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Systematic benchmarking of single-cell 
ATAC-sequencing protocols

Florian V. De Rop    1,2, Gert Hulselmans1,2, Chris Flerin    1,2, Paula Soler-Vila3, 
Albert Rafels4, Valerie Christiaens1,2, Carmen Bravo González-Blas1,2, 
Domenica Marchese4, Ginevra Caratù    4, Suresh Poovathingal1, 
Orit Rozenblatt-Rosen    5, Michael Slyper6, Wendy Luo    6, Christoph Muus    6, 
Fabiana Duarte    7,8, Rojesh Shrestha7,8, S. Tansu Bagdatli9, M. Ryan Corces    10, 
Lira Mamanova11, Andrew Knights11, Kerstin B. Meyer    11, Ryan Mulqueen    12, 
Akram Taherinasab13,14, Patrick Maschmeyer15,16, Jörn Pezoldt    17,18, 
Camille Lucie Germaine Lambert17,18, Marta Iglesias    4,19, Sebastián R. Najle    4, 
Zain Y. Dossani    20,21, Luciano G. Martelotto22,23, Zach Burkett    24, 
Ronald Lebofsky    24, José Ignacio Martin-Subero    3,25,26,27, Satish Pillai20,21, 
Arnau Sebé-Pedrós    4,19,28, Bart Deplancke    17,18, Sarah A. Teichmann    11,29, 
Leif S. Ludwig    6,15,16, Theodore P. Braun13,14, Andrew C. Adey    12, 
William J. Greenleaf    9,30, Jason D. Buenrostro    7,8, Aviv Regev    5,31,32, 
Stein Aerts    1,2,33  & Holger Heyn    4,19,33 

Single-cell assay for transposase-accessible chromatin by sequencing 
(scATAC-seq) has emerged as a powerful tool for dissecting regulatory 
landscapes and cellular heterogeneity. However, an exploration of systemic 
biases among scATAC-seq technologies has remained absent. In this study, 
we benchmark the performance of eight scATAC-seq methods across  
47 experiments using human peripheral blood mononuclear cells (PBMCs) 
as a reference sample and develop PUMATAC, a universal preprocessing 
pipeline, to handle the various sequencing data formats. Our analyses reveal 
significant differences in sequencing library complexity and tagmentation 
specificity, which impact cell-type annotation, genotype demultiplexing, 
peak calling, differential region accessibility and transcription factor motif 
enrichment. Our findings underscore the importance of sample extraction, 
method selection, data processing and total cost of experiments, offering 
valuable guidance for future research. Finally, our data and analysis pipeline 
encompasses 169,000 PBMC scATAC-seq profiles and a best practices code 
repository for scATAC-seq data analysis, which are freely available to extend 
this benchmarking effort to future protocols.

Data quality in single-cell sequencing studies directly influences suc-
cessful interpretation. Technologies that generate high and accurate 
molecule counts allow for a precise characterization of cells and can 
yield deep insights into the underlying tissue biology. To facilitate 

an informed decision-making process on the choice of technology, 
systematic benchmarking efforts have been performed for sample 
preparation protocols1 and single-cell RNA-sequencing (scRNA-seq) 
technologies2. However, such efforts are still lacking for chromatin 
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(inherent to Bio-Rad ddSEQ data) and was performed on all techniques 
for uniformity (Supplementary Fig. 1c). As expected, between 55% and 
92% of Bio-Rad-filtered cell barcodes were the result of such merging 
events due to the method’s bead overloading strategy, as opposed to 
a median of 1.5% for non-Bio-Rad samples (Supplementary Fig. 1b).

After preprocessing, the fragments files were postprocessed using 
cisTopic16. High-quality cells were separated from background noise 
barcodes and low-quality cells using sample-specific, algorithmically 
defined minimum thresholds on the number of unique fragments and 
transcription start site (TSS) enrichment (Fig. 1d, Extended Data Fig. 2 
and Methods). Background noise barcodes are barcodes enriched with 
trace amounts of fragments through three mechanisms: (1) ambient 
accessible chromatin fragments may initiate barcoding reactions 
inside cell-free droplets, (2) unbound barcodes in the bead stock solu-
tions may contaminate legitimate barcoding reactions, or (3) barcode 
impurities on the beads may lead to ambivalent labeling of chromatin 
fragments from a single nucleus15. Nucleosome-free fragments from 
viable cells show enrichment around TSSs, a hallmark used to exclude 
low-quality cells from subsequent analysis4,17. All original sequencing 
datasets were then downsampled to 40,796 reads per cell, the high-
est common number of reads available across all samples (hereafter 
referred to as the 40k dataset). Finally, the downsampled datasets were 
processed again using PUMATAC and cisTopic and subset to the original 
set of filtered cell barcodes, ensuring that the number of reads per cell 
remained constant. All downstream analyses were performed on the 
40k dataset or further downsampled sets derived thereof.

To generate a preliminary count matrix, fragments were first 
counted in the ENCODE SCREEN regions18. Cell doublets were detected 
and removed based on cell-type identity using Scrublet19 and donor 
genotype identity using Freemuxlet20 (Methods). Next, cells were 
clustered using cisTopic and annotated through an automated label 
transfer from independently annotated scRNA-seq PBMC reference 
data21 using Seurat22. For each sample, cell-type-specific chromatin 
accessibility peaks were detected using MACS2 (ref. 23) and aggre-
gated into a high-quality set of sample-specific consensus peaks. This 
strategy was used to discover peaks specific to smaller cell populations. 
Each sample’s fragments were then recounted in its own consensus 
peak set, generating a consensus peak count matrix before a second 
round of cisTopic clustering and Seurat label transfer was performed. 

accessibility profiling technologies3, such as single-cell assay for 
transposase-accessible chromatin by sequencing (scATAC-seq)4. Recent 
technological advances enable large-scale studies and have established 
scATAC-seq as a major pillar in systematic profiling efforts5–7. While tran-
scriptomic profiles based on scRNA-seq provide information to infer 
cellular phenotypes, scATAC-seq detects accessible chromatin sites 
that pinpoint genomic regions involved in gene regulation. The latter 
is particularly important to derive mechanistic insights into cell-type 
development and differentiation or to identify drivers of cell state 
dynamics following a stimulus, perturbations or disease (Table 1).

This work benchmarked eight scATAC-seq methods across 47 
experiments, including technical and center replicates for Bio-Rad 
ddSEQ, HyDrop, s3-ATAC and different variants of the 10x Genom-
ics scATAC-seq assay. Peripheral blood mononuclear cells (PBMCs) 
served as a reference sample to minimize technical variability related 
to sample preparation, allowing the systematic evaluation of method 
performance across multiple quality control metrics. PUMATAC8, our 
pipeline for universal mapping of ATAC-seq data, further reduced vari-
ability in data preprocessing and enabled systematic benchmarking 
of the presented data, also allowing the extension to future technolo-
gies. Differences between methods were driven by sequencing library 
complexity and tagmentation specificity, with consequences on the 
performance of key features for data analysis and interpretation and 
the integration of datasets into joint cellular atlases.

Results
We performed a systematic, multicenter benchmarking study of eight 
different scATAC-seq protocols. Our benchmark includes all variants 
of 10x Genomics scATAC-seq (v1 (ref. 9), v1.1, v2, multiome and mito-
chondrial scATAC (mtscATAC)10) as well as Bio-Rad ddSEQ11, HyDrop12 
and s3-ATAC13. A reference sample of PBMCs from two adult donors 
(male and female) mixed at a 1:1 ratio was used to simulate complex 
sample composition (containing multiple cell types and conditions) 
and minimize sample preparation complexity. This reference sample 
was distributed for a multicenter benchmarking study and was used 
for all experiments, with the exception of the indicated replicate data-
sets (Fig. 1a). Each experiment was performed in technical replicates 
across centers with a target of 3,000 cells per sample to recover all 
major PBMC cell types, such as T and B cell subtypes, natural killer 
(NK) cells, monocytes and dendritic cells (DCs). In total, we gener-
ated 47 datasets (Fig. 1b), including replicates across at least three 
centers with two technical replicate experiments for all methods, 
except s3-ATAC and 10x v1.

PUMATAC: a generic and automated analysis pipeline
To compare different protocols in a unified manner, all sequencing 
data were analyzed using PUMATAC (pipeline for universal mapping of 
ATAC-seq data)8, a newly developed scATAC-seq preprocessing pipeline 
(Fig. 1c). Briefly, PUMATAC takes scATAC-seq data and applies a set of 
uniform preprocessing steps, including cell barcode error correction, 
adapter trimming, reference genome alignment and mapping qual-
ity filtering (Methods). We chose bwa-mem2 for read alignment as 
bwa-mem was used in the original manuscripts describing the eight 
technologies. PUMATAC then records aligned chromatin fragments 
in the ubiquitous bed-like ‘fragments file’ format, a tab-separated 
text file providing the start and end positions of each fragment and 
its corresponding cell barcode. On average, across samples, 97% of 
aligned fragments by PUMATAC shared their barcodes and coordinates 
with their counterparts aligned by CellRanger (10x Genomics; Supple-
mentary Fig. 1a). PUMATAC currently includes workflows for the eight 
technologies described in this benchmark study but allows for the 
modular addition of new scATAC-seq sequencing methods by modify-
ing existing templates14. PUMATAC also features a reimplementation of 
bap2 (ref. 15), which detects and merges barcodes with significant frag-
ment identity overlap. This step is necessary to merge bead doublets 

Table 1 | Estimated costs per experiment of 5,000 cells

10x v2 10x 
multiome

Bio-Rad 
ddSEQ

s3-ATAC HyDrop

Sequenced 
reads per cell at 
saturation

55,000 68,000 19,000 1,467,000 10,000

Expected unique 
fragments per cell

22,427 10,155 5,249 66,130 1,884

Expected unique 
fragments in 
peaks per cell

13,680 6,398 2,992 12,565 716

Assay price per 
5,000 cells

$1,565 $2,843 $1,100 $800 $100

Sequencing cost $791 $978 $273 $21,088 $144

Total cost per cell $0.471 $0.764 $0.275 $3.80 $0.049

Saturation sequencing depth is defined as the depth at which 50% of fragments in cells 
are duplicates. The expected number of unique fragments was calculated as the expected 
number of unique fragments at saturation sequencing depth, interpolated or extrapolated 
using a Langmuir model, and multiplied by the median FRIP score per technique to achieve 
the expected in peaks count. The price per 5,000 cells is for one 10x lane, one ddSEQ lane, 
four s3-ATAC plates (1,440 cells each, for 5,760 cells in total) or one HyDrop ATAC run. 
Sequencing cost is defined as the price of sequencing 5,000 cells to saturation depth, 
calculated at a cost of $2.875 per 1 million reads, using NovaSeq S2 100 cycles (10x v2, 10x 
multiome and HyDrop) or 200 cycles (ddSEQ and s3-ATAC; 4,000 million reads sequenced at 
$10,000 to $11,000 total cost). The sequencing cost for 10x multiome RNA component was 
not included.

http://www.nature.com/naturebiotechnology
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The resulting 47 annotated and clustered datasets were used for all 
downstream analyses and comparisons. Finally, a third round of con-
sensus peak sets was generated from all samples and aggregated into 
one master set of PBMC consensus peaks, which was used to generate 
a merged count matrix containing cells from all experiments. This 
strategy was used to generate three distinct benchmarking datasets 
containing (1) all cells at original sequencing depth (Extended Data 
Fig. 3), (2) all cells at 40k sequencing depth (Fig. 4b) and (3) an equal 
number of cells per cell type at 40k sequencing depth (Extended Data 
Fig. 4a). We also generated randomly sampled sets (2,500, 2,000, 1,500, 
1,000 and 500 cells) to investigate potential effects of total cell counts 
on label transfer and differentially accessible region (DAR) calling. All 
merged benchmarking datasets and all individual samples are available 
in SCope, our public single-cell viewer (https://scope.aertslab.org/#/ 
scATAC-seq_Benchmark/scATAC-seq_Benchmark/welcome).

Chromatin fragment capture and sequencing efficiency
The PUMATAC analysis workflow discarded sequencing reads at several 
filtering steps throughout preprocessing. The fraction of reads that ulti-
mately remains in the filtered count matrix is an important measure of 
assay quality as it is inversely related to sequencing costs. Furthermore, 
understanding the causes of read loss can shed light on how such losses 
affect downstream analyses and how to improve reaction chemistries 
or sample preparation workflows. We therefore calculated the fraction 
of total reads lost at each filtering stage and quantified differences in 
these metrics between samples (Fig. 1e). The first loss occurred when 
barcode reads were corrected based on a barcode sequence whitelist 
and when mapped to the reference genome. More specifically, reads 
without a valid cell barcode or those that could not be aligned with a 
Phred mapping quality score of >30 were discarded. Both steps com-
bined accounted for relatively small losses, ranging from 10.4% for 
10x v2 to 22.7% for HyDrop. Filtering true cells from background noise 
and low-quality cells resulted in significantly larger losses for some 
methods. Between 7% (10x v2) and 60% (s3-ATAC) of mapped fragments 
were discarded at this stage. Notably, fluorescence-activated cell sort-
ing (FACS) of live cells before nuclei extraction reduced such losses to 
below 6% for two mtscATAC-seq experiments (samples mt* Br1 and 
mt* Br2) compared to 36% in mtscATAC-seq without FACS (samples mt 
M1, mt M2, mt C1 and mt C2), suggesting that the additional FACS step 
removes significant amounts of ambient chromatin and damaged cells. 
Because diploid cells can produce a maximum of two unique fragments 
originating from a given accessible region and the fact that scATAC-seq 
data are sparse compared to all possible accessible sites, accessibil-
ity in peak regions is usually binarized within a single cell. Out of the 
quality-filtered fragments, a large fraction includes duplicates result-
ing from fragment amplification steps during sample preparation, 
which are discarded instead of quantified. The fraction of duplicate 
reads in our datasets ranged from 5% for s3-ATAC to more than 70% for 
HyDrop when sequenced at 40,000 reads per cell. Finally, a significant 
portion of unique fragments in each cell did not overlap with peak 
regions and was thus not considered in analysis methods based on peak 
count matrices. The proportion of such fragments varied between 39%  

(10x v2) and 82% (s3-ATAC) of all unique reads in cells. As a consequence 
of the above filtering steps, the fraction of original sequencing reads 
that are ultimately associated with cells, not duplicated and located 
within peak regions, can be surprisingly low, ranging between 28%  
(10x v2) and below 4% (s3-ATAC and HyDrop). These findings sug-
gest that sequencing scATAC-seq experiments are generally highly 
inefficient, and protocol optimization steps should be performed to 
maximize cell quality and library complexity and minimize ambient 
chromatin contamination and PCR duplication. While both s3-ATAC and 
HyDrop attain a markedly lower sequencing efficiency than commercial 
assays, this reduced sensitivity was caused by different mechanisms; 
s3-ATAC samples contained many fragments outside of peak regions, 
whereas HyDrop fragments were highly duplicated.

Sensitivity and specificity
After initial filtering steps, the remaining cells exhibited stark differ-
ences in quality metrics across techniques. In terms of sensitivity,  
10x v2 performed best, recovering, on average, 10,021 unique fragments 
in peaks per cell, which was significantly higher than Bio-Rad ddSEQ 
(4,228), HyDrop (1,180) and s3-ATAC (1,203; Fig. 1f and Extended Data 
Fig. 1d). TSS enrichment was also significantly stratified across meth-
ods with 10x v1.1, mtscATAC and s3-ATAC scoring 21.7 or lower, 10x v1, 
v2, multiome and HyDrop samples scoring between 25.2 and 27.6 and 
Bio-Rad ddSEQ scoring, on average, 32.6 (Fig. 1g and Extended Data 
Fig. 1f). The fraction of reads in peaks (FRIP) was significantly lower 
in HyDrop (38.5%), mtscATAC-seq (37.3%) and s3-ATAC (18.9%) than 
in Bio-Rad ddSEQ and the other 10x methods (57.3–62.7%; Fig. 1h and 
Extended Data Fig. 1e). Whereas the same method of nuclei extrac-
tion was used for all 10x and HyDrop samples (except for mtscATAC 
where Tween 20 and digitonin were omitted from the cell lysis buffer to 
retain mitochondrial chromatin), Bio-Rad ddSEQ and s3-ATAC experi-
ments used a lysis buffer without NP-40 or Dounce homogenization in 
NIB-HEPES with 0.1% Tween and 0.1% NP-40 to extract nuclei, respec-
tively. To investigate whether differences in FRIP, TSS enrichment or 
number of unique fragments between 10x/HyDrop, Bio-Rad ddSEQ 
and s3-ATAC could be attributed to differences in nuclei extraction, 
we performed the following three additional 10x v1.1 experiments: (1) 
in control experiment 1 (sample 10x v1.1c C1), we used a custom lysis  
buffer without NP-40 (as in Bio-Rad ddSEQ); (2) in control experiment 2  
(sample 10x v1.1c C2), we extracted nuclei using Dounce homogeni-
zation (as described in s3-ATAC); and (3) in control experiment 3 
(sample 10x v1.1 C3), we used the standard 10x v1.1 nuclei extraction 
protocol. Both control runs (C1 and C2) generated cells with FRIP and 
TSS enrichment scores on par with standard 10x v1.1 runs but retrieved 
a higher than average number of unique fragments. This suggests that 
the nuclei extraction method was not the sole driving factor causing 
reduced performance (for example, fragment numbers, FRIP and TSS 
enrichment) in Bio-Rad ddSEQ and s3-ATAC samples. Finally, we found 
that Bio-Rad ddSEQ samples had a higher median fragment length than 
all other techniques (Extended Data Fig. 1h).

With increasing sequencing depth, the number of unique frag-
ments increased but saturated at different levels across techniques. 

Fig. 1 | Overview of experimental design and low-level quality control 
metrics. a, Schematic overview of the experimental design; CNAG-CRG, Centro 
Nacional de Análisis Genómico; EPFL, École Polytechnique Fédérale de Lausanne; 
OHSU, Oregon Health & Science University; MDC, Max Delbrück Center for 
Molecular Medicine in the Helmholtz Association; UCSF, University of California 
San Francisco; VIB, Vlaams Instituut voor Biotechnologie. b, Bar chart of the 
number of experiments performed per technology colored by institute of 
origin. c, Diagram of the universal PUMATAC data analysis pipeline and further 
downstream analyses; QC, quality control. d, Distribution of TSS enrichment, 
FRIP and total unique fragment counts for all barcodes across all technologies. 
The blue, green and yellow color scale denotes local density. Saturated colors 
mark barcodes identified as cells. The distributions for individual samples 

are shown in Extended Data Fig. 2. e, Stacked bar plot showing the fraction of 
reads lost across each step of data processing. ‘Unique, in cells, in peaks’ is the 
final fraction of sequencing reads retained in count matrices. Asterisk among 
technology names indicates mtscATAC-seq samples performed on PBMC that 
were viability FAC-sorted prior to tagmentation. f–h, Distributions of unique 
fragments in peaks (f), TSS enrichment (g) and fraction of unique fragments  
in peaks (h) in filtered cell barcodes. The scale was shifted to accommodate  
lower fragment counts in s3-ATAC and HyDrop, indicated by a red line denoting  
a value of 6,000; n = 178,453 cells (before doublet filtering) examined over  
47 independent experiments. Median values are indicated by central white  
dots, quartiles are indicated by black boxes, and minima/maxima/centers are  
not indicated.

http://www.nature.com/naturebiotechnology
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For example, at lower sequencing depths, ddSEQ samples performed 
better than 10x v1, v1.1 and multiome, an effect that was reversed at a 
higher sequencing depth (Fig. 2a). TSS enrichment was also depend-
ent on sequencing depth but saturated rapidly (Fig. 2b). Sequencing 
efficiency decreased with higher sequencing depths due to the increase 
in duplicate reads (Fig. 2c).

We also investigated the performance of the scRNA-seq compo-
nent of the six 10x multiome experiments. Therefore, we first analyzed 

the unfiltered gene expression count matrices to define optimal thresh-
olds of unique molecular identifiers (UMIs) for cell filtering (Extended 
Data Fig. 5a). We then downsampled the RNA-seq data to a common 
depth (28,417 reads per cell), realigned the downsampled data and 
compared the number of genes and unique fragments in peaks in the 
superset of barcodes identified in either the chromatin accessibility 
or gene expression component (Extended Data Fig. 5b). In four of six 
samples, scRNA-seq and scATAC-seq components correlated strongly 
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and identified the same barcodes. However, in two replicates (samples 
MO C1 and MO C2), almost 4,000 barcodes were exclusively identified 
in the RNA component (Extended Data Fig. 5c), suggesting that cell 
filtering based on both scRNA-seq and scATAC-seq metrics can gener-
ate false-negative cell calls in at least one modality.

Doublet counts and cell-type label transfer efficiency
We identified doublets (two cells with the same cell barcode) using 
simulated data or genotype information with Scrublet and Freemuxlet, 
respectively (Methods). Scrublet’s doublet score linearly decreased 
with median unique fragments in peaks (Fig. 2f), and Freemuxlet’s 
confidence (that is, difference in log likelihood between doublet and 
singlet assignments) increased with these metrics (Fig. 2g), suggesting 
that the number of fragments is a critical factor behind doublet detec-
tion. Outlier results for s3-ATAC O1, mtscATAC M1 and mtscATAC M2 
could be explained by the increased read lengths (and thus increased 
single-nucleotide polymorphism (SNP) recovery) of 74 base pairs (bp) 
and 150 bp, respectively, as opposed to 50 bp for the other samples.

Next, we annotated cell types by inferring gene activities using 
chromatin accessibility in a genomic window around the TSS and sub-
sequent label transfer from annotated scRNA-seq reference datasets 
using Seurat22. When assigning cell-type annotations, Seurat returns 
a confidence score to each assignment representing the majority 
percentage of a weighted vote based on cell types present in the ref-
erence. On average, a Seurat label transfer score of 0.7 corresponded 
to an 82% concordance between cell-type identities assigned to ATAC 
and RNA components of multiome samples, although this effect was 
cell-type dependent (Extended Data Fig. 6a,b). Similar to Scrublet and 
Freemuxlet, Seurat’s confidence was strongly dependent on sequenc-
ing depth (Fig. 2d and Extended Data Fig. 7a) and the number of unique 
fragments per cell (Fig. 2h), confirming the number of fragments to 
be a strong predictor for the quality of downstream analyses. Conse-
quently, both 10x and Bio-Rad ddSEQ methods attained high median 
label transfer scores, while HyDrop and s3-ATAC scored markedly 
lower (Fig. 2k and Extended Data Fig. 1g). The most common PBMC 
types, including B cells, T cells and CD14+ monocytes, were recovered 
by all techniques. However, the differences between methods became 
evident when focusing on rare cell types, such as DCs and NK cells, 
showing the lowest assignment scores across techniques (Fig. 2l and 
Extended Data Fig. 6). For the latter cell types, s3-ATAC and HyDrop 
recovered a lower fraction or no cells, suggesting that increased sen-
sitivity is required for comprehensive cell-type annotation. Following 
cell-type assignment, we aggregated high-quality cell-type-specific 
peaks into consensus peaks. Across all samples and techniques, the 
fraction of reads within these consensus peaks was strongly correlated 
with TSS enrichment, affirming that TSS enrichment can be used as 
a predictor of signal-to-noise ratio before and independent of peak 
calling (Fig. 2i).

DARs
Similar to scRNA-seq, scATAC-seq data interpretation largely relies on 
the identification of signature features between cell types and states. 
Therefore, we calculated DARs between cell types within each of the 
47 samples and evaluated each method’s performance by comparing 
the number and median fold enrichment strength of DARs recovered 
across methods. These metrics strongly varied by cell type. In CD14+ 
monocytes, a cell type that was identified in all 47 samples, 10x meth-
ods recovered between 26,000 and 30,000 DARs and HyDrop recov-
ered 29,000, whereas s3-ATAC and ddSEQ only recovered 17,000 and 
15,000, respectively (Fig. 2m). A similar contrast was observed in the 
strength of these DARs; the top 2,000 CD14+ monocyte DARs recov-
ered by 10x methods were a median of 17.7- to 23.5-fold enriched in 
CD14+ monocytes compared to the other cell types, while this fold 
enrichment was 10.6-fold, 7.5-fold and 4.9-fold in ddSEQ, HyDrop and 
s3-ATAC, respectively (Fig. 2n). Of note, DAR strength was positively 

dependent on sequencing depth (Fig. 2e and Extended Data Fig. 7c), 
while the number of DARs recovered was not (Extended Data Fig. 7b).

Total cell counts and cell counts within each cell type were not 
equal across all 47 samples (Fig. 2l and Supplementary Fig. 2c). To 
investigate the effect of total cell count on Seurat label transfer scores 
and DAR strength, we downsampled each experiment to 2,500, 2,000, 
1,500, 1,000 and 500 total cells. Here, both Seurat label transfer scores 
and DAR strength were positively affected by higher cell counts  
(Fig. 3a and Extended Data Fig. 8a,c), but the total number of DARs 
recovered remained largely unaffected (Extended Data Fig. 8b). To miti-
gate count-dependent biases, we recalculated cell-type-specific DARs 
in eight technology-exclusive sets sampled from the initially merged 
169,000 cells. Each technology-exclusive set contained the lowest 
number of cells available for each cell type across technologies: 555 B 
cells, 747 CD14+ monocytes, 1,008 naive T cells, 1,769 cytotoxic T cells, 
83 DCs, 126 NK cells and 144 CD16+ monocytes (Extended Data Fig. 4a). 
In this cell count-balanced analysis, 10x methods recovered more DARs 
than ddSEQ and HyDrop across all cell types (Fig. 3b). s3-ATAC also 
recovered a large number of DARs but of strongly decreased strength 
compared to other techniques (Fig. 3a). In terms of DAR strength,  
10x v1 and v2 performed best, with ddSEQ performing on par with the 
remaining 10x methods.

Additionally, we calculated cell-type-specific DARs on a merged 
dataset containing all eight aforementioned cell-type-balanced sub-
sets. A comparison of the scATAC-seq signal at the strongest DAR 
(Fig. 3d) or across the top 2,000 strongest DARs per cell type (Sup-
plementary Fig. 3) showed general agreement in signals between the 
10x methods and Bio-Rad ddSEQ. Both s3-ATAC and HyDrop showed 
weaker signals around DARs. Specifically, the signal was more broadly 
distributed around the DAR periphery in s3-ATAC, whereas the absolute 
signal was weaker but more specific in HyDrop. This observation agreed 
with earlier quality metrics indicating higher fragment count and lower 
FRIP for s3-ATAC and the inverse for HyDrop. We then calculated the 
overlap between these consensus DARs and the DARs recovered by each 
of the eight cell-type-balanced sets. Both 10x and Bio-Rad ddSEQ largely 
agreed with the strongest consensus peaks, sharing between 85% and 
97% of these regions (Fig. 3e and Extended Data Fig. 4b). s3-ATAC and 
HyDrop recovered 60% and 70%, respectively. However, ddSEQ recov-
ered a significantly lower number of DARs from the consensus DAR set 
(40%; Fig. 3f). Across all eight individual ddSEQ samples, DARs were 
also positioned closer to TSSs than in all other techniques (Fig. 2j and 
Extended Data Fig. 4c). Combined with ddSEQ’s significantly higher 
TSS enrichment across all fragments, this suggests that ddSEQ recov-
ers TSS-proximal DARs in agreement with 10x but lacks enrichment 
in TSS-distal fragments. In the merged set, we also calculated DARs 
between cell populations of the same cell type but originating from dif-
ferent techniques. Here, only s3-ATAC returned significantly enriched 
regions, finding a total of 193,913 regions that were more accessible in 
s3-ATAC than in the other techniques.

To evaluate the biological relevance of the DARs identified by each 
protocol, we performed a motif enrichment analysis on each cell type’s 
top 2,000 strongest DARs by using pyCisTarget24–26. Across all cell types, 
DARs from 10x methods scored highest in normalized enrichment 
scores of transcription factor motifs, with mean scores of higher than 
10 across the top 50 most enriched motifs. ddSEQ, s3-ATAC and HyDrop 
scored significantly lower, with mean scores of 6–8. This stratification 
was conserved when examining cell-type-specific enriched motifs 
(Fig. 3g).

Interpretation, integration and validation
Above, we calculated DARs between cell types within a sample. For 
biological discoveries, often different samples are compared to identify 
genomic regions with differential accessibility in certain conditions 
(for example, disease versus healthy and knockout versus control). To 
compare each method’s ability to detect variation between samples, 
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Fig. 3 | Performance differences in detection of motif enrichment and sexual 
dimorphisms. a, Dependency of Seurat label transfer scores and average 
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where differences can be more subtle than between cell types, we 
focused on differences observed between male and female samples. 
For donor identification, we first applied Freemuxlet for genotype 
demultiplexing20 (Supplementary Fig. 2a–c) before assigning each 
sample’s sex through count numbers on the X and Y chromosomes 
(Extended Data Fig. 2b). Similar to the previously applied doublet call-
ing, Freemuxlet’s donor assignment confidence was strongly correlated 
with the number of fragments (Fig. 3h). From a biological perspective, 
the ratio of naive to cytotoxic T cells was higher in the female sample 
than in male cells across all techniques, an effect dependent on the 
number of unique fragments recovered per cell (Fig. 3i). Sensitivity will 
thus directly impact studies that assume correct donor identification. 
We then used the aforementioned cell count-balanced strategy to cal-
culate DARs between male and female samples for each cell type. Here, 
differences were markedly more subtle than between cell types, with 
median DAR enrichments of around 2-fold (Fig. 3k) as opposed to 5-fold 
in DCs or 50-fold in B cells (Fig. 3c). The strongest sexual dimorphism 
was observed in cytotoxic T cells, where sex-specific DARs were strongly 
enriched and highest in number (Figs. 3j,k and 4a). In agreement with 

these findings, sex differences in T cell abundance and chromatin acces-
sibility have been previously reported in the context of naive/cytotoxic 
T cell counts and distinct response to extrinsic stimulation27. Similar 
to results obtained for cell-type-specific DARs, ddSEQ captured fewer 
and weaker DARs than the 10x methods, although the differences were 
less pronounced. Both s3-ATAC and HyDrop recovered even fewer and 
weaker or no sex-specific DARs (Fig. 3j,k).

Next, we tested each method’s ability to be integrated into joint 
datasets, a key requirement for decentralized multicenter projects, 
such as the Human Cell Atlas project. From the peak sets of the 47 indi-
vidual downsampled samples, we derived a consensus set of 198,421 
peaks and recounted all downsampled data in this common peak set 
to generate a complete merged dataset of 178,502 cells. After filtering 
for doublets, we performed dimensionality reduction on the remain-
ing 169,227 cells using cisTopic (Fig. 4b). We then quantified each 
technology’s ability to cocluster with other techniques using the local 
inverse Simpson’s index, depicting the average number of technolo-
gies in a cell’s neighborhood (Fig. 4d)28. Before batch effect correction, 
cells clustered by technology, even across the different 10x variants.  
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After data integration using Harmony, differences were par-
tially remediated, although ddSEQ and HyDrop integrated worse 
than the other methods (Fig. 4b–d). Additionally, we performed a 
principal-component analysis on 15 key quality metrics (Fig. 4c). This 
dimension-reduced representation exhibited a radial axis of ‘quality’ 
centered around the bottom lefthand corner and showed that technical 
replicate experiments produced highly similar datasets.

In addition to the systematic benchmarking using PBMCs, we 
applied our universal data analysis strategy to publicly available adult 
mouse cortex scATAC-seq data for each of the eight technologies. 
Therefore, the raw sequencing data were aligned to the mouse refer-
ence genome, downsampled to equal cell numbers and clustered using 
cisTopic before generating consensus peak sets for each sample. We 
then calculated basic quality metrics, such as unique fragment numbers 
in peaks, and repeated these steps for several sequencing depth down-
sampling levels. In all metrics, 10x and ddSEQ performed markedly 
better than HyDrop and s3-ATAC (Extended Data Fig. 9a,b). However, in 
this tissue context, s3-ATAC recovered more unique fragments in peaks 
than HyDrop at all levels of downsampling. Surprisingly, considering 
previous results, 10x v1 recovered more unique fragments in peaks than 
10x v2, the latter of which now performed on par with the best Bio-Rad 
ddSEQ samples. While our PBMC benchmark sought to systematically 
eliminate sample preparation effects by using cells in suspension as a 
reference sample, we cannot entirely disentangle the effect of sample 
(nuclei) preparation differences on technology performance in more 
complex tissues, such as the mouse cortex. Here, tissue excision and 
nuclei extraction require more complex procedures and expertise, 
which may be a more defining factor for data quality than the intrinsic 
sensitivity of each technology.

Protocol economics
To compare costs per sample across the tested methods, we iteratively 
downsampled the fragments files for each sample and calculated the 
fraction of duplicate fragments per iteration. We then calculated 
the average sequencing depth at which a duplication rate of 50% 
was attained and quantified the number of fragments at this depth 
(including non-peak fragments; Extended Data Fig. 10). These findings 
provided an estimated total cost for a 5,000-cell experiment for each 
technique. In this regard, the costs per cell were fivefold and tenfold 
cheaper for HyDrop than for Bio-Rad ddSeq and 10x v2, respectively; 
10x multiome was more expensive (1.5-fold) than the stand-alone assay 
10x v2 but was markedly less sensitive and less efficient in sequencing. 
Thus, the matched gene expression information of the multiome assay 
results in a considerable additional cost, which has to be taken into 
account in designs for which scATAC-seq is the primary focus of a study. 
The cost per experiment for s3-ATAC ($800) ranged between HyDrop 
($100) and Bio-Rad ddSEQ ($1,100), but the high library complexity 
resulted in high sequencing costs and the highest overall costs per cell. 
However, several variables can be tuned to reduce cost or to increase 
efficiency. For example, 10,000 cells (instead of 5,000 cells) can be 
loaded on the same microfluidic lane to double cost efficiency in the 
droplet-based methods (10x, Bio-Rad ddSEQ and HyDrop) or s3-ATAC 
samples can be sequenced at lower depths to reduce sequencing costs. 
All technologies can be sequenced at increased depths to improve 
sensitivity at the expense of cost efficiency.

Discussion
Technology benchmarking studies with multicenter designs require 
thorough experimental planning to limit variability to the tested pro-
tocols, while keeping other factors constant. In this regard, we used 
PBMCs as a reference sample, which is ideal for multicenter bench-
marking studies as cells can be aliquoted, stored, shipped and thawed 
without major losses in sample quality and composition. However, 
although such unified reference samples allowed us to include expert 
laboratories and companies around the world, we cannot exclude 

different performances of the methods in other tissues. Although the 
analysis of mouse brain datasets pointed to largely consistent method 
performance, a protocol could outperform other methods depending 
on the cell type and tissue context. Data analysis represents an addi-
tional variable in benchmarking studies, as protocol-specific pipelines 
harbor quality control and filtering steps that challenge compara-
tive results if not synchronized. Therefore, we developed PUMATAC, 
a unified data preprocessing pipeline, which was used to process data 
types from all methods tested here. Importantly, its modular design 
allows the extension to future technologies and assay variants, making 
it a valuable software resource to benchmark the next generation of 
scATAC-seq methods.

Our reference sample resource and unified data processing pipe-
line allowed a systematic comparison of different scATAC-seq meth-
ods. Methods broadly agreed on cell-type identity and transcription 
factor activities but showed stark differences in sequencing library 
quality and tagmentation specificity to open chromatin sites. In gen-
eral, HyDrop and s3-ATAC performed markedly lower in most qual-
ity control metrics. HyDrop captured significantly fewer fragments 
than 10x and Bio-Rad methods. s3-ATAC fragments were less likely to 
be enriched around TSSs, and high duplicate rates were observed in 
HyDrop, suggesting room for optimization in PBMC samples for these 
non-commercial technologies. Although the 10x protocols we tested 
apply similar chemistries, we see variable performance between vari-
ants and replicates. While the former points to the potential impact 
of buffer composition (for example, specific to mtscATAC and 10x 
multiome), the latter suggests differences due to sample handling. 
Nevertheless, despite the difference in number of unique fragments 
detected, 10x v1 and v2 scored equally across higher-level quality met-
rics, such as label transfer and motif enrichment scores, attesting to 
the high specificity and signal-to-noise ratio of the 10x v1 scATAC-seq 
kits. Bio-Rad ddSEQ samples returned weaker and fewer DARs, which in 
turn recovered weaker transcription factor motif signatures. Bio-Rad 
ddSEQ fragments were also less specific to TSS-distal accessible sites, 
which could also contribute to reduced integration capacity with other 
methods, an effect that could only partially be resolved using batch 
effect correction algorithms.

We found sequencing efficiency to be generally low for scATAC-seq 
experiments. Two strategies could mitigate this issue: optimized 
sample preparation and nuclei extraction protocols to minimize the 
amount of ambient chromatin in samples, potentially applying FACS 
for sample cleanup, and sequencing below library saturation to limit 
the number of duplicate reads. Generally, before embarking into 
large-scale production, the higher reagent costs of commercialized 
methods have to be considered in light of lower complexity and accu-
racy for non-commercial variants. The aforementioned factors plus a 
method’s accessibility and dataset integrability across studies should 
eventually drive the technology selection process. It is important to 
state that non-commercialized methods have not gone through a 
rigorous optimization process. Time and budget constraints of aca-
demic labs often limit excessive protocol optimization procedures. 
However, their open-source character and low reagent costs make them 
available for community-driven improvements and low-budget data 
generation effort, respectively. Therefore, we encourage researchers 
to continue striving for new creative solutions as the driving force for 
next-generation technologies.

In addition to evaluating different scATAC-seq methods, this 
work provides resources for the single-cell genomics community. 
Our PUMATAC pipeline is openly available to be used as an open-source 
alternative to commercial software and is flexible to analyze current 
and future data types. All code to reproduce all of our analyses and 
graphs is included with the pipeline. All benchmarking datasets can be 
downloaded in raw and processed formats for the testing and devel-
opment of computational algorithms, for example, data integration 
tools. Finally, the here-derived set of consensus DARs across different 
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technologies represents a high-confidence set of candidate enhanc-
ers and promoters underlying cell identity as a resource for further 
exploration.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41587-023-01881-x.
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Methods
Sample preparation
Human PBMC thawing and nuclei isolation. Cryopreserved human 
PBMCs from one male donor and one female donor were purchased 
from AllCells and distributed across institutes to generate the following 
samples: v1 V1, v1 V2, v1.1 C1–v1.1 C3, v1.1 St1, v1.1 St2, v1.1c C1, v1.1c C2, 
v2 V1, v2 V2, v2 C1, v2 C2, MO Sa1, MO Sa2, MO C1, MO C2, MO V1, MO 
V2, mt M1, mt M2, mt C1, mt C2, mt* Br1, mt* Br2, ddS H1, ddS H2, s3 O1, 
Hy E1–Hy E4, Hy V1, Hy V2 and Hy C1–Hy C3. For the remaining samples 
(v1.1 T1, v2 T1, v2 T2, ddS Bi1–ddS Bi4, ddS U1, ddS U2 and s3 O2), locally 
available cryopreserved PBMCs were used. In these short identifiers, 
the first part indicates the technology used, the second part indicates 
the first one or two letters from the center where the experiment was 
performed, and the number identifies each technical replicate.

Unless specified otherwise in technology-specific methods 
sections (for Bio-Rad ddSEQ, mtscATAC-seq, 10x v1.1 control runs 
and s3-ATAC), cryopreserved PBMCs were thawed according to the  
10x Genomics demonstrated protocol CG00039 (‘Fresh Frozen Human 
Peripheral Blood Mononuclear Cells for Single Cell RNA Sequencing’). 
Briefly, 1 ml of frozen cells was rapidly thawed in a water bath at 37 °C 
and transferred to a 50-ml tube using a 1,000-µl wide-bore tip. Next, 1 ml 
of medium prewarmed to 37 °C and supplemented with 10% fetal bovine 
serum (FBS; Thermo Fisher Scientific) was added dropwise with gentle 
swirling of the sample. After 1 min of incubation at room temperature, 2, 
4, 8 and 16 ml of medium with 10% FBS were added dropwise with 1 min 
of incubation at room temperature in between. The cell suspension was 
then centrifuged at 300g for 5 min at room temperature. The pellet was 
resuspended in 10 ml of medium supplemented with 10% FBS, and cells 
were counted. Unless specified otherwise in the technology-specific 
methods sections, the isolation of nuclei was performed according 
to the 10x Genomics demonstrated protocol ‘Nuclei Isolation for Sin-
gle Cell ATAC Sequencing’. Briefly, 1 million cells from the cell mix 
were transferred to a 1.5-ml microcentrifuge tube and centrifuged at 
500g for 5 min at 4 °C. The supernatant was removed without disrupt-
ing the cell pellet, and 100 µl of chilled lysis buffer (10 mM Tris-HCl  
(pH 7.4), 10 mM NaCl, 3 mM MgCl2, 0.1% Tween 20, 0.1% NP-40 substi-
tute, 0.01% digitonin and 1% bovine serum albumin (BSA)) was added 
and mixed by pipetting ten times. Samples were then incubated on ice 
for 3 min. Following lysis, 1 ml of chilled wash buffer (10 mM Tris-HCl 
(pH 7.4), 10 mM NaCl, 3 mM MgCl2, 0.1% Tween 20 and 1% BSA) was 
added and mixed by pipetting. Nuclei were centrifuged at 500g for 
5 min at 4 °C, and the supernatant was removed without disrupting 
the nuclei pellet. Based on the starting number of cells and assuming 
a 50% loss during the procedure, nuclei were resuspended into the 
appropriate volume of chilled diluted Nuclei Buffer (10x Genomics) 
to achieve a concentration of 925–2,300 nuclei per µl, suitable for a 
target recovery of 3,000 nuclei. This combination of PBMC thawing 
and nuclei isolation was used for all 10x samples (except mtscATAC-seq 
protocols, v1.1 control runs and v1.1 St1 and v1.1 St2 samples) and all 
HyDrop samples, but not for s3-ATAC and Bio-Rad ddSEQ samples. The 
method of cell counting was performed differently depending on the 
center of origin. For all samples generated in VIB, cells and nuclei were 
counted using a LUNA automated cell counter (Logos Biosystems). For 
Stanford and Sanger samples, cells and nuclei were counted manually 
using a hemocytometer. For all Bio-Rad ddSEQ and s3-ATAC and all 
CNAG samples, cells and nuclei were counted using a TC20 cell counter 
(Bio-Rad). For Broad samples and samples generated by the company 
10x Genomics, cells and nuclei were counted using a Countess II or III 
FL automated cell counter (Thermo Fisher).

10x ATAC v1 (short identifiers v1 V1 and v1 V2). PBMCs were thawed, 
and nuclei were isolated as described above. Two technical replicates 
were generated on the same day starting from the same freshly thawed 
nuclei suspension. scATAC-seq libraries were prepared according to the 
Chromium Single Cell ATAC reagent kits v1.0 user guide (10x Genomics, 

CG000001 Rev D). Briefly, the transposition reaction was prepared by 
mixing the desired number of nuclei with ATAC Buffer (10x Genomics) 
and ATAC Enzyme (10x Genomics) and incubated for 60 min at 37 °C; 
4,590 nuclei were loaded with the goal of recovering 3,000 nuclei. 
Nuclei were partitioned into Gel Bead-in-Emulsions (GEMs) by using 
the Chromium Controller (Chip E). DNA linear amplification was then 
performed by incubating the GEMs under the following thermal cycling 
conditions: 72 °C for 5 min, 98 °C for 30 s and 12 cycles of 98 °C for 10 s, 
59 °C for 30 s and 72 °C for 1 min. GEMs were broken using Recovery 
Agent (10x Genomics), and the resulting DNA was purified by sequen-
tial Dynabeads and SPRIselect reagent beads cleanups. Libraries were 
indexed by PCR using a Single Index kit (Plate N) and incubating under 
the following thermal cycling conditions: 98 °C for 45 s and ten cycles 
of 98 °C for 20 s, 67 °C for 30 s and 72 °C for 20 s with a final extension 
of 72 °C for 1 min. Sequencing libraries were subjected to a final bead 
cleanup with SPRIselect reagent.

Samples v1 V1 and v1 V2 were sequenced on a NovaSeq 6000 using 
a NovaSeq SP kit (100 cycles; 20028401, Illumina), and sequencing 
was performed using the following read protocol: 50 cycles (read 1),  
8 cycles (i7 index read), 16 cycles (i5 index read) and 49 cycles (read 2).

10x ATAC v1.1 (short identifiers v1.1 C1–v1.1 C3, v1.1 T1, v1.1 St1 and 
v1.1 St2). PBMCs were thawed, and nuclei were isolated as described 
above for samples v1.1 C1–v1.1 C3 and v1.1 T1. For samples v1.1 St1 and 
v1.1 St2, a different thawing/isolation protocol was used. Here, each 
cryopreserved PBMC sample was thawed in 50 ml of thaw medium 
(IMDM, 10% FBS and 200 Kunitz U ml–1 DNase) preheated to 37 °C 
and incubated for 15 min at 37 °C. DNase was ordered from Worthing-
ton Biochem (LS002007) and resuspended in HBSS at 20,000 U ml–1  
(100× stock). Cells were pelleted at 300g (1,200 r.p.m.), resuspended 
in 5 ml of thaw medium and layered over 5 ml of Ficoll in a 15-ml coni-
cal tube. Cells were then spun at 500g (1,500 r.p.m.) with no brake for 
30 min at room temperature in a swinging-bucket centrifuge. 2 mL of 
the mononuclear cell layer was collected and diluted with 10 ml of room 
temperature PBS. Cells were put on ice and maintained at 4 °C until use.

Technical replicates were generated on the same day starting from 
the same freshly thawed nuclei suspension. scATAC-seq libraries were 
prepared according to the Chromium Single Cell ATAC reagent kit v1.1 
user guide (10x Genomics, CG000209 Rev D). Briefly, the transposi-
tion reaction was prepared by mixing the desired number of nuclei 
with ATAC Buffer (10x Genomics) and ATAC Enzyme (10x Genomics) 
and was then incubated for 60 min at 37 °C; 4,590 nuclei were loaded 
with the goal of recovering 3,000 nuclei. For sample ‘10x v1.1 V2’, 9,180 
nuclei were loaded instead of 4,590 due to a counting error. Nuclei were 
partitioned into GEMs by using a Chromium Controller with Chip H. 
DNA linear amplification was then performed by incubating the GEMs 
under the following thermal cycling conditions: 72 °C for 5 min, 98 °C 
for 30 s and 12 cycles of 98 °C for 10 s, 59 °C for 30 s and 72 °C for 1 min. 
GEMs were broken using Recovery Agent (10x Genomics), and the 
resulting DNA was purified by sequential Dynabeads and SPRIselect 
reagent beads cleanups. Libraries were indexed by PCR using a Single 
Index kit N set A (10x Genomics, PN-1000212) and incubated under 
the following thermal cycling conditions: 98 °C for 45 s and ten cycles 
of 98 °C for 20 s, 67 °C for 30 s and 72 °C for 20 s with a final extension 
of 72 °C for 1 min. Sequencing libraries were subjected to a final bead 
cleanup with SPRIselect reagent.

Samples v1.1 St1 and v1.1 St2 were sequenced on an Illumina Next-
Seq 500 machine using a high-output flow cell with 34 bp paired-end 
reads. Samples v1.1 C1–v1.1 C3 and v1.1 T1 were sequenced on an Illu-
mina NovaSeq 6000 with the following sequencing conditions: 50 bp  
(read 1), 8 bp (i7 index), 16 bp (i5 index) and 49 bp (read 2).

10x ATAC v2 (short identifiers v2 V1, v2 V2, v2 T1, v2 T2, v2 C1 and  
v2 C2). PBMCs were thawed, and nuclei were isolated as described 
above. Technical replicates were generated on the same day starting 
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from the same freshly thawed nuclei suspension. scATAC-seq libraries 
were prepared according to the Chromium Single Cell ATAC reagent 
kits v2 user guide (10x Genomics, CG000496 Rev B). Briefly, the trans-
position reaction was prepared by mixing the desired number of nuclei 
with ATAC Buffer (10x Genomics) and ATAC Enzyme (10x Genomics) 
and was then incubated for 30 min at 37 °C; 4,590 nuclei were loaded 
with a goal of recovering 3,000 nuclei. Nuclei were partitioned into 
GEMs by using a Chromium Controller with Chip H. Sample v2 T1 was 
the only sample for which Chromium X was used. DNA linear amplifi-
cation was then performed by incubating the GEMs under the follow-
ing thermal cycling conditions: 72 °C for 5 min, 98 °C for 30 s and 12 
cycles of 98 °C for 10 s, 59 °C for 30 s and 72 °C for 1 min. GEMs were 
broken using Recovery Agent (10x Genomics), and the resulting DNA 
was purified by sequential Dynabeads and SPRIselect reagent beads 
cleanups. Libraries were indexed by PCR using a Single Index kit N set 
A and incubated under the following thermal cycling conditions: 98 °C 
for 45 s and eight cycles of 98 °C for 20 s, 67 °C for 30 s and 72 °C for 
20 s with a final extension of 72 °C for 1 min. Sequencing libraries were 
subjected to a final bead cleanup with SPRIselect reagent.

Samples v2 v1 and v2 v2 were sequenced on an Illumina NextSeq 
2000 under the following sequencing conditions: 50 bp (read 1), 8 bp 
(i7 index), 16 bp (i5 index) and 50 bp (read 2). Samples v2 C1, v2 C2, v2 
T1 and v2 T2 were sequenced on an Illumina NovaSeq 6000 under the 
following sequencing conditions: 50 bp (read 1), 8 bp (i7 index), 16 bp 
(i5 index) and 49 bp (read 2).

10x multiome (short identifiers MO Sa1, MO Sa2, MO C1, MO C2, MO 
V1 and MO V2). PBMCs were thawed as described above. The isolation 
of nuclei was slightly different, including the use of RNase inhibitors to 
ensure RNA quality. Briefly, two pools of cells (technical replicates) were 
generated from the two donors by mixing 500,000 cells per donor, 
totaling 1 million cells per pool. Cells were pelleted for 5 min at 300g 
and 4 °C and were washed twice in 1 ml of wash buffer (10 mM Tris-HCl 
(pH 7.4), 10 mM NaCl, 3 mM MgCl2, 1% BSA, 0.1% Tween 20, 1 mM DTT 
and 1 U µl–1 RNase inhibitor). After the second wash and final centrifu-
gation, cells were resuspended in 0.1 ml of chilled lysis buffer (10 mM 
Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM MgCl2, 0.1% Tween 20, 0.1% NP-40, 
0.01% digitonin, 1% BSA and 1 mM DTT) and incubated for 3 min on ice. 
Nuclei were washed three times in 1 ml of wash buffer (10 mM Tris-HCl 
(pH 7.4), 10 mM NaCl, 3 mM MgCl2, 1% BSA, 0.1% Tween 20, 1 mM DTT 
and 1 U µl–1 RNase inhibitor) by centrifuging at 500g for 5 min.

After the last centrifugation, cells were resuspended in chilled 
Nuclei Buffer (1× Nuclei Buffer, 1 mM DTT and 1 U µl–1 RNase inhibitor) 
calculated and loaded according to the Chromium Next GEM Single 
Cell Multiome ATAC + GEX user guide (protocol CG000338 Rev A); 
4,590 nuclei were loaded with the goal of recovering 3,000 nuclei. 
For loading onto 10x chips, we sought to recover 3,000 nuclei. Fol-
lowing the isolation of nuclei and transposition, GEMs were gener-
ated using GEM Chip J. GEM cleanup and preamplification PCR were 
performed as per the user guide. For the ATAC-seq library, eight cycles 
of PCR were run, while seven cycles of PCR were performed for cDNA 
amplification. Of the amplified cDNA, 25% of the material was used 
for gene expression library construction with 15 cycles of PCR for 
both technical replicates.

For samples MO Sa1, MO Sa2, MO C1 and MO C2, ATAC libraries 
were sequenced on an Illumina NovaSeq 6000 using the following 
read protocol: 50 cycles (read 1), 8 cycles (i7 index read), 24 cycles 
(i5 index read) and 49 cycles (read 2). ATAC libraries from MO V1 and 
MO V2 were sequenced according to the same parameters but on a 
NextSeq 2000. For samples MO Sa1, MO Sa2, MO C1 and MO C2, RNA 
libraries were sequenced on an Illumina NovaSeq 6000 using the fol-
lowing read protocol: 28 cycles (read 1), 10 cycles (i7 index read), 10 
cycles (i5 index read) and 90 cycles (read 2). RNA libraries from MO 
V1 and MO V2 were sequenced according to the same parameters but 
on a NextSeq 2000.

10x mtscATAC (short identifiers mt M1, mt M2, mt C1, mt C2, mt* 
Br1 and mt* Br2). Cryopreserved PBMCs were thawed as described 
above. For samples mt* Br1 and mt* Br2, cells were also washed, and 
250,000 live cells were sorted using SytoxBlue at a 1:1,000 dilution as 
a live/dead cell stain. Samples mt M1, mt M2, mt C1 and mt C2 were not 
sorted. Cells from each donor were subsequently pooled at a 1:1 ratio, 
and, after washing, cells were fixed in 1% formaldehyde (Thermo Fisher, 
28906) in PBS for 10 min at room temperature, quenched with glycine 
solution to a final concentration of 0.125 M and washed twice in PBS 
via centrifugation at 400g for 5 min at 4 °C. Cells were subsequently 
treated with lysis buffer (10 mM Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM 
MgCl2, 0.1% NP-40 and 1% BSA) for 3 min on ice, followed by the addition 
of 1 ml of chilled wash buffer and inversion (10 mM Tris-HCl (pH 7.4), 
10 mM NaCl, 3 mM MgCl2 and 1% BSA) before centrifugation at 500g 
for 5 min at 4 °C. The supernatant was discarded, and cells were diluted 
in 1× diluted Nuclei Buffer before counting using trypan blue and a 
Countess II FL automated cell counter. Subsequently, mtscATAC-seq 
libraries were generated using the Chromium Next GEM Single Cell 
ATAC Library & Gel Bead kit (v1.1, 1000175) according to the manu-
facturer’s instructions (CG000209); 4,590 nuclei were loaded with 
the goal of recovering 3,000 nuclei. Briefly, following tagmentation, 
cells were loaded onto a Chromium Controller Single Cell instrument 
to generate single-cell GEMs, followed by linear PCR, as described in 
the protocol using a C1000 Touch thermal cycler with the 96-Deep 
Well Reaction Module (Bio-Rad). After breaking the GEMs, barcoded 
tagmented DNA was purified and further amplified to enable sample 
indexing (11 cycles of PCR) and enrichment of mtscATAC-seq libraries. 
The final libraries were quantified using a Qubit double-stranded DNA 
high-sensitivity assay kit (Invitrogen) and a high-sensitivity DNA chip 
run on a Bioanalyzer 2100 system (Agilent).

Samples mt C1 and mt C2 were sequenced on an Illumina NovaSeq 
6000 under the following sequencing conditions: 50 bp (read 1), 8 bp 
(i7 index), 16 bp (i5 index) and 49 bp (read 2). Samples mt M1 and mt 
M2 were sequenced on an Illumina NovaSeq 6000 under the following 
sequencing conditions: 150 bp (read 1), 8 bp (i7 index), 16 bp (i5 index) 
and 150 bp (read 2). Samples mt* Br1 and mt* Br2 were sequenced on 
an Illumina Nextseq 550 with paired-end reads (2 × 72 cycles), 8 cycles 
for index 1 and 16 cycles for index 2.

Bio-Rad SureCell ATAC (short identifiers ddS Bi1–ddS Bi4, ddS H1, 
ddS H2, ddS U1 and ddS U2). Cryopreserved PBMCs were quickly 
thawed in a water bath at 37 °C, rinsed with culture medium (RPMI sup-
plemented with 15% FBS) and treated with 0.2 U µl−1 DNase I (Thermo 
Fisher Scientific) in 5 ml of culture medium at 37 °C for 30 min. After 
DNase I treatment, cells were washed once with medium and twice 
with ice-cold 1× PBS supplemented with 0.1% BSA. Cells were then 
filtered with a 35-µm cell strainer (Corning), and cell viability and 
concentration were measured with trypan blue on a TC20 automated 
cell counter (Bio-Rad).

For a detailed description of tagmentation protocols and buffer 
formulations, refer to the SureCell ATAC-Seq Library Prep kit user guide 
(17004620, Bio-Rad). Collected cells and tagmentation buffers were 
chilled on ice. Lysis was performed simultaneously with tagmentation. 
After washing, equal numbers of cells from each donor were mixed 
with Whole-Cell Tagmentation Mix containing 0.1% Tween 20, 0.01% 
digitonin and 1× PBS supplemented with 0.1% BSA, ATAC Tagmentation 
Buffer and ATAC Tagmentation Enzyme (ATAC Tagmentation Buffer 
and ATAC Tagmentation Enzyme are both included in the SureCell 
ATAC-Seq Library Prep kit (17004620, Bio-Rad)). The mix was split 
into two technical replicates, and cells were then mixed and agitated 
on a ThermoMixer (5382000023, Eppendorf) for 30 min at 37 °C. 
Tagmented cells were kept on ice before encapsulation.

Tagmented cells were loaded onto a ddSEQ Single-Cell Isolator 
(12004336, Bio-Rad). For samples ddS H1, ddS H2, ddS U1 and ddS U2, 
5,000 nuclei were loaded with the goal of recovering 3,000 nuclei. 
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scATAC-seq libraries were prepared using a SureCell ATAC-Seq Library 
Prep kit (17004620, Bio-Rad) and SureCell ddSEQ Index kit (12009360, 
Bio-Rad). Bead barcoding and sample indexing were performed in a 
C1000 Touch thermal cycler with a 96-Deep Well Reaction Module 
(1851197, Bio-Rad). The following PCR conditions were used: 37 °C for 
30 min; 85 °C for 10 min; 72 °C for 5 min; 98 °C for 30 s; eight cycles 
of 98 °C for 10 s, 55 °C for 30 s and 72 °C for 60 s and a single 72 °C 
extension for 5 min to finish. Emulsions were broken, and products 
were cleaned up using Ampure XP beads (A63880, Beckman Coulter). 
Barcoded amplicons were further amplified using a C1000 Touch 
thermal cycler with a 96-Deep Well Reaction Module. The following 
PCR conditions were used: 98 °C for 30 s and seven cycles of 98 °C for 
10 s, 55 °C for 30 s and 72 °C for 60 s and a single 72 °C extension for 
5 min to finish. PCR products were purified using Ampure XP beads 
and quantified on an Agilent Bioanalyzer (G2939BA, Agilent) using a 
high-sensitivity DNA kit (5067-4626, Agilent).

For samples ddS H1, ddS H2, ddS Bi3, ddS Bi4, ddS U1 and ddS U2, 
libraries were sequenced on a NextSeq 550 (SY-415-1002, Illumina) 
using a NextSeq High-Output kit (150 cycles; 20024907, Illumina) and 
the following read protocol: 118 cycles (read 1), 8 cycles (i7 index) and 
40 cycles (read 2). For ddS Bi1 and ddS Bi2, samples were sequenced 
on a NovaSeq according to the same protocol. A custom sequencing 
primer was required for read 1 (16005986, Bio-Rad; included in the kit).

HyDrop ATAC (short identifiers Hy E1–Hy E4, Hy V1, Hy V2 and Hy 
C1–Hy C3). PBMCs were thawed, and nuclei were isolated as described 
above. HyDrop was performed as previously described12 but with an 
updated barcoded hydrogel bead design and minor improvements 
in nuclei handling. Briefly, barcoded hydrogel beads were produced 
as described previously but using 384 × 384 combinations of primers 
instead of the original method using 96 × 96 × 96 combinations, result-
ing in a barcode sequence of 30 bp instead of 50 bp. One million PBMCs 
were counted, pelleted and resuspended in 200 µl of ATAC Lysis Buffer 
(1% BSA, 10 mM Tris-HCl (pH 7.5), 10 mM NaCl, 0.1% Tween 20, 0.1% 
NP-40, 3 mM MgCl2, 70 µM Pitstop in DMSO and 0.01% digitonin) for 
5 min on ice. One milliliter of ATAC Nuclei Wash Buffer (1% BSA, 10 mM 
Tris-HCl (pH 7.5), 0.1% Tween 20, 10 mM NaCl and 3 mM MgCl2) was 
added, and nuclei were pelleted at 500g at 4 °C for 5 min. The result-
ing pellet was resuspended in 100 µl of ice-cold PBS and filtered with 
a 40-µm strainer (Flowmi); 25,000 PBMC nuclei were resuspended in 
25 µl of ATAC Reaction Mix (10% dimethylformamide, 10% Tris-HCl (pH 
7.4), 5 mM MgCl2, 5 ng µl–1 Tn5, 70 µM Pitstop in DMSO, 0.1% Tween 20 
and 0.01% digitonin) and incubated at 37 °C for 1 h without shaking. To 
recover a target of 3,000 nuclei, 5,625 tagmented nuclei were added to 
48 µl of PCR mix (1.3× Phusion HF buffer, 15% OptiPrep, 1.3 mM dNTPs, 
39 mM DTT, 0.065 U µl–1 Phusion HF polymerase, 0.065 U µl–1 Deep Vent 
polymerase and 0.013 U µl–1 ET SSB). PCR mix was coencapsulated with 
35 µl of freshly thawed HyDrop ATAC beads in hydrofluoroether 7500 
Novac oil with EA-008 surfactant (RAN Biotech) on an Onyx microfluid-
ics platform (Droplet Genomics). The resulting emulsion was collected 
in aliquots of 25 µl in total volume and thermocycled according to 
the linear amplification program (72 °C for 15 min; 98 °C for 3 min; 12 
amplification cycles of 98 °C for 10 s, 63 °C for 30 s and 72 °C for 1 min 
and a final hold at 4 °C). One hundred and twenty-five microliters of 
Recovery Agent (20% perfluorooctanol in hydrofluoroether 7500), 
55 µl of guanidinium thiocyanate buffer (5 M guanidinium thiocyanate, 
25 mM EDTA and 50 mM Tris-HCl (pH 7.4)) and 5 µl of 1 M DTT were 
added to each separate aliquot of 50 µl of thermocycled emulsion and 
incubated on ice for 5 min. Five microliters of Dynabeads was added to 
the aqueous phase and incubated for 10 min. Dynabeads were pelleted 
on a neodymium magnet and washed twice with 80% ethanol. Elution 
was performed in 50 µl of elution buffer (10 mM Tris-HCl, pH 8.5) sup-
plemented with 10 mM DTT and 0.1% Tween 20. A 1× Ampure bead 
purification was performed according to manufacturer’s recommenda-
tions. Elution was performed in 30 µl of elution buffer supplemented 

with 10 mM DTT. Eluted library was further amplified in 100 µl of PCR 
mix (1× KAPA HiFi, 1 µM index i7 primer and 1 µM index i5 primer). The 
final library was purified in a 0.4–1.2× double-sided Ampure purifica-
tion, eluted in 25 µl of elution buffer supplemented with 10 mM DTT 
and quality controlled on an Agilent Bioanalyzer high-sensitivity chip 
(Agilent Technologies).

Samples Hy V1, Hy V2 and Hy E1–Hy E4 were loaded at 750 pM on 
a NextSeq 2000 using a NextSeq 2000 P2 kit (100 cycles; 20046811, 
Illumina), and sequencing was performed using the following read 
protocol: 49 cycles (read 1), 10 cycles (i7 index read), 31 cycles (i5 index 
read) and 48 cycles (read 2). Samples Hy C1–Hy C3 were sequenced on 
a NovaSeq 6000 using the same parameters.

s3-ATAC (short identifiers s3 O1 and s3 O2). Samples s3 O1 and 
s3 O2 were generated on different days according to the following 
protocol. Only sample s3 O1 was performed on the reference PBMC 
sample of two donors. The PBMC pellet was thawed and suspended 
in NIB-HEPES (pH 7.2; 10 mM HEPES-KOH (BP310-500 (Fisher Scien-
tific) and 1050121000 (Sigma-Aldrich), respectively), 10 mM NaCl, 
3 mM MgCl2 (Fisher Scientific, AC223210010), 0.1% (vol/vol) IGEPAL 
CA-630 (Sigma-Aldrich, I3021) and 0.1% (vol/vol) Tween (Sigma-Aldrich, 
P-7949)) before Dounce homogenization. s3-ATAC was then performed 
as described previously13. Two plates were prepared for a total of 2,880 
nuclei per sample. Briefly, nuclei were flow sorted via a Sony SH800 to 
remove debris and attain an accurate count per well before PCR in 1× 
TD buffer. Immediately following sorting completion, the plate was 
sealed and centrifuged for 5 min at 500g and 4 °C to ensure that nuclei 
were within the buffer. Nucleosomes and remaining transposases were 
then denatured with the addition of 1 µl of 0.1% SDS (roughly 0.01% final 
concentration) per well. Then, 4 µl of NPM (Nextera XT kit, Illumina) 
per well was subsequently added to perform gap-fill on tagmented 
genomic DNA, with an incubation at 72 °C for 10 min. Next, 1.5 µl of 
1 µM A14-LNA-ME oligonucleotides was added to supply the template 
for adapter switching. The polymerase-based adapter switching was 
then performed under the following conditions: initial denaturation 
at 98 °C for 30 s and ten cycles of 98 °C for 10 s, 59 °C for 20 s and 72 °C 
for 10 s. The plate was then held at 10 °C. After adapter switching, 1% 
(vol/vol) Triton X-100 in ultrapure water (Sigma, 93426) was added to 
quench persisting SDS. The following was then combined per well for 
PCR: 16.5 µl of sample, 2.5 µl of indexed i7 primer at 10 µM, 2.5 µl of 
indexed i5 primer at 10 µM, 3 µl of ultrapure water, 25 µl of NEBNext 
Q5U 2× master mix (New England Biolabs, M0597S) and 0.5 µl of 100× 
SYBR Green I (Thermo Scientific, S7563) for a total of 50 µl of reaction 
per well. Real-time PCR was performed on a Bio-Rad CFX under the 
following conditions measuring SYBR fluorescence every cycle: 98 °C 
for 30 s and 16–18 cycles of 98 °C for 10 s, 55 °C for 20 s and 72 °C for 
30 s, fluorescent reading and 72 °C for 10 s. After fluorescence passed 
an exponential growth and began to inflect, the samples were held at 
72 °C for another 30 s and stored at 4 °C. Amplified libraries were then 
cleaned by pooling 25 µl per well into a 15-ml conical tube and cleaning 
via a QIAquick PCR purification column following the manufacturer’s 
protocol (Qiagen, 28106). The pooled sample was eluted in 50 µl of 
10 mM Tris-HCl (pH 8.0). Library molecules then went through size 
selection via SPRI selection beads (Mag-Bind TotalPure NGS Omega 
Biotek, M1378-01). Next, 50 µl of vortexed and fully suspended room 
temperature SPRI beads was combined with the 50-µl library (one 
cleanup) and incubated at room temperature for 5 min. The reaction 
was then placed on a magnetic rack, and, once cleared, the supernatant 
was removed. The remaining pellet was rinsed twice with 100 µl of fresh 
80% ethanol. After the ethanol was pipetted out, the tube was spun 
down and placed back on the magnetic rack to remove any lingering 
ethanol. Next, 31 µl of 10 mM Tris-HCl (pH 8.0) was used to resuspend 
the beads off the magnetic rack, followed by an incubation for 5 min 
at room temperature. The tube was again placed on the magnetic 
rack, and, once cleared, the full volume of supernatant was moved 
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to a clean tube. DNA was then quantified by Qubit double-stranded 
DNA high-sensitivity assay following the manufacturer’s instructions 
(Thermo Fisher, Q32851). Libraries were diluted to 2 ng µl−1 and run on 
an Agilent Tapestation 4150 D5000 tape (Agilent, 5067-5592). Library 
molecule concentration within the range of 100 to 1,000 bp was then 
used for final library dilution of 1 nM.

Samples s3 O1 and s3 O2 were sequenced on a NovaSeq S2 flow cell 
following the manufacturer’s recommendations (Illumina, 20028315) 
as paired-end libraries with 10 cycle index reads and 85 cycles (O1) or 
90 cycles (O2) for reads 1 and 2.

10x v1.1 control runs (short identifiers v1.1c C1 and v1.1c C2). Two 
additional control runs were performed on the same day as v1.1 C3. 
Control run v1.1c C1 was performed using the standard 10x nuclei 
extraction lysis buffer with the omission of NP-40 to simulate the 
whole-cell protocol used in Bio-Rad ddSEQ experiments. Control run 
v1.1c C2 was performed using the Dounce homogenization protocol 
as described in the s3-ATAC experiments but without FACS. Starting 
from permeabilized cells or Dounce-extracted nuclei, both control runs 
were performed exactly according to the standard 10x v1.1 protocol 
simultaneously with v1.1 C3.

Samples v1.1c C1 and v1.1c C2 were sequenced on a NovaSeq 6000 
with 50 cycles for read 1, 49 cycles for read 2, 8 cycles for index 1 and 
16 cycles for index 2.

10x scRNA-seq. Cryopreserved PBMCs were thawed as described 
above, and equal numbers of cells from each donor were mixed. The 
cell mix was partitioned into GEMs by using the Chromium Control-
ler system (10x Genomics), with a target recovery of 5,000 total cells. 
We generated three technical replicates by loading three channels of 
Chip G with the same cell mix. cDNA sequencing libraries were pre-
pared using the Next GEM Single Cell 3′ reagent kit v3.1 (10x Genomics, 
PN-1000268), following the manufacturer’s instructions. Briefly, after 
GEM-RT cleanup, cDNA was amplified during 12 cycles, and cDNA qual-
ity control and quantification were performed on an Agilent Bioana-
lyzer high-sensitivity chip (Agilent Technologies). cDNA libraries were 
indexed by PCR using the PN-220103 Chromium i7 Sample Index Plate. 
Size distribution and concentration of 3′ cDNA libraries were verified 
on an Agilent Bioanalyzer high-sensitivity chip (Agilent Technologies).

Sequencing of cDNA libraries was performed on an Illumina 
NovaSeq 6000 using the following sequencing conditions to obtain 
approximately 40,000 reads per cell: 28 bp (read 1), 8 bp (i7 index), 
0 bp (i5 index) and 89 bp (read 2).

Data preprocessing
Unified scATAC-seq data analysis pipeline (PUMATAC). We devel-
oped PUMATAC, a unified Nextflow v21.04.3 (ref. 29) pipeline, to align 
samples from multiple technologies to the reference genome and write 
fragments files from these reference genome alignments (https://
github.com/aertslab/PUMATAC). The steps implemented in PUMATAC 
are described briefly in the text below and in detail with examples at 
https://github.com/aertslab/scATAC-seq_benchmark. All code neces-
sary to reproduce our analyses and graphics is present in notebooks 
in this repository.

Barcode correction and FASTQ processing (singlecelltoolkit in 
PUMATAC). Each barcode was compared to the whitelist barcodes 
and kept (with bam tag ‘CB’) if it was a perfect match or if changing 
any of the bases by 1 bp resulted in a match (Hamming distance of 1). 
Barcodes that were unable to be corrected were retained with the ‘CR’ 
bam tag. The barcode tag information, including the original barcode 
quality scores (‘CY’), was added to the comments field in each of the 
two paired-end FASTQ files. Adapter trimming was then performed 
using TrimGalore (version 0.6.6)30 with the ‘–paired’ option, which in 
turn runs Cutadapt31.

Reference genome alignment and fragments writing (bwa-mem 
in PUMATAC). We first aligned full sequencing datasets of all samples 
to the GRCh38 or mm10 reference genome using PUMATAC. We then 
filtered cells (described later) and downsampled all sequencing data 
to a common sequencing depth of 40,796 reads per cell and realigned 
these downsampled FASTQ files. In PUMATAC, alignment was per-
formed using bwa-mem2 (v2.2.1)32 with the ‘mem’ method and default 
mapping parameters. The ‘-C’ option was used to copy the barcode tag 
information from the FASTQ file to the resulting bam file. Read group 
information was taken from the FASTQ name field in the first line of each 
input file and added with the ‘-R’ option in bwa-mem2. The ‘fixmate’ 
tool from SAMtools (version 1.12)33 was used to add mate coordinates 
and insert sizes to the file. Reads were aligned to the GRCh38 reference 
for the PBMC samples and to mm10 for mouse public data. From the 
resulting aligned reads in .bam format, fragments were written in the 
bed-like fragments.tsv.gz format using a combination of SAMtools34 
and AWK, according to the base pair shift rules described in the Cell-
Ranger manual (https://support.10xgenomics.com/single-cell-atac/ 
software/pipelines/latest/output/fragments).

Barcode multiplet detection (barcard in PUMATAC). For each sam-
ple, we detected barcode multiplets using barcard, our own reimple-
mentation of bap (https://github.com/caleblareau/bap). Similar to 
bap, barcard subsets fragments files to barcodes associated with at 
least 1,000 unique fragments. For each remaining barcode, the number 
of unique fragments that share their beginning and end coordinates 
between the two barcodes divided by the total number of barcodes 
found in both barcodes combined is calculated with every other bar-
code. The Jaccard indices for these barcode pairs are then ranked and 
thresholded using Otsu’s algorithm to identify barcode multiplets. 
Following the identification of barcode multiplets in each sample, a 
new tag (‘DB’) was added to the bam file to represent droplet barcodes. 
This tag contained either the original corrected barcode from the CB 
tag (in the case of singlets) or an underscore-separated concatenation 
of each corrected barcode that forms the multiplet. This step, and oth-
ers, was parallelized using GNU Parallel35. Similarly, fragments.tsv.gz 
files were rewritten to merge detected barcode multiplets. While this 
step is only necessary for Bio-Rad ddSEQ samples, we detected and 
merged multiplets in all samples.

PUMATAC validation using CellRanger. We realigned all 10x v1, v1.1, 
v2 and multiome data using CellRanger-arc. We then subset fragments 
files generated by CellRanger and PUMATAC on barcodes identified as 
cell barcodes. For each pair of barcodes, we then calculated the num-
ber of unique fragments that were attributed to that barcode by both 
CellRanger and PUMATAC based on beginning and ending coordinates. 
The Jaccard index was calculated based on this number.

Downstream analyses. Starting from the fragments files generated 
by PUMATAC and merged using barcard, we then performed further 
analyses such as clustering, cell-type annotation, differential region 
calling and transcription factor motif analysis using a combination of 
bioinformatics packages.

Single-cell-level quality control and barcode filtering (pycisTopic). 
We used the Python implementation of cisTopic16 (pycisTopic; https://
github.com/aertslab/pycisTopic) to collect single-cell-level quality con-
trol statistics and filter barcodes starting from the PUMATAC fragments 
files. For quality control purposes, we considered all barcodes with at 
least ten unique fragments. We used the GRCh38 or mm10 BioMart36 
gene annotation to calculate TSS enrichment. We followed the current 
ENCODE recommendations in calculating TSS enrichment by examin-
ing read depth in a 2,000-bp window on each side of the TSS (https://
www.encodeproject.org/data-standards/terms/#enrichment). Cells 
were then filtered from barcodes using Otsu algorithm-defined 
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thresholds on TSS enrichment and number of unique fragments per 
cell. In the first pass, we counted fragments in SCREEN regions18. This 
count matrix was then used to annotate cells with known cell types, 
after which consensus peaks could be called over all cell types present 
(see later). We then used this consensus peak set to recount the frag-
ments and perform further downstream analyses in the second pass.

Donor identification (Freemuxlet in VSN/PUMATAC). We used Free-
muxlet to identify barcodes belonging to each of the two mixed indi-
viduals in each sample and simultaneously identify doublets on the 
basis of barcodes with mixed genotypes. We first ran a prefiltering step 
to filter the bam file for only the selected cells after the initial quality 
control. We then used the popscle suite of tools (https://github.com/ 
statgen/popscle), first ‘dsc-pileup’ to quantify reads overlapping known 
variants and then Freemuxlet to call sample and doublet identity in each 
barcode. Freemuxlet requires a list of known variants in the genome 
along with their allele frequencies. To obtain this, we used the 1000 
Genomes Phase 3 dataset37 and applied filtering steps to keep only SNPs 
with a minor allele frequency of at least 10%. This step was automated 
using VSN/PUMATAC14.

Doublet identification (Scrublet). We used the Python implementa-
tion of Scrublet19 to identify doublets among the barcodes selected 
based on the fragments/regions count matrix during the initial quality 
control steps. Doublet thresholds for each sample were set manually, 
and doublets were removed for downstream analysis.

Sequencing depth downsampling (seqtk). After the initial quality 
control steps to select cells, we identified the sample with the fewest 
number of reads per cell and used this sample as the reference to which 
the others were downsampled. After identifying the target number of 
reads per cell in the reference sample (ddS Bi3, with 40,796 reads per 
cell), each of the FASTQ files for the other samples were downsampled 
to that depth. Downsampling was performed with seqtk (https://github.
com/lh3/seqtk, version 1.3-r106). The seed parameter (‘-s’) was set to 
the same value for all files to ensure that the reads remained paired 
across the paired-end and barcode files. Following downsampling 
of each FASTQ file, the mapping procedure was repeated to produce 
new downsampled fragments and bam files. This was repeated for 
35,000, 30,000, 25,000, 20,000, 15,000, 10,000 and 5,000 reads per 
cell, and these FASTQ files were further processed as described earlier  
and later.

Cell-type identification (Seurat). Label transfer was performed using 
an annotated PBMC reference dataset21 consisting of nine independent 
technology types and batches. We used Seurat (v4.0.3) to perform the 
label transfer steps in an R (v4.1.0) environment. Label transfer was 
performed using methods outlined in the Seurat vignettes and asso-
ciated22. In brief, each of the nine already annotated PBMC reference 
datasets was compared pairwise to find cells that serve as anchors 
between them and then used to generate an integrated reference that 
minimized technical differences.

For the scATAC-seq data, we used this integrated PBMC reference 
to predict cell types. A gene activity matrix was first estimated, and 
label transfer was performed by assigning query cells based on the 
local neighborhood around each anchor in the integrated reference, 
with the highest scoring cell type being assigned. Following prediction 
of the scATAC-seq cell types, we refined these classifications by using 
the clusters identified in the scATAC-seq data. Clustering was first 
performed on cells with the Leiden algorithm using a high resolution to 
generate many fine-grained clusters. For each cluster, we then assigned 
a consensus cell-type identity to the entire cluster based on the majority 
cell type identified by label transfer. In this way, the ATAC-based clusters 
were labeled with the most likely cell type, while peak information was 
retained for later analysis. Where multiple clusters existed for one cell 

type, these were merged and used to generate cell-type-specific peak 
sets in downstream steps.

Two-pass dimensionality reduction (pycisTopic). Fragments were 
first counted in ENCODE SCREEN regions to generate a preliminary 
count matrix. This count matrix was used to filter cells based on TSS 
enrichment and number of unique fragments. The SCREEN regions 
count matrix was then used to train cisTopic’s latent Dirichlet allocation 
models, and the model with an optimal number of topics was selected 
as described in ref. 16. Based on Seurat cell-type identification and 
high-resolution Leiden clustering, a consensus cell type was assigned 
to each cell. Cell-type-specific peaks (see later) were called based on 
these consensus cell types and aggregated into a new consensus peak 
set. The fragments were recounted in this new peak set to generate a 
consensus peak count matrix. This count matrix was used to retrain 
cisTopic’s latent Dirichlet allocation models, and an optimal model 
was chosen for the second pass and used to reduce the dimensionality 
of the data.

Consensus peak calling (pycisTopic). In pyCisTopic, the ‘export_
pseudobulk’ function was used to create cell-type-specific fragments 
and bigwig files using the consensus cell types. These were in turn 
used to generate cell-type-specific consensus peaks for each sample 
by recalling the subset of cells with MACS2 (ref. 23). Peak calling for 
quality control purposes was performed using MACS2 with settings 
specific to ATAC-seq experiments (‘genome_size = hs’, ‘shift = 73’, 
‘ext_size = 146’ and ‘q_value = 0.01’). We used ‘Version 2’ of the ENCODE 
candidate cis-Regulatory Elements with blacklisted regions removed38 
(Supplementary Fig. 1b). These regions were used after the quality 
control steps to create the cisTopic object, perform the first-pass 
clustering and obtain consensus peaks. Duplicate rates were calcu-
lated for each barcode by dividing the number of unique fragments 
by the total.

Cell-type-specific peak sets were generated for each sample. For 
each sample, the cell-type-specific peak sets were then merged into a 
final sample-specific consensus set. Each sample’s FRIP was calculated 
using these final consensus peaks. The consensus sets of all 47 samples 
were then merged into one master set, in which all data were counted 
to form the merged datasets.

Region overlap calculation (HOMER). The mergePeaks function of 
the HOMER suite (v4.11)39 with default parameters (adding -d given 
-venn options) was used to find overlap between several region sets, 
notably the overlap between consensus DARs and peaks recovered in 
the merged cell-type fair set and in the individual cell-type fair sets.

DAR calling (pycisTopic). A Wilcoxon rank-sum test was used to calcu-
late significance of enrichment of regions (fold change) between each 
specified contrast using cisTopic’s imputed region accessibility based 
on cell topic and topic region probabilities. We contrasted cell types 
(type 1 versus all), technologies (cells from cell type 1 from technique 
A versus cells from cell type 1 from technique B) and donors (cells from 
cell type 1 from donor A versus cells from cell type 1 from donor B). 
Because high-quality samples produce many DARs that can skew the 
distribution of DAR enrichment scores to lower numbers, we chose to 
show the distributions of the top 2,000 DARs for each cell type contrast 
and the top 200 for male–female contrasts. For cell-type contrasts, 
differential accessibility was thresholded at a minimum of 1.5× fold 
change enrichment. For male/female contrasts, a minimum threshold 
of 1.2× fold change enrichment was used.

Transcription factor motif enrichment analysis (cisTarget). 
Cell-type-specific and male/female-specific DARs were analyzed for 
transcription factor motif enrichment using cisTarget24,25 and standard 
parameters and settings for the human genome.
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Price calculation and sequencing saturation. We calculated the 
price of a hypothetical 5,000-cell experiment based on US list prices 
for commercial methods and original manuscripts for open-source 
methods as follows. The 10x scATAC-seq v2 assay was quoted as $1,750 
for 48 Next Gem Chip H (1000161), $930 for 96 indices (1000212) and 
$24,300 for 16 Chromium Next GEM Single Cell ATAC v2 (1000390) 
for a weighted total of $1,565 per lane. For the 10x multiome assay, 
the price was $1,750 for 48 Next Gem Chip J (1000234), $930 for 96 
indices (1000215) and $44,760 for 16 Chromium Next GEM Single Cell 
Multiome ATAC + Gene Expression (1000283) for a weighted total of 
$2,843 per lane. For Bio-Rad ddSEQ SureCell ATAC, the price was $8,800 
for a complete SureCell ATAC-Seq library prep kit (17004620), which 
accommodates eight samples. For s3-ATAC, the cost per plate is ~$200, 
and each plate can accommodate 1,440 cells. For HyDrop, the cost per 
run is ~$100 and can recover 8,000–10,000 cells.

Bio-Rad ddSEQ reports a doublet rate of 3.76% at a recovery of 
5,000 cells (https://www.bio-rad.com/sites/default/files/webroot/
web/pdf/lsr/literature/ATAC-Seq_Poster.pdf). 10x Chromium sup-
ports a recovery of up to 10,000 cells but at a doublet rate of 8%. At 
an expected doublet rate of 4%, 5,000 cells can be recovered (https://
kb.10xgenomics.com/hc/en-us/articles/360001378811-What-is-the-m
aximum-number-of-cells-that-can-be-profiled-). HyDrop reports 6% 
doublets on 8,000 recovered cells 12. These three microfluidic methods 
use the same microfluidic concepts to encapsulate single cells, and 
doublet rates are similar when correcting for the number of cells recov-
ered. We therefore reasoned that the most fair comparison would be 
to assume a recovery of 5,000 cells per 10x and ddSEQ lane or HyDrop 
run. For s3-ATAC, we assumed 1,440 cells per plate, for a total of 5,760 
cells across four plates in s3-ATAC.

Full sequencing depth fragments files were subset to filtered cell 
barcodes (before doublet filtering and minimum TSS enrichment 
threshold, that is, only filtered by Otsu thresholding on minimum 
number of reads). We then subsampled these fragments files using a 
range of fractions and fitted a Michaelis–Menten kinetic model on the 
resulting duplication rate by the number of reads per cell. We defined 
the saturation sequencing depth at which each technology is expected 
to reach 50% duplicate fragments after sequencing.

scRNA-seq analysis (scanpy). After aligning scRNA-seq data to the 
reference genome using CellRanger or CellRanger-arc, scanpy40 was 
used to calculate single-cell quality control metrics for each sample. 
True cells were filtered from noise using Otsu-derived cutoffs on mini-
mum number of UMIs.

Public mouse brain data reanalysis. Public mouse scATAC-seq 
data were downloaded from the following sources: 10x Genomics 
scATAC-seq v1.0 on Chromium (https://s3-us-west-2.amazonaws.
com/10x.files/samples/cell-atac/1.2.0/atac_v1_adult_brain_fresh_5k/
atac_v1_adult_brain_fresh_5k_fastqs.tar), 10x Genomics scATAC-seq 
v1.1 on Chromium (https://s3-us-west-2.amazonaws.com/10x.files/
samples/cell-atac/2.1.0/8k_mouse_cortex_ATACv1p1_nextgem_
Chromium_X/8k_mouse_cortex_ATACv1p1_nextgem_Chromium_X_
fastqs.tar), 10x Genomics scATAC-seq v2 on Chromium X (https://
s3-us-west-2.amazonaws.com/10x.files/samples/cell-atac/2.1.0/8k_
mouse_cortex_ATACv2_nextgem_Chromium_X/8k_mouse_cortex_
ATACv2_nextgem_Chromium_X_fastqs.tar), 10x Genomics scATAC-seq 
v2 on Chromium (https://s3-us-west-2.amazonaws.com/10x.files/
samples/cell-atac/2.1.0/8k_mouse_cortex_ATACv2_nextgem_Chro-
mium_Controller/8k_mouse_cortex_ATACv2_nextgem_Chromium_
Controller_fastqs.tar), 10x Genomics Multiome ATAC (https://
s3-us-west-2.amazonaws.com/10x.files/samples/cell-arc/2.0.0/
e18_mouse_brain_fresh_5k/e18_mouse_brain_fresh_5k_fastqs.tar), 
Bio-Rad ddSEQ (SRA accession number SRR14494477), s3-ATAC (SRA 
accession number SRX10841853) and HyDrop (SRA accession number 
PRJNA733185).

These data were reanalyzed in a similar manner as the PBMC 
datasets. Briefly, cells were filtered from noise as described above. All 
datasets were then downsampled to the highest common depth and 
further intervals of 5,000 reads per cell. These downsampled sets were 
realigned to the mm10 reference genome using PUMATAC and counted 
in the SCREEN regions. Cells were clustered, and per cluster peaks were 
called and aggregated into a consensus peak set per sample. Datasets 
were recounted in these consensus peak sets to produce the quality 
metrics shown in our manuscript.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Single-cell ATAC accessibility and gene expression data can be viewed 
at https://scope.aertslab.org/#/scATAC-seq_Benchmark/scATAC- 
seq_Benchmark. Single-cell ATAC coverage bigwigs and DAR/peak  
BEDs can be downloaded at https://ucsctracks.aertslab.org/papers/ 
scatac_benchmark/ and viewed using University of California Santa  
Cruz’s custom track hub. Sequencing data, fragments files and count  
matrices are freely available at Gene Expression Omnibus under acces-
sion number GSE194028 (ref. 41). Summary quality metrics for all sam-
ples can be found in Supplementary Table 1. Source data are provided 
with this paper.

Code availability
All data analysis scripts can be found at https://github.com/aertslab/ 
scATAC-seq_benchmark ref. 42. PUMATAC can be found at https:// 
github.com/aertslab/PUMATAC.
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Extended Data Fig. 1 | Games-Howell heatmaps of several quality control 
metrics. Diagonal shows mean values across samples from each technology. 
Upper triangle shows pairwise differences between means. Lower triangle 
indicates significance of expected pairwise differences. mt* indicates FAC sorting 
for these mtscATAC-seq samples. a, % of all reads with Phred mapping quality 
score >= 30. b, Fraction of barcodes being the result of a Jaccard merging event 
(= being a barcode multiplet). c, Fraction of fragments aligned to mitochondrial 

genome. Figures d-g are cell-level statistics, meaning first a median is taken 
within each sample’s cells, and these medians are compared between techniques. 
d, Median unique fragments in peaks, in cells (x1000). e, Median fraction of reads 
in peaks in cells. f, Median TSS enrichments of reads within cells. g, Median Seurat 
scores across cells. h, Median fragment length in fragments files. i, Total number 
of doublets (both Freemuxlet + Scrublet-identified) filtered out, expressed as a 
fraction of total cells before doublet filtering.
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Extended Data Fig. 2 | Individual TSS enrichment and Unique number of fragments distributions for each sample. Thresholds on both axes calculated using 
Otsu’s algorithm. Barcodes meeting both thresholds (upper right quadrant) are identified as cells in further analysis.
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Extended Data Fig. 3 | tSNE of full, non-downsampled data. Datapoints were 
randomly shuffled before plotting. a, Non-harmony-corrected tSNE of non-
downsampled data, colored by technology of origin, cell type and donor identity. 

b, Harmony-corrected (by technology, considering 10x v1, 1.1, 2 as a single 
technology) tSNE of non-downsampled data, colored by technology of origin, 
cell type and donor identity.
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Extended Data Fig. 4 | Cell-type fair subsetting and peak/DAR calculation. a, Diagram showing cell-type fair subsetting strategy. b, Heatmap showing the fraction 
of cell-type-fair peaks recovered by the individual technologies’ subsets, separated by cell type. c, Heatmap showing the fraction of cell-type-fair DARs recovered by 
the individual technologies’ subsets, separated by cell type.
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Extended Data Fig. 5 | 10x multiome RNA performance. a, Knee plots of 
RNA component of 10x multiome samples. Minimum UMI thresholds were 
automatically defined using Otsu’s algorithm. b, Scatterplots of number of genes 

versus unique fragments in peaks detected in the same multiome cells. c, Venn 
diagrams showing overlap between cell barcodes identified as cells based on 
ATAC or RNA components.
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Extended Data Fig. 6 | Threshold prediction curves for Seurat label transfer scores. a, Lineplots showing fraction of reads passing the threshold with increasing 
thresholds. Area under curve (AUC) values for each cell type in figure legends. b, Lineplot showing label transfer agreement between RNA and ATAC modalities of 10x 
Multiome samples on y axis, and Seurat scores in the ATAC cell.
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Extended Data Fig. 7 | Effect of sequencing depth on cell type annotation and 
DAR calling. For these figures, all samples were downsampled to 35k, 30k, … 
reads per cell, and de-novo annotated with Seurat. a, Dependency of Seurat label 

transfer scores on sequencing depth. b, Dependency of number of DARs detected 
in each cell type on sequencing depth. c, Dependency of mean fold-change 
enrichment of top 2000 DARs detected in each cell type on sequencing depth.
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Extended Data Fig. 8 | Effect of number of cells on cell type annotation and 
DAR calling. For these figures, all samples with at least 2,500 cells were  
subset to 2,500, 2,000, … random cells, and de-novo annotated with Seurat.  
a, Dependency of Seurat label transfer scores on total number of cells.  

b, Dependency of number of DARs detected in each cell type on total number of 
cells. c, Dependency of mean log2 fold-change enrichment of top 2,000 DARs 
detected in each cell type on total number of cells.
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Extended Data Fig. 9 | Public mouse cortex data reanalysis statistics. a, TSS enrichment and unique number of fragments distributions for public mouse datasets 
reanalysed using PUMATAC. b, Dependency of basic quality metrics on sequencing depth across techniques.
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Extended Data Fig. 10 | Duplication rate in fragments files. X-axis shows the number of reads per cell (thousands), y-axis shows the percentage of fragments in cells 
that are duplicates. Red dots indicate data points sampled from fragments files, black lines are a fitted Michaelis-Menten curve. Red line indicates a 50% duplicate rate.
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