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1. Introduction

Among the currently available frameworks, superstring theory appears to have the greatest

prospects for yielding a unified description of nature. Optimistically one may hope to

identify a string compactification that reproduces all observations. The perhaps simplest

way to obtain a chiral spectrum in four dimensions, as required by observation, is to

compactify on an orbifold [1, 2]. Although it is straightforward to compute orbifold spectra,

a deep understanding of these constructions, including an interpretation of the zero-modes,

is harder to obtain. Obstructions arise from the large number of possible gauge embeddings

and geometries, as well as other degrees of freedom. The classification of gauge embeddings

has been accomplished only in prime orbifolds. The generalization to ZN × ZM orbifolds

with or without Wilson lines has not been discussed in the literature so far. ZN × ZM

orbifolds are particularly rich as they can be generalized by turning on certain phases

which are known as discrete torsion [3 – 7].

Aiming at a systematic understanding of heterotic ZN × ZM orbifolds, we set out to

survey the possibilities arising in these constructions. In the course of our investigations
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we obtain rather surprising results. First of all, discrete torsion can be ‘gauged away’ in

the sense that models with discrete torsion have an alternative description in terms of

torsionless models. Moreover, we shall see that the so-called ‘non-factorizable’ orbifolds

are equivalent to factorizable orbifolds with (generalized) discrete torsion or different gauge

embedding.

This paper is organized as follows. In section 2 we collect some basic facts on the

construction of ZN × ZM orbifold models. We encourage readers who are familiar with

the construction of orbifolds to skip this section. In section 3, we establish the equivalence

between switching on a discrete torsion phase and changing the gauge embedding by el-

ements of the weight lattice. Section 4 is devoted to the generalization to orbifolds with

Wilson lines. In section 5 we outline a prescription for a classification of ZN ×ZM orbifold

models. Finally, section 6 contains a discussion of our results. Some issues concerning the

transformation phases are discussed in the appendix.

2. ZN × ZM orbifold compactifications

2.1 Setup

Let us start by reviewing some basic facts on orbifold compactifications [2]. To construct

an orbifold, one first considers a d-dimensional torus Td, which can be understood as Rd/Γ,

i.e. as the d-dimensional space with points differing by lattice vectors eα ∈ Γ identified. In

this study we will take d = 6 in order to arrive at an effective four-dimensional theory at low

energies. If the torus lattice enjoys one or more discrete rotational symmetries comprising

the point group P , one can define an orbifold as the quotient O = T6/P . Equivalently one

can describe the orbifold by O =
R6

S
, (2.1)

where S is the space group. Space group elements consist of discrete rotations and transla-

tions by lattice vectors eα. We will be mostly interested in ZN ×ZM orbifolds, in which the

torus lattice has two discrete rotational symmetries described by the independent twists θ

and ω, whereby θN = ωM = 1 and N is a multiple of M . Space group elements g ∈ S are

then given by g = (θk1 ωk2, nα eα) where 0 ≤ k1 ≤ N − 1, 0 ≤ k2 ≤ M − 1 and nα ∈ Z.

Further, we restrict our analysis to models with SU(3) holonomy, where the rotations can

be diagonalized,

θ zi = exp(2πi vi
1) zi and ω zi = exp(2πi vi

2) zi , (2.2)

with z1,2,3 being the complex coordinates of the compact space, and
∑

i vi
1,2 = 0. Unless

stated otherwise, we use

v1 =
1

N
(1, 0,−1; 0) and v2 =

1

M
(0, 1,−1; 0) . (2.3)

The space group action is to be embedded in the gauge degrees of freedom according

to

g = (θk1 ωk2, nα eα) →֒ (1, Vg) Vg = k1 V1 + k2 V2 + nα Aα , (2.4)

– 2 –
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where V1, V2 are the shifts, Aα are the Wilson lines, and Vg denotes the local shift cor-

responding to the twist vg = k1v1 + k2v2. Due to the embedding, they have to be of

appropriate orders:

N V1 ∈ Λ , M V2 ∈ Λ , Nα Aα ∈ Λ . (2.5)

Here Λ is the E8 × E8 or Spin(32)/Z2 weight lattice,1 and Nα denotes the order of the

Wilson line Aα, which is constrained by geometry.

Modular invariance of one-loop amplitudes imposes strong conditions on the shifts and

Wilson lines. In ZN orbifolds, the shift V and the twist v must fulfill [2, 3]:

N
(
V 2 − v2

)
= 0 mod 2 . (2.6)

In ZN × ZM orbifolds with Wilson lines, modular invariance, together with consistency

requirements (see appendix A), requires

N
(
V 2

1 − v2
1

)
= 0 mod 2 , (2.7a)

M
(
V 2

2 − v2
2

)
= 0 mod 2 , (2.7b)

M (V1 · V2 − v1 · v2) = 0 mod 2 , (2.7c)

Nα (Aα · Vi) = 0 mod 2 , (2.7d)

Nα

(
A2

α

)
= 0 mod 2 , (2.7e)

Qαβ (Aα · Aβ) = 0 mod 2 (α 6= β) , (2.7f)

where Qαβ ≡ gcd(Nα, Nβ) denotes the greatest common divisor of Nα and Nβ.

2.2 Spectrum

Given a compactification lattice, the discrete rotations described by v1,2, shifts and Wilson

lines, there exists a standard procedure to calculate the massless spectrum (cf. [8 – 13]).

The Hilbert space decomposes in untwisted and various twisted sectors, denoted by U and

T(k1,k2,nα), respectively. The gauge group after compactification is generated by the 16

Cartan generators plus roots p ∈ Λ (p2 = 2) fulfilling

p · Vi = 0 mod 1 ∀i , p · Aα = 0 mod 1 ∀α . (2.8)

Chiral untwisted sector states are described by p ∈ Λ and q ∈ ΛSO(8) (q2 = 1) satisfying

p · Vi − q · vi = 0 mod 1 , i ∈ 1, 2 , (2.9a)

q · vi 6= 0 , i = 1 and/or 2 , (2.9b)

p · Aα = 0 mod 1 ∀α . (2.9c)

Twisted sector zero modes are associated to the inequivalent ‘constructing elements’ g =

(θk1ωk2, nαeα) ∈ S, corresponding to the inequivalent fixed points and fixed planes. For

1Since these lattices are self-dual, we denote the root and weight lattice by the same symbol.
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each such g one solves the mass equations

1

8
m2

L =
1

2
p2
sh − 1 + ωi Ñg,i + ωi Ñ

∗
g,i + δc

!
= 0 , (2.10a)

1

8
m2

R =
1

2
q2
sh − 1

2
+ δc

!
= 0 , (2.10b)

with the shifted momenta (p ∈ Λ, q ∈ ΛSO(8))

psh = p + Vg , (2.11a)

qsh = q + vg . (2.11b)

Here ωi = (vg)i mod 1 and ωi = −(vg)i mod 1, such that 0 < ωi, ωi ≤ 1. Moreover, Ñg,i

and Ñ∗
g,i are integer oscillator numbers. Finally, δc = 1

2

∑
i ωi (1 − ωi).

The states |qsh〉R⊗|psh〉L, where qsh and psh are solutions of the mass equations (2.10),

are subject to certain invariance conditions: commuting elements h = (θt1ωt2 ,mαeα), with

[g, h] = 0, have to act as the identity on physical states. This leads to the projection

condition

|qsh〉R ⊗ |psh〉L h7−→ Φ |qsh〉R ⊗ |psh〉L !
= |qsh〉R ⊗ |psh〉L . (2.12)

Here the transformation phase Φ is given by

Φ ≡ e2πi [psh·Vh−qsh·vh+( eNg− eN∗

g )·vh] Φvac , (2.13)

where (cf. appendix A)

Φvac = e2πi [− 1

2
(Vg ·Vh−vg·vh)] . (2.14)

Equation (2.12) states that the transformation phase Φ has to vanish, which will be im-

portant for the following discussion.

3. Brother models and discrete torsion

In this section we start by examining a new possibility to find inequivalent models. We

discuss under what circumstances models with shifts differing by lattice vectors have dif-

ferent spectra and are thus inequivalent. Then we review the concept of discrete torsion,

and clarify its relation to models in which shifts differ by lattice vectors.

3.1 Brother models

Let us start by clarifying under which conditions two models M and M′ are equivalent.

First, we restrict to the case without Wilson lines, where the models M and M′ are described

by the set of shifts (V1, V2) and (V ′
1 , V ′

2), respectively. Clearly, if the shifts are related by

Weyl reflections, i.e.

(V ′
1 , V ′

2) = (W V1,W V2) , (3.1)

where W represents a series of Weyl reflections, one does obtain equivalent models. Let us

now turn to comparing the spectra of two models M and M′, where

(V ′
1 , V ′

2) = (V1 + ∆V1, V2 + ∆V2) , (3.2)

– 4 –
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with ∆V1,∆V2 ∈ Λ. For future reference, we call models related by equation (3.2) ‘brother

models’.

Brother models are also subject to modular invariance constraints. For the sake of

keeping the expressions simple, we restrict here to models fulfilling the following (stronger)

conditions:

V 2
i − v2

i = 0 mod 2 (i = 1, 2) , (3.3a)

V1 · V2 − v1 · v2 = 0 mod 2 . (3.3b)

(In section 4 we will relax these conditions.) Equations (3.3) imply that Φvac = 1 in the

transformation phase (2.13). The condition that (V ′
1 , V ′

2) fulfill (3.3) leads to the following

constraints on (∆V1,∆V2):

Vi · ∆Vi = 0 mod 1 i = 1, 2 , (3.4a)

V1 · ∆V2 + ∆V1 · V2 + ∆V1 · ∆V2 = 0 mod 2 . (3.4b)

Consider now the massless spectrum corresponding to the constructing element

g = (θk1ωk2, nαeα) ∈ S (3.5)

of the models M and M′. For simplicity, we restrict our attention to non-oscillator states.

Physical states arise from tensoring together left- and right-moving solutions of the mass-

lessness condition equation (2.10),

|q + k1v1 + k2v2〉R ⊗ |p + k1V1 + k2V2〉L for M , (3.6)

|q + k1v1 + k2v2〉R ⊗ |p′ + k1V
′
1 + k2V

′
2〉L for M′ , (3.7)

where p′ = p−k1∆V1 −k2∆V2 and the shifted momenta of the left-movers are identical for

M and M′. According to equation (2.13) with Φvac = 1, these massless states transform

under the action of a commuting element

h = (θt1ωt2 ,mαeα) ∈ S with [h, g] = 0 (3.8)

with the phases

Φ = e2πi [(p+k1V1+k2V2)·(t1V1+t2V2)−(q+k1v1+k2v2)·(t1v1+t2v2)] for M ,

Φ′ = e2πi [(p′+k1V ′

1
+k2V ′

2
)·(t1V ′

1
+t2V ′

2
)−(q+k1v1+k2v2)·(t1v1+t2v2)] for M′ .

By using the constraints (3.4) and the properties of an integral lattice, p · ∆Vi ∈ Z for

p,∆Vi ∈ Λ, the mismatch between the phases can be simplified to

Φ′ = Φ e−2πi (k1t2−k2t1)V2·∆V1 . (3.9)

That is, the transformation phase of states in model M′ differs from the transformation

phase of states in model M by a relative phase

ε̃ = e−2πi(k1t2−k2t1)V2·∆V1 . (3.10)

– 5 –
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According to the nomenclature ‘brother models’, the relative phase ε̃ will be referred to as

‘brother phase’. It is straightforward to see that the same relative phase occurs for oscillator

states, and the derivation can be repeated for shifts satisfying (2.7) rather than (3.3),

yielding the same qualitative result.

The (brother) phase ε̃ has certain properties and the fact that it can be non-trivial

has important consequences. First of all, ε̃ depends on the definition of the model M′,

i.e. on the lattice vectors (∆V1,∆V2). Furthermore, it clearly depends on the constructing

element g and on the commuting element h,

ε̃ = ε̃(g, h) . (3.11)

It follows from the construction that the brother phase vanishes for g = (1, 0), i.e. for

the untwisted sector. Thus the gauge group and the untwisted sector coincide for brother

models. On the other hand, since the brother phase does not vanish in general, the brother

models M and M′ may have different twisted sectors, and therefore be inequivalent. This re-

sult extends also to the case where we subject the shifts only to the weaker constraints (2.7).

A Z3 × Z3 example. Let us now study an example to illustrate the results obtained so

far. Consider a Z3 × Z3 orbifold of E8 × E8 with standard embedding [9], i.e. model M is

defined by

V1 =
1

3

(
1, 0,−1, 05

) (
08

)
and V2 =

1

3

(
0, 1,−1, 05

) (
08

)
. (3.12)

The resulting model has an E6 × U(1)2 × E8 gauge group, 84 (27,1) and 243 non-abelian

singlets with non-zero U(1) charges.2 Now define the brother model M′ by

∆V1 =
(
0,−1, 0, 1, 04

) (
08

)
and ∆V2 =

(
1, 0, 0, 0, 1, 03

) (
08

)
, (3.13)

which fulfill the conditions (3.4). From equation (3.10) we find the following non-trivial

brother phase

ε̃(g, h) = ε̃(θk1ωk2, θt1ωt2) = e
2πi

3
(k1 t2−k2 t1). (3.14)

As expected, the gauge group and the untwisted matter of model M′ remain the same as

in model M. However, the twisted sectors get modified. The total number of generations

is reduced to 3 (27,1) and 27 (27,1). The number of singlets remains the same as before,

but their localization properties change.

Model M′ is not an unknown construction, but has been studied in the literature in

the context of Z3 × Z3 orbifolds with discrete torsion [4]. As we shall see, the brother

phase, equation (3.14), is nothing but the discrete torsion phase (equation (4) in ref. [4]).

To make this statement more precise, we briefly review discrete torsion in section 3.2, and

analyze its relation to the brother phase in section 3.3.

2There are three additional singlets |q〉R ⊗ eαi
−1|0〉L from the 10d SUGRA multiplet. All orbifold spectra

are computed using [14].
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3.2 Discrete torsion phase for ZN × ZM orbifolds

Let us start with a brief review of discrete torsion in orbifolds, following Vafa [3]. The

one-loop partition function Z for a ZN × ZM orbifold has the overall structure

Z =
∑

g,h
[g,h]=0

ε(g, h)Z(g, h) , (3.15)

where the sum runs over pairs of commuting space group elements g, h ∈ S and the ε(g, h)

are relative phases between the different terms in the partition function and thus between

the different sectors. Different assignments of phases lead, in general, to different orbifold

models.

Modular invariance strongly constrains the torsion phases [3]:

ε(g1g2, g3) = ε(g1, g3) ε(g2, g3) , (3.16a)

ε(g1, g2) = ε(g2, g1)
−1 . (3.16b)

Further, we use the convention

ε(g, g) = 1 . (3.16c)

At two-loop, the partition function allows to switch on analogous phases,

ε(g1, h1; g2, h2). From the requirement of factorizability of the two-loop partition func-

tion one infers [3]

ε(g1, h1; g2, h2) = ε(g1, h1) ε(g2, h2) . (3.16d)

Following the discussion of ref. [4], in orbifolds without Wilson lines g, h are chosen to

be elements of the point group P . In ZN orbifolds, due to this choice and equations (3.16)

the phases have to be trivial,

ε(g, h) = 1 ∀g, h ∈ P . (3.17)

Therefore, in the case of ZN orbifolds without Wilson lines, non-trivial discrete torsion

cannot be introduced.

In ZN × ZM orbifolds, still without Wilson lines, the situation is different because

there are independent pairs of elements (such that the first element is not a power of the

second) which commute with each other. If we take two point group elements g = θk1ωk2

and h = θt1ωt2 , the equations (3.16) determine the shape of the corresponding phase,

ε(g, h) = ε(θk1ωk2, θt1ωt2) = e
2πi m

M
(k1t2−k2t1) , (3.18)

where m ∈ Z [4]. In particular, there are only M inequivalent assignments of ε.

The most important consequence of non-trivial ε-phases for our discussion is that they

modify the boundary conditions for twisted states and thus change the twisted spectrum.

This can be seen from the transformation phase of equation (2.13), which is modified in

the presence of discrete torsion according to

Φ 7−→ ε(g, h)Φ . (3.19)

– 7 –
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model M
(V1, V2, ε = 1)

model M′

(V1, V2, ε 6= 1)
model M′

(V1+∆V1, V2+∆V2, ε = 1)≃
Figure 1: Models with non-trivial discrete torsion have an equivalent description as models with

trivial discrete torsion but a different gauge embedding.

3.3 Brother models versus discrete torsion

Let us now come back to the task of establishing the relation between the discrete torsion

phase and the brother phase as introduced in section 3.1. From equations (3.10) and (3.18)

it is clear that both phases can be made to coincide. More precisely, since V2 can be written

as V2 = λ2

M with λ2 ∈ Λ (cf. equation (2.5)), one can achieve

−V2 · ∆V1 =
m

M
(3.20)

for an appropriate choice of ∆V1 ∈ Λ. Since the solutions to the mass equations and the

projection conditions are the same in a model with discrete torsion and a brother model,

whose associated phases fulfill equation (3.20), the spectra of both models coincide. We

will therefore regard both models as equivalent. This means that introducing a discrete

torsion phase, equation (3.18), is equivalent to changing the gauge embedding according to

(V1, V2) → (V1 + ∆V1, V2 + ∆V2) (3.21)

with ∆Vi ∈ Λ and −V2 · ∆V1 = m/M . In particular, the assignment of discrete torsion to

a given ZN ×ZM model is a ‘gauge-dependent’ statement in the sense that torsion can be

traded for changing the gauge embedding (cf. figure 1).

To illustrate our result, we construct the standard embedding models for ZN × ZM

orbifolds with an E8 × E8 lattice of ref. [4] with discrete torsion in terms of non-standard

embedding shifts without discrete torsion (brother models). We use the following recipe

to construct brother models, i.e. mimic models with discrete torsion:

For a given set of shifts V1 and V2 fulfilling the modular invariance conditions, find a new

set of shifts V ′
1 = V1 + ∆V1 and V ′

2 = V2 + ∆V2 with the following properties:

(i) the new shifts differ from the original set only by lattice vectors, i.e. ∆V1,∆V2 ∈ Λ

(ii) the new shifts also fulfill the modular invariance conditions, and

(iii) the ‘interference term’ V2 · ∆V1 is not an integer.

– 8 –
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orbifold torsion ε shift V1 shift V2Z2 × Z2 1
(

1
2 , 0,−1

2 , 0, 0, 0, 0, 0
) (

0, 1
2 ,−1

2 , 0, 0, 0, 0, 0
)

−1
(

1
2 ,−1,−1

2 , 1, 0, 0, 0, 0
) (

1, 1
2 ,−1

2 , 0, 1, 0, 0, 0
)Z4 × Z2 1

(
1
4 , 0,−1

4 , 0, 0, 0, 0, 0
) (

0, 1
2 ,−1

2 , 0, 0, 0, 0, 0
)

−1
(

1
4 ,−1,−1

4 , 1, 0, 0, 0, 0
) (

2, 1
2 ,−1

2 , 0, 0, 0, 0, 0
)Z6 × Z2 1

(
1
6 , 0,−1

6 , 0, 0, 0, 0, 0
) (

0, 1
2 ,−1

2 , 0, 0, 0, 0, 0
)

−1
(

1
6 ,−1,−1

6 , 1, 0, 0, 0, 0
) (

3, 1
2 ,−1

2 , 0, 1, 0, 0, 0
)Z′

6 × Z2 1
(

1
6 , 1

6 ,−1
3 , 0, 0, 0, 0, 0

) (
1
2 , 0,−1

2 , 0, 0, 0, 0, 0
)

−1
(
−5

6 , 7
6 ,−1

3 , 1, 1, 0, 0, 0
) (

1
2 , 3,−1

2 , 1, 0, 0, 0, 0
)Z3 × Z3 1

(
1
3 , 0,−1

3 , 0, 0, 0, 0, 0
) (

0, 1
3 ,−1

3 , 0, 0, 0, 0, 0
)

e2πi
1
3

(
1
3 ,−1,−1

3 , 1, 0, 0, 0, 0
) (

1, 1
3 ,−1

3 , 0, 1, 0, 0, 0
)

e2πi
2
3

(
1
3 ,−2,−1

3 , 0, 0, 0, 0, 0
) (

2, 1
3 ,−1

3 , 0, 0, 0, 0, 0
)Z6 × Z3 1

(
1
6 , 0,−1

6 , 0, 0, 0, 0, 0
) (

0, 1
3 ,−1

3 , 0, 0, 0, 0, 0
)

e2πi
1
3

(
1
6 ,−1,−1

6 , 1, 0, 0, 0, 0
) (

2, 1
3 ,−1

3 , 0, 0, 0, 0, 0
)

e2πi
2
3

(
1
6 ,−2,−1

6 , 0, 0, 0, 0, 0
) (

4, 1
3 ,−1

3 , 0, 0, 0, 0, 0
)Z4 × Z4 1

(
1
4 , 0,−1

4 , 0, 0, 0, 0, 0
) (

0, 1
4 ,−1

4 , 0, 0, 0, 0, 0
)

i
(

1
4 ,−1,−1

4 , 1, 0, 0, 0, 0
) (

1, 1
4 ,−1

4 , 0, 1, 0, 0, 0
)

−1
(

1
4 ,−2,−1

4 , 0, 0, 0, 0, 0
) (

2, 1
4 ,−1

4 , 0, 0, 0, 0, 0
)

−i
(

1
4 ,−3,−1

4 , 1, 0, 0, 0, 0
) (

3, 1
4 ,−1

4 , 0, 1, 0, 0, 0
)Z6 × Z6 1

(
1
6 , 0,−1

6 , 0, 0, 0, 0, 0
) (

0, 1
6 ,−1

6 , 0, 0, 0, 0, 0
)

e2πi
1
6

(
1
6 ,−1,−1

6 , 1, 0, 0, 0, 0
) (

1, 1
6 ,−1

6 , 0, 1, 0, 0, 0
)

e2πi
1
3

(
1
6 ,−2,−1

6 , 0, 0, 0, 0, 0
) (

2, 1
6 ,−1

6 , 0, 0, 0, 0, 0
)

−1
(

1
6 ,−3,−1

6 , 1, 0, 0, 0, 0
) (

3, 1
6 ,−1

6 , 0, 1, 0, 0, 0
)

e2πi
2
3

(
1
6 ,−4,−1

6 , 0, 0, 0, 0, 0
) (

4, 1
6 ,−1

6 , 0, 0, 0, 0, 0
)

e2πi
5
6

(
1
6 ,−5,−1

6 , 1, 0, 0, 0, 0
) (

5, 1
6 ,−1

6 , 0, 1, 0, 0, 0
)

Table 1: ZN ×ZM models with discrete torsion and standard embedding are equivalent to models

without discrete torsion and non-standard embedding. We write the torsion phase factor as ε =

e−2πi V2·∆V1 . The components of the shifts within the second E8 all vanish. This result also applies

to orbifold models in SO(32).

In practice (and for any N,M), the above properties can be expressed in terms of linear

Diophantine equations for which we always find solutions.

Possible choices for the shifts (V1 + ∆V1, V2 + ∆V2) are shown in table 1, where we list

the shifts of torsionless models equivalent to the discrete torsion model of ref. [4].

Our result has important consequences for the classification of ZN × ZM orbifolds.

– 9 –



J
H
E
P
0
4
(
2
0
0
7
)
0
6
3

Introducing a discrete torsion phase in the sense of ref. [4] does not lead to new models.

That is, all models with this discrete torsion can be equivalently obtained by scanning over

torsionless models only. This will be important for our classification in section 5.

It is also instructive to interpret the equivalence between discrete torsion and changing

the gauge embedding in terms of geometry. Discrete torsion can be regarded as a property

of the 6D compact space while changing the gauge embedding affects the (left-moving)

coordinates of the gauge lattice only. Hence one might argue that discrete torsion and

choosing a different gauge embedding are two different features of orthogonal dimensions.

However, by embedding the ‘spatial’ twist in the gauge degrees of freedom, these features

get combined in such a way that it is no longer possible to make a clear separation. Using

a more technical language one might rephrase this statement by saying that, since physical

states arise from tensoring left- and right-movers together, the phases ε and ε̃ cannot be

distinguished. Consequently, properties of the zero-modes cannot be ascribed neither to

the gauge embedding alone nor to the presence of discrete torsion, but only to both.

4. Generalized discrete torsion

The results of the previous section can be generalized. To see this, we first generalize the

brother phase of section 3.1 for orbifolds with Wilson lines. In a second step, we compare

the emerging phases to what is known as generalized discrete torsion [7]. As before, we

can relate both phases.

4.1 Generalized brother models

Let us turn to the discussion of orbifolds with Wilson lines [15]. A (torsionless) model M

is defined by (V1, V2, Aα). A brother model M′ appears by adding lattice vectors to the

shifts and Wilson lines, i.e. M′ is defined by

(V ′
1 , V ′

2 , A′
α) = (V1 + ∆V1, V2 + ∆V2, Aα + ∆Aα) , (4.1)

with ∆Vi,∆Aα ∈ Λ. From the conditions (2.7), the choice of lattice vectors (∆Vi,∆Aα) is

constrained by

M (V1 · ∆V2 + V2 · ∆V1 + ∆V1 · ∆V2) = 0 mod 2 ≡ 2x , (4.2a)

Nα (Vi · ∆Aα + Aα · ∆Vi + ∆Vi · ∆Aα) = 0 mod 2 ≡ 2 yiα , (4.2b)

Qαβ (Aα · ∆Aβ + Aβ · ∆Aα + ∆Aα · ∆Aβ) = 0 mod 2 ≡ 2 zαβ , (4.2c)

where x, yiα, zαβ ∈ Z.
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Repeating the steps of section 3.1 one arrives at a ‘generalized brother phase’

ε̃ = exp

{
−2πi

[
(k1 t2 − k2 t1)

(
V2 · ∆V1 −

x

M

)

+(k1 mα − t1 nα)

(
Aα · ∆V1 −

y1α

Nα

)

+(k2 mα − t2 nα)

(
Aα · ∆V2 −

y2α

Nα

)

+nα mβ

(
Aβ · ∆Aα − zαβ

Qαβ

)]}
, (4.3)

corresponding to the constructing element g = (θk1ωk2, nαeα) and the commuting element

h = (θt1ωt2 ,mαeα). One can see that Dαβ ≡ Aβ ·∆Aα−zαβ/Qαβ is (almost) antisymmetric

in α, β,

Dαβ = −Dβα mod 1 . (4.4)

Notice that also in the case of orbifolds with lattice-valued Wilson lines, Aα ∈ Λ, the

last three terms of equation (4.3) can be non-trivial, giving rise to new brother models.

Brother models in ZN orbifolds. From equation (4.3), it is clear that the generalized

brother phase is also important for ZN orbifolds. More precisely, in ZN orbifolds with

Wilson lines, the second and fourth lines of equation (4.3) are not always trivial and thus

also lead to brother models.

Let us illustrate this with an example in Z4 with twist v = 1
4 (−2, 1, 1; 0) acting on

the compactification lattice Γ = SO(4)3, and standard embedding [16]. The gauge group

is E6×SU(2)×E8. By turning on the lattice-valued Wilson lines

A1 =
(
08

) (
12, 06

)
, A5 = A6 =

(
08

) (
0, 12, 05

)
, (4.5)

a non-trivial generalized brother phase with D15 = D16 = −1
2 is introduced. The untwisted

and first twisted sectors remain unchanged, but the number of (anti-) families in the second

twisted sector is reduced from 10 (27,1,1) + 6 (27,1,1) to 6 (27,1,1) + 2 (27,1,1).

4.2 Generalized discrete torsion

In section 3.2 we have discussed the discrete torsion phase as introduced in ref. [4]. More

recently, this concept has been extended by introducing a generalized discrete torsion phase

in the context of type IIA/B string theory [7]. This generalized torsion phase depends on

the fixed points of the orbifold. It weights differently terms in the partition function

corresponding to the same twisted sector but different fixed points, and is constrained by

modular invariance.

Following the steps of section 3.2 and considering g, h ∈ S, we write down the general

solution of equations (3.16) for the discrete torsion phase as3

ε(g, h) = e2πi [a (k1 t2−k2 t1)+bα (k1 mα−t1 nα)+cα (k2 mα−t2 nα)+dαβ nα mβ ] . (4.6)

3Note that we employ the stronger constraints (3.16) rather than the conditions presented in [7]. It

might be possible to relax condition (3.16b), in which case additional possibilities could arise. We ignore

this possibility in the present study.
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Modular invariance constrains the values of a, bα, cα, dαβ . Therefore a = ã/M, bα = b̃α/Nα,

cα = c̃α/Nα, dαβ = d̃αβ/Nαβ with ã, b̃α, c̃α, d̃αβ ∈ Z, Nαβ being the greatest common

divisor of Nα and Nβ. In addition, dαβ must be antisymmetric in α, β.

The parameters bα, cα, dαβ are additionally constrained by the geometry of the orbifold.

It is not hard to see that if eα ≃ eβ on the orbifold, then bα = bβ, cα = cβ and dαβ = 0

must hold (cf. the examples below).

The generalized discrete torsion is not restricted only to ZN × ZM orbifolds, as the

usual discrete torsion was, but will likewise appear in the ZN case. Clearly, since in ZN

orbifolds there is only one shift, the parameters a and cα vanish.

Examples. Let us consider the Z3 × Z3 orbifold compactified on an SU(3)3 lattice. In

this case we have e1 ≃ e2, e3 ≃ e4 and e5 ≃ e6 on the orbifold. This implies that there are

only three independent bα, namely b1, b3, b5, while b2 = b1, b4 = b3, b6 = b5. Analogously,

only c1, c3, c5 are independent. Further, the antisymmetric matrix dαβ takes the form

dαβ =




0 0 d1 d1 d2 d2

0 0 d1 d1 d2 d2

−d1 −d1 0 0 d3 d3

−d1 −d1 0 0 d3 d3

−d2 −d2 −d3 −d3 0 0

−d2 −d2 −d3 −d3 0 0




. (4.7)

Including the parameter a, there are 10 independent discrete torsion parameters, which

can take values 0, 1
3 or 2

3 .

For the Z2 × Z2 orbifold on an SU(2)6 lattice an analogous consideration shows that

there are no restrictions for the discrete torsion parameters. Therefore, there are 1+6+6+

15 = 28 independent parameters a, bα, cα, dαβ , with values either 0 or 1
2 . However, since

the coefficients nαmβ of dαβ for (α, β) ∈ {(1, 2), (3, 4), (5, 6)} vanish, the corresponding

dαβ are not physical, leading to 25 effective parameters.

Generalized discrete torsion and local spectra. In order to understand the action

of the generalized discrete torsion, let us consider the following example. We start with

the Z3 ×Z3 standard embedding without Wilson lines, Aα = 0, and switch on the discrete

torsion phase, equation (4.6), with b3 = b4 = 1
3 . The total number of families is reduced

from 84 (27,1) to 24 (27,1) and 12 (27,1).

Due to its form, the discrete torsion phase ε = e2πi bα (k1 mα−t1 nα) distinguishes between

different fixed points of a particular twisted sector. That is, generalized discrete torsion

can be thought of as a local feature. In general, the additional phase at a given fixed point

coincides with a brother phase of the torsionless model (cf. first term of equation (4.3)),

i.e. locally one can find ∆Vi such that

ε = e2πi bα (k1 mα−t1 nα) = e−2πi (k1 t2−k2 t1)(V2·∆V1−
x
3
) (4.8)

with appropriate x. Then, each local spectrum coincides with the local spectrum of some

brother model. The interpretation of generalized discrete torsion in terms of ‘localized
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bcb

a = 0

(27,1)
3× (1,1)

bcb

a = 1/3
3× (1,1)

bcb

a = 2/3

(27,1)
3× (1,1)

(a)

bcb bcb

bcb

bα = 1/3

(27,1)
3 × (1,1)

3 × (1,1)

(27,1)
3 × (1,1)

(b)

Figure 2: Sketch of a (2D) SU(3) plane of a Z3 × Z3 orbifold (the second plane in the example).

Parts (‘corners’) from different brother models (a) can be ‘sewed together’ to a model in which the

torsion phase differs for different fixed points. This is equivalent to switching on the generalized

discrete torsion phase bα (b).

discrete torsion’ parallels the concept of local shifts (cf. [12, 13]) in orbifolds with Wilson

lines.

Note that ∆Vi as in (4.8) cannot be found for twisted sectors where bα corresponds to

a direction eα of a fixed torus, where bα projects out all states of the sector.

For concreteness, we first focus on the three fixed points in the second torus of the

T(0,1) twisted sector. As depicted in figure 2, the local spectra of the three brother models,

a ≡ −
(
V2 · ∆V1 − x

3

)
= 0, 1

3 , 2
3 , can be combined consistently into one model with b3 =

b4 = 1
3 . On the other hand, in the T(1,0) twisted sector there is a fixed torus in the directions

e3, e4; thus the sector is empty.

This procedure can also be applied to the terms cα and dαβ of the generalized discrete

torsion phase, equation (4.6).

Generalized brother models versus generalized discrete torsion. As in our pre-

vious discussion in section 3, also the generalized versions of the discrete torsion phase

and the brother phase have a very similar form. Indeed, whenever there are non-trivial

solutions to equations (4.2), one can equivalently describe models with generalized discrete

torsion phase in terms of generalized brother models. This is the generic case.

However, there are exceptions. Namely, as we will explain below, models with dαβ 6= 0

in Z3×Z3 orbifolds without Wilson lines cannot be interpreted in terms of brother models.

Consider the fourth part of the generalized discrete torsion phase of equation (4.6),

ε = e2πi dαβ nαmβ , (4.9)

with dαβ ∈
{
0, 1

3 , 2
3

}
. An analogous term appears in the generalized brother phase as

ε̃ = exp

[
−2πinαmβ

(
Aβ · ∆Aα − zαβ

Qαβ

)]
, (4.10)
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where Qαβ = 3, since the Wilson lines have order 3. In general, both phases can be made

coincide by choosing ∆Aα ∈ Λ such that

−
(
Aβ · ∆Aα − zαβ

3

)
= dαβ . (4.11)

On the other hand, in the case when Aα = 0 and ∆Aα 6= 0, equation (4.10) simplifies to

ε̃ = e
2πi nαmβ

“
zαβ
3

”

= e
2πinαmβ

“
∆Aα·∆Aβ

2

”

, (4.12)

where the second equality follows from the definition of zαβ, equation (4.2c). As ∆Aα are

lattice vectors, this equality can only hold if zαβ = 0 mod 3, which implies that the brother

phase equation (4.12) is trivial. Thus, in this case, the generalized discrete torsion phase

leads to models which cannot arise by adding lattice vectors to shifts and Wilson lines.

In summary, the generalized discrete torsion phases admit more possible assignments

than the generalized brother phases. Nevertheless, a large class of the models with gen-

eralized discrete torsion has an equivalent description in terms of models with a modified

gauge embedding.

Our results have important implications. By introducing generalized discrete torsion,

or lattice-valued Wilson lines, one can control the local spectra. We therefore expect

that introducing generalized discrete torsion, or alternatively shifting the Wilson lines by

lattice vectors, will gain a similar importance as discrete Wilson lines [15] for orbifold model

building.

As stated above, switching on generalized discrete torsion can lead to the disappearance

of complete local spectra. This raises the question of how to interpret this fact in terms of

geometry. Some of the localized zero-modes can be viewed as blow-up modes which allow

to resolve the orbifold singularity associated to a given fixed point [17, 18, 5] (see [19 – 21]

for recent developments). If at a given fixed point there are no zero modes, one might

argue that, therefore, the associated singularity cannot be ‘blown up’. In what follows, we

shall advertise an alternative interpretation.

4.3 Connection to non-factorizable orbifolds

We find that in many cases orbifold models M with certain geometry, i.e. compactification

lattice Γ, and generalized discrete torsion switched on are equivalent to torsionless models

M′ based on a different lattice Γ′. Model M′ has less fixed points than M, and the mismatch

turns out to constitute precisely the ‘empty’ fixed points of model M.

The simplest examples are based on Z2 × Z2 orbifolds with standard embedding and

without Wilson lines. As compactification lattice Γ, we choose an SU(2)6 lattice [10]. As

we have seen in section 4.2, in this case there are 25 physical parameters for generalized

discrete torsion, with values either 0 or 1
2 . For concreteness, we restrict to the 12 dαβ

parameters and scan over all 212 models.

Beside other models with a net number of zero families, we find eight models (and

their mirrors, i.e. models where families and anti-families are exchanged). They are listed

in table 2, where we present the number of (anti-)families for each twisted sector and

the total number of singlets. As discussed in section 4.2, models with non-trivial dαβ are
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T(1,0) T(0,1) T(1,1) total #S dαβ = 1

2
Aα 6= 0

A.1 (16, 0) (16, 0) (16, 0) (51, 3) 246 − −
A.2 (12, 4) (8, 0) (8, 0) (31, 7) 166 d24 A2 = (S)(08), A4 = (V )(08)

A.3 (10, 6) (4, 0) (4, 0) (21, 9) 126 d14, d23 A1 = (S)(08), A2 = (08)(S),

A3 = (08)(V ), A4 = (V )(08)

A.4 (8, 0) (8, 0) (8, 0) (27, 3) 126 d26, d46 A2 = (V ′)(08), A4 = (V )(08),

A6 = (S)(08)

A.5 (6, 2) (6, 2) (4, 0) (19, 7) 106 d24, d36 A2 = (S)(08), A3 = (08)(S),

A4 = (V )(08), A6 = (08)(V )

A.6 (6, 2) (4, 0) (4, 0) (17, 5) 86 d16, d24, A1 = (V )(08), A2 = (08)(V ),

d36 A3 = (V ′)(08), A4 = (08)(S),

A6 = (S)(08)

A.7 (4, 0) (4, 0) (4, 0) (15, 3) 66 d16, d25, A1 = (V )(08), A2 = (08)(V ),

d36, d45 A3 = (V ′)(08), A4 = (08)(V ′),

A5 = (08)(S), A6 = (S)(08)

A.8 (3, 1) (3, 1) (3, 1) (12, 6) 66 d16, d24, A1 = (W1)(0
8), A2 = (08)(W1),

d35 A3 = (08)(W ′

1
), A4 = (08)(W2),

A5 = (08)(W ′

2
), A6 = (W2)(0

8)

Table 2: Survey of Z2 × Z2 orbifolds with generalized discrete torsion. The 2nd–4th columns list

the number of anti-families and families, respectively, for the various twisted sectors T(k1,k2)
. In

all models, the untwisted sector gives a contribution of (3, 3) (anti-)families. #S denotes the total

number of singlets. These spectra can either be obtained by turning on generalized discrete torsion

dαβ as specified in the next-to-last column, or by using lattice-valued Wilson lines Aα as listed in

the last column. The building blocks are defined in equation (4.13).

equivalent to torsionless models with lattice-valued Wilson lines. Possible representatives

of these Wilson lines can be composed out of the building blocks

W1 = (06, 1, 1) , W2 = (05, 1, 1, 0) , W ′
1 = (1, 1, 06) , W ′

2 = (0, 1, 1, 05) ,

S = (1
2

8
) , V = (07, 2) , V ′ = (06, 2, 0) , (4.13)

and are listed in the last column of table 2.

Models leading to spectra coinciding with what we got in table 2 have already been

discussed in the literature. They appeared first in ref. [22] in the context of free fermionic

string models related to the Z2 × Z2 orbifold with an additional freely acting shift. More

recently, new Z2 × Z2 orbifold constructions have been found in studying orbifolds of

non-factorizable six-tori [23, 24]. We find that for each model M of table 2 there is a

corresponding ‘non-factorizable’ model M′ with the following properties:

(i) Each ‘non-empty’ fixed point, i.e. each fixed point with local zero-modes, in the model

M can be mapped to a fixed point with the same spectrum in model M′.

(ii) The number of ‘non-empty’ fixed points in M coincides with the total number of fixed

points in M′.
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These relations are not limited to Z2 × Z2 orbifolds, rather we find an analogous

connection also in other ZN × ZM cases (ZN × ZM orbifolds based on non-factorizable

compactification lattices have recently been discussed in [25]). This result hints towards

an intriguing impact of generalized discrete torsion on the interpretation of orbifold ge-

ometry. What the (zero-mode) spectra concerns, introducing generalized discrete torsion

(or considering generalized brother models) is equivalent to changing the geometry of the

underlying compact space, Γ → Γ′. To establish complete equivalence between these mod-

els would require to prove that the couplings of the corresponding states are the same,

which is beyond the scope of the present study. It is, however, tempting to speculate that

non-resolvable singularities, as discussed above, do not ‘really’ exist as one can always

choose (for a given spectrum) the compactification lattice Γ in such a way that there are

no ‘empty’ fixed points.

5. How to classify ZN × ZM orbifolds

Let us now turn to describing a method of classifying heterotic ZN ×ZM orbifolds, taking

into account generalized discrete torsion. To illustrate our methods, we focus on Z3 × Z3

orbifold compactifications of the E8×E8 heterotic string. It is straightforward to generalize

the discussion to other ZN × ZM orbifolds and to the SO(32) case.

To classify an orbifold requires an efficient prescription of how to obtain all inequivalent

models. The first step in a classification is to get all admissible choices for the shift vector

V1. For this purpose, we make use of Dynkin diagram techniques (see e.g. [16]). These

techniques are advantageous since, when writing down V1, one has the freedom of choosing

the basis of the weight lattice Λ in such a way that the shift has a very simple form.

Clearly, this freedom is lost when one introduces the second shift (and Wilson lines). This

complicates the construction of all inequivalent shifts V2.

To obtain all inequivalent V2 we utilize a method introduced by Giedt [26] (see

also [27]), i.e. use an adequate minimal ansatz which avoids redundancies due to lattice

translations and some Weyl reflections. This ansatz restricts the shifts to be only in a

certain cell Λ̃N of the lattice Λ in such a way that any possible ZN shift can be written as

an element of this cell plus a lattice vector. That is, an arbitrary ZN shift has a unique

decomposition

V = Ṽ + ∆V , where Ṽ ∈ Λ̃N and ∆V ∈ Λ . (5.1)

Consider now a consistent gauge embedding (V1, V2). According to equation (5.1) the shifts

can be decomposed into (Ṽ1 + ∆V1, Ṽ2 + ∆V2) with Ṽ1 ∈ Λ̃N , Ṽ2 ∈ Λ̃M and ∆Vi ∈ Λ. It is

not hard to see that the conditions (2.7) imply

N
(
Ṽ 2

1 − v2
1

)
= 0 mod 2 , (5.2a)

M
(
Ṽ 2

2 − v2
2

)
= 0 mod 2 , (5.2b)

M
(
Ṽ1 · Ṽ2 − v1 · v2

)
= 0 mod 1 . (5.2c)

To scan over all possible shift embeddings is therefore reduced to the task of
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(i) specifying Ṽ1 (satisfying (5.2a)) by Dynkin techniques,

(ii) scanning Λ̃M for Ṽ2 fulfilling equations (5.2b) and (5.2c), and

(iii) examining all possible (V1, V2) related to (Ṽ1, Ṽ2) by lattice translations and satisfy-

ing (2.7).

At first sight, the last step seems to require a scan over an infinite number of shifts.

However, as we have seen in section 3, given one representative (V1, V2) satisfying (2.7),

this scan can be replaced by switching on all inequivalent discrete torsion phases. Since

there is only a finite number of torsion phase assignments, we have found a prescription to

obtain all inequivalent models by scanning only over a finite set of inputs.

As already stated, in a complete classification it is necessary to take into account

generalized discrete torsion as well. Thus, to get all admissible shifts, one has to scan over

all appropriate values for the parameters bα, cα and dαβ .

All statements made for V2 apply also to the Wilson lines. That is, in order to obtain

all inequivalent Wilson line embeddings, one can also scan the finite cell Λ̃Nα (fulfilling

consistency conditions analogous to (5.2)), and then switch on generalized discrete torsion.

So far, we have described how to obtain all inequivalent models. However, some of

the inputs, specified by (V1, V2), Wilson lines and generalized torsion phases, turn out to

be equivalent. Apart from the ambiguities related to Weyl reflections (cf. [26]), in the

framework of ZN × ZM orbifolds further complications arise. For instance, we note that

models with shifts related by discrete rotations, i.e. (V1, V2) → (a1 V1 + a2 V2, b1 V1 + b2 V2)

with proper values of ai, bi ∈ Z, can be equivalent. For example, in Z3 × Z3 a model with

shifts (V1, V2) is equivalent to a model with shifts (V1, V1 + 2V2).

In our classification below, we consider two models as inequivalent if and only if their

massless spectra are different.4

Sample classification of Z3 × Z3 without Wilson lines. As a concrete application,

let us describe the classification of Z3 × Z3 orbifolds without Wilson lines.5 By using

Dynkin diagram techniques, one finds that there are only five consistent shift vectors V1,

which can be written in the generic form

Ṽ1 =
1

3
(0n0 , 1n1 , 2α) (0m0 , 1m1 , 2β), (5.3)

where α and β can be either 0 or 1, and n0, n1,m0,m1 ∈ Z, such that n0 + n1 + α =

m0 + m1 + β = 8.

4In practice, we compare the non-Abelian massless spectra and the number of singlets. This underesti-

mates the true number of models somewhat.
5As we allow for generalized discrete torsion, some of the models can be interpreted as being endowed

with lattice-valued Wilson lines, see section 4.
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A general ansatz describing the second shift V2 of order three is given by [26]:

Ṽ2 =
1

3







3
...

−2


 ,

(
1

0

)n0−1

,




1

0

−1




n1+α 








3
...

−2


 ,

(
1

0

)m0−1

,




1

0

−1




m1+β 
 , (5.4)

subject to lattice conditions, equations (2.5), and to the necessary conditions (5.2). Some

of these models do not fulfill the consistency requirements (2.7). As explained above, in

these cases we proceed by identifying lattice vectors ∆Vi with the property that (Ṽ1 +

∆V1, Ṽ2 + ∆V2) satisfy (2.7). The problem of finding those lattice vectors can be reduced

to a set of linear Diophantine equations.

To generate all shift embeddings, we compute the spectra of models with different

values of a in the discrete torsion phase. In Z3 ×Z3, the parameter a can have values 0, 1
3

or 2
3 . This gives a factor of three to the total number of models. However, it turns out that

not all of them are inequivalent. Counting only inequivalent spectra, we find that there

are 120 inequivalent shift embeddings.

We use now the set of shift embeddings to generate all admissible models. As discussed

in the examples of section 4.2, excluding a, there are 9 independent generalized discrete

torsion parameters, whose values can be again 0, 1
3 or 2

3 . Although the number of models

is multiplied by a factor 39, the number of all inequivalent models (spectra) is 1082. These

models comprise the complete set of admissible models without Wilson lines, or, more

precisely, the complete set of models which can be described by vanishing Wilson lines.

The model definitions and the resulting spectra are given in [28].

The above procedure can straightforwardly be carried over to the SO(32) case. The

results turn out to be similar. Repeating the steps of our E8 × E8 discussion, we find that

there are 131 shift embeddings. The total number of inequivalent models is very similar to

the E8 × E8 case.

6. Discussion

Aiming at a systematic understanding of heterotic ZN ×ZM orbifolds, we have investigated

the possibilities arising in these constructions. We find that, unlike in the case of prime

orbifolds, adding elements of the weight lattice to the shifts, (V1, V2) → (V1+∆V1, V2+∆V2),

changes in general the spectrum. Interestingly, the same spectra are obtained by switching

on discrete torsion. Stated differently, one can trade discrete torsion for a change of the

gauge embedding by lattice vectors. We have extended our analysis such as to include

generalized discrete torsion. We find that a large class of generalized discrete torsion phases

can be mimicked by lattice-valued Wilson lines. Interestingly, an analog of a generalized

discrete torsion phase appears in certain ZN orbifolds which admit at least two discrete

Wilson lines of coinciding orders. Another remarkable result is that switching on certain
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types of generalized discrete torsion is equivalent to changing the 6D compactification

lattice. This implies that the field-theoretic interpretation of the model input can be

somewhat subtle. We provided various explicit examples, illustrating all main statements.

Our results have important consequences. At the more practical side, we were able

to formulate a straightforward method of classifying ZN × ZM orbifolds. We have also

seen that switching on generalized discrete torsion allows to change the local spectra, i.e.

one obtains different twisted states, which correspond to brane fields in the field-theoretic

description. We expect this to become important for orbifold model building, where one

can use this observation, for instance, for reducing the number of generations without

modifying the gauge group.

At a more conceptual level, our findings imply that a given spectrum cannot be ascribed

neither to properties of the 6D internal space alone, i.e. whether discrete torsion is switched

on or not, nor to the gauge embedding, but only to both. This implies that the same models,

leading to the same spectra, can be regarded as resulting from what one might consider

as different geometries. Although we cannot claim to have identified the deeper reasons

for these relations, we feel that our observations constitute some progress in the task of

understanding stringy geometry.
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A. Transformation phases

The aim of this appendix is to clarify the transformation law of physical states. Let us

start with the simplest example, a ZN orbifold without Wilson lines. Modular invariance

requires [3]

N (V 2 − v2) = 0 mod 2 . (A.1)

To see that there are some subtleties, consider a ‘constructing element’ g = (θk, nαeα).

Zero-modes in the g-twisted sector have to fulfill the masslessness condition (2.10). Focus,

for simplicity, on non-oscillator states, for which the masslessness conditions read

1

2
p2
sh − 1 + δc = 0 , (A.2a)

1

2
q2
sh − 1

2
+ δc = 0 , (A.2b)
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2π e1

2π e2

bcb

bcb

bcb

Figure 3: T2

SU(3)
/Z3 orbifold. The fundamental domain of the torus can be taken to be the darker

area. Transformation of g = (θ, e1 + e2)-twisted strings under (the constructing element) g: the

(red) right string is mapped to the (green) upper, and the (green) upper to the (blue) left, and the

(blue) left back to the (red) upper one.

where psh = (p + Vg), qsh = (q + vg), Vg = k V + nα Aα and vg = k v. Using the properties

p2 = even and q2 = odd one derives

p · Vg = 1 − δc −
V 2

g

2
+ integer , (A.3a)

q · vg = −δc −
v2
g

2
+ integer . (A.3b)

Now let us study the transformation of a solution of the mass equation |ψ〉. The shifted

momenta psh and qsh represent the gauge and Lorentz (or SO(8)) quantum numbers. This

fixes the transformation phase of the g-twisted string |ψ〉 to be

2π [psh · Vg − qsh · vg] = 2π

[
1

2

(
V 2

g − v2
g

)
mod 1

]
(A.4)

under the action of g. From (A.1) we infer that this phase does not vanish in general,

rather it is of the form 2π m/N with m ∈ Z. This raises the question of how a state

associated to g can be invariant under the action of g. In the literature, the transformation

behavior of states associated to twisted strings has often been ‘repaired’, i.e. an additional

transformation phase has been introduced by hand. In what follows, we present a geometric

explanation of how such additional phases arise.

Consider a string twisted by the space group element g in the ‘upstairs’ picture, i.e. on

the torus. Twisted strings end at the borders of the fundamental domain of the orbifold.

The fundamental domain of the orbifold together with its non-trivial images under g, g2

etc. comprise the fundamental domain of the torus. Therefore, on the torus a twisted

string appears in n copies where n is the order of g, i.e. the minimal positive integer with

gn = 1. A 2D illustration is shown in figure 3. That is, a g-twisted state appears as a

linear combination of the state |ψ〉 corresponding to the g-twisted string in the fundamental
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domain and its images under gm. This linear combination can involve phase factors with

the constraint being that gn acts as identity. There are n different linear combinations

labeled by m ∈ Z,

|ψ(m)〉 =
1√
n

(
|ψ〉 + e−2πim/n |g ψ〉 + · · · + e−2πi m (n−1)/n |gn−1 ψ〉

)
, (A.5)

on the torus. In figure 3 this would correspond to a superposition of the red, green and

blue string, weighted by phase factors. It is clear that, under the action of g, such a linear

combination picks up a phase e2πi m/n. In other words, the transformation phase (A.4) is

to be amended by 2π m/n.

It is straightforward to apply these observations to the above-mentioned problem of

g-invariance of states associated to the constructing element g. Clearly, only the linear

combination (A.5) with m = −n
2 (V 2

g − v2
g) is g-invariant. So we conclude that for every

solution of the mass equation one finds precisely one g-invariant state. In addition to the

phase arising from the gauge and Lorentz quantum numbers (A.4), this state picks up a

compensating phase

Φvac = exp

{
2πi

[
−1

2
(Vg · Vg − vg · vg)

]}
(A.6)

under the action of g.

Before turning to the discussion of the transformation of such states under commuting

elements h, let us briefly comment on a technical simplification that is possible in many

models. It is also clear that, in ZN orbifolds without Wilson lines, one can ‘transform’

a model M, with a ‘weak’ shift V , to the model M′, with shift V ′ = V + ∆V where

∆V ∈ Λ. The solutions of the mass equation coincide in the models M and M′. It is, up

to some exceptional cases which we will discuss below, always possible to find a ∆V with
1
2 [(V +∆V )2−v2] ∈ Z so that (A.4) is automatically fulfilled for any |ψ〉 (and therefore also

for trivial linear combinations). For a large class of constructions one can therefore adopt

the following logic. Models with an input fulfilling only the (‘weak’) modular invariance

constraints (A.1) might not be considered as they have an alternative description in terms

of a model with input fulfilling the stronger constraints

V 2 − v2 = 0 mod 2 . (A.7)

That is, in order to avoid double-counting, one can restrict to the stronger constraints (A.7)

in many cases. Similar statements apply to the case with non-trivial Wilson lines (an

example has been given in [13]). However, there is a caveat, namely the above-mentioned

exceptional cases in which a ‘weak’ modular invariant input cannot be transformed to the

‘strong’ form. The simplest example for such a case is a Z3 orbifold with V = 0. Further

examples arise in non-prime ZN ·M orbifolds (N,M > 1) where N · V ∈ Λ.

Let us now return to the question of how a (g-invariant) state associated to the con-

structing element g transforms under the action of a commuting element h. In the following,

we denote the corresponding transformation phase of equation (2.13) by Φ(g, h). Clearly,

this phase has to comply with the space group multiplication law, thus

Φvac(g, gp hq) = [Φvac(g, g)]p [Φvac(g, h)]q . (A.8)
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Since Φvac(g, g) is already fixed by (A.6), this leads to the conclusion

Φvac(g, h) = exp

{
2πi

[
−1

2
(Vg · Vh − vg · vh)

]}
(A.9)

for any commuting h ∈ S. Therefore, the full transformation phase of the physical states

has to be defined as in equation (2.13). But there are still some constraints which have

to be fulfilled for the sake of consistency. To illustrate them, let us consider g, h ∈ S with

gn = 1 = hs. From the definition of the full transformation phase Φ, it is clear that one

has to demand

Φ(g, h)
!
= Φ(gn+1, h) = Φ(g, h)Φvac(g, h)−n , (A.10)

where the second equality is obtained by replacing, according to the usual embedding,

Vg → (n + 1)Vg and vg → (n + 1) vg in equation (2.13). Thus, Φvac(g, h)n
!
= 1. An

analogous reasoning starting with Φ(g, hs+1) leads to Φvac(g, h)s
!
= 1 and thus finally to

Φvac(g, h)gcd(n,s) !
= 1 . (A.11)

Formulating equation (A.11) in terms of the gauge embedding shifts leads to the consistency

conditions (2.7) on shifts and Wilson lines.6
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