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Dopamine transients follow a striatal 
gradient of reward time horizons

Ali Mohebi    1,6, Wei Wei1,6, Lilian Pelattini1, Kyoungjun Kim1  
& Joshua D. Berke    1,2,3,4,5,6 

Animals make predictions to guide their behavior and update those 
predictions through experience. Transient increases in dopamine (DA) are 
thought to be critical signals for updating predictions. However, it is unclear 
how this mechanism handles a wide range of behavioral timescales—from 
seconds or less (for example, if singing a song) to potentially hours or more 
(for example, if hunting for food). Here we report that DA transients in 
distinct rat striatal subregions convey prediction errors based on distinct 
time horizons. DA dynamics systematically accelerated from ventral 
to dorsomedial to dorsolateral striatum, in the tempo of spontaneous 
fluctuations, the temporal integration of prior rewards and the discounting 
of future rewards. This spectrum of timescales for evaluative computations 
can help achieve efficient learning and adaptive motivation for a broad range 
of behaviors.

Animal behavior is frequently driven by expectations of future rewards. 
The nature of these expectations, and how they are updated, is a central 
question in behavioral neuroscience. One important source of infor-
mation about future rewards is past rewards. For example, if a course 
of action has been producing rewards at a high rate, it may be worth 
continuing, rather than allocating time to alternatives1. Reward rate can 
be tracked as rewards received over some window of recent history2,3.

Animals also learn that certain cues and contexts are predictive of 
reward. In reinforcement learning (RL) theory4, agents make a predic-
tion of reward (‘value’) for each situation (‘state’) they encounter. As 
they experience events that are better or worse than expected, they 
generate a reward prediction error (RPE) that is used to update the 
values associated with prior states. RL algorithms have been highly 
influential because they can produce effective artificial learning sys-
tems and because RPE signals appear to be encoded by brief fluctua-
tions in the firing of midbrain dopamine (DA) cells5–7. DA cells project 
widely but especially to the striatum, a key brain node for value-guided 
decision-making8,9. RPE-scaled striatal DA release10,11 may engage  
synaptic plasticity12,13 to update values and thereby influence  
subsequent behavior.

Predicting rewards involves specifying a timescale. In many models, 
this timescale is set by a discount factor—how rapidly rewards decline 
in value further in the future. It makes sense to discount rewards that 
are far away in time—because they are less certain to occur at all and 
because working for a distant reward can mean foregoing more imme-
diate opportunities14. Yet some rewards are worth taking considerable 
time and effort to acquire. To maintain motivation and avoid choosing 
less favorable, but faster, gratification, delayed rewards must not be dis-
counted too quickly. Excessive discounting—that is, failure to maintain a 
sufficiently long time horizon when making decisions—has been reported 
in a range of human psychiatric disorders15, notably drug addiction16.

DA RPEs have been classically considered a uniform, widely broad-
cast scalar signal5,17. A single RPE signal implies a single underlying 
value, based on a single discount rate, and so defines a single timescale 
for learning and decision-making. By contrast, animals need to make 
decisions, assess outcomes and update their behavior accordingly 
over multiple timescales. During rapid production of motor sequences 
(for example, birdsong), desirable results are produced by patterns 
of muscle activation a small fraction of a second before18; it would 
be maladaptive to assign credit to actions performed much earlier.  
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rats. We tested the following three standard subregions (Fig. 1a and 
Extended Data Fig. 1): dorsolateral (DLS), dorsomedial (DMS) and ven-
tral (VS; targeting the core of the nucleus accumbens). These receive 
distinct patterns of cortical input36 and are often considered to have 
distinct ‘motor,’ ‘cognitive’ and ‘limbic’ functions, respectively37,38.

We first examined spontaneous DA fluctuations, unconstrained 
by task performance. DA dynamics were clearly different in each 
subregion (Fig. 1b and Supplementary Video 1). DLS signals showed 
near-constant, rapid change, whereas VS signals evolved more spo-
radically and slowly39,40 (Fig. 1c). When presented with a familiar, but 
unexpected, reward cue—the click of a hopper dispensing a sugar 
pellet—all three subregions showed a DA transient. This transient was 
briefest in DLS and lasted longest in VS (Fig. 1d). Previous voltammetry 
studies reported that this same reward cue evoked DA selectively in 
VS26, but our use of dLight may have revealed DLS/DMS responses that 
are too brief to readily detect with voltammetry. Briefer DA signals in 
more dorsal regions are consistent with studies showing faster rates of 
DA uptake, across species41,42, although this alone appears insufficient 
to explain the highly distinct spontaneous DA events in simultaneous 
recordings (Fig. 1b).

Distinct timescales for tracking reward history
As DA transients can signal RPE, we next examined how the response to 
this reward click in each area is affected by changing reward expecta-
tion. We took advantage of an instrumental task that we have described 
extensively in previous work11,43. Well-trained rats make nose pokes, 
which sometimes produce the reward delivery click; reward probabili-
ties shift without warning between 10% and 90% (see Extended Data  

By contrast, other behaviors such as hunting can take orders of magni-
tude longer to complete and receive feedback14. Evaluation using mul-
tiple timescales in parallel can better account for animal behavior19–21 
and also improve the performance of artificial learning systems22,23.

Furthermore, there is now substantial evidence for heterogene-
ity of DA cell firing24,25 and DA release across distinct striatal subre-
gions11,26–29. These subregions are components of distinct large-scale 
loop circuits30, proposed to serve as distinct levels of a hierarchical RL 
architecture31. Specifically, more dorsal/lateral striatal subregions are 
concerned with briefer motoric details, whereas more ventral/medial 
areas help to organize behavior over longer timescales32. Theoretical 
studies have proposed a corresponding gradient of temporal discount 
factors across the striatum19. However, the existing evidence for graded 
discounting is sparse and inconsistent33–35.

Here we report multiple lines of evidence for a gradient across 
the striatum of the timescales that determine DA dynamics. We focus 
especially on transient (phasic) DA responses to reward-predictive 
cues, which we show differ substantially between subregions. We 
demonstrate that these differences can be largely explained by under-
lying predictions that use different timescales to track prior rewards 
and discount future rewards. This portfolio of time horizons may 
enable animals to make a variety of adaptive decisions within complex 
environments.

Results
DA tempo depends on striatal subregion
We used fiber photometry of the fluorescent DA sensor dLight1.3b11 to 
observe DA release fluctuations in the striatum of awake, unrestrained 
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Fig. 1 | DA tempo depends on striatal subregion. a, Rat brain atlas section86 
showing approximate locations of fiber optic tips (circles) within striatal 
subregions. Blue circles indicate the locations for the recordings in b. Symbols 
indicate recording locations for behavioral tasks as follows: circles indicate 
both instrumental and Pavlovian tasks11, triangles indicate instrumental 
only and diamonds indicate the multiple delay task. For further details, see 
Extended Data Fig. 1. b, Example showing simultaneous, raw dLight photometry 
from each subregion in an awake unrestrained rat, outside of specific task 
performance. Green traces indicate DA signals (470 nm), and gray traces 
indicate corresponding control signals (interleaved 415 nm measurements). 
Occasional randomly timed sugar pellet deliveries are marked as ‘Click!’ (the 

familiar food hopper activation sound). Scale bars: 1 s, 1% ΔF/F. c, Left, average 
autocorrelogram functions for spontaneous dLight signals in each subregion. 
Bands show mean ± s.e.m., and darker lines indicate best-fit exponential decay 
for the range of 40–200 ms. Data are from n = 13 rats over 15 recording sessions 
each; fiber placements n = 9 DLS, n = 8 DMS, n = 9 VS. Right, decay time constant 
depends on subregion (one-way ANOVA: F(2, 23) = 22.9, *P = 3.4 × 10−6). d, Left, 
average dLight signal change after an unexpected reward click. Right, duration 
(at half maximum) of signal increase depends on subregion (one-way ANOVA: 
F(2, 23) = 24.2, *P = 2.2 × 10−6). To facilitate comparison between rats and regions, 
the dLight signal is normalized to the mean peak response (within 1 s) to uncued 
reward delivery. ANOVA, analysis of variance.
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Fig. 2 for task details). Rats adapt their behavior accordingly; in particu-
lar, they are more motivated to initiate trials when the recent reward 
rate is high (Extended Data Fig. 2b,c). As previously reported, this higher 
reward expectation also reduces the VS DA response to reward delivery 
(Fig. 2a, bottom), consistent with (positive) RPE coding. We observed 
this pattern in DLS and DMS too (Fig. 2a, top and middle), although the 

DA transient was briefer in DMS compared to VS and again remarkably 
brief in DLS (mean half-width 121 ± 16 ms s.e.m.).

Expectations of future rewards can reflect past reward history over 
a range of possible timescales44. Although all subregions showed a DA 
transient to the reward cue, this was not a ‘global’ RPE signal—it did not 
reflect the same underlying reward history timescale in each subregion. 
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Fig. 2 | DA prediction errors depend upon subregion-specific reward history 
timescales. a, Mean dLight DA signals aligned on the instrumental task nose 
poke that may trigger reward delivery click (red) or not (blue). Signals are 
normalized to the peak DA response within 1 s of unpredictable reward deliveries 
(later in the same recording session) and broken down by recent reward rate (in 
terciles), with higher reward rates in brighter colors. Histogram above each plot 
shows the fraction of signals that significantly depended on reward rate (linear 
regression, P < 0.01), consistent with RPE coding after nose poke. Data are from 
12 rats, 1–3 sessions each (see Extended Data Fig. 1 for targets in each rat). Reward 
rates were calculated using a leaky integrator of reward receipts (Methods), 
choosing the τ parameter for each subregion separately to maximize RPE coding 
(alternative models of reward prediction or behavioral fits gave similar results; 
Extended Data Fig. 2). The bump before nose poke (most prominent for DLS) 
is the DA response to an earlier Go! cue, smeared by variability in reaction and 

movement times. b, Portions of example recording sessions, for each subregion. 
Top, sequence of trial outcomes (rewarded trials indicated by tall red ticks, 
unrewarded by short blue ticks). Middle, corresponding reward rate estimated 
with a leaky-integrator model. Graphs are color-coded by the terciles of the 
reward rate. The decay parameter τ was chosen to maximize the (negative) 
correlation between the reward rate and the DA response to the reward clicks 
(bottom, peak DA change within 1 s of reward click). c, For each subregion: the top 
panel shows the correlation between DA values and reward rate as a function of 
the decay parameter τ, for the corresponding reward rate plot in b; the bottom 
panel shows best-fit τ for all individual sessions. The best-fit decay parameter 
varies by subregion (repeated measures ANOVA, F(2, 39) = 23.6, P = 2.0 × 10−5). 
The strongest correlations are seen in DLS with a shorter time horizon (small τ) 
and in VS with a longer time horizon (large τ).
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To reveal this, we first estimated the reward rate using a simple ‘leaky 
integrator’ of rewards2. This model has a single parameter τ—larger τ 
corresponds to a longer timescale, allowing rewards to better summate 
over multiple trials (Fig. 2b). For each recording site, we determined 
the τ that produced the strongest correlation between DA transients 
and RPE (Fig. 2c, upper plots). We observed a systematic relationship to 
location—best-fit τ was shortest in DLS, intermediate in DMS and long-
est in VS (Fig. 2c, lower plots), consistent with a spectrum of timescales 
for reward rate estimation. This relationship to location was observed 
despite similar behavioral measures of reward expectation in the cor-
responding recording sessions (Extended Data Fig. 2).

As an alternative measure of the extent of recent history used to 
estimate upcoming reward, we considered how much reward estimates 
are updated by the outcome of each trial24,45. Smaller updates (lower 
‘learning rate’) produce dependence on outcomes over a longer history 
of trials46. We determined the learning rate α that maximized DA—RPE 
correlations at the reward click (Extended Data Fig. 3). Best-fit α was 
highest in DLS and lowest in VS (Extended Data Fig. 3c), again indicating 
that VS is concerned with reward rates estimated over more prolonged 
timescales.

Region-specific responses to reward-predictive cues
Beyond simply tracking past reward rate, animals can also learn that 
specific cues are predictive of future rewards. The RPE theory of DA 
function was developed based largely on DA cell responses to Pavlovian 
conditioned cues that predict individual future rewards5,7. We therefore 
examined DA cue responses during acquisition and performance of a 
Pavlovian approach task (Fig. 3a). Auditory cues (trains of 2, 5 or 9 kHz 
tone pips) predicted the reward delivery click a few seconds later, with 
distinct probabilities (75%, 25% and 0%; Methods). Each trial presented 
one of the cues, or an uncued reward delivery, in random order, with a 
15–30 s delay between trials. Rats were trained for 15 d, with 60 trials 
of each type per day. Early on, all cues increased the likelihood that 
rats would approach and enter the food hopper (Fig. 3b), consistent 
with generalization between cues47. Over the course of training (3,600 
trials total), rats showed increasing discrimination, entering the food 
hopper in proportion to cued reward probability (Fig. 3b and Extended 
Data Fig. 4).

These Pavlovian cues evoked strikingly different DA responses 
in each subregion (Fig. 3c,d). By the end of training, DMS DA showed 
strong RPE coding—the 75% cue produced a strong DA transient, the 
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Fig. 3 | Subregion-specific DA responses to reward-predictive cues.  
a, Top, the Pavlovian task consists of four trial types, selected at random, with 
differing reward probabilities. Bottom, after training, cues increase anticipatory 
head entries into the reward port (fraction of trials with beam breaks at each 
instant, mean ± s.e.m.), and this scales with reward probability. Data shown 
are averages from training days 13–15, for n = 13 rats. b, During early training 
days, rats increase their behavioral responses to all cues, before progressively 
learning to discriminate between cues (error bars, s.e.m.; two-way repeated 
measures ANOVA showed a significant CUE × DAY interaction, F(28, 336) = 12.3, 
P = 0.0001). Points show average head entry in over a 0.5 s epoch just before cue 

onset (black) or just after cue offset (colors; that is immediately before the time 
that reward could be delivered). c, Average dLight signal change for each trial 
type after training (days 13–15; n = 13 rats with fibers in DLS (n = 9), DMS (n = 8) 
and VS (n = 9)). Solid lines indicate rewarded trials, and dotted lines indicate 
unrewarded. d, Time course of DA increases to each cue in each subregion over 
training (mean ± s.e.m.). By the late stage of training (days 13–15), the mean 
DA response depended on both cue identity and subregion (two-way ANOVA, 
significant CUE × AREA interaction, F(4, 66) = 6.4, P = 0.0002). For more details 
on the development of behavior and DA responses, see Extended Data Fig. 4.
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25% cue a much smaller increase and the 0% cue a transient dip in DA 
(Fig. 3c). VS DA cue responses also scaled with RPE, but showed worse 
discrimination between cues, particularly on early training days, and 
remained positive for all cues throughout the 15 d of training (Fig. 3d 
and Extended Data Fig. 4). Concordant results of VS DA increases to a 
learned 0% cue (CS−) have been previously observed and attributed 
to generalization between cues48. Finally, in DLS all cues evoked much 
smaller DA responses (relative to unpredicted reward delivery). This did 
not simply reflect a failure of DLS-related circuits to learn—the DLS DA 
transient at reward delivery was substantially diminished if preceded 
by the 75% cue (Fig. 3c), consistent with an acquired reward prediction.

Weak DLS cue responses reflect very fast discounting
We reasoned that these distinct subregional patterns could also reflect 
distinct time horizons for value computations. If future rewards are 
discounted especially fast in DLS-related circuits, even a brief delay 
would substantially diminish the value indicated by cues (Fig. 4a). To 
assess this potential explanation for our results, we turned to compu-
tational models that address the evolution of value within trials. We 
first applied a standard, simple model in which the cue-reward interval 
is divided into a regular sequence of sub-states (the complete serial 
compound (CSC)49; Extended Data Fig. 5a). Over the course of learning, 
value propagates backward along the sub-state chain50. As expected, 
when we compared model versions with distinct discount rates, rapid 
discounting reproduced the DLS pattern of smaller cue responses 
despite a cue-dependent response to reward delivery (Extended Data 
Fig. 5b–d). Including overlap between cue representations allowed the 
CSC to also reproduce generalization between cues early in training 
(Extended Data Fig. 5d).

However, this CSC model of the cue-reward interval could not read-
ily account for the slower, poorer cue discrimination in VS (Extended 
Data Fig. 5d) and is incapable of reproducing the negative response 
to the 0% cue we saw in DMS. This model is not designed to handle 
prolonged time horizons that might span multiple trials51 (Fig. 4b). 
Furthermore, the splitting of experience into discrete, equally fine 
sub-states becomes ever more artificial as intertrial intervals get longer 
and more variable52,53.

Slow discounting impedes cue discrimination by VS DA
We therefore turned to an alternative approach for estimating the 
evolution of values, using recurrent neural networks (RNNs)54,55. In 
our composite RNN model (Fig. 4c; Methods), three subnetworks use 
RL to generate distinct values in tandem56, each based upon a distinct 
discount rate. The model has no discrete states and time is not explicitly 
represented, but rather is implicit within network population dynam-
ics57. With the sole assumption that discounting is fastest in ‘DLS’ and 
slowest in ‘VS,’ the RPEs generated by the model recapitulated key 
distinct features of striatal DA transients (Fig. 4e–g). These include 
the diminutive DLS responses as before, but also the negative DMS 
response to the 0% cue, and poor VS cue discrimination compared to 
DMS (especially earlier in training).

With extended RNN training, the ‘DLS’ and ‘DMS’ responses to 
cues remained relatively stable, but ‘VS’ cue discrimination continued 
to improve, eventually also acquiring negative RPE responses to the 
0% cue (Extended Data Fig. 6). In other words, a long time horizon 
made learning slow, consistent with prior observations in RL models58. 
With hindsight, this made intuitive sense. If the effective time horizon 
encompasses many trials, it will include multiple rewards regardless 
of which cue is presented on a given trial (Fig. 4b). Correctly assigning 
value to particular cues is therefore harder, and the discrimination is 
slower to learn. By contrast, if the time horizon is comparable to the 
duration of a single trial (as we suggest for DMS), the average outcomes 
following distinct cues are very different (closer to the nominal 75%, 
25% and 0%) and so learning the distinct associated values can be more 
quickly accomplished.

The idea of distinct timescales thus provides a concise explana-
tion for the subregional differences in cue-evoked DA transients. DLS 
responses are weaker because the cues indicate a reward that is too far 
away in time, given a short time horizon. VS responses are slower to dis-
criminate, because the rewards that follow each cue are not very differ-
ent, over a long time horizon. DMS shows stronger, well-discriminating 
responses because its intermediate time horizon best matches the 
actual timescale of predictions provided by the Pavlovian cues.

Region-specific discounting in a multiple delay task
To confirm that different striatal subregions discount future rewards 
at different rates, we ran another experiment (in a new cohort of rats). 
This time, the distinct tone cues indicated distinct delays to potential 
reward delivery (0.6, 3 and 12 s) rather than different probabilities. After 
training, rats distinguished between cues in their anticipatory head 
entries to the food port (Fig. 5a). Furthermore, in all subregions the 
magnitude of the DA response was greater for cues indicating sooner, 
rather than later, reward (Fig. 5b), consistent with prior work34,59,60. 
However, the responses were not identical between subregions—for 
example, in VS the response to the cue indicating a brief delay (0.6 s) was 
only slightly smaller than to zero delay, while in DLS it was much smaller 
(Fig. 5b). We used these cue responses to estimate a discount rate, by 
fitting either exponential (Fig. 5c) or hyperbolic (Fig. 5d) discounting 
curves61. In each case, we found the fastest discounting in DLS and the 
slowest in VS, consistent with our earlier results.

Discussion
Here we have demonstrated a consistent ordering of timescales—DLS 
fastest, DMS intermediate and VS slowest—across three very distinct 
functional properties of DA transients. This raises the important ques-
tion of how these properties are related to each other. Why should a 
more rapid pace of DA fluctuations in DLS accompany faster discount-
ing of future rewards? Why should slower discounting by VS DA accom-
pany more prolonged integration of past rewards?

As noted earlier, one key factor may be the distinct functional 
representations across hierarchical levels of cortical-basal ganglia 
circuits31,32,62,63. DLS preferentially contributes to briefer, simpler move-
ments that can occur in rapid succession and require immediate feed-
back64. This faster tempo of information processing is supported by 
various features of DLS microcircuitry, including a higher proportion 
of fast-spiking interneurons to dictate fine spike timing65 and quicker 
DA reuptake to ensure error signals are very brief. Changes in DLS 
spiking are also typically brief66,67, resulting in a rapidly evolving ‘state’ 
of DLS networks. Such rapid state changes may naturally produce 
a more limited time horizon. For example, if a fixed discount factor 
were applied at each discrete state transition, a greater frequency of 
transitions would produce a faster effective discount rate (Extended  
Data Fig. 7).

This perspective on DLS functions is complementary to evidence 
that DLS is involved in ‘habitual’ stimulus–response (S–R) associa-
tions38,68. The key feature of S–R habits is that they do not take into 
consideration the future outcomes produced by actions—but in many 
behavioral situations, those outcomes may be simply too remote in 
time to be relevant to DLS calculations.

By contrast, VS neurons typically show more prolonged and/or 
abstract representations67,69. The more slowly changing state of VS 
is likely needed to help maintain a program of behavior over longer 
timescales62. Less-frequent transitions between states result in fewer 
opportunities for error signals (hence fewer spontaneous DA events) 
and less need to ensure error signals are brief to avoid overlap with mul-
tiple state transitions. Although some imaging studies have suggested 
that VS circuits discount especially rapidly33, our results are instead 
consistent with an extensive literature demonstrating a critical role 
for VS in avoiding impulsive behavior70, by promoting work to obtain 
delayed rewards71–73.
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Fig. 4 | A longer time horizon accounts for slower VS cue discrimination.  
a, Faster temporal discounting erodes the value indicated by the onset of a 
reward-predictive cue, even if the reward is certain to appear. b, Schematic 
representation of part of a long random sequence of trials within a single training 
session, with colors indicating the cue in each trial. At any given moment, an RL 
agent may be estimating the amount of reward that is coming ‘soon’ and updating 
such estimates based on what happened ‘recently.’ If the time horizon is long, 
‘soon’ can encompass expected rewards across multiple trials, even if the current 
trial has a 0% chance of reward. c, Schematic representation of RNN model, with 
three distinct pools of LSTM units. Each pool receives the same sensory inputs 
but maintains its own value output based on a distinct timescale (τ  = 2 s, 10 s or 
1,000 s; τ  is related to discount factor γ by γ = e−dt/τ, where dt is the time step 

size). All three pools project to the Actor, which generates the probability of 
nose-poking. d, Model poke probability (top) and temporal-difference RPEs for 
each LSTM pool, after 550 training steps. Data are presented as mean ± s.e.m., 
average over 20 simulations with different seeds. e, Development of RPEs at cue 
onsets across training (mean ± s.e.m., average over 20 simulations; see Extended 
Data Fig. 6 for extended training). f, Comparison of the pattern of relative sizes of 
responses, using RPEs from the RNN model (after 550 training steps) and 
observed rat DA responses (averaged across days 13–15). For both model and 
dLight data, the largest circle size corresponds to the largest response. Circle 
area is proportional to the cue response amplitude with white for positive and 
black for negative responses. g, Close-up view of the cue responses shown in e.
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Our Pavlovian task used a standard systems neuroscience approach— 
cues that convey information about individual trials, with many trials 
in each session. However, our results emphasize that animals, as well 
as their neural sub-circuits, do not necessarily process information in a 
corresponding trial-based manner74. Slower discounting in VS may be 
important to motivate prolonged work but can retard learning about 
cues that only provide information about the next few seconds. A VS 
time horizon that can span multiple trials may also explain puzzling 
observations of a large VS DA transient as each session begins75. If 
the onset of the first trial indicates that the animal is likely to receive 
multiple rewards ‘soon,’ from the VS perspective, this should generate 
a correspondingly large RPE.

A longer time horizon for future rewards in VS was matched by 
a longer horizon for tracking past rewards. A relationship between 
past and future reward estimation has been previously proposed by 
some theories of decision-making and time perception3. However, 
this relationship is not obvious within standard RL theory, for which 
the discount rate (γ) for future rewards is independent of the learning 
rate (α) that determines the timescale over which past rewards affect 
current reward expectations. One possibility is that the past horizon 
scales with the future horizon simply due to the need for adequate 
data sampling. For example, predicting the rewards to come over the 
next minute is likely to be more accurate given multiple samples of 
recent 1-min epochs. Obtaining sufficient data may explain why, for 
each subregion, the estimated past horizon can be longer than the 
estimated future horizon. Furthermore, estimating further into the 

future requires tracking rewards proportionately further back into the 
past, to achieve an equivalent number of past samples.

We used the fact that phasic DA responses to cue onsets can encode 
RPE to probe underlying reward expectations. However, there are other 
aspects of DA release dynamics that appear separate to RPE coding and 
are thus not accounted for by the RPE-focused models we used here. In 
particular, overall VS DA release may be lower during prolonged epochs of 
lower reward availability43,76, even when the spiking of midbrain DA cells 
is unchanged11,77. Conversely, VS DA can ramp up as animals approach 
rewards43,78, directly reflecting the increasing expectation of reward79. 
These relationships to reward expectation appear to be VS-specific11, 
despite our incorporating distinct subregional timescales for reward 
rate calculation (Fig. 2a). This aspect of VS DA signaling is likely related 
to ongoing motivation and vigor and may involve local striatal control of 
DA release80,81. Further investigation of the mechanisms and timescales 
supporting motivation-related DA release across striatal subregions is 
beyond the scope of the present work but will be the focus of later studies.

Furthermore, while making multiple reward predictions may be 
necessary to support a broad range of adaptive behaviors21,82, we do not 
address how the brain may arbitrate between them83. Cortical-basal 
ganglia circuits are not strictly segregated but rather show conver-
gence and connection30 consistent with overlapping contributions to 
behavioral control. A multiplicity of discount rates has been previously 
proposed19 to be responsible for choices that are inconsistent over time, 
a well-established feature of animal and human economic behavior84,85. 
An important question for future research is whether our increasing 
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Fig. 5 | Subregion-specific discount rates in a multiple delay task. a, Top, the 
task has four trial types (chosen at random), each with a distinct delay to reward. 
Colored bars indicate tone pips. Bottom, average pattern of head entries after 
training (n = 15 sessions, from five rats each recorded on training days 15, 20 and 
25). b, Left, average dLight signals aligned to the onset of each cue (same sessions 
as a; recording locations n = 15 DLS, 8 DMS and 12 VS). Signals are normalized 
to the peak response to unpredicted reward delivery (that is zero delay) in the 
same session. All subregions show the same ordering of cue response sizes but 
differ in their relative sizes. The second peak visible for 0.6 s trials is the response 

to the reward delivery cue. Right, quantification of peak dLight DA (within 0.5 s 
of cue onset), with circles indicating averages for individual sessions. This peak 
depends significantly on both cue identity and subregion (two-way ANOVA, 
significant CUE × AREA interaction, F(4, 96) = 29.3, P = 1.3 × 10−22). c, Left, fit of 
average responses to different cues, assuming exponential discounting of future 
rewards. Right, best-fit exponential decay rate τ for each session (circles) for each 
subregion. τ depends significantly on subregion (one-way ANOVA, F(2, 32) = 13.6, 
*P = 5.2 × 10−5). d, Same as c, but assuming hyperbolic discounting of future 
rewards. τ depends on subregion (one-way ANOVA, F(2, 32) = 12.8, *P = 7.9 × 10−5).
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impatience as rewards draw near reflects the progressive engagement 
of more myopic DA-dependent valuation systems.
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Methods
Animals and behavior
All animal procedures were approved by the University of California, 
San Francisco Animal Care Committee (protocol AN196232). Twenty 
adult wild-type Long-Evans rats (15 males) were bred in-house, main-
tained on a reverse 12-h light/12-h dark cycle and tested during the 
dark phase. All recordings were performed in an operant chamber 
(Med Associates) controlled using custom software in LabVIEW 2017. 
Details on instrumental and Pavlovian behavioral tasks have been 
published previously11,43. For the Pavlovian task, each cue tone (2, 5 or 
9 kHz) was presented as a train of pips (100 ms on and 50 ms off) for a 
total duration of 2.6 s followed by a delay period of 500 ms. Trials with 
one of the three cues, or an unpredicted reward delivery (sugar pellet, 
with an audible food hopper click), were delivered in pseudorandom 
order with a variable intertrial interval (15–30 s, uniform distribution). 
Instrumental task sessions used the following parameters: left–right 
reward probabilities were (independently varying, randomly selected) 
10%, 50% or 90% for blocks of 35–45 trials; the hold period before the Go 
cue was 500–1,500 ms (uniform distribution). For included recording 
sessions, the mean number of trials was 300 (range: 164–407).

For the multiple delay task, we again used cues 2, 5 or 9 kHz tone 
pips (100 ms duration, 50 ms between pips), with each pitch corre-
sponding to a different delay period (selected at random for each rat). 
The shortest delay was signaled by a single pip, the intermediate delay 
by 17 pips and the longest delay comprised 76 pips (totaling 11.4 s). 
Each pip train was followed by a fixed 0.5 s trace period and then the 
same sugar pellet reward delivery (at 75% reward probability for all 
three cues). Sixty trials of each type were randomly intermixed with 
unpredictable reward delivery. Intertrial intervals were randomly 
chosen from a uniform distribution between 15 and 30 s.

Virus and photometry
Under isoflurane anesthesia, 1 μl of adeno-associated virus 
AAV-DJ-CAG-dLight1.3b (2 × 1012 viral genomes per ml; Vigene Bio-
sciences) was slowly (100 nl min−1) injected (Nanoject III; Drummond) 
through a glass micropipette targeting multiple striatal subregions—
ventral (anterior–posterior, AP: 1.7, medial–lateral, ML: 1.7, dorsal–ven-
tral, DV: 7.0 mm relative to bregma), dorsomedial (AP: 1.5, ML: 1.8, DV: 
−4.3) and dorsolateral (AP: 0.84, ML: 3.8, DV: −4.0). During the same sur-
gery, optical fibers (400 μm core and 430 μm total diameter) attached 
to a metal ferrule (Doric) were inserted (target depth 200 μm higher 
than AAV) and cemented in place. Data were collected >3 weeks later, 
to allow for dLight expression. For dLight excitation, blue (470 nm) 
and violet (405 nm; isosbestic control) light-emitting diodes were 
alternately switched on and off in 10 ms frames (4 ms on and 6 ms off)87. 
Excitation power at the fiber tip was set to 30 μW for each wavelength. 
Both excitation and emission signals passed through Mini Cube filters 
(Doric), and bulk fluorescence was measured with a Femtowatt detector 
(Newport, Model 2151) sampling at 10 kHz. Time-division multiplex-
ing produced separate 470 nm (DA) and 405 nm (control) signals, 
which were then rescaled to each other via a least-square fit88. For the 
simultaneous recording of three areas, we used a Neurophotometrics 
system89; technical details were very similar except that the control 
wavelength was 415 nm and detection was camera-based, sampling at 
100 Hz. The fractional fluorescence signal (dF/F) was then defined as 
(470–control_fit)/control_fit.

DA fluctuations alter dLight fluorescence, but absolute fluores-
cence levels are also influenced by several factors that cannot be readily 
accounted for (such as the extent of viral expression and the precise 
placement of the fiber). Consequently, raw photometry signals are 
not directly comparable between subjects (or areas within subjects). 
We therefore chose to normalize evoked dLight responses within each 
subject and subregion before calculating averages. In the case of Pavlo-
vian and multiple delay tasks, the dLight signal was normalized to the 
mean peak response (within 1 s) to unpredictable reward delivery (that 

is, zero delay trials). For the instrumental task, normalization was done 
using the peak DA magnitude (within 1 s) following reward delivery  
(at the Side-In nose poke). The DA response to cues was then estimated 
as the maximum or the minimum normalized response within 0.5 s after 
cue onset, whichever had the larger absolute value (using a 1 s window 
instead did not change results).

Histological confirmation
To verify probe placements, animals were perfused transcardially 
with PBS and then 4% PFA. Brains were postfixed in 4% PFA for 24 h, 
then placed in 30% sucrose in PBS for >48 h and sectioned at a 100 μm 
thickness with a microtome. We used immunofluorescence staining to 
visualize dLight expression. Brain sections with probe placement were 
identified and then blocked in a 0.4% Triton X-100 solution with 5% nor-
mal goat serum for 1 h at room temperature, followed by overnight incu-
bation in a rabbit anti-green fluorescent protein (GFP) primary antibody 
solution (Abcam, ab290; 1:1,000) in PBS in a cold room. Sections were 
washed three times in PBS for 10 min at room temperature and incu-
bated in an Alexa 488-conjugated goat anti-rabbit secondary antibody 
solution (1:250) in PBS for 1 h at room temperature. Finally, sections 
were washed six times in PBS for 5 min at room temperature and then 
mounted onto glass slides and coverslipped using Fluoromount-GTM 
Mounting Medium, with DAPI. Fluorescent images were taken using a 
fluorescence microscope (Keyence BZ-X810) with a ×2 objective lens. 
Fiber tip locations from both hemispheres were projected onto the 
same side in the atlas space.

Computational models
Trial-level models. For the time-based leaky integrator, the reward 
rate was incremented by 1 at each time the rat received a reward and 
exponentially decayed with time constant τ using dVt/dt = −τ + r(t) , 
where r(t) equals one when a trial is rewarded and zero otherwise. τ was 
varied between 1 and 2,500 s, to find the strongest negative correlation 
between reward rate and the DA peak after Side-In (within 0–1 s, on 
rewarded trials; that is positive RPE coding). To estimate the learning 
rate, we instead used a trial-based delta rule. This model tracks a value 
that is updated once per trial by V(t) = V(t − 1) + α (r − V(t − 1)), where 
V(t) is the trial value at trial t, α is the learning rate and r is the outcome 
of each trial (0 or 1). To find the best fit, we varied α between 0 and 1 (in 
0.01 steps).

To estimate the discounting time constant (τ) in the multiple delay 
task, we fit either an exponential ( f = b + Ae

−t/τ ) or a hyperbolic 
( f = b + A/(1 + t/τ)) curve to the peak DA response evoked by each cue. 
For simplicity, in Fig. 5 we ignore the 75% probability of reward. However, 
the ordering of subregions was preserved if we adjusted for probability 
by scaling the cue responses or if we omitted the baseline term b.

Real-time models. The CSC model is a standard temporal-difference 
model of conditioning49. Values are defined as a linear function of fea-
tures x and weights w, Vt (x) = wtx = ∑n

i=1wt(i)x(i), where n is the time steps 
in a trial. The vector x is nonzero only at the t-th element at time step t 
after cue onset, that is, x (i) = δit, where δit is the Kronecker δ function. 
In addition to activating a single distinct feature for each cue, we also 
included one shared feature activated by any of the three cues, to allow 
for generalization. The weights w update according to wt+1 = wt + αδtet, 
where α is the learning rate (we used α = 0.01), δt  is the RPE and et is an 
eligibility trace. The RPE is defined as δt = rt + γVt (xt) − Vt(xt−1), where γ 
is the discount factor. The eligibility trace et is included to accelerate 
learning and updated by et+1 = γλet + xt, where λ is a decay factor (we used 
λ = 0.98). The CSC model was run separately for each discount factor.

The RNN model, based on an advantage actor-critic architecture90, 
is composed of LSTM (long short-term memory) units91. These are 
organized as three subnetworks (‘DLS’, ‘DMS’ and ‘VS’) of 32 nodes each, 
with internal recurrent connections but without direct connections 
between subnetworks. Each subnetwork receives the same copy of the 

http://www.nature.com/natureneuroscience
https://www.ncbi.nlm.nih.gov/nuccore/AN196232


Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01566-3

sensory inputs at each time point and generates its own value estimate 
using a distinct discount factor. All three subnetworks project to the 
same policy component, together generating the probability for taking 
an action (either ‘poke’ or ‘no-poke’). These probabilities are sampled 
to determine the action at each time step. We used a time step of 50 ms.

The vector of sensory inputs to the RNN includes the food deliv-
ery click (0 for no-click or 5 for click), auditory cues and background 
dimensions. Background dimensions (n = 3, all set constantly to 1) 
are included to mimic the background or contextual inputs to the 
network. The auditory cues consist of 20 dimensions, of which three 
are the distinctive one-hot features of the three cues and the remain-
der are set to 1 during all cue presentations to produce similarity  
between cues.

At each time step, the RNN model receives reward feedback. Before 
reward delivery, the reward is 0 for taking the action ‘no-poke’ and 
−0.003 for taking the action ‘poke’; that is, there is a small poking cost 
to discourage constant poking. If the poke output is maintained on 
consecutive time steps, the cost is reduced to 10% of that for the first 
poke. In a rewarded trial, the reward (with value 1) is collected by the first 
‘poke’ action after the reward delivery click. We adopted the convention4 
that the reward associated with an action at  at time t is denoted as rt+1.

The network was trained to perform the conditioning task by 
minimizing a loss function with three terms,

LθPPO = 𝔼𝔼t[LPt (θ) + βVL
V
t (θ) − βeL

e
t (θ)],

where the expectation was over a sequence of time steps with length T. 
We used T = 10,000 steps, which encompasses multiple (~20) trials. We 
took the proximal policy optimization (PPO) for estimating the policy 
loss, which has the following form92:

LPt (θ) = min(ρtAt, clip (ρt, 1 − ϵ, 1 + ϵ)At),

where ρt =
πθ(at |st)

πθold (at |st)
 is the probability ratio, whose value is clipped  

with a parameter ϵ. The advantage At includes three components,

At = AGAEVS (t) + AGAEDMS (t) + AGAEDLS (t) ,

where each term is the generalized advantage estimator (GAE)93 from 
one of the three subnetworks. Take the VS term as an example and 
define δVSt = rt+1 + γVSV

VS
t+1 − VVSt  as the RPE at time t, then

AGAEVS (t) = δt + (γVSλ)δt+1 +⋯+ (γVSλ)
T−t

δT,

where T is the sequence length and λ is a GAE parameter, analogous to 
the λ in the TD(λ) algorithm93. The RPE to be compared with the DA 
signals is defined as RPEVS (t) = rt + γVSV

VS
t − VVS

t−1.
The value loss was given by

LVt (θ) = ( ̄rVSt − VVSt (θ))
2
+ ( ̄rDMSt − VDMSt (θ))

2
+ ( ̄rDLSt − VDLSt (θ))

2
,

where ̄rVSt , ̄rDMSt  and ̄rDLSt  are the accumulated discounted rewards within 
the sequence, given the corresponding discount factor for each sub-
network. We used the value right after T to bootstrap the contribution 
from rewards beyond this sequence. For instance, the expected reward 
for VS has the following expression:

̄rVSt = rt+1 + γVSrt+2 +⋯+ γT−1VS rt+T + γTVSVt+T.

Because γVS is very close to 1, the accumulated reward for ‘VS’ 
subnetwork reflects contributions from multiple trials. Faster discount-
ing for ‘DMS’ and (especially) ‘DLS’ subnetworks results in minimal 
contributions from subsequent trials. The entropy term Le represents 
the entropy of the probability distribution of taking the two actions 
and was added to encourage exploration90. The parameters used were 

as follows: βV = 0.8, βe = 0.001 and λ = 0.98. The discount factor γ and 
time constant τ  are related by γ = e−dt/τ, where dt is the time step and  
τ  for the three areas ('DLS', 'DMS', 'VS') was set to 2 s, 10 s and 1,000 s, 
respectively. The weights of the network were updated using the Adam 
method94, with a learning rate of 0.0005.

Statistics and reproducibility
No statistical methods were used to predetermine sample sizes, but our 
sample sizes are similar to those reported in previous publications11,28,76.

We removed from analyses six fiber placements that produced 
consistently weak DA signals (3 DMS and 3 VS), and we also excluded 
all other individual sessions for which the mean peak DA response 
to unexpected reward cues was less than 1 s.d. (z < 1; 20 of 435 
fiber-sessions excluded, 2 DLS, 16 DMS, 2 VS). Data collection and 
analysis were not performed blind to the conditions of the experi-
ments. Stimulus presentations and trial outcomes were randomized 
by computer. Data distribution was assumed to be normal, but this was  
not formally tested.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The data have been made publicly available at https://doi.org/10.5061/
dryad.00000008m.

Code availability
The custom code used for simulation and data analysis is available on 
the Berke Lab GitHub page: https://github.com/Berke-lab.
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Extended Data Fig. 1 | Photometry recording locations. a, Histology examples 
showing optic fiber tip locations (circled) and dLight1.3b expression (green), 
in DLS, DMS, VS. Scale bar: 1 mm. For all fiber placements, see Fig. 1a. b, Table 
showing included fiber subregions for each rat and task. “L” indicates left 

hemisphere, and “R” indicates right hemisphere. For the instrumental task, 
numbers (1–3) indicate that multiple sessions were included for that fiber 
placement. A subset of data from rats 1065–1107 were previously reported11.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Instrumental behavior and alternative RPE fits.  
a, Schematic of instrumental task events. Here we focus on DA signals following 
the nose poke at Side-In, when the rat discovers if the current trial will be 
rewarded (food hopper click) or not (for information about other events, see  
refs. 11,43). As a measure of reward expectation, we use “latency” (the time between 
initial light on and the rat’s center-in nose poke. b, Example behavioral session 
showing fit between latency (log scale, inverted) and recent reward rate. Tick 
marks at top show the timing and outcome of each trial (taller red ticks indicate 
rewarded trials, shorter black ticks unrewarded). Graphs show latency (5-trial 
running average) and reward rate, calculated with a leaky integrator using the τ 
parameter that produced the strongest (negative) correlation between latency 
and reward rate. c, Left, best-fit τ (to maximize the absolute correlation between 
reward rate and latency) for each session in which DLS, DMS and/or VS signals 
were recorded. There was no significant behavioral difference between recording 

locations (repeated measures ANOVA, F(2,39) = 1.72, p = 0.197). Middle, the 
amount of variance in latency that was explained by best-fit reward rate did 
not differ by recording location (repeated measures ANOVA, F(2,39) = 0.180, 
p = 0.673). Right, Coefficients of multiple regression examining effects of the 
outcome of the preceding 10 trials on (log) latency, separately for each subregion 
(same colors as bar charts). d, Alternative estimates of reward expectation 
produce similar RPE results. Each column uses the same data and format as  
Fig. 2a. From left, “reward rate” is also based on a leaky integrator, but using the 
τ best-fit to latency (as in B/C). “#Rewards in the past 10 trials” is a simple count. 
“Actor-critic” uses the Critic value from a trial-based actor-critic model, fitting 
the critic learning rate to behavioral latency and the actor α, β parameters to left 
and right choices. Q-learning uses a trial-based Q-value model, fitting the α and  
β parameters to choices and using Q (chosen action) as reward expectation.
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Extended Data Fig. 3 | Comparing reward rate timescales using a delta-rule 
learner. a,b,c Identical to Fig. 2a,b,c but using a delta-rule to track reward rates, 
instead of a leaky integrator. This model updates once per trial, rather than 
continuously in time. The learning rate α that maximizes correlation between 

RPE and DA at reward delivery significantly varies by subregion (one-way ANOVA, 
F (2, 39) = 23.2, p = 2.2 x 10-5). The strongest correlations are seen in DLS with 
a larger learning rate (that is faster forgetting of trial history) and in VS with a 
smaller learning rate (that is tracking a more extended history of outcomes).
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Extended Data Fig. 4 | Development of approach behavior and DA cue 
responses in each subregion. a, Head-entry behavior develops in a very similar 
way regardless of recording site. Data shown are averaged across days 1–3, 7–9 or 

13–15, respectively. b, Same sessions as a, but showing mean DA responses during 
each trial type. In all subregions, discrimination between cues increases with 
time, but this is slow in VS. Data are presented as mean ± SEM.
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Extended Data Fig. 5 | Faster temporal discounting can explain weaker 
DLS cue responses. a, In the CSC model, the cue-reward interval is divided 
into a fixed set of brief sub-states (we used 100 ms duration). b, Values and 
corresponding temporal-difference RPEs for the CSC model after training in the 
Pavlovian task (step 3800). Discount factor γ was set to 0.95 (light green, “fast”), 
0.99 (mid-green) or 0.9999 (dark green, “slow”). With a time step of 100 ms, 
these correspond to an exponential time constant (τ) of 2 s, 10 s and 1000 s, 

respectively (γ = exp(−dt/τ)). Even if the cued reward probability is high (75%), 
RPEs at cue onset are weaker when the discount factor is lower (RPEs at reward 
delivery are unchanged). c, Close-up of the CSC RPE response to the 75% cue.  
d, Development of RPEs at cue onsets with training. Note that cue discrimination 
is larger if γ is closer to 1 (plotted in more detail in Extended Data Fig. 6). 
Overlapping cue representations cause this CSC model to produce a positive RPE 
to the 0% cue early in training, but this fades to zero with extended training.
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Extended Data Fig. 6 | Effects of extended model training on cue 
discrimination with different discount factors. Top row, cue-evoked RPEs in 
the CSC model at “early” (600 training steps), “middle” (1000) and “late” (3800) 
stages of learning, as a function of the time parameter τ. (γ = e−dt/τ, where dt is the 
time step size, here 100 ms). Green dashed lines mark γ = 0.95, 0.99 and 0.9999 
as used in Extended Data Fig. 5. Note that for low γ, all cue responses are small 
even after learning since any potential reward is heavily discounted. This CSC 
model initially shows a positive response to the 0% cue due to overlapping cue 
representations; over training this response fades to zero (but cannot become 

negative). Middle row, same for an RNN model (early = 100, middle = 750, late = 
1400 training steps, with dt = 50 ms). To isolate the effect of varying time scale τ,  
this model variant used just a single network (a single τ) rather than three. Note 
that at early and middle stages of learning, if τ is large (γ is close to 1) the RNN 
model shows less discrimination between cues compared to intermediate τ (γ),  
consistent with the observed difference between VS and DMS. Bottom row, 
same as middle row, but also removing the Actor (poking) component. Data are 
presented as mean ± SEM.
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Extended Data Fig. 7 | Apparent discount rates can reflect the tempo of state 
transitions. Discounting differences could be produced by applying a different 
discount rate γ at each state transition (left), or by applying the same discount 

rate over a different number of state transitions within a given interval (right). 
For illustrative purposes, this cartoon assumes a discrete set of defined states in 
each case.
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Data availability: The data has been made publicly available on https://doi.org/10.5061/dryad.00000008m.  

Code availability: The custom code used for simulation and data analysis are available on the Berke lab Github page: https://github.com/Berke-lab
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Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or 

other socially relevant 

groupings

N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to pre-determine sample sizes but our sample sizes are similar to those reported in previous publications 

(11,28,76)

Data exclusions We removed from analyses 6 fiber placements that produced consistently weak DA signals (3 DMS, 3 VS), and we also excluded all other 

individual sessions for which the mean peak DA response to unexpected reward cues was less than one standard deviation (Z < 1; 20 of 435 

fiber-sessions excluded, 2 DLS, 16 DMS, 2 VS).

Replication No replications were attempted.

Randomization Animals were not assigned to different groups.

Blinding Investigators were not blinded. The specific random sequences of stimuli presented to each rat were controlled by computer, rather than 

investigators.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Antibodies

Antibodies used Rabbit anti-GFP antibody was obtained from Abcam (cat# ab290). 

Goat Anti-Rabbit Alexa Fluor 488, Abcam (ab150077)

Validation Information on validation is available at the manufacturer's website: https://www.abcam.com/gfp-antibody-ab290.html

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals Wild-type Long-Evans rats were bred in-house. Ages ranged from 6-12 months.

Wild animals N/A

Reporting on sex Both sexes were used, but the study was not designed to provide adequate statistical power for analysis by sex.

Field-collected samples N/A

Ethics oversight All animal procedures were approved by the University of California, San Francisco Animal Care Committee (protocol# AN196232). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Novel plant genotypes N/A

Seed stocks N/A

Authentication N/A

Plants
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