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CHAPTER 1

Introduction

This thesis investigates the long-time behavior of solutions to variable-coefficient semilinear

Schrödinger equations. A typical nonlinear Schrödinger equation (NLS) takes the form

i∂tu = −1

2
∆u+ V u+ µ|u|pu, u(0, x) = φ(x), (1.1)

where u : Rt×Rd
x → C is a complex scalar field on spacetime with prescribed initial data φ,

V (t, x) is a real-valued potential, and the nonlinear term µ|u|pu for fixed constants µ and p

describes a self-interaction. Such equations arise when modeling Bose-Einstein condensates,

water waves, and the propagation of light in fiber optics. One recovers the linear Schrödinger

equation from quantum mechanics by setting µ = 0.

To place our results in context, we first review the main features of the equation (1.1) in

the case V = 0, which was the first to be thoroughly analyzed.

1.1 Background

Most rigorous studies of NLS have considered equations of the form

i∂tu = −1

2
∆u+ µ|u|pu, u(0, ·) = φ ∈ Hs(Rd), (1.2)

where p > 0, µ = ±1, and Hs = (1 −∆)−s/2L2(Rd) is the L2 Sobolev space. The equation

is defocusing if µ = 1 and focusing if µ = −1. There are two known conserved quantities

M [u] =

∫
Rd

|u|2 dx (1.3)

E[u] =

∫
Rd

1

2
|∇u|2 +

2µ

p+ 2
|u|p+2 dx, (1.4)

1



called the mass and energy, respectively. Note, however, that these are only defined for

sufficiently regular initial data. For instance, functions merely in L2 do not have finite

energy.

A major advantage of considering the constant-coefficient equation (1.2) is that its lin-

ear part (that is, its linearization at 0) is diagonalized by the Fourier transform and may be

profitably analyzed with technology from harmonic analysis, such as stationary phase asymp-

totics, Littlewood-Paley decompositions, and Fourier restriction estimates. These tools yield

detailed insights into the concentration and decay of linear solutions, basic stepping stones

to the nonlinear analysis.

Equation (1.2) enjoys a large group of symmetries. It is clearly invariant under spacetime

translations ut0,x0 = u(t− t0, x−x0). Also, the scaling uλ = λ−2/pu(λ−2t, λ−1x) preserves the

class of solutions. For each p there is a corresponding scale-invariant homogeneous Sobolev

norm

‖u‖Ḣsc := ‖(−∆)
sc
2 u‖L2 ,

where sc = d
2
− 2

p
denotes the critical regularity; indeed, we have ‖uλ(0)‖Ḣs = λsc−s‖u(0)‖Ḣs

and

M [uλ] = λ2scM [u], E[uλ] = λ2(sc−1)E[u].

The problem is Hs-critical (resp. subcritical, supercritical) if u(0) ∈ Hs, s = sc (resp.

s > sc, s < sc).

sc is the minimum regularity for which wellposedness is expected. When s ≥ sc, the

equation (1.2) is locally wellposed; that is, for any initial data φ ∈ Hs, there is a unique

local-in-time solution which also depends continuously on φ. Very little is known about the

case s < sc, but heuristically one expects illposedness. We shall not discuss supercritical

problems in the sequel.

One crucial difference between the subcritical and critical problems is that the guaranteed

lifespan of local solutions depends merely on the norm of the initial data in the former but

2



also on the profile in the latter. This distinction has dramatic consequences for the long-

time analysis of solutions, particularly at conserved regularity. For example, for defocusing

H1-subcritical equations, mass and energy conservation imply a uniform bound in H1, which

when combined with the local theory immediately implies global existence and uniqueness of

solutions. For the H1-critical equation, however, the conservation laws provide no long-time

control as Ḣ1 norm is by definition insensitive to the scaling of the equation. Thus, solutions

could conceivably concentrate at a point and cease to exist after finite time while remaining

bounded in H1.

Thanks in part to sophisticated techniques and insights from harmonic analysis, the last

twenty years have witnessed substantial progress toward understanding the solutions to NLS

at critical regularity. The strongest conclusions have been obtained for the mass-critical and

energy-critical equations

i∂tu = −1

2
∆u+ µ|u|

4
du, u(0) ∈ L2(Rd) (1.5)

i∂tu = −1

2
∆u+ µ|u|

4
d−2u, u(0) ∈ Ḣ1(Rd), d ≥ 3, (1.6)

where the conservation laws control the critical Sobolev norm. Broadly speaking, all solutions

are known to not only exist globally but also scatter, at least when µ = 1. The case µ = −1,

where the solution carves out a potential well that exerts a self-focusing effect, is more subtle

due to the possibility of solitons or blowup. We will state these results more precisely in the

next chapter.

1.2 Variable-coefficient generalizations

In this thesis, we consider several variable-coefficient analogues of the mass-critical and

energy-critical NLS by introducing external potentials V 6= 0 or non-Euclidean geometries.

Such modifications are quite natural since most real-world systems are not spatially homo-

geneous. Our aim is to generalize results concerning global wellposedness and asymptotic

behavior for the constant coefficient equations to the variable-coefficient setting.

3



A key property of all the equations we shall study is that although they lack scaling sym-

metry, highly concentrated solutions evolve approximately according to the corresponding

scaling-invariant equation (that is, equations (1.6) or (1.5)). This claim is intuitively plau-

sible since the coefficients in the equation are nearly constant over very small length scales.

It can in fact be justified rigorously. As a consequence, the large-data theory for these equa-

tions faces the same difficulty as before in that the conservation laws by themselves provide

no control over the long-time behavior of solutions.

To study the long-time behavior of large-data solutions, we apply the Kenig-Merle concen-

tration compactness and rigidity strategy which will be described in some detail in Chapter 2.

While the general strategy has proved to be quite versatile, it is nontrivial to implement in

the absence of various symmetries. In particular, many existing arguments for both the

linear and nonlinear constant coefficient equations rely on the Fourier transform, which is

ill-adapted to nontranslation-invariant systems. To compensate for this and in particular to

prove the required profile decompositions, we need microlocal techniques.

Chapters 2 and 3 investigate global wellposedness for the energy-critical NLS in the

presence of external potentials. One can regard sufficiently small potentials as perturbations

to the constant-coefficient equation (1.6), which is by now understood. But the potentials

we shall mainly consider are much too large for naive perturbative arguments.

We begin by studying the energy-critical quantum harmonic oscillator

i∂tu =
(
−1

2
∆ +

1

2
|x|2
)
u+ µ|u|

4
d−2u, u(0) ∈ Σ(Rd),

where Σ is a weighted version of H1 adapted to the conserved energy

E(u) =

∫
1

2
|∇u|2 +

1

2
|x|2|u|2 +

(
1− 2

d

)
µ|u|

2d
d−2 dx.

As we shall see, highly concentrated solutions will evolve approximately according to equa-

tion(1.6), which is by now well understood. However, these are not the only kinds of solutions

one must account for when proving that arbitrary finite-energy initial data lead to globally

defined solutions. This chapter essentially follows the paper [Jao16].
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In Chapter 3, we generalize the results for the harmonic oscillator to a class of potentials

that obey similar estimates as the exact quadratic potential. Our main point is that the

results for the harmonic oscillator are in no way wedded to any algebraic miracles. Rather,

we ultimately exploit the fact that the bicharacteristics for the symbol

h(x, ξ) = 1
2
|ξ|2 + V (x)

are nearly straight lines in the relevant region of phase space.

In Chapter 4, we study the defocusing energy-critical NLS (1.6) in three spatial dimen-

sions with the Laplacian ∆ replaced by the Laplace-Beltrami operator ∆g for a Riemannian

metric g on R3. We show that if g is a sufficiently mild deformation of the Euclidean metric

(in a sense to be made precise later), then all finite-energy solutions not only exist globally

and also scatter to linear Euclidean solutions. This situation is considerably more delicate

compared to the case of an external potential because the equation is perturbed in the highest

order terms. Indeed, even small perturbations of the metric may cause the bicharacteristics

of the principal symbol h(x, ξ) = gjk(x)ξjξk to converge at multiple points. At the level of

the Schrödinger equation, this refocusing manifests in the failure of a fundamental linear

decay estimate, and an important part of our analysis will be to prove a weakened form that

still suffices for our purposes.

The final part of the thesis investigates reverse Strichartz theorems in connection with

mass-critical NLS. Such inverse theorems are essential for studying how solutions concentrate

in the long-time large-data theory. In the Euclidean setting, these have been obtained with

the aid of Fourier restriction estimates which are very much tied to spacetime translation-

invariance. In Chapter 5, we discuss an alternate approach to these inverse theorems in

one space dimension which generalizes to a class of Schrödinger operators that includes the

harmonic oscillator.
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CHAPTER 2

The energy-critical quantum harmonic oscillator

2.1 Introduction

We study the initial value problem for the energy-critical nonlinear Schrödinger equation on

Rd, d ≥ 3, with a harmonic oscillator potential:
i∂tu = (−1

2
∆ + 1

2
|x|2)u+ µ|u|

4
d−2u, µ = ±1,

u(0) = u0 ∈ Σ(Rd).

(2.1)

The equation is defocusing if µ = 1 and focusing if µ = −1. Solutions to this PDE conserve

energy, defined as

E(u(t)) =

∫
Rd

[
1
2
|∇u(t)|2 + 1

2
|x|2|u(t)|2 + d−2

d
µ|u(t)|

2d
d−2

]
dx = E(u(0)). (2.2)

The term “energy-critical” refers to the fact that if we ignore the |x|2 term in the equation

and the energy, the scaling

u(t, x) 7→ uλ(t, x) := λ−
2
d−2u(λ−2t, λ−1x) (2.3)

preserves both the equation and the energy. We take initial data in the weighted Sobolev

space Σ, which is the natural space of functions associated with the energy functional. This

space is equipped with the norm

‖f‖2
Σ = ‖∇f‖2

L2 + ‖xf‖2
L2 = ‖f‖2

Ḣ1 + ‖f‖2
L2(|x|2 dx) (2.4)

We will frequently employ the notation

H = −1
2
∆ + 1

2
|x|2, F (z) = µ|z|

4
d−2 z.

6



Definition. A (strong) solution to (2.1) is a function u : I × Rd → C that belongs to

C0
t (K; Σ) for every compact interval K ⊂ I, and that satisfies the Duhamel formula

u(t) = e−itHu(0)− i
∫ t

0

e−i(t−s)HF (u(s)) ds for all t ∈ I. (2.5)

The hypothesis on u implies that F (u) ∈ C0
t,locL

2d
d+2
x (I × Rd). Consequently, the right side

above is well-defined, at least as a weak integral of tempered distributions.

Equation (2.1) and its variants

i∂tu = (−1
2
∆ + V )u+ F (u), V = ±1

2
|x|2, F (u) = ±|u|pu, p > 0

have received considerable attention, especially in the energy-subcritical regime p < 4/(d−2).

The equation with a confining potential V = |x|2/2 has been used to model Bose-Einstein

condensates in a trap (see [Zha00], for example). Let us briefly review the mathematical

literature.

Carles [Car02], [Car03] proved global wellposedness for a defocusing nonlinearity F (u) =

|u|pu, p < 4/(d − 2) when the potential V (x) = |x|2/2 is either confining or repulsive,

and obtained various wellposedness and blowup results for a focusing nonlinearity F (u) =

−|u|pu. In [Car05], he also studied the case of an anisotropic harmonic oscillator with

V (x) =
∑

j δjx
2
j/2, δj ∈ {1, 0,−1}.

There has also been interest in more general potentials. The paper [Oh89] proves

long-time existence in the presence of a focusing, mass-subcritical nonlinearity F (u) =

−|u|pu, p < 4/d when V (x) is merely assumed to grow subquadratically (by which we

mean ∂αV ∈ L∞ for all |α| ≥ 2). More recently, Carles [Car11] considered time-dependent

subquadratic potentials V (t, x). Taking initial data in Σ, he established global existence and

uniqueness when 4/d ≤ p < 4/(d − 2) for the defocusing nonlinearity and 0 < p < 4/d in

the focusing case.

We are concerned with the energy-critical problem p = 4/(d − 2). While the critical

equation still admits a local theory, the duration of local existence obtained by the usual

7



fixed-point argument depends on the profile and not merely on the norm of the initial data u0.

Therefore, one cannot pass directly from local wellposedness to global wellposedness using

conservation laws as in the subcritical case. This issue is most evident if we temporarily

discard the potential and consider the equation

i∂tu = −1
2
∆u+ µ|u|

4
d−2u, u(0) = u0 ∈ Ḣ1(Rd), d ≥ 3, (2.6)

which has the Hamiltonian

E∆(u) =

∫
1
2
|∇u|2 + µd−2

d
|u|

2d
d−2 dx.

We shall refer to this equation in the sequel as the “potential-free”, “translation-invariant”,

or “scale-invariant” problem. Since the spacetime scaling (2.3) preserves both the equation

and the Ḣ1 norm of the initial data, the lifespan guaranteed by the local wellposedness the-

ory cannot depend merely on ‖u0‖Ḣ1 . One cannot iterate the local existence argument to

obtain global existence because with each iteration the solution could conceivably become

more concentrated in space while remaining bounded in Ḣ1; the lifespans might therefore

shrink to zero too quickly to cover all of R. The scale invariance makes the analysis of (2.6)

highly nontrivial.

We mention equation (2.6) because the original equation increasingly resembles (2.6) as

the initial data concentrates at a point; see sections 2.4.2 and 2.5 for more precise statements

concerning this limit. Hence, one would expect the essential difficulties in the energy-critical

NLS to also manifest themselves in the energy-critical harmonic oscillator. Understanding

the scale-invariant problem is therefore an important step toward understanding the har-

monic oscillator. The last fifteen years have witnessed intensive study of the former, and the

following conjecture has been verified in all but a few cases:

Conjecture 2.1.1. When µ = 1, solutions to (2.6) exist globally and scatter. That is, for

any u0 ∈ Ḣ1(Rd), there exists a unique global solution u : R × Rd → C to (2.6) with

u(0) = u0, and this solution satisfies a spacetime bound

SR(u) :=

∫
R

∫
Rd

|u(t, x)|
2(d+2)
d−2 dx dt ≤ C(E∆(u0)) <∞. (2.7)

8



Moreover, there exist functions u± ∈ Ḣ1(Rd) such that

lim
t→±∞

‖u(t)− e±
it∆
2 u±‖Ḣ1 = 0,

and the correspondences u0 7→ u±(u0) are homeomorphisms of Ḣ1.

When µ = −1, one also has global wellposedness and scattering provided that

E∆(u0) < E∆(W ), ‖∇u0‖L2 < ‖∇W‖L2 ,

where the ground state

W (x) =
(
1 +

2|x|2

d(d− 2)

)− d−2
2 ∈ Ḣ1(Rd)

solves the elliptic equation 1
2
∆ + |W |

4
d−2W = 0.

Theorem 2.1.1. Conjecture 2.1.1 holds for the defocusing equation. For the focusing equa-

tion, the conjecture holds for radial initial data when d ≥ 3, and for all initial data when

d ≥ 5.

Proof. See [Bou99, CKS08, RV07, Vis07] for the defocusing case and [KM06, KV10] for the

focusing case.

One can formulate a similar conjecture for (2.1); however, as the linear propagator is

periodic in time, one only expects uniform local-in-time spacetime bounds.

Conjecture 2.1.2. When µ = 1, equation (2.1) is globally wellposed. That is, for each

u0 ∈ Σ there is a unique global solution u : R×Rd → C with u(0) = u0. This solution obeys

the spacetime bound

SI(u) :=

∫
I

∫
Rd

|u(t, x)|
2(d+2)
d−2 dx dt ≤ C(|I|, ‖u0‖Σ) (2.8)

for any compact interval I ⊂ R.

If µ = −1, then the same is true provided also that

E(u0) < E∆(W ) and ‖∇u0‖L2 < ‖∇W‖L2 .
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In [KVZ09], Killip-Visan-Zhang verified this conjecture for µ = 1 and spherically sym-

metric initial data. By adapting an argument of Bourgain-Tao for the equation without

potential (2.6), they proved that the defocusing problem (2.1) is globally wellposed, and also

obtained scattering for the repulsive potential. We consider only the confining potential. In

this chapter, we remove the assumption of spherical symmetry for the defocusing harmonic

oscillator. In addition, we establish global wellposedness for the focusing problem under the

assumption that Conjecture 2.1.1 holds for all dimensions.

Theorem 2.1.2. Assume that Conjecture 2.1.1 holds. Then Conjecture 2.1.2 holds.

By Theorem 2.1.1, this result is conditional only in the focusing situation for nonradial

data in dimensions 3 and 4. Moreover, in the focusing case we have essentially the same

blowup result as for the potential-free NLS with the same proof as in that case; see [KV10].

We recall the argument in Section 2.7.

Theorem 2.1.3 (Blowup). Suppose µ = −1 and d ≥ 3. If u0 ∈ Σ satisfies E(u0) < E∆(W )

and ‖∇u0‖2 > ‖∇W‖2, then the solution to (2.1) blows up in finite time.

Remark. By Lemma 2.7.1, E(u0) < E∆(W ) implies that either ‖∇u0‖L2 < ‖∇W‖L2 or

‖∇u‖L2 > ‖∇W‖L2 .

Mathematically, the energy-critical NLS with quadratic potential has several interesting

properties. On one hand, it is a nontrivial variant of the potential-free equation. If the

quadratic potential is replaced by a weaker potential, the proof of global wellposedness can

sometimes ride on the coat tails of Theorem 2.1.1. For example, we show in Section 2.8 that

for smooth, bounded potentials with bounded derivative, one obtains global wellposedness

by treating the potential as a perturbation to (2.6). Further, the Avron-Herbst formula given

in [Car11] reduces the problem with a linear potential V (x) = Ex to (2.6). On the other

hand, the linear propagator e−itH for the harmonic oscillator does admit an explicit formula.

In view of the preceding remarks, we believe that (2.1) is the most accessible generalization

of (2.6) which does not come for free.
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Proof outline. The local theory for (2.1) shows that global existence is equivalent to

the uniform a priori spacetime bound (2.8). To prove this bound for all solutions, we apply

the general strategy of induction on energy pioneered by Bourgain [Bou99] and refined over

the years by Colliander-Keel-Staffilani-Takaoka-Tao [CKS08], Keraani [Ker06], Kenig-Merle

[KM06], and others. These arguments proceed roughly as follows.

(1) Show that the failure of Theorem 2.1.2 would imply the existence of a minimal-energy

counterexample.

(2) Show that the counterexample cannot actually exist.

By the local theory, uniform spacetime bounds hold for all solutions with sufficiently small

energy E(u). Assuming that Theorem 2.1.2 fails, we obtain a positive threshold 0 < Ec <∞

such that (2.8) holds whenever E(u) < Ec and fails when E(u) > Ec.

As the spacetime estimates of interest are local-in-time, it suffices to prevent the blowup of

spacetime norm on unit-length time intervals. This will be achieved by a Palais-Smale com-

pactness theorem (Proposition 2.6.1), from which one deduces that failure of Theorem 2.1.2

would imply the existence of a solution uc with E(uc) = Ec, which blows up on a unit time

interval, and which also has an impossibly strong compactness property (namely, its orbit

{uc(t)} must be precompact in Σ). Put differently, we shall discover that the only scenario

where blowup could possibly occur is when the solution is highly concentrated at a point

and behaves like a solution to the potential-free equation (2.6); but that equation is already

known to be wellposed.

This paradigm of recovering the potential-free NLS in certain limiting regimes has been

applied to various other equations. See [KKS12, KSV12, IPS12, IP12, KVZb] for adaptations

to gKdV, Klein-Gordon, and NLS in various domains and manifolds. While the particulars

are unique to each case, a common key step is to prove an appropriate compactness theorem

in the style of Proposition 2.6.1. As in the previous work, our proof of that proposition uses

three main ingredients.
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The first prerequisite is a local wellposedness theory that gives local existence and unique-

ness as well as stability of solutions with respect to perturbations of the initial data or the

equation itself. In our case, local wellposedness will follow from familiar arguments employ-

ing the dispersive estimate satisfied by the linear propagator e−itH , as well the fractional

product and chain rules for the operators Hγ, γ ≥ 0. We review the relevant results in

Section 2.3.

We also need a linear profile decomposition for the Strichartz inequality

‖e−itHf‖
L

2(d+2)
d−2

t,x

. ‖H
1
2f‖L2

x
. (2.9)

Such a decomposition in the context of energy-critical Schrödinger equations was first proved

by Keraani [Ker01] in the translation-invariant setting for the free particle Hamiltonian

H = −∆, and quantifies the manner in which a sequence of functions fn with ‖H1/2fn‖L2

bounded may fail to produce a subsequence of e−itHfn converging in the spacetime norm.

The defect of compactness arises in Keraani’s case from a noncompact group of symmetries

of the inequality (2.9), which includes spatial translations and scaling. In our setting, there

are no obvious symmetries of (2.9); nonetheless, compactness can fail and in Section 2.4

we formulate a profile decomposition for (2.9) when H is the Hamiltonian of the harmonic

oscillator.

Finally, we need to study (2.1) when the initial data is highly concentrated in space,

corresponding to a single profile in the linear profile decomposition just discussed. In Section

2.5, we show that blowup cannot occur in this regime. The basic idea is that while the

solution to (2.1) remains highly localized in space, it can be well-approximated up to a

phase factor by the corresponding solution to the scale-invariant energy-critical NLS

(i∂t + 1
2
∆)u = ±|u|

4
d−2u. (2.10)

By the time this approximation breaks down, the solution to the original equation will

have dispersed and can instead be approximated by a solution to the linear equation (i∂t −

H)u = 0. We use as a black box the nontrivial fact (which is still a conjecture in a few cases)
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that solutions to (2.6) obey global spacetime bounds. By stability theory, the spacetime

bounds for the approximations will be transferred to the solution for the original equation

and will therefore preclude blowup.

While this discussion considers the potential V (x) = 1
2
|x|2, the argument can be adapted

to a wider class of subquadratic potentials defined by the following hypotheses:

• ∂kV ∈ L∞ for all k ≥ 2.

• V (x) ≥ δ|x|2 for some δ > 0.

Under these assumptions, Fujiwara [Fuj80] constructed a Fourier integral operator represen-

tation for the propagator, which can be used as a substitute for the Mehler formula (2.12).

We focus on the harmonic oscillator because this concrete case already contains the main

ideas. In the second part of this chapter we describe the modifications required to treat the

more general case.
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2.2 Preliminaries

2.2.1 Notation and basic estimates

We write X . Y to mean X ≤ CY for some constant C, and X ∼ Y if both X . Y and

Y . X. If I ⊂ R is an interval, the mixed Lebesgue norms on I ×Rd are defined by

‖f‖LqtLrx(I×Rd) =

(∫
I

(∫
Rd

|f(t, x)|r dx
) q

r

dt

) 1
q

= ‖f(t)‖Lqt (I;Lrx(Rd)),

The operator H = −1
2
∆ + 1

2
|x|2 is positive on L2(Rd). Its associated heat kernel is given

by Mehler’s formula

e−tH(x, y) = eγ̃(t)(x2+y2)e
sinh(t)∆

2 (x, y), (2.11)

where

γ̃(t) =
1− cosh t

2 sinh t
= − t

4
+O(t3) as t→ 0.

By analytic continuation, the associated one-parameter unitary group has the integral kernel

e−itHf(x) =
1

(2πi sin t)
d
2

∫
e

i
sin t

(
x2+y2

2
cos t−xy

)
f(y) dy. (2.12)

Comparing this to the well-known free propagator

e
it∆
2 f(x) =

1

(2πit)
d
2

∫
e
i|x−y|2

2t f(y) dy, (2.13)

we obtain the relation

e−itHf = eiγ(t)|x|2e
i sin(t)∆

2 (eiγ(t)|x|2f), (2.14)

where

γ(t) =
cos t− 1

2 sin t
= − t

4
+O(t3) as t→ 0.

Mehler’s formula immediately implies the local-in-time dispersive estimate

‖e−itHf‖L∞x . | sin t|−
d
2‖f‖L1 . (2.15)

For d ≥ 3, call a pair of exponents (q, r) admissible if q ≥ 2 and 2
q

+ d
r

= d
2
. Write

‖f‖S(I) = ‖f‖L∞t L2
x

+ ‖f‖
L2
tL

2d
d−2
x

14



with all norms taken over the spacetime slab I ×Rd. By interpolation, this norm controls

the LqtL
r
x norm for all other admissible pairs. Let

‖F‖N(I) = inf{‖F1‖
L
q′1
t L

r′1
x

+ ‖F2‖
L
q′2
t L

r′2
x

: (qk, rk) admissible, F = F1 + F2},

where (q′k, r
′
k) is the Hölder dual to (qk, rk).

Lemma 2.2.1 (Strichartz estimates). Let I be a compact time interval containing t0, and

let u : I ×Rd → C be a solution to the inhomogeneous Schrödinger equation

(i∂t −H)u = F.

Then there is a constant C = C(|I|), depending only on the length of the interval, such that

‖u‖S(I) ≤ C(‖u(t0)‖L2 + ‖F‖N(I)).

Proof. This follows from the dispersive estimate (2.15), the unitarity of e−itH on L2, and

general considerations; see [KT98]. By partitioning time into unit intervals, we see that the

constant C grows at worst like |I| 12 (which corresponds to the time exponent q = 2).

We use the fractional powers Hγ of the operator H, defined via the Borel functional

calculus, as a substitute for the usual derivative (−∆)γ. The former has the advantage of

commuting with the linear propagator e−itH . Trivially

‖H
1
2f‖L2 ∼ ‖(−∆)

1
2f‖L2 + ‖|x|f‖L2 ∼ ‖f‖Σ.

Using complex interpolation, Killip, Visan, and Zhang extended this equivalence to other Lp

norms and other powers of H.

Lemma 2.2.2 ([KVZ09, Lemma 2.7]). For 0 ≤ γ ≤ 1 and 1 < p <∞, one has

‖Hγf‖Lp(Rd) ∼ ‖(−∆)γf‖Lp(Rd) + ‖|x|2γf‖Lp(Rd).

As a consequence, Hγ inherits many properties of (−∆)γ, including Sobolev embedding:

15



Lemma 2.2.3 ([KVZ09, Lemma 2.8]). Suppose γ ∈ [0, 1] and 1 < p < d
2γ

, and define p∗ by

1
p∗

= 1
p
− 2γ

d
. Then

‖f‖Lp∗ (Rd) . ‖Hγf‖Lp(Rd).

Similarly, the fractional chain and product rules carry over to the current setting:

Corollary 2.2.4 ([KVZ09, Proposition 2.10]). Let F (z) = |z|
4
d−2 z. For any 0 ≤ γ ≤ 1

2
and

1 < p <∞,

‖HγF (u)‖Lp(Rd) . ‖F ′(u)‖Lp0 (Rd)‖Hγf‖Lp1 (Rd)

for all p0, p1 ∈ (1,∞) with p−1 = p−1
0 + p−1

1 .

Using Lemma 2.2.2 and the Christ-Weinstein fractional product rule for (−∆)γ (e.g.

[Tay00]), we obtain

Corollary 2.2.5. For γ ∈ (0, 1], r, pi, qi ∈ (1,∞) with r−1 = p−1
i + q−1

i , i = 1, 2, we have

‖Hγ(fg)‖r . ‖Hγf‖p1‖g‖q1 + ‖f‖p2‖Hγg‖q2 .

The exponent γ = 1
2

is particularly relevant to us, and it will be convenient to use the

notation

‖f‖LqtΣrx(I×Rd) = ‖H
1
2f‖LqtLrx(I×Rd).

The superscript of Σ is assumed to be 2 if omitted. We shall need the following refinement

of Fatou’s Lemma due to Brézis and Lieb:

Lemma 2.2.6 (Refined Fatou [BL83]). Fix 1 ≤ p < ∞, and suppose fn is a sequence of

functions in Lp(Rd) such that supn ‖fn‖p <∞ and fn → f pointwise. Then

lim
n→∞

∫
Rd

||fn|p − |fn − f |p − |f |p| dx = 0.

Finally, we record a Mikhlin-type spectral multiplier theorem.

Theorem 2.2.7 (Hebisch [Heb90]). If F : R → C is a bounded function which obeys the

derivative estimates

|∂kF (λ)| .k |λ|−k for all 0 ≤ k ≤ d
2

+ 1,
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then the operator F (H), defined initially on L2 via the Borel functional calculus, is bounded

on Lp for all 1 < p <∞.

2.2.2 Littlewood-Paley theory

Using Theorem 2.2.7 as a substitute for the Mikhlin multiplier theorem, we obtain a Littlewood-

Paley theory adapted to H by mimicking the classical development for Fourier multipliers.

We define Littlewood-Paley projections using both compactly supported bump functions and

also the heat kernel of H. The parabolic maximum principle implies that

0 ≤ e−tH(x, y) ≤ e
t∆
2 (x, y) = 1

(2πt)d/2
e−
|x−y|2

2t . (2.16)

Fix a smooth function ϕ supported in |λ| ≤ 2 with ϕ(λ) = 1 for |λ| ≤ 1, and let

ψ(λ) = ϕ(λ) − ϕ(2λ). For each dyadic number N ∈ 2Z, which we will often refer to as

“frequency,” define

PH
≤N = ϕ(

√
H/N2), PH

N = ψ(
√
H/N2),

P̃H
≤N = e−H/N

2

, P̃H
N = e−H/N

2 − e−4H/N2

.

The associated operators PH
<N , P

H
>N , etc. are defined in the usual manner.

Remark. As the spectrum of H is bounded away from 0, by choosing ϕ appropriately we

can arrange for P<1 = 0; thus we will only consider frequencies N ≥ 1.

Later on we shall need the classical Littlewood-Paley projectors

P∆
≤N = ϕ(

√
−∆/N2) P∆

N = ψ(
√
−∆/N2), (2.17)

P̃∆
≤N = e∆/2N2

P̃∆
N = e∆/2N2 − e2∆/N2

. (2.18)

The maximum principle implies the pointwise bound

|P̃H
N f(x)|+ |P̃H

≤Nf(x)| . P̃∆
≤N |f |(x) + P̃∆

≤N/2|f |(x). (2.19)

To reduce clutter we usually suppress the superscripts H and ∆ unless both types of

projectors arise in the same context. For the rest of this section, P≤N and PN denote PH
≤N

and PH
N , respectively.
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Lemma 2.2.8 (Bernstein estimates). For f ∈ C∞c (Rd), 1 < p ≤ q < ∞, s ≥ 0, one has

the Bernstein inequalities

‖P≤Nf‖p . ‖P̃≤Nf‖p, ‖PNf‖p . ‖P̃Nf‖p (2.20)

‖P≤Nf‖p + ‖PNf‖p + ‖P̃≤Nf‖p + ‖P̃Nf‖p . ‖f‖p (2.21)

‖P≤Nf‖q + ‖PNf‖q + ‖P̃≤Nf‖q + ‖P̃Nf‖q . N
d
p
− d
q ‖f‖p (2.22)

N2s‖PNf‖p ∼ ‖HsPNf‖p (2.23)

‖P>Nf‖p . N−2s‖HsP>Nf‖p. (2.24)

In (2.22), the estimates for P̃≤Nf and P̃Nf also hold when p = 1, q =∞. Further,

f =
∑
N

PNf =
∑
N

P̃Nf (2.25)

where the series converge in Lp, 1 < p <∞. Finally, we have the square function estimate

‖f‖p ∼ ‖(
∑
N

|PNf |2)1/2‖p. (2.26)

Proof. The estimates (2.20) follow immediately from Theorem 2.2.7. To see (2.21), observe

that the functions ϕ(
√
·/N2), e−·/N

2
satisfy the hypotheses of Theorem 2.2.7 uniformly in

N . Next use (2.16) together with Young’s convolution inequality to get

‖P̃≤Nf‖q + ‖P̃Nf‖q . N
d
q
− d
p‖f‖p for 1 ≤ p ≤ q ≤ ∞. (2.27)

From (2.20) we obtain the rest of (2.22). Now consider (2.23). Let ψ̃ be a fattened version of

ψ so that ψ̃ = 1 on the support of ψ. Put F (λ) = λsψ̃(
√
λ). By Theorem 2.2.7, the relation

ψ = ψ̃ψ, and the functional calculus,

‖N−2sHsPNf‖p = ‖F (H/N2)PNf‖p . ‖PNf‖p.

The reverse inequality follows by considering F (x) = λ−sψ̃(λ).

We turn to (2.25). The equality holds in L2 by the functional calculus and the fact that

the spectrum of H is bounded away from 0. For p 6= 2, choose q and 0 < θ < 1 so that
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p−1 = 2−1(1− θ) + q−1θ. By (2.21), the partial sum operators

SN0,N1 =
∑

N0<N≤N1

PN , S̃N0,N1 =
∑

N0<N≤N1

P̃N

are bounded on every Lp, 1 < p <∞, uniformly in N0, N1. Thus by Hölder’s inequality,

‖f − SN0,N1f‖p ≤ ‖f − SN0,N1f‖1−θ
2 ‖f − SN0,N1f‖θq → 0 as N0 → 0, N1 →∞,

and similarly for the partial sums S̃N0,N1f . The estimate (2.24) follows from (2.21), (2.23),

and the decomposition P>Nf =
∑

M>N PMf .

To prove the square function estimate, run the usual Khintchine’s inequality argument

using Theorem 2.2.7 in place of the Mikhlin multiplier theorem.

2.2.3 Local smoothing

The following local smoothing lemma and its corollary will be needed when proving properties

of the nonlinear profile decomposition in Section 2.6.

Lemma 2.2.9. If u = e−itHφ, φ ∈ Σ(Rd), then∫
I

∫
Rd

|∇u(x)|2〈R−1(x− z)〉−3 dx dt . R(1 + |I|)‖u‖L∞t L2
x
‖H1/2u‖L∞t L2

x
.

with the constant independent of z ∈ Rd and R > 0.

Proof. We recall the Morawetz identity. Let a be a sufficiently smooth function of x; then

for any u satisfying the linear equation i∂tu = (−1
2
∆ + V )u, one has

∂t

∫
∇a · Im(u∇u) dx =

∫
ajk Re(ujuk) dx− 1

4

∫
|u|2ajjkk dx

− 1
2

∫
|u|2∇a · ∇V dx

(2.28)

We use this identity with a(x) = 〈R−1(x− z)〉 and V = 1
2
|x|2, and compute

aj(x) =
R−2(xj − zj)
〈R−1(x− z)〉

, ajk(x) = R−2

[
δjk

〈R−1(x− z)〉
− R−2(xj − zj)(xk − zk)

〈R−1(x− z)〉3

]
∆2a(x) ≤ − 15R−4

〈R−1(x− z)〉7
.
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As ∆2a ≤ 0, the right side of (2.28) is bounded below by

R−2

∫
〈R−1(x− z)〉−1

[
|∇u|2 − | R

−1(x−z)
〈R−1(x−z)〉 · ∇u|

2
]
dx− 1

2R

∫
|u|2 R−1(x−z)

〈R−1(x−z)〉 · x dx

≥ R−2

∫
|∇u(x)|2〈R−1(x− z)〉−3 dx− R−1

2

∫
|u|2|x| dx.

Integrating in time and applying Cauchy-Schwarz, we get

R−2

∫
I

∫
Rd

〈R−1(x− z)〉−3|∇u(t, x)|2 dxdt

. sup
t∈I

R−1

∫
R−1(x−z)
〈R−1(x−z)〉 |u(t, x)||∇u(t, x)| dx+ 1

2R

∫
I

∫
Rd

|x||u|2 dxdt

. R−1(1 + |I|)‖u‖L∞t L2
x
‖H1/2u‖L∞t L2

x
.

This completes the proof of the lemma.

Corollary 2.2.10. Fix φ ∈ Σ(Rd). Then for all T,R ≤ 1, we have

‖∇e−itHφ‖L2
t,x(|t−t0|≤T, |x−x0|≤R) . T

2
3(d+2)R

3d+2
3(d+2)‖φ‖

2
3
Σ‖e

−itHφ‖
1
3

L

2(d+2)
d−2

t,x

.

When d = 3, we also have

‖∇e−itHφ‖
L

10
3
t L

15
7
x (|t−t0|≤T, |x−x0|≤R)

. T
23
180R

11
45‖e−itHφ‖

5
48

L10
t,x
‖φ‖

43
48
Σ

Proof. The proofs are fairly standard (see [Vis14] or [KVZb]); we present the details for the

second claim, which is slightly more involved. Let E the region {|t− t0| ≤ T, |x−x0| ≤ R}.

Norms which do not specify the region of integration are taken over the spacetime slab

{|t− t0| ≤ T} ×R3. By Hölder,

‖∇e−itHφ‖
L

10
3
t L

15
7
x (E)

≤ ‖∇e−itHφ‖
1
3

L2
t,x(E)
‖∇e−itHφ‖

2
3

L5
tL

20
9
x (E)

.

By Hölder and Strichartz,

‖∇e−itHφ‖
L5
tL

20
9
x (E)

. T
1
8‖∇e−itHφ‖

L
40
3
t L

20
9
x

. T
1
8‖φ‖Σ. (2.29)

We now estimate ‖∇e−itHφ‖L2
t,x

. Let N ∈ 2N be a dyadic number to be chosen later, and

decompose

‖∇e−itHφ‖L2
t,x(E) ≤ ‖∇e−itHPH

≤Nφ‖L2
t,x(E) + ‖∇e−itHPH

>Nφ‖L2
t,x(E).
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For the low frequency piece, apply Hölder and the Bernstein inequalities to obtain

‖∇e−itHPH
≤Nφ‖L2

t,x
. T

2
5R

6
5‖∇e−itHPH

≤Nφ‖L10
t,x

. T
2
5R

6
5N‖e−itHφ‖L10

t,x
.

For the high-frequency piece, apply local smoothing and Bernstein:

‖∇e−itHPH
>Nφ‖L2

t,x
. R

1
2‖PH

>Nφ‖
1
2

L2‖H
1
2φ‖

1
2
Σ . R

1
2N−

1
2‖φ‖Σ.

Optimizing in N , we obtain

‖∇e−itHφ‖L2
t,x

. T
2
15R

11
15‖e−itHφ‖

1
3

L10
t,x
‖φ‖

2
3
Σ.

Combining this estimate with (2.29) yields the conclusion of the corollary.

2.3 Local theory

We record some standard results concerning local-wellposedness for (2.1). These are direct

analogues of the theory for the scale-invariant equation. By Lemma 2.2.3 and Corollaries

2.2.4 and 2.2.5, we can use essentially the same proofs as in that case. The reader should

consult [KV13] for those proofs.

Proposition 2.3.1 (Local wellposedness). Let u0 ∈ Σ(Rd) and fix a compact time interval

0 ∈ I ⊂ R. Then there exists a constant η0 = η0(d, |I|) such that whenever η < η0 and

‖H
1
2 e−itHu0‖

L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

≤ η,

there exists a unique solution u : I ×Rd → C to (2.1) which satisfies the bounds

‖H
1
2u‖

L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

≤ 2η and ‖H
1
2u‖S(I) . ‖u0‖Σ + η

d+2
d−2 .

Corollary 2.3.2 (Blowup criterion). Suppose u : (Tmin, Tmax) × Rd → C is a maximal

lifespan solution to (2.1), and fix Tmin < t0 < Tmax. If Tmax <∞, then

‖u‖
L

2(d+2)
d−2

t,x ([t0,Tmax))

=∞.

If Tmin > −∞, then

‖u‖
L

2(d+2)
d−2

t,x ((Tmin,t0])

=∞.
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Proposition 2.3.3 (Stability). Fix t0 ∈ I ⊂ R an interval of unit length and let ũ : I×Rd →

C be an approximate solution to (2.1) in the sense that

i∂tũ = Hũ± |ũ|
4
d−2 ũ+ e

for some function e. Assume that

‖ũ‖
L

2(d+2)
d−2

t,x

≤ L, ‖H
1
2 ũ‖L∞t L2

x
≤ E, (2.30)

and that for some 0 < ε < ε0(E,L) one has

‖ũ(t0)− u0‖Σ + ‖H
1
2 e‖N(I) ≤ ε, (2.31)

Then there exists a unique solution u : I × Rd → C to (2.1) with u(t0) = u0 and which

further satisfies the estimates

‖ũ− u‖
L

2(d+2)
d−2

t,x

+ ‖H
1
2 (ũ− u)‖S(I) ≤ C(E,L)εc (2.32)

where 0 < c = c(d) < 1 and C(E,L) is a function which is nondecreasing in each variable.

2.4 Concentration compactness

The purpose of this section is to prove a linear profile decomposition for the Strichartz

inequality

‖e−itHf‖
L

2(d+2)
d−2

t,x (I×Rd)

≤ C(|I|, d)‖f‖Σ.

Our decomposition resembles that of Keraani [Ker01] in the sense that each profile has

a characteristic length scale and location in spacetime. But since the space Σ lacks both

translation and scaling symmetry, the precise definitions of our profiles are more complicated.

Keraani considered the analogous Strichartz estimate

‖eit∆f‖
L

2(d+2)
d−2

t,x (R×Rd)

. ‖f‖Ḣ1(Rd).

Recall that in that situation, if fn is a bounded sequence in Ḣ1 with nontrivial linear evo-

lution, then one has a decomposition fn = φn + rn where φn = eitn∆Gnφ, Gn are certain
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unitary scaling and translation operators on Ḣ1 (defined as in (2.33)), and φ is a weak limit

of G−1
n e−itn∆fn in Ḣ1. The “bubble” φn is nontrivial and decouples from the remainder rn in

various norms. By applying this decomposition inductively to the remainder rn, one obtains

the full collection of profiles constituting fn.

We follow the general presentation in [KV13, Vis14]. Let fn ∈ Σ be a bounded sequence.

Using a variant of Keraani’s argument, we seek an Ḣ1-weak limit φ in terms of fn and write

fn = φn + rn where φn is defined analogously as before by “moving the operators onto fn.”

However, two main issues arise.

The first is that while fn belong to Σ, an Ḣ1 weak limit of a sequence like G−1
n eitnHfn

need only belong to Ḣ1. Indeed, the Ḣ1 isometries G−1
n will in general have unbounded norm

as operators on Σ because of the |x|2 weight. To define φn, we need to introduce spatial

cutoffs to obtain functions in Σ.

Secondly, to establish the various orthogonality assertions one must understand how the

linear propagator e−itH interacts with the Ḣ1 symmetries of translation and scaling in certain

limits. This interaction is studied in Section 2.4.2. In particular, the convergence results

obtained there serve as a substitute for the scaling relation

eit∆Gn = Gne
iN2
nt∆ where Gnφ = N

d−2
2

n φ(Nn(· − xn)).

They can also be regarded as a precise form of the heuristic that as the initial data concen-

trates at a point x0, the potential V (x) = |x|2/2 can be regarded over short time intervals as

essentially equal to the constant potential V (x0); hence for short times the linear propagator

e−itH can be approximated up to a phase factor by the free particle propagator. Section 2.5

addresses a nonlinear version of this statement.

2.4.1 An inverse Strichartz inequality

Unless indicated otherwise, 0 ∈ I in this section will denote a fixed interval of length at most

1, and all spacetime norms will be taken over I ×Rd.

Suppose fn is a sequence of functions in Σ with nontrivial linear evolution e−itHfn. The

23



following refined Strichartz estimate shows that there must be a “frequency” Nn which makes

a nontrivial contribution to the evolution.

Proposition 2.4.1 (Refined Strichartz).

‖e−itHf‖
L

2(d+2)
d−2

t,x

. ‖f‖
4
d+2

Σ sup
N
‖e−itHPNf‖

d−2
d+2

L

2(d+2)
d−2

t,x

Proof. Using the Littlewood-Paley theory, we may quote essentially verbatim the proof of

refined Strichartz for the free particle propagator ([Vis14] Lemma 3.1). Write fN for PNf ,

where PN = PH
N unless indicated otherwise. When d ≥ 6, apply the square function estimate

(2.26), Hölder, Bernstein, and Strichartz to get

‖e−itHf‖
2(d+2)
d−2

L

2(d+2)
d−2

t,x

∼
∥∥∥(
∑
N

|e−itHfN |2)1/2
∥∥∥ 2(d+2)

d−2

2(d+2)
d−2

=

∫∫
(
∑
N

|e−itHfN |2)
d+2
d−2 dx dt

.
∑
M≤N

∫∫
|e−itHfM |

d+2
d−2 |e−itHfN |

d+2
d−2 dx dt

.
∑
M≤N

‖e−itHfM‖
4
d−2

L

2(d+2)
d−2

t,x

‖e−itHfM‖
L

2(d+2)
d−4

t,x

‖e−itHfN‖
4
d−2

L

2(d+2)
d−2

t,x

‖e−itHfN‖
L

2(d+2)
d

t,x

. sup
N
‖e−itHfN‖

8
d−2

L

2(d+2)
d−2

t,x

∑
M≤N

M2‖e−itHfM‖
L

2(d+2)
d−4

t L

2d(d+2)

d2+8
x

‖fN‖L2

. sup
N
‖e−itHfN‖

8
d−2

L

2(d+2)
d−2

t,x

∑
M≤N

M2‖fM‖L2
x
‖fN‖L2

x

. sup
N
‖e−itHfN‖

8
d−2

L

2(d+2)
d−2

t,x

∑
M≤N

M

N
‖H1/2fM‖L2‖H1/2fN‖L2

x

. sup
N
‖e−itHfN‖

8
d−2

L

2(d+2)
d−2

t,x

‖f‖2
Σ.

The cases d = 3, 4, 5 are handled similarly with some minor modifications in the applications

of Hölder’s inequality.

The next proposition goes one step further and asserts that the sequence e−itHfn with

nontrivial spacetime norm must in fact contain a bubble centered at some (tn, xn) with

spatial scale N−1
n . First we introduce some vocabulary and notation which are common to

concentration compactness arguments.
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Definition 2.4.1. A frame is a sequence (tn, xn, Nn) ∈ I ×Rd × 2N conforming to one of

the following scenarios:

1. Nn ≡ 1, tn ≡ 0, and xn ≡ 0.

2. Nn →∞ and N−1
n |xn| → r∞ ∈ [0,∞).

The parameters tn, xn, Nn will specify the temporal center, spatial center, and inverse

length scale of a function. The condition that |xn| . Nn reflects the fact that we only

consider functions obeying some uniform bound in Σ, and such functions cannot be centered

arbitrarily far from the origin. We need to augment the frame {(tn, xn, Nn)} by an auxiliary

parameter N ′n, which corresponds to a sequence of spatial cutoffs adapted to the frame.

Definition 2.4.2. An augmented frame is a sequence (tn, xn, Nn, N
′
n) ∈ I ×Rd × 2N ×R

belonging to one of the following types:

1. Nn ≡ 1, tn ≡ 0, xn ≡ 0, N ′n ≡ 1.

2. Nn →∞, N−1
n |xn| → r∞ ∈ [0,∞), and either

(a) N ′n ≡ 1 if r∞ > 0, or

(b) N
1/2
n ≤ N ′n ≤ Nn, N

−1
n |xn|(NnN ′n )→ 0, and Nn

N ′n
→∞ if r∞ = 0.

Associated to an augmented frame (tn, xn, Nn, N
′
n) is a family of scaling and translation

operators

(Gnφ)(x) = N
d−2

2
n φ(Nn(x− xn))

(G̃nf)(t, x) = N
d−2

2
n f(N2

n(t− tn), Nn(x− xn)),
(2.33)

as well as spatial cutoff operators

Snφ =

 φ, for frames of type 1 (i.e. Nn ≡ 1),

χ(Nn
N ′n
·)φ, for frames of type 2 (i.e. Nn →∞),

(2.34)
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where χ is a smooth compactly supported function equal to 1 on the ball {|x| ≤ 1}. An easy

computation yields the following mapping properties:

lim
n→∞

Sn = I strongly in Ḣ1and in Σ,

lim sup
n→∞

‖Gn‖Σ→Σ <∞.
(2.35)

For future reference, we record a technical lemma that, as a special case, asserts that the

Σ norm is controlled almost entirely by the Ḣ1 norm for functions concentrating near the

origin.

Lemma 2.4.2 (Approximation). Let (q, r) be an admissible pair of exponents with 2 ≤ r < d,

and let F = {(tn, xn, Nn, N
′
n)} be an augmented frame of type 2.

1. Suppose F is of type 2a in Definition 2.4.2. Then for {fn} ⊆ LqtH
1,r
x (R×Rd), we have

lim sup
n
‖G̃nSnfn‖LqtΣrx . lim sup

n
‖fn‖LqtH1,r

x
.

2. Suppose F is of type 2b and fn ∈ Lqt Ḣ1,r
x (R×Rd). Then

lim sup
n
‖G̃nSnfn‖LqtΣrx . lim sup

n
‖fn‖Lqt Ḣ1,r

x
.

Here H1,r(Rd) and Ḣ1,r(Rd) denote the Sobolev spaces equipped with the norms

‖f‖H1,r = ‖〈∇〉‖Lr(Rd), ‖f‖Ḣ1,r = ‖|∇|f‖Lr(Rd).

Proof. By time translation invariance we may assume tn ≡ 0. By Lemma 2.2.2, it suffices

to separately bound ‖∇G̃nSnfn‖LqtLrx and ‖|x|G̃nSnfn‖LqtLrx . Using a change of variables, the

admissibility of (q, r), Hölder, and Sobolev embedding (hence the restriction r < d), we have

‖∇G̃nSnfn‖LqtLrx = ‖∇[N
d−2

2
n fn(N2

nt, Nn(x− xn))χ(N ′n(x− xn))]‖LqtLrx

. ‖(∇fn)(t, x)‖LqtLrx + N ′n
Nn
‖fn(t, x)‖LqtLrx(R×{|x|∼Nn

N′n
})

. ‖∇fn‖Lqt Ḣ1,r
x
.
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To estimate ‖|x|G̃nSnfn‖LqtLrx we distinguish the two cases. Consider first the case where

fn ∈ LqtH1,r
x . Using the bound |xn| . Nn and a change of variables, we obtain

‖|x|G̃nSnfn‖LqtLr . N
d
2
n ‖fn(N2

nt, Nn(x− xn))‖Lr . ‖fn‖LqtLr . ‖fn‖LqtH1,r
x
.

Next, consider the case where fn are merely assumed to lie in Lqt Ḣ
1,r
x . For each t, we

apply Hölder and Sobolev embedding to get

‖|x|G̃nSnfn‖rLrx = N
dr
2
−d−r

n

∫
|x|.Nn

N′n

|xn +N−1
n x|r|fn(N2

nt, x)|rdx

. N
dr
2
−d

n

[
N−rn |xn|r +N−2r

n (Nn
N ′n

)r
] ∫
|x|.Nn

N′n

|fn(N2
nt, x)|rdx

. N
dr
2
−d

n

[
N−rn |xn|r(NnN ′n )r + (N ′n)−2r

]
‖∇fn(N2

nt)‖rLrx .

By the hypotheses on the parameter N ′n in Definition 2.4.2, the expression inside the brackets

goes to 0 as n→∞. After integrating in t and changing variables, we conclude

‖|x|G̃nSnfn‖LqtLrx . cn‖fn‖Lqt Ḣ1,r
x

where cn = o(1) as n→∞. This completes the proof of the lemma.

Proposition 2.4.3 (Inverse Strichartz). Let I be a compact interval containing 0 of length

at most 1, and suppose fn is a sequence of functions in Σ(Rd) satisfying

0 < ε ≤ ‖e−itHfn‖
L

2(d+2)
d−2

t,x (I×Rd)

. ‖fn‖Σ ≤ A <∞.

Then, after passing to a subsequence, there exists an augmented frame

F = {(tn, xn, Nn, N
′
n)}

and a sequence of functions φn ∈ Σ such that one of the following holds:

1. F is of type 1 (i.e. Nn ≡ 1) and φn = φ where φ ∈ Σ is a weak limit of fn in Σ.

2. F is of type 2, either tn ≡ 0 or N2
ntn → ±∞, and φn = eitnHGnSnφ where φ ∈ Ḣ1(Rd)

is a weak limit of G−1
n e−itnHfn in Ḣ1. Moreover, if F is of type 2a, then φ also belongs

to L2(Rd).
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The functions φn have the following properties:

lim inf
n
‖φn‖Σ & A

(
ε
A

) d(d+2)
8 , (2.36)

lim
n→∞

‖fn‖
2d
d−2
2d
d−2

− ‖fn − φn‖
2d
d−2
2d
d−2

− ‖φn‖
2d
d−2
2d
d−2

= 0, (2.37)

lim
n→∞

‖fn‖2
Σ − ‖fn − φn‖2

Σ − ‖φn‖2
Σ = 0. (2.38)

Proof. Our plan is as follows. First we identify the parameters tn, xn, Nn, which define the

location of the bubble φn and its characteristic size, and dispose of the case where Nn ≡ 1.

The case where Nn → ∞ is more involved. First we define the profile φn and verify the

assertions (2.36) and (2.38). Passing to a subsequence, we may assume that the sequence

N2
ntn converges in [−∞,∞]. If the limit is infinite, decoupling (2.37) in the L

2d
d−2 norm will

also follow. If instead N2
ntn has a finite limit, we show that in fact the time parameter tn

can actually be redefined to be identically zero after making a negligible correction to the

profile φn, and verify that the modified profile (with tn = 0 now) satisfies property (2.37)

in addition to (2.36) and (2.38). We shall see along the way that in this regime of short

time scales and initial data concentrated near the origin, the potential may be essentially

regarded as constant.

By Proposition 2.4.1, there exist frequencies Nn such that

‖PNne−itHfn‖
L

2(d+2)
d−2

t,x

& ε
d+2

4 A−
d−2

4 .

The comparison of Littlewood-Paley projectors (2.20) implies

‖P̃Nne−itHfn‖
L

2(d+2)
d−2

t,x

& ε
d+2

4 A−
d−2

4 ,

where P̃N = e−H/N
2 − e−4H/N2

denote the projections based on the heat kernel. By Hölder,

Strichartz, and Bernstein,

ε
d+2

4 A−
d−2

4 . ‖P̃Nne−itHfn‖
L

2(d+2)
d−2

t,x

. ‖P̃Nne−itHfn‖
d−2
d

L
2(d+2)
d

t,x

‖P̃Nne−itHfn‖
2
d
L∞t,x

. (N−1
n A)

d−2
d ‖P̃Nne−itHfn‖

2
d
L∞t,x

.
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Therefore, there exist (tn, xn) ∈ I ×Rd such that

|e−itnHP̃Nnfn(xn)| & N
d−2

2
n A( ε

A
)
d(d+2)

8 . (2.39)

The parameters tn, xn, Nn will determine the center and width of a bubble.

We observe first that the boundedness of fn in Σ limits how far the bubble can live from

the spatial origin.

Lemma 2.4.4. We have

|xn| ≤ CA,εNn.

Proof. Put gn = |e−itnHfn|. By the kernel bound (2.19),

N
d−2

2
n A( ε

A
)
d(d+2)

8 . |P̃Nne−itnHfn(xn)| . P̃∆
≤Nngn(xn) + P̃∆

≤Nn/2gn(xn).

Thus one of the terms on the right side is at least half as large as the left side, and it suffices

to consider the case when

P̃∆
≤Nngn(xn) & N

d−2
2

n A( ε
A

)
d(d+2)

8

since the argument with Nn replaced by Nn/2 differs only cosmetically. Informally, P̃∆
≤Nngn

is essentially constant over length scales of order N−1
n , so if it is large at a point xn then it

is large on the ball |x− xn| ≤ N−1
n . More precisely, when |x− xn| ≤ N−1

n we have

P̃∆
≤Nn/2gn(x) = Nd

n

2d(2π)
d
2

∫
gn(x− y)e−

N2
n|y|

2

8 dy

= Nd
n

2d(4π)
d
2

∫
gn(xn − y)e−

N2
n|y+x−xn|2

8 dy

≥ e−1 Nd
n

2d(4π)
d
2

∫
gn(xn − y)e−

N2
n|y|

2

2 dy = e−12−dP̃∆
≤Nngn(xn)

& N
d−2

2
n A( ε

A
)
d(d+2)

8 .

On the other hand, the mapping properties of the heat kernel imply that

‖P̃∆
≤Nn/2gn‖Σ . (1 +N−2

n )A.

Thus,

A & ‖P̃∆
≤Nn/2gn‖Σ & ‖xP̃∆

≤Nn/2gn‖L2(|x−xn|≤N−1
n ) & |xn|N

− d
2

n N
d−2

2
n A( ε

A
)
d(d+2)

8 ,

which yields the claim.
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Case 1. Suppose the Nn have a bounded subsequence, so that (passing to a subsequence)

Nn ≡ N∞. The xn’s stay bounded by Lemma 2.4.4, so after passing to a subsequence we

may assume xn → x∞. We may also assume tn → t∞ since the interval I is compact. The

functions fn are bounded in Σ, hence (after passing to a subsequence) converge weakly in Σ

to some φ.

To see that φ is nontrivial in Σ, we have

〈φ, eit∞HP̃N∞δx∞〉 = lim
n
〈fn, eit∞HP̃N∞δx∞〉

= lim
n→∞

[e−itnHP̃N∞fn(xn) + 〈fn, (eit∞H − eitnH)P̃N∞δxn〉

+ 〈fn, eit∞HP̃Nn(δx∞ − δxn)〉].

Using the heat kernel bounds (2.19) and the fact that, by the compactness of the embedding

Σ ⊂ L2, the sequence fn converges to φ in L2, one verifies easily that the second and third

terms on the right side vanish. So

|〈φ, eit∞HP̃N∞δx∞〉| = lim
n→∞

|e−itnHP̃N∞fn(xn)| & N
d−2

2∞ ε
d(d+2)

8 A−
(d−2)(d+4)

8 .

On the other hand, by Hölder and (2.19),

|〈φ, eit∞HP̃N∞δx∞〉| ≤ ‖e−it∞Hφ‖
L

2d
d−2
‖P̃N∞δx∞‖

L
2d
d+2

. ‖φ‖ΣN
d−2

2∞ .

Therefore

‖φ‖Σ & ε
d(d+2)

8 A−
(d−2)(d+4)

8 .

Set

φn ≡ φ,

and define the augmented frame (tn, xn, Nn, N
′
n) ≡ (0, 0, 1, 1). The decoupling in Σ (2.38)

can be proved as in Case 2 below, and we refer the reader to the argument detailed there. It

remains to establish decoupling in L
2d
d−2 . As the embedding Σ ⊂ L2 is compact, the sequence

fn, which converges weakly to φ ∈ Σ, converges to φ strongly in L2. After passing to a
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subsequence we obtain convergence pointwise a.e. The decoupling (2.37) now follows from

Lemma 2.2.6. This completes the case where Nn have a bounded subsequence.

Case 2. Now we address the case where Nn →∞. The main nuisance is that the weak

limits φ will usually be merely in Ḣ1(Rd), not in Σ, so defining the profiles φn will require

spatial cutoffs.

As the functions N
−(d−2)/2
n (e−itnHfn)(N−1

n · +xn) are bounded in Ḣ1(Rd), the sequence

has a weak subsequential limit

N
− d−2

2
n (e−itnHfn)(N−1

n ·+xn) ⇀ φ in Ḣ1(Rd). (2.40)

By Lemma 2.4.4, after passing to a further subsequence we may assume

lim
n→∞

N−1
n |xn| = r∞ <∞ and lim

n→∞
N2
ntn = t∞ ∈ [−∞,∞]. (2.41)

It will be necessary to distinguish the cases r∞ > 0 and r∞ = 0, corresponding to whether

the frame {(tn, xn, Nn)} is type 2a or 2b, respectively.

Lemma 2.4.5. If r∞ > 0, the function φ defined in (2.40) also belongs to L2.

Proof. By (2.40) and the Rellich-Kondrashov compactness theorem, for each R ≥ 1 we have

N
− d−2

2
n (e−itnHfn)(N−1

n ·+xn)→ φ in L2({|x| ≤ R}).

By a change of variables,

N
− d−2

2
n (e−itnHfn)(N−1

n ·+xn)‖L2(|x|≤R) = Nn‖e−itnHfn‖L2(|x−xn|≤RN−1
n )

. ‖xe−itnHfn‖L2

whenever |xn| ≥ Nnr∞
2

and RN−1
n ≤ r∞

10
, so we have uniformly in R ≥ 1 that

lim sup
n
‖N−

d−2
2

n (e−itnHfn)(N−1
n ·+xn)‖L2(|x|≤R) . sup

n
‖e−itnHfn‖Σ . 1.

Therefore ‖φ‖L2 = limR→∞ ‖φ‖L2(|x|≤R) . 1.

Remark. The claim fails if r∞ = 0. Indeed, if φ ∈ Ḣ1(Rd)\L2(Rd), then fn = N
(d−2)/2
n φ(Nn·)χ(·)

are bounded in Σ, and N
−(d−2)/2
n fn(N−1

n ·) = φ(·)χ(N−1
n ·) converges strongly in Ḣ1 to φ.
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Next we prove that φ is nontrivial in Ḣ1.

Lemma 2.4.6. ‖φ‖Ḣ1 & A
(
ε
A

) d(d+2)
8 .

Proof. From (2.19) and (2.39),

N
d−2

2
n A

(
ε
A

) d(d+2)
8 . P̃∆

≤Nn|e
−itnHfn|(xn) + P̃∆

≤Nn/2|e
−itnHfn|(xn),

so one of the terms on the right is at least half the left side. Suppose first that

P̃∆
≤Nn|e

−itnHfn|(xn) & N
d−2

2
n A

(
ε
A

) d(d+2)
8 .

Put ψ̌ = P̃∆
≤1δ0 = e∆δ0. Since ψ̌ is Schwartz,

|〈|φ|, ψ̌〉L2| ≤ ‖φ‖Ḣ1‖ψ̌‖Ḣ−1 . ‖φ‖Ḣ1 .

On the other hand, as the absolute values N
− d−2

2
n |e−itnHfn|(N−1

n · +xn) converge weakly in

Ḣ1 to |φ|,

〈|φ|, ψ̌〉L2 = lim
n
〈N−

d−2
2

n |e−itnHfn|(N−1
n ·+xn), ψ̌〉L2

= lim
n
P̃∆
≤Nn|e

−itnHfn|(xn) & A
(
ε
A

) d(d+2)
8 .

from which the claim follows. Similarly if

P̃∆
≤Nn/2|e

−itnHfn|(xn) & N
d−2

2
n A

(
ε
A

) d(d+2)
8 ,

then we obtain ‖φ‖Ḣ1 ∼ ‖φ(2·)‖Ḣ1 & N
d−2

2
n A

(
ε
A

) d(d+2)
8 .

Having extracted a nontrivial bubble φ, we are ready to define the φn. The basic idea is

to undo the operations applied to fn in the definition (2.40) of φ. However, we need to first

apply a spatial cutoff to embed φ in Σ.

With the frame {(tn, xn, Nn)} defined according to (2.39), form the augmented frame

{(tn, xn, Nn, N
′
n)} with the cutoff parameter N ′n chosen according to the second case in Def-

inition 2.4.2. Let Gn, Sn be the Ḣ1 isometries and spatial cutoff operators associated to

{(tn, xn, Nn, N
′
n)}. Set

φn = eitnHGnSnφ = eitnH [N
d−2

2
n φ(Nn(· − xn))χ(N ′n(· − xn))]. (2.42)
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Let us check that φn satisfies the various properties asserted in the proposition.

Lemma 2.4.7. A
(
ε
A

) d(d+2)
8 . lim infn→∞ ‖φn‖Σ ≤ lim supn→∞ ‖φn‖Σ . 1.

Proof. By the definition of the Σ norm and a change of variables,

‖φn‖Σ = ‖GnSn‖Σ ≥ ‖Snφ‖Ḣ1 .

Lemma 2.4.6 and the remarks following Definition 2.4.2 together imply the lower bound

lim inf
n
‖φn‖Σ & A

(
ε
A

) d(d+2)
8 .

The upper bound follows immediately from the case (q, r) = (∞, 2) in Lemma 2.4.2.

Next we verify the decoupling assertion (2.38). By the Pythagorean theorem,

‖fn‖2
Σ − ‖fn − φn‖2

Σ − ‖φn‖2
Σ = 2 Re〈fn − φn, φn〉Σ)

= 2 Re〈e−itnHfn −GnSnφ,GnSnφ〉Σ

= 2 Re〈wn, GnSnφ〉Σ.

where wn = e−itnHfn −GnSnφ. By definition,

〈wn, GnSnφ〉Σ = 〈wn, GnSnφ〉Ḣ1 + 〈xwn, xGnSnφ〉L2 .

From (2.35) and the definition (2.40) of φ, it follows that

G−1
n wn → 0 weakly in Ḣ1 as n→∞.

Hence

lim
n→∞
〈wn, GnSnφ〉Ḣ1 = lim

n→∞
〈G−1

n wn, Snφ〉Ḣ1 = lim
n→∞
〈G−1

n wn, φ〉Ḣ1 = 0.

We turn to the second component of the inner product. Fix R > 0, and estimate

|〈xwn, xGnSnφ〉L2|

≤
∫
{|x−xn|≤RN−1

n }
|xwn||xGnSnφ| dx+

∫
{|x−xn|>RN−1

n }
|xwn||xGnSnφ| dx

= (I) + (II)
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Use a change of variable and the bound |xn| . Nn to obtain

(I) .
∫
|x|≤R

|G−1
n wn||φ| dx→ 0 as n→∞.

Next, apply Cauchy-Schwartz and the upper bound of Lemma 2.4.7 to see that

(II)2 .
∫
{|x−xn|>RN−1

n }
|xGnSnφ|2 dx

. N−2
n

∫
R≤|x|.Nn

N′n

|xn +N−1
n x|2|φ(x)|2dx

. (N−2
n |xn|2 +N−2

n (N ′n)−2)

∫
R≤|x|.Nn

N′n

|φ(x)|2 dx.

Suppose that the frame {(tn, xn, Nn)} is of type 2a, so that limnN
−1
n |xn| > 0. By Lemma

2.4.5 and dominated convergence, the right side above is bounded by∫
R≤|x|

|φ(x)|2 dx→ 0 as R→∞,

uniformly in n. If instead {(tn, xn, Nn)} is of type 2b, use Hölder to see that the right side

is bounded by

(N−2
n |xn|(NnN ′n )2 + (N ′n)−4)‖φ‖

L
2d
d−2

.

By Sobolev embedding and the construction of the parameter N ′n in Definition 2.4.2, the

above vanishes as n→∞. In either case, we obtain

lim
R→∞

lim sup
n→∞

(II) = 0.

Combining the two estimates and choosing R arbitrarily large, we conclude as required

that

lim
n→∞

|〈xwn, xGnSnφ〉L2 | = 0.

To close this subsection, we verify the L
2d
d−2 decoupling property (2.37) whenN2

ntn → ±∞.

Assume first that the φ appearing in the definition (2.42) of φn has compact support. By

the dispersive estimate (2.15) and a change of variables,

lim
n→∞

‖φn‖
L

2d
d−2

. |tn|−1‖Gnφ‖
L

2d
d+2

. (N2
n|tn|)−1‖φ‖

L
2d
d+2

= 0.
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The claimed decoupling follows immediately.

For general φ in H1 or Ḣ1 (depending on whether limnN
−1
n |xn| is positive or zero), select

ψε ∈ C∞c converging to φ in the appropriate norm as ε → 0. Then for all n large enough,

we have

‖φn‖
L

2d
d−2
≤ ‖eitnHGnSn[φ− ψε]‖

L
2d
d−2

+ ‖eitnHGnSnψ
ε‖
L

2d
d−2

,

and decoupling follows from Lemmas 2.2.3 and 2.4.2 and the special case just proved.

2.4.2 Convergence of linear propagators

To complete the proof of Proposition 2.4.3, we need a more detailed understanding of how the

linear propagator e−itH interacts with the Ḣ1-symmetries Gn associated to a frame in certain

limits. This section is inspired by the discussion surrounding [KSV12, Lemma 5.2], which

proves analogous results relating the linear propagators of the 2D Schrödinger equation and

the complexified Klein-Gordon equation −ivt + 〈∇〉v = 0.

Definition 2.4.3. We say two frames F1 = {(t1n, x1
n, N

1
n)} and F2 = {(t2n, x2

n, N
2
n)} (where

the superscripts are indices, not exponents) are equivalent if

N1
n

N2
n
→ R∞ ∈ (0,∞), N1

n(x2
n − x1

n)→ x∞ ∈ Rd, (N1
n)2(t1n − t2n)→ t∞ ∈ R.

The frames are orthogonal should any of the above statements fail. Note that replacing

the N1
n in the second and third expressions above by N2

n yields an equivalent definition of

orthogonality.

Remark. If F1 and F2 are equivalent, it follows from the above definition that they must

be of the same type in Definition 2.4.1, and that limn(N1
n)−1|x1

n| and limn(N2
n)−1|x2

n| are

either both zero or both positive.

The following lemma and its corollary make precise the heuristic that when acting on

functions concentrated at a point, e−itH can be approximated for small t by regarding the

|x|2/2 potential as essentially constant on the support of the initial data; thus one obtains a

modulated free particle propagator e−it|x0|2/2eit∆/2, where x0 is the spatial center of the data.
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Lemma 2.4.8 (Strong convergence). Suppose

FM = (tMn , xn,Mn), FN = (tNn , yn, Nn)

are equivalent frames. Define

R∞ = lim
n→∞

Mn

Nn
, t∞ = lim

n→∞
M2

n(tMn − tNn ), x∞ = lim
n→∞

Mn(yn − xn),

r∞ = lim
n
M−1

n |xn| = lim
n
M−1

n |yn|.

Let GM
n , G

N
n be the scaling and translation operators attached to the frames FM and FN

respectively. Then (e−it
N
n HGN

n )−1e−it
M
n HGM

n converges strongly as operators on Σ to the op-

erator U∞ defined by

U∞φ = e−
it∞(r∞)2

2 R
d−2

2∞ [e
it∞∆

2 φ](R∞ ·+x∞).

Proof. If Mn ≡ 1, then by the definition of a frame we must have FM = FN = {(1, 0, 0)}, so

the claim is trivial. Thus we may assume that Mn →∞. Put tn = tMn − tNn . Using Mehler’s

formula (2.14), we write

(e−it
N
n HGN

n )−1e−it
M
n HGM

n φ(x) = (GN
n )−1e−itnHGM

n φ(x)

= (Mn

Nn
)
d−2

2 eiγ(tn)|yn+N−1
n x|2e

iM2
n sin(tn)∆

2 [eiγ(tn)|xn+M−1
n ·|2φ](Mn

Nn
x+Mn(yn − xn)).

where

γ(t) = cos t−1
2 sin t

= − t
4

+O(t3).

Observe that

eiγ(tn)|xn+M−1
n ·|2φ→ e−

it∞(r∞)2

4 φ in Σ.

Indeed,

‖∇[eiγ(tn)|xn+M−1
n ·|2φ− eiγ(tn)|xn|2φ]‖L2 = ‖∇[(eiγ(tn)[M−2

n |x|2+2M−1
n xn·x] − 1)φ]‖L2

. ‖tn(M−2
n x+ 2M−1

n xn)φ‖L2 + ‖(eiγ(tn)[M−2
n |x|2+2M−1

n xn·x] − 1)∇φ‖L2

. |tn|M−2
n ‖xφ‖L2 + |tn||xn|M−1

n ‖φ‖L2 + ‖(eiγ(tn)[M−2
n |x|22M−1

n xn·x] − 1)∇φ‖L2 .
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As n → ∞, the first two terms vanish because ‖xφ‖2 + ‖φ‖2 . ‖φ‖Σ, while the third term

vanishes by dominated convergence. Dominated convergence also implies that

‖x[eiγ(tn)|xn+M−1
n x|2φ− eiγ(tn)|xn|2φ]‖L2 → 0 as n→∞.

On the other hand, since

γ(tn)|xn|2 = −M2
ntnM

−2
n |xn|2
4

+O(M−4
n )→ −t∞(r∞)2

4
,

it follows that

‖eiγ(tn)|xn+M−1
n ·|2φ− e−

it∞(r∞)2

4 φ‖Σ → 0

as claimed. As e
iM2
n sin(tn)∆

2 → e
it∞∆

2 strongly, we obtain

e
iM2
n sin(tn)∆

2 [eiγ(tn)|xn+M−1
n ·|2φ]→ e−

it∞(r∞)2

4 e
it∞∆

2 φ in Σ,

and the conclusion quickly follows.

Corollary 2.4.9. Let {(tMn , xn,Mn,M
′
n)} and {(tNn , yn, Nn, N

′
n)} be equivalent frames, and

SMn , S
N
n be the associated spatial cutoff operators. Then

lim
n→∞

‖e−itMn HGM
n S

M
n φ− e−it

N
n HGN

n S
N
n U∞φ‖Σ = 0 (2.43)

and

lim
n→∞

‖e−itMn HGM
n S

M
n φ− e−it

N
n HGN

n U∞S
N
n φ‖Σ = 0 (2.44)

whenever φ ∈ H1 if the frames conform to case 2a and φ ∈ Ḣ1 if they conform to case 2b in

Definition 2.4.2.

Proof. As before, the result is immediate if Mn ≡ 1 since all operators in sight are trivial.

Thus we may assume Mn → ∞. Suppose first that φ ∈ C∞c . Using the unitarity of e−itH

on Σ, the operator bounds (2.35), and the fact that SMn φ = φ for all n sufficiently large, we

write the left side of (2.43) as

‖GN
n [(GN

n )−1e−i(t
M
n −tNn )HGM

n φ− SNn U∞φ]‖Σ

. ‖(GN
n )−1e−i(t

M
n −tNn )HGM

n φ− SNn U∞φ‖Σ

. ‖(GN
n )−1e−i(t

M
n −tNn )HGM

n φ− U∞φ‖Σ + ‖(1− SNn )U∞φ‖Σ
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which goes to zero by Lemma 2.4.8 and dominated convergence. This proves (2.43) under

the additional hypothesis that φ ∈ C∞c .

We now remove this crutch and take φ ∈ H1 or Ḣ1 depending on whether the frames are

of type 2a or 2b in Definition 2.4.2, respectively. For each ε > 0, choose φε ∈ C∞c such that

‖φ− φε‖H1 < ε or ‖φ− φε‖Ḣ1 < ε, respectively. Then

‖e−itMn HGM
n S

M
n φ− e−it

N
n HGN

n S
N
n U∞φ‖Σ ≤ ‖e−it

M
n HGM

n S
M
n (φ− φε)‖Σ

+ ‖e−itnHGM
n S

M
n φ

ε − e−itNn HGN
n S

N
n U∞φ

ε‖Σ + ‖e−itNn HGN
n S

N
n U∞(φ− φε)‖Σ

In the limit as n→∞, the middle term vanishes and we are left with a quantity at most a

constant times

lim sup
n→∞

‖GM
n S

M
n (φ− φε)‖Σ + lim sup

n→∞
‖GN

n S
N
n U∞(φ− φε)‖Σ.

Applying Lemma 2.4.2 and using the mapping properties of U∞ on Ḣ1 and H1, we see that

lim sup
n→∞

‖e−itnHGM
n S

M
n φ− eit

N
n HGN

n S
N
n U∞φ‖Σ . ε

for every ε > 0. This proves the claim (2.43). Similar considerations deal with the second

claim (2.44).

Lemma 2.4.10. Suppose the frames {(tMn , xn,Mn)} and {(tNn , yn, Nn)} are equivalent. Put

tn = tMn − tNn . Then for f, g ∈ Σ we have

〈(GN
n )−1e−itnHGM

n f, g〉Ḣ1 = 〈f, (GM
n )−1eitnHGN

n g〉Ḣ1 +Rn(f, g),

where |Rn(f, g)| ≤ C|tn|‖GM
n f‖Σ‖GN

n g‖Σ.

Remark. It follows from Lemma 2.4.8 that

lim
n→∞
〈(GN

n )−1e−itnHGM
n f, g〉Ḣ1 = lim

n→∞
〈f, (GM

n )−1eitnHGN
n g〉Ḣ1

for fixed f, g ∈ Σ. The content of this lemma lies in the quantitative error bound.

Proof. We have

〈(GN
n )−1e−itnHGM

N f, g〉Ḣ1 = 〈f, (GM
n )−1eitnHGN

n g〉Ḣ1 +Rn(f, g)

38



where Rn(f, g) = 〈[∇, e−itnH ]GM
n f,∇GN

n g〉L2 − 〈∇GM
n f, [∇, eitnH ]GN

n g〉L2 . The claim follows

from Cauchy-Schwartz and the commutator estimate

‖[∇, e−itH ]‖Σ→L2 = O(t),

which is a consequence of the standard identities

eitHi∇e−itH = i∇ cos t− x sin t

eitHxe−itH = i∇ sin t+ x cos t.

Next we prove a converse to Lemma 2.4.8.

Lemma 2.4.11 (Weak convergence). Assume the frames FM = {(tMn , xn,Mn)} and FN =

{(tNn , yn, Nn)} are orthogonal. Then for any f ∈ Σ,

(e−it
N
n HGN

n )−1e−it
M
n HGM

n f → 0 weakly in Ḣ1.

Proof. Put tn = tMn − tNn , and suppose that |M2
ntn| → ∞. Then

‖(GN
n )−1e−itnHGM

n f‖
L

2d
d−2
→ 0

for f ∈ C∞c by a change of variables and the dispersive estimate, thus for general f ∈ Σ

by a density argument. Therefore (GN
n )−1e−itnHGM

n f converges weakly in Ḣ1 to 0. Now

consider the case where M2
ntn → t∞ ∈ R. The orthogonality of FM and FN implies that

either N−1
n Mn converges to 0 or ∞, or Mn|xn − yn| diverges as n→∞. In either case, one

verifies easily that (GN
n )−1GM

n converge to zero weakly as operators on Ḣ1. By Lemma 2.4.8,

(GN
n )−1e−itnHGM

n f = (GN
n )−1GM

n (GM
n )−1e−itnHGM

n f converges to zero weakly in Ḣ1.

Corollary 2.4.12. Let {(tMn , xn,Mn,M
′
n)} and {(tNn , yn, Nn, N

′
n)} be orthogonal with corre-

sponding operators GM
n , S

M
n and GN

n , S
N
n . Then

(e−it
N
n HGN

n )−1e−it
M
n HGM

n S
M
n φ ⇀ 0 in Ḣ1

whenever φ ∈ H1 if FM is of type 2a and φ ∈ Ḣ1 if FM is of type 2b.
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Proof. If φ ∈ C∞c , then SMn φ = φ for all large n, and the claim follows from Lemma 2.4.11.

The case of general φ in H1 or Ḣ1 then follows from an approximation argument similar to

the one used to prove Corollary 2.4.9.

2.4.3 End of proof of inverse Strichartz

We return to the proof of Proposition 2.4.3. Thus far, we have identified a frame {(tn, xn, Nn, N
′
n)}

and an associated profile φn such that the sequence N2
ntn has a limit in [−∞,∞] as n→∞.

The φn were shown to satisfy properties (2.36), (2.37), and (2.38) if either (tn, xn, Nn) =

(0, 0, 1) or Nn →∞ and N2
ntn → ±∞. Thus, it remains to prove that if Nn →∞ and N2

ntn

remains bounded, then we may modify the frame so that tn is identically zero and find a

profile φn corresponding to this new frame which satisfies all the properties asserted in the

proposition. The following lemma will therefore complete the proof of the proposition.

Lemma 2.4.13. Let fn ∈ Σ satisfy the hypotheses of Proposition 2.4.3. Suppose {(tn, xn, Nn, N
′
n)}

is an augmented frame with Nn → ∞ and N2
ntn → t∞ ∈ R as n → ∞. Then there is a

profile φ′n = GnSnφ
′ associated to the frame {(0, xn, Nn, N

′
n)} such that properties (2.36),

(2.37), and (2.38) hold with φ′n in place of φn.

Proof. Let φn = eitnHGnSnφ be the profile defined by (2.42). We have already seen that φn

satisfies properties (2.36) and (2.38), and that

φ = Ḣ1-w-limn→∞G
−1
n e−itnHfn.

As the sequence G−1
n fn is bounded in Ḣ1, it has a weak subsequential limit

φ′ = Ḣ1-w-limn→∞G
−1
n fn.

For any ψ ∈ C∞c , apply Lemma 2.4.10 with f = G−1
n e−itnHfn to see that

〈φ′, ψ〉Ḣ1 = lim
n→∞
〈G−1

n fn, ψ〉Ḣ1 = lim
n→∞
〈G−1

n eitnHGnG
−1
n e−itnHfn, ψ〉Ḣ1

= lim
n→∞
〈G−1

n e−itnHfn, G
−1
n e−itnHGnψ〉Ḣ1 = 〈φ, U∞ψ〉Ḣ1 ,
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where U∞ = s-limn→∞G
−1
n e−itnHGn is the strong operator limit guaranteed by Lemma 2.4.8.

As U∞ is unitary on Ḣ1, we have the relation φ = U∞φ
′.

Put φ′n = GnSnφ
′. By Corollary 2.4.9,

‖φn − φ′n‖Σ = ‖eitnHGnSnφ−GnSnU
−1
∞ φ‖Σ → 0 as n→∞.

Hence φ′n inherits property (2.36) from φn. The same proof as for φn shows that Σ decoupling

(2.38) holds as well. It remains to verify the last decoupling property (2.37). As G−1
n fn

converges weakly in Ḣ1 to φ′, by Rellich-Kondrashov and a diagonalization argument we

may assume after passing to a subsequence that G−1
n fn converges to φ′ almost everywhere

on Rd. By the Lemma 2.2.6, the fact that limn→∞ ‖GnSnφ
′ − Gnφ

′‖ 2d
d−2

= 0, and a change

of variables,

lim
n→∞

[
‖fn‖

2d
d−2
2d
d−2

− ‖fn − φ′n‖
2d
d−2
2d
d−2

− ‖φ′n‖
2d
d−2
2d
d−2

]
= lim

n→∞

[
‖G−1

n fn‖
2d
d−2
2d
d−2

− ‖G−1
n fn − φ′‖

2d
d−2
2d
d−2

− ‖φ′‖
2d
d−2
2d
d−2

]
= 0.

Remark. As limn→∞ ‖φn − φ′n‖Σ = 0, we see by Sobolev embedding that the decoupling

(2.37) also holds for the original profile φn = eitnHGnSnφ with nonzero time parameter tn.

2.4.4 Linear profile decomposition

As before, I will denote a fixed interval containing 0 of length at most 1, and all spacetime

norms are taken over I ×Rd unless indicated otherwise.

Proposition 2.4.14. Let fn be a bounded sequence in Σ. After passing to a subsequence,

there exists J∗ ∈ {0, 1, . . . } ∪ {∞} such that for each finite 1 ≤ j ≤ J∗, there exist an

augmented frame F j = {(tjn, xjn, N j
n, (N

j
n)′)} and a function φj with the following properties.

• Either tjn ≡ 0 or (N j
n)2(tjn)→ ±∞ as n→∞.
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• φj belongs to Σ, H1, or Ḣ1 depending on whether F j is of type 1, 2a, or 2b, respectively.

For each finite J ≤ J∗, we have a decomposition

fn =
J∑
j=1

eit
j
nHGj

nS
j
nφ

j + rJn =
J∑
j=1

φjn + rJn , (2.45)

where Gj
n, S

j
n are the Ḣ1-isometry and spatial cutoff operators associated to F j. This de-

composition has the following properties:

(GJ
n)−1e−it

J
nHrJn

Ḣ1

⇀ 0 for all J ≤ J∗, (2.46)

sup
J

lim
n→∞

∣∣∣‖fn‖2
Σ −

J∑
j=1

‖φjn‖2
Σ − ‖rJn‖2

Σ

∣∣∣ = 0, (2.47)

sup
J

lim
n→∞

∣∣∣‖fn‖ 2d
d−2

L
2d
d−2
x

−
J∑
j=1

‖φjn‖
2d
d−2

L
2d
d−2
x

− ‖rJn‖
2d
d−2

L
2d
d−2
x

∣∣∣ = 0. (2.48)

Whenever j 6= k, the frames {(tjn, xjn, N j
n)} and {(tkn, xkn, Nk

n)} are orthogonal:

lim
n→∞

Nj
n

Nk
n

+ Nk
n

Nj
n

+N j
nN

k
n |tjn − tkn|+

√
N j
nNk

n |xjn − xkn| =∞. (2.49)

Finally, we have

lim
J→J∗

lim sup
n→∞

‖e−itnHrJn‖
L

2(d+2)
d−2

t,x

= 0, (2.50)

Remark. One can also show a posteriori using (2.49) and (2.50) the fact, which we will

neither prove nor use, that

sup
J

lim
n→∞

∣∣∣‖e−itHfn‖ 2(d+2)
d−2

L

2(d+2)
d−2

t,x

−
J∑
j=1

‖e−itHφjn‖
2(d+2)
d−2

L

2(d+2)
d−2

t,x

− ‖e−itHwJn‖
2(d+2)
d−2

L

2(d+2)
d−2

t,x

∣∣∣ = 0.

The argument uses similar ideas as in the proofs of [Ker01][Lemma 2.7] or Lemma 2.6.3; we

omit the details.

Proof. Proceed inductively using Proposition 2.4.3. Let r0
n = fn. Assume that we have a

decomposition up to level J ≥ 0 obeying properties (2.46) through (2.48). After passing to

a subsequence, define

AJ = lim
n
‖rJn‖Σ and εJ = lim

n
‖e−itnHrJn‖

L

2(d+2)
d−2

t,x

.
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If εJ = 0, stop and set J∗ = J . Otherwise apply Proposition 2.4.3 to the sequence rJn to

obtain a frame (tJ+1
n , xJ+1

n , NJ+1
n , (NJ+1

n )′) and functions

φJ+1 ∈ Ḣ1, φJ+1
n = eit

J+1
n HGJ+1

n SJ+1
n φJ+1 ∈ Σ

which satisfy the conclusions of Proposition 2.4.3. In particular φJ+1 is the Ḣ1 weak limit

of the sequence (GJ+1
n )−1e−it

J+1
n HrJn . Let rJ+1

n = rJn − φJ+1
n . By the induction hypothesis,

(2.47) and (2.48) are satisfied with J replaced by J + 1. Also,

(GJ+1
n )−1e−it

J+1
n HrJ+1

n = [(GJ+1
n )−1e−it

J+1
n HrJn − φJ+1] + (1− SJ+1

n )φJ+1.

As n → ∞, the first term goes to zero weakly in Ḣ1 while the second term goes to zero

strongly. Thus (2.46) holds at level J + 1 as well. After passing to a subsequence, we may

define

AJ+1 = lim
n
‖rJ+1

n ‖Σ and εJ+1 = lim
n
‖e−itHrJ+1

n ‖
L

2(d+2)
d−2

t,x

.

If εJ+1 = 0, stop and set J∗ = J + 1. Otherwise continue the induction. If the algorithm

never terminates, set J∗ =∞. From (2.47) and (2.48), the parameters AJ and εJ satisfy the

inequality

A2
J+1 ≤ A2

J [1− C( εJ
AJ

)
d(d+2)

4 ].

If lim supJ→J∗ εJ = ε∞ > 0, then as AJ are decreasing there would exist infinitely many J ’s

so that

A2
J+1 ≤ A2

J [1− C( ε∞
A0

)
d(d+2)

4 ],

which implies that limJ→J∗ AJ = 0. But this contradicts the Strichartz inequality which

dictates that lim supJ→J∗ AJ & lim supJ→J∗ εJ = ε0. We conclude that

lim
J→J∗

εJ = 0.

Thus (2.50) holds.

It remains to prove the assertion (2.49). Suppose otherwise, and let j < k be the first

two indices for which F j and Fk are equivalent. Thus F ` and Fk are orthogonal for all
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j < ` < k. By the construction of the profiles, we have

rj−1
n = eit

j
nHGj

nS
j
nφ

j + eit
k
nHGk

nS
k
nφ

k +
∑
j<`<k

eit
`
nHG`

nS
`
nφ

` + rkn,

therefore

(eit
j
nHGj

n)−1rj−1
n = (eit

j
nHGj

n)−1eit
j
nHGj

nS
j
nφ

j + (eit
j
nHGj

n)−1eit
k
nHGk

nS
k
nφ

k

+
∑
j<`<k

(eit
j
nHGj

n)−1eit
`
nHG`

nS
`
nφ

` + (eit
j
nHGj

n)−1rkn.

As n → ∞, the left side converges to φj weakly in Ḣ1. On the right side, we apply Corol-

lary 2.4.9 to see that the first and second terms converge in Ḣ1 to φj and U jk
∞φ

k, respectively,

for some isomorphism U jk
∞ of Ḣ1. By Corollary 2.4.12, each of the terms in the summation

converges to zero weakly in Ḣ1. Taking for granted the claim that

(eit
j
nHGj

n)−1rkn → 0 weakly in Ḣ1, (2.51)

it follows that

φj = φj + U jk
∞φ

k,

so φk = 0, which contradicts the nontriviality of φk. Therefore, the proof of the proposition

will be complete upon verifying the weak limit (2.51). As that sequence is bounded in Ḣ1,

it suffices to check that

〈(eit
j
nHGj

n)−1rkn, ψ〉Ḣ1 → 0 for any ψ ∈ C∞c (Rd).

Write (eit
j
nHGj

n)−1rkn = (eit
j
nHGj

n)−1(eit
k
nHGk

n)(eit
k
nHGk

n)−1rkn, and use Lemma 2.4.10 and the

weak limit (2.46) to see that

lim
n→∞

〈(eit
j
nHGj

n)−1rkn, ψ〉Ḣ1 = lim
n→∞

〈(eitknHGk
n)−1rkn, (e

itknHGk
n)−1(eit

j
nHGj

n)ψ〉Ḣ1

= lim
n→∞

〈(Gk
n)−1e−it

k
nHrkn, (U

jk
∞ )−1ψ〉Ḣ1

= 0.
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2.5 The case of concentrated initial data

The next step in the proof of Theorem 2.1.2 is to establish wellposedness when the initial

data consists of a highly concentrated “bubble”. The picture to keep in mind is that of

a single profile φjn in Proposition 2.4.14 as n → ∞. In the next section we combine this

special case with the profile decomposition to treat general initial data. Although we state

the following result as a conditional one to permit a unified exposition, by Theorem 2.1.1

the result is unconditionally true in most cases.

Proposition 2.5.1. Let I = [−1, 1]. Assume that Conjecture 2.1.1 holds. Suppose

F = {(tn, xn, Nn, N
′
n)}

is an augmented frame with tn ∈ I and Nn → ∞, such that either tn ≡ 0 or N2
ntn → ±∞;

that is, F is type 2a or 2b in Definition 2.4.2. Let Gn, G̃n, and Sn be the associated operators

defined in (2.33) and (2.34). Suppose φ belongs to H1 or Ḣ1 depending on whether F is type

2a or 2b respectively. Then, for n sufficiently large, there is a unique solution un : I×Rd → C

to the defocusing equation (2.1), µ = 1, with initial data

un(0) = eitnHGnSnφ.

This solution satisfies a spacetime bound

lim sup
n→∞

SI(un) ≤ C(E(un)).

Suppose in addition that {(qk, rk)} is any finite collection of admissible pairs with 2 < rk < d.

Then for each ε > 0 there exists ψε ∈ C∞c (R×Rd) such that

lim sup
n→∞

∑
k

‖un − G̃n[e−
itN−2

n |xn|2
2 ψε]‖Lqkt Σ

rk
x (I×Rd) < ε. (2.52)

Assuming also that ‖∇φ‖L2 < ‖∇W‖L2 and E∆(φ) < E∆(W ), we have the same conclu-

sion as above for the focusing equation (2.1), µ = −1.
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The proof proceeds in several steps. First we construct an approximate solution on I in

the sense of Proposition 2.3.3. Roughly speaking, whenNn is large and t = O(N−2
n ), solutions

to (2.1) are well-approximated up to a phase factor by solutions to the energy-critical NLS

with no potential, which by Conjecture 2.1.1 exist globally and scatter. In the long-time

regime N−2
n << |t| ≤ 1, the solution to (2.1) has dispersed and resembles a linear evolution

e−itHφ. By patching these approximations together, we obtain an approximate solution over

the entire time interval I with arbitrarily small error as Nn becomes large. It then follows

by Proposition 2.3.3 that for n large, (2.1) admits a solution on I with controlled spacetime

bound. The last claim about approximating the solution by functions in C∞c (R ×Rd) will

follow essentially from our construction of the approximate solutions.

We shall need a commutator estimate. In the sequel, P≤N , PN will denote the standard

Littlewood-Paley projectors based on −∆.

Lemma 2.5.2. Let v be a global solution to

(i∂t + 1
2
∆)v = F (v), v(0) ∈ Ḣ1(Rd)

where F (z) = ±|z|
4
d−2 z. Then on any compact time interval I,

lim
N→∞

‖P≤NF (v)− F (P≤Nv)‖
L2
tH

1, 2d
d+2

x (I×Rd)
= 0

Proof. Recall [TVZ07, Lemma 3.11] that as a consequence of the spacetime bound (2.7), ∇v

is finite in all Strichartz norms:

‖∇v‖S(R) < C(‖v(0)‖Ḣ1) <∞. (2.53)

It suffices to show separately that

lim
n→∞

‖P≤NF (v)− F (P≤Nv)‖
L2
tL

2d
d+2
x

= 0, (2.54)

lim
n→∞

‖∇[P≤NF (v)− F (P≤Nv)]‖
L2
tL

2d
d+2
x

= 0. (2.55)

Write

‖∇[P≤NF (v)− F (P≤Nv)]‖
L2
tL

2d
d+2
x

≤ ‖∇P>NF (v)‖
L2
tL

2d
d+2
x

+ ‖∇[F (v)− F (P≤Nv)]‖
L2
tL

2d
d+2
x

.
(2.56)
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As P>N = 1− P≤N and

‖∇F (v)‖
L2
tL

2d
d+2
x

. ‖v‖
4
d−2

L

2(d+2)
d−2

t,x

‖∇v‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x

≤ C(‖v(0)‖Ḣ1),

dominated convergence implies that

lim
N→∞

‖∇P>NF (v)‖
L2
tL

2d
d+2
x

= 0.

To treat the second term on the right side of (2.56), observe first that with F (z) = |z|
4
d−2 z,

|Fz(z)− Fz(w)|+ |Fz(z)− Fz(w)| .

 |z − w|(|z|
6−d
d−2 + |w|

6−d
d−2 ), 3 ≤ d ≤ 5

|z − w|
4
d−2 , d ≥ 6.

Combining this with the pointwise bound

|∇[F (v)− F (P≤Nv)]| ≤ (|Fz(v)− Fz(P≤Nv)|+ |Fz(v)− Fz(P≤Nv)|)|∇v|

+ (|Fz(P≤Nv)|+ |Fz(P≤Nv)|)|∇P>Nv|,

Hölder, and dominated convergence, when d ≥ 6 we have

‖∇[F (v)− F (P≤Nv)]‖
L2
tL

2d
d+2
x

. ‖|P>Nv|
4
d−2 |∇v|‖

L2
tL

2d
d+2
x

+ ‖|P≤Nv|
4
d−2 |∇P>Nv|‖

L2
tL

2d
d+2
x

. ‖P>Nv‖
4
d−2

L

2(d+2)
d−2

t,x

‖∇v‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x

+ ‖v‖
4
d−2

L

2(d+2)
d−2

t,x

‖P>N∇v‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x

→ 0 as N →∞.

(2.57)

If 3 ≤ d ≤ 5, the first term in the second line of (2.57) is replaced by

‖|P>Nv|(|v|
6−d
d−2 + |P≤Nv|

6−d
d−2 )|∇v|‖

L2
tL

2d
d+2
x

≤ ‖P>Nv‖
L

2(d+2)
d−2

t,x

‖v‖
6−d
d−2

L

2(d+2)
d−2

t,x

‖∇v‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x

which goes to 0 by dominated convergence. This establishes (2.55). The proof of (2.54)is

similar. Write

‖P≤NF (v)− F (P≤Nv)‖
L2
tL

2d
d+2
x

≤ ‖P>NF (v)‖
L2
tL

2d
d+2
x

+ ‖F (v)− F (P≤Nv)‖
L2
tL

2d
d+2
x

.
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By Hölder, Bernstein, and the chain rule,

‖P>NF (v)‖
L2
tL

2d
d+2
x

. N−1‖v|
4
d−2

L

2(d+2)
d−2

t,x

‖∇v‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x

= O(N−1).

Using Bernstein, Hölder, and Sobolev embedding, and the pointwise bound

|F (v)− F (P≤Nv)| . |P>Nv|(|v|
4
d−2 + |P≤Nv|

4
d−2 ),

we obtain

‖F (v)− F (P≤Nv)‖
L2
tL

2d
d+2
x

≤ ‖(|v|
4
d−2 + |P≤Nv|

4
d−2 )P>Nv‖

L2
tL

2d
d+2
x

.|I| (‖∇v‖
4
d−2

L∞t L
2
x

+ +‖∇v‖
4
d−2

L∞t L
2
x
)‖∇P>Nv‖L∞t L2

x
.

As v ∈ C0
t Ḣ

1
x(I ×Rd), the orbit {v(t)}t∈I is compact in Ḣ1(Rd). The Riesz characterization

of L2 compactness therefore implies that the right side goes to 0 as N →∞.

Now suppose that φn = eitnHGnSnφ as in the statement of Proposition 2.5.1. If µ =

−1, assume also that ‖φ‖Ḣ1 < ‖W‖Ḣ1 , E(φ) < E∆(W ). We first construct functions ṽn

which obey all of the conditions of the Proposition 2.3.3 except possibly the hypothesis in

(2.31) about matching initial data. A slight modification of the ṽn will then yield genuine

approximate solutions.

If tn ≡ 0, let v be the solution to the potential-free problem (2.6) provided by Conjec-

ture 2.1.1 with v(0) = φ. If N2
ntn → ±∞, let v be the solution to (2.6) which scatters in Ḣ1

to e
it∆
2 φ as t→ ∓∞. Note the reversal of signs.

Put

Ñ ′n = (Nn
N ′n

)
1
2 , (2.58)

let T > 0 denote a large constant to be chosen later, and define

ṽTn (t) =


e−

it|xn|2
2 G̃n[SnP≤Ñ ′nv](t+ tn) |t| ≤ TN−2

n

e−i(t−TN
−2
n )H ṽTn (TN−2

n ), TN−2
n ≤ t ≤ 2

e−i(t+TN
−2
n )H ṽTn (−TN−2

n ) −2 ≤ t ≤ −TN−2
n .

(2.59)
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The awkward time translation by tn is needed to undo the time translation built into the

operator G̃n; see (2.33). We shall suppress the superscript T unless the role of that parameter

needs to be emphasized. Introducing the notation

vn(t, x) = [G̃nv](t+ tn, x) = N
d−2

2
n v(N2

nt, Nn(x− xn)),

χn(x) = χ(N ′n(x− xn)),

where χ is the function used to define the spatial cutoff operator Sn in (2.34), and using the

identity G̃nχ = χnG̃n, we can also write the top expression in (2.59) as

ṽn(t) = e−
it|xn|2

2 χnP≤Ñ ′nNnvn, |t| ≤ TN−2
n .

As discussed previously, during the initial time window ṽn is essentially a modulated

solution to (2.6) with cutoffs applied in both space, to place the solution in CtΣx, and

frequency, to enable taking an extra derivative in the error analysis below.

If φ ∈ Ḣ1, use Lemma 2.4.2 and the fact that ‖v‖L∞t Ḣ1
x
≤ C(‖φ‖Ḣ1) (energy conservation)

to deduce

lim sup
n
‖ṽn‖L∞t Σx(|t|≤TN−2

n ) ≤ C(‖φ‖Ḣ1),

therefore

lim sup
n
‖ṽn‖L∞t Σx([−2,2]) ≤ C(‖φ‖Ḣ1). (2.60)

From (2.7), (2.60), and Strichartz, we obtain

‖ṽn‖
L

2(d+2)
d−2

t,x ([−2,2]×Rd)

≤ C(‖φ‖Ḣ1) for n large. (2.61)

Due to mass conservation, a similar bound holds when φ ∈ H1. Now let

en = (i∂t −H)ṽn − F (ṽn).

We show that

lim
T→∞

lim sup
n→∞

‖H
1
2 en‖N([−2,2]) = 0, (2.62)
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so that by taking T large enough the ṽn will satisfy the second error condition in (2.31) for

all n sufficiently large.

First we deal with the time interval |t| ≤ TN−2
n .

Lemma 2.5.3. limT→∞ lim supn→∞ ‖H
1
2 en‖N(|t|≤TN−2

n ) = 0.

Proof. When −TN−2
n ≤ t ≤ TN−2

n , compute

en = e−
it|xn|2

2 [χnP≤Ñ ′nNnF (vn)− χ
d+2
d−2
n F (P≤Ñ ′nNnvn)

+
|xn|2 − |x|2

2
(P≤Ñ ′nNnvn)χn +

1

2
(P≤Ñ ′nNnvn)∆χn + (∇P≤Ñ ′nNnvn) · ∇χn]

= e−
it|xn|2

2 [(a) + (b) + (c) + (d)],

and estimate each term separately in the dual Strichartz space N({|t| ≤ TN−2
n }). Write

(a) = χnP≤Ñ ′nNnF (vn)− χ
d+2
d−2
n F (P≤Ñ ′nNnvn)

= χn[P≤Ñ ′nNnF (vn)− F (P≤Ñ′nNn
vn)] + χn(1− χ

4
d−2
n )F (P≤Ñ ′nNnvn)

= (a′) + (a′′).

By the Leibniz rule and a change of variables,

‖∇(a′)‖
L2
tL

2d
d+2
x (|t|≤TN−2

n )

≤ ‖∇[P≤Ñ ′nF (v)− F (P≤Ñ ′nv)]‖
L2
tL

2d
d+2
x (|t|≤T )

+ ‖[P≤Ñ ′nNnF (vn)− F (P≤Ñ ′nNnvn)]∇χn‖
L2
tL

2d
d+2
x (|t|≤TN−2

n )
.

(2.63)

By Lemma 2.5.2, the first term disappears in the limit as n→∞. That lemma also applies

to the second term after a change of variables to give

‖[P≤Ñ ′nNnF (vn)− F (P≤Ñ ′nNnvn)]∇χn‖
L2
tL

2d
d+2
x (|t|≤TN−2

n )

. N ′n‖P≤Ñ ′nNnF (vn)− F (P≤Ñ ′nNnvn)‖
L2
tL

2d
d+2
x (|t|≤TN−2

n )

. N ′n
Nn
‖P≤Ñ ′nF (v)− F (P≤Ñ ′nv)‖

L2
tL

2d
d+2
x (|t|≤T )

→ 0 as n→∞.
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Therefore

lim
n→∞

‖∇(a′)‖
L2
tL

2d
d+2
x (|t|≤TN−2

n )
= 0.

By changing variables, using the bound |xn| . Nn, and referring to Lemma 2.5.2 once more,

‖|x|(a′)‖
L2
tL

2d
d+2
x

. Nn‖P≤Ñ ′nNnF (vn)− F (P≤Ñ ′nNnvn)‖
L2
tL

2d
d+2
x (|t|≤TN−2

n )

. ‖P≤Ñ ′nF (v)− F (P≤Ñ ′nv)‖
L2
tL

2d
d+2
x (|t|≤T )

→ 0 as n→∞.

It follows from Lemma 2.2.2 that

lim
n→∞

‖H
1
2 (a′)‖

L2
tL

2d
d+2
x (|t|≤TN−2

n )
= 0.

To estimate (a′′), we use the Leibniz rule, a change of variables, Hölder, Sobolev embedding,

the bound (2.53), and dominated convergence to obtain

‖∇(a′′)‖
L2
tL

2d
d+2
x

. ‖|P≤ÑnNnvn|
4
d−2∇P≤Ñ ′nNnvn‖L2

tL
2d
d+2
x (|t|≤TN−2

n , |x−xn|∼(N ′n)−1)

+ N ′n
Nn
‖P≤Ñ ′nNnvn‖

d+2
d−2

L∞t L
2d
d−2
x

. ‖∇v‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x

‖P≤Ñ ′nv‖
4
d−2

L

2(d+2)
d−2

t,x (|t|≤T, |x|∼Nn
N′n

)

+O(N
′
n

Nn
)

. C(E(v))(‖P>Ñ ′nv‖
L

2(d+2)
d−2

t,x

+ ‖v‖
L

2(d+2)
d−2

t,x (|t|≤T,|x|&Nn
N′n

)

)
4
d−2 +O(N

′
n

Nn
)

= o(1) +O(N
′
n

Nn
).

Similarly,

‖|x|(a′′)‖
L2
tL

2d
d+2
x

∼ ‖F (P≤Ñ ′nv)‖
L

2(d+2)
d−2

t L
2d
d−2
x (|t|≤T,|x|∼Nn

N′n
)

. (‖P>Ñ ′nv‖
L

2(d+2)
d−2

t L
2d
d−2
x (|t|≤T )

+ ‖v‖
L

2(d+2)
d−2

t L
2d
d−2
x (|t|≤T,|x|∼Nn

N′n
)

)
d+2
d−2

= o(1).

Therefore

lim
N→∞

‖H
1
2 (a′′)‖

L2
tL

2d
d+2
t,x (|t|≤TN−2

n )
= 0
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as well. This completes the analysis for (a).

For (b), note that on the support of the function we have ||xn|2 − |x|2| = |xn−x||xn+x| ∼

Nn(N ′n)−1. Thus by Hölder and Sobolev embedding,

‖∇(b)‖L1
tL

2
x(|t|≤TN−2

n ) .
Nn
N ′n
‖∇P≤Ñ ′nNnvn‖L1

tL
2
x(|t|≤TN−2

n )

+Nn‖P≤Ñ ′nNnvn‖L1
tL

2
x(|t|≤TN−2

n , |x−xn|∼(N ′n)−1)

. (N ′nNn)−1‖∇vn‖L∞t L2
x
→ 0 as n→∞.

Using Hölder and Sobolev embedding, we have

‖|x|(b)‖L1
tL

2
x(|t|≤TN−2

n ) ∼
N2
n

N ′n
‖P≤Ñ ′nNnvn‖L1

tL
2
x(|t|≤TN−2

n ,|x−xn|.(N ′n)−1)

.

 (N ′n)−2‖∇vn‖L∞t L2
x
, limn→∞N

−1
n |xn| = 0

‖vn‖L∞t L2
x

= O(N−1
n ), limn→∞N

−1
n |xn| > 0,

which vanishes as n → ∞ in either case. Thus ‖H1/2(b)‖L1
tL

2
x
→ 0. The term (c) is dealt

with similarly. Finally, to estimate (d), apply Hölder, Bernstein, and the definition (2.58) of

the frequency cutoffs Ñ ′n to obtain

‖∇(d)‖L1
tL

2
x(|t|≤TN−2

n ) . N ′n‖|∇|2P≤Ñ ′nNnvn‖L1
tL

2
x

+ ‖|∇P≤Ñ ′nNnvn|(|∇|
2χn)‖L1

tL
2
x

.

[(
N ′n
Nn

) 1
2

+
(
N ′n
Nn

)2
]
‖∇vn‖L∞t L2

x
→ 0.

Using Hölder in time, we get

‖|x|(d)‖L1
tL

2
x(|t|≤TN−2

n ) .
N ′n
Nn
‖∇vn‖L∞t L2

x
→ 0.

This completes the proof of the lemma.

Next, we estimate the error over the time intervals [−2, TN−2
n ] and [TN−2

n , 2].

Lemma 2.5.4. limT→∞ lim supn→∞ ‖H
1
2 en‖N([−2,TN−2

n ]∪[TN−2
n ,2]) = 0.

Proof. We consider just the forward time interval as the other interval is treated similarly.

Since ṽTn solves the linear equation, the error en is just the nonlinear term:

en = (i∂t −H)ṽTn − F (ṽTn ) = −F (ṽTn ).
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By the chain rule (Corollary 2.2.4) and Strichartz,

‖H
1
2 en‖N([TN−2

n ,2]) . ‖ṽ
T
n ‖

4
d−2

L

2(d+2)
d−2

t,x ([TN−2
n ,2])

‖ṽTn (TN−2
n )‖Σ.

By definition ṽTn (TN−2
n ) = e−

iTN−2
n |xn|2

2 G̃nSnP≤Ñ ′nv(TN−2
n − tn), so Lemma 2.4.2 implies that

lim sup
n→∞

‖ṽTn (TN−2
n )‖Σ .

 ‖v|L∞t Ḣ1
x
, limn→∞N

−1
n |xn| = 0,

‖v‖L∞t H1
x
, limn→∞N

−1
n |xn| > 0

is bounded in either case. Using Strichartz and interpolation, it suffices to show

lim
T→∞

lim sup
n→∞

‖ṽTn ‖
L∞T L

2d
d−2
x ([TN−2

n ,2])
= 0.

As we are assuming Conjecture 2.1.1, there exists v∞ ∈ Ḣ1 so that

lim
t→∞
‖v(t)− e

it∆
2 v∞‖Ḣ1

x
= 0;

if v(0) ∈ H1 the same limit holds with respect to the H1 norm. Then one also has

lim
t→∞

lim sup
n→∞

‖P≤Ñ ′nv(t)− e
it∆
2 v∞‖Ḣ1

x
= 0,

(with the obvious modification if v(0) ∈ H1) and Lemma 2.4.2 implies that

lim
T→∞

lim sup
n→∞

‖ṽn(TN−2
n )− e−

iTN−2
n |xn|2

2 GnSn(e
iT∆

2 v∞)‖Σ = 0.

An application of Strichartz and Corollary 2.4.9 yields

ṽn(t) = e−i(t−TN
−2
n )H [ṽn(TN−2

n )]

= e−i(t−TN
−2
n )H [e−

iTN−2
n |xn|2

2 GnSne
iT∆

2 v∞] + error

= e−itH [GnSnv∞] + error

where limT→∞ lim supn→∞ ‖error‖Σ = 0 uniformly in t. By Sobolev embedding,

lim
T→∞

lim sup
n→∞

‖ṽn‖
L∞t L

2d
d−2
x ([TN−2

n ,2])

= lim
T→∞

lim sup
n→∞

‖e−itH [GnSnv∞]‖
L∞t L

2d
d−2
x ([TN−2

n ,2])
.

A standard density argument using the dispersive estimate for e−itH shows that the last limit

is zero.
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Lemmas 2.5.3 and 2.5.4 together establish (2.62).

Lemma 2.5.5 (Matching initial data). Let un(0) = eitnHGnSnφ as in Proposition 2.5.1.

Then

lim
T→∞

lim sup
n→ ∞

‖ṽTn (−tn)− un(0)‖Σ = 0.

Proof. If tn ≡ 0, then by definition ṽTn (0) = GnSnP≤N ′nφ, so Lemma 2.4.2 and the definition

(2.58) of the frequency parameter N ′n imply

lim
n→∞

‖ṽTn (0)− un(0)‖Σ . lim
n→∞

 ‖P>N ′nφ‖H1 , limn→∞N
−1
n |xn| > 0

‖P>N ′nφ‖Ḣ1 , limn→∞N
−1
n |xn| = 0

 = 0.

Next we consider the case N2
ntn →∞; the case N2

ntn → −∞ works similarly. Arguing as

in the previous lemma and recalling that in this case, the solution v was chosen to scatter

backward in time to e
it∆
2 φ, for n large we have

ṽTn (−tn) = eitnH [GnSnφ] + error

where limT→∞ lim supn→∞ ‖error‖Σ → 0. The claim follows.

For each fixed T > 0, set

ũTn (t) = ṽTn (t− tn), (2.64)

which is defined for t ∈ [−1, 1]. Then for a fixed large value of T , this is an approximate

solution for all n sufficiently large in the sense of Proposition 2.3.3. Indeed, by (2.60) and

(2.61), ũTn satisfy the hypotheses (2.30) with E,L = C(‖φ‖Ḣ1). Lemmas 2.5.3, 2.5.4, 2.5.5,

Sobolev embedding, and Strichartz show that for any ε > 0, there exists T > 0 so that ũTn

satisfies the hypotheses (2.31) for all large n. Invoking Proposition 2.3.3, we obtain the first

claim of Proposition 2.5.1 concerning the existence of solutions.

The remaining assertion of Proposition 2.5.1 regarding approximation by smooth func-

tions will follow from the next lemma. Recall the notation

‖f‖LqtΣrx = ‖H
1
2f‖LqtLrx .
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Lemma 2.5.6. Fix finitely many admissible (qk, rk) with 2 ≤ rk < d. For every ε > 0, there

exists a smooth function ψε ∈ C∞c (R×Rd) such that for all k

lim sup
T→∞

lim sup
n→∞

‖ṽTn − G̃n[e−
itN−2

n |xn|2
2 ψε](t+ tn)‖LqkT Σ

rk
x ([−2,2]) < ε.

Proof. We continue using the notation defined at the beginning. Let

w̃Tn =


e−

it|xn|2
2 G̃n[Snv](t+ tn), |t| ≤ TN−2

n

e−i(t−TN
−2
n )H [w̃Tn (TN−2

n )], t ≥ TN−2
n

e−i(t+TN
−2
n )H [w̃Tn (−TN−2

n )], t ≤ −TN−2
n

This is essentially ṽTn in (2.59) without the frequency cutoffs. We see first that ṽTn can be

well-approximated by w̃Tn in spacetime:

lim sup
n→∞

‖ṽTn − w̃Tn‖Lqkt Σ
rk
x ([−2,2]) = 0,

sup
T>0

lim sup
n→∞

‖w̃Tn‖Lqkt Σ
rk
x ([−2,2]) <∞.

(2.65)

Indeed by dominated convergence,

‖∇(v − P≤Ñ ′nv)‖Lqkt L
rk
x (R×Rd) → 0 as n→∞,

thus (2.65) follows from Lemma 2.4.2 and the Strichartz inequality for e−itH .

A consequence of the dispersive estimate is that most of the spacetime norm of w̃Tn is

concentrated in the time interval |t| ≤ TN−2
n :

lim
T→∞

lim sup
n→∞

‖w̃Tn‖Lqkt Σ
rk
x ([−2,−TN−2

n ]∪[TN−2
n ,2]) = 0. (2.66)

To see this, it suffices by symmetry to consider the forward interval. Recall that v scatters

forward in Ḣ1 (and in H1 if v(0) ∈ H1) to some e
it∆
2 v∞. By Lemma 2.4.2,

lim
T→∞

lim sup
n→∞

‖(G̃nSnv(TN−2
n + tn)−GnSn(e

iT∆
2 v∞)‖Σ = 0.

By Strichartz,

lim
T→∞

lim sup
n→∞

‖e
iTN−2

n |xn|2
2 w̃Tn − e−i(t−TN

−2
n )H [GnSn(e

iT∆
2 v∞)]‖Lqkt Σ

rk
x ([TN−2

n ,2]) = 0
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By Corollary 2.4.9 and Strichartz, for each T > 0 we have

lim
n→∞

‖e−i(t−TN
−2
n )H [GnSn(e

iT∆
2 v∞)]− e

iT (r∞)2

2 e−itH [GnSnv∞]‖Lqkt Σ
rk
x

= 0.

For each ε > 0, choose vε∞ ∈ C∞c such that ‖v∞ − vε∞‖Ḣ1 < ε. By the dispersive estimate,

‖e−itH [Gnv
ε
∞]‖Lqkt L

rk
x ([TN−2

n ,2]) . T
− 1
qk ‖vε∞‖

L
r′
k
x

Combining the above with Strichartz and Lemma 2.4.2, we get

lim sup
n→∞

‖w̃Tn‖Lqkt Σ
rk
x ([TN−2

n ,2]) . o(1) + ε+Oε,qk(T
− 1
qk ) as T →∞.

Taking T →∞, we find

lim sup
T→∞

lim sup
n→∞

‖w̃Tn‖Lqkt Σ
rk
x ([TN−2

n ,2]) . ε

for any ε > 0, thereby establishing (2.66).

Choose ψε ∈ C∞c (R ×Rd) such that
∑N

k=1 ‖v − ψε‖Lqkt Ḣ
1,rk
x

< ε. By combining Lemma

2.4.2 with (2.65) and (2.66), we get

lim
T→∞

lim sup
n→∞

‖ṽn(t, x)− e−
it|xn|2

2 G̃nψ
ε(t+ tn)‖Lqkt Σ

rk
x ([−2,2]) . ε.

This completes the proof of the lemma, hence Proposition 2.5.1.

Remark. From the proof it is clear that that the proposition also holds if the interval

I = [−1, 1] is replaced by any smaller interval.

2.6 Palais-Smale and the proof of Theorem 2.1.2

In this section we prove a Palais-Smale-type compactness property for sequences of blowing

up solutions to (2.1). This will quickly lead to Theorem 2.1.2.

For a maximal solution u to (2.1), define

S∗(u) = sup{SI(u) : I is an open interval with ≤ 1},

56



where we set SI(u) = ∞ if u is not defined on I. All solutions in this section are assumed

to be maximal. Set

Λd(E) = sup{S∗(u) : u solves (2.1), µ = +1, E(u) = E}

Λf (E) = sup{S∗(u) : u solves (2.1), µ = −1, E(u) = E,

‖∇u(0)‖L2 < ‖∇W‖L2}.

Finally, define

Ed = {E : Λd(E) <∞}, Ef = {E : Λf (E) <∞}.

By the local theory, Theorem 2.1.2 is equivalent to the assertions

Ed = [0,∞), Ef = [0, E∆(W )).

Suppose Theorem 2.1.2 failed. By the small data theory, Ed, Ef are nonempty and

open, and the failure of Theorem 2.1.2 implies the existence of a critical energy Ec > 0,

with Ec < E∆(W ) in the focusing case, such that Λd(E), Λf (E) = ∞ for E > Ec and

Λd(E), Λf (E) <∞ for all E < Ec.

Define the spaces

Ẋ1 =

 L10
t,x ∩ L5

tΣ
30
11
x ([−1

2
, 1

2
]×R3), d = 3

L
2(d+2)
d−2

t,x ∩ L
2(d+2)
d

t Σ
2(d+2)
d

x ([−1
2
, 1

2
]×Rd), d ≥ 4.

When d = 3, also define

Ẏ 1 = Ẋ1 ∩ L
10
3
t Σ

10
3
x ([−1

2
, 1

2
]×R3).

Remark. The case d = 3 is singled out for technical reasons. Our choice of Strichartz

norm L5
tΣ

30/11
x is guided by the fact that 30

11
< 3, which is needed for Sobolev embedding.

In higher dimensions the symmetric Strichartz norm suffices since 2(d+2)
d

< d for all d ≥ 4.

This distinction necessitates a separate but essentially parallel treatment of various estimates

when d = 3.
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Proposition 2.6.1 (Palais-Smale). Assume Conjecture 2.1.1 holds. Suppose that un : (tn−
1
2
, tn + 1

2
)×Rd → C is a sequence of solutions with

lim
n→∞

E(un) = Ec, lim
n→∞

S(tn− 1
2
,tn](un) = lim

n→∞
S[tn,tn+ 1

2
)(un) =∞.

In the focusing case, assume also that Ec < E∆(W ) and ‖∇un(tn)‖L2 < ‖∇W‖L2. Then

there exists a subsequence such that un(tn) converges in Σ.

Let us first see how this would imply the main theorem.

Proof of Theorem 2.1.2. Suppose the theorem failed. In the defocusing case, there exist

Ec ∈ (0,∞) and a sequence of solutions un with E(un) → Ec, S(− 1
4
,0](un) → ∞, and

S[0, 1
4

)(un)→∞. The same is true in the focusing case except Ec is restricted to the interval

(0, E∆(W )) and lim supn ‖un(0)‖Ḣ1 < ‖W‖Ḣ1 . By Proposition 2.6.1, after passing to a

subsequence un(0) converges in Σ to some φ. Then E(φ) = limnE(un(0)) = Ec.

Let u∞ : (−Tmin, Tmax) → C be the maximal lifespan solution to (2.1) with u∞(0) = φ.

By comparing u with the un and applying Proposition 2.3.3, we see that S([0, 1
2

)(u∞) =

S(− 1
2
,0](u∞) = ∞. So −1/2 ≤ −Tmin < Tmax ≤ 1/2. But Proposition 2.6.1 implies that the

orbit {u∞(t) : t ∈ (−Tmin, Tmax)} is precompact in Σ, thus there is a sequence of times tn

increasing to Tmax such that u∞(tn) converges in Σ to some ψ. Taking a local solution with

initial data equal to ψ, we can then invoke Proposition 2.3.3 to extend u∞ to some larger

interval (−Tmin, Tmax + η), contradicting the maximality of u∞.

Proof of Proposition 2.6.1. By replacing un(t) with un(t+ tn), we may assume tn ≡ 0. Note

that by energy conservation and Corollary 2.7.2, this time translation does not change the

hypotheses of the focusing case.

Observe (referring to the discussion in Section 2.7 for the focusing case) that the sequence

un(0) is bounded in Σ. Applying Proposition 2.4.14, after passing to a subsequence we have

a decomposition

un(0) =
J∑
j=1

eit
j
nHGnSnφ

j + wJn =
J∑
j=1

φjn + wJn
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with the properties stated in that proposition. In particular, the remainder has asymptoti-

cally trivial linear evolution:

lim
J→J∗

lim sup
n→∞

‖e−itHwJn‖
L

2(d+2)
d−2

t,x

, (2.67)

and the energies asymptotically decouple:

sup
J

lim
n→∞

|E(un)−
J∑
j=1

E(φjn)− E(wJn)| = 0. (2.68)

Observe that lim infnE(φjn) ≥ 0. This is obvious in the defocusing case. In the focusing

case, (2.47) and the discussion in Section 2.7 imply that

sup
j

lim sup
n
‖φjn‖Σ ≤ ‖un‖Σ < ‖∇W‖L2 ,

so the claim follows from Lemma 2.7.1. Therefore, there are two possibilities.

Case 1: supj lim supn→∞E(φjn) = Ec.

By combining (2.68) with the fact that the profiles φjn are nontrivial in Σ, it follows that

J∗ = 1 and

un(0) = eitnHGnSnφ+ wn, lim
n→∞

‖wn‖Σ = 0.

We argue that Nn ≡ 1 (thus xn = 0 and tn = 0). Suppose Nn →∞.

Proposition 2.5.1 implies that for all large n, there exists a unique solution un on [−1
2
, 1

2
]

with un(0) = eitnHGnSnφ and lim supn→∞ S(− 1
2
, 1
2

)(un) ≤ C(Ec). By perturbation theory

(Proposition 2.3.3),

lim sup
n→∞

S[− 1
2
, 1
2

](un) ≤ C(Ec),

which is a contradiction. Therefore, Nn ≡ 1, tjn ≡ 0, xjn ≡ 0, and

un(0) = φ+ wn

for some φ ∈ Σ. This is the desired conclusion.

Case 2: supj lim supn→∞E(φjn) ≤ Ec − 2δ for some δ > 0.
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By the definition of Ec, there exist solutions vjn : (−1
2
, 1

2
)×Rd → C with

‖vjn‖
L

2(d+2)
d−2

t,x ([− 1
2
, 1
2

])

.Ec,δ E(φjn)
1
2 .

By standard arguments (c.f. [TVZ07, Lemma 3.11]), this implies the seemingly stronger

bound

‖vjn‖Ẋ1 .Ec,δ E(φjn)
1
2 . (2.69)

In the case d = 3, we also have ‖vjn‖Ẏ 1 . E(φjn)
1
2 . Put

uJn =
J∑
j=1

vjn + e−itHwJn . (2.70)

We claim that for sufficiently large J and n, uJn is an approximate solution in the sense of

Proposition 2.3.3. To prove this claim, we check that uJn has the following three properties:

(i) limJ→J∗ lim supn→∞ ‖uJn(0)− un(0)‖Σ = 0.

(ii) lim supn→∞ ‖uJn‖
L

2(d+2)
d−2

t,x ([−T,T ])

.Ec,δ 1 uniformly in J .

(iii) limJ→J∗ lim supn→∞ ‖H
1
2 eJn‖N([− 1

2
, 1
2

]) = 0, where

en = (i∂t −H)uJn − F (uJn).

There is nothing to check for part (i) as uJn(0) = un(0) by construction. The verification

of (ii) relies on the asymptotic decoupling of the nonlinear profiles vjn, which we record in

the following two lemmas.

Lemma 2.6.2 (Orthogonality). Suppose that two frames F j = (tjn, x
j
n, N

j
n), Fk = (tk, xkn, N

k
n)

are orthogonal, and let G̃j
n, G̃

k
n be the associated spacetime scaling and translation operators

as defined in (2.33). Then for all ψj, ψk in C∞c (R×Rd),

‖(G̃j
nψ

j)(G̃k
nψ

k)‖
L
d+2
d−2
t,x

+ ‖(G̃j
nψ

j)∇(G̃k
nψ

k)‖
L
d+2
d−1
t,x

+ ‖|x|(G̃j
nψ

j)(G̃k
nψ

k)‖
L
d+2
d−1
t,x

+ ‖|x|2(G̃j
nψ

j)(G̃k
nψ

k)‖
L
d+2
d

t,x

+ ‖(∇G̃j
nψ

j)(∇G̃k
nψ

k)‖
L
d+2
d

t,x

→ 0

as n→∞. When d = 3, we also have

‖|x|2(G̃j
nψ

j)(G̃k
nψ

k)‖
L5
tL

15
11
x

+ ‖(∇G̃j
nψ

j)(∇G̃k
nψ

k)‖
L5
tL

15
11
x

→ 0.
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Proof. The arguments for each term are similar, and we only supply the details for the second

term. Suppose Nk
n(N j

n)−1 →∞. By the chain rule, a change of variables, and Hölder,

‖(G̃j
nψ

j)∇(G̃k
nψ

k)‖
L
d+2
d−1
t,x

= ‖ψj∇(G̃j
n)−1G̃k

nψ
k‖

L
d+2
d−1
t,x

≤ ‖ψjχn‖
L

2(d+2
d−2
t,x

‖∇ψk‖
L

2(d+2)
d

t,x

,

where χn is the characteristic function of the support of ∇(G̃j
n)−1G̃k

nψ
k. As the support of

χn has measure shrinking to zero, we have

lim
n→∞

‖ψjχn‖
L

2(d+2)
d−2

t,x

= 0.

A similar argument deals with the case where N j
n(Nk

n)−1 →∞. Therefore, we may suppose

that

Nk
n

Nj
n
→ N∞ ∈ (0,∞).

Make the same change of variables as before, and compute

∇(G̃j
n)−1G̃k

nψ
k(t, x) = (N

k
n

Nj
n
)
d
2 (∇ψk)[N

k
n

Nj
n
t+ (Nk

n)2(tjn − tkn), N
k
n

Nj
n
x+Nk

n(xjn − xkn)].

The decoupling statement (2.49) implies that

(Nk
n)2(tjn − tkn) +Nk

n |xjn − xkn| → ∞.

Therefore, the supports of ψj and ∇(G̃j
n)−1G̃k

nψ
k are disjoint for large n.

Lemma 2.6.3 (Decoupling of nonlinear profiles). Let vjn be the nonlinear solutions defined

above. Then when d ≥ 4,

‖vjnvkn‖
L

2(d+2)
d−2

t,x

+ ‖vjn∇vkn‖
L
d+2
d−1
t,x

+ ‖|x|vjnvkn‖
L
d+2
d−1
t,x

+ ‖(∇vjn)(∇vkn)‖
L

2(d+2)
d

t,x

+ ‖|x|2vjnvkn‖
L

2(d+2)
d

t,x

→ 0

as n→∞. When d = 3, the same statement holds with the last two expressions replaced by

‖(∇vjn)(∇vkn)‖
L5
tL

15
11
x

+ ‖|x|2vjnvkn‖
L5
tL

30
11
x

→ 0.
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Proof. We spell out the details for the ‖vjn|x|vkn‖
L
d+2
d−1
t,x

term. Consider first the case d ≥ 4.

As 2 < 2(d+2)
d

< d, by Proposition 2.5.1 we can approximate vjn in Ẋ1 by test functions

cjnG̃nψ
j, ψj ∈ C∞c (R×Rd), cjn(t) = e−

i(t−tjn)|xjn|
2

2 .

By Hölder and a change of variables,

‖vjn|x|vkn‖
L
d+2
d−1
t,x

≤ ‖(vjn − cjnG̃j
nψ

j)|x|vkn‖
L
d+2
d−1
t,x

+ ‖|x|G̃j
nψ

j(vkn − cknG̃k
nψ

k)‖
L
d+2
d−1
t,x

+ ‖|x|G̃j
nψ

jG̃k
nψ

k‖
L
d+2
d−1
t,x

≤ ‖(vjn − cjnG̃j
nψ

j)‖
L

2(d+2)
d−2

t,x

‖vkn‖Ẋ1

+ ‖ψj‖
L

2(d+2)
d−2

t,x

‖(vkn − cknG̃k
nψ

k)‖Ẋ1 + ‖(G̃j
nψ

j)|x|(G̃k
nψ

k)‖
L
d+2
d−1
t,x

By first choosing ψj, then ψk, then invoking the previous lemma, we obtain for any ε > 0

that

lim sup
n→∞

‖vjn|x|vkn‖
L
d+2
d−1
t,x

≤ ε.

When d = 3, we also approximate vjn in Ẋ1 (which is possible because the exponent 30
11

in

the definition of Ẋ1 is less than 3), and estimate

‖vjn|x|vkn‖
L

5
2
t,x

≤ ‖(vjn − cjnG̃j
nψ

j)|x|vkn‖
L

5
2
t,x

+ ‖|x|G̃j
nψ

j(vkn − cknG̃k
nψ

k)‖
L

5
2
t,x

+ ‖|x|G̃j
nψ

jG̃k
nψ

k‖
L

5
2
t,x

≤ ‖(vjn − cjnG̃j
nψ

j)‖L10
t,x
‖vkn‖Ẏ 1

+ ‖ψj‖L5
tL

30
x
‖vkn − cknG̃k

nψ
k‖Ẋ1 + ‖(G̃j

nψ
j)|x|(G̃k

nψ
k)‖

L
5
2
t,x

which, just as above, can be made arbitrarily small as n → ∞. Similar approximation

arguments deal with the other terms.

Let us verify Claim (ii) above. In fact we shall show that

lim sup
n→∞

‖uJn‖Ẋ1([− 1
2
, 1
2

]) .Ec,δ 1 uniformly in J. (2.71)
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First, observe that

S(uJn) =

∫∫
|

J∑
j=1

vjn + e−itHwJn |
2(d+2)
d−2 dxdt . S(

J∑
j=1

vjn) + S(e−itHwJn).

By the properties of the LPD, limJ→J∗ lim supn→∞ S(e−itHwJn) = 0. Recalling (2.69), write

S(
J∑
j=1

vjn) =
∥∥∥(

J∑
j=1

vjn)2
∥∥∥ d+2
d−2

L
d+2
d−2
t,x

≤ (
J∑
j=1

‖vjn‖2

L

2(d+2)
d−2

t,x

+
∑
j 6=k

‖vjnvkn‖
L
d+2
d−2
t,x

)
d+2
d−2

. (
J∑
j=1

E(φjn) + oJ(1))
d+2
d−2

where the last line used Lemma 2.6.3. As energy decoupling implies lim supn→∞
∑J

j=1E(φjn) ≤

Ec, we obtain limJ→J∗ lim supn→∞ S(uJn) .Ec,δ 1.

By mimicking this argument one also obtains

lim sup
n→∞

(‖∇uJn‖
L

2(d+2)
d

t,x

+ ‖|x|uJn‖
L

2(d+2)
d

t,x

) .Ec,δ 1 uniformly in J.

Property (ii) is therefore verified in the case d ≥ 4. The case d = 3 is dealt with similarly.

Remark. The above argument shows that for each J and each η > 0, there exists J ′ ≤ J

such that

lim sup
n→∞

‖
J∑

j=J ′

vjn‖Ẋ1([− 1
2
, 1
2

]) ≤ η.

It remains to check property (iii) above, namely, that

lim
J→J∗

lim sup
n→∞

‖H1/2eJn‖N([− 1
2
, 1
2

]) = 0. (2.72)

Let F (z) = |z|
4
d−2 z and decompose

eJn = [
J∑
j=1

F (vjn)− F (
J∑
j=1

vjn)] + [F (uJn − e−itHwJn)− F (uJn)] = (a) + (b). (2.73)

Consider (a) first. Suppose d ≥ 6. Using the chain rule ∇F (u) = Fz(u)∇u + Fz(u)∇u and

the estimates

|Fz(z)|+ |Fz(z)| = O(|z|
4
d−2 ), |Fz(z)− Fz(w)|+ |Fz(z)− Fz(w)| = O(|z − w|

4
d−2 ),
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we compute

|∇(a)| .
J∑
j=1

∑
k 6=j

|vkn|
4
d−2 |∇vjn|.

By Hölder, Lemma 2.6.3, and the induction hypothesis (2.69),

‖∇(a)‖
L

2(d+2)
d+4

t,x

.
J∑
j=1

∑
k 6=j

‖|vkn||∇vjn|‖
4
d−2

L
d+2
d−1
t,x

‖∇vkn‖
d−6
d−2

L
2(d+2)
d

t,x

= oJ(1)

as n→∞. When 3 ≤ d ≤ 5, we have instead

|∇(a)| .
J∑
j=1

∑
k 6=j

|vkn||∇vjn|O(
∣∣∣ J∑
k=1

vkn

∣∣∣ 6−d
d−2

+ |vjn|
6−d
d−2 ),

thus

‖∇(a)‖
L

2(d+2)
d+4

t,x

.J

(
J∑
j=1

‖vjn‖
6−d
d−2

L

2(d+2)
d−2

t,x

)
J∑
j=1

∑
k 6=j

‖|vkn||∇vjn|‖
L
d+2
d−1
t,x

= oJ(1).

Similarly, writing

|(a)| ≤
J∑
j=1

∣∣∣|vjn| 4
d−2 − |

J∑
k=1

vkn|
4
d−2

∣∣∣|vjn| . J∑
j=1

∑
k 6=j

|vjn||vkn|
4
d−2 ,

we have

‖x(a)‖
L

2(d+2)
d+4

t,x

J∑
j=1

∑
k 6=j

‖|x|vjn‖
d−6
d−2

L
2(d+2)
d

t,x

‖|x|vjnvkn‖
4
d−2

L
d+2
d−1
t,x

= oJ(1).

When 3 ≤ d ≤ 5,

|(a)| .
J∑
j=1

∑
k 6=j

|vjn|vkn|O(
∣∣∣ J∑
k=1

vkn

∣∣∣ 6−d
d−2

+ |vjn|
6−d
d−2 ),

hence also

‖|x|(a)‖
L

2(d+2)
d+4

t,x

= oJ(1).

Summing up,

‖H1/2(a)‖
L

2(d+2)
d+4

t,x

. ‖∇(a)‖
L

2(d+2)
d+4

t,x

+ ‖x(a)‖
L

2(d+2)
d+4

t,x

= oJ(1).
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Next we estimate (b), restricting temporarily to dimensions d ≥ 4. When d ≥ 6, write

(b) = F (uJn − e−itHwJn)− F (uJn)

= (|uJn − e−itHwJn |
4
d−2 − |uJn|

4
d−2 )

J∑
j=1

vjn − (e−itHwJn)|uJn|
4
d−2

= O(|e−itHwJn |
4
d−2 )

J∑
j=1

vjn − (e−itHwJn)|uJn|
4
d−2 ,

and apply Hölder’s inequality:

‖|x|(b)‖
L

2(d+2)
d+4

t,x

. ‖e−itHwJn‖
4
d−2

L

2(d+2)
d−2

t,x

‖
J∑
j=1

|x|vjn‖
L

2(d+2)
d

t,x

+ ‖|x|uJn‖
4
d−2

L
2(d+2)
d

t,x

‖|x|e−itHwJn‖
d−6
d−2

L
2(d+2)
d

t,x

‖e−itHwJn‖
4
d−2

L

2(d+2)
d−2

t,x

(2.74)

When d = 4, 5,

(b) = (e−itHwJn)O(|uJn|
6−d
d−2 + |uJn − e−itHwJn |

6−d
d−2 )

J∑
j=1

vjn − (e−itHwJn)|uJn|
4
d−2 ,

thus

‖|x|(b)‖
L

2(d+2)
d+4

t,x

. ‖e−itHwJn‖
L

2(d+2)
d−2

t,x

‖|x|
J∑
j=1

vjn‖
L

2(d+2)
d

t,x

(‖uJn‖
6−d
d−2

L

2(d+2)
d−2

t,x

+ ‖e−itHwJn‖
6−d
d−2

L

2(d+2)
d−2

t,x

)

+ ‖e−itHwJn‖
L

2(d+2)
d−2

t,x

‖xuJn‖
L

2(d+2)
d

t,x

‖uJn‖
6−d
d−2

L

2(d+2)
d−2

t,x

.

Using (2.71), Strichartz, and the decay property (2.67), we get

lim
J→J∗

lim sup
n→∞

‖|x|(b)‖
L

2(d+2)
d+4

t,x

= 0.

It remains to bound ∇(b). By the chain rule,

∇(b) . |e−itHwJn |
4
d−2 |
∣∣∣ J∑
j=1

∇vjn
∣∣∣+ |uJn|

4
d−2 |∇e−itHwJn |

= (b′) + (b′′).
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The first term (b′) can be handled in the manner of (2.74) above. To deal with (b′′), fix a

small parameter η > 0, and use the above remark to obtain J ′ = J ′(η) ≤ J such that

‖
J∑

j=J ′

vjn‖Ẋ1 ≤ η.

By the subadditivity of z 7→ |z|
4
d−2 (which is true up to a constant when d = 4, 5) and Hölder,

‖(b′′)‖
L

2(d+2)
d+4

t,x

= ‖|
J∑
j=1

vjn + e−itHwJn |
4
d−2 |∇e−itHwJn |‖

L

2(d+2)
d+4

t,x

. ‖e−itHwJn‖
4
d−2

L

2(d+2)
d−2

t,x

‖H1/2e−itHwJn‖
L

2(d+2)
d

t,x

+ ‖
J∑

j=J ′

vjn‖
4
d−2

L

2(d+2)
d−2

t,x

‖H1/2e−itHwJn‖
L

2(d+2)
d

t,x

+ CJ ′
J ′−1∑
j=1

‖∇e−itHwJn‖
d−6
d−2

L
2(d+2)
d

t,x

‖|vjn||∇e−itHwJn‖
4
d−2

L
d+2
d−1
t,x

.

By Strichartz and the decay of e−itHwJn in L
2(d+2)
d−2

t,x , the first term goes to 0 as J →∞, n→∞.

By Strichartz and the definition of J ′, the second term is bounded by

η
4
d−2‖wJn‖Σ

which can be made arbitrarily small since lim supn→∞ ‖wJn‖Σ is bounded uniformly in J . To

finish, we check that for each fixed j

lim
J→J∗

lim sup
n→∞

‖|vjn|∇e−itHwJn‖
L
d+2
d−1
t,x

= 0. (2.75)

For any ε > 0, there exist ψj ∈ C∞c (R×Rd) such that if

cjn = e−
i(t−tjn)|xjn|

2

2

then

lim sup
n→∞

‖vjn − cjnG̃j
nψ

j‖
L

2(d+2)
d−2

t,x ([− 1
2
, 1
2

])

< ε,

Note that G̃j
nψ

j is supported on the set

{|t− tjn| . (N j
n)−2, |x− xjn| . (N j

n)−1}.
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Thus for all n sufficiently large,

‖vjn∇e−itHwJn‖
L
d+2
d−1
t,x

≤ ‖vjn − cjnG̃j
nψ

j‖
L

2(d+2)
d−2

t,x

‖∇e−itHwJn‖
L

2(d+2)
d

t,x

+ ‖G̃j
nψ

j∇e−itHwJn‖
L
d+2
d−1
t,x

.Ec ε+ ‖(G̃j
nψ

j)∇e−itHwJn‖
L
d+2
d−1
t,x

.

By Hölder, noting that d+2
d−1
≤ 2 whenever d ≥ 4,

‖(G̃j
nψ

j)∇e−itHwJn‖
L
d+2
d−1
t,x

.ε (N j
n)

d−2
2 ‖∇e−itHwJn‖

L
d+2
d−1
t,x (|t−tjn|.(Nj

n)−2,|x−xjn|.(Nj
n)−1)

. N j
n‖∇e−itHwJn‖L2

t,x(|t−tjn|.(Nj
n)−2,|x−xjn|.(Nj

n)−1);

Corollary 2.2.10 implies

‖vjn∇e−itHwJn‖
L
d+2
d−1
t,x

. ε+ Cε,Ec‖e−itHwJn‖
1
3

L

2(d+2)
d−2

t,x

.

Sending n→∞, then J → J∗, then ε→ 0 establishes (2.75), and with it, Property (iii).

When d = 3, we estimate (b) in (2.73) instead in the L
5
3
t L

30
23
x dual Strichartz norm. Write

(b) = (e−itHwJn)vjnO(|uJn|3 + |uJn − e−itHwJn |3)
J∑
j=1

vjn − (e−itHwJn)|uJn|4,

and apply Hölder’s inequality:

‖|x|(b)‖
L

5
3
t L

30
23
x

. ‖e−itHwJn‖L10
t,x
‖uJn‖3

L10
t,x
‖H1/2uJn‖

L5
tL

30
11
x

+ ‖e−itHwJn‖L10
t,x

(‖uJn‖3
L10
t,x

+ ‖e−itHwJn‖3
L10
t,x

)‖H
1
2

J∑
j=1

vjn‖
L5
tL

30
11
x

.
(2.76)

Using (2.67) and (2.71), we have

lim
J→J∗

lim sup
n→∞

‖|x|(b)‖
L

5
3
t L

30
11
x

= 0.

It remains to bound ∇(b). By the chain rule,

∇(b) = O

(
(|uJn − e−itHwJn |4 − |uJn|4)∇

J∑
j=1

vjn

)
+ |uJn|4|∇e−itHwJn |

= (b′) + (b′′).
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The first term (b′) can be treated in the manner of ‖|x|(b)‖
L

5
3
t L

30
23
x

above. We now concern

ourselves with (b′′). Fix a small parameter η > 0, and use the above remark to obtain

J ′ = J ′(η) ≤ J such that

‖
J∑

j=J ′

vjn‖Ẋ1 ≤ η.

Thus by the triangle inequality and Hölder,

‖(b′′)‖
L

5
3
t L

30
23
x

= ‖|
J∑
j=1

vjn + e−itHwJn |4(e−itHwJn)‖
L

5
3
t L

30
23
x

. ‖e−itHwJn‖4
L10
t,x
‖H

1
2 e−itHwJn‖

L5
tL

30
11
x

+ ‖|
J∑

j=J ′

vjn|4|∇e−itHwJn |‖
L

5
3
t L

30
23
x

+ CJ ′
J ′∑
j=1

‖|vjn|4∇e−itHwJn‖
L

5
3
t L

30
23
x

. ‖e−itHwJn‖4
L10
t,x
‖H

1
2 e−itHwJn‖

L5
tL

30
11
x

+ ‖
J∑

j=J ′

vjn‖4
Ẋ1‖|∇e−itHwJn |‖

L5
tL

30
11
x

+ CJ ′
J ′∑
j=1

‖|vjn|4∇e−itHwJn‖
L

5
3
t L

30
23
x

By Strichartz and the decay of e−itHwJn in L10
t,x, the first term goes to 0 as J →∞, n→∞.

By Strichartz and the definition of J ′, the second term is bounded by

η4‖wJn‖Σ

which can be made arbitrarily small since lim supn→∞ ‖wJn‖Σ is bounded uniformly in J . To

finish, we show that for each fixed j

lim
J→J∗

lim sup
n→∞

‖|vjn|4∇e−itHwJn‖
L

5
3
t L

30
11
x

= 0.

By Hölder,

‖|vjn|4∇e−itHwJn‖
L

5
3
t L

30
23
x

≤ ‖vjn‖3
L10
t,x
‖vjn∇e−itHwJn‖

L
10
3
t L

15
7
x

,

so by (2.69) it suffices to show

lim
J→J∗

lim sup
n→∞

‖vjn∇e−itHwJn‖
L

10
3
t L

15
7
x

= 0. (2.77)
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For any ε > 0, there exists ψj ∈ C∞c (R×R3) and functions cjn(t), |cjn| ≡ 1 such that

lim sup
n→∞

‖vjn − cjnG̃j
nψ

j‖L10
t,x([− 1

2
, 1
2

]) < ε,

Note that G̃j
nψ

j is supported on the set

{|t− tjn| . (N j
n)−2, |x− xjn| . (N j

n)−1}.

Thus for all n sufficiently large,

‖vjn∇e−itHwJn‖
L

10
3
t L

15
7
x

≤ ‖vjn − cjnG̃j
nψ

j‖L10
t,x
‖∇e−itHwJn‖

L5
tL

30
11
x

+ ‖G̃j
nψ

j∇e−itHwJn‖
L

10
3
t L

15
7
x

.Ec ε+ ‖(G̃j
nψ

j)∇e−itHwJn‖
L

10
3
t L

15
7
x

.

From the definition of the operators G̃j
n, we have

‖(G̃j
nψ

j)∇e−itHwJn‖
L

10
3
t L

15
7
x

.ε N
1
2
n ‖∇e−itHwJn‖

L
10
3
t L

15
7
x (|t−tjn|.(Nj

n)−2,|x−xjn|.(Nj
n)−1)

.

Corollary 2.2.10 implies

‖vjn∇e−itHwJn‖
L

10
3
t L

15
7
x

. ε+ Cε‖e−itHwJn‖
1
9

L10
t,x
‖wJn‖

8
9
Σ.

Sending n → ∞, then J → J∗, then ε → 0 establishes (2.77), and with it, Property (iii).

This completes the treatment of the case d = 3.

By perturbation theory, lim supn→∞ S(−T,T ) ≤ C(Ec) <∞, contrary to the Palais-Smale

hypothesis. This rules out Case 2 and completes the proof of Proposition 2.6.1.

2.7 Proof of Theorem 2.1.3

We begin by recalling some facts about the ground state

W (x) = (1 + |x|2
d(d−2)

)−
d−2

2 ∈ Ḣ1(Rd)

This function satisfies the elliptic equation

1
2
∆W +W

4
d−2W = 0.
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It is well-known (c.f. Aubin [Aub76] and Talenti [Tal76]) that the functions witnessing the

sharp constant in the Sobolev inequality

‖f‖
L

2d
d−2 (Rd)

≤ Cd‖∇f‖L2(Rd),

are precisely those of the form f(x) = αW (β(x− x0)), α ∈ C, β > 0, x0 ∈ Rd.

For the reader’s convenience, we reiterate the definitions of the energy associated to the

focusing energy-critical NLS with and without potential:

E∆(u) =

∫
Rd

1
2
|∇u|2 − (1− 2

d
)|u|

2d
d−2 dx,

E(u) = E∆(u) + 1
2
‖xu‖2

L2 .

Lemma 2.7.1 (Energy trapping [KM06]). Suppose E∆(u) ≤ (1− δ0)E∆(W ) .

• Either ‖∇u‖L2 < ‖∇W‖L2 or ‖∇u‖L2 > ‖∇W‖L2.

• If ‖∇u‖L2 < ‖∇W‖L2, then there exists δ1 > 0 depending on δ0 such that

‖∇u‖L2 ≤ (1− δ1)‖∇W‖L2 ,

and E∆(u) ≥ 0.

• If ‖∇u‖L2 > ‖∇W‖L2 then there exists δ2 > 0 depending on δ0 such that

‖∇u‖L2 ≥ (1 + δ2)‖∇W‖L2 ,

and 1
2
‖∇u‖2

L2 − ‖u‖
2d
d−2

L
2d
d−2
≤ −δ0E∆(W ).

Now suppose E(u) < E∆(W ) and ‖∇u‖L2 ≤ ‖∇W‖L2 . The energy inequality can be

written as

‖u‖2
Σ + (1− 2

d
)(‖W‖

2d
d−2

L
2d
d−2
− ‖u‖

2d
d−2

L
2d
d−2

) ≤ ‖∇W‖2
L2 .

By the variational characterization of W , the difference of norms on the left side is nonneg-

ative; therefore

‖u‖Σ ≤ ‖∇W‖L2 .

Combining the above with conservation of energy and a continuity argument, we obtain
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Corollary 2.7.2. Suppose u : I ×Rd → C is a solution to the focusing equation (2.1) with

E(u) ≤ (1− δ0)E∆(W ). Then there exist δ1, δ2 > 0, depending on δ0, such that

• If ‖u(0)‖Ḣ1 ≤ ‖W‖Ḣ1, then

sup
t∈I
‖u(t)‖Σ ≤ (1− δ1)‖W‖Ḣ1 and E(u) ≥ 0.

• If ‖u(0)‖Ḣ1 ≥ ‖W‖Ḣ1, then

inf
t∈I
‖u(t)‖Σ ≥ (1 + δ2)‖W‖Ḣ1 and 1

2
‖∇u‖2

2 − ‖u‖
2d
d−2

L
2d
d−2
≤ −δ0E∆(W ).

Proof of Theorem 2.1.3. Let u be the maximal solution to (2.1) with

u(0) = u0, E(u0) < E∆(W ), ‖∇u0‖2 ≥ ‖∇W‖2.

Let f(t) =
∫
Rd |x|2|u(t, x)|2 dx. It can be shown [Caz03] that f is C2 on the interval of

existence and

f ′′(t) =

∫
|∇u(t, x)|2 − 2|u(t, x)|

2d
d−2 − 1

2
|x|2|u(t, x)|2 dx.

By the corollary, f ′′ is bounded above by some fixed C < 0. Therefore

f(t) ≤ A+Bt+ C
2
t2

for some constants A and B. It follows that u has a finite lifespan in both time directions.

2.8 Bounded linear potentials

In this section we show using a perturbative argument that

i∂tu = (−1
2
∆ + V )u+ |u|

4
d−2u, u(0) = u0 ∈ H1(Rd) (2.78)

is globally wellposed whenever V is a real-valued function with

Vmax := ‖V ‖L∞ + ‖∇V ‖L∞ <∞.
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This equation defines the Hamiltonian flow of the energy functional

E(u(t)) =

∫
Rd

1
2
|∇u(t, x)|2 + V |u(t, x)|2 + d−2

d
|u|

2d
d−2 dx = E(u(0)). (2.79)

Solutions to (2.78) also conserve mass :

M(u(t)) =

∫
Rd

|u(t, x)|2 dx = M(u(0)).

It will be convenient to assume V is positive and bounded away from 0. This hypothesis

allows us to bound the H1 norm of u purely in terms of E instead of both E and M ,

and causes no loss of generality because for sign-indefinite V we could simply consider the

conserved quantity E + CM for some positive constant C.

Theorem 2.8.1. For any u0 ∈ H1(Rd), (2.78) has a unique global solution u ∈ C0
t,locH

1
x(R×

Rd). Further, u obeys the spacetime bounds

SI(u) ≤ C(‖u0‖H1 , |I|)

for any compact interval I ⊂ R.

The proof follows the strategy pioneered by [TVZ07] and treats the term V u as a per-

turbation to (2.6), which is globally wellposed. Thus Duhamel’s formula reads

u(t) = e
it∆
2 u(t0)− i

∫ t

0

e
i(t−s)∆

2 [|u(s)|
4
d−2u(s) + V u(s)]ds. (2.80)

We record mostly without proof some standard results in the local theory of (2.78).

Introduce the notation

‖u‖X(I) = ‖∇u‖
L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

.

Lemma 2.8.2 (Local wellposedness). Fix u0 ∈ H1(Rd), and suppose T0 > 0 is such that

‖e
it∆
2 u0‖X([−T0,T0]) ≤ η ≤ η0

where η0 = η0(d) is a fixed parameter. Then there exists a positive

T1 = T1(‖u0‖H1 , η, Vmax)
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such that (2.78) has a unique (strong) solution u ∈ C0
tH

1
x([−T1, T1] × Rd). Further, if

(−Tmin, Tmax) is the maximal lifespan of u, then ‖∇u‖S(I) < ∞ for every compact interval

I ⊂ (−Tmin, Tmax), where ‖ · ‖S(I) is the Strichartz norm defined in Section 2.2.1.

Proof sketch. Run the usual contraction mapping argument using the Strichartz estimates

to show that

I(u)(t) = e
it∆
2 u0 − i

∫ t

0

e
i(t−s)∆

2 [|u(s)|
4
d−2u(s) + V u(s)]dx

has a fixed point in a suitable function space. Estimate the terms involving V in the L1
tL

2
x

dual Strichartz norm and choose the parameter T1 to make those terms sufficiently small

after using Hölder in time.

Lemma 2.8.3 (Blowup criterion). Let u : (T0, T1)×Rd → C be a solution to (2.78) with

‖u‖X((T0,T1)) <∞.

If T0 > −∞ or T1 <∞, then u can be extended to a solution on a larger time interval.

Our argument uses the stability theory for the energy-critical NLS (2.6).

Lemma 2.8.4 (Stability [TV05]). Let ũ : I×Rd → C be an approximate solution to equation

(2.6) in the sense that

i∂tũ = −1
2
∆u± |ũ|

4
d−2 ũ+ e

for some function e. Assume that

‖ũ‖
L

2(d+2)
d−2

t,x

≤ L, ‖∇u‖L∞t L2
x
≤ E, (2.81)

and that for some 0 < ε < ε0(E,L),

‖ũ(t0)− u0‖Ḣ1 + ‖∇e‖N(I) ≤ ε, (2.82)

where ‖·‖N(I) was defined in Section 2.2.1. Then there exists a unique solution u : I×Rd → C

to (2.6) with u(t0) = u0 which further satisfies the estimates

‖ũ− u‖
L

2(d+2)
d−2

t,x

+ ‖∇(ũ− u)‖S(I) ≤ C(E,L)εc (2.83)

where 0 < c = c(d) < 1 and C(E,L) is a function which is nondecreasing in each variable.
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Proof of Theorem 2.8.1. It suffices to show that for T sufficiently small depending only on

E = E(u0), the solution u to (2.78) on [0, T ] satisfies an a priori estimate

‖u‖X([0,T ]) ≤ C(E). (2.84)

From Lemma 2.8.3 and energy conservation, it will follow that u is a global solution with

the desired spacetime bound.

By Theorem 2.1.1, the equation

(i∂t + 1
2
∆)w = |w|

4
d−2w, w(0) = u(0).

has a unique global solution w ∈ C0
t,locḢ

1
x(R ×Rd) with the spacetime bound (2.7). Fix a

small parameter η > 0 to be determined shortly, and partition [0,∞) into J(E, η) intervals

Ij = [tj, tj+1) so that

‖w‖X(Ij) ≤ η. (2.85)

For some J ′ < J , we then have

[0, T ] =
J ′−1⋃
j=0

([0, T ] ∩ Ij).

We make two preliminary estimates. By Hölder in time,

‖V u‖N(Ij) + ‖∇(V u)‖N(Ij) . CV T‖u‖L∞t H1
x(Ij) ≤ ε (2.86)

for any ε provided that T = T (E, V, ε) is sufficiently small. Further, observe that

‖e
i(t−tj)∆

2 w(tj)‖X(Ij) ≤ 2η (2.87)

for η sufficiently small depending only on d. Indeed, from the Duhamel formula

w(t) = e
i(t−tj)∆

2 w(tj)− i
∫ t

tj

e
i(t−s)∆

2 (|w|
4
d−2w)(s)ds,

Strichartz, and the chain rule, it follows that

‖e
i(t−tj)∆

2 w(tj)‖X(Ij) ≤ ‖w‖X(Ij) + cd‖∇(|w|
4
d−2w)‖

L2
tL

2d
d+2
x (Ij)

≤ η + cd‖w‖
d+2
d−2

X(Ij)

≤ η + cdη
d+2
d−2 .
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Choosing η sufficiently small relative to cd yields (2.87).

Take ε < η in (2.86) (taking T small) and apply the Duhamel formula (2.80), Strichartz,

Hölder, and (2.87) to obtain

‖u‖X(I0) ≤ ‖e
it∆
2 u(0)‖X(I0) + cd‖u‖

d+2
d−2

X(I0) + C‖V u‖L1
tH

1
x(I0)

≤ 2η + cd‖u‖
d+2
d−2

X(I0) + CV T‖u‖L∞t H1
x(I0)

≤ 3η + cd‖u‖
d+2
d−2

X(I0).

By a continuity argument,

‖u‖X(I0) ≤ 4η. (2.88)

Choose ε sufficiently small in (2.86) so that the smallness condition (2.82) is satisfied, and

invoke Lemma 2.8.4 with ‖u(0)− w(0)‖Ḣ1 = 0 to find that

‖∇(u− w)‖S(I0) ≤ C(E)εc. (2.89)

On the interval I1, use (2.87), (2.89), and the usual estimates to obtain

‖u‖X(I1) ≤ ‖e
i(t−t1)∆

2 u(t1)‖X(I1) + cd‖u‖
d+2
d−2

X(I1) + CV T‖u‖L∞t H1
x(I1)

≤ C(E)εc + 2η + c‖u‖
d+2
d−2

X(I1) + η,

where the C(E) in the last line has absorbed the Strichartz constant c; this redefinition of

C(E) will cause no trouble because the number of times it will occur depends only on E, d,

and V . By taking ε sufficiently small relative to η and using continuity, we see that

‖u‖X(I1) ≤ 4η.

As before, taking T sufficiently small yields

‖∇(V u)‖Ṅ0(I1) ≤ ε

‖e
i(t−t1)∆

2 [u(t1)− w(t1)]‖X(I1) ≤ C(E)εc
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for any ε ≤ ε0(E,L). Therefore by Lemma 2.8.4,

‖∇(u− w)‖S(I1) ≤ C(E)εc.

The parameters η, ε, T are chosen so that each depends only on the preceding parameters

and on the fixed quantities d,E, V . After iterating at most J ′ times and summing the bounds

over 0 ≤ j ≤ J ′ − 1, we conclude that for T sufficiently small depending on E and V ,

‖u‖X([0,T ]) ≤ 4J ′η ≤ C(E).

This establishes the bound (2.84).
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CHAPTER 3

Extensions to more general potentials

3.1 Introduction

In this chapter, we describe the modifications to extend the results for the harmonic oscillator

to a broader class of potentials. Consider the equation
i∂tu = (−1

2
∆ + V )u+ µ|u|

4
d−2u, µ = ±1,

u(0) = u0 ∈ Σ(Rd),

(3.1)

whose flow preserves the energy

E(u(t)) =

∫
Rd

1
2
|∇u(t)|2 + V |u(t)|2 + µ(1− 2

d
)|u(t)|

2d
d−2 dx = E(u(0)).

The equation is defocusing if µ = 1 and focusing if µ = −1. We consider the following three

assumptions on V :

(V1) V = V (x) is smooth and nonnegative.

(V2) For each k ≥ 2 there exists a constant Mk > 0 such that

sup
|x|≤1

|V (x)|+ sup
x∈Rd

|∂kV (x)| ≤Mk for all k ≥ 2.

(V3) V (x) ≥ δ|x|2 for some δ > 0.

These hypotheses on V ensure that

δ|x|2 ≤ V (x) ≤ δ−1(1 + |x|2)
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for some constant δ > 0. Therefore Σ is the energy space, and is also the form domain

Q(H) = D(H1/2) for the positive operator H = −1
2
∆ + V . It will sometimes be more

convenient to work with the equivalent norm

‖f‖Q(H) := ‖H1/2f‖L2 = (‖∇f‖2
L2 + ‖V 1/2f‖2

L2)1/2,

because it is preserved by the propagator e−itH .

As before, the term “energy-critical” refers to the fact that if one ignores the potential

V in the equation, the equation

(i∂t + 1
2
∆)u = µ|u|

4
d−2u, u(0) ∈ Ḣ1(Rd)

E∆(u) =

∫
Rd

1
2
|∇u|2 + µ(1− 2

d
)|u|

2d
d−2 dx

(3.2)

is invariant under the scaling u 7→ uλ(t, x) = λ−
d−2

2 u(λ−2t, λ−1x). Roughly speaking, if

a solution u to (3.1) is concentrated in a width λ neighborhood of some point x0, where

λ� 1, it sees the potential V as approximately equal to V (x0) and behaves for |t| ≤ O(λ2)

as a solution to the equation (3.2). The asymptotic behavior for the constant coefficient

problem (3.2) was summarized in Theorem 2.1.1. This result will be a basic stepping stone

to understanding the behavior of concentrated solutions to the variable-coefficient problem.

Corresponding to Conjecture 2.1.2 we have

Conjecture 3.1.1. When µ = 1, equation (3.1) is globally wellposed. That is, for each

u0 ∈ Q(H) there is a unique global solution u : R×Rd → C with u(0) = u0. This solution

obeys the spacetime bound

SI(u) :=

∫
I

∫
Rd

|u(t, x)|
2(d+2)
d−2 dx dt ≤ C(|I|, ‖u0‖Σ) (3.3)

for any compact interval I ⊂ R.

If µ = −1, then the same is true provided also that

E(u0) < E∆(W ) and ‖∇u0‖L2 ≤ ‖∇W‖L2 .

The restriction on the kinetic energy focusing case is necessary, for as in the case of the

harmonic oscillator, we have:
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Theorem 3.1.1. If µ = −1, E(u0) < E∆(W ), and ‖∇u0‖L2 ≤ ‖∇W‖L2, then the solution

to

To prove this one need only make notational changes to the discussion in Section 2.8,

and we refer the reader to there for details.

Just as with Theorem 2.1.2; by Theorem 2.1.1, however, it is actually unconditional

except in the focusing case for nonradial data in dimensions d = 3 and 4.

Theorem 3.1.2. Assume Conjecture 2.1.1. Then Conjecture 3.1.1 holds.

Besides the literature surveyed in Chapter 2, this result also has a predecessor in the work

of Carles [Car11], who considered a large class of subquadratic potentials for the energy-

subcritical problem

i∂tu = (−1
2
∆ + V )u+ µ|u|pu, p < 4

d−2
.

Taking initial data in Σ, he established global wellposedness in the defocusing case when

4/d ≤ p < 4/(d− 2) and in the focusing case when 0 < p < 4/d. Carles did not require that

V be bounded from below, and also allowed V = V (t, x) to depend on time. Prior to that

work, Oh [Oh89] had shown large data global existence in the focusing case when p < 4/d

and the potential is time-independent and subquadratic. We consider a more restricted class

of potentials but focus on the subtleties of the critical exponent p = 4/(d− 2) described in

the introduction of the previous chapter.

To prove Theorem (3.1) we apply the induction on energy paradigm and closely follow

the arguments for the harmonic oscillator, save for one key difference. In constructing

the linear profile decomposition it was essential to compare the Schrödinger flows for the

harmonic oscillator and the free particle on concentrated initial data. We exploited the

classical formula for the fundamental solution:

e−itH(x, y) = 1
(2πi sin t)d/2

e
i

sin t
(x

2+y2

2
cos t−xy) (Mehler’s Formula [Fol89]). (3.4)

No such explicit formula is available for more general potentials. Instead we appeal to more

robust techinques from microlocal analysis.
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Fujiwara showed [Fuj79, Fuj80] that for a general class of subquadratic potentials, the

unitary propagator e−itH can be represented for small t as an oscillatory integral operator

e−itHf(x) = 1
(2πit)d/2

∫
Rd

k(t, x, y)eiS(t,x,y)f(y) dy,

where for small t the integral kernel is close to that of the free propagator e
it∆
2 . In fact,

Fujiwara considered time-dependent potentials. Using this representation, we are able to

obtain suitable replacements for the arguments in Chapter 2 that relied on the precise form

of Mehler’s formula. A key step is to prove that in the relevant region of phase space, the

bicharacteristics for the symbol h(x, ξ) = 1
2
|ξ|2 +V (x) are well-approximated over short time

intervals by those of h(x, ξ) = 1
2
|ξ|2.

Chapter outline

In Section 3.2 we set our notation and review some basic estimates regarding equation (3.1).

We also recall Fujiwara’s construction of the propagator as a Fourier integral operator and

collect some relevant background concerning such operators. Section 3.3 states some stan-

dard (but essential) local theory. Section 3.4 discusses the linear profile decomposition men-

tioned above, focusing on how to modify the arguments that previously invoked Mehler’s

formula.

The scaling limit analysis of Section 3.5 and the compactness arguments of Section 3.6

parallel the ones given in Chapter 2. As will be the case throughout the chapter, we describe

mainly the required adjustments and refer to the previous chapter for the rest of the details.
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3.2 Preliminaries

3.2.1 Notation and basic estimates

We write X . Y to mean X ≤ CY for some constant C. Similarly X ∼ Y means X . Y

and Y . X. Denote by Lp(Rd) the Banach space of functions f : Rd → C with finite norm

‖f‖Lp(Rd) =

(∫
Rd

|f |p dx
) 1

p

.

Sometimes we use the more compact notation ‖f‖p. If I ⊂ Rd is an interval, the mixed

Lebesgue norms on I ×Rd are defined by

‖f‖LqtLrx(I×Rd) =

(∫
I

(∫
Rd

|f(t, x)|r dx
) q

r

dt

) 1
q

= ‖f(t)‖Lqt (I;Lrx(Rd)),

where one regards f(t) = f(t, ·) as a function from I to Lr(Rd).

Throughout the chapter we shall use the capital letters D and X to denote the operators

f 7→ −i∂f and f 7→ xf , respectively.

Introduce the following function spaces

Bk(Rn) = {f ∈ C∞(Rn) : D`f ∈ L∞ for all ` ≥ k},

B(Rn) = B0(Rn)

The notation B(Rd×Rd) goes back to Schwartz [Sch66] and is equivalent to the more modern

notation S0
0,0, where in general Skρ,δ(R

d×Rd) denotes the smooth symbols on Rd
x×Rd

ξ such

that

Dβ
xD

α
ξ p(x, ξ)| ≤ Cαβ〈ξ〉m−|α|ρ+|β|δ

for all multiindices α and β. Note, however, that in general Bk does not coincide with any

Skρ,δ.

We recall Fujiwara’s construction of the propagator for H. The symbol

h(ξ, x) = 1
2
|ξ|2 + V (x)
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defines the Hamiltonian flow  ẋ = ∇ξh, ξ̇ = −∇xh

(x(0), ξ(0)) = (y, η).
(3.5)

The integral curves (x(t), ξ(t)) are the bicharacteristics for h. Suppose that V is subquadratic

in the sense in the sense of hypothesis (V2). Then the vector field (−∇xh,∇ξh) is Lipschitz,

hence complete, so x and ξ are well-defined functions x(t, y, η), ξ(t, y, η) of t and the initial

data.

Proposition 3.2.1 ([Fuj79, Proposition 1.7]). Let V be a potential such that

sup
|x|≤1

|V (x)|+ sup
x∈Rd

|∂kV (x)| <∞ for all k ≥ 2,

and put H(ξ, x) = 1
2
|ξ|2 + V (x). Then the map (y, η) 7→ (x, y) obeys the derivative estimates

∂x
∂y

= I + t2a(t, y, η), ∂x
∂η

= t(I + t2b(t, y, η))

for some matrix-valued a, b ∈ B(Rd
y ×Rd

η).

Further, there exists δ0 such that whenever 0 6= |t| ≤ δ0, for pairs x, y ∈ Rd there is a

unique trajectory (x(τ), ξ(τ)) such that x(0) = y and x(t) = x.

Remark. To get the second statement from the first, one invokes the Hadamard global

inverse function theorem to see that (y, η) 7→ (x, y) is a diffeomorphism for 0 6= t sufficiently

small.

According to this result, when |t| ≤ δ0 and t 6= 0 one can define the action

S(t, x, y) =

∫ t

0

1

2
|ξ(τ)|2 − V (x(τ)) dτ, (3.6)

where (x(τ), ξ(τ)) is the unique bicharacteristic with x(0) = y and x(t) = x.

Theorem 3.2.2 (Fundamental solution [Fuj79, Fuj80]). Let V be subquadratic as in the

previous proposition. Then there exists δ0 > 0 such that:
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• The action S(t, x, y) is well-defined by (3.6) for all 0 < |t| < δ0 and satisfies

S(t, x, y) = |x−y|2
2t

+ tω(t, x, y),

where the term ω(t, ·, ·) belongs to B2 uniformly for |t| ≤ δ0. That is, there exist

constants Ck such that

|Dk
x,yω(t, x, y)| ≤ Ck(1 + |x|+ |y|)max(2−k,0)

for all k.

• For all 0 < |t| < δ0 and all f ∈ C∞c (Rd) we have

e−itHf(x) = 1
(2πit)d/2

∫
Rd

eiS(t,x,y)a(t, x, y)f(y) dy,

where

‖Dk
x,y[a(t, ·, ·)− 1]‖L∞(Rd

x×Rd
y) = Ok(t

2) for all k ≥ 0.

The above integral representation immediately yields a dispersive estimate:

Corollary 3.2.3 (Dispersive estimate). For |t| ≤ δ0, we have

‖e−itHf‖∞ . |t|−
d
2‖f‖1.

We call a pair (q, r) admissible if q ≥ 2 and 2
q

+ d
r

= d
2
. Define the norm

‖u‖S(I) := ‖u‖
L2
tL

2d
d−2
x (I×Rd)

+ ‖u‖L∞t L2
x(I×Rd).

By interpolation, this norm controls ‖u‖LqtLrx for all admissible pairs (q, r). Define

‖F‖N(I) = inf{‖F1‖
L
q′1
t L

r′1
x

+ ‖F2‖
L
q′2
t L

r′2
x

: (qk, rk) admissible, F = F1 + F2}

where (q′k, r
′
k) denotes the Hölder dual of (qk, rk).

Lemma 3.2.4 (Strichartz [KT98]). Let I be a compact time interval containing t0, and let

u : I ×Rd → C be a solution to the inhomogeneous Schrödinger equation

(i∂t −H)u = F.

Then there is a constant C, depending only on the length of the interval I, such that

‖u‖S(I) ≤ C(‖u0‖L2 + ‖F‖N(I)).
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Proof. This follows from [KT98] as a consequence of two ingredients: the dispersive estimate

of the previous corollary, and the unitarity of e−itH on L2(Rd).

As V is nonnegative, we have access to the spectral multipler theorem of Hebisch [Heb90]:

Theorem 3.2.5. If F : (0,∞) → C is a bounded function which obeys the derivative esti-

mates

|∂kF (λ)| .k |λ|−k for all 0 ≤ k ≤ d
2

+ 1,

then the operator F (H), defined initially on L2 by the Borel functional calculus, is bounded

from Lp to Lp for all 1 < p <∞.

The following equivalence of Sobolev norms was first proven for the quadratic potential by

Killip-Visan-Zhang [KVZ09, Lemma 2.7]. We adapt their result to the potentials considered

here.

Proposition 3.2.6 (Equivalence of norms). For any 1 < p <∞ and s ∈ [0, 1], we have

‖Hsf‖p ∼p,s ‖(−∆)sf‖p + ‖V sf‖p

for all Schwartz functions f .

The proof uses the following fact, which is classical when V is quadratic; we verify it at

the end for the sake of completeness.

Lemma 3.2.7. Let H = −1
2
∆ + V where V satisfies the hypotheses (V1) through (V3).

Then the smooth vectors for H are precisely the Schwartz functions:

D(H∞) :=
⋂
n≥0

D(Hn) = S(Rd).

Proof of Proposition 3.2.6. We show first that

‖(−∆)sf‖p + ‖V sf‖p .p ‖Hsf‖p for all f ∈ S(Rd). (3.7)

As f = H−sHsf and Hsf ∈ S(Rd) by Lemma 3.2.7, it suffices to prove

‖(−∆)sH−sf‖p + ‖V sH−sf‖p .p ‖f‖p for all f ∈ S(Rd). (3.8)

84



By hypothesis, there is some δ > 0 such that V (x) ≥ δ|x|2. Killip-Visan-Zhang [KVZ09]

showed that

‖V sH−sδ f‖p .p ‖f‖p,

where Hδ = −1
2
∆ + δ|x|2. On the other hand, the parabolic maximium principle implies

0 ≤ e−tH(x, y) ≤ e−tHδ(x, y)

Combining this with the identity

H−s(x, y) = 1
Γ(s)

∫ ∞
0

e−tH(x, y)ts−1dt,

we obtain the kernel inequality

0 ≤ H−s(x, y) ≤ H−sδ (x, y)

In particular, V sH−s and V sH−sδ have nonnegative integral kernels. We may therefore bound

‖V sH−sf‖p ≤ ‖V sH−s|f |‖p ≤ ‖V sH−sδ |f |‖p .p ‖f‖p.

This yields half of (3.8). Specializing to the case s = 1 and writing −∆ = 2(H − V ), we

obtain

‖(−∆)H−1f‖p .p ‖f‖p. (3.9)

Using Theorem 3.2.5 and the Stein-Weiss interpolation theorem applied to the analytic family

(−∆)zH−z, we obtain (3.7) and (3.8) for all p ∈ (1,∞) and s ∈ [0, 1].

Dualizing those estimates yields

‖H−s(−∆)sf‖p + ‖H−sV sf‖p .p,s ‖f‖p for all p ∈ (1,∞), s ∈ [0, 1]

Writing Hsf = Hs−1Hf = 1
2
Hs−1(−∆)1−s(−∆)sf +Hs−1V 1−sV sf , we have

‖Hsf‖p .p,s ‖(−∆)sf‖p + ‖V sf‖p for all p ∈ (1,∞), s ∈ [0, 1].

This completes the proof of the proposition modulo the lemma.
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Proof of Lemma 3.2.7. The inclusion S(Rd) ⊂ D(H∞) is clear. To prove the opposite in-

clusion, we show by an induction argument the equivalent assertion that

D(H∞) ⊂
⋂
k≥0

{u : xα∂βu ∈ L2 for all |α|+ |β| ≤ k}. (3.10)

We have the following identities:

H∂ju = ∂jHu− (∂jV )u

Hmu = mHu− 1
2
(∆m)u−∇m · ∇u

(3.11)

Define for each n ≥ 1 the following statements:

P1(n) = “m : D(Hn−1)→ D(Hn−1) for all m ∈ B”

P2(n) = “∂j : D(Hn)→ D(Hn−1)”

P3(n) = “∂jV : D(Hn)→ D(Hn−1)”.

As D(H) ⊂ D(H1/2) = {u : ‖∇u‖L2 + ‖xu‖L2 <∞}, these hold for n = 1.

Assume that they hold for some n. For u ∈ D(Hn) and m ∈ B, use (3.11) and the

statements P1(n), P2(n) to see that H(mu) ∈ D(Hn−1), so mu ∈ D(Hn) and P1(n + 1)

holds since m was chosen arbitrarily in B. Similar reasoning shows that P2(n) and P3(n)

imply P2(n + 1), and that P1(n), P2(n), P3(n) yield P3(n + 1). Hence, by induction these

statements hold for all n ≥ 1.

Next, apply (3.8) in the special case s = 1, p = 2 to see that

V : D(H)→ D(H0) = L2.

Suppose u ∈ D(Hn) and n ≥ 2. We have

H(V u) = V Hu− 1
2
(∆V )u−∇V · ∇u.

By induction, V Hu ∈ D(Hn−2), while P1(n), P2(n), and P3(n − 1) imply that the second

and third terms also belong to D(Hn−2). Thus V u ∈ D(Hn−1)

Summing up, we find that

V : D(Hn)→ D(Hn−1) for all n ≥ 1.
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Together with the coercivity hypothesis (V3), these mapping properties yield the claim (3.10).

By the equivalence of norms, Hγ inherits many properties of the fractional derivative

(−∆)γ, including Sobolev embedding:

Lemma 3.2.8 ([KVZ09, Lemma 2.8]). Suppose γ ∈ [0, 1] and 1 < p < d
2γ

, and define p∗ by

1
p∗

= 1
p
− 2γ

d
. Then

‖f‖Lp∗ (Rd) . ‖Hγf‖Lp(Rd).

Similarly, the fractional chain and product rules carry over to the present setting:

Corollary 3.2.9 ([KVZ09, Proposition 2.10]). Let F (z) = |z|
4
d−2 z. For any 0 ≤ γ ≤ 1

2
and

1 < p <∞,

‖HγF (u)‖Lp(Rd) . ‖F ′(u)‖Lp0 (Rd)‖Hγf‖Lp1 (Rd)

for all p0, p1 ∈ (1,∞) with p−1 = p−1
0 + p−1

1 .

Using Proposition 3.2.6 and the Christ-Weinstein fractional product rule for (−∆)γ (e.g.

[Tay00]), we obtain

Corollary 3.2.10. For γ ∈ (0, 1], r, pi, qi ∈ (1,∞) with r−1 = p−1
i + q−1

i , i = 1, 2, we have

‖Hγ(fg)‖r . ‖Hγf‖p1‖g‖q1 + ‖f‖p2‖Hγg‖q2 .

3.2.2 Microlocal technology

We recall some properties of Fourier integral operators tailored to the Schrödinger equation.

The operators we shall use were developed by Fujiwara [Fuj75] and Asada-Fujiwara [AF78].

Definition 3.2.1. Call φ ∈ B2(Rd
x × Rd

y) a phase function satisfies the nondegeneracy

condition

inf
x,y
| detD2

xyφ(x, y)| > 0. (3.12)
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Given a phase φ(x, y) and an amplitude a(x, y) ∈ B(Rd
x ×Rd

y), define for each λ 6= 0 the

integral operator

A(λ)f(x) =

(
λ

2πi

) d
2
∫
Rd

eiλφ(x,y)a(x, y)f(y)dy. (3.13)

Remark. Asada and Fujiwara studied Fourier integral operators in the more general form

f 7→
(
λ

2πi

)m+n
2
∫
Rm

∫
Rn

eiφ(x,θ,y)a(x, θ, y)f(y) dydθ

where a(x, θ, y) ∈ B(Rn
x ×Rm

θ ×Rn
y ) and the phase φ satisfies the nondegeneracy condition∣∣∣∣∣∣det

 D2
xyφ D2

xθφ

D2
θyφ D2

θθφ

∣∣∣∣∣∣ ≥ δ

The integral operator A(λ) considered above corresponds to the case m = 0.

The operator A(λ) is bounded on L2. More precisely, Fujiwara proved:

Theorem 3.2.11 (Fujiwara [Fuj75]). ‖A(λ)‖L2→L2 ≤ C‖a‖C2d+1

Let φ be a phase function. By the global inverse function theorem, the maps

χ1(x, y) = (y,−∂yφ) and χ2(x, y) = (x, ∂xφ)

are diffeomorphisms of Rd ×Rd. It follows that the relation

(y,−∂yφ) 7→ (x, y) 7→ (x, ∂xφ)

defines a diffeomorphism

χ = χ2 ◦ χ−1
1 : Rd

y ×Rd
η → Rd

x ×Rd
ξ ,

which is in fact symplectic (or “canonical”) in the sense that dξ ∧ dx = dη ∧ dy. The map

χ(y, η) = (x(y, η), ξ(y, η)) is the canonical transformation generated by the phase function

φ(x, y).

For a smooth symbol p ∈ Bk(Rd
x × Rd

θ × Rd
y) and λ 6= 0, let Op(p, λ) denote the the

(semiclassical) pseudodifferential operator

Op(p, λ)f(x) =

(
λ

2π

)d ∫∫
eiλ(x−y)θp(x, θ, y)f(y) dydθ.

These operators obey the following Egorov-type relation:
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Theorem 3.2.12 ([AF78, Theorem 6.1]). Let φ(x, y) be a phase function, a(x, y) ∈ B(Rd×

Rd), be an amplitude, and A(λ) the corresponding Fourier integral operator. Let χ : R2d →

R2d be the canonical transformation generated by φ. Let p(x, θ, y), q(x, θ, y) ∈ B1(Rd×Rd×

Rd) be such that

q(y, η, y) = p(x, ξ, x)|(x,ξ)=χ(y,η)

Then

Op(λp, λ)A(λ)− A(λ) Op(λq, λ) = R(λ),

for some Fourier integral operator R(λ) with phase function φ. The operator norm of R(λ)

satisfies

‖R(λ)‖L2→L2 . λ−1‖a‖0,M(‖p‖1,M + ‖q‖1,M)

for some positive integer M , where

‖f‖r,s = sup
r≤k≤s

‖Dkf‖L∞ .

3.3 Local Theory

We record some standard local-wellposedness results for (3.1). These are direct translations

of the theory for the scale-invariant equation (3.2). By Lemma 3.2.8 and Corollaries 3.2.9

and 3.2.10, essentially the same proofs as in that case will work here. We refer the reader to

[KV13] for those proofs.

Proposition 3.3.1 (Local wellposedness). Let u0 ∈ Σ(Rd) and fix a compact time interval

0 ∈ I ⊂ R. Then there exists a constant η0 = η0(d, |I|) such that whenever η < η0 and

‖H
1
2 e−itHu0‖

L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

≤ η,

there exists a unique solution u : I ×Rd → C to (2.1) which satisfies the bounds

‖H
1
2u‖

L

2(d+2)
d−2

t L

2d(d+2)

d2+4
x (I×Rd)

≤ 2η and ‖H
1
2u‖S(I) . ‖u0‖Σ + η

d+2
d−2 .
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Corollary 3.3.2 (Blowup criterion). Suppose u : (Tmin, Tmax) × Rd → C is a maximal

lifespan solution to (2.1), and fix Tmin < t0 < Tmax. If Tmax <∞, then

‖u‖
L

2(d+2)
d−2

t,x ([t0,Tmax))

=∞.

If Tmin > −∞, then

‖u‖
L

2(d+2)
d−2

t,x ((Tmin,t0])

=∞.

Proposition 3.3.3 (Stability). Fix t0 ∈ I ⊂ R an interval of unit length and let ũ : I×Rd →

C be an approximate solution to (2.1) in the sense that

i∂tũ = Hu± |ũ|
4
d−2 ũ+ e

for some function e. Assume that

‖ũ‖
L

2(d+2)
d−2

t,x

≤ L, ‖H
1
2u‖L∞t L2

x
≤ E, (3.14)

and that for some 0 < ε < ε0(E,L) one has

‖H1/2(ũ(t0)− u0)‖L2 + ‖H
1
2 e‖N(I) ≤ ε, (3.15)

Then there exists a unique solution u : I × Rd → C to (2.1) with u(t0) = u0 and which

further satisfies the estimates

‖ũ− u‖
L

2(d+2)
d−2

t,x

+ ‖H
1
2 (ũ− u)‖S(I) . C(E,L)εc (3.16)

where 0 < c = c(d) < 1 and C(E,L) is a function which is nondecreasing in each variable.

3.4 Concentration compactness

Let 0 ∈ I be a compact interval so that |I| ≤ δ0, where δ0 is the constant in Theorem 3.2.2.

As is now standard in the analysis of energy-critical equations, the induction on energy

argument relies on a linear profile decomposition for the Strichartz inequality

‖e−itHf‖
L

2(d+2)
d−2

t,x (I×Rd)

. ‖H1/2f‖L2 .
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In the previous chapter, we obtained such a decomposition when H = −1
2
∆ + 1

2
|x|2. Let

us highlight the main modification required to adapt that proof to the present setting. One

of the key steps in both proofs is to compare the linear evolutions of a spatially localized

initial state under the propagators e−itH and e
it∆
2 with and without a potential, respectively

(see Proposition 3.4.4 below). For the harmonic oscillator we relied on the Mehler formula

to decompose

e−itH = mt(X)ei
i sin(t)∆

2 mt(X)

where mt(x) = exp(i( cos t−1
2 sin t

)x2). While this factorization clearly manifests the relation be-

tween the two propagators, it is not available for the more general potentials considered here.

Instead we work directly with the Fourier integral representation from Theorem (3.2.2).

The rest of the proof for the harmonic oscillator can be imported after essentially nota-

tional changes. We shall state the main definitions and lemmas to indicate the general flow

but refer to the previous chapter for the details.

Definition 3.4.1. A frame is a sequence (tn, xn, Nn) ∈ I ×Rd × 2N conforming to one of

the following scenarios:

1. Nn ≡ 1, tn ≡ 0, and xn ≡ 0.

2. Nn →∞ and N−1
n V (xn)1/2 → r∞ ∈ [0,∞).

Remark. The quantity N−1
n V (xn)1/2 is the analog of the ratio N−1

n |xn| that was considered

in Section 2.4.1.

These parameters will specify the temporal center, spatial center, and (inverse) length

scale of a function. The hypothesis that V grows essentially quadratically ensures that

|xn| . Nn, which reflects the fact that we only consider functions obeying some uniform

bound in Q(H), and such functions cannot be centered arbitrarily far from the origin. We

need to augment the frame {(tn, xn, Nn)} with an auxiliary parameter N ′n, which corresponds

to a sequence of spatial cutoffs adapted to the frame.
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Definition 3.4.2. An augmented frame is a sequence (tn, xn, Nn, N
′
n) ∈ I ×Rd × 2N ×R

belonging to one of the following types:

1. Nn ≡ 1, tn ≡ 0, xn ≡ 0, N ′n ≡ 1.

2. Nn →∞, N−1
n V (xn)1/2 → r∞ ∈ [0,∞), and either

(a) N ′n ≡ 1 if r∞ > 0, or

(b) N
1/2
n ≤ N ′n ≤ Nn, N

−1
n V (xn)1/2(Nn

N ′n
)→ 0, and Nn

N ′n
→∞ if r∞ = 0.

The frame {(tn, xn, Nn)} is the underlying frame.

Given an augmented frame (tn, xn, Nn, N
′
n), we define scaling and translation operators

on functions of space and of spacetime by

(Gnφ)(x) = N
d−2

2
n φ(Nn(x− xn))

(G̃nf)(t, x) = N
d−2

2
n f(N2

n(t− tn), Nn(x− xn)).
(3.17)

We also define spatial cutoff operators Sn by

Snφ =

 φ, for frames of type 1 (i.e. Nn ≡ 1),

χ(Nn
N ′n
·)φ, for frames of type 2 (i.e. Nn →∞),

(3.18)

where χ is a smooth compactly supported function equal to 1 on the ball {|x| ≤ 1}. An easy

computation yields the following mapping properties of these operators:

lim
n→∞

Sn = I strongly in Ḣ1and in Q(H),

lim sup
n→∞

‖Gn‖Q(H)→Q(H) <∞.
(3.19)

The following technical lemma is the counterpart of Lemma 2.4.2 and is proved in the

same manner (in particular we use the equivalence of norms furnished by Proposition 3.2.6).

Lemma 3.4.1 (Approximation). Let (q, r) be an admissible pair of exponents with 2 ≤ r < d,

and let F = {(tn, xn, Nn, N
′
n)} be an augmented frame of type 2.
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1. Suppose F is of type 2a in Definition 3.4.2. Then for {fn} ⊆ LqtH
1,r
x (R×Rd), we have

lim sup
n
‖H1/2G̃nSnfn‖LqtLrx . lim sup

n
‖fn‖LqtH1,r

x
.

2. Suppose F is of type 2b and fn ∈ Lqt Ḣ1,r
x (R×Rd). Then

lim sup
n
‖H1/2G̃nSnfn‖LqtLrx . lim sup

n
‖fn‖Lqt Ḣ1,r

x
.

Here H1,r(Rd) and Ḣ1,r(Rd) denote the inhomogeneous and homogeneous Lr Sobolev spaces,

respectively, equipped with the norms

‖f‖H1,r = ‖〈∇〉‖Lr(Rd), ‖f‖Ḣ1,r = ‖|∇|f‖Lr(Rd).

Proposition 3.4.2 (Inverse Strichartz). Let I be a compact interval containing 0 of length

at most δ0, and suppose fn is a sequence of functions in Q(H) satisfying

0 < ε ≤ ‖e−itHfn‖
L

2(d+2)
d−2

t,x (I×Rd)

. ‖H1/2fn‖L2 ≤ A <∞.

Then, after passing to a subsequence, there exists an augmented frame

F = {(tn, xn, Nn, N
′
n)}

and a sequence of functions φn ∈ Q(H) such that one of the following holds:

1. F is of type 1 (i.e. Nn ≡ 1) and φn = φ where φ ∈ Q(H) is a weak limit of fn in

Q(H).

2. F is of type 2, either tn ≡ 0 or N2
ntn → ±∞, and φn = eitnHGnSnφ where φ ∈ Ḣ1(Rd)

is a weak limit of G−1
n e−itnHfn in Ḣ1. Moreover, if F is of type 2a, then φ also belongs

to L2(Rd).

The functions φn have the following properties:

lim inf
n
‖H1/2φn‖L2 & A

(
ε
A

) d(d+2)
8 (3.20)

lim
n→∞

‖fn‖
2d
d−2

L
2d
d−2
− ‖fn − φn‖

2d
d−2

L
2d
d−2
− ‖φn‖

2d
d−2

L
2d
d−2

= 0. (3.21)

lim
n→∞

‖H1/2fn‖2
L2 − ‖H1/2(fn − φn)‖2

L2 − ‖H1/2φn‖2
L2 = 0 (3.22)
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Proof. We recall that the proof of the analogous result in Section 2.4.1 used the following

ingredients:

• Littlewood-Paley theory adapted to the operator H = −1
2
∆ + 1

2
|x|2, which relied on

Theorem 3.2.5.

• A refined Strichartz inequality, proved using the Littlewood-Paley theory.

• A comparison of the linear propagators for the Hamiltonians of the free particle and

the harmonic oscillator when acting on concentrated initial data. This was the only

part of the proof that invoked the exact form of Mehler’s formula (3.4).

The reader will easily verify that adapting the first two to our situation requires little

more than replacing all instances of |x|2/2 in the proofs with V . In the following section,

we supply the details for the third. Given suitable replacements for these three ingredients,

the rest of the proof carries over without difficulty, and we refer the reader to the previous

chapter for the details.

Proposition 3.4.3 (Linear profile decomposition). Let 0 ∈ I be an interval with |I| ≤ δ0,

and let fn be a bounded sequence in Q(H). After passing to a subsequence, there exists

J∗ ∈ {0, 1, . . . } ∪ {∞} such that for each finite 1 ≤ j ≤ J∗, there exist an augmented frame

F j = {(tjn, xjn, N j
n, (N

j
n)′)} and a function φj with the following properties.

• Either tjn ≡ 0 or (N j
n)2(tjn)→ ±∞ as n→∞.

• φj belongs to Q(H), H1, or Ḣ1 depending on whether F j is of type 1, 2a, or 2b,

respectively.

For each finite J ≤ J∗, we have a decomposition

fn =
J∑
j=1

eit
j
nHGj

nS
j
nφ

j + rJn , (3.23)

94



where Gj
n, S

j
n are the Ḣ1-isometry and spatial cutoff operators associated to F j. Writing φjn

for eit
j
nHGj

nS
j
nφ

j, this decomposition has the following properties:

(GJ
n)−1e−it

J
nHrJn

Ḣ1

⇀ 0 for all J ≤ J∗, (3.24)

sup
J

lim
n→∞

∣∣∣‖H1/2fn‖2
L2 −

J∑
j=1

‖H1/2φjn‖2
L2 − ‖H1/2rJn‖2

L2

∣∣∣ = 0, (3.25)

sup
J

lim
n→∞

∣∣∣‖fn‖ 2d
d−2

L
2d
d−2
x

−
J∑
j=1

‖φjn‖
2d
d−2

L
2d
d−2
x

− ‖rJn‖
2d
d−2

L
2d
d−2
x

∣∣∣ = 0. (3.26)

Whenever j 6= k, the frames {(tjn, xjn, N j
n)} and {(tkn, xkn, Nk

n)} are orthogonal:

lim
n→∞

Nj
n

Nk
n

+ Nk
n

Nj
n

+N j
nN

k
n |tjn − tkn|+

√
N j
nNk

n |xjn − xkn| =∞. (3.27)

Finally, we have

lim
J→J∗

lim sup
n→∞

‖e−itnHrJn‖
L

2(d+2)
d−2

t,x

= 0, (3.28)

Proof. The argument is similar to the one for Proposition 2.4.14. One inductively applies

inverse Strichartz to extract the frames F j and profiles φj. To prove the decoupling asser-

tion (3.27), one uses the convergence lemmas discussed in the next section, which completely

parallel the ones used in Section 2.4.2.

3.4.1 Convergence of linear propagators

The main purpose of this section is to prove Proposition 3.4.4, which together with its

corollary can be regarded as a comparison of the linear evolutions e−itHφ and e
it∆
2 φ for φ

concentrated at a point.

While the proposition is simply a translation of Lemma 2.4.8, its proof is more involved

and requires a closer study of the bicharacteristics.

Definition 3.4.3. Two frames F1 = {(t1n, x1
n, N

1
n)} and F2 = {(t2n, x2

n, N
2
n)} (where the

superscripts are indices, not exponents) are equivalent if

N1
n

N2
n
→ R∞ ∈ (0,∞), N1

n(x2
n − x1

n)→ x∞ ∈ Rd, (N1
n)2(t1n − t2n)→ t∞ ∈ R.
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They are orthogonal if any of the above statements fails. Note that replacing the N1
n in the

second and third expressions above by N2
n yields an equivalent definition of orthogonality.

Two augmented frames are said to be equivalent if their underlying frames are equivalent.

Proposition 3.4.4 (Strong convergence). Suppose FM = (tMn , xn,Mn) and FN = (tNn , yn, Nn)

are equivalent frames. Define

R∞ = lim
n→∞

Mn

Nn
t∞ = lim

n→∞
M2

n(tMn − tNn ),

x∞ = lim
n→∞

Mn(yn − xn), r∞ = lim
n
M−1

n V (xn)1/2;

(The last limit exists by the definition of a frame.) Let GM
n , G

N
n be the scaling and trans-

lation operators associated with the frames FM and FN respectively. Then the sequence

(e−it
N
n HGN

n )−1e−it
M
n HGM

n converges strongly as bounded operators on Σ to the operator U∞

defined by

U∞φ = e−it∞(r∞)2

R
d−2

2∞ [e
it∞∆

2 φ](R∞ ·+x∞).

Proof. Write

(e−it
N
n HGN

n )−1e−it
M
n HGM

n = (GN
n )−1GM

n (GM
n )−1e−itnHGM

n

where tn = tMn −tNn . As (GN
n )−1GM

n converges strongly to the operator f 7→ R
d−2

2∞ f(R∞·+x∞),

it suffices to show that

(GM
n )−1e−itnHGM

n → e−it∞(r∞)2

e
it∞∆

2 . (3.29)

We proceed in two steps. Recall from Theorem 3.2.2 that the phase in the Fourier integral

formula for e−itH is the classical action and has the form

S(t, x, y) = |x−y|2
2t

+ tω(t, x, y), ω(t, ·, ·) ∈ B2.

First we extract the lowest order term from the remainder. This additional information will

reveal the limit of the sequence once everything has been expressed in terms of oscillatory

integrals. Convergence will then follow from the theory in Section 3.2.2.

The leading terms of the action are obtained by replacing the classical trajectories with

straight lines in the integral (3.6). Proceeding in the spirit of Fujiwara [Fuj79], we have the

following lemma.
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Lemma 3.4.5. Let H(ξ, x) = 1
2
|ξ|2 + V (x) with V subquadratic, and let S(t, x, y) be the

action (which is well-defined for all x and y so long as |t| ≤ δ0 where δ0 is the constant in

Theorem 3.2.2). Then

S(t, x, y) =
|x− y|2

2t
−
∫ t

0

V (y + (x−y
t

)τ) dτ +O
(
t3(1 + |x|2 + |y|2)

)
.

Proof. Start by rewriting the ODE system (3.5) in integral form:

ξ(t) = η −
∫ t

0

∂xV (x(θ)) dθ,

x(t) = y +

∫ t

0

ξ(τ) dτ = y + tη −
∫ t

0

(t− θ)∂xV (x(θ)) dθ.

(3.30)

As ∂xV grows at most linearly, Gronwall’s inequality implies that for all initial data (y, η).

|x(t)| ≤ C(1 + |y|+ |tη|).

Fix a time t > 0 and positions x, y ∈ Rd. By Proposition 3.2.1, there is a unique initial

momentum η = η(t, x, y) such that the bicharacteristic (x(τ), ξ(τ)) satisfies x(0) = y and

x(t) = x.

Referring to the definition (3.6) of the action, we estimate the error from replacing the

true trajectory x(t) by the straight line path from y to x. Rearranging the above expression

for x(t), we have

η =
x− y
t

+
1

t

∫ t

0

(t− θ)∂xV (x(θ)) dθ. (3.31)

For τ between 0 and t,

|x(τ)| ≤ |y|+
∣∣∣x− y

t
τ
∣∣∣+ C

∫ t

0

|t− θ|(1 + |x(θ)|) dθ,

hence |x(τ)| ≤ C(1 + |x|+ |y|). The preceding computations reveal that∣∣∣x(τ)− y − τ
(x− y

t

)∣∣∣ ≤ τ

t

∫ t

0

|t− θ||∂xV (x(θ))| dθ +

∫ τ

0

|τ − θ||∂xV (x(θ))| dθ

≤ C(τt+ τ 2)(1 + |x|+ |y|).

By the fundamental theorem of calculus,∫ t

0

|V (x(τ))− V (y + τ(x−y
t

))| dτ ≤ C

∫ t

0

(τt+ τ 2)(1 + |x|+ |y|)2dτ

≤ Ct3(1 + |x|+ |y|)2.

(3.32)
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Next, by combining the first line of (3.30) with (3.31), we find that

ξ(τ) =
x− y
t

+
1

t

∫ t

0

(t− θ)∂xV (x(θ)) dθ −
∫ τ

0

∂xV (x(θ)) dθ.

It is easy to see that second and third terms are bounded by O(t(1 + |x|+ |y|)). Therefore,∫ t

0

1

2
|ξ(τ)|2 dτ =

|x− y|2

2t
+
x− y
t

∫ t

0

(t− θ)∂xV (x(θ)) dθ

− x− y
t

∫ t

0

∫ τ

0

∂xV (x(θ)) dθdτ +O(t3(1 + |x|+ |y|)2)

=
|x− y|2

2t
+O(t3(1 + |x|+ |y|)2).

Combining this with (3.32) establishes the lemma.

By Theorem 3.2.2 and a change of variable,

(GM
n )−1e−itnHGM

n f(x) =

(
λn
2πi

) d
2
∫
Rd

eiλnφn(x,y)an(x, y)f(y) dy, (3.33)

where

λn = (M2
ntn)−1

an(x, y) = a(tn, xn +M−1
n x, xn +M−1

n y)

φn(x, y) = 1
2
|x− y|2 + λ−1

n tnω(tn, xn +M−1
n x, xn +M−1

n y)

= φ0(x, y) + λ−1
n tnωn(x, y).

Theorem 3.2.2 and Lemma 3.4.5 imply the following estimates:

tnωn(x, y) = −
∫ tn

0

V (xn +M−1
n y + x−y

Mntn
τ) dτ +O(t3n(|xn|2 +M−2

n |x|2 +M−2
n |y|2))

= −tnV (xn) +O(M−2
n (1 + |x|2 + |y|2)),

|Dk
x,yωn(x, y)| .

 M−1
n (1 + |xn +M−1

n x|+ |xn +M−1
n y|), k = 1

M−k
n , k ≥ 2

|Dm
x,y[an(x, y)− 1]| .k M

−2−k
n for all k ≥ 0.

(3.34)

We need the following adaptation of [Fuj79, Proposition 4.15].
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Lemma 3.4.6. The operators (GM
n )−1e−itnHGM

n are uniformly bounded on Σ.

Proof. We appeal to Theorem 3.2.12. Let χn : (y,−∂yφn) 7→ (x, ∂xφn) be the canonical

relation generated by the phase function φn. In terms of the variables y and η,

χn(y, η) = (y + η, η) + λ−1
n tn(∂yωn, ∂xωn + ∂yωn)(x(tn, y, η), y)

= (y + η, η) + (r1,n(y, η), r2,n(y, η)).

First we show that

‖D(GM
n )−1e−itnHGM

n f‖L2 . ‖f‖Σ. (3.35)

Put p(x, θ, y) = θ and qn(x, θ, y) = θ + r2,n(y, θ). By construction,

p(x, ξ, x)|(x,ξ)=χn(y,η) = qn(y, η, y).

By the representation (3.33) and Theorem 3.2.12,

D(GM
n )−1e−itnHGM

n = Op(λnp, λn)(GM
n )−1e−itnHGM

n

= (GM
n )−1e−itnHGM

n Op(λnqn, λn) +Rn(λn).
(3.36)

In light of the estimates (3.34) and Theorem 3.2.11, it suffices to obtain a uniform bound

‖Op(λnqn, λn)‖Σ→L2 . 1

By definition

Op(λnqn, λn)f(x) = Df + Op(λnr2,n, λn).

By the fundamental theorem of calculus, (3.34) and Proposition 3.2.1,

λnr2,y(y, η) = tn(∂xωn + ∂yωn)(tn, x(tn, 0, 0), 0)

+ tny

∫ 1

0

(∂2
xyωn)(tn, x(tn, sy, sη), sy)∂x

∂y
+ (∂2

yωn)(tn, x(tn, sy, sη), sy) ds

+ tnη

∫ 1

0

(∂2
xyωn)(tn, x(tn, sy, sη), sy)∂x

∂η
ds

= cn + yr1
2,n(y, η) + ηr2

2,n(y, η),
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where |cn| .M−2
n and ‖Dkr1

2,n‖L∞ .M−4
n , ‖Dkr2

2,n‖L∞ .M−6
n for all k. Thus

Op(λnr2,n, λn) = cnI + Op(yr1
2,n(y, η), λn) + Op(ηr2

2,n(y, η), λn)

= cnI + Op(r1
2,n, λn)X + Op(λ−1

n r2
2,n, λn)D + Op(λ−1

n (Dyr
2
2,n), λn).

The Calderón-Vaillancourt theorem [CV71] now implies

‖Op(λnr2,n, λn)f‖L2 .M−2
n ‖f‖L2 +M−4

n ‖Xf‖L2 +M−6
n ‖Df‖L2 .M−2

n ‖f‖Σ.

Altogether we obtain (3.35).

By setting p(x, θ, y) = x, q(x, θ, y) = y + θ + r1,n(y, η) and making a similar analysis as

above, we obtain

‖X(GM
n )−1e−itnHGM

n f‖L2 . ‖f‖Σ.

This concludes the proof of the lemma.

Now we verify the limit (3.29). As e
iM2
ntn∆

2 → e
it∞∆

2 strongly, it suffices to show that

(GM
n )−1e−itnHGM

n f − e−it∞(r∞)2

e
iM2
ntn∆

2 f

converges to 0 for all f ∈ Σ. By Lemma 3.4.6 we may assume f ∈ C∞c . The above difference

may be written as(
λn
2πi

) d
2

∫
eiλnφn [an − 1]f(y) dy +

(
λn
2πi

) d
2

∫
[eiλnφn − e−it∞(r∞)2

eiλnφ0 ]f(y) dy

= Anf +Bnf.

Using Theorem 3.2.11, the estimates (3.34), and arguing as in the proof of Lemma 3.4.6, one

sees that ‖Anf‖Σ .M−2
n ‖f‖Σ.

It remains to bound Bnf . By hypothesis f is supported in some ball B(0, R), and the

estimates (3.34) show that the integral kernel of Bn converges to 0 in C∞loc. It follows that

|xBnf | and |∇Bnf | converge to 0 locally uniformly. On the other hand, integration by parts

reveals that for all n sufficiently large,

|xBnf |+ |∇Bnf | .N |x|−N

for any N > 0 and for all |x| ≥ 4R. Hence ‖Bnf‖Σ → 0 by dominated convergence. This

completes the proof of the proposition.
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In the remainder of this section we collect other lemmata regarding equivalent and or-

thogonal frames. They can be proved in much the same manner as their counterparts in

Section 2.4.2.

Corollary 3.4.7. Let {(tMn , xn,Mn,M
′
n)} and {tNn , yn, Nn, N

′
n)} be equivalent augmented

frames. Let SMn , S
N
n be the associated spatial cutoff operators. Then

lim
n→∞

‖e−itMn HGM
n S

M
n φ− e−it

N
n HGN

n S
N
n U∞φ‖Σ = 0 (3.37)

and

lim
n→∞

‖e−itMn HGM
n S

M
n φ− e−it

N
n HGN

n U∞S
N
n φ‖Σ = 0 (3.38)

whenever φ ∈ H1 if the frames conform to case 2a and φ ∈ Ḣ1 if they conform to case 2b in

Definition 3.4.2.

Proof. Run an approximation argument using Lemma 3.4.1 in the manner of Corollary 2.4.9.

The following “approximate adjoint” identity is the analogue of Lemma 2.4.10.

Lemma 3.4.8. Suppose the frames {(tMn , xn,Mn)} and {(tNn , yn, Nn)} are equivalent. Put

tn = tMn − tNn . Then for f, g ∈ Σ we have

〈(GN
n )−1e−itnHGM

n f, g〉Ḣ1 = 〈f, (GM
n )−1eitnHGN

n g〉Ḣ1 +Rn(f, g),

where |Rn(f, g)| ≤ C|tn|‖GM
n f‖Σ‖GN

n g‖Σ.

Proof. The proof of Lemma 3.4.6 yields the following commutator estimate:

‖[D, e−itH ]‖Σ→L2 = O(t).

We have

〈D(GN
n )−1e−itnHGM

n f,Dg〉L2 = 〈Df,D(GM
n )−1eitnHGN

n g〉L2 +Rn(f, g)

where Rn(f, g) = 〈[D, e−itnH ]GM
n f,DG

N
n g〉L2 − 〈DGM

n f, [D, e
itnH ]GN

n g〉L2 . The claim then

follows from Cauchy-Schwarz and the above estimate.
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The next lemma is a converse to Proposition 3.4.4.

Lemma 3.4.9 (Weak convergence). Assume the frames FM = {(tMn , xn,Mn)} and FN =

{(tNn , yn, Nn)} are orthogonal. Then, for any f ∈ Σ,

(e−it
N
n HGN

n )−1e−it
M
n HGM

n f → 0 weakly in Ḣ1.

Proof. Put tn = tMn − tNn , and suppose that |M2
ntn| → ∞. Then

‖(GN
n )−1e−itnHGM

n f‖
L

2d
d−2
→ 0

for f ∈ C∞c by a change of variables and the dispersive estimate, thus for general f ∈ Σ

by a density argument. Therefore (GN
n )−1e−itnHGM

n f converges weakly in Ḣ1 to 0. We

consider next the case where M2
ntn → t∞ ∈ R. The orthogonality of FM and FN implies

that either N−1
n Mn converges to 0 or ∞, or Mn|xn − yn| diverges as n→∞. In either case,

one verifies easily that (GN
n )−1GM

n converges to zero weakly as operators on Ḣ1. Applying

Proposition 3.4.4, we see that (GN
n )−1e−itnHGM

n f = (GN
n )−1GM

n (GM
n )−1e−itnHGM

n f converges

to zero weakly in Ḣ1.

Corollary 3.4.10. Let {(tMn , xn,Mn,M
′
n)} and {(tNn , yn, Nn, N

′
n)} be augmented frames such

that {(tMn , xn,Mn)} and {(tNn , yn, Nn)} are orthogonal. Let GM
n , S

M
n and GN

n , S
N
n be the

associated operators. Then

(e−it
N
n HGN

n )−1e−it
M
n HGM

n S
M
n φ ⇀ 0 in Ḣ1

whenever φ ∈ H1 if FM is of type 2a and φ ∈ Ḣ1 if FM is of type 2b.

Proof. If φ ∈ C∞c , then SMn φ = φ for all large n, and the claim follows from Lemma 3.4.9.

The case of general φ in H1 or Ḣ1 then follows from an approximation argument similar to

the one used in the proof of Corollary 3.4.7.
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3.5 The case of concentrated initial data

With the main complications behind us, we sketch the rest of the global wellposedness

argument in the remaining two sections. The next step is to rule out blowup for equation (3.1)

when the initial data is highly concentrated in space.

Proposition 3.5.1. Let I = [−δ0/2, δ0/2], where δ0 is the constant in Theorem 3.2.2. As-

sume that Conjecture 2.1.1 holds. Let

F = {(tn, xn, Nn, N
′
n)}

be an augmented frame with tn ∈ I and Nn → ∞, such that either tn ≡ 0 or N2
ntn → ±∞;

that is, F is type 2a or 2b in Definition 3.4.2. Let Gn, G̃n, and Sn be the associated operators

as defined in (3.17) and (3.18). Suppose φ belongs to H1 or Ḣ1 depending on whether

F is type 2a or 2b respectively. Then, for n sufficiently large, there is a unique solution

un : I ×Rd → C to the defocusing equation (3.1), µ = 1, with initial data

un(0) = eitnHGnSnφ.

This solution satisfies a spacetime bound

lim sup
n→∞

SI(un) ≤ C(E(un)).

Suppose in addition that {(qk, rk)} is any finite collection of admissible pairs with 2 < rk < d.

Then for each ε > 0 there exists ψε ∈ C∞c (R×Rd) such that

lim sup
n→∞

∑
k

‖H1/2(un − G̃n[e−itN
−2
n V (xn)ψε])‖Lqkt L

rk
x (I×Rd) < ε. (3.39)

Assuming also that ‖∇φ‖L2 < ‖∇W‖L2 and E∆(φ) < E∆(W ), we have the same conclu-

sion as above for the focusing equation (3.1), µ = −1.

Proof sketch. We only give a rough idea as one can proceed just as in Proposition 2.5 and

replace every instance of |xn|2/2 wih V (xn). The idea is to show that for n large enough, one

can fashion a sufficiently accurate approximate solution ũn in the sense of Proposition 3.3.3,
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such that SI(ũn) are bounded. This bound will then be transferred to the exact solution un

by the stability theory.

While un remains highly concentrated (over time scales on the order of N−2
n ), it will be

approximated by a modified solution to the scale-invariant equation (3.2) (whose solutions

admit global spacetime bounds). By the time this approximation breaks down, the solution

un will be so dispersed that it evolves essentially linearly.

If tn ≡ 0, let v be the global solution to (3.2) furnished by Conjecture 2.1.1 with v(0) = φ.

If N2
ntn → ±∞, let v be the (unique) solution to (3.2) which scatters in Ḣ1 to e

it∆
2 φ as

t → ∓∞. Note the reversal of signs. By standard arguments, if φ ∈ H1 the scattering also

occurs with respect to the H1 norm.

The approximate solution is obtained as follows. Let G̃n, Sn be the frame operators as

defined in (3.17) and (3.18), and define for each n a smooth frequency cutoff

P≤Ñ ′n = ϕ(−∆/(Ñ ′n)2), Ñ ′n = (Nn
N ′n

)
1
2 ,

where ϕ : R → R denotes a smooth function equal to 1 on the ball B(0, 1) and supported

in B(0, 1.1). Fix a large T > 0, and define

ṽTn (t) =


e−itV (xn)G̃n[SnP≤Ñ ′nv](t+ tn) |t| ≤ TN−2

n

e−i(t−TN
−2
n )H ṽTn (TN−2

n ), TN−2
n ≤ t ≤ δ0

e−i(t+TN
−2
n )H ṽTn (−TN−2

n ), −δ0 ≤ t ≤ −TN−2
n

. (3.40)

Inside the “window of concentration”, ṽTn is essentially a modulated solution to (3.2) with

cutoffs applied in both space, to place the solution in CtΣx, and frequency, to enable taking

an extra derivative in the error analysis for the stability theory. The time translation by tn

is needed to undo the time translation built into the operator G̃n; see (3.17).

Essentially the same computations as in Section 2.5 yield the estimate

lim sup
n
‖H1/2ṽTn ‖L∞t L2

x([−δ0,δ0]) + ‖ṽTn ‖
L

2(d+2)
d−2

t,x ([−δ0,δ0]×Rd)

. C(‖φ‖H1 , ‖φ‖Ḣ1),

depending on whether φ belongs to H1 or merely Ḣ1. One also sees that

lim
T→∞

lim sup
n
‖H1/2[(i∂t −H)(ṽTn )− F (ṽTn )]‖N([−δ0,δ0]) = 0,
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where F (z) = µ|z|
4
d−2 z is the nonlinearity.

lim
T→∞

lim sup
n
‖H1/2[ṽTn (−tn)− un(0)]‖L2

x
= 0.

Then for some fixed large T and all large n, ũn(t, x) := ṽTn (t−tn, x) is an approximate solution

on the time interval [−δ0/2, δ0/2] in the sense of Proposition 3.3.3. Thus one obtains the

first part of Proposition 3.5.1. The last claim regarding approximation by smooth functions

is proven by applying Lemma 3.4.1 to the functions ṽTn in the manner of Lemma 2.5.6.

3.6 A compactness property for blowup sequences

In this section we state a Palais-Smale compactness property for sequences of blowing up

solutions to (3.1). This will quickly lead to the proof of Theorem 3.1.2.

Let δ0 be the constant in Theorem 3.2.2. For a maximal solution u to (3.1), define

S∗(u) = sup{SI(u) : I is an open interval with |I| ≤ δ0/2},

where we set SI(u) = ∞ if u is not defined on I. All solutions in this section are assumed

to be maximal. Set

Λd(E) = sup{S∗(u) : u solves (2.1), µ = +1, E(u) = E}

Λf (E) = sup{S∗(u) : u solves (2.1), µ = −1, E(u) = E,

‖∇u(0)‖L2 < ‖∇W‖L2}.

Finally, define

Ed = {E : Λd(E) <∞}, Ef = {E : Λf (E) <∞},

By the local theory, Theorem 3.1.2 is equivalent to the assertions

Ed = [0,∞), Ef = [0, E∆(W )).

Suppose Theorem 3.1.2 failed. By the small data theory, Ed, Ef are nonempty and

open, and the failure of Theorem 3.1.2 implies the existence of a critical energy Ec > 0,
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with Ec < E∆(W ) in the focusing case such that Λd(E), Λf (E) = ∞ for E > Ec and

Λd(E), Λf (E) <∞ for all E < Ec. We have the following compactness property.

Proposition 3.6.1 (Palais-Smale). Assume Conjecture 2.1.1 holds. Suppose that

un : (tn − δ0, tn + δ0)×Rd → C

is a sequence of solutions with

lim
n→∞

E(un) = Ec, lim
n→∞

S(tn−δ0,tn](un) = lim
n→∞

S[tn,tn+δ0)(un) =∞,

where δ0 is the constant in Theorem 3.2.2. In the focusing case, assume also that Ec <

E∆(W ) and ‖∇un(tn)‖L2 < ‖∇W‖L2. Then there exists a subsequence such that un(tn)

converges in Q(H).

Proof. We refer to the presentation following Proposition 2.6.1. The proof uses a local

smoothing estimate for the propagator e−itH , which can be obtained just as in Corol-

lary 2.2.10. In the focusing case, one also uses energy trapping arguments (see Section 2.7)

to see that the hypotheses are in fact equivalent to ‖H1/2un(tn)‖L2 < ‖∇W‖L2 .

Proof of Theorem 3.1.2. Suppose the theorem failed, and let Ec be as above. Then, after

applying suitable time translations, there is a sequence of solutions un with E(un)→ Ec and

S(−δ0/4,δ0/4)(un) → ∞. Choose tn such that S(−δ0/4,tn)(un) = 1
2
S(−δ0/4,δ0/4)(un). By Proposi-

tion 3.6.1, after passing to a subsequence we have ‖u(tn)− φ‖Σ → 0 for some φ ∈ Σ. Then

E(φ) = limnE(un(tn)) = Ec.

Let v : (−Tmin, Tmax) → C be the maximum-lifespan solution to (3.1) with v(0) = φ.

By comparing v(t, x) with the solutions un(t + tn, x) and applying Proposition 3.3.3, we

see that S(0,δ0/2)(v) = S(−δ0/2,0)(v) = ∞. Thus −δ0/2 ≤ −Tmin < Tmax ≤ δ0/2. But the

orbit {v(t)}t∈(−Tmin,Tmax) is a precompact subset of Σ, by Proposition 3.6.1, so there is some

sequence of times tn increasing to Tmax such that v(tn) converges in Σ to some ψ. By

considering a local solution with initial data ψ and invoking stability theory, we see that v

can actually be extended to some larger interval (−Tmin, Tmax + η), in contradiction to the

maximality of v.
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CHAPTER 4

Energy-critical NLS on perturbations of R3

4.1 Introduction

Let g be a smooth Riemannian metric on R3. We consider the large-data Cauchy problem

for the nonlinear Schrödinger equation

(i∂t + ∆g)u = F (u), u(0, x) = u0(x) ∈ Ḣ1, (4.1)

where F (u) = |u|4u is a defocusing quintic power-type nonlinearity, and ∆g is the Laplace-

Beltrami operator. More precise assumptions on g shall be prescribed shortly.

This equation admits a conserved energy

E(u) =

∫
R3

1

2
gjk∂ju∂ju+

1

6
|u|6 dg, (4.2)

where dg =
√
|g|dx is the Riemannian measure. One recovers the scale-invariant energy-

critical NLS discussed earlier by taking the standard Euclidean metric g = δ. As discussed

in previous chapters, all solutions to that equation scatter.

Although the exact scaling symmetry is lost for general g, it reemerges at small length

scales in the sense that solutions concentrated at a point x0 resemble, for short times, so-

lutions to the scale-invariant equation with the constant metric g(x0). In addition, for any

φ ∈ Ḣ1, putting φλ = λ−1/2φ(λ−1·), the Sobolev norm ‖φλ‖Ḣ1 is essentially independent of

λ for small λ. Therefore, boundedness of solutions in norm is necessary (and guaranteed by

energy conservation) but not sufficient to deduce global existence.

Unlike when introducing a potential, even mild deviations of g from the flat metric cannot

be regarded as perturbations to the Euclidean equation. Indeed, disturbing the highest order
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terms can destroy fundamental smoothing and decay estimates for the linear equation. This

breakdown can be traced to the geometry of the geodesic flow.

For a general metric g, some geodesics may remain in a compact set for all time, and the

linear local smoothing estimate L2 → L2H
1/2
loc is known to fail in such cases [Doi96]. Also, on

a curved background, multiple geodesics emanating from a point may converge at another

point. Linear solutions exhibit weaker decay amid such refocusing; in particular, as observed

in [HTW06], the Euclidean dispersive estimate

‖eit∆‖L1(Rd)→L∞(Rd) . |t|−d/2

necessarily fails whenever the metric admits conjugate pairs. In general one can only re-

cover a frequency-localized version which holds at most for times inversely proportional to

frequency [BGT04]; the time window stops the flow well before refocusing of geodesics can

occur. For comparison, the Schrödinger operators considered earlier in this thesis do admit

the analogous dispersive bound at least for small t, with the valid time interval improving

the milder the potential; see Theorem 3.2.2.

While trapping does not occur if g is close to flat, arbitrarily small perturbations of

the flat metric may cause rays to refocus. Therefore, to draw interesting conclusions about

equation (4.1) one must proceed without assuming the dispersive estimate. This constraint

has substantial implications for both the linear and nonlinear analysis.

The standard abstract approach to linear Strichartz estimates combines the dispersive

estimate with a TT ∗ argument [KT98]. This method was used to deduce local-in-time esti-

mates in the previous chapter, but is not directly applicable in geometries with unfavorable

dispersion. Nonetheless, lossless Strichartz inequalities have been obtained in such settings,

starting with the influential work of Staffilani and Tataru [ST02] and generalized substan-

tially since [RT07, HTW06, Tat08, BT08, MMT08]. The basic strategy in these papers is to

exploit microlocal versions of the dispersive estimate through suitable parametrices and to

control the errors using local smoothing, which holds in greater generality compared to the

dispersive estimate.
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Linear pointwise decay also plays a key role in the study of nonlinear solutions, in partic-

ular, when trying to control highly concentrated profiles that arise as potential obstructions

to global existence. Such an analysis occurred in Section 2.5 for the harmonic oscillator, and

we briefly recall the main idea here.

Suppose un is a sequence of solutions to the defocusing harmonic oscillator on R3 with

initial data un(0) = λ
−1/2
n φ(λ−1

n ·) for some λn → 0 and some compactly supported φ. For

short times (more precisely, when |t| ≤ Tλ2
n for any T > 0), the harmonic oscillator solution

un is perceives the potential as essentially constant and is well-approximated by the solution

ũn to the Euclidean energy-critical equation with the same initial data. Hence, un is well-

behaved for t ≤ O(λ2
n) since the same is true of the Euclidean solution.

For t ≥ Tλ2
n, the dispersive estimate for the harmonic oscillator the scattering of Eu-

clidean solutions ensure that for large T and small λn, the nonlinearity |un|4un is a negligible

perturbation of the linear harmonic oscillator. That is, for such t, un evolves essentially

according to the linear flow applied to u(Tλ2
n), which is perfectly well behaved. Thus, linear

decay allows one to control concentrated nonlinear solutions for times when the Euclidean

approximation no longer holds.

We investigate the situation where g coincides with the flat metric outside the unit ball

and all geodesics escape to infinity. This is the simplest nontrivial generalization of the

Euclidean metric and is a natural counterpart to the scenario considered recently by Killip,

Visan, and Zhang [KVZb], who proved scattering for the analogue of equation (4.1) in the

exterior of a hard convex obstacle, where the geodesics are straight lines that reflect off the

obstacle. We prove

Theorem 4.1.1. Let g be a smooth, nontrapping metric R3 which coincides with the Eu-

clidean metric outside the unit ball. For any u0 ∈ Ḣ1, there is a unique global solution

to (4.1). Moreover, there exists ε > 0 such that if ‖g − δ‖C3 ≤ ε then the solutions obey

global spacetime bounds

‖u‖L10
t,x(R×R3) ≤ C(E(u0)).
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The smallness assumption for scattering is probably artificial, but we do not see at this

time how to dispense with it.

We use the Kenig-Merle concentration compactness and rigidity method, following in

particular the mold of [KVZb]. Assuming that the scattering fails, we show that there must

exist a global-in-time blowup solution uc with minimal energy among all counterexamples to

the theorem. In view of this minimality, uc is also shown to be almost-periodic in the sense

that u(t) is trapped in some compact subset of Ḣ1. However, under the smallness assumption

on the metric, a Morawetz inequality will imply that solutions to equation (4.1) can never

be almost-periodic. Without the smalless assumption, the question of suitable Morawetz

estimates remains open at this time, and the argument merely yields global wellposedness

with L10L10 bounds on unit time intervals.

The heart of the matter is how to overcome the reduced linear dispersion, which is the

main obstacle to analyzing the linear and nonlinear profile decompositions. In Section 4.4,

we prove a weak analogue of the usual dispersive estimate which nonetheless suffices for our

purposes. This can be regarded as a long-time variant of the Burq-Gerard-Tzvetkov disper-

sion estimate [BGT04] in which we track the microlocalized Schrödinger flow on timescales

that permit refocusing.

Several recent works have exploited analogous weak dispersion estimates to study energy-

critical NLS in non-Euclidean geometries, although the decay manifests for different reasons.

En route to showing global wellposedness for the quintic NLS on T3, Ionescu and Pau-

sader introduce an “extinction lemma” [IP12, Lemma 4.2] to control concentrated nonlinear

profiles at times beyond the “Euclidean window”. Afterwards, Pausader, Tzvetkov, and

Wang [PTW14] obtained the analogous result on S3, also relying crucially on an extinction

lemma. The arguments there take advantage of the special structure of the underlying man-

ifold, using for instance Fourier analysis on the torus (which, when combined with number

theoretic arguments, yield good bounds on the Schrödinger propagator) or the concentration

properties of spherical harmonics.

In a different vein, Killip-Visan-Zhang also obtained an extinction lemma in the exterior
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of a convex obstacle. To analyze the linear evolution of a profile concentrating near the

obstacle, they construct a gaussian wavepacket parametrix and carefully study how the

wavepackets reflect off the obstacle. The essential geometric fact in their favor is that any

two rays diverge after reflecting off the obstacle.

When the hard obstacle is replaced by a lens, refracted rays can certainly refocus. How-

ever, one can recover some dispersion by a different mechanism. Due to the uncertainty prin-

ciple, a solution which is initially highly concentrated in space must be widely distributed

in momentum (frequency). Thus, it will spread out along geodesics as the slower parts lag

behind1. We make this heuristic precise in Section 4.4 by using a wavepacket parametrix

and studying the geodesic flow.

Outline of chapter. In Section 4.2 we collect some technical points concerning Sobolev

spaces and some linear theory. From the linear estimates it is a standard matter to obtain

the perturbative theory, and we merely state the main results.

Sections 4.3 and 4.4 lie at the core of our argument. In Section 4.3 we study linear

solutions in various situations where the variation in the metric is intuitively negligible (for

instance, when considering initial data supported far from the origin), and show that they

behave essentially like Euclidean solutions. The most interesting case is of course when the

solution starts concentrated near the origin, where it experiences nontrivial interaction with

the curvature. To completely analyze this situation, we need the extinction lemma which is

the subject of Section 4.4.

With those considerations out of the way, we can then construct the linear profile de-

composition in Sections 4.5. We also show in Section 4.6 that highly concentrated nonlinear

profiles are well-behaved; here the extinction lemma and the existing scattering result for

the Euclidean quintic equation both play a critical role.

In Section 4.7, we use a nonlinear profile decomposition and induction on energy to

reduce Theorem 4.1.1 to considering almost-periodic minimal-energy counterexamples. This

1This is an observation of D. Tataru.
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will already imply global wellposedness. Some care is needed to control the interaction

between linear and nonlinear profiles; see the discussion preceding Lemma 4.7.6.

Finally, in Section 4.8 we prove scattering under the smallness assumption via a Bourgain-

Morawetz inequality.
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4.2 Preliminaries

4.2.1 Sobolev spaces

The energy space Ḣ1 is defined as the completion of test functions C∞0 (R3) with respect to

the quadratic form

‖u‖2
Ḣ1 =

∫
R3

|du|2g dg(x) =

∫
R3

gjk∂ju∂ku dg(x).

We want to compare this with the usual Euclidean Sobolev norm. As |du|g is pointwise

comparable to the Euclidean gradient |du| and
√
|g| is bounded above and below, clearly

‖u‖Ḣ1 ∼ ‖(−∆δ)
1/2u‖L2(dx) = ‖u‖Ḣ1(δ),

where Ḣ1(δ) is the Euclidean homogeneous Sobolev space. To distinguish the two norms

we denote the first by Ḣ1(g). Thus the spaces Ḣ1(g) and Ḣ1(δ) are equal as sets and have

equivalent inner products. In particular, the Ḣ1(g) ↪→ L6 Sobolev embedding holds. When

the distinction is irrelevant (as it usually is), we write Ḣ1(R3) or just Ḣ1. The advantage of

Ḣ1(g) is that ∆g is self-adjoint with respect to the inner product.

For 1 < p < ∞, define the homogeneous Sobolev spaces Ḣ1,p(δ) and Ḣ1,p(g) as the
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completion of C∞0 under the norms

‖u‖Ḣ1,p(δ) := ‖(−∆δ)
1/2u‖Lp , ‖u‖Ḣ1,p(g) := ‖(−∆g)

1/2u‖Lp . (4.3)

As noted in the introduction, these two definitions coincide when p = 2. Less trivially, these

norms are equivalent for all 1 < p <∞. This is a consequence of the following boundedness

result for the Riesz transform d(−∆g)
−1/2 on asymptotically Euclidean manifolds.

Proposition 4.2.1 ([CCH06, Remark 5.2]). Let (M, g) be a Riemannian manifold such that

for some R > 0, M \B(0, R) is Euclidean. Then the Riesz transform d(−∆g)
−1/2 is bounded

from Lp(M) to Lp(M ;T ∗M) for all 1 < p <∞.

By a well-known duality argument (see for example [CD03, Section 2.1]), this implies the

reverse inequality whose proof we give for completeness:

Corollary 4.2.2.

‖(−∆g)
1/2u‖Lp .p ‖du‖Lp , ∀u ∈ C∞0 , 1 < p <∞.

Proof. By duality, it suffices to show

|〈(−∆g)
1/2u, v〉| . ‖du‖Lp‖‖v‖Lp′ .

Then

〈(−∆g)
1/2u, v〉 = 〈u, (−∆g)

1/2v〉 = 〈u, (−∆g)(−∆g)
−1/2v〉

= 〈du, d(−∆g)
−1/2v〉 . ‖du‖Lp‖v‖Lp′ .

Note that while the intermediate manipulations are justified for v spectrally localized away

from 0 and ∞, we may then pass to general v ∈ Lp′ using (4.6).

Noting also that

‖df‖Lp = ‖d(−∆g)
−1/2(−∆g)

1/2f‖Lp . ‖(−∆g)
1/2f‖Lp ,

we summarize the previous two estimates in the following
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Corollary 4.2.3 (Equivalence of Sobolev norms). For all 1 < p <∞ and f ∈ C∞0 ,

‖(−∆δ)
1/2u‖Lp ∼p ‖df‖Lp ∼p ‖(−∆g)

1/2u‖Lp .

The geometric Ḣ1 norm, defined by the metric Laplacian, is better adapted to the equa-

tion as it is conserved by the linear flow. On the other hand, the Euclidean Ḣ1 is analytically

more convenient. The corollary allows us to pass freely between the two and exploit the best

properties of each. In particular, the Euclidean Ḣ1 norm is controlled by the energy for both

linear and nonlinear solutions, while the geometric Ḣ1 norm obeys Leibniz and chain rule

estimates:

Corollary 4.2.4.

‖(−∆g)
1/2F (u)‖p . ‖F ′(u)‖q‖(−∆g)

1/2u‖r

whenever p−1 = q−1 + r−1.

In particular, we have

‖(−∆g)
1/2(|u|4u)‖

L2L
6
5
. ‖u‖4

L10L10‖(−∆g)
1/2‖

L10L
30
13
.

4.2.2 Strichartz estimates

Local-in-time Strichartz estimates without loss for compact nontrapping metric perturba-

tions were first established by Staffilani and Tataru [ST02]. As later observed, their argument

can be combined with the global local smoothing estimate of Rodnianski and Tao to deduce

global-in-time Strichartz estimates [RT07]. As mentioned in the introduction, these results

have since been extended to long-range metrics.

Proposition 4.2.5. [[ST02, RT07]] For any function u : I ×R3 → C,

‖u‖L∞L2∩L2L6 . ‖u(0)‖L2 + ‖(i∂t + ∆g)u‖L1L2+L2L6/5

In particular, by Sobolev embedding and Corollary 4.2.3,

‖u‖L10L10 . ‖(−∆g)
1/2u‖

L10L
30
13

. ‖u(0)‖Ḣ1 + ‖∇(i∂t + ∆g)u‖L1L2+L2L6/5 .

114



In the sequel we adopt the notation

Z(I) = L10
t L

10
x (I ×R3), N(I) = (L1

tL
2
x + L2

tL
6/5
x )(I ×R3).

4.2.3 Some harmonic analysis

In this section we set up a Littlewood-Paley theory, which will underlie the linear profile

decomposition. We use the heat semigroup and follow essentially standard arguments that

combine a suitable spectral multiplier theorem with heat kernel bounds.

Gaussian heat kernel bounds for ∆g are classical. We quote a result of Aronson, who in

fact considered uniformly elliptic operators on Euclidean space; see the book [Gri09] for a

comprehensive survey.

Theorem 4.2.6 ([Aro67]). There exist a constant c > 0 such that

et∆g(x, y) ≤ c1t
− 3

2 e−
dg(x,y)2

ct ,

where dg(x, y) is the Riemannian distance between x and y.

In view of this bound, we have access to a very general spectral multiplier theorem. For

simplicity we state just the special case that we shall need.

Theorem 4.2.7 ([TOS02, Theorem 3.1]). For any F satisfying the homogeneous symbol

estimates

|λk∂kF (λ)| ≤ Ck for all 0 ≤ k ≤ dn
2
e+ 1,

the operator F (−∆g) maps L1 → L1,∞ and Lp → Lp for all 1 < p <∞.

For a dyadic number N ∈ 2Z, define Littlewood-Paley projections in terms of the heat

kernel

P̃≤N = e∆g/N2

, P̃N = e∆g/N2 − e4∆g/N2

.

Later on (see Lemma 4.7.6), we also introduce Littlewood-Paley projections P≤N and PN

using compactly supported spectral multipliers.
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We have the Bernstein estimates

Proposition 4.2.8.

‖P̃≤N‖Lp→Lp ≤ 2, 1 < p <∞. (4.4)

‖P̃≤N‖Lp→Lq ≤ cN
d
p
− d
q , 1 ≤ p ≤ q ≤ ∞. (4.5)

f =
∑
N

P̃Nf in Lp, 1 < p <∞.. (4.6)

Also, for all 1 < p <∞, the following square function estimate holds

‖(−∆g)
s
2f‖Lp ∼p

∥∥∥(
∑
N

|N s(P̃N)kf |2)1/2f
∥∥∥
Lp
, (4.7)

whenever 2k > s.

Proof. By the pointwise bound (4.2.6) on the heat kernel,

‖et∆g‖L1→L∞ ≤ ct−3/2. (4.8)

By duality,

‖et∆g‖L1→L2 = ‖et∆g‖L2→L∞ = ‖e2t∆g‖1/2

L1→L∞ ≤ ct−
3
4 .

Since
∫
et∆g(x, y) dg(y) =

∫
et∆g(x, y) dg(x) ≡ 1, we have

‖et∆g‖Lp→Lp ≤ 1, 1 ≤ p ≤ ∞.

The claims (4.4) and (4.5) follow from interpolating these estimates.

The convergence in (4.6) follows from the functional calculus when p = 2. On the other

hand, Theorem 4.2.7 ensures boundedness in Lp for all 1 < p < ∞. By interpolation, one

gets convergence for all such p.

Finally, the square function estimate (4.7) follows the standard argument using random

signs and the multiplier theorem 4.2.7. The lower bound on k ensures that the symbol for

(P̃N)k (which is not quite compactly supported) vanishes at the origin to higher order than

the symbol for (−∆g)
s/2; see [KVZa] for details.
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4.2.4 Local wellposedness

We summarize some standard results concerning the local existence, uniqueness, and stability

of solutions. These are proved by the usual contraction mapping and bootstrap arguments for

the Euclidean NLS (see [KV13] and the references therein). As remarked in the introduction,

these arguments apply equally well in dimensions 3 ≤ d ≤ 6. When d > 6, however, the

stability theorem is proved in the Euclidean setting using exotic Strichartz estimates [TV05,

KV13]. These are derived using the Euclidean dispersive estimate, which is unavailable to

us.

Proposition 4.2.9. There exists ε0 > 0 such that for any u0 ∈ Ḣ1, and for any interval

I 3 0 such that

‖(−∆g)
1/2eit∆gu0‖L10L

30
13 (I×R3)

≤ ε ≤ ε0,

there is a unique solution to (4.1) on I with u(0, x) = u0, which also satisfies

‖(−∆g)
1/2u‖

L10L
30
13
≤ 2ε. (4.9)

In particular, solutions with sufficiently small energy are global and scatter.

Proof. Run contraction mapping on the space X defined by the conditions

‖(−∆g)
1/2u‖

L10L
30
13
≤ 2ε, ‖(−∆g)

1/2u‖L∞L2 ≤ ‖u0‖Ḣ1 + ε

equipped with the metric ρ(u, v) = ‖(−∆g)
1/2(u − v)‖

L10L
30
13

. For each u ∈ X, let I(u) be

the solution to the linear equation

(i∂t + ∆g)I(u) = |u|4u

We check that for ε sufficiently small, the map u 7→ I(u) is a contraction on X. By the

Duhamel formula, Strichartz, the Leibniz rule, and Sobolev embedding,

‖(−∆g)
1/2I(u)‖

L10L
30
13
≤ ‖(−∆g)

1/2eit∆gu0‖L10L
30
13

+ c‖(−∆g)
1/2(|u|4u)‖

L2L
6
5

≤ ε+ c‖(−∆g)
1/2u‖5

L10L
30
13
≤ ε+ c(2ε)5,

117



‖(−∆g)
1/2I(u)‖L∞L2 ≤ ‖(−∆g)

1/2u0‖L2 + c(2ε)5

Thus I maps X into itself.

For u, v ∈ X, the difference I(u)− I(v) solves the equation with right hand side

|u|4u− |v|4v =
(
|u|4 + uv(|u|2 + |v|2)

)
(u− v) + v2(|u|2 + |v|2)(u− v).

Hence, applying the Leibniz rule and Sobolev embedding repeatedly,

‖(−∆g)
1/2[I(u)− I(v)]‖

L10L
30
13

. ‖(−∆g)
1/2(u− v)‖

L10L
30
13

(‖(−∆g)
1/2u‖4

L10L
30
13

+ ‖(−∆g)
1/2v‖4

L10L
30
13

)

. (2ε)4‖(−∆g)
1/2(u− v)‖

L10L
30
13
.

Proposition 4.2.10. Let ũ solve the perturbed equation

(i∂t + ∆g)ũ = ũ4ũ+ e, (4.10)

and let 0 ∈ I be an interval such that

‖ũ‖Z(I) ≤ L, ‖∇ũ‖L∞L2 ≤ E.

Then there exists ε0(E,L) such that if ε ≤ ε0 and

‖ũ(0)− u0‖Ḣ1 + ‖∇e‖N(I) ≤ ε,

there is a unique solution u to (4.1) on I with u(0) = u0, with

‖u− ũ‖Z(I) + ‖∇(u− ũ)‖L2L6∩L∞L2 ≤ C(E,L)ε

‖∇u‖L2L6∩L∞L2(I×R3) ≤ C(E,L).

4.3 Convergence of propagators

Theorem 4.3.1. Let (λn, xn) be a sequence of length scales and spatial centers conforming

to one of the following scenarios:
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(a) λn →∞.

(b) |xn| → ∞.

(c) xn → x∞, λn → 0.

Let ∆ := δjk∂j∂k in the first two cases and ∆ := gjk(x∞)∂j∂k in the third. Then for any

φ ∈ Ḣ1, writing φn = λ
− d−2

2
n φ( ·−xn

λn
), we have

lim
n→∞

‖eit∆gφn − eit∆φn‖L∞L6 = 0.

In cases (a), (b), the convergence actually occurs in L∞Ḣ1.

Proof. By approximation in Ḣ1, we may assume that φ is Schwartz.

Suppose first that λn → ∞. By the Strichartz inequality the equivalence of Sobolev

norms, and the Leibniz rule,

‖eit∆gφn − eit∆φn‖L∞L6 . (−∆g)
1/2(∆g −∆)eit∆φn‖L2L6/5

. ‖χ∇eit∆φn‖L2L6/5 + ‖χ∇2eit∆φn‖L2L6/5 + ‖χ∇3eit∆φn‖L2L6/5

where χ(x) is the characteristic function of the unit ball. By Hölder and the Euclidean

dispersive estimate,

‖χ∇eit∆φn‖L2L6/5 = λ2
n‖χ(λn·)eit∆φ‖L2L6/5 . λ

− 1
2

n ‖eit∆φ‖L2L∞ . λ−1/2
n ‖φ‖L1 .

The terms involving two or more derivatives enjoy even better decay since λn →∞.

Assume now that |xn| → ∞, λn ≡ λ0 ∈ (0,∞). By the Duhamel formula and Sobolev

embedding,

‖eit∆gφn − eit∆φn‖L∞L2 . ‖(∆g −∆)eit∆φn‖L1L2 . ‖χeit∆∇φn‖L1L2 + ‖χeit∆∇2φn‖L1L2 ,

where χ is a bump function supported on the unit ball. For any fixed T > 0, decompose

‖χeit∆∇φn‖L1L2 ≤ ‖χneit∆φ‖L1L2({|t|≤T}) + ‖χneit∆φ‖L1L2({|t|>T}),
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where χn = χ(· + xn). The first term vanishes as n → ∞ because the orbit {eit∆φ}|t|≤T is

compact in L2. We use Hölder’s inequality and the dispersive estimate to bound the second

term by

‖eit∆φ‖L1L∞({|t|>T}) . T−
1
2‖φ‖L1 .

As T may be chosen arbitrarily large, we conclude that limn→∞ ‖χeit∆∇φn‖L1L2 = 0, and

similar considerations estimate the term ‖χeit∆∇2φn‖L1L2 . Finally, we have

‖eit∆gφn − eit∆φn‖L∞L6 ≤ ‖ · · · ‖
1
3

L∞L2‖ · · · ‖
2
3
L∞L∞ ,

and the uniform norms may be estimated via Sobolev embedding:

‖eit∆gφn‖L∞L∞ . ‖(1−∆g)e
it∆gφn‖L∞L2 . ‖(1−∆g)φn‖L2 . 1.

Consider now the scenario where |xn| → ∞ and λn → 0. We may assume that φ is

compactly supported. Let χ be a smooth function such that χ(x) = 1 when |x| ≥ 11/10 and

χ(x) = 0 for |x| ≤ 1. First we show

lim
n→∞

‖(1− χ)eit∆φn‖L∞L6 = 0. (4.11)

The function χeit∆φn solves the equation

(i∂t + ∆)(χeit∆φn) = [χ,∆]eit∆φn.

Thus, by Sobolev embedding and the Duhamel formula,

‖(1− χ)eit∆φn‖L∞L6 . ‖∇[χ,∆]eit∆φn‖L1L2 .

The right side has the form

‖βeit∆∇φn‖L1L2 + ‖βeit∆∇2φn‖L1L2

where β is a bump function localizing to the unit ball. We focus on the potentially more

dangerous second term. Fix T > 0 large, and split

‖χeit∆∇2φn‖L1L2 ≤ ‖βeit∆∇2φn‖L1L2({|t|≤Tλn}) + ‖βeit∆∇2φn‖L1L2({|t|>Tλn}).
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By Hölder in time and a change of variable, the first term may be written as

‖β(xn + λn·)eit∆∇2φ‖L∞L2({|t|≤Tλ−1
n }),

which goes to zero as n→∞ by approximate finite speed of propagation or, more precisely,

by the Fraunhofer formula

lim
t→∞
‖eit∆f − (2it)−

3
2 f̂( x

2t
)e
|x|2
4t ‖L2 = 0.

By the dispersive estimate,

‖βeit∆∇2φn‖L1L2({|t|>Tλn}) . ‖eit∆∇2φn‖L1L∞({|t|>Tλn}) . λ
1
2
n (Tλn)−

1
2‖φ‖L1 . T−

1
2 .

Hence, choosing T arbitrarily large,

lim
n→∞

‖βeit∆∇2φn‖L1L2 = 0,

establishing (4.11).

Since ∆ = ∆g on the support of the cutoff χ, we also have

(i∂t + ∆g)(χe
it∆φn) = [χ,∆]eit∆φn,

so by the Duhamel formula, Sobolev embedding, and the equivalence of Ḣ1 Sobolev norms,

‖eit∆gφn − χeit∆φn‖L∞L6 =
∥∥∥∫ t

0

ei(t−s)∆g [∆, χ]eis∆φn ds‖L∞L6 . ‖(−∆g)
1/2[χ,∆]eit∆φn‖L1L2

. ‖∇[χ,∆]eit∆φn‖L1L2

which was just estimated.

Finally, consider the last case where the profile φn is concentrating at a point. For T > 0,

split

‖eit∆gφn − eit∆φn‖L∞L6 ≤ ‖ · · · ‖L∞L6({|t|≤Tλ2
n}) + ‖ · · · ‖L∞L6({|t|>Tλ2

n}). (4.12)

For the short time contribution, let χ be a bump function centered at the origin, fix 0 < θ < 1,

and define

χn = χ
( · − xn

λθn

)
, vn = eit∆φn.
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Then

(i∂t + ∆)(χnvn) = [∆, χn]vn = 2〈∇∞χn,∇vn〉∞ + (∆χn)vn,

where the inner product on the right is respect to the metric g(x∞), hence

‖(1− χn)vn‖L∞L6({|t|≤Tλ2
n}) . ‖(1− χn)vn‖Ḣ1 + ‖∇[∆, χn]vn‖L1L2({|t|≤Tλ2

n})

. o(1) + Tλn‖φ‖H2 .

Further, writing (i∂t + ∆) = (i∂t + ∆g) + (∆−∆g), we obtain by the Duhamel formula and

Sobolev embedding

‖eit∆gφn − χneit∆φn‖L∞L6({|t|≤Tλ2
n}) . ‖(1− χn)φn‖Ḣ1 + ‖∇[∆, χn]vn‖L1L2({|t|≤Tλ2

n})

+ ‖∇(∆g −∆)(χnvn)‖L1L2({|t|≤Tλ2
n}).

The first two terms were estimated before. Writing out ∆g − ∆ explicitly and using the

Leibniz rule, we see that the worst contributions to the last term are quantities of the form

‖(g − g(x∞))χn∇3vn‖L1L2({|t|≤Tλ2
n}) . Tλ2

nλ
−2
n (|xn − x∞|+ λθn)‖eit∆∇3φ‖L∞L2 ,

which is acceptable.

The long time contribution to (4.12) is bounded by

‖eit∆gφn‖L∞L6({|t|>Tλ2
n}) + ‖eit∆φn‖L∞L6({|t|>Tλ2

n}),

which are dealt with respectively by the extinction lemma in the next section and the usual

dispersive estimate

‖eit∆φn‖L∞L6({|t|>Tλ2
n}) . T−1‖φ‖L6/5 .

The proof of the last case yields the following corollary, which asserts that on short time

intervals, the convergence in Case (c) of the theorem occurs in the energy norm as well.

Corollary 4.3.2. Let (λn, xn) be a sequence such that xn → x∞ and λn → 0. Then for any

T > 0

lim
n→∞

‖eit∆gφn − eit∆φn‖L∞Ḣ1([−Tλ2
n,Tλ

2
n]×R3) = 0.
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4.4 An extinction lemma

The purpose of this section is to prove a long-time weak dispersion estimate for linear pro-

files concentrating within a bounded distance of the origin, which arise in the last case of

Theorem 4.3.1. For profiles with width h, we want to establish decay for times t ≥ Th2

as h → 0 and T → ∞. The analysis naturally splits into two cases, when t ≤ O(h) and

t � h. We use semiclassical techniques for short times, while for longer times we invoke

the global geometry to see that the solution is essentially Euclidean. Our tools consist of

the frequency-localized dispersion estimate of Burq-Gerard-Tzvetkov [BGT04], a wavepacket

parametrix, and a non-concentration estimate for the geodesic flow.

Proposition 4.4.1. Let d ≥ 3, and suppose xh → x0 ∈ Rd as h → 0. For any φ ∈ Ḣ1,

denoting φh = h−
d−2

2 φ(h−1(· − xh)), we have

lim
T→∞

lim sup
h→0

‖eit∆gφh‖
L∞L

2d
d−2 (([Th2,∞)×Rd)

= 0.

Proof. We begin with several reductions. After a translation we may assume that x0 = 0.

Letting ρ = |g| 14 be the square root of the Riemannian density, we have eit∆g = ρ−1e−itAρ,

where the conjugated operator

A = ρ(−∆g)ρ
−1 = −∂jgjk∂k + V

is self-adjoint on L2(dx) and V is a compactly supported potential. Thus

‖eit∆gφh‖
L∞L

2d
d−2

. ‖e−itAρφh‖
L

2d
d−2

. ρ(xh)‖e−itAφh‖
L∞L

2d
d−2

+ ‖e−itA(ρ− ρ(xh))φh‖
L∞L

2d
d−2

. ‖e−itAφh‖
L∞L

2d
d−2

+ o(1) as h→ 0,

and it suffices to show

lim
T→∞

lim sup
h→0

‖e−itAφh‖
L∞L

2d
d−2 ([Th2,∞)×Rd)

= 0. (4.13)

Further, we shall assume that φ is Schwartz and that

supp φ̂ ⊂ {ε < |ξ| < ε−1} (4.14)
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for some ε > 0; the rescaled initial data φh are therefore frequency-localized to {h−1ε < |ξ| <

h−1ε−1}.

By the semiclassical dispersion estimate of Burq-Gerard-Tzvetkov [BGT04, Lemma A3]

(see also [KT05, Proposition 4.7]), there exists c > 0 such that

‖e−itAφh‖
L∞L

2d
d−2 ([Th2,ch]×Rd)

. |Th2|−1‖φh‖
L

2d
d+2

= T−1‖φ‖
L

2d
d+2

.

Hence, it remains to prove the long-time extinction

lim
h→0
‖e−itAφh‖

L∞L
2d
d−2 ([ch,∞)×Rd)

= 0. (4.15)

Wavepacket decomposition

We begin by recalling the FBI transform and its basic properties. See for example [ST02]

and the references therein. For each h > 0 and (x0, ξ0), define

ψh(x0,ξ0)(y) = 2−
d
2π−

3d
4 h

3d
4 e

iξ0(y−x0)
h e−

(y−x0)2

2h ,

which is a Gaussian wavepacket localized in phase space to the box

{(x, ξ) : |x− x0| ≤ h1/2, |ξ − h−1ξ0| ≤ h−1/2}.

The FBI transform at scale h is an isometry Th : L2(Rd)→ L2(Rd ×Rd) defined by

Thf(x, ξ) = 〈ψh(x,ξ), f〉 = cdh
− 3d

4

∫
e
iξ(x−y)

h e−
(x−y)2

2h f(y) dy = cdh
− 5d

4

∫
e
ixη
h e−

(ξ−η)2

2h f̂( η
h
) dη.

From the adjoint formula T ∗hF (y) =
∫
ψh(x,ξ)(y)F (x, ξ) dxdξ, one obtains, for each f ∈ L2(Rd)

and h > 0, a decomposition

f = T ∗hThf =

∫
〈ψh(x,ξ), f〉ψh(x,ξ) dxdξ.

into wavepackets of spatial width h1/2. Such a decomposition is useful for studying semi-

classical Schrödinger dynamics as the Schrödinger evolution of each wavepacket ψh(x0,ξ0) will

remain coherent and behave essentially as a classical particle on time scales of order h.
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Returning to our problem, write

φh =

∫
ψh(x,ξ)Thφh(x, ξ) dxdξ.

We may restrict attention to just the wavepackets from the region

B = {(x, ξ) : |x− xh| ≤ hθ, ε
10
≤ ξ ≤ 10

ε
} (4.16)

for any θ < 1
2
. Indeed, if |x− xh| > hθ then

|Thφh(x, ξ)| . h−
3d
4 h−

d−2
2

∫
e−

(x−xh−y)2

2h |φ( y
h
)| dy

. h1− 5d
4

∫
|y|≤|x−xh|/4

+h1− 5d
4

∫
|y|>|x−xh|/4

.N h1− 5d
4

+θde−
(x−xh)2

ch + h1− 5d
4 hN |x− xh|−N

.M,N hM |x− xh|−N

for any M,N ≥ 0. Similarly,

|Thφh(x, ξ)| . h1− 3d
4

∫
e−

(η−ξ)2
2h |φ̂(η)| dη .

 h1− 3d
4 e−

ε2

ch , |ξ| < ε/10

h1− 3d
4 e−

ξ2

ch , |ξ| > 10/ε

In view of these bounds, we decompose

φh = T ∗h1BThφh + T ∗h (1− 1B)Thφh = f 1
h + f 2

h , (4.17)

where by the triangle inequality we obtain, for any k ≥ 0,

‖∂kf 2
h‖L2 .

∫
Bc

(h−
d+k

2 + h−
d
2 |h−1ξ|k)|Thφh(x, ξ)| dxdξ = O(h∞).

By Sobolev embedding, it therefore suffices to show

lim
h→0
‖e−itAf 1

h‖
L∞L

2d
d−2 ((ch,∞)×R3)

= 0. (4.18)

To prove this, we fix a large T > 0 and consider separately the time intervals [ch, Th]

and [Th,∞). On semiclassical time scales, the quantum evolution of wavepackets is modeled
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by the geodesic flow. More precisely, if ψh(x,ξ) is a typical wavepacket, then for |t| ≤ Th its

Schrödinger evolution e−itAψh(x,ξ) will have width CTh
1/2 and travel along the geodesic starting

at x with initial momentum h−1ξ (that is, with velocity h−1gabξb).

If T is sufficiently large, then by the nontrapping assumption on the metric, all the

wavepackets e−iThAψh(x,ξ) with (x, ξ) ∈ B will have exited the curved region (this is why it

is convenient to assume that φ is frequency-localized away from 0), and for t ≥ Th the

solution e−itAψh(x,ξ) will radiate to infinity while dispersing essentially as a Euclidean free

particle. The decay for e−itAf 1
h will then be a consequence of the dispersive properties of the

Euclidean propagator eit∆R3 .

It will be notationally convenient in the sequel to rescale time semiclassically, that is,

replace t by th, so that each wavepacket ψh(x,ξ) travels at speed O(1) under the propagator

e−ithA. The desired estimate then becomes

lim
h→0
‖e−ithAf 1

h‖
L∞L

2d
d−2 ((c,∞)×R3)

= 0.

Frequency-localization

We show next that the operator A may be replaced, up to acceptable errors, by a frequency-

localized version. This will let us bring to bear the results of Koch and Tataru [KT05]

concerning the evolution of wavepackets at fixed frequency.

Choose frequency cutoffs χj ∈ C∞0 (Rd \ {0}) such that

{ξ : ε ≤ |ξ| ≤ ε−1} ≺ χ1 ≺ χ2 ≺ χ3;

that is, χ1(ξ) = 1 on the annulus ε ≤ |ξ| ≤ ε−1 and χj = 1 near the support of χj−1. Set

A(h) = h2A, let a = gijξiξj be the principal symbol of A, and define the operator

A′(h) = (χ3a)w(X, hD) = (2πh)−d
∫
Rd

e
i(x−y)ξ

h a
(x+ y

2
, ξ
)
χ3(ξ) dξ.

We check that the propagator e−
itA′(h)
h , which preserves L2, is also bounded on Ḣ1 when

restricted to frequency h−1.
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Lemma 4.4.2.

‖e−
itA′(h)
h χ1(hD)‖Ḣ1→Ḣ1 ≤ ck(1 + |t|).

Proof. Let uh = e−
itA′(h)
h χ1(hD) be the solution to the evolution equation

[hDt + A′(h)]uh = 0, uh(0) = χ1(hD)φ.

Differentiating this equation, we obtain

[hDt + A′(h)](hD)uh = [hD,A′(h)]uh.

By pseudodifferential calculus, ‖[hD,A′(h)]‖L2→L2 ≤ ch, so

‖hDuh(t)‖L2 ≤ ‖hDuh(0)‖L2 + h−1

∫ t

0

‖[hD,A′(h)]uh(s)‖L2 ds

≤ ‖hDuh(0)‖L2 + c|t|‖χ1(hD)φ‖L2

≤ c(1 + |t|)‖hDχ1(hD)φ‖L2 .

Lemma 4.4.3. For each T > 0 and for all |t| ≤ T ,

‖(e−
itA(h)
h − e−

itA′(h)
h )χ1(hD)‖Ḣ1→Ḣ1 ≤ cTh|t|

Proof. Write

e−
itA(h)
h − e−

itA′(h)
h = (e−

itA(h)
h − e−

itÃ(h)
h ) + (e−

itÃ(h)
h − e−

itA′(h)
h ),

where

Ã(h) = aw(X, hD) = −h2∂jg
jk∂k −

h2

4
(∂j∂kg

jk).

By the Duhamel formula,

‖e−
itA(h)
h φ− e−

itÃ(h)
h φ‖L2→L2 ≤ h

∫ t

0

∣∣1
4
∂j∂kg

jk + V
∣∣‖e− isA(h)

h φ‖L2 ds ≤ ch|t|‖φ‖L2 .
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Introducing the frequency-localization, we claim that the linear evolutions e−
itA(h)
h and e−

itÃ(h)
h

essentially preserve frequency-support in the sense that

‖(1− χ2(hD))e−
itA(h)
h χ1(hD)‖L2→Hσ ≤ CN,σh

N

and similarly with A replaced by Ã. To see this, choose χ̃1(λ) such that χ1(ξ) ≺ χ̃1(|ξ|2g) ≺

χ2(ξ). By semiclassical functional calculus (see [BGT04]),

‖[1− χ̃1(A(h))]χ1(hD)‖L2→Hσ ≤ CN,σh
N ,

whence

‖[1− χ2(hD)]e−
itA(h)
h χ1(hD)‖L2→Hσ ≤ ‖[1− χ2(hD)]χ̃1(A(h))e−

itA(h)
h χ1(hD)‖L2→Hσ + CN,σh

N

≤ CN,σh
N .

The same proof goes through for the propagator e−
itÃ(h)
h . Thus

‖D(e−
itA(h)
h − e−

itÃ(h)
h )χ1(hD)φ‖L2 ≤ h−1‖(e−

itA(h)
h − e−

Ã(h)
h )χ1(hD)φ‖L2 +O(h∞)

. |t|h‖χ1(hD)h−1φ‖L2 . |t|h‖Dφ‖L2 .

Now we prove

‖(e−
itÃ(h)
h − e−

itA′(h)
h )χ1(hD)‖Ḣ1→Ḣ1 ≤ ch|t|.

For each φ ∈ Ḣ1, the function uh = e−
itÃ(h)
h χ1(hD)φ solves the equation [hDt+A

′(h)]uh = rh,

where

rh = [(χ3 − 1)a]w(X, hD)χ2(hD)uh + [(χ3 − 1)a]w(X, hD)(1− χ2(hD))uh.

As the symbols (χ3 − 1)a and χ2 have disjoint supports, the first term on the left is

O(h∞) in any Sobolev norm. The frequency localization of uh implies that the second term

is similarly negligible. By the Duhamel formula and Lemma 4.4.2, for any T > 0 and |t| ≤ T

we have

‖(e−
itA′(h)
h − e−

itÃ(h)
h )χ1(hD)φ‖Ḣ1 ≤ cT

∫ t

0

‖rh(s)‖Ḣ1 ds ≤ cT,N |t|hN‖φ‖Ḣ1 .
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Returning to the decomposition (4.17) and recalling that φh = χ1(hD)φh, we have

‖(1− χ1(hD))f 1
h‖Ḣ1 = O(h∞),

By the previous lemma and Sobolev embedding, (4.18) will follow from the claims

lim
h→0
‖e−

itA′(h)
h f 1

h‖
L∞t L

2d
d−2 ((c,T )×Rd)

= 0 (4.19)

lim
h→0
‖e−

i(t−T )A(h)
h e−

iTA′(h)
h f 1

h‖
L∞L

2d
d−2 ((T,∞)×Rd)

= 0. (4.20)

Evolution of a wavepacket

For each (x, ξ) ∈ B ⊂ T ∗Rd, let t 7→ (xt, ξt) denote the bicharacteristic starting at (x, ξ).

Proposition 4.4.4 (Short-time). Let ψh(x0,ξ0) be a Gaussian wavepacket.

Then

e−
itA′(h)
h ψh(x0,ξ0)(x) = h−

3d
4 v
(
x0, ξ0, t,

x− xt0
h1/2

)
e
i
h

[ξt0(x−xt0)+γ(t,x0,ξ0)],

where γ(t, x0, ξ0) =
∫ t

0
(ξaξ − a)(xs0, ξ

s
0) ds, and v(x0, ξ0, t, ·) is Schwartz uniformly in (x0, ξ0)

and locally uniformly in t.

Proof. This was proved in [KT05] when h = 1. We reduce to that case by a change of

variable.

For fixed (x0, ξ0), let u be the solution to

[hDt + A′(h)]u = 0, u(0) = ψh(x0,ξ0),

and define the profile v by

u(t, x) = h−
3d
4 v
(
t,
x− xt0
h1/2

)
e
i
h

[ξt0(x−xt0)+γ(t,x0,ξ0)].

Then v solves the equation [Dt + (ah(x0,ξ0))
w(t,X,D)v = 0,= v(0) = ψ1

(0,0), where

ah(x0,ξ0)(t, x, ξ) = h−1[a(t, h1/2x+ xt0, h
1/2ξ + ξt0)− h1/2ξaξ(x

t
0, ξ

t
0)− h1/2xax(x

t
0, ξ

t
0)− a(xt0, ξ

t
0)].

As ah(x0,ξ0) vanishes to second order at (0, 0) and satisfies |∂αx∂
β
ξ a

h
(x0,ξ0)| ≤ cαβ for all |α|+ |β| ≥

2, the claim follows from Lemma 4.4.5 below.
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The following lemma was the key step in the proof of [KT05, Proposition 4.3]

Lemma 4.4.5. Let a(t, ·, ·) be a time-dependent symbol which vanishes to second order at

(0, 0) and satisfies |∂αx∂
β
ξ a| ≤ cαβ whenever |α|+ |β| ≥ 2, and S(t, s) be the solution operator

for the evolution equation

[Dt + aw(t,X,D)]u = 0.

Then S(t, s) : S(Rd)→ S(Rd) locally uniformly in t− s.

By the nontrapping hypothesis (G2), there exists T = O(ε−1) such that for each (x, ξ) ∈

B, |xt| ≥ 10 for all t ≥ T .

Proposition 4.4.6 (Long-time). For each (x0, ξ0) ∈ B and t ≥ T , we have a decomposition

e−
i(t−T )A(h)

h e−
iTA′(h)

h ψh(x0,ξ0) = v1 + v2,

where

|∂kv1(t, x)| ≤ Ck,Nh
− 3d

4
−k|t|−d/2

(
1 +
|x− xt0|
h1/2|t|

)−N
and ‖v2‖Hk = O(h∞) for all k.

Proof. It suffices to verify the following two assertions:

|∂kxei(t−T )h∆e−
iTA′(h)

h ψh(x0,ξ0)(x)| ≤ Ck,Nh
− 3d

4
−k|t|−d/2

(
1 +
|x− xt0|
h1/2|t|

)−N
(4.21)

‖(e−i(t−T )hA − ei(t−T )h∆)e−
iTA′(h)

h ψh(x0,ξ0)‖Hk ≤ Ck,Nh
N . (4.22)

For φ Schwartz, by a stationary phase argument we have

|eit∆φ(x)| ≤ CN〈t〉−d/2
〈 x

2t

〉−N
.

Indeed, let χ be a smoothed characteristic function of the unit ball, and partition

eit∆φ(x) =

∫
ei(xξ−t|ξ|

2)χ
(
ξ − x

2t

)
φ̂(ξ) dξ +

∫
ei(xξ−t|ξ|

2)[1− χ
(
ξ − x

2t

)
]φ̂(ξ) dξ.

130



Integrating by parts in ξ, the second term is bounded, for any N ≥ 0, by |t|−N〈 x
2t
〉−N . By

the stationary phase expansion, the first term equals

(2πit)−d/2e
i|x|2

4t φ̂
( x

2t

)
+ t−

d
2
−1R(t, x),

|R(t, x)| ≤ c‖(1 + |Dξ|2)kχ
(
ξ − x

2t

)
φ̂(ξ)‖L2

ξ
≤ CN

〈 x
2t

〉−N
.

By the previous proposition and standard identities for the Euclidean propagator,

ei(t−T )h∆e−
iTA′(h)

h ψh(x0,ξ0) = h−
3d
4 e

i
h

[ξt0(x−xt0)+γ(t,x0,ξ0)]ei(t−T )h∆Ψ(x0,ξ0)

(x− xt0
h1/2

)
,

where Ψ(x0,ξ0) is Schwartz uniformly in (x0, ξ0), and we have used the fact that (xt0, ξ
t
0) =

(xT0 + 2(t− T )ξT0 , ξ
T
0 ) for all t ≥ T . This settles (4.21) for k = 0. When k > 0, we note that

differentiating the above equation brings down at worst a factor of |h−1ξ0| ≤ cε−1h−1.

To prove (4.22), we note first that e−itA is uniformly bounded on each Sobolev space Hk.

Indeed, for a sufficiently large C > 0 the operators (1−∆)k(C+A)−k and (C+A)k(1−∆)−k

are pseudodifferential operators of order 0, which implies that

‖u‖Hk = ‖(1−∆)k/2u‖L2 ∼ ‖(C + A)k/2u‖L2 .

Using the Duhamel formula, triangle inequality, and the above pointwise estimates, we can

therefore bound the left side of (4.22) by∫ ∞
T

2∑
m=0

‖χDmei(t−T )h∆e−
iTA′(h)

h ψh(x0,ξ0)‖Hk ≤ CNh
N

∫ ∞
T

|t|−d/2 dt ≤ CNh
N .

The geodesic flow and short-time extinction

By Proposition 4.4.4, on bounded time intervals each wavepacket may be regarded essentially

as a particle moving under the geodesic flow. We will obtain the short-time decay (4.19) by

showing that not too many wavepackets pile up near any point at any time. Heuristically,

by the uncertainty principle the wavepackets have a broad distribution of initial momenta,

and slower wavepackets will lag behind faster ones along each geodesic.
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To make this rigorous, we need to study the bicharacteristics for the symbol a = gjk(x)ξjξk.

Let (x, ξ) 7→ (xt(x, ξ), ξt(x, ξ)) be the flow on T ∗Rd induced by the ODE ẋt = aξ = 2g(xt)ξt,

ξ̇t = −ax = −(ξt)∗(∂xg)(xt)ξt
(x0, ξ0) = (x, ξ);

The curve t 7→ xt(x, ξ) is the geodesic starting at x with tangent vector gabξb, and for

fixed y the mapping η 7→ x1(y, η) is the exponential map with basepoint y (although the

exponential map is technically defined on the tangent space). A standard fact from geometry

is the identity

xt(x, ξ) = x1(x, tξ), (4.23)

which follows from the observation that s 7→ (xts(x, ξ), tξts(x, ξ)) is the bicharacteristic with

initial data (x, tξ).

Lemma 4.4.7. Let g be a nontrapping metric on Rd. Then, for all x, z ∈ Rd with |x| ≤ 1

and all 0 ≤ r ≤ 1,

m({ξ ∈ Rd : |x1(x, ξ)− z| ≤ r}) ≤ cx,zr,

where m denotes Lebesgue measure on Rd
ξ , and the constant cx,z is locally uniformly bounded

in x and z. If also g is Euclidean outside a compact set, then

m({ξ ∈ Rd : |x1(x, ξ)− z| ≤ r}) ≤ cx(1 + |z|)d−1r.

The basic idea is that the preimage of a small ball under the exponential map will always

be thin in the radial direction, though not necessarily in the other directions. This is a

consequence of the fact that the exponential map always has nontrivial radial derivative.

Note that for z near x, the above bound can be improved to O(rd) as the map ξ 7→ x1(x, ξ)

is a diffeomorphism for ξ near 0.

Proof. Fix x and z. For each ξ we have

x1(x, ξ + ζ) = x1(x, ξ) + (∂ξx
1)ζ + r(ζ), |r(ζ)| = O(|ζ|2).
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Differentiating the scaling relation (4.23) in t, we have

∂ξx
1(x, ξ)ξ = ẋ1(x, ξ) = g(x1)ξ1(x, ξ)

which implies that

|ξ1||∂ξx1(x, ξ)ξ| ≥ ξ1 · (∂ξx1)ξ = 2g(x1)jk(ξ1)j(ξ1)k & |ξ1|2.

Using also the fact that gjk(x)ξjξk is conserved along the flow, it follows that

|∂ξx1(x, ξ)ξ| ≥ c|ξ|.

Thus, if ζ0 is such that that |r(ζ)| ≤ c
2
|ζ| for |ζ| ≤ ζ0, then

c

2
|ζ| ≤ |x1(x, ξ + ζ)− x1(x, ξ)| ≤ 2c|ζ|

for all ζ parallel to ξ with length at most ζ0.

Let Sx,z denote the set on the left side in the lemma; the nontrapping hypothesis implies

that Sx,z is compact. By the preceding considerations, the intersection of each ray t 7→
tξ
|ξ| with Sx,z has measure O(r). The first inequality now follows by integrating in polar

coordinates.

Under the additional hypothesis that g is flat outside a compact set, observe that for

each x there exists R > 0 such that

sup
|ξ|g=1

|xt(x, ξ)| −R < 2t < inf
|ξ|g=1

|xt(x, ξ)|+R, (4.24)

where |ξ|2g = gjk(x)ξjξk. Indeed, for T sufficiently large and t ≥ T ,

xt(x, ξ) = xT (x, ξ) + 2(t− T )ξT (x, ξ),

and |ξT | = |ξT |g = |ξ0|g = |ξ|g = 1. Set r = sup|ξ|g=1 |xT (x, ξ)| to get

2|t− T | − r ≤ |xt(x, ξ)| ≤ 2|t− T |+ r.

Therefore, Sx,z is contained in an annulus {|z| − Rx ≤ |ξ| ≤ |z| + Rx}, which is covered by

c(1 + |z|)d−1r1−d cones of width r. Arguing as before, we obtain the improved bound.
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We are now ready to establish the short-time extinction (4.19). We have

|e−
itA′(h)
h f 1

h(x)| ≤
∫
B

|e−
itA′(h)
h ψh(x0,ξ0)(x)||Thφh(x0, ξ0)| dx0dξ0.

By Proposition 4.4.4, each e−
itA′(h)
h ψh(x0,ξ0) concentrates in a radius h1/2 ball at xt(x0, ξ0), so

the integral is O(h∞) for all |x| � Tε−1.

For |x| . Tε−1, modulo O(h∞) we may restrict the integral to the region

{(x0, ξ0) ∈ B : |xt(x0, ξ0)− x| < hα}

for any α < 1
2
. By Hölder and the rapid decay of φh,

|Thφh(x0, ξ0)| ≤ h−
3d
4

(∫
|y|≤h1−

e−
|y|2
h dy

) d+2
2d

. h1− d
4
−ε

for any ε > 0. Combining this with Proposition 4.4.7 and the definition (4.16) of B,∫
B

|e−
itA′(h)
h ψh(x0,ξ0)(x)||Thφh(x0, ξ0)| dx0dξ0 ≤ h1− d

4h−
3d
4 hdθhα = h1+α−d(1−θ).

As θ and α may be chosen arbitrarily close to 1
2
, it follows that

|e−
itA′(h)
h f 1

h(x)| .ε h
3
2
− d

2
−ε

for any ε > 0. Therefore

‖e−
itA′(h)
h f 1

h‖
L

2d
d−2
≤ ‖e−

itA′(h)
h f 1

h‖
1− 2

d

L2 ‖e−
itA′(h)
h f 1

h‖
2
d
L∞ .ε h

1− 2
d

+ 3
d
−1−ε .ε h

1
d
−ε.

Remark. When g is the Euclidean metric, the exponential map is a diffeomorphism, so the

bound in Proposition 4.4.7 is O(rd). Consequently,∫
B

|e−
itA′(h)
h ψh(x0,ξ0)(x)||Thφh(x0, ξ0)| dx0dξ0 . h1− d

4h−
3d
4 hd(θ+α) .ε h

1−ε

for any ε > 0, and we find that

‖e−
itA′(h)
h f 1

h‖
L

2d
d−2

.ε h
1−ε,

recovering modulo arbitrarily small losses the O(h) decay rate predicted by the L
2d
d+2 → L

2d
d−2

dispersive estimate for the Euclidean propagator eit∆. The epsilon loss can be avoided if,
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instead of truncating crudely in phase space (4.16), we account for the contribution from

each dyadic annulus {2k−1h1/2 ≤ |x| < 2kh1/2}, using the rapid decay of each wavepacket on

the h1/2 scale. We omit the details.

Remark. Rather than exhibiting decay in L
2d
d−2 , one can adapt these arguments to get

L1 → L∞ bounds.

Long-time extinction

To prove (4.20), use Proposition (4.4.6) to write

e−
i(t−T )A(h)

h e−
iTA′(h)

h f 1
h =

∫
B

vh(x0,ξ0)(t)Thφh(x0, ξ0) dx0dξ0 +

∫
B

rh(x0,ξ0)(t)Thφh(x0, ξ0) dx0dξ0,

where

|v(x0,ξ0)(t, x)| ≤ CNh
− 3d

4 |t|−d/2
(

1 +
|x− xt0|
h1/2|t|

)−N
, ‖r(x0,ξ0)‖H1 = O(h∞).

The second integral is clearly negligible in L∞L6.

To estimate the first integral, we proceed as in the short-time estimate, interpolating

between L2 and L∞ to exhibit decay in L6. For fixed x, modulo O(h∞) we may restrict the

integral to the region

B′ = {(x0, ξ0) ∈ B : |xt(x0, ξ0)− x| ≤ hα(1 + |t|)}

for any α < 1
2
. As xt = xT + 2(t − T )ξT when t ≥ T , for each (x0, ξ0) ∈ B with |ξ0|g = 1,

the ray r 7→ (x0, rξ0) intersects the above set in an interval of width O(hα). The region B′

therefore has measure at most O(hdθhα), and we obtain∫
B′
|vh(x0,ξ0)(t, x)||Thφh(x0, ξ0)| dx0dξ0 ≤ cεh

1− d
4h−

3d
4 |t|−d/2hdθ+α = h1+α−d(1−θ)|t|−d/2.

Hence, recalling that θ may be chosen arbitrarily close to 1
2
, for any ε > 0 we have

‖e−
i(t−T )A(h)

h e−
iTA′(h)

h f 1
h‖L∞L6 . T−1h1− 2

dh
2(1+α)

d
−2(1−θ) .ε T

−1h
1
d
−ε.

This completes the proof of Proposition 4.4.1.
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4.5 Linear profile decomposition

The profile decomposition will follow from repeated application of the following inverse

Strichartz theorem.

Proposition 4.5.1. Let {fn} ⊂ Ḣ1 be a sequence such that ‖fn‖Ḣ1 ≤ A and ‖eit∆gf‖L∞L6 ≥

ε. Then there exist a function φ ∈ Ḣ1 and parameters tn, xn, λn such that after passing to

a subsequence,

lim
n→∞

G−1
n eitn∆g ⇀ φ in Ḣ1(g), (4.25)

where Gnφ = λ
− 1

2
n φ( ·−xn

λn
). Setting φn = e−itn∆gGnφ, we have

lim inf
n
‖φn‖Ḣ1(g) & ε

9
4A−

5
4 . (4.26)

lim
n
‖fn‖2

Ḣ1 − ‖fn − e−itn∆gGnφ‖2
Ḣ1 − ‖e−itn∆gGnφ‖2

Ḣ1 = 0. (4.27)

lim
n
‖fn‖6

L6 − ‖fn − φn‖6
L6 − ‖φn‖6

L6 = 0 (4.28)

Finally, the tn may be chosen so that either tn ≡ 0 or λ−2
n tn →∞.

Proof. The proof has the same structure as in the previous chapters, we give a complete

exposition as some of the technical details are different.

We have the following inverse Sobolev lemma:

Lemma 4.5.2. If ‖f‖Ḣ1 ≤ A and ‖eit∆gf‖L∞L6 ≥ ε, then there exist t, x, N , such that

|(P̃N)2eit∆gf)(x)| & N
1
2 ε

9
4A1− 9

4 . (4.29)

Proof sketch. A Littlewood-Paley theory argument yields the usual Besov refinement of

Sobolev embedding (see [GMO97])

‖eit∆gf‖L∞L6 . ‖f‖
1
3

Ḣ1‖(P̃N)2eit∆gf‖
2
3

L∞L6 .

Then one interpolates L∞L6 between L∞L2 and L∞L∞, using the elementary inequality

‖(P̃N)2f‖2 . N−1‖P̃Nf‖Ḣ1 ,

which follows from the corresponding pointwise inequality of symbols.
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Select (tn, xn, Nn) according to this lemma, and set λn = N−1
n . After passing to a

subsequence, we may assume λn → λ∞ ∈ [0,∞] and xn → x∞ ∈ Rd∪{∞}. We may extract

a weak limit

G−1
n eitn∆gfn ⇀ φ in Ḣ1(g).

As Ḣ1(g) and Ḣ1(δ) have equivalent norms, their duals may be identified; hence the weak

limit also holds in Ḣ1(δ).

Define φn = e−itn∆gGnφ.

We verify that this profile has positive energy. From Theorem 4.2.6 and the facts that

dg(x, y) ∼ |x− y|, dg =
√
|g| dx ∼ dx, there exist constants c1, c2 > 0 such that

N
1
2
n ε

9
4A−

5
4 ≤ c1N

3
n

∫
e−c2N

2
n|xn−y|2|eitn∆gfn|(y)dy.

Thus

cε
9
4A−

5
4 ≤

∫
e−|y|

2

G−1
n |eitn∆gfn|(y) dy.

As G−1
n eitn∆gfn ⇀ φ in Ḣ1, |G−1

n eitn∆gfn| ⇀ |φ| in Ḣ1. Indeed, by the Rellich-Kondrashov

theorem, the sequences G−1
n eitn∆g and |G−1

n eitn∆g | converge to their Ḣ1 weak limits in L2
loc.

Taking n→∞ in the above inequality and bounding e−|y|
2

in Ḣ−1 by its L6/5 norm, we

get

ε
9
4A−

5
4 ≤

∫
e−|y|

2|φ| dy . ‖|φ|‖Ḣ1 . ‖φ‖Ḣ1 .

The claim (4.26) follows from the equivalence of Ḣ1(δ) and Ḣ1(g).

To prove the decoupling (4.27), write

‖fn‖2
Ḣ1 − ‖fn − e−itn∆gGnφ‖2

Ḣ1 − ‖e−itn∆gφ‖Ḣ1 = 2 Re〈eitn∆gfn −Gnφ,Gnφ〉Ḣ1

= 2 Re〈G−1
n eitn∆gfn − φ, φ〉Ḣ1(gn),

where gn(x) = g(xn + λnx).
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To see that the right side goes to 0, we consider two cases. If λ∞ <∞, then by Arzelà-

Ascoli, after passing to a subsequence the metrics gn converge boundedly and locally uni-

formly to some metric g∞. If on the other hand λ∞ = ∞, then gn converges weakly to the

Euclidean metric as gn(x) = δ outside the shrinking balls |x− xn| ≤ λ−1
n .

To streamline the presentation, in the sequel we let g∞ denote the locally uniform limit

in the first case and g∞ = δ in the second case.

When λ∞ <∞, then

〈G−1
n eitn∆gfn − φ, φ〉Ḣ1(gn) = 〈G−1

n eitn∆gfn − φ, φ〉Ḣ1(g∞) + o(1)→ 0

by dominated convergence.

If λ∞ =∞, writing

〈u, v〉Ḣ1(gn) =

∫
∇u · ∇v dx+

∫
|x−xn|≤λ−1

n

〈du, dv〉gn dgn −
∫
|x−xn|≤λ−1

n

∇u · ∇v dx,

we have

〈G−1
n eitn∆gfn − φ, φ〉Ḣ1(gn) = 〈G−1

n eitn∆gfn − φ, φ〉Ḣ1(δ) + o(1),

which vanishes since G−1
n eitn∆gfn − φ ⇀ 0 in Ḣ1(δ).

We show next that if tnλ
−2
n is bounded, then after modifying the profile φ slightly we

may arrange for tn ≡ 0.

Suppose that tnλ
−2
n → t∞. By Theorem 4.3.1 and its corollary, we have

φn = e−itn∆gGnφ = Gne
−it∞∆φ+ rn, ‖rn‖Ḣ1 = o(1).

Define the modified profile φ̃ = e−it∞∆, φ̃n = Gnφ̃. Clearly (4.26) holds with φ̃n in place of

φn. We claim that

G−1
n fn ⇀ φ̃ in Ḣ1(g). (4.30)
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Suppose λn is bounded above. Passing to a subsequence, the metrics gn converge locally

uniformly to some metric g∞. Then as

〈G−1
n fn − e−it∞∆φ, ψ〉Ḣ1(gn) = 〈fn −Gne

−it∞∆φ,Gnψ〉)Ḣ1(g) + o(1)

= 〈eitn∆gfn −Gnφ, e
itn∆gGnψ〉Ḣ1(g) + o(1)

= 〈G−1
n eitn∆gfn − φ,G−1

n eitn∆gGnψ〉Ḣ1(gn) + o(1)

= 〈G−1
n eitn∆gfn − φ, eit∞∆ψ〉Ḣ1(gn) + o(1)

= 〈G−1
n eitn∆gfn − φ, eit∞∆ψ〉Ḣ1(g∞) + o(1)

= o(1),

we have for all ψ ∈ Ḣ1

〈G−1
n fn − e−it∞∆φ, ψ〉Ḣ1(g∞) = o(1)

which implies weak convergence in Ḣ1(g) since the norms defined by g∞ and g are equivalent.

If instead λn →∞, then as before

〈G−1
n fn − e−it∞∆φ, ψ〉Ḣ1(δ) = 〈G−1

n fn − e−it∞∆φ, ψ〉Ḣ1(gn) + o(1)→ 0.

Having verified the weak limit (4.30), the same argument as before establishes the de-

coupling of kinetic energies (4.27).

To establish the asymptotic additivity of nonlinear energy (4.28), we use the refined

Fatou lemma of Brezis and Lieb:

Lemma 4.5.3 ([BL83]). Suppose fn ∈ Lp(µ) converge a.e. to some f ∈ Lp(µ) and supn ‖fn‖Lp <

∞. Then ∫
Rd

∣∣∣|fn|p − |fn − f |p − |f |p∣∣∣ dµ→ 0.

Proof sketch. Partition Rd into B and Bc, where B is a large ball that captures essentially

all of the Lp norm of f . The integral over B converges to 0 by Egorov’s theorem. Over Bc,
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f is essentially negligible and the terms |fn|p and |fn − f |p nearly cancel:∫
Bc

∣∣∣|fn|p − |fn − f |p − |f |p∣∣∣ dµ ≤ c

∫
Bc
|f |(|fn|p−1 + |fn − f |p−1) dµ+

∫
Bc
|f |p dµ

≤ c‖f‖Lp(Bc)(‖fn‖p−1
Lp + ‖fn − f‖p−1

Lp(Bc)) + ‖f‖pLp(Bc).

Assume tn ≡ 0. Then φn = Gnφ and G−1
n fn converges weakly in Ḣ1 to φ. By

Rellich-Kondrashov and a diagonalization argument, after passing to a subsequence we have

G−1
n fn → φ pointwise a.e. By a change of variable, the left side of (4.28) is bounded by∫ ∣∣∣|G−1

n fn|6 − |G−1
n fn| − φ|6 − |φ|6

∣∣∣ dgn ≤ ∫ dg∞ +

∫
d|gn − g∞|,

where we write d|gn−g∞| for the density |
√
|gn|−

√
|g∞|| dx. The first term vanishes by the

Brezis-Lieb lemma, while to deal with the second integral we note that
∫
|φ|6 d|gn− g∞| → 0

and argue as in the proof of that lemma.

Suppose tnλ
−2
n →∞ ( the case tnλ

−2
n → −∞ is similar). Different arguments are required

depending on the behavior of the parameters, but in each case we conclude that

lim
n→∞

‖φn‖L6 = 0,

which clearly implies (4.28).

If λ∞ =∞ or x∞ =∞, then by Theorem 4.3.1 we have

φn = e−itn∆Gnφ+ rn, ‖rn‖L6 = o(1),

and the decay in L6 follows from the dispersive estimate for the Euclidean propagator.

If 0 < λ∞ < ∞ and x∞ ∈ R3, then Gnφ → φ′, and we appeal to Lemma 4.5.4 below to

find φ̃ ∈ Ḣ1 such that

lim
t→∞
‖eit∆gφ′ − eit∆φ̃‖Ḣ1 → 0.

We bound by the triangle inequality

‖eitn∆gGnφ‖L6 ≤ ‖eit∆g(Gnφ− φ′)‖L6 + ‖eit∆gφ′ − eit∆φ̃‖L6 + ‖eitn∆φ̃‖L6
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and use the dispersive estimate and Sobolev embedding.

For the remaining case where λ∞ = 0 and x∞ ∈ R3, we invoke the extinction lemma.

Lemma 4.5.4 (Linear asymptotic completeness). The limits limt→±∞ e
−it∆δeit∆g exist strongly

in Ḣ1.

Proof. Suppose first that φ ∈ C∞0 . By the Duhamel formula,

e−it∆eit∆gφ = φ+ i

∫ t

0

e−is∆(∆g −∆)eis∆gφ ds,

and we need to show that

lim
t→∞

∫ t

0

e−is∆(∆g −∆)eis∆gφ ds

exists in Ḣ1. We use (the dual of) the endpoint Strichartz estimate eit∆g : L2 → L2L6. For

t1 < t2, we have∥∥∥∫ t2

t1

e−is∆(∆g −∆)eis∆g ds
∥∥∥
Ḣ1

. ‖∇(∆g −∆)eit∆gφ‖L2L6/5([t1,t2])

. ‖χ∇eit∆gφ‖L2L6/5 + ‖χ∇2eit∆gφ‖L2L6/5 + ‖χ∇3eit∆gφ‖L2L6/5

for some bump function χ. Using Hölder, the equivalence of Sobolev spaces, and the

Strichartz inequality, each term is bounded by

‖χ‖L3/2‖(1−∆)3/2eit∆gφ‖L2L6([t1,t2]) . ‖(1−∆g)
3/2eit∆gφ‖L2L6([t1,t2]) . ‖φ‖H3 .

As t1, t2 →∞, the left side goes to 0. Thus

lim
t→∞

e−it∆δeit∆gφ

exists in Ḣ1 for any φ ∈ C∞0 .

For general φ ∈ Ḣ1, select for each ε > 0 some φε ∈ C∞0 with ‖φ − φε‖Ḣ1 < ε. Write

W (t) = e−it∆δeit∆g ,

W (t)φ = W (t)φε +W (t)(φ− φε).
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As W (t) are bounded on Ḣ1 uniformly in t, we have for all t1 < t2

‖W (t2)φ−W (t1)φ‖Ḣ1 ≤ ‖W (t2)φε −W (t1)φε‖Ḣ1 + cε;

so W (t)φ also converges in Ḣ1.

Definition 4.5.1. Two frames (λ1
n, t

1
n, x

1
n) and (λ2

n, t
2
n, x

2
n) are orthogonal if

λ1
n

λ2
n

+
λ2
n

λ1
n

+
|t1n − t2n|
λ1
nλ

2
n

+
|x1
n − x2

n|√
λ1
nλ

2
n

=∞.

They are equivalent if

λ1
n

λ2
n

→ λ∞ ∈ (0,∞),
t1n − t2n
λ1
nλ

2
n

∈ R,
x1
n − x2

n√
λ1
nλ

2
n

→ x∞ ∈ R3.

Lemma 4.5.5. If frames (λ1
n, t

1
n, x

1
n) and (λ2

n, λ
2
n, λ

2
n) are orthogonal, then

(e−it
2
n∆gG2

n)−1e−it
1
n∆gG1

n

converges in weak Ḣ1 to zero. If they are equivalent, then (e−it
2
n∆gG2

n)−1e−it
1
n∆gG1

n converges

strongly to some injective U∞ : Ḣ1 → Ḣ1.

Proof. Assume the frames are orthogonal, and put tn = t2n−t1n. Suppose first that |(λ1
n)−2tn| →

∞. By passing to a subsequence, we may assume λ1
n → λ1

∞ ∈ [0,∞] and x1
n → x1

∞ ∈

R3 ∪ {∞}. Then

‖(G2
n)−1ei(t

2
n−t1n))∆gG1

nφ‖L6 → 0 for each φ ∈ Ḣ1.

Indeed, if λ1
∞ ∈ (0,∞) and x1

∞ ∈ R3 this follows from by Lemma 4.5.4 and the Euclidean

dispersive estimate. For all other configurations of λ1
∞ and x1

∞, we appeal to Theorem 4.3.1

to see that

‖ei(t2n−t1n)∆gG1
nφ− ei(t

2
n−t1n)G1

ne
it∆φ‖L6 → 0.

where ∆ is, up to a linear change of variable, the Euclidean Laplacian. The decay in L6

therefore follows from the Euclidean dispersive estimate.
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As (G2
n)−1ei(t

2
n−t1n)∆gG1

nφ forms a bounded sequence in Ḣ1, to determine its weak limit it

suffices to test against compactly supported functions. For ψ ∈ C∞0 , we have

|〈(G2
n)−1ei(t

2
n−t1n)∆gG1

nφ, ψ〉L2| ≤ ‖(G2
n)−1ei(t

2
n−t1n)∆gG1

nφ‖L6‖ψ‖L6/5 → 0.

Assume now that (λ1
n)−2(t2n − t1n)→ t∞ ∈ R. This implies that

λ1
n

λ2
n

+
λ2
n

λ1
n

+
|x1
n − x2

n|√
λ1
nλ

2
n

→∞. (4.31)

As before, we may assume that λ1
n → λ1

∞ ∈ [0,∞] and x1
n → x∞ ∈ R3 ∪ {∞}.

If λ1
∞ ∈ (0,∞) and x1

∞ ∈ R3, then it must be the case that

lim
n→∞

λ1
n

λ2
n

∈ {0,∞},

Since the functions fn := ei(t
2
n−t1n)∆gG1

nφ form a precompact subset of Ḣ1, the sequences ∇fn

and ξf̂n(ξ) are tight in L2. It follows that

〈(G2
n)−1ei(t

2
n−t1n)∆gG1

nφ, ψ〉Ḣ1(δ) = 〈ei(t2n−t1n)∆gG1
nφ,G

2
nψ〉Ḣ1(δ) → 0.

From the equivalence of Ḣ1(δ) and Ḣ1(g) we conclude weak convergence to zero in Ḣ1(g).

For all other configurations of the limiting parameters λ1
∞ and x1

∞, we appeal to Theo-

rem 4.3.1 and Corollary 4.3.2 to see that

‖(G2
n)−1ei(t

2
n−t2n)∆gG1

nφ− (G2
n)−1ei(t

2
n−t1n)∆G1

nφ‖Ḣ1 → 0,

where ∆ is the Euclidean Laplacian modulo a linear change of variable. Thus

〈(G2
n)−1ei(t

2
n−t1n)∆gG1

nφ, ψ〉Ḣ1(δ) = 〈(G2
n)−1G1

ne
it∞∆φ, ψ〉Ḣ1(δ) + o(1),

and under the assumption (4.31), the operator (G2
n)−1G1

n converges in weak Ḣ1 to zero.

Now suppose the frames are equivalent. This implies that (λ1
n)−2(t2n − t1n)→ t∞ ∈ R. If

λ1
∞ ∈ (0,∞) and x1

∞ ∈ R3, then tn → (λ1
∞)−2t∞ ∈ R, λ2

n → λ2
∞ ∈ (0,∞), x2

n → x2
∞ ∈ R3,

and (G2
n)−1ei(t

2
n−t1n)∆gG1

n converges strongly to (G2
∞)−1eit∞∆gG1

∞φ where Gj
∞ is the scaling
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and translation operator corresponding to (λj∞, x
j
∞). For all other values of λ1

∞ and x1
∞, we

appeal to Theorem 4.3.1 to see that

(G2
n)−1ei(t

2
n−t1n)∆gG1

n → G∞e
it∞∆

where G∞ is the scaling and translation operator associated to the parameters (λ∞,
√
λ∞x∞),

and

λ∞ = lim
n→∞

λ1
n

λ2
n

, x∞ = lim
n→∞

x1
n − x2

n√
λ1
nλ

2
n

.

In both cases the limiting operator is clearly invertible.

This completes the proof of Proposition 4.5.1.

We are now ready to give the linear profile decomposition.

Proposition 4.5.6. Let fn be a bounded sequence in Ḣ1. After passing to a subsequence,

there exist J∗ ∈ {1, 2, . . . } ∪ {∞}, profiles φj, and parameters (λjn, t
j
n, x

j
n) such that for each

finite J we have a decomposition

fn =
J∑
j=1

e−it
j
n∆gGj

nφ
j + rJn ,

where Gj
nφ(x) = (λjn)−

1
2φ( ·−xn

λjn
), satisfying the following properties:

(GJ
n)−1rJn ⇀ 0 in Ḣ1. (4.32)

lim
J→J∗

lim sup
n→∞

‖eit∆grJn‖L∞L6 = 0. (4.33)

E(fn) =
J∑
j=1

E(φjn) + E(rJn) + o(1) as n→∞. (4.34)

λjn
λkn

+
λkn
λjn

+
|xjn − xkn|√

λjnλkn

+
|tjn − tkn|
λjnλkn

→∞ for all j 6= k. (4.35)

Moreover, the times tjn may be chosen for each j so that either tjn ≡ 0 or limn→∞(λjn)−2tjn →

±∞.
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Proof. We iteratively apply Proposition 4.5.1 to construct the profiles. Let r0
n = fn. Passing

to a subsequence, we may assume the existence of the limits

AJ = lim
n→∞

‖rJn‖Ḣ1 , εJ = lim
n→∞

‖eit∆grJn‖L∞L6 .

If εJ = 0 then stop and set J∗ = J . Otherwise, apply Proposition 4.5.1 to the sequence rJn

to obtain a set of parameters (tJ+1
n , xJ+1

n , λJ+1
n and a profile

φJ+1 = w-lim(GJ+1
n )−1eit

J+1
n ∆rJn , φJ+1

n = GJ+1
n φJ+1. (4.36)

Set rJ+1
n = rJn −GJ+1

n φJ+1, and continue the procedure replacing J by J + 1.

If εJ never equals zero, then set J∗ =∞. In this case, the kinetic energy decoupling (4.27),

the lower bound (4.26) imply

A2
J+1 ≤ A2

J

[
1− c

( εJ
AJ

) 9
2
]

which in view of the Sobolev embedding εJ ≤ cAJ compels εJ → 0 as J →∞.

It remains to verify the decoupling of parameters.

Suppose (4.35) failed. Choose j < k with k minimal such that the frames (λjn, t
j
n, x

j
n)

and (λkn, t
k
n, x

k
n) are not orthogonal. After passing to a subsequence, we may arrange for the

frames (λjn, t
j
n, x

j
n), (λ`n, t

`
n, x

`
n) to be equivalent when ` = k and orthogonal for j < ` < k.

By construction,

rj−1
n = e−it

j
n∆gGj

nφ
j + e−it

k
n∆gGk

nφ
k +

∑
j<`<k

e−it
`
n∆gG`

nφ
`,

hence

(Gj
n)−1eit

j
n∆grj−1

n = φj + (e−it
j
n∆gGj

n)−1e−it
k
n∆gGk

nφ
k +

∑
j<`<k

(e−it
j
n∆gGj

n)−1e−it
`
n∆gG`

nφ
`.

By Lemma 4.5.5, U∞ = limn→∞(e−it
j
n∆gGj

n)−1e−it
k
n∆gGk

n is an invertible operator on Ḣ1,

and we obtain

φj = φj + U∞φ
k.

Thus φk = 0, contrary to the nontriviality of the profile guaranteed by (4.26).
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4.6 Euclidean nonlinear profiles

Proposition 4.6.1. Let (λn, tn, xn) be a frame such that λn → λ∞ ∈ [0,∞], xn → x∞ ∈

R3∪{∞}, and either tn ≡ 0 or λ−2
n tn → ±∞. Assume that the limiting parameters conform

to one of the following scenarios:

(i) λ∞ =∞.

(ii) x∞ =∞.

(iii) x∞ ∈ R3, λ∞ = 0.

Then, for n sufficiently large, there exists a unique global solution un to the equation (4.1)

with un(0) = e−itn∆gGnφ and which also has finite global Strichartz norm

‖∇un‖L10L
30
13 (R×R3)

≤ C(E(un(0))).

Moreover, for any ε > 0 there exists ψε ∈ C∞0 (R×R3) such that

lim sup
n→∞

‖∇
[
un −Gnψ

ε(λ−2
n (t− tn))

]
‖
L10L

30
13 (R×R3)

< ε.

In particular, by Sobolev embedding the spacetime bound and approximation statement hold

in Z = L10L10 as well.

Proof. The proof is analogous to that of Proposition 2.5.1 for the harmonic oscillator. In

each regime, for n large one expects the solution to the variable-coefficient equation (4.1) to

resemble a solution to a constant coefficient NLS

(i∂t + ∆)u = F (u)

where ∆ is the Laplacian for a limiting geometry. In the first two cases, the limiting geometry

is the standard one on R3, while in the last case the geometry is given by the constant metric

g(x∞). We use solutions to the constant coefficient NLS to build good approximate solutions

to (4.1). As the former obey good spacetime bounds, we deduce by stability theory that the

same is true of the true solutions to (4.1).
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Let g∞ = g(x∞) in the last case and g∞ = δ in all other cases, and denote by ∆ the

associated Laplacian.

If tn ≡ 0, let v be the global scattering solution to the constant coefficient defocusing

NLS

(i∂t + ∆)v = F (v) (4.37)

with v(0) = φ. If λ−2
n tn → ±∞, let v instead be the unique solution to the above equation

such that

lim
t→∓∞

‖v(t)− eit∆φ‖Ḣ1 = 0.

In all cases, the Euclidean solution enjoys the global in time spacetime bounds

‖∇v‖L2L6∩L∞L2 ≤ C(E(φ)) <∞. (4.38)

See [TVZ07, Lemma 3.11].

Fix a small parameter 0 < θ � 1, and let χ be a smooth bump function equal to 1 on

the unit ball. Define spatial and Fourier space cutoffs χn and Pn as follows.

If λn → 0 and xn → x∞ ∈ R3, let dn = |xn − x∞| and define

χn = χ
((dn + λn)1/3(x− xn)

λn

)
, Pn = χ(λn(λn + dn)1/6D).

If λn → 0 and |xn| → ∞, let

χn = χ
(x− xn
λ

2/3
n

)
, Pn = χ(λ4/3

n D).

If λn → λ∞ ∈ (0,∞) and dn = |xn| → ∞, set

χn = χ
(x− xn

d
1/2
n

)
, Pn = χ(d1/2

n D).

If λn →∞, set

χn = χ
(x− xn
λ

4/3
n

)
, Pn = χ(λ5/6

n D).
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There is of course some latitude in the choice of exponents. Define the rescaled Euclidean

solutions

vn(t) = λ−1/2
n v(λ−2

n t, λ−1
n (· − xn)) = Gnv(λ−2

n t).

For T > 0 to be chosen later, set

ũn =


χnPnvn, |t| ≤ Tλ2

n

ei(t−Tλ
2
n)∆g ũn(Tλ2

n), t ≥ Tλ2
n

ei(t+Tλ
2
n)∆g ũn(−Tλ2

n), t ≤ −Tλ2
n

In the next two lemmas we prepare to invoke Proposition 4.2.10.

Lemma 4.6.2.

lim
T→∞

lim sup
n→∞

‖∇[(i∂t + ∆g)ũn − F (ũn)]‖N → 0.

Lemma 4.6.3.

lim
T→∞

lim sup
n→∞

‖ũn(−tn)− e−itn∆gGnφ‖Ḣ1 = 0

Proof of Lemma 4.6.2. In view of the definition of ũn, we estimate separately the contribu-

tions on {|t| ≤ Tλ2
n} and {|t| > Tλ2

n}.

The Euclidean window. When |t| ≤ Tλ2
n, write

(i∂t + ∆g)ũn − F (ũn)

= χnPn(i∂t + ∆)vn + (∆g −∆)χnPnvn + [i∂t + ∆, χnPn]vn − F (χnPnvn)

= (∆g −∆)χnPnvn + [∆, χnPn]vn + χnPnF (vn)− F (χnPnvn)

= (a) + (b) + (c).

Consider first the scenario where λ∞ = 0 and x∞ ∈ R3. We have

‖∇(∆g −∆)χnPnvn‖L1L2

. ‖(gjk − gjk(x∞))∇∂j∂kχnPnvn‖L1L2 + ‖(∂gjk)∂j∂kχnPnvn‖L1L2

+ ‖∇gjkΓmjk∂mχnPnvn‖L1L2
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By Hölder in time and the definition of the cutoffs, the first term is bounded by( λn
(λn + dn)1/3

+ dn

)
(Tλ2

n)λ−2
n (λn + dn)−1/3‖vn‖L∞Ḣ1 ≤ T (λn + dn)1/3‖v‖L∞Ḣ1 → 0.

Similarly, the second and third terms are at most

(Tλ2
n)λ−1

n (λn + dn)−1/6‖vn‖L∞Ḣ1 ≤ Tλn(λn + dn)−1/6‖v‖L∞Ḣ1 → 0.

Hence (a) is acceptable.

Next, we have by Hölder and Sobolev embedding

‖∇[∆, χnPn]vn‖L1L2 ≤ ‖∇(∆χn)Pnvn‖L1L2 + ‖∇〈∇χn,∇Pnvn〉‖L1L2

. T (λn + dn)
2
3‖∇v‖L∞L2 + T (dn + λn)

1
6‖∇v‖L∞L2 .

Thus (b) is also acceptable.

To bound the nonlinear commutator (c), write

χnPnF (vn)− F (χnPnvn) = (χnPn − 1)F (vn) + F (vn)− F (χnPnvn).

Estimate

‖∇(1− χnPn)F (vn)‖L2L6/5

≤ ‖∇(1− χn)F (vn)‖L2L6/5 + ‖(∇χn)(1− Pn)F (vn)‖L2L6/5

+ ‖(1− χn)(1− Pn)∇F (vn)‖L2L6/5 .

By a change of variable, the last term is at most

‖(1− Pn)∇F (vn)‖L2L6/5([−Tλ2
n,Tλ

2
n]) = ‖(1− P̃n)∇F (v)‖L2L6/5([−T,T ]),

where P̃n = χ((λn + dn)
1
6D), which goes to zero by the estimate

‖∇F (v)‖L2L6/5 . ‖v‖4
L10L10‖∇v‖

L10L
30
13
< C(E(φ))

and dominated convergence.
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By Hölder and Sobolev embedding, the first two terms are bounded by

(λn + dn)1/3λ−1
n (Tλ2

n)
1
2‖vn‖5

L∞L6 . T
1
2 (λn + dn)1/3‖∇v‖L∞L2 → 0

Also, as

F (vn)− F (χnPnvn) = (1− χnPn)vn

∫ 1

0

Fz((1− θ)χnPnvn + θvn) dθ

+ (1− χnPn)vn

∫ 1

0

Fz((1− θ)χnPnvn + θvn) dθ,

we obtain by the Leibniz rule, Hölder, Sobolev embedding, and the Lp continuity of the

Littlewood-Paley projections

‖∇[F (vn)− F (χnPnvn)]‖
L2L

6
5

. ‖∇(1− χnPn)vn‖L10L
30
13
‖v‖4

L10L10 + ‖(1− χnPn)vn‖L10L10‖vn‖3
L10‖∇χnPnvn‖L10L

30
13

. ‖∇v‖4

L10L
30
13
‖∇(1− χ̃nP̃nv)‖

L10L
30
13
,

where P̃n = χ((λn + dn)
1
6D) and χn = χ((λn + dn)x). By dominated convergence, this also

vanishes as n→∞.

Now we consider the case where λn → ∞, and estimate the errors (a), (b), and (c) as

before.

Since ∆g −∆ = (gjk − δjk)∂j∂k − gjkΓmjk∂m, we have

‖∇(∆g −∆)χnPnvn‖L2L6/5 ≤
3∑
j=1

‖χ̃∇jχnPnvn‖L2L6/5

where χ̃ is a spatial cutoff. As the vn are being rescaled to low frequencies, the terms with

the fewest derivatives applied to vn are least favorable. Estimate

‖χ̃∇χnPnvn‖L2L6/5 ≤ ‖χ̃(∇χn)Pnvn‖L2L6/5 + ‖χ̃∇Pnvn‖L2L6/5

. λ
− 4

3
n (Tλ2

n)
2
5‖χ‖

L
15
11
‖Pnvn‖L10L10 + ‖χ̃‖

L
6
5
‖∇Pnvn‖L2L∞

. T
2
5λ
− 8

15
n ‖v‖L10L10 + λ

− 5
12

n ‖∇v‖L2L6 ,
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which is acceptable by (4.38). Also,

‖∇[∆, χnPn]vn‖L1L2 ≤ ‖∇(∆χn)Pnvn‖L1L2 + ‖∇〈∇χn,∇Pnvn〉‖L1L2

. ‖(∇3χn)Pnvn‖L1L2 + ‖(∇2χn)∇Pnvn‖L1L2 + ‖(∇χn)∇2Pnvn‖L1L2

. (λ
− 4

3
n )2(Tλ2

n)‖∇Pnvn‖L∞L2 + χ
− 4

3
n (Tλ2

n)λ
− 5

6
n ‖∇Pnvn‖L∞L2

. T (λ
− 2

3
n + λ

− 1
6

n )‖∇v‖L∞L2 .

Finally, the same argument as above yields

‖∇[χnPnF (vn)− F (χnPnvn)]‖
L2L

6
5
→ 0.

The remaining cases λ∞ <∞, |xn| → ∞ are dealt with similarly.

The long-time contribution. When t ≥ Tλ2
n,

‖∇[(i∂t + ∆g)ũn − F (ũn)]‖L2L6/5 . ‖ũn‖4
L10L10((Tλ2

n,∞))‖(−∆g)
1/2ũn‖L10L

30
13
.

The last norm on the right is bounded by Strichartz and energy conservation. To estimate

the L10 norm, let v+ ∈ Ḣ1 be the forward scattering state for the Euclidean solution v,

defined by

lim
t→∞
‖v(t)− eit∆v+‖Ḣ1 = 0,

and write v+n = Gnv+. Then

ũn(t) = ei(t−Tλ
2
n)∆gχnPnvn(Tλ2

n)

= eit∆g(v+n) + ei(t−Tλ
2
n)∆g [eiTλ

2
n∆(v+n)− eiTλ2

n∆g(v+n)]

+ ei(t−Tλ
2
n)∆g(χnPn − 1)vn(Tλ2

n) + ei(t−Tλ
2
n)∆g [vn(Tλ2

n)− eiTλ2
n∆(v+n)],

and we see that if T is sufficiently large, each term becomes acceptably small for n large.

Indeed, by interpolating Theorem 4.3.1 or Proposition 4.4.1 with a Strichartz estimate,

lim
T→∞

lim
n→∞

‖eit∆gv+n‖L10L10((Tλ2
n,∞) = 0.

The remaining terms are also acceptable due to Strichartz, Theorem 4.3.1, dominated con-

vergence, and the definition of the scattering state v+n.
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Proof of Lemma 4.6.3. If tn ≡ 0 then there is nothing to prove. So suppose λ−2
n tn → ∞.

Recall that by definition,

lim
t→−∞

‖v(t)− eit∆φ‖Ḣ1 = 0.

Referring to the definition of ũn, for n large enough

ũn(−tn) = e−itn∆geiTλ
2
n∆gχnPnvn(−Tλ2

n) = e−itn∆geiTλ
2
n∆gGnv(−T ) + rn

= e−itn∆geiTλ
2
n∆ge−iTλ

2
n∆gGnφ+ rn

= e−itn∆gGnφ+ rn,

where, by Theorem 4.3.1 and Corollary 4.3.2, in each line

lim
T→∞

lim sup
n→∞

‖rn‖Ḣ1 = 0.

By the preceding lemmas, for T large enough and n large, the function ũn(t− tn, x) is a

good approximate solution to (4.1) in the sense of Proposition 4.2.10. Thus for any ε > 0

and all n sufficiently large, there is a unique global solution un to (4.1) with

‖un‖Z(R) + ‖∇un‖L10L
30
13 (R×R3)

≤ C(E(un(0))).

Finally, for any ε > 0 there exists ψε ∈ C∞(R×R3) such that ‖∇(v−ψε)‖
L10L

30
13 (R×R3) < ε.

In view of the definition of ũn and the fact that, as proved above,

lim
T→∞

lim sup
n→∞

‖ũn‖Z([−Tλ2
n,Tλ

2
n]c) = 0,

another application of Proposition 4.2.10 yields

lim
T→∞

lim sup
n→∞

‖∇un‖L10L
30
13 ([−Tλ2

n,Tλ
2
n]c×R3)

= 0.

Therefore

lim
T→∞

lim sup
n→∞

‖∇[ũn −Gnψ
ε(λ−2

n t)]‖
L10L

30
13 (R×R3)

. ε,

as required.
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4.7 Nonlinear profile decomposition

In this section, we show that failure of Theorem (4.1.1) would imply the existence of an

“almost-periodic” solution in the sense that it remains in a precompact subset of Ḣ1. This

will already preclude finite time blowup and hence prove the global existence part of the theo-

rem. In the next section, we rule out almost-periodic solutions under a smallness assumption

on the metric and obtain global spacetime bounds in that setting.

Although we have worked mainly with the Z = L10L10 norm, in the sequel we shall also

need the stronger norm

Y = L10Ḣ1, 30
13 .

Let

Λ(E) : sup{‖u‖Z(R) : E(u) ≤ E, u solves (4.1)}

Ec = sup{E : Λ(E) <∞}.

Λ′(E) : sup{‖u‖Z(I) : |I| ≤ 1, E(u) ≤ E, u solves(4.1)}

E ′c = sup{E : Λ′(E) <∞}.

The small data theory implies that Ec, E
′
c > 0. Global existence (resp. scattering) would

follow if we show that E ′c <∞ (resp. Ec <∞).

Proposition 4.7.1. Suppose Ec < ∞. Let un be a sequence of solutions to (4.1) with

E(un)→ Ec such that for some sequence of times tn, ‖un‖Z((−∞,tn)) →∞ and ‖un‖Z((tn,∞)) →

∞. Then some subsequence of u(tn) converges in Ḣ1.

The method of proof yields an analogous statement for global existence:

Proposition 4.7.2. Suppose E ′c <∞, and fix any δ > 0. Let un be a sequence of solutions

to (4.1) with E(un)→ Ec such that for some sequence of times tn, ‖un‖Z((tn−δ,tn)) →∞ and

‖un‖Z((tn,tn+δ)) →∞. Then some subsequence of u(tn) converges in Ḣ1.
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We prove the global-in-time proposition; as the reader may verify, a nearly identical

argument yields the local-in-time version.

Proof of Prop. 4.7.1. By translating in time, we may assume without loss that tn ≡ 0. After

passing to a subsequence, we obtain a decomposition

un(0) =
J∑
j=1

e−it
j
n∆gGj

nφ
j + rJn (4.39)

into asymptotically independent profiles with the properties described in Proposition 4.5.6.

In particular,

lim
n→∞

[
E(un(0))−

J∑
j=1

E(e−it
j
n∆gGj

nφ
j
n)− E(rJn)

]
= 0, (4.40)

lim
J→J∗

lim sup
n→∞

‖eit∆grJn‖L∞L6 = 0. (4.41)

Lemma 4.7.3. There exists j such that lim supn→∞E(e−it
j
n∆gGj

nφ
j) = Ec.

This will be proved below using a nonlinear profile decomposition. For the moment, we

assume the result and observe how it yields the proposition. By the lemma, un(0) takes the

form

un(0) = e−itn∆gGnφ+ rn

where ‖rn‖Ḣ1 → 0 and Gn is associated to some frame (λn, xn). After passing to a subse-

quence, we may assume that λn ∈ λ∞ ∈ [0,∞], xn → x∞ ∈ R3 ∪ {∞}, and λ−2
n tn → t∞ ∈

R ∪ {±∞}.

We claim that λ∞ ∈ (0,∞), x∞ ∈ R3, and t∞ = 0, which would clearly imply that

un(0) converges in Ḣ1. If either of the first two statements failed, Proposition 4.6.1 would

imply that lim supn→∞ ‖un‖Z(R) < ∞, contrary to the assumptions un. Thus λ∞ ∈ (0,∞)

and x∞ ∈ R3. If tn → ∞, then, writing G∞ for the operator associated to the parameters

(λ∞, x∞), we have by the Strichartz estimate

‖(−∆g)
1/2eit∆gun(0)‖

L10L
30
13 ((−∞,0)×R3)

≤ ‖(−∆g)
1/2eit∆G∞φ‖L10L

30
13 ((−∞,−tn)×R3)

+ o(1)→ 0,
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which implies by the small data theory that limn→∞ ‖un‖Z(−∞,0) = ∞, contrary to the

hypothesis that un blows up forwards and backwards in time.

Corollary 4.7.4. If Ec < ∞, then there exists a global solution uc to (4.1) with E(uc) =

Ec and ‖u‖Z((−∞,0]) = ‖u‖Z([0,∞)) = ∞. Moreover, u is almost-periodic in the sense that

{uc(t) : t ∈ R} is precompact in Ḣ1.

Proof. Let un be a sequence of solutions with E(un) → Ec and ‖un‖Z → ∞. Choose tn

such that ‖un‖(−∞,tn] = ‖un‖[tn,∞). By the previous proposition, there exists φ ∈ Ḣ1 such

that after passing to a subsequence, un(tn) → φ in Ḣ1. Let uc be the maximal solution

with uc(0) = 0. Proposition 4.7.1 and the stability theory imply that uc is global and blows

up forwards and backwards in time. Another application of the previous proposition yields

precompactness of the orbit {u(t) : t ∈ R} in Ḣ1.

An immediate consequence of Proposition 4.7.2 and the stability theory is that the equa-

tion (4.1) is globally wellposed.

Corollary 4.7.5. Under the hypotheses of Theorem 4.1.1, solutions of (4.1) are global in

time.

Proof. If E ′c < ∞, then there exists a sequence of solutions un with E(un) → E ′c and

‖un‖Z((− 1
2
,0)), ‖un‖Z((0, 1

2
)) →∞. By Proposition 4.7.2, some subsequence of un(0) converges

to some φ ∈ Ḣ1. Let uc : (T−, T+) × R3 → C be the maximal-lifespan solution with

uc(0) = φ. By the Proposition 4.2.10, uc has infinite Z-norm on (−1
2
, 0) and (0, 1

2
), so the

interval of definition for uc is contained in (−1
2
, 1

2
). As in the previous corollary, the solution

curve uc(t) is precompact in Ḣ1, so along some sequence of times tn → T+ the functions

uc(tn) converge to some φ+ in Ḣ1. But then we may use a local solution u+ with u+(0) = φ+

and the stability theory to continue uc to a larger time interval (−T, T+ + δ), contradicting

its maximality.

We prove Proposition 4.7.1 in the remainder of this section. While the overall argument

is quite standard, involving a nonlinear profile decomposition, some remarks are warranted
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concerning how to control the interaction between nonlinear profiles and the linear evolution

of the remainder in the decomposition. This is normally accomplished using local smooth-

ing, which prevent high-frequency linear solutions from lingering in a confined region. In

Euclidean space, the local smoothing estimate takes the form

‖∇eit∆R3φ‖L2(R×{|x|≤R}) . R1/2‖φ‖Ḣ1/2 .

However, most existing local smoothing estimates on manifolds work at a fixed spatial scale,

and since the metric is not scale-invariant, it is not obvious how the constants depend on

the size of the physical localization.

The following lemma is analogous to Lemma 7.1 of Ionescu-Pausader concerning NLS on

the torus [IP12], although the proof there is quite different due to trapping.

Let χ(λ) be a smooth function on the real line equal to 1 when λ ≤ 1 and vanishing when

λ ≥ 1.2, and define the spectral multipliers P≤N = χ(
√
−∆g/N). By Theorem 4.2.7, these

satisfy the Littlewood-Paley estimates of Proposition 4.2.8 except when p = 1 or p = ∞

(which will not be needed).

Lemma 4.7.6. For any R,N, T > 0, B ≥ 1, and (t0, x0) ∈ R×R3,

‖∇eit∆gP>BNφ‖L2(|t−t0|≤TN−2, |x−x0|≤RN−1) ≤ CB−1/2N−1‖φ‖Ḣ1 .

Proof. By invariance under time translation, we may take t0 = 0. We adapt the standard

proof of local smoothing on Euclidean space via a Morawetz multiplier but need to deal with

error terms arising from the background curvature. These will be controlled by a separate

local smoothing estimate adapted to the metric.

Let a(x) = 〈x〉. We compute (all derivatives are partial derivatives)

∂a =
x

〈x〉
, ∂2a = 〈x〉−3Pr + 〈x〉−1Pθ,

∆a ≥ 3

〈x〉3
, ∆2a = − 15

〈x〉7

|∂ka| ≤ ck
〈x〉k−1

,
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where Pr and Pθ = I − Pr are the radial and tangential projections, respectively.

Now write D = d+Γ for the Levi-Civita covariant derivative, where Γ are the Christoffel

symbols for the metric g; by our assumptions on g, Γ is supported in the unit ball.

If u is a solution to the equation

(i∂t + ∆g)u = µ|u|4u, µ ∈ R,

define the Morawetz action

M(t) =

∫
R3

a(x)|u(t, x)|2 dg.

Then as in the Euclidean setting, we have

∂tM(t) = 2 Im

∫
uDαaDαu dg,

and the Morawetz identity

∂2
tM = 4 Re

∫
(D2

αβa)DαuDβu dg −
∫

(∆2
ga)|u|2 dg +

4µ

3

∫
(∆ga)|u|6 dg. (4.42)

We apply this identity with µ = 0 and u = eit∆gP>BNφ; later on we will use this when

µ = 1. For N > 0 and x0 ∈ R3, let aN,x0(x) = a
(
N(x− x0)

)
. We compute

DaN,x0 = N(∂a)
(
N(x− x0)

)
D2
αβaN,x0 = N2(∂α∂βa)

(
N(x− x0)

)
−NΓµαβ∂µa

(
N(x− x0)

)
.

Then

∆2
gaN,x0 = gαβ(∂α∂β − Γµαβ∂µ)gα

′β′(∂α′∂β′ − Γµ
′

α′β′∂µ′)aN,x0

= N4gαβgα
′β′(∂α∂β∂α′∂β′a)

(
N(x− x0)

)
+ (N3P3a+N2P2a+N1P1a)

(
N(x− x0)

)
,

where Pk is a differential operator of order k with coefficients supported in the unit ball;

hence ∣∣∣Pka(N(x− x0)
)∣∣∣ ≤ ck 1{|x|≤1}(x)

〈
N(x− x0)

〉1−k
.
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Inserting these bounds into the Morawetz identity and integrating in time over the interval

|t| ≤ TN−2, we obtain∫∫
|t|≤TN−2

〈N(x− x0)〉−3|∇u|2 dxdt . N−1

∫∫
1{|t|≤TN−2,|x|≤1}(t, x)(|∇u|2 + |u|2) dxdt

+N2

∫∫
|t|≤TN−2

|u|2 dxdt+N−1‖u‖L∞L2‖u‖L∞Ḣ1 .

By the unitarity of the propagator and the spectral localization of u, we have

‖u‖L∞L2‖u‖L∞Ḣ1 . (BN)−1‖φ‖2
Ḣ1 .

Also, by Hölder in time, the second term on the right may be bounded by

T‖u‖2
L∞L2 . T (BN)−2‖φ‖2

Ḣ1 .

Finally, the first term on the right is controlled by the following scale-1 local smoothing

estimate of Rodnianski and Tao [RT07]

‖〈x〉−
1
2
−σ∇eit∆gφ‖L2(R×R3) + ‖〈x〉−

3
2
−σu‖L2(R×R3) .σ ‖φ‖Ḣ1/2 , σ > 0,

who strengthened an earlier local-in-time version by Doi [Doi96]. Summing up, we obtain

‖∇u‖2
L2({|t|≤TN−2,|x−x0|≤RN−1}) . (B−1N−2 + T (BN)−2)‖φ‖2

Ḣ1 .

Proof of Lemma 4.7.3. Assuming that the claim fails, the asymptotic additivity of energy

implies the existence of some δ > 0 such that lim supn→∞E(e−it
j
n∆gGj

nφ
j) ≤ Ec− δ for all j.

We shall deduce that

lim sup
n→∞

‖un‖Z(R) ≤ C(Ec, δ) <∞, (4.43)

which contradicts the hypotheses on un.

For each j ≤ J , let ujn be the maximal-lifespan nonlinear solution with ujn(0) = e−it
j
n∆gGj

nφ
j;

by the definition of Ec, for all n sufficiently large we have ‖ujn‖Z(R) ≤ C, hence ‖ujn‖Y (R) ≤ C ′.

Define

ũJn =
J∑
j=1

ujn + eit∆grJn .
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The bound (4.43) will be a consequence of Proposition 4.2.10 and the following three asser-

tions:

1. lim supJ→J∗ lim supn→∞ ‖ũJn‖Y (R) ≤ C(Ec, δ) <∞.

2. limJ→J∗ lim supn→∞ ‖un(0)− ũJn(0)‖Ḣ1 = 0.

3. limJ→J∗ lim supn→∞ ‖∇[(i∂t + ∆g)ũ
J
n − F (ũJn)]‖N(R) = 0, where F (z) = |z|4z.

Proof of claim (1). As the Strichartz estimate and the hypothesis of bounded energy

imply that the remainder eit∆grJn is bounded in Y , it suffices to show that

lim sup
J→J∗

lim sup
n→∞

∥∥∥ J∑
j=1

ujn

∥∥∥
Y (R)

<∞.

For each J , we have∥∥∥ J∑
j=1

ujn

∥∥∥2

Y
=
∥∥∥( J∑

j=1

∇ujn
)2
∥∥∥
L5L

15
13
≤

J∑
j=1

‖∇ujn‖2

L10L
30
13

+ cJ
∑
j 6=k

‖(∇ujn)(∇ukn)‖
L5L

15
13
. (4.44)

By Lemma (4.7.7), the cross-terms vanish as n→∞. By the asymptotic additivity of energy,

there is some J0 such that lim supn→∞ ‖∇ujn(0)‖L2 is smaller than the small-data threshold

in Proposition 4.2.9 for all j ≥ J0. In view of the small-data estimate (4.9), for any J > J0

we have

lim sup
n→∞

∥∥∥ J∑
j=1

ujn

∥∥∥2

Y
≤ CJ0(Ec) + lim sup

n→∞

J∑
j=J0

E(ujn) ≤ CJ0(Ec) + Ec.

For future reference, we observe this also proves that for any ε > 0, there exists J ′(ε, Ec)

with

lim sup
n→∞

∥∥∥ ∑
J ′≤j≤J

ujn

∥∥∥
Y
< η. (4.45)

for all J .

Lemma 4.7.7. For all j 6= k,

lim
n→∞

‖ujnukn‖L5L5 + ‖ujn∇ukn‖L5L
15
8

+ ‖∇ujn∇ukn‖L5L
15
13

= 0.
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Proof of Lemma 4.7.7. The argument is well-known, and we will just illustrate it by estimat-

ing the middle term. By Proposition 4.6.1, for each ε > 0 there exist ψj, ψk ∈ C∞0 (R×R3)

such that

‖∇[ujn(t)−Gj
nψ

j((λjn)−2(t− tjn))]‖
L10L

30
13

+ ‖∇[ukn(t)−Gk
nψ

k((λkn)−2(t− tkn))]‖
L10L

30
13
< ε

for all n sufficiently large. Letting vjn, vkn denote the compactly supported approximations,

we have by Hölder

‖ujn(∇ukn)‖
L5L

15
8
≤ ‖ujn − vjn‖L10L10‖∇ukn‖L10L

30
13

+ ‖vjn‖L10L10‖∇(ukn − vkn)‖
L10L

30
13

+ ‖vjn∇vkn‖L5L
15
8
.

The last term vanishes due to the pairwise orthogonality of the frames (λjn, t
j
n, x

j
n) and

(λkn, t
k
n, x

k
n). Thus

lim sup
n→∞

‖ujn∇ukn‖L5L
15
8
≤ C(Ec, δ)ε

for any ε > 0.

Claim (2) is immediate.

Proof of Claim (3). Write

(i∂t + ∆g)ũ
J
n − F (ũJn) =

J∑
j=1

F (ujn)− F
( J∑
j=1

ujn

)
+ F

( J∑
j=1

ujn

)
− F

( J∑
j=1

ujn + eit∆grJn

)
,

and expand

F
( J∑
j=1

ujn

)
−

J∑
j=1

F (ujn) =
∣∣∣ J∑
j=1

ujn

∣∣∣4( J∑
j=1

ujn

)
−

J∑
j=1

|ujn|4ujn

=
J∑
j=1

(∣∣∣ J∑
j=1

ujn

∣∣∣4 − |ujn|4)ujn
=

J∑
j=1

∑
k 6=j

(
ujnu

k
n

∫ 1

0

Gz

( J∑
`=1

u`n − θujn
)
dθ + ujnu

k
n

∫ 1

0

Gz

( J∑
`=1

u`n − θujn
)
dθ
)
,
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where G(z) = |z|4. By the Leibniz rule, Hölder, and Lemma 4.7.7,

‖F
( J∑
j=1

ujn

)
−

J∑
j=1

F (ujn)‖
L2L

6
5
≤

J∑
j=1

∑
j 6=k

‖∇(ujnu
k
n)‖

L5L
15
8

∥∥∥∫ 1

0

G′
( J∑
`=1

u`n − θujn
)
dθ
∥∥∥
L

10
3 L

10
3

≤ cJ

J∑
j=1

∑
j 6=k

‖ujn∇ukn‖L5L
15
8

(∥∥∥ J∑
`=1

u`n

∥∥∥3

L10L10
+ ‖ujn‖3

L10L10

)
→ 0 as n→∞.

Similarly, write

F
( J∑
j=1

ujn + eit∆grJn

)
− F

( J∑
j=1

ujn

)
=
(∣∣∣ J∑

j=1

ujn + eit∆grJn

∣∣∣4 − ∣∣∣ J∑
j=1

ujn

∣∣∣4) J∑
j=1

ujn

+
∣∣∣ J∑
j=1

ujn + eit∆grJn

∣∣∣4eit∆grJn

= (I) + (II).

First consider (I). As before, writing G(z) = |z|4, we have by the Leibniz rule, Hölder,

and Sobolev embedding∥∥∥∇(I)‖
L2L

6
5
≤
∥∥∥∇(eit∆grJn)

∫ 1

0

G′
( J∑
j=1

ujn + θeit∆grJn

)∑
j

ujn

∥∥∥
L2L

6
5

+
∥∥∥(eit∆grJn)∇

∫ 1

0

G′
( J∑
j=1

ujn + θeit∆grJn

) J∑
j=1

ujn

∥∥∥
L2L

6
5

. ‖∇(eit∆grJn)
∣∣∣ J∑
j=1

ujn

∣∣∣4∥∥∥
L2L

6
5

+ ‖∇(eit∆grJn)‖
L10L

30
13
‖eit∆grJn‖3

L10L10

∥∥∥ J∑
j=1

ujn

∥∥∥
L10L10

+ ‖eit∆grJn‖L10L10(‖∇uJn‖4

L10L
30
13

+ ‖∇eit∆grJn‖4

L10L
30
13

).

By (4.41) and interpolation, limJ→J∗ lim supn→∞ ‖eit∆grJn‖L10L10 = 0; therefore, all but the

first term are acceptable.

To deal with the first term, we recall that for any ε, there exists by (4.45) a threshold

J ′(ε) such that for all n large, ∥∥∥ J∑
j=J ′

ujn

∥∥∥
L10L10

< ε.
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With ε fixed but arbitrary, this implies that

‖∇(eit∆grJn)
∣∣∣ J∑
j=1

ujn

∣∣∣4∥∥∥
L2L

6
5

≤ cJ ′
J ′∑
j=1

‖(ujn)4∇eit∆grJn‖L2L
6
5

+ ε4E1/2
c .

It therefore remains to show that

lim sup
J→J∗

lim sup
n→∞

‖(ujn)4∇eit∆grJn‖L2L
6
5
. ε for each j ≤ J ′. (4.46)

Select ψj ∈ C∞0 (R×R3) so that ‖ujn−vjn‖Y < ε, where vjn = Gj
nψ

j((λjn)−2(t− tjn)). Then

we may replace ujn by vjn in the above sum since for all n sufficiently large, since

‖(ujn)4∇eit∆grJn‖L2L
6
5
≤ c‖ujn − vjn‖L10L10(‖ujn‖3

L10L10 + ‖vjn‖3
L10L10)‖∇eit∆grJn‖L10L

30
13

≤ C(Ec)ε.

Let χjn denote the characteristic function of supp(vjn). Putting N j
n = (λjn)−1, we estimate

using Hölder, Littlewood-Paley theory, and Lemma 4.7.6

‖(vjn)4∇eit∆grJn‖L2L
6
5
. (N j

n)2‖χjn∇eit∆gP≤BNj
n
rJn‖L2L

6
5

+ (N j
n)2‖χneit∆gP>BNj

n
rJn‖L2L

6
5

. (N j
n)−1‖∇eit∆gP≤BNj

n
rJn‖L∞L6 +N j

n‖χneit∆gP>BNj
n
rJn‖L2L2

. B‖eit∆grJn‖L∞L6 +B−1/2.

As the remainder vanishes in L∞L6 and B is arbitrary, it follows that

lim
J→J∗

lim sup
n→∞

‖(vjn)4∇eit∆grJn‖L2L
6
5

= 0.

Altogether, we obtain (4.46), hence (I) is acceptable.

The contribution of (II) is estimated similarly. By the Leibniz rule,

‖∇(II)‖
L2L

6
5
. ‖eit∆grJn(uJn)3∇uJn‖L2L

6
5

+ ‖(uJn)4∇eit∆grJn‖L2L
6
5
.

The first term is acceptable due to the undifferentiated eit∆grJn , while the second term is

handled is above. This completes the proof of Claim 3, and therefore finishes the proof of

Lemma 4.7.3 asserting the existence of a critical profile. Consequently, Proposition 4.7.1 is

proved.
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4.8 Scattering for small metric perturbations

In this final section we prove scattering for metrics g with ‖g−δ‖C3 ≤ ε for some ε depending

on the diameter of supp(g − δ). If the curvature is sufficiently mild, we can adapt the

one-particle Bourgain-Morawetz inequality [Bou99] for the Euclidean nonlinear Schrödinger

equation to preclude the existence of almost-periodic solutions, which, when combined with

Corollary 4.7.4, yields scattering.

Proposition 4.8.1. There exists ε > 0 such that if ‖g − δ‖C3 ≤ ε, then for any solution u

to the nonlinear equation (4.1) and any time interval I,∫
I

∫
|x|≤|I|1/2

|u|6

〈x〉
dxdt ≤ c|I|1/2E(u).

Proof. Let a = 〈x〉 as in the proof of Lemma 4.7.6, and write aR = a(x)χ( ·
R

) where χ is a

smooth cutoff equal to 1 on the ball |x| ≤ 1 and supported in |x| ≤ 2. Then

∂aR = O(1), ∆aR =
( 2

〈x〉
+

1

〈x〉3
)

1{|x|≤R} +O(R−11{|x|∼R})

∂2aR = ∂2a1{|x|≤R} +O(R−11{|x|∼R}), ∆2aR = − 15

〈x〉7
1{|x|≤R} +O(R−31{|x|∼R}).

Let D = d+ Γ denote the covariant derivative, where Γ is supported in the unit ball and

‖Γ‖C2 = O(ε). It follows that if ε is sufficiently small, the above formulas continue to hold

with the partial derivatives replaced by the covariant derivative D and ∆ by the metric Lapla-

cian ∆g. Applying the Morawetz identity (4.42) with action M(t) =
∫
aR(x)|u(t, x)|2 dg, we

obtain |∂tM | ≤ cR‖∇u‖2
L2 and∫

|x|≤R

|u|6

〈x〉
dx ≤ ∂2

tM + cR−3

∫
|x|∼R

|u|2 dx+ cR−1

∫
|x|∼R

|∇u|2 + |u|6 dx

≤ ∂2
tM + cR−1E(u).

Setting R = |I|1/2 and integrating in time, we obtain∫
I

∫
|x|≤|I|1/2

|u|6

〈x〉
dxdt ≤ sup

t
2|∂tM |+ c|I|R−1E(u) . |I|1/2E(u).
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By Corollary 4.7.4, if there is a finite energy solution to (4.1) that failed to scatter, then

there exists a nonzero almost-periodic solution uc, i.e. which remains in a precompact subset

of Ḣ1.

Corollary 4.8.2. If ‖g−δ‖C3 ≤ ε, the equation (4.1) does not admit nonzero almost-periodic

solutions. Hence, all finite-energy solutions to (4.1) scatter.

Proof. Suppose 0 6= uc is almost-periodic. Then there exists η > 0 and a radius R such that

‖uc(t)‖L6({|x|≤R}) ≥ η for all t.

For if not, there would exist radii Rn →∞ and times tn such that ‖uc(tn)‖L6({|x|≤Rn}) → 0.

By compactness, it follows that some subsequence of uc(tn) converges in Ḣ1 to 0. But this

yields the contradiction that E(uc) = 0.

We now apply Proposition 4.8.1 on time intervals I with |I|1/2 > R, and deduce

η|I|R−1 ≤
∫
I

∫
|x|≤|I|1/2

|uc|6

〈x〉
dxdt . |I|1/2E(uc).

But this yields a contradiction for I sufficiently large.
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CHAPTER 5

Mass-critical inverse Strichartz theorems

5.1 Introduction

5.1.1 Background

In this final chapter, we prove inverse Strichartz theorems for several Schrödinger equations

at L2 regularity. The classical Strichartz estimate states that if u(t) = e
it∆
2 u(0) solves the

linear Schrödinger equation

i∂tu = −1

2
∆u, u(0, ·) ∈ L2(Rd),

then

‖u‖
L

2(d+2)
d

t,x (R×Rd)
≤ C‖u(0)‖L2(Rd). (5.1)

Inverse theorems for this inequality characterize the initial data that give rise to solutions

with nontrivial spacetime norm, and underpin the large-data theory for critical nonlinear

Schrödinger equations. They reveal how blowup solutions concentrate by identifying char-

acteristic length scales and other properties associated to symmetries or approximate sym-

metries of the equation.

Let us first recall these theorems in the context of the constant-coefficient energy-critical

NLS in three space dimensions

i∂tu = −1

2
∆u+ |u|4u, u(0) ∈ Ḣ1(R3).

From Sobolev embedding and the L2 inequality (5.1) when d = 3, linear solutions satisfy the
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Ḣ1 Strichartz estimate

‖e
it∆
2 u(0)‖L10L10(R×R3) . ‖∇u(0)‖L2(R3). (5.2)

According to the perturbative theory [CW90], if the linear evolution of u(0) has spacetime

norm less than some threshold ε > 0, then the nonlinear solution initialized at u(0) exists

for all time and scatters. To prove scattering for arbitrary initial data, one must therefore

consider solutions u where the left hand side of (5.2) exceeds the threshold ε. Using a reverse

Strichartz theorem, one then deduces that u(0) must concentrate a significant fraction of its

energy in some spacetime “bubble”, with a definite width λ0 and center (t0, x0), determining

when and where the concentration occurs. The time parameter t0 corresponds to the fact

that the inequality is invariant under pullback u(0) 7→ e−
it0∆

2 u(0) by the linear flow. As

the equation is invariant under scaling and translation, this already constitutes a significant

finding.

By organizing this structural information into profile decompositions and imposing a

minimal-energy hypothesis, one is led to consider “minimal” blowup solutions u(t) which

for each t concentrate essentially all of their energy in a “bubble” with width λ(t) and

position x(t). This forms the basis of the Bourgain-Kenig-Merle concentration compactness

and rigidity paradigm.

Similar considerations apply for the mass-critical NLS

i∂tu = −1

2
∆u+ |u|

4
du, u(0) ∈ L2(Rd), (5.3)

but with a twist due to Galilei invariance; if u satisfies the constant-coefficient mass-critical

equation, then for each ξ0

uξ0(t, x) = ei(xξ0−
1
2
t|ξ0|2)u(t, x− tξ0)

is also a solution with the same mass (L2-norm) and with Fourier transform shifted by

frequency ξ0. Note that while the Galilei boost also preserves the class of solutions to the

energy-critical NLS, the energy grows with |ξ0|. Thus, assuming finite energy eliminates this

degree of freedom by effectively forcing solutions to be centered at frequency 0.
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Due to Galilei invariance, a reverse theorem for the L2 Strichartz inequality (5.1) is

much more subtle compared to the energy-critical situation since it must locate a significant

frequency ξ0 in addition to a length λ0, time t0, and position x0. When inverting the Ḣ1

inequality (5.2), one can use Littlewood-Paley theory to separate the contributions from each

dyadic length scale. This argument does not work when the frequency center is also one of

the parameters to be determined, as concentration could occur anywhere in frequency space,

not just in annuli about the origin. One needs to exploit orthogonality not merely in space

but in spacetime.

The existing proofs of L2 inverse Strichartz theorems [CK07, MVV99, MV98, BV07] do

this with the aid of Fourier restriction estimates, viewing solutions to the constant-coefficient

Schrödinger equation as the spacetime Fourier transform of measures on the characteristic

paraboloid τ + 1
2
|ξ|2 = 0. See also the exposition in [KV13]. These inverse theorems play

a foundational role in the proofs of large-data scattering for equation (5.3) [TVZ08, Doda,

Dodb, Dod12].

Although variable-coefficient equations generally lack scaling or translation-invariance,

they may still not have a preferred length scale or location in spacetime. For example, we

saw for the energy-critical harmonic oscillator that solutions with large norm may concentrate

in arbitrarily small regions of space. In these cases, the broken symmetries stand in the way

of classical tools for extracting the essential properties of blowup solutions, in particular the

Fourier transform.

The loss of symmetries becomes particularly problematic when one considers mass-critical

equations, such as the harmonic oscillator

i∂tu = (−1

2
∆ +

d∑
j=1

ω2
jx

2
j)u+ |u|

4
du, u(0) ∈ L2(Rd). (5.4)

Although the equation lacks a global scaling symmetry, highly concentrated solutions nonethe-

less accumulate spacetime norm on the same timescales as for the constant-coefficient mass-

critical equation. As noted in Lemma 5.2.5 below, the problem also admits a more compli-

cated analogue of translation and Galilei symmetry. This is connected to the well-known
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fact that u solves equation (5.3) if and only if its Lens transform

Lu(t, x) =
1

(cos t)d/2
u
(

tan t,
x

cos t

)
e−

i|x|2 tan t
2 .

solves equation (5.4) with ωj ≡ 1
2
.

While the Lens transform may be inverted to deduce that equation (5.4) is globally well-

posed when ωj ≡ 1
2
, this connection with equation (5.3) disappears if the ωj are not all equal.

Studying the equation in greater generality therefore requires a more robust line of attack,

such as the concentration-compactness and rigidity paradigm. To implement that strategy

one needs appropriate inverse L2 Strichartz estimates. This is no small matter since the

Fourier-analytic techniques underpinning the proofs of the constant-coefficient theorems—

most notably, Fourier restriction theory—are incompatible with variable-coefficient equa-

tions.

We present an alternate approach to these inverse estimates in one space dimension. By

eschewing Fourier analysis for physical space arguments, we can uniformly treat a family of

Schrödinger operators that includes the free particle and the harmonic oscillator.

5.1.2 The setup

Consider a (possibly time-dependent) Schrödinger operator on the real line

H(t) = −1

2
∂2
x + V (t, x),

where the potential conforms to the following hypotheses:

• For each k ≥ 2, there exists there exists Mk <∞ so that

‖V (t, x)‖L∞t L∞x (|x|≤1) + ‖∂kxV (t, x)‖L∞t,x + ‖∂kx∂tV (t, x)‖L∞t,x ≤Mk. (5.5)

• There exists some ε > 0 so that

|〈x〉1+ε∂3
xV |+ |〈x〉1+ε∂3

x∂tV | ∈ L∞t,x. (5.6)

This implies by the fundamental theorem of calculus that the second derivative ∂2
xV (t, x)

converges as x→ ±∞. Here and in the sequel we write 〈x〉 := (1 + |x|2)1/2.
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In particular, the potentials V = 0 and V = 1
2
x2 both fall into this class.

The first set of conditions on the space derivatives of V are quite natural in view of

classical Fourier integral operator constructions, from which one can deduce dispersive and

Strichartz estimates; see Theorem 5.2.3. We also assume the conditions on ∂tV to have

control of the time regularity of solutions. In contrast, the decay hypothesis on the ∂3
xV is

technical; see the discussion surrounding Lemma 5.4.7 below.

The unitary propagator U(t, s) for such Hamiltonians is known to obey Strichartz esti-

mates at least locally in time:

‖U(t, s)f‖L6
t,x(I×R) .I ‖f‖L2(R) (5.7)

for any compact interval I and any fixed s ∈ R; see Corollary 5.2.4. Note that U(t, s) =

e−i(t−s)H is a one-parameter group if one assumes that V = V (x) is time-independent, but

our methods do not require this assumption.

Our main result is an inverse form of this inequality which asserts that if the left side is

nontrivial relative to the right side, then the initial data must concentrate somewhere. Such

concentration will be detected by probing the solution with suitably scaled, translated, and

modulated test functions.

For λ > 0 and (x0, ξ0) ∈ T ∗R ∼= Rx ×Rξ, define the scaling and phase space translation

operators

Sλf(x) = λ−1/2f(λ−1x), π(x0, ξ0)f(x) = ei(x−x0)ξ0f(x− x0).

Throughout this chapter, let ψ denote a real, even Schwartz function ψ ∈ S(R) with ‖ψ‖L2 =

(2π)−1/2. Its phase space translate π(x0, ξ0)ψ is localized in space near x0 and in frequency

near ξ0.

Theorem 5.1.1. There exists β > 0 such that if 0 < ε ≤ ‖U(t, 0)f‖L6([− 1
2
, 1
2

]×R) and ‖f‖L2 ≤

A, then

sup
z∈T ∗R, 0<λ≤1, |t|≤1/2

|〈π(z)Sλψ,U(t, 0)f〉L2(R)| ≥ Cε( ε
A

)β

for some constant C depending on the seminorms in (5.5) and (5.6).
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In Section 5.5 we use this to construct a linear profile decomposition via standard ar-

guments. It will follow essentially from repeatedly applying the following corollary. For

simplicity we state it assuming the potential is time-independent (so that U(t, 0) = e−itH).

Corollary 5.1.2. Let {fn} ⊂ L2(R) be a sequence such that 0 < ε ≤ ‖e−itHfn‖L6
t,x([− 1

2
, 1
2

]×R)

and ‖f‖L2 ≤ A for some constants A, ε > 0. Then, after passing to a subsequence, there

exist a sequence of parameters

{(λn, tn, zn)}n ⊂ (0, 1]× [−1/2, 1/2]× T ∗R

and a function 0 6= φ ∈ L2 such that,

S−1
λn
π(zn)−1e−itnHfn ⇀ φ in L2

‖φ‖L2 & ε( ε
A

)β (5.8)

Further,

‖fn‖2
2 − ‖fn − eitnHπ(zn)Sλnφ‖2

2 − ‖eitnHπ(zn)Sλnφ‖2
2 → 0. (5.9)

Proof. By Theorem 5.1.1, there exist (λn, tn, zn) such that |〈π(zn)Sλnψ, e
−itnHfn〉| & ε( ε

A
)β.

As the sequence S−1
λn
π(zn)−1e−itnHfn is bounded in L2, it has a weak subsequential limit

φ ∈ L2. Passing to this subsequence, we have

‖φ‖2 ≥ |〈ψ, φ〉| = lim
n→∞

|〈ψ, S−1
λn
π(zn)−1e−itnHfn〉| & ε( ε

A
)β.

To obtain (5.9), write the left side as

2 Re(〈fn − eitnHπ(zn)Sλnφ, e
itnHπ(zn)Sλnφ〉 = 2 Re(〈S−1

λn
π(zn)−1e−itnHfn − φ, φ〉)→ 0,

by the definition of φ.

The restriction to a compact time interval in the above statements is dictated by the

generality of our hypotheses. For a generic subquadratic potential, the L6
t,x norm of a solution
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need not be finite on Rt×Rx. For example, solutions to the harmonic oscillator V = x2 are

periodic in time. However, the conclusions may be strengthened in some cases. In particular,

our methods specialize to the case V = 0 to yield

Theorem 5.1.3. If 0 < ε ≤ ‖e it∆2 f‖L6
t,x(R×R) . ‖f‖L2 = A, then

sup
z∈T ∗R, λ>0, t∈R

|〈π(z)Sλψ, e
it∆
2 f〉| & ε( ε

A
)β.

This yields the analogue of Corollary 5.1.2, which can be upgraded to a linear profile

decomposition for the 1d free particle as in the proof of Proposition 5.5.2. Such a profile

decomposition was obtained originally by Carles-Keraani [CK07] using different methods.

5.1.3 Ideas of proof

Let us first make a few reductions. We shall assume in the sequel that the initial data f is

Schwartz. This assumption will justify certain applications of Fubini’s theorem and may be

removed a posteriori by an approximation argument. Further, we prove the theorem with the

time interval [−1
2
, 1

2
] replaced by [−δ0, δ0], where δ0 is to be chosen later (in Theorem 5.2.3)

according to the seminorms Mk of the potential. Indeed, the interval [−1
2
, 1

2
] can then be

tiled by subintervals of length δ0.

With these preliminary remarks out of the way, let us describe the main ideas of the proof

of Theorem 5.1.1. We want to locate the parameters describing a bubble of concentration in

the initial data. The relevant parameters in our setting are length scale λ0, spatial center x0,

frequency center ξ0, and a time parameter t0 describing when the concentration occurs. Each

of those parameters is associated with a noncompact symmetry or approximate symmetry

of the Strichartz inequality. For instance, when V = 0 or V = 1
2
x2, both sides of (5.7) are

preserved by translations f 7→ f(· − x0) and modulations f 7→ ei(·)ξ0f of the initial data (see

Lemma 5.2.5 below).

The existing approaches to inverse Strichartz inequalities for the free particle can be very

roughly summarized as follows. First, one uses Fourier analysis to isolate a scale λ0 and
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frequency center ξ0. For example, Carles-Keraani prove in their Proposition 2.1 that for

some 1 < p < 2,

‖eit∂2
xf‖L6

t,x(R×R) .p

(
sup
J
|J |

1
2
− 1
p‖f̂‖Lp(J)

)1/3

‖f‖L2(R),

where J ranges over all intervals and f̂ is the Fourier transform of f . Then one uses a

separate argument to determine x0 and t0. This strategy ultimately relies on the fact that

the propagator for the free particle is diagonalized by the Fourier transform.

General Schrödinger operators do not enjoy that luxury as the momenta of particles

may vary with time and in a position-dependent manner. Thus it is natural to consider the

position and frequency parameters together. To this end, we use a wavepacket decomposition

as a partial substitute for the Fourier transform. Unlike the Fourier transform, however, the

wavepacket transform requires that one first choose a length scale. This is not so easy

because the Strichartz inequality (5.7) which we are trying to invert has no intrinsic length

scale; the rescaling

f 7→ λ−d/2f(λ−1·), 0 < λ� 1

preserves both sides of the inequality exactly V = 0 and at least approximately for sub-

quadratic V such as the harmonic oscillator V = |x|2.

The key ingredient that gets us started is a refinement of the Strichartz inequality in the

time variable due to Killip-Visan. Using a direct physical space argument, which we describe

in Section 5.3, they show that if u(t, x) is a solution with nontrivial L6
t,x norm, then there

exists a time interval J such that u is large in Lqt,x(J ×R) for some q < 6. Unlike the L6
t,x

norm, the Lqt,x norm of the solution has a preferred length scale directly related to the width

of J . Having obtained a significant time t0 and width λ0, we then use an interpolation and

rescaling argument to reduce matters to a refined L2
x → L4

t,x estimate. This is then proved

using a wavepacket decomposition, integration by parts, and study of the Hamilton flow,

revealing the parameters x0 and ξ0 simultaneously.

This chapter is structured as follows. Section 5.2 collects some preliminary definitions and

lemmas. The heart of the argument is presented in Sections 5.3 and 5.4. Finally, Section 5.5
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discusses the linear profile decomposition.

As the identification of a time interval works in any number of spatial dimensions, Sec-

tions 5.2 and 5.3 are written for a general subquadratic Schrödinger operator on Rd. However,

our subsequent reduction to L4 relies on d = 1. A naive attempt to extend our argument to

higher dimensions would have us to prove a refined Lp estimate for some 2 < p < 4, but our

techniques currently exploit the fact that 4 is an even integer.
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5.2 Preliminaries

5.2.1 Wavepackets

We briefly recall the (continuous) wavepacket decomposition; see for instance [Fol89]. Fix

a real, even Schwartz function ψ ∈ S(Rd) with ‖ψ‖L2 = (2π)−d/2. For f ∈ L2(Rd) and

z = (x, ξ) ∈ T ∗Rd = Rd
x ×Rd

ξ , define

Tf(z) =

∫
Rd

ei(x−y)ξψ(x− y)f(y) dy = 〈f, ψz〉L2(Rd).

By taking the Fourier transform in the x variable, we get

FxTf(η, ξ) =

∫
Rd

e−iyηψ̂(η − ξ)f(y) dy = ψ̂(η − ξ)f̂(η).

Thus T maps S(Rd)→ S(Rd×Rd) and is an isometry L2(Rd)→ L2(T ∗Rd). The hypothesis

that ψ is even implies the adjoint formula

T ∗F (y) =

∫
T ∗Rd

F (z)ψz(y) dz

173



and the inversion formula

f = T ∗Tf =

∫
T ∗Rd

〈f, ψz〉L2(Rd)ψz dz.

5.2.2 Bicharacteristics

We collect here some relevant properties of the classical phase space flow for a subquadratic

potential.

Let V (t, x) satisfy ∂kxV (t, ·) ∈ L∞(Rd) for all k ≥ 2, uniformly in t, and let Φ(t, s)

denote the (time-dependent) Hamiltonian flow on T ∗Rd generated by the symbol h(t, x, ξ) =

1
2
|ξ|2 + V (t, x). Note that this is well-defined for all s and t since the Hamilton vector field

ξ∂x − (∂xV )∂ξ is globally Lipschitz. For z = (x, ξ), write zt = (xt(z), ξt(z)) = Φ(t, 0)(z) for

the bicharacteristic starting at z.

Fix z0, z1 ∈ T ∗Rd. We obtain by integrating the vector field

xt0 − xt1 = xs0 − xs1 + (t− s)(ξs0 − ξs1)−
∫ t

s

(t− τ)(∂xV (τ, xτ0)− ∂xV (τ, xτ1)) dτ

ξt0 − ξt1 = ξs0 − ξs1 −
∫ t

s

(∂xV (τ, xτ0)− ∂xV (τ, xτ1)) dτ.

As |∂xV (τ, xτ0)− ∂xV (τ, xτ1)| ≤ ‖∂2
xV ‖L∞|xτ0 − xτ1|, we have for |t− s| ≤ 1

|xt0 − xt1| ≤ (|xs0 − xs1|+ |t− s||ξs0 − ξs1|)e‖∂
2
xV ‖L∞ ,

|ξt0 − ξt1 − (ξs0 − ξs1)| ≤ (|t− s||xs0 − xs1|+ |t− s|2|ξs0 − ξs1|)‖∂2
xV ‖L∞e‖∂

2V ‖L∞ ,

|xt0 − xt1 − (xs0 − xs1)− (t− s)(ξs0 − ξs1)| ≤ (|t− s|2|xs0 − xs1|+ |t− s|3|ξs0 − ξs1|)e‖∂
2
xV ‖L∞ ,

In the sequel, we always assume that |t − s| ≤ 1, and all implicit constants will depend on

∂2
xV or finitely many higher derivatives. We also remark that this time restriction may be

dropped if ∂2
xV ≡ 0. The preceding computations immediately yield the following dynamical

consequences:

Lemma 5.2.1. Assume the preceding setup.

• There exists δ > 0, depending on ‖∂2
xV ‖L∞, such that |t− s| ≤ δ implies

|xt0 − xt1 − (xs0 − xs1)− (t− s)(ξs0 − ξs1)| ≤ 1

100
(|xs0 − xs1|+ |t− s||ξs0 − ξs0|).
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Hence if |xs0 − xs1| ≤ r and C ≥ 2, then |xt0 − xt1| ≥ Cr for 2Cr
|ξs0−ξs1|

≤ |t − s| ≤ δ.

Informally, two particles colliding with sufficiently large relative velocity will interact

only once during a length δ time interval.

• If |xs0 − xs1| ≤ r, then

|ξt0 − ξt1 − (ξs0 − ξs1)| ≤ min
(
δ,

2Cr

|ξs0 − ξs1|

)
Cr‖∂2

xV ‖L∞e‖∂
2
xV ‖L∞

for all t such that |xt0−xt1| ≤ Cr. That is, the relative velocity of two particles remains

essentially constant during an interaction.

The following technical lemma will be used in Section 5.4.2.

Lemma 5.2.2. There exists a constant C > 0 so that if Qη = (0, η) + [−1, 1]2d and r ≥ 1,

then ⋃
|t−t0|≤min(|η|−1,1)

Φ(t, 0)−1(zt0 + rQη) ⊂ Φ(t0, 0)−1(zt00 + CrQη).

In other words, if the bicharacteristic zt starting at z ∈ T ∗Rd passes through the cube

zt0 + rQη in phase space during some time window |t − t0| ≤ |η|−1, then it must also pass

through the twice-larger cube zt00 + 2rQη at time t0.

Proof. If zs ∈ zs0 + rQη, then (5.2.2) and |t− s| ≤ min(|η|−1, 1) imply that

|xt − xt0| . |xs − xs0|+ min(|η|−1, 1)(|η|+ r) . r,

|ξt − ξt0 − (ξs − ξs0)| . rmin(|η|−1, 1).

5.2.3 The Schrödinger propagator

In this section we collect some basic facts regarding the quantum propagator for subquadratic

potentials.
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Theorem 5.2.3 (Fujiwara [Fuj79, Fuj80]). Let V (t, x) satisfy

Mk := ‖∂kxV (t, x)‖L∞ + ‖V (t, x)‖L∞t L∞x (|x|≤1) <∞

for all k ≥ 2. There exists a constant δ0 > 0 such that for all 0 < |t− s| ≤ δ0 the propagator

U(t, s) for H = −1
2
∆ + V (t, x) has Schwartz kernel

U(t, s)(x, y) =
( 1

2πi(t− s)

)d/2
a(t, s, x, y)eiS(t,s,x,y),

where for each m > 0 there is a constant γm > 0 such that

‖a(t, s, x, y)− 1‖Cm(Rd
x×Rd

y) ≤ γm|t− s|2.

Moreover

S(t, s, x, y) =
|x− y|2

2(t− s)
+ (t− s)r(t, s, x, y),

with

|∂xr|+ |∂yr| ≤ C(M2)(1 + |x|+ |y|),

and for each multindex α with |α| ≥ 2, the quantity

Cα = ‖∂αx,yr(t, s, ·, ·)‖L∞

is finite. The map U(t, s) : S(Rd) → S(Rd) is a topological isomorphism, and all implicit

constants depend on finitely many seminorms Mk.

Definition 5.2.1. A pair of exponents (q, r) is (Schrödinger)-admissible if (q, r, d) 6= (2,∞, 2),

2 ≤ q ≤ ∞, and 2
q

+ d
r

= d
2
.

Corollary 5.2.4 (Dispersive and Strichartz estimates). If V satisfies the hypotheses of the

previous theorem, then U(t, s) admits the fixed-time bounds

‖U(t, s)‖L1
x(Rd)→L∞x (Rd) . |t− s|−d/2

whenever |t− s| ≤ δ0. For any compact time interval I and any admissible exponents (q, r),

‖U(t, s)f‖LqtLrx(I×Rd) .I ‖f‖L2(Rd).
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Proof. It follows from the general machinery of Keel-Tao [KT98], the above pointwise bound

for U(t, s), and the unitarity of U(t, s) on L2 that for any fixed s,

‖U(t, s)f‖LqtLrx({|t−s|≤δ0}×Rd) . ‖f‖L2 .

If I = [T0, T1] is a general time interval, partition it into subintervals [tj−1, tj] of length at

most δ0. For each such subinterval we can write U(t, s) = U(t, tj−1)U(tj−1, s), so

‖U(t, s)f‖LqtLrx([tj−1,tj ]×Rd) . ‖U(tj−1, s)f‖L2 = ‖f‖L2 .

The corollary follows from summing over the subintervals.

Recall that solutions to the free particle equation i∂tu = −1
2
∆u, u(0) = φ transform

according to the following rule with respect to phase space translations of the initial data:

e
it∆
2 π(x0, ξ0)φ(x) = ei[(x−x0)ξ0− 1

2
t|ξ0|2](e

it∆
2 φ)(x− x0 − tξ0). (5.10)

Physically, π(x0, ξ0)φ represents the state of a quantum particle with position x0 and mo-

mentum ξ0. The above relation states that the time evolution of π(x0, ξ0)φ in the absence of

a potential oscillates in space and time at frequency ξ0 and −1
2
|ξ0|2, respectively, and tracks

the classical trajectory t 7→ x0 + tξ0.

In the presence of a potential, the time evolution of such modified initial data admits a

more complicated but structurally similar description:

Lemma 5.2.5. If U(t, s) is the propagator for H = −1
2
∆ + V (t, x), then

U(t, s)π(zs0)φ(x) = ei[(x−x
t
0)ξt0+

∫ t
s

1
2
|ξτ0 |2−V (τ,xτ0 ) dτ ]U z0(t, s)φ(x− xt0)

= eiα(t,s,z0)π(zt0)U z0(t, s)φ(x),

where

α(t, s, z) =

∫ t

s

1

2
|ξτ0 |2 − V (τ, xτ0) dτ,

is the classical action, U z0(t, s) is the propagator for Hz0 = −1
2
∆ + V z0(t, x),

V z0(t, x) = V (t, xt0 + x)− V (t, xt0)− x∂xV (t, xt0) = 〈x,Qx〉
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where

Q(t, x) =

∫ 1

0

(1− θ)∂2
xV (t, xt0 + θx) dθ,

and zt0 = (xt0, ξ
t
0) is the trajectory of z0 under the Hamiltonian flow of the symbol h = 1

2
|ξ|2 +

V (t, x). The propagator U z0(t, s) is continuous on S(Rd) uniformly in z0 and |t− s| ≤ δ0.

Proof. The formula for U(t, s)π(zs0)φ is verified by direct computation. To obtain the last

statement, we notice that ‖∂kxV z0‖L∞ = ‖∂kxV ‖L∞ for k ≥ 2, and appeal to the last part of

Theorem 5.2.3.

Remarks. • This reduces to (5.10) when V = 0 and also yields analogous relations when

V is a polynomial of degree at most 2. When V = Ex is the potential for a constant

electric field, we recover the well-known Avron-Herbst formula by setting z0 = 0 (hence

V z0 = 0). For V =
∑

j ωjx
2
j we get the “phase space translation” symmetry mentioned

in the introduction.

• Direct computation shows that the above identity extends to semilinear equations of

the form

i∂tu = (−1

2
∆ + V )u+ |u|pu.

That is, if u is the solution with u(0) = π(z0)ψ, then

u(t) = ei
∫ t
0 L(τ,zτ0 ) dτπ(zt0)uz0(t)

where uz0 solves

i∂tuz0 = (−1

2
∆ + V z0)uz0 + |uz0|puz0 , uz0(0) = ψ,

with the potential V z0 defined as above.

• One can combine this lemma with a wavepacket decomposition to represent a solution

U(t, 0)f as a sum of wavepackets

U(t, 0)f =

∫
z0∈T ∗Rd

〈f, ψz0〉U(t, 0)(ψz0) dz0,
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where the oscillation of each wavepacket U(t, 0)(ψz0) is largely captured in the phase

(x− xt0)ξt0 +

∫ t

0

1

2
|ξτ0 |2 − V (τ, xτ0) dτ.

Our arguments will make essential use of this information. Analogous wavepacket

representations have been constructed by Koch and Tataru [KT05, Theorem 4.3] for a

broad class of pseudodifferential operators.

5.3 Locating a length scale

In this section we present an unpublished argument of Killip-Visan that identifies both a

characteristic length and a temporal center for our sought-after bubble of concentration.

Recall that the usual TT ∗ proof of the nonendpoint Strichartz inequality combines the dis-

persive estimate with the Hardy-Littlewood-Sobolev inequality in time. By using instead

an inverse HLS inequality, one can locate a time interval on which the solution is large in a

non-admissible spacetime norm.

Proposition 5.3.1. Let (q, r) be admissible with 2 < q < ∞, and suppose u = U(t, 0)f

solves

i∂tu =
(
−1

2
∆ + V

)
u, u(0) = f ∈ L2(Rd)

with ‖f‖L2(Rd) = 1 and ‖u‖LqtLrx([−δ0,δ0]×Rd) ≥ ε, where δ0 is the constant from Theorem 5.2.3.

Then there is a time interval J ⊂ [−δ0, δ0] such that

‖u‖Lq−1
t Lrx(J×Rd) & |J |

1
q(q−1) ε1+

4(q+2)
q(q−2)

Remark. That this estimate singles out a special length is easiest to see when V = 0.

For λ > 0, let fλ = λ−d/2f(λ−1) be a rescaling of some fixed f ∈ L2, and let uλ(t, x) =

λ−d/2u(λ−2t, λ−1x) = e
it∆
2 (fλ) be their linear evolutions (here u := u1). Both sides of the

Strichartz inequality

‖uλ‖LqtLrx . ‖fλ‖L2

remain constant as λ varies.

179



We claim (supposing for example that J = [0, 1] in the lemma)

‖uλ‖Lq−1
t Lrx([0,1]×Rd) → 0 as λ→ 0

Indeed, as ‖u‖LqtLrx(R×Rd) . ‖f‖L2 <∞, for each η > 0 there exists T > 0 so that (suppress-

ing the region of integration in x) ‖u‖Lqt ,Lrx({|t|>T}) < η. Then

‖uλ‖Lq−1
t Lrx([0,1]) ≤ ‖uλ‖Lq−1

t Lrx([0,λ2T ]) + ‖uλ‖Lq−1
t Lrx([λ2T,1])

≤ (λ2T )
1

q(q−1)‖uλ‖LqtLrx([0,λ2T ]) + ‖uλ‖LqtLrx([λ2T,1])

≤ (λ2T )
1

q(q−1)‖u‖LqtLrx + η,

which yields the claim. Thus, a lower bound on ‖uλ‖Lq−1
t Lrx([0,1]) is incompatible with concen-

tration of the solution at arbitrarily small scales. Similar considerations preclude λ→∞.

To prove the proposition we shall use the following inverse Hardy-Littlewood-Sobolev

inequality. For 0 < s < d, denote by Isf(x) = (|D|−sf)(x) = cs,d
∫
Rd

f(x−y)
|y|d−s dy the fractional

integration operator.

Lemma 5.3.2 (Inverse HLS). For 1 < p <∞ and 0 < s < d/p,

‖Isf‖
L

pd
d−ps
x (Rd)

. ‖f‖1− ps
d

+
s(p−1)
d−s

Lp

(
sup
B
|B|

1
p
−1

∫
B

f(y) dy
) s(d−ps)

d(d−s)
,

where the sup is taken over all balls.

Proof. We use a variant of the usual proof of the HLS inequality due to Hedberg [Hed72];

see also [Ste93, §VIII.4.2]. Let

δ = sup
B
|B|

1
p
−1

∫
B

f(y) dy ≤ ‖f‖Lp .

For r1 < r2 to be fixed shortly, decompose the integral as

Isf(x) = cs,d

∫
Rd

f(x− y)

|y|d−s
≤
∫
|y|≤r1

+

∫
r1≤|y|≤r2

+

∫
|y|≥r2

. rs1Mf(x) + δrs−d1 r
d− d

p

2 + r
s− d

p

2 ‖f‖Lp ,
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where Mf is the Hardy-Littlewood maximal function and Hölder was used to estimate the

second and third integrals. Choosing r1 and r2 to equate the terms, we find that

( r2
r1

)d−s = ‖f‖p
δ
, r2 = ( δ

Mf
)
p
d (‖f‖p

δ
)

p
d−s

which yields the pointwise bound

Is(f) . δ
ps
d
− s(p−1)

d−s Mf 1− ps
d ‖f‖

s(p−1)
d−s

Lp .

The conclusion follows.

Proof of Proposition 5.3.1. Define the map T : L2
x → LqtL

r
x by Tf(t) = U(t, 0)f , which by

Corollary 5.2.4 is continuous. By duality, ε ≤ ‖u‖LqtLrx implies ε ≤ ‖T ∗φ‖L2
x
, where

φ =
|u|r−1

‖u(t)‖r−1
Lrx

‖u(t)‖q−1
Lrx

‖u‖q−1
LqtL

r
x

satisfies ‖φ‖
Lq
′
t L

r′
x

= 1, and

T ∗φ =

∫
U(0, s)φ(s) ds.

By the dispersive estimate of Corollary 5.2.4,

ε2 ≤ 〈T ∗φ, T ∗φ〉 = 〈φ, TT ∗φ〉L2
x

=

∫
φ(t)U(t, s)φ(s) dxdsdt .

∫ ∫
G(t)G(s)

|t− s|2/q
dsdt,

where G(t) = ‖φ(t)‖Lr′x . Writing the last term as ‖IsG‖2
L2
t
, where s = 1

2
− 1

q
= 1

q′
− 1

2
, and

appealing to the previous lemma with p = q′, we can bound the above by

(sup
J
|J |−1/q‖G‖L1(J))

q′( 1
q′ −

1
2 )

1−( 1
q′ −

1
2 )

= (sup
J
|J |−1/q‖u‖1−q

LqtL
r
x
‖u‖q−1

Lq−1
t Lrx(J×R)

)
q(q−2)

2(q−1)(q+2) .

Upon rearranging, we get

sup
J
|J |−

1
q(q−1)‖u‖Lq−1

t Lrx(J×R) & ε(1+
4(q+2)
q(q−2)

).
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5.4 A refined L4 estimate

5.4.1 Reduction to L4

Now we specialize to the one-dimensional setting d = 1, and apply Proposition 5.3.1 to the

Strichartz pair

(q, r) =
(7 +

√
33

2
,
5 +
√

33

2

)
determined by the conditions 2

q
+ 1

r
= 1

2
and q − 1 = r.

Corollary 5.4.1. With (q, r) as above, choose

1
6
− 1

q

1
4
− 1

q

< θ < 1.

Suppose

ε = ‖U(t, 0)f‖L6
t,x([−δ0,δ0]×R) . ‖f‖L2 = A.

Then there exists a time interval J such that

‖U(t, 0)f‖Lq−1
t Lrx(J×R) & A|J |

1
q(q−1)

( ε
A

) 1
θ

(1+
4(q+2)
q(q−2)

)
.

Proof. Let (q0, r0) be any Strichartz pair with 4 < q < 6. Then with

θ =

1
6
− 1

q

1
q0
− 1

q

,

we have

ε ≤ ‖U(t, 0)f‖L6
t,x
≤ ‖U(t, 0)f‖1−θ

L
q0
t L

r0
x
‖U(t, 0)f‖θLqtLrx . A1−θ‖U(t, 0)f‖θLqtLrx .

The claim now follows from the previous lemma.

Let J = [t0 − λ2, t0 + λ2] be the interval from the above corollary, and set

u(t, x) = λ−1/2uλ(λ
−2(t− t0), λ−1x),

where uλ solves

i∂tuλ = (−1
2
∂2
x + Vλ)uλ = 0, uλ(0, x) = λ1/2u(t0, λx).

182



and Vλ(t, x) = λ2V (t0 +λ2t, λx) also satisfies the hypotheses (5.5) and (5.6) for all 0 < λ ≤ 1.

By the corollary and a change of variables,

‖uλ‖Lq−1
t,x ([−1,1]×R) & A( ε

A
)

1
θ

(1+
4(q+2)
q(q−2)

).

As 4 < q − 1 < 6, Theorem 5.1.1 will follow by interpolating between the L2
x → L6

t,x

Strichartz estimate and the following refined L2
x → L4

t,x estimate. Recall that ψ is the test

function fixed in the introduction.

Proposition 5.4.2. Let V be a potential satisfying the hypotheses (5.5) and (5.6). Then

there exists δ0 > 0 (depending on the seminorms in (5.5)) so that if η(t) is a bump function

vanishing when |t| ≥ δ0 then

‖UV (t, 0)f‖L4
t,x(η(t)dxdt) . ‖f‖1−β

2 sup
z
|〈ψz, f〉|β

for some absolute constant 0 < β < 1.

5.4.2 Proof of Proposition 5.4.2

We fix the potential V and drop the subscript V from the propagator. Assuming the setup

of the proposition, we decompose f into wavepackets f =
∫
T ∗R
〈f, ψz〉ψz dz, and expand the

L4 norm:

‖U(t, 0)f‖4
L4
t,x
≤
∫

(T ∗R)4

K(z1, z2, z3, z4)
4∏
j=1

|〈f, ψzj〉| dz1dz2dz3dz4,

where

K = |〈U(t, 0)(ψz1)U(t, 0)(ψz2), U(t, 0)(ψz3)U(t, 0)(ψz4)〉L2
t,x(η(t)dxdt)|. (5.11)

There is no difficulty with interchanging the order of integration as f was assumed to be

Schwartz.

Proposition 5.4.3. For some 0 < θ < 1 the kernel

K(z1, z2, z3, z4) max(〈z1 − z2〉θ, 〈z3 − z4〉θ)

is bounded as a map on L2(T ∗R× T ∗R).
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We defer the proof for the moment and observe how this proposition implies the previous

one. Writing az = |〈f, ψz〉|, we have

‖U(t, 0)f‖4
L4 .

(∫
(T ∗R)2

a2
z1
a2
z2
〈z1 − z2〉−2θ dz1dz2

)1/2(∫
(T ∗R)2

a2
z3
a2
z4
dz3dz4

)1/2

. ‖f‖2
L2

(∫
(T ∗R)2

a2
z1
a2
z2
〈z1 − z2〉−2θ dz1dz2

)1/2

By Young’s inequality, the convolution kernel k(z1, z2) = 〈z1− z2〉−2θ is bounded from Lpz to

Lp
′
z for some p ∈ (1, 2), and the integral on the right is bounded by(∫

T ∗R

a2p
z dz

)2/p

≤ ‖f‖4/p

L2 sup
z
a4/p′

z .

This yields the desired estimate

‖U(t, 0)f‖L4 . ‖f‖
1
2

+ 1
2p

L2 sup
z
a

1
2p′
z .

Thus it remains to prove Proposition 5.4.3. By Lemma 5.2.5,

U(t, 0)(ψzj)(x) = eiαjUj(t, 0)ψ(x− xtj),

where

αj(t, x) = (x− xtj)ξtj +

∫ t

0

1

2
|ξτj |2 − V (τ, xτj ) dτ

and Uj is the propagator for Hj = −1
2
∂2
x + Vj(t, x), where

Vj(t, x) = x2

∫ 1

0

(1− s)∂2
xV (t, xtj + sx) ds, (5.12)

and the envelopes Uj(t, 0)ψ(x− xtj) concentrate along the classical trajectories t 7→ xtj:

|∂kxUj(t, 0)ψ(x− xtj)| .k,N 〈x− xtj〉−N . (5.13)

The kernel K thus admits the crude bound

K(~z) .N

∫ 4∏
j=1

〈x− xtj〉−N η(t)dxdt . max(〈z1 − z2〉, 〈z3 − z4〉)−1,

and Proposition 5.4.3 will follow from
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Proposition 5.4.4. For δ > 0 sufficiently small the kernel K1−δ is bounded on L2(T ∗R ×

T ∗R).

Proof. We partition the 4-particle phase space (T ∗R)4 according to the degree of interaction

between the particles. Define

E0 = {~z ∈ (T ∗R)4 : min
|t|≤δ0

max
k,k′
|xtk − xtk′ | ≤ 1}

Em = {~z ∈ (T ∗R)4 : 2m−1 < min
|t|≤δ0

max
k,k′
|xtk − xtk′ | ≤ 2m}, m ≥ 1,

and decompose

K = K1E0 +
∑
m≥1

K1Em = K0 +
∑
m≥1

Km.

Then

K1−δ = K1−δ
0 +

∑
m≥1

K1−δ
m .

Heuristically, the K0 term corresponds to the 4-tuples of wavepackets that all collide at some

time t ∈ [−δ0, δ0]. Due to the rapid decay in (5.13), this will be the dominant term. We

shall show that for any N > 0,

‖K1−δ
m ‖L2→L2 .N 2−mN , (5.14)

which immediately implies the proposition upon summing in m. In turn, this will be a

consequence of the following pointwise bound:

Lemma 5.4.5. For each m and ~z ∈ Em, let t(~z) be a time witnessing the minimum in the

definition of Em. Then for any N1, N2 > 0,

|Km(~z)| .N1,N2 2−mN1

×min
( 〈ξt(~z)1 + ξ

t(~z)
2 − ξt(~z)3 − ξt(~z)4 〉−N2

1 + |ξt(~z)1 − ξt(~z)2 |+ |ξ
t(~z)
3 − ξt(~z)4 |

,
1 + |ξt(~z)1 − ξt(~z)2 |+ |ξ

t(~z)
3 − ξt(~z)4 |∣∣(ξt(~z)1 − ξt(~z)2 )2 − (ξ

t(~z)
3 − ξt(~z)4 )2

∣∣2),
This will be proved below. For the moment, let us use it to deduce (5.14). By Schur’s

test, it will suffice to show that∫
Km(z1, z2, z3, z4)1−δ dz1dz2 +

∫
Km(z1, z2, z3, z4)1−δ dz3dz4 .N 2−mN . (5.15)
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We estimate just the first integral as the second is handled similarly.

Fix (z3, z4) in the image of the projection Em ⊂ (T ∗R)4 → T ∗Rz3 × T ∗Rz4 , and let

Em(z3, z4) = {(z1, z2) ∈ (T ∗R)2 : (z1, z2, z3, z4) ∈ Em}.

Choose t1 minimizing |xt13 − xt14 |; the definition of Em implies that |xt13 − xt14 | ≤ 2m.

Suppose (z1, z2) ∈ Em(z3, z4). By Lemma 5.2.1, any “collision time” t(z1, z2, z3, z4) must

belong to the interval

I =
{
t ∈ [−δ0, δ0] : |t− t1| . min

(
1,

2m

|ξt13 − ξt14 |

)}
,

and for such t,

|ξt3 − ξt4 − (ξt13 − ξt14 )| . min
(

2m,
22m

|ξt13 − ξt14 |

)
.

The contribution of each (z1, z2) ∈ Em(z3, z4) to the integral (5.15) will depend on their

relative momenta at the collision time. We now organize Em(z1, z2) accordingly.

Write Qξ = (0, ξ) + [−1, 1]2 ⊂ T ∗R, and denote by Φ(t, s) the classical propagator for

the Hamiltonian

h =
1

2
|ξ|2 + V (t, x).

Using the shorthand zt = Φ(t, 0)(z), define for µ1, µ2

Zµ1,µ2 =
⋃
t∈I

(Φ(t, 0)⊗ Φ(t, 0))−1
(zt3 + zt4

2
+ 2mQµ1

)
×
(zt3 + zt4

2
+ 2mQµ2

)
,

where Φ(t, 0)⊗Φ(t, 0)(z1, z2) = (zt1, z
t
2) is the product flow on T ∗R×T ∗R. These correspond

to the wavepackets (z1, z2) with momenta (µ1, µ2) relative to the wavepackets (z3, z4) at the

time of interaction. We have

Em(z3, z4) ⊂
⋃

µ1,µ2∈Z

Zµ1,µ2 .

Lemma 5.4.6. |Zµ1,µ2| . 24m max(|µ1|, |µ2|)|I|, where | · | on the left denotes Lebesgue

measure on (T ∗R)2.
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Proof. Without loss assume |µ1| ≥ |µ2|. Partition the interval I into subintervals of width

|µ1|−1. For each t′ in the partition, Lemma 5.2.2 implies that

⋃
|t−t′|≤|µ1|−1

Φ(t, 0)−1
(zt3 + zt4

2
+ 2mQµ1

)
⊂ Φ(t′, 0)−1

(zt′3 + zt
′

4

2
+ C2mQµ1

)
⋃

|t−t′|≤|µ1|−1

Φ(t, 0)−1
(zt3 + zt4

2
+ 2mQµ2

)
⊂ Φ(t′, 0)−1

(zt′3 + zt
′

4

2
+ C2mQµ2

)
,

hence ⋃
|t−t′|≤|µ1|−1

(Φ(t, 0)⊗ Φ(t, 0))−1
(zt3 + zt4

2
+ 2mQµ1

)
×
(zt3 + zt4

2
+ 2mQµ2

)
⊂ (Φ(t′, 0)⊗ Φ(t′, 0))−1

(zt′3 + zt
′

4

2
+ C2mQµ1

)
×
(zt′3 + zt

′
4

2
+ C2mQµ2

)
.

By Liouville’s theorem, the right side has measure O(24m) in (T ∗R)2. The claim follows by

summing over the partition.

For each (z1, z2) ∈ Em(z3, z4)∩Zµ1,µ2 , suppose t in I is such that ztj ∈
zt3+zt4

2
+ 2mQµj . As

ξtj =
ξt3 + ξt4

2
+ µj +O(2m), j = 1, 2,

the second assertion of Lemma 5.2.1 implies that

ξ
t(~z)
1 + ξ

t(~z)
2 − ξt(~z)3 − ξt(~z)4 = µ1 + µ2 +O(2m)

ξ
t(~z)
1 − ξt(~z)2 = µ1 − µ2 +O(2m),

hence by Lemma 5.4.5

|Km| .N 2−3mN

×min
( 〈µ1 + µ2 +O(2m)〉−N

1 +
∣∣|µ1 − µ2|+ |ξt13 − ξt14 |+O(2m)

∣∣ , 1 + |µ1 − µ2|+ |ξt13 − ξt14 |+O(2m)∣∣(µ1 − µ2)2 − (ξt13 − ξt14 )2 +O(22m)
∣∣2)

.N 2(5−N)m min
( 〈µ1 + µ2〉−N

1 + |µ1 − µ2|+ |ξt13 − ξt14 |
,
1 + |µ1 − µ2|+ |ξt13 − ξt14 |∣∣(µ1 − µ2)2 − (ξ3 − ξ4)2

∣∣2).
Applying Lemma 5.4.6, writing max(|µ1|, |µ2|) ≤ |µ1 + µ2| + |µ1 − µ2|, and absorbing
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|µ1 + µ2| into the factor 〈µ1 + µ2〉−N ,∫
Km(z1, z2, z3, z4)1−δ dz1dz2 ≤

∑
µ1,µ2∈Z

∫
Km(z1, z2, z3, z4)1−δ1Zµ1,µ2

(z1, z2) dz1dz2

.
∑

µ1,µ2∈Z

2−mN min
( 〈µ1 + µ2〉−N

1 + |µ1 − µ2|+ |ξt13 − ξt14 |
,
1 + |µ1 − µ2|+ |ξt13 − ξt14 |∣∣(µ1 − µ2)2 − (ξ3 − ξ4)2

∣∣2)1−δ 1 + |µ1 − µ2|
1 + |ξt13 − ξt14 |

.

When |µ1−µ2| ≤ 1, we choose the term in the minimum to see that the sum is of size 2−mN .

Hence we may restrict attention to the terms where |µ1 − µ2| ≥ 1.

When |µ1 − µ2| ≥ 2|ξt13 − ξt14 |, the above expression is bounded by∑
µ1,µ2∈Z

2−mN min
(
〈µ1 + µ2〉−N ,

1∣∣|µ1 − µ2|+ 1
∣∣2)1−δ

.N 2−mN .

Otherwise, one has the bound∑
µ1,µ2∈Z

2−mN min
( 〈µ1 + µ2〉−N

1 + |µ1 − µ2|
,

1∣∣|µ1 − µ2| − |ξt13 − ξt14 |
∣∣2)1−δ

.N 2−mN .

Therefore ∫
Km(z1, z2, z3, z4)1−δdz1dz2 .N 2−mN ,

and the same considerations apply with the roles of (z1, z2) and (z3, z4) reversed. The esti-

mate (5.14) now follows from Schur’s test. Modulo Lemma 5.4.5, this completes the proof

of Proposition 5.4.4.

5.4.3 Proof of Lemma 5.4.5

Note that from (5.13) and the definition of Em one immediately gets the cheap bound

|Km(~z)| .N 2−mN .

However one can often do better by exploiting how the wavepackets oscillate in space and

time. As the argument is essentially the same for all m, we shall for simplicity take m = 0

in the sequel.

Suppose that t(~z) = 0. By Lemma 5.2.5,

K0(~z) =
∣∣∣∫ eiΦ

4∏
j=1

Uj(t, 0)ψ(x− xtj) η(t)dxdt
∣∣∣,
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where σ = (+,+,−,−),
∏4

j=1 cj = c1c2c3c4, and

Φ =
∑
j

σj

[
(x− xtj)ξtj +

∫ t

0

1

2
|ξτj |2 − V (t, xτj ) dτ

]
.

To save space we abbreviate Uj(t, 0) as Uj.

Let 1 = θ0 +
∑

`≥1 θ` be a partition of unity such that θ0 is supported in the unit ball

and θ` is supported in the annulus {2`−1 < |x| < 2`+1}. Also choose χ ∈ C∞0 equal to 1 on

|x| ≤ 8. Further decompose K0 ≤
∑

~̀K
~̀
0, where

K
~̀

0 =
∣∣∣∫ eiΦ

∏
j

Ujψ(x− xtj)θ`j(x− xtj) η(t)dxdt
∣∣∣

Fix ~̀, and write `∗ = max `j. By Lemma 5.2.1, the integrand is nonzero only in the

spacetime region

{(t, x) : |t| . min(1, 2`
∗

max |ξj−ξk|
), |x− xtj| . 2`j}, (5.16)

and for all t subject to the above restriction we have

|xtj − xtk| . 2`
∗
, |ξtj − ξj| . min(2`

∗
,

22`∗

max |ξj − ξk|
). (5.17)

We estimate K
~̀
0 using integration by parts. The relevant derivatives of the phase function

are

∂xΦ =
∑
j

σjξ
t
j, ∂2

xΦ = 0,

−∂tΦ =
∑
j

σjh(t, ztj) +
∑
j

σj(x− xtj)∂xV (t, xtj).

Integrating by parts repeatedly in x yields, for any N ≥ 0,

|K ~̀

0| .N

∫
|ξt1 + ξt2 − ξt3 − ξt4|−N

∣∣∂Nx ∏Ujψ(x− xtj)θ`j(x− xtj)
∣∣ η(t)dxdt

.N
2−`

∗N〈ξ1 + ξ2 − ξ3 − ξ4〉−N

1 + |ξ1 − ξ2|+ |ξ3 − ξ4|

(5.18)

where we have used (5.17) to replace ξt1 + ξt2 − ξt3 − ξt4 with ξ1 + ξ2 − ξ3 − ξ4 +O(2`
∗
).

One can also use other vector fields besides ∂x. A naive choice might be ∂t, but better

decay can be obtained by accounting for the bulk motion of the wavepackets in addition to
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the phase. If one pretends that the envelope Ujψ(x−xtj)“ ≈ ”φ(x−xtj) is simply transported

along the classical trajectory, then

(∂t + ξtj∂x)Ujψ(x− xjj)“ ≈ ” = (−ξtj + ξtj)φ
′(x− xtj) = 0.

In view of this heuristic, we introduce a vector field adapted to the average bicharacteristic

for the four wavepackets. This will be most effective when the wavepackets all follow nearby

bicharacteristics; when they are far apart in phase space, we can exploit the strong spatial

localization and the fact that two wavepackets widely separated in momentum will interact

only for a short time.

Define

xt =
1

4

∑
j

xtj, ξt =
1

4

∑
j

ξtj,

xtj = xt + xtj, ξtj = ξt + ξtj.

The variables (xtj, ξtj) describe the bicharacteristic for the jth wavepacket relative to the

average (xt, ξt). We have

d

dt
xtj = ξtj = O(max

j,k
|ξtj − ξtk|) = O

(
|ξj − ξk|+ min(2`

∗
,

22`∗

max |ξj − ξk|
)
)

d

dt
ξtj =

1

4

∑
k

∂xV (t, xtk)− ∂xV (t, xtj)

=
1

4

∑
k

[(xtk − xtj)
∫ 1

0

∂2
xV (t, (1− θ)xtj + θxtk) dθ]

= O(2`
∗
).

(5.19)

Note that

max
j
|xtj| ∼ max

j,k
|xtj − xtk|, max

j
|ξtj| ∼ max

j,k
|ξtj − ξtk|. (5.20)

Consider the operator

D = ∂t + ξt∂x.

Then

−DΦ =
∑

σjh(t, ztj) +
∑

σj[(x− xtj)∂xV (t, xtj)− ξtξtj]

=
1

2

∑
σj|ξtj|2 +

∑
σj(V (t, xtj) + (x− xtj)∂xV (t, xtj)].
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This is more transparent when expressed in the relative variables xj and ξj. Each term in

the second sum can be written as

V (t, xt + xtj) + (x− xtj)∂xV (t, xt + xtj)

= V (t, xt + xtj)− V (t, xt)− xtj∂xV (t, xt)

+ V (t, xt) + xtj∂xV (t, xt) + (x− xtj)∂xV (t, xt)

+ (x− xtj)(∂xV (t, xt + xtj)− ∂xV (t, xt))

= V z(t, xtj) + V (t, xt) + (x− xtj)∂xV z(xtj) + (x− xt)∂xV (t, xt),

where

V z(t, x) = V (t, xt + x)− V (t, xt)− x∂xV (t, xt) = x2

∫ 1

0

(1− s)∂2
xV (t, xt + sx) ds. (5.21)

The terms without the subscript j cancel upon summing, and we obtain

−DΦ =
∑

σj
1

2
|ξtj|2 +

∑
σj[V

~z(t, xtj) + (x− xtj)∂xV z(t, xtj)]. (5.22)

Thus, the contribution to DΦ from V depends essentially only on the relative displacements

xtj − xtk; by (5.16), (5.17), and (5.20), the second sum is at most O(22`∗).

Note also that

(ξtj)
2 = (ξj)

2 +O(22`∗),

as can be seen via (5.19), the fundamental theorem of calculus, and the time restriction

(5.16). It follows that if ∣∣∣∑
j

σj(ξj)
2
∣∣∣ ≥ C · 22`∗ (5.23)

for some large constant C > 0, then on the support of the integrand

|DΦ| &
∣∣∣∑
j

σj(ξj)
2
∣∣∣ =

1

2

∣∣∣(ξ1 + ξ2)2 − (ξ3 + ξ4)2 + (ξ1 − ξ2)2 − (ξ3 − ξ4)2
∣∣∣

&
∣∣|ξ1 − ξ2|2 − |ξ3 − ξ4|2

∣∣2, (5.24)

where the last inequality follows from the fact that ξ1 + ξ2 + ξ3 + ξ4 = 0.
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The second derivative of the phase is

−D2Φ =
∑

σjξtj(
1

4

∑
k

∂xV (t, xtk)− ∂xV (t, xtj)) +
∑
j

σj(x− xtj)ξtj∂2
xV (t, xtj)

+ ξt
∑

σj∂xV (t, xtj) +
∑

σj[∂tV (t, xtj) + (x− xtj)∂t∂xV (t, xtj)]

=
∑

σjξtj(
1

4

∑
k

∂xV (t, xtk)− ∂xV (t, xtj)) +
∑

σj(x− xtj)ξtj∂2
xV (t, xtj)

+
∑

σj[∂tV (t, xtj) + (x− xtj)∂t∂xV (t, xtj)] + ξt
∑

σj[∂xV (t, xtj) + (x− xtj)∂2
xV (t, xtj)].

We rewrite the last two sums as before to obtain

−D2Φ =
∑

σjξtj(
1

4

∑
k

∂xV (t, xtk)− ∂xV (t, xtj)) +
∑

σj(x− xtj)ξtj∂2
xV (t, xtj)

+
∑

σj[(∂tV )z(t, xtj) + (x− xtj)∂x(∂tV )z(t, xtj)]

+ ξt
∑

σj[(∂xV )z(t, xtj) + (x− xtj)∂x(∂xV )z(t, xtj)],

(5.25)

where

(∂tV )z(t, x) = x2

∫ 1

0

(1− s)∂2
x∂tV (t, xt + sx) ds

(∂xV )z(t, x) = x2

∫ 1

0

(1− s)∂3
xV (t, xt + sx) ds.

Assume that (5.23) holds. Write eiΦ = DΦ
i|DΦ|2 ·De

iΦ and integrate by parts to get

K
~̀

0 ≤
∣∣∣∫ eiΦ

D2Φ

(DΦ)2

∏
Ujψ(x− xtj)θ`j(x− xtj) η(t)dxdt

∣∣∣
+
∣∣∣∫ eiΦ

1

(DΦ)
D
∏

Ujψ(x− xtj)θ`j(x− xtj) η(t)dxdt
∣∣∣

≤
∣∣∣∫ eiΦ

D2Φ

(DΦ)2

∏
Ujψ(x− xtj)θ`j(x− xtj) η(t)dxdt

∣∣∣
+
∣∣∣∫ eiΦ

2D2Φ

(DΦ)3
D
∏

Ujψ(x− xtj)θ`j(x− xtj) η(t)dxdt
∣∣∣

+
∣∣∣∫ eiΦ

1

(DΦ)2
D2
∏

Ujψ(x− xtj)θ`j(x− xtj) η(t)dxdt
∣∣∣

= I + II + III.

Note that after the first integration by parts, we only repeat the procedure for the second

term. The point of this is to avoid higher derivatives of Φ, which may be unacceptably large

due to factors of ξt.
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Consider first the contribution from I. Write I ≤ Ia + Ib + Ic, where Ia, Ib, Ic correspond

respectively to the first, second, and third lines in the expression (5.25) for D2Φ.

In view of (5.13), (5.17), (5.19), and (5.24), we have

Ia .N

∫
2`
∗∑

j |ξtj|
|DΦ|2

∏
j

2−`jNχ
(x− xtj

2`j

)
η(t)dxdt

.
22`∗(1 +

∑
|ξj|)∣∣(ξ1 − ξ2)2 − (ξ3 − ξ4)2

∣∣2 ·
∫ ∏

j

2−`jNχ
(x− xtj

2`j

)
η(t)dxdt

.N 2−`
∗N · 〈ξ1 + ξ2 − ξ3 − ξ4〉+ |ξ1 − ξ2|+ |ξ3 − ξ4|∣∣(ξ1 − ξ2)2 − (ξ3 − ξ4)2

∣∣2 · 1

1 + |ξ1 − ξ2|+ |ξ3 − ξ4|
,

where we have observed that∑
j

|ξj| ∼
(∑

j

|ξj|2
)1/2 ∼

(
|ξ1 + ξ2|2 + |ξ1 − ξ2|2 + |ξ3 + ξ4|2 + |ξ3 − ξ4|2

)1/2

. |ξ1 + ξ2 − ξ3 − ξ4|+ |ξ1 − ξ2|+ |ξ3 − ξ4|.

Similarly,

Ib .
∫

22`∗

|DΦ|2
∏
j

2−`jNχ
(x− xtj

2`j

)
η(t)dxdt

.N
2−`

∗N∣∣(ξ1 − ξ2)2 − (ξ3 − ξ4)2
∣∣2 · 1

1 + |ξ1 − ξ2|+ |ξ3 − ξ4|
.

To estimate Ic, use the decay hypothesis |∂3
xV | . 〈x〉−1−ε to obtain

Ic .
∫

22`∗|ξt|
|∂tΦ|2

(∫ 1

0

∑
j

〈xt + sxtj〉−1−ε ds
)∏

j

2−`jNχ
(x− xtj

2`j

)
η(t)dxdt

.
2−`

∗N

|(ξ1 − ξ2)2 − (ξ3 − ξ4)2|2

∫ 1

0

∑
j

∫
|t|≤δ0

|ξt|〈xt + sxtj〉−1−ε dtds.

The integral on the right is estimated in the following technical lemma.

Lemma 5.4.7. ∫ 1

0

∑
j

∫
|t|≤δ0

|ξt|〈xt + sxtj〉−1−ε dtds = O(2(2+ε)`∗).

Proof. It will be convenient to replace the average bicharacteristic (xt, ξt) with the ray (xt, ξ
t
)

starting from the average initial data. We claim that

|xt − xt|+ |ξt − ξt| = O(2`
∗
)
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during the relevant t, for Hamilton’s equations imply that

xt − xt = −
∫ t

0

(t− τ)
(1

4

∑
k

∂xV (τ, xτk)− ∂xV (τ, xτ )
)
dτ

= −
∫ t

0

(t− τ)
(1

4

∑
k

(xτ k + xτ − xτ )
∫ 1

0

∂2
xV (τ, xτ + s(xτk − xτ )) ds

)
dτ

= −
∫ t

0

(t− τ)(xτ − xτ )
(∫ 1

0

1

4

∑
k

∂2
xV (τ, xτ + s(xτk − xτ )) ds

)
+O(2`

∗
t2),

and we can invoke Gronwall. Similar considerations yield the bound for |ξt − ξt|. As also

xtj = O(2`
∗
), we are reduced to showing∫

|t|≤δ0
|ξt|〈xt〉−1−ε dt = O(1). (5.26)

Integrating the ODE

d
dt
xt = ξ

t
, d

dt
ξ
t

= −∂xV (t, xt),

yields the estimates

|xt − xs − (t− s)ξs| ≤ C|t− s|2(1 + |xs|+ |(t− s)ξs|)

|ξt − ξs| ≤ C|t− s|(1 + |xs|+ |(t− s)ξs|)

for some constant C depending on supt |∂xV (t, 0)|. By subdividing the time interval [−δ0, δ0]

if necessary, we may assume in (5.26) that (1 + C)|t| ≤ 1/10.

Consider separately the cases |x| ≤ |ξ| and |x| ≥ |ξ|. When |x| ≤ |ξ|,

2|ξ| ≥ |ξt| ≥ |ξ| − 1
10

(1 + 2|ξ|) ≥ 1
2
|ξ|

(assuming as we may that |ξ| ≥ 1), the bound (5.26) follows from the change of variables

y = xt. If |x| ≥ |ξ|, then |xt| ≥ 1
2
|x|, |ξt| ≤ 2|x|, which also yields the desired bound.

Returning to Ic, we conclude that

Ic .N
2−`

∗N

|(ξ1 − ξ2)2 − (ξ3 − ξ4)2|2
.
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Overall

I ≤ Ia + Ib + Ic .N 2−`
∗N 〈ξ1 + ξ2 − ξ3 − ξ4〉
|(ξ1 − ξ2)2 − (ξ3 − ξ4)2|2

.

For II, we have

D[Ujψ(x− xtj)] = −iHjUjψ(x− xtj)− ξtj∂xUjψ(x− xtj) (5.27)

and estimating as in I,

II .N

1 +
∑

j |ξj|
|(ξ1 − ξ2)2 − (ξ3 − ξ4)2|

∫
|D2Φ|
|DΦ|2

∏
2−`jNχ

(x− xtj
2`j

)
ηdxdt

.N 2−`
∗N
(〈ξ1 + ξ2 − ξ3 − ξ4〉+ |ξ1 − ξ2|+ |ξ3 − ξ4|

|(ξ1 − ξ2)2 − (ξ3 − ξ4)2|

) 〈ξ1 + ξ2 − ξ3 − ξ4〉
|(ξ1 − ξ2)2 − (ξ3 − ξ4)2|2

,

It remains to consider III. The derivatives can distribute in various ways:

III .
1

|DΦ|2
(∫
|D2[U1ψ(x− xt1)]

4∏
j=2

Ujψ(x− xtj)
4∏

k=1

θ`k(x− xtk)η| dxdt

+

∫ ∣∣∣D[U1ψ(x− xt1)]D[U2ψ(x− xt2)]
4∏
j=3

Ujψ(x− xtj)
4∏

k=1

θ`k(x− xtk)η
∣∣∣ dxdt

+

∫ ∣∣∣D∏
j

Ujψ(x− xtj)D
∏
k

θ`k(x− xtk)η
∣∣∣ dxdt

+

∫ ∣∣∣∏
j

Ujψ(x− xtj)D2
∏
k

θ`k(x− xtk)η
∣∣∣ dxdt),

(5.28)

where the first two terms represent sums over the appropriate permutations of indices.

We focus on the terms involving double derivatives of Uj as the other terms can be dealt

with as in the estimate for II. From (5.27),

D2[Ujψ(x− xtj)] = −i∂tVj(t, x− xtj)Ujψ(x− xtj) + (Hj)
2Ujψ(x− xtj)

+ 2iξtj∂xHjUjψ(x− xtj) + (
1

4

∑
k

∂xV (t, xtk)− ∂xV (t, xtj))∂xUjψ(x− xtj)

+ (ξtj)
2∂2
xUjψ(x− xtj).

(5.29)
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Recalling from (5.12) that

∂tVj(t, x) = x2
[
ξtj

∫ 1

0

(1− s)∂3
xV (xtj + sx)ds+

∫ 1

0

(1− s)∂t∂2
xV (t, xtj + sx) ds

]
,

it follows that∫ ∣∣∣∂tV1(t, x− xt1)U1ψ(x− xt1)
4∏
j=2

Ujψ(x− xtj)
4∏

k=1

θ`k(x− xtk)
∣∣∣ η(t)dxdt

. 22`1

∫ [∫ 1

0

|ξt1∂3Vx(t, x
t
1 + s(x− xt1))| ds

+

∫ 1

0

|∂t∂2
xV (t, xtj + s(x− xtj)) ds

]∏
j

2−`jNχ
(x− xtj

2`j

)
ηdxdt

.n 2−`
∗N ,

where the terms involving ∂3
xV are handled as in Ic above. Also, from (5.13) and (5.17),∫ ∣∣∣(ξt1)2∂2

xU1ψ(x− xt1)
4∏
j=2

Ujψ(x− xtj)
4∏

k=1

θ`k(x− xtk)
∣∣∣ η(t)dxdt

.N
2−`

∗N(1 + |ξ1|2)

1 + |ξ1 − ξ2|+ |ξ3 − ξ4|
.

The intermediate terms in (5.29) and the other terms in the the expansion (5.28) yield similar

upper bounds. We conclude overall that

III

.N 2−`
∗N
( 1

|(ξ1 − ξ2)2 − (ξ3 − ξ4)2|2
+

(1 +
∑

j |ξj|)2

|(ξ1 − ξ2)2 − (ξ3 − ξ4)2|2 · (1 + |ξ1 − ξ2|+ |ξ3 − ξ4|)

)
. 2−`

∗N
( 1

|(ξ1 − ξ2)2 − (ξ3 − ξ4)2|2
+

〈ξ1 + ξ2 − ξ3 − ξ4〉2 + (|ξ1 − ξ2|+ |ξ3 − ξ4|)2∣∣|ξ1 − ξ2|2 − |ξ3 − ξ4|2
∣∣2 · (1 + |ξ1 − ξ2|+ |ξ3 − ξ4|)

)
. 2−`

∗N 〈ξ1 + ξ2 − ξ3 − ξ4〉2 + |ξ1 − ξ2|+ |ξ3 − ξ4|
|(ξ1 − ξ2)2 − (ξ3 − ξ4)2|2

.

Note also that in each of the integrals I, II, and III we may integrate by parts in x to

obtain arbitrarily many factors of |ξ1 + ξ2− ξ3− ξ4|−1. All instances of 〈ξ1 + ξ2− ξ3− ξ4〉 in

the above estimates may therefore be replaced by 1.

Combining I, II, and III, we obtain under the hypothesis (5.23)

|K ~̀

0| .N 2−`
∗N 1 + |ξ1 − ξ2|+ |ξ3 − ξ4|∣∣(ξ1 − ξ2)2 − (ξ3 − ξ4)2

∣∣2 .
196



In general,

|K ~̀

0| .N 2−`
∗N min

(
1,

1 + |ξ1 − ξ2|+ |ξ3 − ξ4|∣∣(ξ1 − ξ2)2 − (ξ3 − ξ4)2
∣∣2), (5.30)

Combining this with (5.18),

|K ~̀

0| .N1,N2 2−`
∗N1 min

(
〈ξ1 + ξ2 − ξ3 − ξ4〉−N2 ,

1 + |ξ1 − ξ2|+ |ξ3 − ξ4|∣∣(ξ1 − ξ2)2 − (ξ3 − ξ4)2
∣∣2) (5.31)

for any N1, N2 > 0. Lemma 5.4.5 now follows from summing in ~̀, at least when t(~z) = 0.

For general t(~z), use Lemma 5.2.5 to write

U(t, 0)ψzj = U(t, t(~z))U(t(~z), 0)(ψzj) = U(t, t(~z))eiα(t(~z),0,zj)π(z
t(~z)
j )U zj(t(~z), 0)ψ

= eiα(t,0,zj)π(ztj)U
z
t(~z)
j (t, t(~z))ψt(~z),j,

where

ψt(~z),j = U zj(t(~z), 0)ψ

is bounded in S(R) uniformly in zj and t(~z), and where we have used the additivity of the

action

α(t, s, zs) + α(s, 0, z) = α(t, 0, z).

The argument then proceeds analogously as before.

5.5 An L2 Linear Profile Decomposition

In this discussion we assume for simplicity that V = V (x) is time-independent and satisfies

hypotheses (5.5) and (5.6). The propagator is then a one-parameter unitary group e−itH .

Let δ0 be the constant from Theorem 5.2.3, so that the dispersive estimate

‖e−itH‖L1(R)→L∞(R) . |t|−1/2

holds for all |t| ≤ δ0. All spacetime norms in this section will be taken over the time interval

[−δ0, δ0].
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Given a bounded sequence {fn}n ⊂ L2, we can apply Corollary 5.1.2 inductively to obtain

a full profile decomposition. But first we introduce some systematic (and standard) notation

and terminology.

• A frame is a sequence {(λn, tn, zn)} ⊂ (0, 1]× [−δ0, δ0]× T ∗R .

• Two frames (λjn, t
j
n, z

j
n) and (λkn, t

k
n, z

k
n) are orthogonal if

λjn
λkn

+
λkn
λjn

+ [(λjn)−2 + (λkn)−2]|tjn − tkn|+ |sλjn((zjn)t
k
n−t

j
n − zkn)|+ |sλkn((zkn)t

j
n−tkn − zjn)| → ∞

Here sλ(x, ξ) = (λ−1x, λξ) is a (volume-preserving) rescaling of phase space, and t 7→ zt

is the bicharacteristic starting at z.

• Two frames (λjn, t
j
n, z

j
n) and (λkn, t

k
n, z

k
n) are equivalent if the following limits exist as

n→∞:

λjn
λkn
→ λ∞ ∈ (0,∞), (λjn)−2(tjn − tkn)→ t∞

sλjn((zjn)t
k
n−t

j
n − zkn)→ z∞, sλkn((zkn)t

j
n−tkn − zjn)→ z′∞.

If two frames are not orthogonal, then they are equivalent after passing to a subse-

quence.

Lemma 5.5.1. Let Γj = (λjn, t
j
n, z

j
n) and Γk = (λkn, t

k
n, z

k
n) be two frames, and denote by

gjn = π(zjn)Sλjn , gkn = π(zkn)Sλkn .

the associated symmetry operators on L2.

(a) If Γj and Γk are equivalent, then after passing to a subsequence

(eit
k
nHgkn)−1eit

j
nHgjn

converges strongly in L2.

198



(b) If Γj and Γk are orthogonal, then

〈(eitknHgkn)−1eit
j
nHgjnφ, ψ〉 → 0

for all φ, φ in L2.

Proof. Write tn = tkn − tjn. Then by Lemma 5.2.5 and the identity π(z)Sλ = Sλπ(sλ(z)),

(gkn)−1e−itnHgjn = S−1
λkn
π(−zkn)e−itnHπ(zjn)Sλjn

= eiα(tn,0,z
j
n)S(λkn)−1λjn

π(sλjn((zjn)tn − zkn))U zjn
λjn

((λjn)−2tn, 0)

= eiαnSnπnUn,

where U zn
λjn

(t, s) is the propagator for the Hamiltonian with potential (λjn)2V zjn((λjn)2t, λjnx).

(a) Equivalence of the frames implies that Sn, πn, and Un all converge strongly, while the

phase eiαn is bounded.

(b) By continuity, it suffices to prove the claim with φ and ψ Schwartz. Suppose first that

both (λjn)−2tn and (λkn)−2tn diverge to infinity. Assuming without loss that λjn ≥ λkn,

the dispersive estimate yields

|〈e−itnHgjnφ, gknψ〉| . |tn|−1/2(λkn)1/2(λjn)1/2‖φ‖1‖ψ‖1 ≤ λjn|tn|−1/2‖φ‖1‖ψ‖1 → 0.

Suppose now that (λjn)−2tn stays bounded; if supn |(λkn)−2tn| <∞, the same following

considerations apply after taking adjoints. By Lemma 5.2.5, the operators Un are uni-

formly continuous on S(R), so for fixed Schwartz φ the sequence {Unφ}n is precompact

in L2. If (λkn)−1λjn → {0,∞}, then π−1
n S−1

n φ converges weakly to zero as it becomes

increasingly concentrated or dispersed. If on the other hand (λkn)−1λjn → λ∞ ∈ (0,∞),

then also (λkn)−2tn → t′∞, and inequivalence implies that, after interchanging j and k

if necessary,

|sλjn((zjn)t
k
n−t

j
n − zkn)| → ∞,

Hence πn → 0 weakly on L2, and

〈(gkn)−1eitnHgjnφ, ψ〉 = 〈eiαnπnUnφ, S−1
n ψ〉 → 0
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since S−1
n converges strongly and {Unφ}n is precompact.

Proposition 5.5.2. Suppose {fn} ⊂ L2(R) is bounded. Then, after passing to a subse-

quence, there exist J∗ ∈ {0, 1, . . . , } ∪ {∞}, functions φj ∈ L2(R), mutually orthogonal

frames Γj = {(λjn, tjn, zjn)}, and for every finite J ≤ J∗ a sequence rJn, which obey the follow-

ing properties:

For each finite J ≤ J∗,

fn =
J∑
j=1

eit
j
nHπ(zjn)Sλjnφ

j + rJn =
J∑
j=1

eit
j
nHgjnφ

j + rJn .

lim
n→∞

‖fn‖2
2 −

J∑
j=1

‖gjnφj‖2
2 − ‖rJn‖2

2 = 0 (5.32)

(gJn)−1e−it
J
nHrJn ⇀ 0 as n→∞. (5.33)

lim
J→J∗

lim sup
n→∞

‖e−itHrJn‖L6
t,x

= 0. (5.34)

Proof. Let r0
n = fn, and define inductively

εJ = lim sup
n→∞

‖e−itHrJn‖L6
t,x
, AJ = lim sup

n→∞
‖rJn‖L2 ,

where the lim sup for the AJ is evaluated along a subsequence that realizes the lim sup for

εJ . After passing to a subsequence in n, the limsups may be replaced by genuine limits. If

εJ > 0, apply Corollary 5.1.2 to obtain a frame ΓJ+1 = {(λJ+1
n , tJ+1

n , zJ+1
n )}n and a profile

φJ+1 = limn g
J+1
n rJn .

where the limit is taken in the L2 sense. Set

rJ+1
n = rJn − eit

J+1
n HgJ+1

n φJ+1.

Continue either until lim supn→∞ ‖e−itHrJn‖L6
t,x

= 0 (in which case set J∗ = J) or forever

(J∗ = ∞). The decoupling (5.32) of L2 norms follows from applying the corresponding

assertion (5.9) in Corollary 5.1.2 at each step of the construction.
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To see (5.34) in the case that J∗ = ∞, note that by L2 decoupling and the lower

bound (5.8) for the L2 norm of each profile,

A2
J+1 ≤ A2

J − CεαJA
−2β
J = A2

J(1− Cε2α
J A

−2β−2
J ),

which, together with the Strichartz estimate εJ . AJ and the boundedness of fn in L2,

implies that limJ→∞ εJ = 0.

To prove the mutual inequivalence of frames, suppose on the contrary that two frames

are equivalent (after possibly passing to a subsequence). Choose k minimal so that Γj and

Γk are equivalent for some j < k. By definition,

rj−1
n = eit

j
nHgjnφ

j + eit
k
nHgknφ

k +
∑
j<`<k

eit
`
nHg`nφ

` + rkn,

so

(gkn)−1ei(t
j
n−tkn)Hgjn[(gjn)−1e−it

j
nHrj−1

n − φj] = φk +
∑
j<`<k

(gkn)−1ei(t
`
n−tkn)Hg`nφ

` + (gkn)−1e−it
k
nHrkn

Taking n→∞, recalling the definition of φj, and invoking the previous Lemma, we deduce

that φk = 0. But each φk is nonzero by construction.
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[Car03] Rémi Carles. “Nonlinear Schrödinger equations with repulsive harmonic potential
and applications.” SIAM J. Math. Anal., 35(4):823–843 (electronic), 2003.
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