of target

channel A by multiplying those with the basis vectors from the training data,

X̂b = Bb priorCb,

X̂e = Be priorCe.
(2.4)
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2.8 Results from Synthesized Contaminated Data

To evaluate different artifact removal approaches quantitatively, and to provide parameter

selection guidance when real contaminated data is used, we simulated contaminated EEG

data from known BCG-only and EEG-only recordings according to the generative model, al-

lowing direct comparison between reconstructed and ground-truth component signals. First,

we selected k1 segments of EEG-only signals as ground-truth EEG (the red EEG recordings

in Figure 2.6), denoted as X̃e ∈ Rm×k1 , which were acquired from one unblocked channel

A outside the scanner in session I. Then, the ground-truth BCG-only signals, denoted as

X̃b ∈ Rm×k1 , were chosen from the acquisition of channel A from inside the scanner in ses-

sion II. Finally, the contaminated data, denoted as Ỹ ∈ Rm×k1 , were synthesized according

to the generative model Ỹ = X̃b + X̃e. Figure 2.6 illustrates this process. Notice that

the EEG-only signals, X̃e prior, were from either channel A or B (a neighbor of channel A)

recorded at a time different than that used for EEG data, X̃e, in simulating the contami-

nated data Ỹ; BCG prior data, X̃b prior, were collected at the same time as X̃e and X̃b, but

from channel B.

Figure 2.6: We use the BCG data from channel B (blue) as the prior BCG data denoted as

X̃b prior after alignment. The EEG data from channel A or B (blue) can be used as the prior

EEG data X̃e prior. Simulated contaminated data (Ỹ) is summed from the BCG (X̃b) and

EEG (X̃e) data (red) both from channel A.
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2.8.1 Assessment of validity of orthogonal assumption between subspaces

To demonstrate the limitation of OBS, and to motivate our effort to develop a more realistic

and data-driven approach in DRPE, we first checked the relationship of the BCG and EEG

subspaces. The OBS method generates bases from contaminated data, and its reconstruction

follows the assumption that the first several sequential PCs approximate the subspace of the

BCG. The residual of projecting onto the span of segment-wise mean, and the PCs, yields

the EEG component. This rationale assumes implicitly that the BCG and EEG subspaces

are approximately orthogonal. Without ground-truth BCG- and EEG-only signals, there is

no good way to test the feasibility of the assumption. Our experimental data from Sect.

2.4 provides observations of these BCG- and EEG-only signals, and offers an opportunity

to examine the validity of the assumptions of OBS, and to explore further methodological

improvements. In Figure 2.7 we show the multiplication (Bᵀ
b priorBe prior) result from up to

40 of the BCG and EEG basis vectors (PCs) from prior BCG and EEG data, X̃b prior and

X̃e prior. The [i, j]th element value of this matrix is the inner product of the ith basis of BCG

and the jth basis of EEG. Complete orthogonality of the EEG and BCG subspaces would

correspond to a matrix containing only zero elements. The fact that the matrix of Figure

2.7 contains many significant values of PC interaction, especially in its upper left corner,

indicates that the assumption of orthogonality of the BCG and EEG subspaces is invalid,

and necessitates the development of denoising methods beyond OBS.

2.8.2 Performance Evaluation of Reconstruction

We quantified the signal separation performance of DRPE and OBS method, in terms of

relative error RE, defined as RE = ‖X̂ − Xtruth‖F/‖Xtruth‖F . Recovered BCG and EEG

components, and their corresponding ground-truth, are represented with X̂ ∈ Rm×k1 and

Xtruth ∈ Rm×k1 , respectively. The results from the DRPE method were derived with param-

eters (λ = 10−2.4, β1 = 10−6.4 and β2 = 104.2), and all of the results of the OBS method were

obtained from the OBS implementation in the EEGLAB plug-in fMRI version 1.2 [NBI05]

with the number of PCs (including the mean vector) set to 3 (Npc=3). The contaminated
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Figure 2.7: Matrix product of the normalized BCG and EEG basis vectors using up to 40

PCs. In fully orthogonal subspaces the expected value of al elements would be zero, whereas

here the values are large.

data were simulated from 13.6-minute BCG-only and EEG-only data both from channel A.

We learned the prior BCG basis vectors from BCG-only data concurrently from a neighbor-

ing channel, B, and learned the prior EEG basis vectors from non-concurrent EEG-only data

from channel B from a different 8.9-minute time segment. To reduce the computational bur-

den, we down-sampled all data from 250Hz to 50Hz (with an anti-aliasing filter as explained

in Sect. 2.5.) After aligning the recordings to the detected heartbeats, the resulting data

from the 13.6-minute, and 8.9-minute, recordings were re-formed as matrices of size 73×848

and 73×556 respectively. Figure 2.8 shows a typical portion of the reconstructed results

from the two methods, alongside the ground-truth data. Figure 2.9 shows the corresponding

frequency spectra. It is clear that the BCG and EEG components are much better separated

and preserved by the DRPE method; the relative errors for EEG components are reduced

by approximately 7-fold. Figure 2.8 shows as well that the DRPE successfully recovers the

qualitative temporal behavior of the EEG signals much better than does OBS.

We further employed a standard 3-fold cross-validation [FHT01] to quantify the overfit-

ting and the consistency of our DRPE method, and compared the results to that of OBS

(with Npc = 3). Letting Y (1) denote a 73×251 (4.5-minute) matrix containing a randomly

selected subset of column vectors from synthesized contaminated matrix Y (13.6-minute),
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Figure 2.8: Comparison of the reconstruction results from DRPE and OBS. Ground truth,

DRPE and OBS results are shown in each panel. The DRPE method yields only 6.685%

and 16.45% relative errors for the BCG and EEG reconstruction, while the OBS generates

47.50% and 117.5% relative errors for BCG and EEG. The reconstructed BCG (A) from

DRPE almost overlaps with the Ground truth BCG. The large spikes in reconstructed EEG

(B) from OBS are due to the residual BCG signals.

Figure 2.9: Comparison of the frequency spectra of reconstructed BCG and EEG signals

from the DRPE and the OBS methods as well as their corresponding ground-truth data.

and letting Ȳ(1) be a 73×607 matrix (9.1-minute) containing the complementary set of data

vectors used for training parameters we then applied DRPE and OBS to recover BCG and

EEG components from the Ȳ(1). The parameters (λ, β1 and β2) of the DRPE were tuned for

the best recovery of the EEG components. Once the optimal parameters were determined

for the training dataset Ȳ(1), they were used in recovering the BCG and EEG signals from

the validation dataset Y(1). The process was then repeated using 3 non-intersecting subsets

of the data to calculate reconstruction errors of the training and validation for each subset.

The relative errors of the cross-validation process are listed in Table 2.1. Selected parameters

in the table are relatively consistent, and result in similarly good reconstruction results for

all the training sets, with only slightly worse results for the validation sets. This strongly
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Table 2.1: Cross validation results from 3 groups: Relative Errors (RE) in percentage. Each group

has a different segment as validation set with the remaining two segments as training set.

DRPE OBS

BCG Segments EEG Segments Parameters BCG Segments EEG Segments

RE(%) T V T V log10 λ log10 β1 log10 β2 T V T V

Group 1 6.66 6.90 16.53 17.18 -2.2 -6.2 -3.6 52.31 61.50 130.5 153.5

Group 2 6.78 6.96 16.69 16.98 -2.2 -6.2 -4.2 52.47 61.54 129.9 150.6

Group 3 6.70 6.88 16.42 16.90 -2.2 -6.2 -4.2 51.97 61.02 128.0 150.5

T: Training Session. V: Validation Session

β1 and β2: penalty parameters for the corresponding augmented Lagrangian problem (See Supp. Mate-

rial).

suggests that the DRPE method is stable, with nearly negligible overfitting.

2.9 Results from Real Contaminated Data

One of the most robust effects on the EEG results from signal comparisons of eyes-closed

(EC) and eyes-open (EO) states at rest, which results in large alpha band increases in the

EC condition [Ber29]. Without access to ground-truth EEG-only signals acquired inside a

scanner, we demonstrated the feasibility and advantage of our DRPE method on real con-

taminated data in an EC/EO paradigm using parameters selected from the same simulation

process above, whose contaminated data was composed of EEG-only signals acquired outside

the scanner, and BCG-only signals acquired inside the scanner.

2.9.1 Experimental Setup

We acquired new data for both experiment session I and II when the subject was cued

verbally to open and close his or her eyes every 30 seconds, for a total time of 15 minutes
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for each session.

2.9.2 Statistical Analysis

We followed the procedure of Chen and colleagues [CFZ08] to quantify the EC/EO effects.

Each 30-sec EEG sample, omitting 2-sec before and after each EC/EO event onset, was

analyzed in 3 sec epochs, resulting in 112 epochs for each EC/EO state, from a total 14-

minute recordings. The absolute EEG band power (µV 2) in the alpha band from each epoch

of EC/EO state was calculated using the Fast Fourier Transform. As the alpha band power

values failed a normality test, Wilcoxon test for nonparametric comparison of ranks was

performed, with p < 0.05 accepted as significant, to assess the hypothesis that EC and EO

states have similar population mean rank based on alpha band power [CFZ08].

2.9.3 Effects of States from Reconstructed Signals

Figure 2.10 shows the reconstructed EEG signals from real contaminated data of channel

124 with prior BCG and EEG data sampled from neighboring channel 137. Parameters used

in reconstruction were selected from the simulation process, but using the new BCG- and

EEG-only data from experiment sessions I and II. The differences in alpha energy between

the EC to EO states can be identified clearly at around 30s, 60s, 90s... as the subject

closed and opened his eyes. With both the BCG and EEG prior data from the neighboring

channel, the reconstructed EEG signals of channel 124 from the DRPE method have shown

more prominent distinctions than OBS, between the EC and EO states.

When the contaminated data were used (EC: mean 342.0, median 328.0µV 2, EO: mean

325.1, median 310.2µV 2; p = 0.09 > 0.05), our test indicated no significant reduction in the

alpha band power in the EO, as shown in Figure 2.11(A). By contrast, statistically significant

differences (Figure 2.11(B)) between the EC and EO states were present in the magnitude

of the alpha band power in the recovered EEG signals from OBS (EC: mean 73.95, median

66.87µV 2, EO: mean 54.02, median 45.59µV 2; p = 0.0036 < 0.05), agreeing with the results

in the original OBS paper [NBI05]. In addition, the EEG signals estimated from DRPE also
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reveal statistically significant difference (Figure 2.11(C)) between the EC and EO states (EC:

mean 26.23, median 26.07µV 2, EO: mean 14.93, median 11.38µV 2; p = 1.9× 10−7 < 0.05).

To test the robustness of the DRPE method in terms of basis characterization, we have (1)

applied EEG prior acquired from one subject to the BCG denoising for another subject,

(2) used EEG prior acquired in a normal EEG room without the mock scanner. For the

DRPE method, the EEG prior signals from two other subjects were also employed, both of

which were acquired when subjects lying in a normal EEG room without mock scanner. A

spectrogram of the EEG signals, and the corresponding Wilcoxon test results, are displayed

in Figure 2.11.

Figure 2.10: Roughly 90-sec and 10-sec ranges of reconstructed EEG signals (in µV ) were

shown here with events (eyes open (red) and eyes close (green)). In (A) and (B), top panel:

reconstructed EEG signal from the DRPE method. Bottom panel: reconstructed EEG

signals from the OBS method.

2.10 Discussion and Conclusions

Removing BCG artifacts from contaminated EEG data is a major bottleneck for the success-

ful integration of simultaneously recorded data. First, the BCG component (magnitude>200µV )

often dominates the EEG component (10-100µV ) in the contaminated signal by an order of

magnitude [YMG10]. Second, the BCG artifacts show considerable temporal variation as

shown in Figure 2.5 [HBM95, BPJ02, DSS07]. Third, the BCG and EEG subspaces have a

complex geometric relationship with nontrivial overlap that violates the assumption of simple

mutual-orthogonality (c.f. Sect. 2.8.1) making common approaches, such as PCA, both in-

appropriate and ineffective. Finally, unless ground-truth BCG data are accessible, overfitting
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and relative error of recovered signals cannot be quantified directly [NBI05, GVK07, VDR10].

When both BCG and EEG signals exist, accurate representations of the subspaces are

necessary to decompose contaminated signals. Powerful, and widely used, the optimal basis

sets (OBS) method of Niazy derived the subspace representations solely from contaminated

signals, but it relies on questionable presumptions (e.g., orthogonality) about the BCG and

EEG subspaces. By contrast, our procedure enables separate access to BCG and EEG sub-

spaces, providing more accurate basis vectors for the purpose of reconstruction. Our DRPE

approach is based on the assumption that, in the case of continuous spontaneous EEG ex-

periments, the EEG basis learned from outside the scanner is a sufficient representation of

the EEG component measured inside the scanner. This allows us to facilitate the separation

of BCG and EEG using prior knowledge of the coefficient structures of the EEG, and neigh-

boring BCG-only, signals. Moreover, we have demonstrated (Figure 2.11) that the EEG

bases learned from different subjects and acquisition environment are sufficiently consistent

for effective denoising. We recognize that the challenges of ERP signals and continuous

EEG signals differ: with knowledge of triggering event timing information, we are designing

a different type of prior and objective function to take advantage of the problem structures.

One possible limitation of the present work lies in the additive generative model of the con-

taminated data in Equation (2.1). While we cannot verify this directly, there is little reason

to believe that strong interactions couple EEG and BCG in the biologically recorded signals.

The effectiveness of recovering EEG signals is demonstrated here by its application to real

contaminated data from an eyes open/eyes closed study with denoising parameters tuned

from the simulation study.

In addition to providing more representative basis vectors, the DRPE method yields a

novel means to introduce structures on the coefficient sets. In particular, penalty func-

tions are designed to regularize the temporal pattern of the BCG by the `2-norm, and the

group characteristics of EEG coefficients by `2,1-norm. The feasibility of enforcing `2 and

`2,1-regularizations is demonstrated qualitatively and quantitatively by our studies on both

simulated and real contaminated data. In our evaluation of the contaminated data simulated

from BCG-only and EEG-only signals, the relative errors of the reconstructed BCG and EEG
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data are as low as 6.685% and 16.45%, compared to 47.50% and 117.5% from the bench-

mark OBS method. Notably, both the BCG and EEG priors are acquired from an adjacent

channel, while the EEG priors were obtained from outside the scanner. This demonstrates

that the prior data is relatively insensitive to small spatial location changes across different

experiment sessions. It suggests also the potential of extending this result to the whole head,

by creating blocking patterns that provide multiple BCG channels. Our recording configu-

ration is compatible with various blocking patterns, and we are in the process of evaluating

the merits of different options.

Moreover, the DRPE method can be integrated with other approaches that generate

BCG reference signals – some potential candidates are the more recently developed reference

layer artifact subtraction (RLAS) method [CMG14] and others [BPJ02, MAF07] which have

provided alternative means to record BCG reference signals. Admittedly, there exists some

discrepancy between each of these reference signals and the “ground-truth” BCG signals,

as a result of either insulation or sensing process. While these signal differences become

the limiting error term [UD10] when used simply for linear subtraction, DRPE utilizes the

reference signals as statistical priors, and flexibly compensates this discrepancy with the

incorporation of priors built on continuous EEG from outside the scanner. The RLAS

method potentially will alleviate the needs to find consistent neighboring channels that

provide BCG reference for the DRPE method. In principal, Hall effects occurring in the

MR imaging field might distort the scalp topography of the EEG signals. It is difficult to

estimate the magnitude of this contaminant, which is common to OBS and DRPE.

Our recording configuration enables quantitative comparison of various artifact removal

techniques. We used the Frobenius-norm ‖A‖F =
√∑m

i=1

∑n
j=1 |aij|2, which resembles the

root mean square error, to quantify the difference between reconstructed signals and their

corresponding source signals. The relative errors facilitate the comparison of the results

among different signal type. Here, we used this approach, and K-fold cross-validation, to

quantify and compare the DRPE and OBS methods.

Although PCA is used in this paper to generate the basis matrix for each of the EEG

and BCG subspace representations, other representations, such as ICA, can be substituted
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without affecting the integrity and compatibility of the recording configuration for subspace-

specific data collection and the reconstruction process, though different basis representation

may give rise to different coefficient behavior, and the objective function of equation (2.5)

would need to be designed accordingly. We expect different choices of basis representation

to affect the reconstruction performance, and it is our next step to optimize over such

representations.

Preliminary tests have demonstrated the feasibility and efficacy of the proposed approach.

There are a few practical issues for the clinical applications of this new method. First, the

computational demand is high compared to the OBS method, and subject-specific parameter

optimizations may be necessary. The alternating direction method of multipliers (ADMM)

we applied in solving the objective function (see the supplementary material) takes 1-2 sec

to evaluate each set of parameters. We expect, however, that this problem will yield readily

to computational optimizations. Second, the additional time needed to acquire clean EEG

data could impose some burdens in clinical or research studies. Improvement of workflow

might be able to minimize this impact.
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Figure 2.11: Comparison of performance in differentiating the eyes open (EC) and eyes

closed (EO) states: (A) based directly on contaminated EEG recording, (B) recovered EEG

signals with the OBS method, and (C) the proposed DRPE method. The left panel depicts

the reconstructed spectrograms. The right panel displays the Wilcoxon rank test results of

alpha band power comparisons between the EO and EC states; standard errors are indicated.

No significant change in alpha power was detected in the contaminated signal, while both

the DRPE and OBS methods display the expected decreases from EC to EO conditions. In

(C), the EC and EO results are compared when the EEG basis was derived from subject 1

(blue) or from subject 2 and 3 (purple and red). The reconstruction results were virtually

identical when the EEG bases were derived from the original subject, or from the other two

participants, recorded in different environments.
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2.11 Supplementary Derivations

We use a split Bregman method [COS09, GO09] (also known as augmented Lagrangian

method) to solve this problem. In particular, by introducing an auxiliary variable Z, the

primary problem equation (2.5)

min
Cb,Ce

λ ‖Cb prior −Cb‖2
F + ‖Ce‖2,1

s.t.Y = Bb priorCb + Be priorCe

(2.5)

is equivalent to:

min
Cb,Z

‖Z‖2,1 + λ ‖Cb prior −Cb‖2
F

s.t. Y = Bb priorCb + Be priorCe

Z = Ce

(2.6)

The corresponding augmented Lagrangian problem is of the form:

E(Λ1,Λ2,Z,Cb,Ce) =

‖Z‖2,1 + ‖Cb prior −Cb‖2
F − < Λ1,Z−Ce >

+
β1

2
‖Z−Ce‖2

F − < Λ2,Bb priorCb −Be priorCe −Y >

+
β2

2
‖Bb priorCb −Be priorCe −Y‖2

F ,

(2.7)

where < ., . > is the inner product, Λ1 and Λ2 are Lagrange multipliers, while β1, β2 > 0 are

penalty parameters. We then apply the classic alternating direction method (ADM) to solve

the augmented Lagrangian problem with respect to Z, Cb and Ce alternately. We stop the

iteration as soon as the relative change
∥∥Ck+1

e −Ck
e

∥∥ /∥∥Ck
e

∥∥ between two iterations is less

than 10−6. We chose the step length to be 1.618 according to [DYZ11].

In short, we have derived an ADM iteration scheme as follows:
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Algorithm: ADM for Group Sparsity

Initialize Z,Λ1,Λ2, β1, β2 > 0, step lengths γ1, γ2 > 0

While stopping criterion is not met do

Ce ← (β1I + β2B
T
e prior)

−1×

(β1Z− Λ1 + β2B
T
e prior(Y −CeCb)−BT

e priorΛ2)

Cb ← (2λI + β2B
T
b priorBb prior)

−1×

(2λCb prior + BT
b priorΛ2 + β2B

T
b prior(Y −Be priorCe))

Z← shrink(Ce +
λ1

β2

,
w

β2

)

Λ1 ← Λ1 − γ1β1(Z−Ce)

Λ2 ← Λ2 − γ2β2(BeCe + BbCb −Y)
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CHAPTER 3

Coupled Basis Learning and Regularized

Reconstruction for BCG Artifact Removal in

Simultaneous EEG-fMRI Studies

3.1 Abstract

The ballistocardiogram (BCG) is a major artifact in electroencephalographic (EEG) data

acquired inside a magnetic resonance imaging (MRI) scanner, and is several times larger in

magnitude than the actual EEG signals. Removing the BCG artifacts remains an unresolved

challenge, especially in studies of continuous EEG recordings. In this work, we propose a

Direct Recording Joint Incoherent Basis (DRJIB) method to decompose the observed noisy

EEG measurements into BCG and underlying EEG components. We compare its preliminary

performance quantitatively with that of the benchmark Optimal Basis Set (OBS) method.

Without assuming orthogonality or independence of the BCG and EEG subspaces, as in con-

ventional methods, our approach learns the bases faithfully from BCG-only and EEG-only

signals acquired from a new experimental setup. Specifically, to promote subspace separabil-

ity, a paired set of low-dimensional and semi-orthogonal (BCG, EEG) basis representations

is obtained by minimizing a cost function consisting of group sparsity penalties for auto-

matic dimension selection and an energy term for encouraging incoherence. Reconstruction

is subsequently obtained by fitting the contaminated data to a generative model using the

learned bases subject to regularization. In the challenging non-event-related continuous EEG

studies, our DRJIB method outperforms the OBS method by nearly 7.5-fold in separating

and preserving the continuous BCG and EEG signals.
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3.2 Introduction and Motivation

Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging

(fMRI) has become a widely used and exciting approach for studying different yet connected

aspects of cerebral activity, particularly bioelectric and haemodynamic attributes. With

different temporal and spatial resolutions, concurrently acquired EEG and fMRI data are

considered to hold complementary yet functionally linked information regarding the underly-

ing brain activities. This multi-modal approach has proven its value in numerous applications

such as the study of ongoing brain rhythms [GSE02], the analysis of event-related brain re-

sponses [DUS06, DUS05, ECM08, MEN08, MJS04]. Despite the many reported successful

examples in the neurosciences, current investigations are still limited by the quality of the

EEG data acquired inside the scanner.

While artifacts introduced to the simultaneously acquired MRI data are relatively easy to

manage [HBM95, GSE00], artifacts appearing in the EEG data recorded inside the scanner

presents a more challenging obstacle. The most prominent magnetically-induced artifact is

called ballistocardiogram (BCG). BCG is difficult to suppress especially in studies of continu-

ous recordings such as studies of ongoing spontaneous brain rhythms. It has been suggested

[YMG10, MHB13] that BCG is related to cardiac cycles and magnetic field strength. In

event-related experiments, residual artifacts would be damped by averaging around events

as the events are generally designed to be randomly distributed with respect to the cardiac

cycles. In experiments at lower field strength, the BCG is significant lower in magnitude

than the ones generated at higher field strength, since the BCG amplitude scales with field

strength. This explains the consideration variation of success levels among studies, with

more successful applications achieved at event-related studies and lower field strength.

The most widely used means of suppressing the BCG artifacts is the optimal basis sets

(OBS) method [NBI05]. It applies principal component analysis (PCA) to the contaminated

EEG data and removes the primary (usually 3) principal components as contributions from

BCG artifacts. PCA-based source separation methods are implicitly based on that the BCG

and EEG subspaces are orthogonal, as indicated by partitioning the PCs sequentially. Not
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only PCA-related methods, other existing methods such as the ICA-related blind source

separation [MPC07, BGB06] and the spatial-filtering of the EEG measurements [BMS08]

have a commonality that BCG and EEG components are directly extracted from contami-

nated EEG measurements with no, or minimal characterizations of the true subspaces of the

underlying BCG and EEG components.

By contrast, we propose a framework to address the BCG removal challenge from the

perspective of signal separation where the underlying components are well represented with

a set of learned basis vectors. The first stage of the proposed framework aims to generate the

BCG and EEG bases that are least correlated with each other while remain faithfully and

sparsely in representation of the BCG/EEG-only signals. To do so, we insert a group spar-

sity term for the coefficients to encourage sparse representation and add a basis/dictionary

incoherence term that promotes the incoherence between the BCG and EEG bases, inspired

in part by the works from Ramiriez, et al. [RSS10].

In the second stage, we reconstruct the BCG/EEG signal by estimating the coefficients

of the corresponding learned bases, while the group sparsity structures of the coefficients are

taken care of by a column reduction operation. With our special experimental setup where

BCG-only signals are collected simultaneously with contaminated signals but from different

yet adjacent channels, the complexity of modeling the non-stationary temporal variations

of the BCG signals has greatly reduced by directly enforcing the similarity of the BCG

coefficients from adjacent channels with the same BCG basis.

In summary, our DRJIB method consists of two phases: (1) a basis-learning phase where

the bases for BCG and EEG signals are optimized jointly to sparesly represent the BCG-only

and EEG-only signals, and to be as independent as possible with an incoherence term in

order to promise better signal separability; (2) a reconstruction phase where the underlying

BCG and EEG components are estimated from the contaminated EEG measurements using

the learned bases and regularization terms on the structures of the coefficients.

The rest of the paper is organized as follows. Sect.3.3.1 introduces an assumption upon

which we construct the simulation of the contaminated EEG data in order to quantitatively
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compare the results of different artifact removal methods. Sect.3.3.2 provides an introduction

to our newly developed experimental setup that collects BCG/EEG-only data as priors for

the purpose of basis learning. The preprocessing of the collected measurements is discussed in

Sect.3.3.3 along with the simulation of the contaminated data. In Sect.3.3.4 we describe the

optimization framework with an objective function that encodes low-dimensional subspace

modeling and incoherence regularization. Reconstruction with coefficient regularization is

reported in Sect.3.3.5. Results and discussions are given in Sect.3.4.

3.3 Methods

3.3.1 Generative Model for Contaminated EEG Data

It is reasonable to assume that the BCG artifacts and the normal brain EEG signals are

generated from independent sources. Thereby, the noisy measurements can be modeled as

their superposition subject to noise contamination, according to

y = xbcg + xeeg + noise, (3.1)

for data from one channel, where y, xbcg, xeeg and noise ∈ Rn, n is the time length of

recordings. y denotes simulated contaminated measurements from a channel while xbcgand

xeeg denote the BCG-only and EEG-only data, respectively.

3.3.2 Experimental Setup

3.3.2.1 Acquisition of EEG-only data:

Outside the scanner room, the subject lay comfortably on a carpet with a blanket and a

pillow made of viscoelastic foam placed under the subject’s head. Recordings were carried

out in a quiet, electromagnetically shielded room kept in the dark while the subject rested

quietly with the eyes closed and without falling asleep during the whole acquisition. This

protocol was designed to record spontaneous brain activity with the focus on the spontaneous

variations of the alpha rhythm.

44



3.3.2.2 Acquisition of BCG-only data:

Inside the scanner, it is desirable to collect BCG artifacts only signals from a subset of

channels to generate prior information for modeling the BCG artifacts for the rest of the

channels. To realize that, two layers of material were inserted between the scalp and the

electrodes.

Insulating Layer: To collect only BCG artifacts, we isolated a subset of electrodes from

the scalp with a plastic insulating barrier as shown in Fig.3.2(a). The purpose of the insu-

lating layer is to block brain signals from conduction.

Semi-conducting Layer: In order to properly collect signals from insulated electrodes, a

semi-conductive layer was inserted between the insulating layer and electrodes. We chose a

piece of dampened thin paper as the semi-conductive layer, providing proper impedance to

avoid any short circuit or alteration of BCG signals. As shown in Fig.3.1(a), the impedance

measured from the blocked electrodes were mostly 20kΩ, on the same level of the impedance

measured from the other unblocked electrodes, ensuring the collection of unaltered BCG-only

signals.
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Figure 3.1: Experimental Setup: (a) Topographic map of measured impedance (kΩ) of the

electrodes with two layers inserted (b) Inserted Two Layers between electrodes and head
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3.3.2.3 Acquisition of Contaminated EEG data:

Inside the scanner, the unblocked channels record actual experiment EEG data that were

corrupted by the BCG artifacts. As shown in Fig. 3.1(b), this experimental configuration ac-

quires the contaminated EEG data as well as simultaneous BCG-only artifacts from different

set of channels inside the scanner. As most traditional experiments used conventional 10-20

EEG system (20 channels) to investigate the spontaneous brain rhythms, we chose to block

236 out of the 256 channels, leaving 20 channels unblocked. As shown in the enlargement in

Fig. 3.2(b), each unblocked channel was surrounded by multiple blocked channels. We chose

this electrode blocking pattern mainly out of its simplicity to demonstrate the feasibility of

our new framework. Other blocking patterns with the majority of channels unblocked will

be compared and discussed in our next paper.

3.3.3 Data Preprocessing

Following the preprocessing procedure in [NBI05] with EEGLAB plug-in fMRI version 1.2,

the slow drifts were first removed with a high pass filter (cutoff=1Hz). Let x ∈ Rn be the

filtered data from one channel. Then x was divided into k columns according to retrieved

heartbeats from ECG channel when xi ∈ Rm is the ith column and m is the number of

time points of the signal segment which is centered around the heartbeat and 1.5 times

the median length of detected R-R intervals. After aligning all segments into a matrix

X̃ = [x1|x2 . . . |xk] ∈ Rm×k, the mean effect x̄ = 1
k

∑k
i=1 xi ∈ Rm was calculated and removed

from the data matrix, resulting the residual artifacts X. The same procedure was applied to

all collected data including BCG-only, EEG-only and contaminated recordings. Note that

(a) (b)

Figure 3.2: Diagram of the inserted two layers
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the alignment to the heartbeats facilitates learning of the BCG basis by reducing the data

complexity caused by the non-stationary heartbeats, it has no obvious advantage for the

EEG data.

Unlike the OBS method, where the mean effect along with the first several PCs were fitted

to, and subtracted from each segment of contaminated data, Ỹ, to generate the estimated

EEG signals, our method operated by separating the demeaned BCG Xb and EEG Xe

matrices from the demeaned contaminated data Y. The mean effect from Ỹ was added back

to the recovered BCG matrix, assuming, as does the OBS method, that the EEG signals are

close to zero-mean since EEG segments should be relatively uncorrelated with the heartbeats.

We use X [:, j] to denote the jth column vector and X [i, :]for the ith row vector of matrix

X. Subscripts are used to indicate the type of signals. As prior information for the BCG and

EEG signals, the pure BCG from one channel (B) in the session II is denoted as Xb prior ∈

Rm×k1and the EEG in session I from another channel (A or B) is denoted as Xe prior ∈ Rm×k2 .

From a channel that is adjacent to the contaminated channel we chose the BCG prior data

as well as the BCG data used in the following simulation, to minimize spatial variations of

the BCG artifacts. This adjacent channel was also away from major surface vessels.

3.3.4 Basis Learning

We aim to generate a pair of full-rank bases: Bb prior and Be prior ∈ Rm×m, respectively, such

that (1) they properly represent the BCG-only Xb prior and EEG-only prior data Xe prior, (2)

they span subspaces that are as orthogonal to each other as possible, yet allow intersection

when strongly supported by data, and (3) their intrinsic dimensions are low. To this end,

we consider the following optimization problem:

min
Bb prior,Be prior

β1

2
‖Xb prior −Bb priorCb prior‖2

F

+
β2

2
‖Xe prior −Be priorCe prior‖2

F

+ ‖Ce prior‖2,1 + λ ‖Cb prior‖2,1

+ µ
∥∥BT

b priorBe prior

∥∥2

F
,

(3.2)
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where Cb prior and Ce prior ∈ Rm×k, and λ is a scalar balancing the contribution of group

sparsity penalties. β1 and β2 are also scalars ensuring the contribution of data fidelity terms.

And µ is a scalar controlling the orthogonality enforced to the learned bases.

In Eqn.3.2, the first two data fidelity cost terms ensure proper representation of the prior

data. The `2,1-norm defined as ‖Z‖2,1

def
=
∑m

i=1 ‖Z[ i, : ]‖2 where i ∈ {1, ...,m} is an index

set corresponding to the ith group (row), and m is the number of rows in Z. The `2,1-norm

encourages group sparsity structure on the coefficients of the Cb prior and Ce prior, leading

to the concentration of significant values to a few rows of the coefficient matrices. This

structure effectively ”nullifies” the contribution of the basis columns corresponding to the

insignificant rows of the coefficient matrices, and results in low-dimensional representations

of the BCG and EEG subspaces. Motived by incoherent dictionary learning in Ramirez, et

al.[RSS10], we use
∥∥BT

b priorBe prior

∥∥2

F
to penalize the coherence between the two bases and

encourage the orthogonality of the spanned subspaces for the purpose of signal separation.

In practice, the BCG and EEG subspaces are neither orthogonal nor independent. There-

fore, large enough subspaces intersection should be allowed even though we encourage inco-

herence during basis learning. Thus, overly heavy weight to the incoherence term tends to

falsely enforce orthogonal structures on the insignificant basis vectors, resulting in lower the

separability of the two signals for later reconstruction phase.

Based on the `2,1-norm promoted sparse entries of Cb prior and Ce prior, we perform an

explicit column reduction in the reconstruction stage to Bb prior and Be prior to eliminate

the basis columns corresponding to insignificant coefficients, and denote the column-reduced

bases as Bb prior sub ∈ Rm×k1 and Be prior sub ∈ Rm×k2 , where k1 and k2 are the number of

columns in the new bases.

Once the bases have been learned from the prior data, we use them in estimating the

coefficients of the BCG and EEG components of the contaminated data in the reconstruction

stage. Even though the EEG measurements recorded inside and outside the MR environment

may not be exactly equivalent[SBG05, DUS06], potentially affected by the posture, the

magnetic and claustrophogenic MR scanner environment, it is reasonable to assume that
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the brain originates consistent EEG recordings both inside and outside the scanner, and

produces similar EEG characteristics such as the global power spectrum and certain local

activation patterns. Therefore one may use the EEG bases from the prior data acquired

outside the scanner to represent the EEG components acquired inside the scanner.

Additionally, despite the possibility that BCG artifacts may vary spatially, caused by

movement of the electrodes, rotation of the head, or changes of influx from conductive surface

blood flow, we have observed that BCG artifacts vary smoothly in small neighborhoods. This

is particularly true with our high-density EEG cap of over 200 electrodes, as each channel has

multiple physically connected and closely located adjacent channels. Therefore we propose

to block neighboring channels without major vessels crossing to represent the BCG from

an unblocked channel under examination. Moreover, as our experiment has blocked over

200 channels for demonstration-purposes, each unblocked channel is surrounded by multiple

blocked channels providing abundant similar BCG-only signals.

3.3.5 Reconstruction

To best capture the strong temporal variations present in BCG artifacts, as illustrated in

Fig.3.3, we impose an `2 penalty on the BCG coefficients to encourage the reconstruction

to temporally resemble the prior BCG which is acquired synchronously with the contami-

nated data at a different blocked channel. With the learned basis vectors (Bb prior sub and

Be prior sub), we reconstruct the signal components by seeking Cb and Ce to minimize

min
Cb,Ce

‖Bb prio subrCb + Be prior subCe −Y‖2
F

+ σ ‖Cb prior −Cb‖2
F ,

(3.3)

where σ is a regularization control parameter.. Subsequently, we recover the BCG and EEG

components in the contaminated data Y with

X̂b = Bb prior subCb,

X̂e = Be prior subCe.
(3.4)

49



Time (Sec)

F
r
e
q

u
e
n

c
y

 (
H

z
)

1 2 3 4 5 6 7

0

20

40

60

80

100

120

1

2

3

4

x104

Figure 3.3: Power changes of BCG artifacts (from one channel) in time-frequency domain

3.4 Experimental Results and Discussion

To evaluate different artifact removal approaches quantitatively, and to provide parameter

selection guidance when real contaminated data is used, we simulated contaminated EEG

data from known BCG-only and EEG-only recordings according to the generative model

introduced in Sect.3.3.1, to enable direct comparison between reconstructed and ground-

truth component signals. First, we selected k1 segments of EEG-only signals as ground-truth

EEG (the red EEG recordings in Figure 3.4), denoted as X̃e ∈ Rm×k1 , which were acquired

from one unblocked channel A outside the scanner in session I. Then, the ground-truth

BCG-only signals, denoted as X̃b ∈ Rm×k1 , were chosen from the acquisition of channel A

from inside the scanner in session II. Finally, the contaminated data, denoted asỸ ∈ Rm×k1 ,

was synthesized according to the generative model Ỹ = X̃b + X̃e. Figure 3.4 illustrates this

process. Notice that the EEG-only signals X̃e prior used as prior information were from either

channel A or B (a neighboring channel to channel A) at a different time than the EEG data

X̃e we applied in simulating the contaminated data Ỹ, and BCG prior data X̃b prior was

collected at the same time as X̃e and X̃b but from a neighboring channel B.

In this section we show the strength of the proposed basis-learning and reconstruction

framework. We start by comparing the jointly learned bases from our basis-learning step

with that from the OBS method, using the experimentally acquired BCG-only and EEG-

only data. To reduce the computation time, we downsampled the BCG/EEG-only data
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BCG channel A

EEG channel A

BCG channel B

Xe_prior

Xb_prior

Xb

Xe

YSynthesized contaminated 

data channel A

Figure 3.4: We use the BCG data from channel B (blue) as the prior BCG data denoted as

X̃b prior after alignment. The EEG data from channel A or B (blue) can be used as the prior

EEG data X̃e prior. Simulated contaminated data (Ỹ) is summed from the BCG (X̃b) and

EEG (X̃e) data (red) both from channel A.

from 250Hz to 50Hz with an anti-aliasing filter after the preprocessing process explained

in Sect.3.3.3. Upon aligning recordings to the detected heartbeats, the resulting m × k

dimension of a 13.6-minute recording from one channel was reformatted as a matrix Xe prior

of size 73× 856.

3.4.1 Performance Evaluation of Basis Learning

We chose columns belonging to the first 5.4 minutes recordings as prior data for generating

the BCG/EEG-only basis matrices, with Xb prior and Xe prior of dimension 73 × 340. The

columns of the basis matrices were normalized to have unit `2 norms.

We then applied our basis learning scheme onto the first 5.4 minutes of prior data. We

stop the iteration as soon as the relative change
∥∥Ck+1

e −Ck
e

∥∥ /∥∥Ck
e

∥∥ between two iterations

is less than 10−6. We chose the step length to be 1.618 according to [DYZ11]. The parameters

of the basis learning function were tuned not for the best orthogonality between the bases but

for the best recovery results of the EEG components in the next 8.2 minutes, as reconstruction

module is simple with a signal parameter σ, and can be solved efficiently. The navigation of

the parameter space was performed with 3 levels of grid density. On the first level, we aimed
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to find the best orders for µ, β1 and β2 by sampling finely in the log-space of the directions

of µ and ratios (β1/µ ) and (β2/β1). On the second and third level, we refined sampling on

the linear space of µ, β1 and β2. We tuned λ by making it extremely small (λ = 10−8) at

first and then gradually increasing its value after the other three parameters are found.

Unlike the DRJIB method, where BCG and EEG basis vectors are retrieved from exper-

imentally acquired BCG-only and EEG-only signals, the OBS method generates them from

contaminated data, claiming that the first several sequential PCs describe the subspace of

the BCG, and that removing the contribution of these PCs would remove the BCG artifacts.

This rationale implicitly assumes that the BCG and EEG subspaces do not overlap and fur-

thermore are orthogonal, as the PCs are orthonormal basis vectors. Without ground-truth

BCG/EEG-only signals, there is no good way to test the feasibility of assumptions and one

may need to accept the results as they are, in the absence of better alternatives. However our

new experimental setup in Sect.3.3.2 provides observations of BCG/EEG-only signals, and

offers an opportunity to examine the validity of those assumptions for further improvement

of the signal separation results. To this end, we assessed the degree of orthogonality pre-

sented in the BCG and EEG subspaces. Basis vectors directly derived from each subspace

were obtained by applying PCA to the BCG-only and EEG-only data respectively. We then

calculated the non-orthogonal index, defined as η = ‖BT
bcg ×Beeg‖F/‖I‖F where Bbcg, Beeg

and I ∈ Rm×m, between the principal component matrices Bbcg, Beeg. We then evaluated

this index for different choice of included PCs. As we sequentially include less significant

PCs, shown in Fig.3.5, the orthogonal index starts from 0.1487 rather 0, suggesting that the

BCG and EEG subspaces are not orthogonal even if represented with a single basis vector.

We further compared the feasibility of the bases from both the DRJIB and the OBS meth-

ods by calculating the relative errors by projecting the demeaned ground-truth BCG/EEG-

only data onto the basis vectors. For the DRJIB method, the prior basis vectors were ob-

tained with the parameters of our basis learning step to be µ = 5.05× 104, β1 = 5.05× 108,

β2 = 5.05× 106 and λ = 10−8. Figure. 3.6(a)–(b) presents the relative error changes as the

number of the columns of the BCG and EEG bases was reduced. For the OBS method,

we obtained the bases (PCs) from the contaminated data and generated the residual energy
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Figure 3.5: Orthogonal Index

changes shown in Fig. 3.6(c)–(d) as we varied the number of PCs considered to be the BCG

basis while the remaining PCs was considered to be the EEG basis.

The OBS bases leave as much as 43.09% error in representing the BCG-only data, and

100% for the EEG-only signals when the curves of relative errors achieve minimum (when

all 72 PCs are used for BCG basis and the remaining 1 PC as EEG basis). For default

parameter (3 PCs for BCG basis and the rest 70 PCs for EEG basis), there is 69.71% and

161.8% error in representing BCG-only and EEG-only data.

It is not surprising that the bases derived from contaminated data result in large residuals

due to the model mismatch from the nebulous assumption of orthogonal subspace relation-

ship. By contrast, our jointly learned bases leave only 5.71 × 10−14% and 1.36 × 10−12%

error for the BCG and EEG signals without column reduction, demonstrating the significant

benefit of deriving bases from pure signals.

We also performed explicit column reduction to the learned bases Bb prior and Be prior

to reflect `2,1 promoted sparse entries of Cb prior and Ce prior. As achieving best recovery

results was the goal in basis-learning step, the reconstruction procedure was performed at

each iteration with varying number of basis columns. Applying column reduction at each

iteration incurs additional computational cost. However, as the BCG prior coefficient Cb prior
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Figure 3.6: Relative errors from representing the demeaned BCG and EEG signals using

different number of PCs.

is intrinsically dense and the dimension changes for the EEG prior coefficient are within a

narrow range, column reduction only needs to be performed for a few number of iterations

during updates of the basis vectors.

3.4.2 Performance Evaluation of Reconstruction

To evaluate the signal separation performance of the DRJIB, the OBS method was also

performed for comparison. We measure their recovery performances in terms of relative

error RE, defined as RE = ‖X̂ − Xtruth‖F/‖Xtruth‖F . Recovered BCG/EEG signals and

their corresponding groundtruth are represented with X̂ and Xtruth respectively. The X̂ ∈

Rm×k represent recovered BCG/EEG signals and Xtruth ∈ Rm×k denotes the ground-truth

BCG/EEG data. Both methods were conducted without further residual artifact removal

techniques [NBI05], and applied to the 5.3-minute contaminated data synthesized from the

BCG/EEG-only data that were acquired at different time than the recordings used for basis

learning phase (the first 3.4-minute).

The prior BCG and EEG bases used in the reconstruction phase have the size of 73× 73
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Figure 3.7: Comparison of the reconstruction results from DRPE and OBS. (a) and (b)

display information regarding BCG and EEG signals, respectively. The top row of both (a)

and (b) presents ground-truth BCG and EEG signals used in simulation. The middle row

shows the reconstructed BCG and EEG signals from the DRJIB method, which is compared

to the reconstructed signals from the OBS method shown in the bottom row. DRPE method

yields only 6.414% and 15.80% relative errors for the BCG and EEG reconstruction, while

the OBS generates 47.5% and 117.5% relative errors for BCG and EEG.

and 73 × 72 dimensions respectively after column reduction. In our reconstruction process

we used a penalty parameter σ = 1.06. For the OBS method, we chose the default number

3 as the number of primary principle components for the BCG reconstruction. Thus, the

remaining 70 PCs from the contaminated data were implied to be the EEG basis.

To save space, Fig.3.7 shows only a small portion of the reconstructed results from two

methods alongside the ground-truth data. It can be observed from Fig.3.7, the BCG and

EEG components are better separated and preserved by the DRJIB method than the OBS

method and reduced the relative errors for EEG components by approximately 7.5-fold.

Furthermore, Fig.3.7 shows that the DRJIB successfully recovers the qualitative temporal

behavior of the EEG signals thanks to its use of the basis from the prior and group sparsity

structures for the coefficients, whereas the OBS method distorts the temporal behaviors. The

benefits of modeling each signal type specifically rather than as a whole appear to have alle-

viated the potential influence of basis inconsistency from different acquisition environments

and different channel locations.
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Table 3.1: Cross validation results from 3 groups: Relative Errors (RE) in percentage. Each

group has a different segment as validation set with the remaining two segments (2) as

training set.

DRJIB OBS

BCG Segments EEG Segments BCG Segments EEG Segments

RE(%) Training Validation Training Validation Training Validation Training Validation

Group 1 6.41 6.58 15.64 16.24 52.31 61.50 130.5 153.5

Group 2 6.45 6.48 15.78 16.21 52.47 61.54 129.9 150.6

Group 3 6.52 6.80 16.16 16.90 51.97 61.02 128.0 150.5

We also employed a standard 3-fold cross-validation [FHT01] to quantify the overfitting

and the consistency of our DRJIB method and that of the OBS. Let Y (1) denote a 73× 158

(2.5-minute) matrix containing a randomly selected subset of column vectors from synthe-

sized contaminated matrix Y(8.2-minute). And let Ȳ(1) be a 73× 356 matrix (5.7-minute)

containing the complimentary set of data vectors that will be used for training. We then

applied the DRJIB and the OBS to recover BCG and EEG components from the Ȳ(1). The

parameter σ of the DRJIB was tuned to aim for the best recovery of the EEG components.

The parameter of the OBS is the number of PCs (Npc) used to represent BCG artifacts.

We chose Npc = 3. Once the optimal parameters were determined for the training dataset

Ȳ(1), they were used as parameters for recovering the BCG/EEG signals from the validation

dataset Y(1). The process is then repeated using t = 3 non-intersecting subsets of the data

to yield the reconstruction errors of the training and validation for each subset. The relative

errors of the cross-validation process are listed in Tabel.3.1. All reconstruction parameters in

Tabel.3.1 are the same (σ = 1.1) and result in similar good reconstruction results for all the

training sets, with only slightly worse results for the validation sets. This strongly suggests

that the DRJIB method is consistent with essentially negligible overfitting.

Furthermore, Fig.3.6(c)–(d) reveals the changes of the relative errors evaluated on various
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testing sets as the number of PCs for the BCG is varied. Consistent to all testing sets, we

observe that the lower bound for the EEG data recovery is actually 100%, indicating that

the reconstruction, via projection onto PCs based on the OBS method, fails to recover EEG

useful signal information. These significant reconstruction errors are introduced primarily

by model mismatch and may result in false interpretations to the continuous EEG studies

inside the scanner. This 100% lower bound may be explained by the large difference in

energy between the BCG artifacts and the normal EEG signals, as the BCG energy appears

to completely dominate PCA results from the contaminated signals.

3.5 Conclusions and Future Works

A framework for separating the BCG artifacts from the brain EEG signals in noisy EEG

measurements was introduced in this paper. The basic idea is to first jointly learn a pair of

BCG and EEG bases that optimally represent the BCG and EEG components in terms of

signal separation, then separate the two components of the contaminated signals with the

learned bases and regularizations. Toward this goal, we introduced a new experimental setup

that acquires BCG/EEG-only signals. We have investigated and developed a basis learning

procedure based on group sparse representations for the BCG and EEG signals and a new

term that promotes incoherence between the bases, yet still allows subspace intersection.

Furthermore, a specific column reduction of the learned bases is performed and the `2-

norm regularization on the BCG coefficients is introduced to preserve the non-stationary

temporal variations of the BCG signals. The experimental results demonstrate that our

DRJIB method surpasses the OBS method whose assumption is shown to be questionable.

Finally, the cross-validation results show minimal overfitting of our proposed scheme. In

future work, we will focus on: 1) extending the framework to incorporate the BCG spatial

variations and 2) implementing the proposed method for on-line artifact removal.
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CHAPTER 4

Removing ballistocardiogram (BCG) artifact from

full-scalp EEG acquired inside the MR scanner with

Orthogonal Matching Pursuit (OMP)

4.1 Abstract

Ballistocardiogram (BCG) artifact remains a major challenge that renders electroencephalo-

graphic (EEG) signals hard to interpret in simultaneous EEG and functional MRI (fMRI)

data acquisition. Here, we propose an integrated learning and inference approach that takes

advantage of a commercial high-density EEG cap, to estimate the BCG contribution in noisy

EEG recordings from inside the MR scanner. To estimate reliably the full-scalp BCG arti-

facts, a near-optimal subset (20 out of 256) of channels first was identified using a modified

recording setup. In subsequent recordings inside the MR scanner, BCG-only signal from this

subset of channels was used to generate continuous estimates of the full-scalp BCG artifacts

via inference, from which the intended EEG signal was recovered. The reconstruction of the

EEG was performed with both a direct subtraction and an optimization scheme. We evalu-

ated the performance on both synthetic and real contaminated recordings, and compared it

to the benchmark Optimal Basis Set (OBS) method. In the challenging non-event-related-

potential (non-ERP) EEG studies, our reconstruction can yield more than fourteen-fold

improvement in reducing the normalized RMS error of EEG signals, compared to OBS.
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4.2 Introduction

Simultaneous electroencephalography and functional magnetic resonance imaging acquisition

offers a promising probe to study different, yet connected, bioelectric and hemodynamic

attributes of brain activity with complementary temporal and spatial resolutions. This

non-invasive neuroimaging technique has applications in the analysis of event-related brain

responses [BSG07, DUS06, ESM05], studies of ongoing brain rhythms and networks [GSE02,

LKS03], and studies of epileptic activity [BAW03, KML01, LSJ01]. Despite many successful

applications, ballistocardiogram (BCG) artifact in concurrent EEG-fMRI acquisition still

presents a challenge in continuous recoding (e.g., non-ERP) studies especially when the

magnetic field strength is high. BCG presents high temporal non-stationarity due to variation

in cardiac cycles [BPJ02, DSS07], and its amplitude scales with magnetic field strength

[YMG10, MHB13].

Previous attempts to suppress the BCG artifacts have focused primarily on channel-wise

denoising, with major developments in template-subtraction, principal component analysis

(PCA)-based methods [AJT00, ELS04, GSE00, NBI05] and independent component analy-

sis (ICA)-based methods [GNM10, LZG12, SCL05], as reviewed in [GVK07, VDR10]. The

widely used Optimal Basis Sets method (OBS) [NBI05] is a PCA-based approach that re-

gresses out the mean effects and its first few principal components from the contaminated

data on a heartbeat-by-heartbeat basis. Attempts to incorporate spatial information have

also been made with spatial PCA and ICA by [BAW03, SCL05]. However these PCA/ICA-

based approaches are based on strong orthogonality/independence assumptions and subject

to manual selection of number of components to be included.

Another focus on BCG suppression is based on reference signals, generated by motion

sensors [BPJ02] or wire loops [MAF07], for the artifact itself. More recent developments, such

as [CMG14, MHB13, XRC13a] and the fEEGTM system from (Kappametrics Inc., Chantilly,

USA), apply an insulating layer to directly acquire BCG-only artifact signals from channels

that are electrically isolated from the scalp. Although the measured artifact reference signals

are not identical to the BCG [MHB13], significant suppression has been achieved by reference
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layer artifact subtraction (RLAS) [CMG14]. However, RLAS and fEEGTM require purpose-

built hardware and exploit no further denoising steps than a simple subtraction.

We propose a method to remove BCG from the uninsulated channels using inferential re-

lationship amongst whole-scalp BCG signals, which provides an additional denoising benefit

yet requires no hardware modification. As the BCG artifacts [YMG10, MHB13] are related

to the movements of conductive liquid such as surface blood flow, or movements from elec-

trodes caused by pulsation of blood vessels or head motion, we expect similar BCG temporal

behaviors from adjacent channels. In our previous study [XRC14b], we proposed surrounding

each uninsulated channel with a neighborhood of shielded channels that provide BCG-only

signals, to ensure access to at least one proper prior. This approach, though performs well, is

limited by its ad hoc neighboring channel selection and the potential requirement of a large

number of insulated channels. Therefore, a sparse, and stable, insulation pattern is highly

desirable in contrast to local probing in order to explore brain activity patterns.

We aim here to balance two conflicting goals: (1) minimize the number of insulated

channels; and (2) denoise the EEG signals in the uninsulated channels with high accuracy.

In an optimization framework, we jointly seek the optimal subset of a small cardinality to

insulate, and an inference model to estimate the BCG components for the other uninsulated

channels based on the BCG readings from the insulated set. We propose here a simple

greedy scheme based on orthogonal matching pursuit (OMP), and report its performance in

comparison with both the benchmark OBS method and inference with two alternative ad

hoc insulation patterns.

4.3 Generative Model for Contaminated EEG Data

As BCG and EEG are believed to originate from independent sources, they should add

linearly with minimal interaction and subject to noise contamination. Mathematically,

Y=Xbcg + Xeeg + ε, (4.1)
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where Xbcg, Xeeg and ε ∈ RC×T represent BCG artifacts, underlying uncontaminated EEG

signals, and noise respectively. C and T are the number of channels and the number of

time points of the recordings, respectively. This model does not presume any statistical

relationship between BCG and EEG: independence of the noise sources is in the sense of

physics and physiology, rather than statistics. This model has been applied implicitly in

many previous studies and simulation studies [AJT00, GSE00, GVK07, NBI05, VDR10].

4.4 Experimental Setup

Three healthy right-handed adult volunteers, (2 male and 1 female, with age between 24

and 28 yrs), gave informed consent for participation in this study according to the guidelines

of the UCLA medical investigational review board. For our experiments, we used a 3T

Siemens Tim Trio scanner (Siemens Medical Solutions, Erlangen, Germany). We acquired

EEG data with a GES300MR system (Electrical Geodesics, Inc., Eugene OR). This 256-

channel apparatus made contact with the scalp via KCL-filled sponge contacts mounted in

plastic pedestals with a contact-impedance of 20kΩ or less. EEG data were sampled at

250Hz and amplifier gains were kept constant. To focus on only BCG artifacts, no MRI

scanning took place during the acquisitions inside the scanner. The overall protocol is kept

consistent for recording spontaneous EEG as well as eyes open/close EEG activity (see more

experimental setup details in [XRC14b]).

4.4.1 Acquisition of BCG-only data:

Two layers of material were inserted between the scalp and the electrodes to collect BCG-

only data while electrically blocking conductance of EEG brain signals.

(1) Insulating Layer: To collect BCG-only artifacts, we first isolated electrodes from the

scalp with a plastic insulating barrier to block brain signals from conduction, as shown in

Figure 4.1(A).

(2) Semi-conducting Layer: To collect properly signals from insulated electrodes, a semi-

conductive layer was then inserted between the insulating layer and the electrodes. For this
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we used a thin piece of paper, dampened with saline (Figure 4.1(B)), as the semi-conductive

layer, which provided the proper impedance while avoiding short circuits or alteration of

BCG signals.

Figure 4.1: (A) Insulation layer: a shower cap (B) Semi-conducting layer: paper layer (C) A

piece of thin paper dampened with saline placed on top of the insulation layer (D) A picture

with all channels blocked (E) Sandwich diagram of construction (F) Unblocking one channel.

4.4.2 Acquisition of Contaminated EEG and BCG-only data :

Inside the scanner, we acquired contaminated and BCG-only data at the same time, but from

different channels. After inserting two layers for acquiring BCG-only signals, we recorded

simultaneously contaminated EEG data from selected channels by removing the insulation

and paper layers underneath, as shown in Figure 4.1(F). We chose to unblock 20 conventional

channels, approximating the standard 10-20 systems. In practice, and as discussed below, one

can determine which channels to block in advance, and use setup in Figure 4.1(F) to maximize

the number of channels that collect EEG signals. The measured impedance before and after

unblocking and their difference are provided in the Supplementary Material. On average,

the impedance differed by 100Ω for electrodes in the blocked, and unblocked, conditions.
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4.5 General Inference Logic and Work Flow

BCG signals, which are linked to pulsation and other motion effects [MHB13, NBI05], exhibit

high temporal non-stationarity, making direct temporal modeling extremely difficult with

classic parametric/nonparametric approaches. Despite this, we expect the correlations of

the BCG traces across multiple channels to be approximately consistent, as illustrated in

Figure 4.2. We hypothesize that the full-scalp BCG-only signals can be of intrinsically

low dimension along the spatial direction when signals acquired from multiple locations

contain redundant/correlated information; this is supported by the observation (see the

Supplementary Material) that just four principal components (PCs) explain more than 95%

total energy after applying spatial PCA to the full-scalp BCG-only signals, Xbcg ∈ RC×T .

A similar observation was made also in [BAW03] via visual inspection. These preliminary

analyses allude to the possibility of inferring the full-scalp BCG artifacts from BCG signals

collected from a subset of channels.

In the equations below, we adopt several MATLAB (the Mathworks, Natick, MA) no-

tations for their compactness and clarity. For any subset Λ ⊆ {1, 2, ..., C} and matrix

X ∈ RC×T , X[Λ, :] denotes a submatrix of X consisting of rows Xi for i ∈ Λ. The cardinality

of the set Λ is denoted by |Λ|. In this paper, we describe a set of full-scalp channels as

Λfull (|Λfull| = C), the subset of insulated channels as Λins, and the complementary set of

non-insulated channels as Λnins = Λfull\Λins. The linear inference seeks a relation with

Xbcg[Λnins, :] = WXbcg[Λins, :] + noise, (4.2)

where W is of dimension |Λnins| × |Λins|. We propose a two-stage procedure to estimate the

full-scalp BCG artifacts with BCG-only signals from a subset of insulated channels, based

on the assumption that the spatial correlation of full-scalp BCG is relatively consistent. See

Section 4.5.4 and 4.6.2.1 for greater detail.

In the first stage for model building, all channels are insulated to collect full-scalp BCG-

only signals, Xbcg, which are used to estimate an inference matrix W and select a subset

Λins via Equation 4.2. In the second stage for acquisition, the channels in Λins remain

insulated to acquire BCG-only signals Xbcg[Λins, :] while the remainder of the channels Λnins
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collects normal contaminated EEG recordings Y[Λnins, :] in which the BCG contributions

are estimated subsequently via Equation 4.2 with the inference, W, from the model-building

stage.

Figure 4.2: BCG traces from four channels (1, 3, 6 and 7) are combined linearly with weights

to form an estimate of the BCG trace from channel 136 (shown in red). The collected BCG

signals (channel 1, 3, 6, 7 and 136) are shown in black.

4.5.1 Stage I: Model Building

It is desirable to use a small number of channels for BCG estimations, so that the proposed

approach can be applied to a wide range of EEG caps and preserve the value of high-density

EEG recordings. We choose a “budget” size (the cardinality of insulation set |Λins|) to be 20

by cross validation, as reported in Section 4.6.2.2. The goal of selecting the optimal subset

of electrodes with the best inference performance can be formulated into a minimization-

minimization problem:

min
Λins

{ min
W(Λins)

‖Xbcg[Λnins, :]−WXbcg[Λins, :]‖2
F}, (4.3)
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where ‖‖F denotes Frobenius norm and we use W(Λins)to explicitly indicate the dependence

of the optimal W on the subset Λins. By introducing an identity map on the insulated

portion and reformulation with an expanded inference matrix W̃ = [I; W], it can be shown

that optimizing Equation 4.3 is equivalent to solving

min
Λins

{min
W̃

∥∥∥Xbcg[Λfull, :]− W̃Xbcg[Λins, :]
∥∥∥2

F
}, (4.4)

which has a regression goal independent of the insulation set Λins. The inner problem

of solving for W̃ given Λins is an `2 problem with a closed-form solution, but the outer

set selection problem is NP-hard. For practical purposes, we adopt a greedy Orthogonal

Matching Pursuit (OMP) approach [TG07] for the set selection problem. At each step the

subset Λins is expanded by one channel that maximizes the inner product of the signal

from the selected channel and the residual signals not yet explained by the already selected

channels. The inference matrix, W̃, is updated at each step with an updated subset Λins.

The OMP procedure is as follows:

• Step 1: Initialize the insulating subset as empty Λ(0)
ins = {}, the inference matrix

W̃(0) = 0, and the residual signals R(0) = Xbcg[Λfull, :]. Then, initialize the full-scalp

BCG-only signals to be X = Xbcg[Λfull, :], and set the iteration counter k = 1.

• Step 2: Find a channel that solves the maximization problem:

i = arg max
i

∑
j∈Λfull

〈
R(k−1)

j ,
Xi

‖Xi‖F

〉2

.

• Step 3: With this selection, update everything as follows:

Λ(k)
ins = Λ(k−1)

ins

⋃
{i};

W̃(k) = arg min
W̃

∥∥∥Xbcg[Λfull, :]− W̃Xbcg[Λ
(k)

ins, :]
∥∥∥2

F
;

R(k) = Xbcg[Λfull, :]− W̃(k)Xbcg[Λins
(k), :];

k = k + 1.

Go back to step 2 until the budget number of insulated channels has been reached.
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• Step 4: Store the final set Λins = Λ(k)
ins and the inference matrix W̃ = W̃(k).

After obtaining the inference matrix W̃ and insulation subset Λins from the full-scalp

BCG-only signals, the estimated BCG components X̂bcg[Λnins, :] in the contaminated EEG

recordings are reconstructed according to Equation 4.2 using simultaneously collected BCG-

only signals Xbcg[Λins, :] by the following solution:

X̂bcg[Λnins, :] = WXbcg[Λins, :]. (4.5)

As an alternative to automatic set selection methods, we devised two ad hoc patterns:

a “lines” pattern with 4 groups of 5 channels, as shown in Figure 4.3(A); and a “patches”

pattern containing 4 groups of 5 channels arranged in circles, as shown in Figure 4.3(B). In

addition, the selected pattern from OMP is presented in Figure 4.3(C).

Figure 4.3: Three patterns for insulating channels (solid black dots): (A) the Lines pattern,

(B) the Patches pattern, and (C) a pattern selected by OMP.

4.5.2 Stage II: Reconstruction of clean EEG

Here, we investigate two methods for reconstruction: direct subtraction approach, and

optimization-based. (1) Direct subtraction: A straightforward and assumption-free method

for denoising EEG is to subtract the estimated BCG components directly from the recorded

noisy data Y:

X̂eeg[Λnins, :] = Y[Λnins, :]− X̂bcg[Λnins, :]. (4.6)
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(2) Optimization-based reconstruction: To further separate EEG from BCG, we incorpo-

rate an optimization-based scheme for temporally-concatenated segments that utilizes prior

information from the EEG acquired outside the scanner. Based on patterns observed from

BCG-only and EEG-only data, we devised a regularized optimization framework to sepa-

rate the signals using group sparsity technique developed in compressive sensing [DYZ11].

The detailed explanation is provided in our previous work [XRC14b]. Mathematically, we

impose a group sparsity penalty with `2,1 norm, ‖Ceeg‖2,1

def
=
∑m

i=1 ‖Ceeg[ i, : ]‖2, on the

reconstructed EEG coefficient Ceeg, where i ∈ {1, ...,m} is an index set indicating the ith

group (row), and m is the number of rows in Ceeg. In addition, the energy function adopts

the EEG basis Be prior learned from the out-of-scanner experiment. Therefore, one may re-

construct the EEG signals by estimating the EEG coefficients, Ceeg, corresponding to the

learned basis, Be prior for each uninsulated channel by minimizing:

min
Ceeg

‖Ceeg‖2,1 +
1

2
µ‖Yeeg −Be priorCeeg‖2

F , (4.7)

where the first term regularizes the group sparsity structure of the coefficients, and the second

term imposes data fidelity. The scalar parameter, µ, balances the contribution of these two

terms. Yeeg is derived by subtracting the estimated BCG from recorded noisy data from one

channel. The EEG component of the uninsulated channel is recovered by multiplying the

prior basis with the estimated coefficients.

4.5.3 Construction of Synthetic contaminated EEG data

To compare the EEG reconstruction performance quantitatively among different artifact

removal methods, we simulate contaminated EEG data by combining 12 minutes of BCG-

only, and EEG signals (Equation 4.1) (see more details in [XRC13a]). This provides us with

access to ground-truth that is absent in normal EEG-fMRI acquisitions. We use “clean”

EEG signals collected from outside the scanner. Our simulation differs from the published

works [GNM10, GVK07, VDR10], in that we use the true BCG signals to synthesize the

contaminated data. The inference models used in the comparison include two ad hoc pat-

terns, “lines” and “patches”, and the pattern from the OMP approach. We compare the
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performance among three methods: Channel-wise OBS (EEGLAB plug-in FMRIB version

1.2 [NBI05] with 3 principal components), inference + direct subtraction, and inference +

optimization.

4.5.4 Consistency of the Inference Relationship

Our method assumes substantial consistency of the inference relationship over time, which

reflects the temporal consistency of BCG spatial correlations among multiple channels. Once

an inference matrix is sufficient in estimating one BCG segment, it is assumed to be adequate

in recovering other segments that are distant in time. We perform a validation test with a

13-minute full-scalp BCG-only recordings in Section 4.6.2.1.

A second assumption of our methods is of nominal consistency of the inference relation-

ship across experimental sessions. Between stage I and II sessions, subjects are removed

from the scanner, and their caps are replaced. As a result of the physical movements, ar-

tifacts may differ substantially due to variations of scalp-electrode impedances and channel

locations. Two kinds of inconsistencies may occur regarding our inference model. First,

the channels selected from the first session may not suffice to represent BCG from another.

Second, even if the selected channels remain representative, the inference matrix from the

first session may not carry the proper weights to reconstruct the BCG from the second.

To verify the representativeness of selected channels, the subset selected from one train-

ing session is used to recover BCG from a testing session with an optimal inference matrix

calculated from also the testing session, minimizing the contribution of the inconsistent in-

ference matrix. After demonstrating the representativeness of selected channels, we proceed

to examine the impact of physical movements on inference matrix. The inference matrix

learned from the training session is applied to recover BCG from other testing sessions. The

mean reconstruction errors of the two inconsistency tests are presented in Table 4.2 and 4.3.

In addition, we propose an inference matrix recalculation method to be used in the event

that the inference matrix varies too much to recover adequate BCG. Our method divides time

series signals for each channel into segments according to a fixed number of heartbeats, then
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computes the averages of the segments for each channel. As noted by others [NBI05, AJT00],

it is safe to assume that such ECG-synced averages contains negligible EEG after applying

a 1-Hz high-pass filter to remove slow drifts in EEG, and only averaged BCG segments. As

a result, we can obtain a new inference matrix from the BCG-only segments of all channels,

and recover BCG following the same steps as Section 4.5. This amendment operates on

the temporal domain of full-scalp BCG signals with negligible alteration of the BCG spatial

relationships among channels. The BCG reconstruction errors from the new matrix are

theoretically (see the Supplementary Material) and experimentally (Section 4.6.2.1) proven

to be small. Furthermore, we applied the consistency tests not only on 5-minute BCG-

only recordings from different experimental sessions from one subject, but also on 9-minute

BCG-only recordings from three subjects. The results are shown in Section 4.6.2.1.

4.6 Results

When ground truth Xi is available, we define the normalized root mean squared error

nRMSEi = ||Xi − X̂i||2/||Xi||2 for the channel index i to quantify the performance of either

BCG or EEG estimation X̂i. This channel-wise error can be displayed as a topographic map,

showing the accuracy of estimations in the spatial domain across multiple channels. In addi-

tion, the spatial collective average over a set Λ is denoted by ave nRMSE = 1
|Λ|
∑
i∈Λ

nRMSEi.

4.6.1 Performance Evaluation on EEG Reconstruction

4.6.1.1 EEG Reconstruction Results from Synthesized Data

For the purpose of evaluating the overfitting and consistency of our proposed framework, the

12-minute long synthesized data were partitioned further into three equal size datasets for

cross-validation, in which parameters were selected by a grid-search over parameter space

from training datasets and tested on the validation datasets. The topographic maps of

nRMSE averaged from the validation datasets are reported in Figure 4.4 with their collective

averages ave nRMSE in the brackets. Our methods show improvements not only in a few
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selected channels but across the topology of the scalp. In addition, the temporal and spectral

plots of ground-truth and reconstructed BCG and EEG signals appear in Figure 4.5 and

Figure 4.6.

As shown in Figure 4.4, the best result, obtained by combining OMP approach with the

optimization-based reconstruction, offers approximately 14.6-fold improvement compared to

OBS in full-scalp EEG reconstruction. In comparison, our previous results using neighboring

channel as BCG prior reported only 7 fold improvement. Even the simple direct subtraction

with two ad hoc patterns can improve the EEG reconstruction quality by 10 to 12-fold. We

interpret the overall reduced energy in the spectrum and spectrogram of reconstructed data

in Figure 4.6(B) and Figure 4.7 as a reflection of the artifact contribution. All spectrograms

were produced with 0.1Hz frequency resolution, a Hamming window of length 256 and the

number of points that each segment overlaps being 200.
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Figure 4.4: Topographic maps of nRMSE(%) after averaging all cross-validation results.

The spatially collective ave nRMSEs(%) over all channels are in the brackets.
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Figure 4.5: Reconstructed BCG (A) and EEG (C) from channel 118. In (A) and (C), the top

panel: ground-truth used in simulation. From second to bottom panels, the methods used

to reconstruct the signals are OMP with direct subtraction, OMP with Optimization-based

reconstruction and OBS. The difference between the reconstructed signals and the ground

truth are displayed in (B) for BCG and EEG signals, respectively.
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Figure 4.6: Frequency spectra of reconstructed BCG (A) and EEG (B) from channel 118

with 0.05Hz frequency resolution. The OMP related approaches reconstruct signals that are

so close to the ground truth that their spectra almost perfectly overlap. The subtractions

of the spectra between reconstructed signals and ground truth are displayed in (C) and (D)

for BCG and EEG signals, respectively.
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Figure 4.7: Top panel: Roughly 20-sec ranges of reconstructed EEG signals are shown here

with event onsets (eyes open and eyes close). Bottom panel: Comparison of performance

in differentiating the eyes open (EC) and eyes closed (EO) states: (A) based directly on

contaminated EEG recording, (B) recovered EEG signals with the OBS method, and (C)

the OMP with direct subtraction and (D) the OMP with optimization-based method. The

left panel depicts the reconstructed EEG spectrograms.
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4.6.1.2 EEG Reconstruction Results from Real Contaminated Measurements

Because it is not possible to measure ground-truth BCG and EEG components from unin-

sulated channels inside the scanner, the performance of EEG reconstruction can only be

examined qualitatively for known EEG features. One important feature is the increased

power in the alpha band (8-10Hz), primarily in the posterior electrodes, when the subjects

eyes are closed (EC), compared to the eyes open (EO) condition. We collected recordings

from 20 unblocked channels with BCG contamination, arranged according to the conven-

tional 10-20 system, when three subjects were cued verbally to open and close their eyes

every 30 seconds for a total time of 14 minutes. The same protocol was used to collect EEG

signals outside the scanner as well, for optimization-based reconstruction, as explained in

our previous work [XRC13b].

We followed the procedure of Chen, et al., [CFZ08] to quantify the EC/EO effects. Each

30-sec EEG sample, omitting 3-sec before and after each EC/EO event onset, was analyzed in

3 sec epochs, resulting in 112 epochs for each EC/EO state. The absolute EEG band power

(µV 2) in the alpha band from each epoch of EC/EO state was calculated using the Fast

Fourier Transform. As the alpha band power values failed a normality test, the Wilcoxon test

for nonparametric comparison of ranks was performed, with p < 0.05 accepted as significant,

to assess the hypothesis that EC and EO states have similar population mean rank based

on alpha band power [CFZ08].

The top panel of Figure 4.7 illustrates qualitatively the experimentally acquired con-

taminated data from an occipital channel (channel 124) from one of the subjects, and the

corresponding reconstructed EEG signals from OBS, OMP inference with direct subtraction

and optimization-based reconstruction methods. The transition from EC to EO states are

clearly identifiable at around 65 sec. EEG signals reconstructed with OMP inference model

have revealed better-preserved alpha rhythm in EC state than OBS.

The spectrogram of recovered EEG from one subject are shown in the bottom panel

of Figure 4.7 for quantitative comparisons while statistical results from all subjects are

presented in Table 4.1. With 112 epochs, the Wilcoxon-test on the contaminated data
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Table 4.1: Statistical results of one occipital channel from 3 subjects. EC columns contain

mean (µV 2) alpha power when the subjects eyes were closed. EO columns contain mean

(µV 2) alpha power when the eyes were open. P-values are from the Wilcoxon test. No

significant change in alpha power was detected in the contaminated signal, while the OMP-

based and OBS methods display the expected decreases from EC to EO conditions.

Subject 1 Subject 2 Subject 3

EC EO p-value EC EO p-value EC EO p-value

Contaminated 341.6 330.8 1.8e-01 1781.9 1790.3 6.6e-01 695.2 676.4 3.8e-01

OBS 74.1 59.6 2.1e-02 75.9 65.0 4.5e-02 72.3 56.2 3.1e-03

OMP+Sub 26.7 15.4 5.1e-06 8.2 3.1 9.1e-07 5.4 1.1 1.3e-25

OMP+Opt 26.6 15.3 4.4e-06 8.1 3.0 7.1e-08 5.2 0.9 6.5e-26

indicates no marked reduction in the magnitude of alpha band power in the EO states.

Agreeing with the results reported in [NBI05], statistically significant difference in alpha

band power is present between the EC and EO states of the recovered EEG signals from

the OBS. As expected, a more significant statistical difference is revealed using the OMP

inference plus direct subtraction, and even greater difference is reported with OMP plus

optimization-based reconstruction, in accordance with our results in the simulation study.

Similar results are obtained from other subjects and are presented in the Supplementary

Material.

4.6.2 Performance Evaluation of the Inference Model

For the purpose of efficiency and stability, it is desirable to learn the inference matrix, W,

from a short full-scalp BCG-only dataset while maintaining high estimation accuracy. To

this end, we first acquired 13-min full-scalp BCG-only recordings to assess the impact of

the model building length on the estimation accuracy. We then derived inference matrices

from data that varied from 1 min to 4 min in the model building stage, and evaluated
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the corresponding full-scalp BCG recovery errors (nRMSE) on the remainder. We have

observed that the duration of model building has negligible effect of less than 0.3%. Hence

the results in this paper are reported with the inference matrix from 1 min model building

length.

4.6.2.1 Consistency Test Results for Single and Multiple Subjects

Consistency Test over Time: As discussed above, it is reasonable to expect that the

spatial correlations of BCG traces among multiple channels remain consistent over time.

This assumption ensures acceptable BCG estimation over time under our inference model.

We validated this presumption using the following steps: First, a total of 13-minute full-

scalp BCG-only recordings were partitioned into 13 equal length segments. Then, the in-

ference matrix built from each segment (training segment) was evaluated on each of the

remainder segments (testing segments), forming an error matrix of spatially collective av-

erage ave nRMSE whose (i, j)th entry contains the ave nRMSE of segment j in column

direction based on the model built on segment i along row direction. The evolution of the

inference relationship is visualized in Figure 4.8. As expected, the (sub)diagonal structure

of the error matrix in Figure 4.8 suggests mild non-stationarity, but with a uniform upper

bound of less than 10%, confirming the presence of a generally stable inference relationship.
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Table 4.2: Mean values of the error matrices whose element is the BCG estimation error

(ave nRMSE) in percentage (%) for a model whose subset of channels and inference matrix

were learned from one training segment and applied to another testing segment. Data

were from three different experimental sessions. Three columns represent three different

conditions for estimating the BCG of the testing segments. Channel Consistency column:

an optimal inference matrix was used in estimation. Training Inference column: both

channels and inference matrix were from the training data. Recalculated Inference column:

Inference matrix was updated with the proposed recalculation method.(All error matrices

are presented in the supplementary material.)

Channel Consistency Training Inference Recalculated Inference

(%) Session1 Session2 Session3 Session1 Session2 Session3 Session1 Session2 Session3

Session1 3.98 7.56 5.10 4.02 46.69 38.67 4.59 8.50 5.48

Session2 4.98 6.52 4.90 33.14 6.85 30.76 5.87 7.33 5.28

Session3 4.33 7.25 4.44 31.02 36.82 4.53 5.07 8.06 4.79

Table 4.3: The same as Table 4.2 but data were from three subjects.

Channel Consistency Training Inference Recalculated Inference

(%) Subject1 Subject2 Subject3 Subject1 Subject2 Subject3 Subject1 Subject2 Subject3

Subject1 3.92 5.43 5.51 4.11 38.88 38.23 4.44 6.49 6.81

Subject2 5.01 4.68 5.63 41.94 4.83 50.15 5.83 5.44 6.72

Subject3 5.36 5.63 4.78 47.32 48.13 5.04 6.24 6.62 5.51
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Figure 4.8: BCG estimation errors (ave nRMSE) in percentage (%) exhibit (sub)diagonal

structure for models built on one segment and applied to another segment.
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Channel Consistency Test: We performed a similar validation testing the representa-

tiveness of selected channels on full-scalp 5-minute BCG-only recordings from three exper-

imental sessions of the same subjects, and three sessions of 9-minute recordings from three

subjects. Error matrices were generated after dividing each recording into 1-minute long

segments. Mean values of the error matrices are presented in Channel Consistency column

of both Table 4.2 and 4.3, while the raw error matrices of all consistency tests are shown

in the Supplementary Material. Highest accuracy is achieved in general when the training

and testing segments are from the same session or subject, emphasizing the necessity of

subject-specific channel selection.

An optimal inference matrix, built directly from the testing rather than the training

segment, was applied in each testing segment estimation using the channels selected from

the training segment. With less than 2% increase in errors (from the consistent errors for

each testing data), the selected channels are representative not only for different experiment

sessions but also for different subjects.

Consistency Test with Inference Matrix from Training: Without applying the op-

timal inference matrix, we obtained the mean values from the error matrices when the

channels and inference matrix were both from the training data and presented the result in

Training Inference column of both Table 4.2 and 4.3. Combining the results from Channel

Consistency column and Training Inference column, it is safe to conclude that the observed

excessive errors (in Training Inference column) should originate mainly from the inconsis-

tency of inference matrix rather than from the selecting channels failing to be representative.

This observation also helps us to determine a fixed blocking pattern, especially when lower

BCG-only estimation accuracy is tolerable; in practice this might greatly reduce experiment

time and complexity

Consistency Test with Recalculated Inference Matrix: Furthermore, the applica-

tion of our inference matrix recalculation method decreases the errors to reasonable levels

(most errors are approximately bounded above by 10%) as illustrated in Table 4.2 and 4.3
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(Recalculated Inference column), agreeing with the theoretical proof in the Supplementary

Material.

4.6.2.2 Determination of “Budget” Size

A 13-fold cross-validation was employed to determine the size of the subset Λins with 13

one-minute segments from the 13-minute full-scalp BCG-only signals: for each test in the

k-fold process, the one minute training data from the kth-minute BCG signals was denoted

as Xbcg
(k), and the validation data from the remaining 12-minutes was denoted as X

(k)
bcg.

The inference matrix W was built first by solving Equation 4.3. on the training data with

a specific “budget” size, and then applied on the validation set to estimate the BCG com-

ponents from the non-insulated channels. Spatial collective average errors from estimating

the validation sets were calculated for different folds, and for different “budget” sizes. The

averaged ave nRMSEs over 13 different validation sets decreases as the “budget” size in-

creases, as shown in Figure 4.9. In this paper, we chose |Λins| to be 20 as we determined

that a consistent 5% estimation error is acceptable.

Figure 4.9: Mean ave nRMSE(%) of 12 validation sets as a function of “budget” size.
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4.6.2.3 Inference Performance of “Random” Patterns

The general set selection problem resembles “set selection” problems in compressed sensing,

which maximizes the `2 fidelity (inference goal here) subject to `0 constraint (the cardinality

of Λins). In practice, the Restricted Isometry Property-type [CT05] conditions are hard to

verify, especially with the high variation in BCG. However, it would be desirable to obtain

insights from reconstruction performance based on randomly selected subsets. To this end,

we repeated the channel selection process, drawing |Λins| = 20 channels from Λfull with

random permutation. Figure 4.10(A) illustrates one of the “random” patterns and Figure

4.10(B) shows a histogram of the errors (ave nRMSE) corresponding to 500 “random”

patterns. The average of ave nRMSE over 500 realizations is 5.65% with a maximum error

at 7.85% and a minimum at 4.7%. Figure 4.11 reports the topographic maps of nRMSE

when the model building length is 1 min, and shows that the OMP approach achieves better

BCG estimation performance than the other two ad hoc insulation patterns. Comparing

Figure 4.10 and Figure 4.11, we notice that the “random” pattern consistently performs

better than the “lines” pattern. On average, the “random” pattern performs better than the

“patches” pattern and worse than the pattern from the OMP approach. As can be observed,

only a few instances would result in estimation accuracies higher than the one from the OMP

approach who yields consistently good estimation results.
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Figure 4.10: (A) One of the patterns selected with random permutation. (B) Histogram of

the estimation errors (ave nRMSE) from 500 realizations of random patterns. The highest

error is 7.83% when the lowest error is 4.71%.

Figure 4.11: Topographic BCG estimation error (nRMSE) maps in percentage (%) for

different channel selection methods when the model building duration is 1 min. The number

at the bottom of each error map: the ave nRMSE averaged spatially across all channels.
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4.7 Discussions and Conclusion

With increased magnitude at higher MR field strengths and high temporal non-stationarity,

BCG artifacts have impeded further investigations using concurrent EEG-fMRI. Previous so-

lutions to this problem focus mainly on PCA or ICA-based approaches, addressing this issue

by channel-wise temporal modeling of BCG. To take full advantage of the spatial information

from a high-density EEG cap, it is natural to extend to spatial PCA/ICA [BAW03, SCL05].

However, the success of modeling BCG with such spatial PCA/ICA approaches demands

the existence of questionable [GVK07, VDR10]orthogonality or independence relationship

between the full-scalp BCG and EEG signals. By contrast, our approach imposes no pre-

sumptions on the relationship between BCG and EEG, and relies on a consistent inference

model that maps BCG from a subset of channels to BCG from all channels. With 20 degrees

of freedom, the inference model produces an observation-space-to-observation-space map

that is robust to variations in BCG source space. Unlike spatial PCA/ICA that requires

prior selection of the number of components or subjective identification of components, our

estimation of BCG is based on the widely accepted additive generative model.

Extending from our previous work, which used the BCG recordings from subjectively-

selected insulated neighboring channels, the present study: (1) estimates the full-scalp BCG

components for all channels from an automatically selected insulation set; (2) reconstructs

all channels at once with significantly improve quality since it relies on stable global rather

than ad-hoc local neighboring BCG information; (3) simplifies the experimental setup by

insulating only a small subset of channels. The inference model has improved the estimation

accuracy of BCG greatly across all channels, since the inference relationship is generally

consistent in time and the selected channels are reasonably consistent not only across ex-

perimental sessions but also across subjects, suggesting that the subject-specific channel

selection is less essential when some inaccuracy of BCG estimation accuracy is tolerated. In

spite of the observed rather significant inconsistency of the inference matrix across sessions,

our proposed inference matrix recalculation method effectively keeps the errors below 10%

upper bound which is only approximately 1-2% worse in comparison to those where optimal
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inference matrices were adopted.

In practice, our inference model involving only linear regressions is easy to build and

calculate, with a few minutes of experimental time for model-building stage I, and with no

hardware modifications, unlike other methods [DGS09] utilizing multiple channels of EEG

cap. In addition, while we developed our method on a high density cap, it can be applied

to a lower density cap with some variations in BCG reconstruction accuracy. Once the

inference matrix is learned, the mitigation of BCG artifacts, with our inference approach

and direct subtraction-based reconstruction, is suitable for on-line artifact removal, requiring

only multiplication and subtraction that can be performed in real-time. Note that the direct

subtraction approach in Equation 4.6 works best when the observation noise ε in Equation

4.1 is relatively low. In realistic measurement settings, the noise level is not accessible

directly, and can be estimated only under certain distributional assumptions. Practically,

this seems to be reasonable: we have observed that subtraction-based reconstruction works

well on both synthesized and real contaminated data. For localized inference of interest, e.g.

occipital channels for alpha rhythm studies, the proposed method can be modified trivially

(the regression goal in Equation 4.3) to for selective optimization.

Moreover, our method can be integrated with these approaches, such as the KappaMet-

rics fEEGTM system and others [BPJ02, MAF07, CMG14], that generate BCG reference

signals, providing guidance for placements of motion sensors, wire loops and fewer number

of channels for the reference layer. Those reference-based methods are attractive however

require specialized hardware. For example we were not able to compare it directly because it

is not available. Admittedly, there exists some discrepancy between each of these reference

signals and the “ground-truth” BCG signals, as a result of insulation, sensing process or

impedance mismatch. In principle, Hall effects [CMG14, MHB13, YMG10] occurring in the

MR imaging field might distort the scalp topography of the EEG signals. It is difficult to

estimate the magnitude of this contaminant, which is common to OBS and other reference

signal based methods.

This paper has focused mainly on removing BCG signals for non-ERP studies. Although

our method in principle extends to ERP studies, the artifact suppression effects may not
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significantly outperform the OBS method, as shown in Supplementary Material, due to the

fact that averaging around known triggering events will reduce BCG residual signals when

event timing is not correlated to the heartbeats. A crucial result reported here, is that our

method is robust in exposing alpha power fluctuations under experimental conditions. In

our hands this had been a difficult challenge when using other artifact removal methods,

and has limited sharply the value of combined EEG-fMRI experiments that seek to look at

continuously recorded signals and to analyze their spectral content.

Combined, the proposed framework can do much to mitigate the serious artifacts that

otherwise limit combined EEG-fMRI recordings. The practical advantage of doing so may

be very large. While many groups have shown important results of combined EEG-fMRI in

the event-related designs that are relatively resistant to the BCG artifacts; few reports show

success in continuous recordings. The latter, however, are necessary to study the tantalizing

relationships between BOLD signal and brain EEG rhythms, as well as important disease

entities such as epilepsy, where there is little opportunity to average EEG events.

4.8 Supplementary Material

4.8.1 Proof of the inference matrix recalculation method

We denote the contaminated data as Y ∈ RC×T , with C being the number of channels and T

being the number of time points of the recordings. The time points are further decomposed

into K segments with L points each according to some integer number of heartbeat cycles.

Averaging of all the segments is equivalent to right multiplying a circulant matrix A ∈
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RKL×L formed from a scalar 1
K

and vertically stacking K identity matrices 1 with length L:

1 =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 ∈ RL×L,A =
1

K



1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
...

...
...

...

1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1



=
1

K


1

...

1

 ∈ RKL×L.

To maintain the size along the time direction after averaging, the resultant matrix is repli-

cated K times, which is equivalent to right multiplying another circulant matrix formed from

stacking identify matrices with length L horizontally. Combined, averaging and replicating

the segments is equivalent to right multiplying a circulant matrix C ∈ RKL×KL:

C =
1

K


1 · · · 1

...
. . .

...

1 · · · 1

 ∈ RKL×KL.

Naturally, we have the following relations:

Ȳ=YC,

X̄bcg=XbcgC,

X̄eeg=XeegC,

Ȳ=X̄bcg + X̄eeg ∈ RC×KL,

(4.8)

As in previous papers by [NBI05, AJT00], we assume that EEG becomes uncorrelated after 3

sec. Choosing K and L properly, we assume X̄eeg → 0 and Ȳ becomes a good representation

of X̄bcg as as result of the averaging.

Ideally, we derive our inference matrix from the following:

W̃ = arg min
W̃

∥∥∥Xbcg[Λfull, :]− W̃Xbcg[Λins, :]
∥∥∥2

F
. (4.9)
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We propose to recalculate the inference matrix from the following:

W̄ = arg min
W̄

∥∥Ȳ[Λfull, :]− W̄Xbcg[Λins, :]
∥∥2

F
. (4.10)

We will show that W̄ can recover X̄bcg[Λfull, :] from Xbcg[Λins, :] with high accuracy. For

convenience, we denote Xbcg[Λins, :] as X0, Xbcg[Λfull, :] as X, and X̄bcg[Λfull, :] as X̄.

After replacing Ȳ with X̄bcg , the solutions to the least square problems above are:

W̃ = XXT
0 (X0X

T
0 )−1,

W̄ = X̄XT
0 (X0X

T
0 )−1 = XCXT

0 (X0X
T
0 )−1,

W̃ − W̄ = (X−XC) XT
0 (X0X

T
0 )−1.

(4.11)

The solutions above in Equation 4.11 minimize the residuals of the least square problems,

where these residuals ε1 and ε2 are small quantities:

ε1 =

∥∥∥W̃X0 −X
∥∥∥2

F

‖X‖2
F

,

ε2 =

∥∥W̄X0 −XC
∥∥2

F

‖XC‖2
F

.

(4.12)

As any circulant matrix can be diagonalized by the Discrete Fourier Transform (DFT)

matrix F, we have C = FΛFT . In addition, the eigenvalues of C are known, and have a

certain structure: Λ contains zeros except L ones at its diagonal.

λi,j =

 1 if i = j and i,j ≤ L

0 otherwise

Therefore,

XC = XFΛFT

I−Λ = (I−Λ)2 = I−Λ2

‖X‖2
F = XXT = XFIFT = XF(I−Λ2 + Λ2)FT = XF(I−Λ2 + Λ2)FT

= XF(I−Λ)2FT + XF(Λ)2FT = ‖X−XC‖2
F + ‖XC‖2

F .

(4.13)

We notice that XFΛFT has a physical interpretation. XF implies application of a discrete

fourier transform to each time series (row vector) in X. XFΛ means applying a rectangular
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low pass filter of length L with a cutoff frequency at 1
K
fs where fs is the sampling frequency.

The low-passed version then is transformed to the time domain through the inverse fourier

transform by multiplying by FT . Accordingly, ‖XC‖2
F represents the energy of the BCG in

the low frequency range whose cutoff depends on Λ, and the energy in the high frequency

range is ‖X−XC‖2
F . After observing the ground-truth BCG spectrum, as shown in the

main body Figure 8, it is reasonable to argue that the percentage of the high frequency

energy over the energy of all frequencies r =
‖X−XC‖2

F

‖X‖2
F

is a small quantity

The normalized percentage difference of reconstructed signals between the ideal inference

matrix and the recalculated one is:

∥∥∥W̄X0 − W̃X0

∥∥∥2

F

‖X‖2
F

=

∥∥∥W̄X0 −X + X− W̃X0

∥∥∥2

F

‖X‖2
F

≤
∥∥W̄X0 −X

∥∥2

F

‖X‖2
F

+

∥∥∥X− W̃X0

∥∥∥2

F

‖X‖2
F

=

∥∥W̄X0 −X
∥∥2

F

‖X‖2
F

+

∥∥∥X−XC + XC− W̃X0

∥∥∥2

F

‖X‖2
F

≤
∥∥W̄X0 −X

∥∥2

F

‖X‖2
F

+
‖X−XC‖2

F

‖X‖2
F

+

∥∥∥XC− W̃X0

∥∥∥2

F

‖X‖2
F

≤
∥∥W̄X0 −X

∥∥2

F

‖X‖2
F

+
‖X−XC‖2

F

‖X‖2
F

+

∥∥∥XC− W̃X0

∥∥∥2

F

‖XC‖2
F

= ε1 + r + ε2.

(4.14)

In sum, since the percentage difference is bounded by the sum of three small quantities, the

recalculated inference matrix is indeed a satisfying replacement.

4.8.2 Supplementary Figures

4.8.2.1 Figures for Experimental Setup
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Figure 4.12: The numbers shown on the topographic maps are channel numbers. The

conventional channels along with the reference and ground channels are highlighted with

black circles. The color indicates the measured impedance number in kΩ. (A) Measured

Impedance when all channels are blocked. (B) Measured impedance when reference and

ground channels along with conventional 20 channels are unblocked. (C) The difference of

impedance between (A) and (B). The average of the difference is approximately 100Ω

Figure 4.13: The amount of full-scalp BCG variance explained by principal components. Bar

plot with ordinate labeling on the left side: the percentage of variance explained by each

principal component. Red curve with the ordinate labeling on the right side: The cumulative

proportion of the variance explained. The circled value indicates the number of principal

components necessary to explain 97% of the total variance.
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4.8.2.2 Figures for Results from Real Contaminated eyes open/close Data

No significant change in alpha power was detected in the contaminated signal, while the

OMP-based and OBS methods display the expected decreases from EC to EO conditions.

The left panel of the following figures depicts the reconstructed EEG spectrograms. The right

panel displays the Wilcoxon rank test results of alpha band power comparisons between the

EO and EC states; standard errors are indicated.
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Figure 4.14: Comparison of performance in differentiating the eyes open (EC) and eyes

closed (EO) states from Subject 1: (A) based directly on contaminated EEG recording, (B)

recovered EEG signals with the OBS method, and (C) the OMP with direct subtraction and

(D) the OMP with optimization-based method.

92



Figure 4.15: Comparison of performance in differentiating the eyes open and closed states

from Subject 2, a different subject than Supplementary Figure 4.14. (C) and (D) are results

from OMP with direct subtraction and optimization-based method, showing more statisti-

cally significant difference between the alpha power changes of EC and EO states than (A)

and (B) which are from the contaminated data and the reconstructed EEG data from the

OBS method.
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4.8.2.3 ERP results from two subjects

Figure 4.16: Comparison of performance in visual event-related potentials averaged from 150

epochs from Subject 1: Black lines represent reconstructed ERPs using the OMP inference

method with Direct Subtraction; Red lines represent ERPs when the OBS method is used.
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Figure 4.17: Comparison of performance in visual event-related potentials averaged from

150 epochs from Subject 2. Results from the OMP method with a direct subtraction (black

lines) appear to be less noisy than the ERP shapes from the OBS method (red lines)

4.8.2.4 Figures for Consistency Tests
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Figure 4.18: BCG estimation errors (ave nRMSE) in percentage (%) for models whose

subset of channels were learned from one training segment and applied to another testing

segment of the same subject when the corresponding inference matrix was updated from the

testing segment. Mean of each error matrix is shown in the bracket underneath.
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Figure 4.19: BCG estimation errors (ave nRMSE) in percentage (%) for models whose

subset of channels were learned from a training segment and applied to another testing

segment when the corresponding inference matrix was updated from the testing segment but

the training and testing segments are from three different subjects.
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Figure 4.20: BCG estimation errors (ave nRMSE) in percentage (%) for models whose

subset of channels were learned from one training segment and applied to another testing

segment of the same subject when inference matrix was also from the training segment.
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Figure 4.21: BCG estimation errors (ave nRMSE) in percentage (%) for models whose

subset of channels were learned from one training segment and applied to another testing

segment when inference matrix was also from the training segment but the training and

testing segments are from four different subjects.
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Figure 4.22: BCG estimation errors (ave nRMSE) in percentage (%) for models whose

subset of channels were learned from one training segment and applied to another testing

segment of the same subject when corresponding inference matrix was updated with our

inference matrix recalculation method.
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Figure 4.23: BCG estimation errors (ave nRMSE) in percentage (%) for models whose

subset of channels were learned from one training segment and applied to another testing

segment of the same subject when corresponding inference matrix was updated with our

inference matrix recalculation method and the training and testing segments are from four

different subjects.
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CHAPTER 5

Conclusions and Future Work

5.1 Conclusions

We have invented three algorithms to improve the quality of reconstructed EEG acquired in

simultaneous EEG-fMRI experiments. Firstly, We have developed a new Direct Recording

Prior Encoding (DRPE) method [XRC14b] to extract and separate the BCG and EEG from

contaminated signals, and have demonstrated its performance by comparing it quantitatively

to the popular Optimal Basis Set (OBS) method. Our modified recording configuration al-

lows us to obtain representative bases of the BCG- and EEG-only signals. We have developed

an optimization-based reconstruction approach to maximally incorporate prior knowledge of

the BCG/EEG subspaces, and of the signal characteristics within them. Both OBS and

DRPE methods have been tested with experimental data, and compared quantitatively us-

ing cross-validation. In the challenging continuous EEG studies, DRPE outperforms the

OBS method by nearly 7 fold in separating the continuous BCG and EEG signals. Sec-

ondly, without assuming orthogonality or independence of the BCG and EEG subspaces,

as in conventional methods, we propose a Direct Recording Joint Incoherent Basis (DRJIB)

[XRC13b] to learn the bases faithfully from BCG-only and EEG-only signals. Specifically, to

promote subspace separability, a paired set of low-dimensional and semi-orthogonal (BCG,

EEG) basis representations is obtained by minimizing a cost function consisting of group

sparsity penalties for automatic dimension selection and an energy term for encouraging

incoherence. Reconstruction is subsequently obtained by fitting the contaminated data to a

generative model using the learned bases subject to regularization. In the non-event-related

continuous EEG studies, our DRJIB method outperforms the OBS method by nearly 7.5
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fold in separating and preserving the continuous BCG and EEG signals. Finally, we propose

an integrated learning and inference approach, which takes advantage of currently available

high-density EEG cap, to estimate the BCG contribution in noisy recordings from inside

the MR scanner [XRC13a, XRC14a]. To reliably estimate the full-scalp BCG artifacts, a

near-optimal small subset (20 out of 256) of channels is first identified and a corresponding

weight is learned through our modified experimental setup. In subsequent recordings inside

the MR scanner, BCG-only signal from this subset of channels and the previously learned

weight are used to generate continuous estimate of the full-scalp BCG artifacts via inference,

from which the intended EEG signal is recovered. The reconstruction of the EEG is per-

formed with a direct subtraction and an optimization scheme. We evaluate the performance

on both synthetic, and real contaminated recordings, and compare it to the benchmark Op-

timal Basis Set (OBS) method. In the non-event-related EEG studies, our reconstruction

can yield more than fourteen-fold improvement in reducing the normalized RMS error of

EEG signals, compared to OBS.

5.2 Future Work and Applications

5.2.1 Extending BCG removal methods

Although the results presented in this thesis have demonstrated the effectiveness of the BCG

removal algorithms, there are a few practical issues to address for the clinical applications.

The computational demand is high compared to the OBS method and the optimization

procedure uses the alternating direction method of multipliers (ADMM) that usually takes

1-2 sec to evaluate each set of parameters. To be applicable to real-time EEG-fMRI studies,

the proposed methods need to be modified to allow on-line artifact removal. For practical

applications, we need to improve the workflow and reduce the complexity of the experimental

setup to minimize the impact of additional time needed to acquire clean EEG and selecting

subset of channels when high quality of reconstructed EEG is required and subject-specific

channels are more desired. In addition, we can incorporate the proposed methods with other

systems that provide BCG-reference signals, such as the KappaMetrics fEEGTM system and
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others [BPJ02, MAF07, CMG14], and providing guidance for placements of motion sensors,

wire loops and fewer number of channels for the reference layer. Moreover, we can apply the

proposed methods to different ERP studies and exploring the possibilities of different priors

for each type of ERP studies. Because our method in principle extends to ERP studies, the

artifact suppression effects may not significantly outperform the OBS method, due to the

fact that averaging around known triggering events will reduce BCG residual signals when

event timing is not correlated to the heartbeats.

5.2.2 Extending Simultaneous EEG-fMRI combining methods

Eventually, the artifact removal methods serve to better analyze the simultaneously acquired

EEG and fMRI signals. [BPM11] has presented a comprehensive review about the directions

and methods for combining EEG and fMRI. It is mentioned in [BPM11] that canonical

correlation analysis (CCA) and its variants optimize the mutual information between two

modalities with gaussian distribution and linearity assumptions. Although kernel tricks in

CCA is helpful to explain certain non-linearity, it is more appropriate to directly apply

manifold learning and nonlinear dimensionality reduction methods to explore the non-linear

dependencies between two aligned datasets. To extend Maximum Covariance Unfolding

(MCU) [MWP11] that computes a common low dimensional representations of two jointly

acquired signals, we suggest replacing the distance measurements for the EEG datasets by

a weighted temporal distance, adding a linear weighting function to incorporate temporal

history information. This revision should take into account noninstantaneous couplings of

two modalities, temporally compensating for modality specific differences and quantifying

the contributions of single features to the coupling between two modalities.
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