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ABSTRACT

Faint star-forming galaxies at z ∼ 2− 3 can be used as alternative background sources to probe the Lyman-α forest in addition
to quasars, yielding high sightline densities that enable 3D tomographic reconstruction of the foreground absorption field. Here,
we present the first data release from the COSMOS Lyman-Alpha Mapping And Mapping Observations (CLAMATO) Survey,
which was conducted with the LRIS spectrograph on the Keck-I telescope. Over an observational footprint of 0.157deg2 within
the COSMOS field, we used 240 galaxies and quasars at 2.17 < z < 3.00, with a mean comoving transverse separation of
2.37h−1 Mpc, as background sources probing the foreground Lyman-α forest absorption at 2.05 < z < 2.55. The Lyman-α
forest data was then used to create a Wiener-filtered tomographic reconstruction over a comoving volume of 3.15×105 h−3 Mpc3

with an effective smoothing scale of 2.5h−1 Mpc. In addition to traditional figures, this map is also presented as a virtual-reality
YouTube360 video visualization and manipulable interactive figure. We see large overdensities and underdensities that visually
agree with the distribution of coeval galaxies from spectroscopic redshift surveys in the same field, including overdensities
associated with several recently-discovered galaxy protoclusters in the volume. This data release includes the redshift catalog,
reduced spectra, extracted Lyman-α forest pixel data, and tomographic map of the absorption.
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1. INTRODUCTION

The Lyman-α (Lyα) forest absorption from residual, dif-
fuse, H I in the intergalactic medium (IGM) is a well-
established tracer of cosmological large-scale structure (e.g.,
Croft et al. 1998; McDonald et al. 2006; Slosar et al. 2011;
Busca et al. 2013). In particular, since the hydrogen Lyα
transition (restframe wavelength λ = 1215.67 Å) redshifts
into the optical atmospheric window at z & 2, this makes
the Lyα forest a particularly important probe at redshifts that
are otherwise challenging to access through methods such as
galaxy redshift surveys or gravitational weak lensing, which
at time of writing are typically limited to z < 1.

As the brightest ultraviolet sources in the distant universe,
quasars have been the traditional background objects against
which the absorption of the IGM Lyα forest can be studied
along the foreground lines-of-sight. Due to the compara-
tive rarity of quasars on the sky, however, these studies have
generally been confined to one-dimensional lines-of-sight di-
rectly in front of each quasar (but see D’Odorico et al. 2006;
Rollinde et al. 2003, for early studies using closely-separated
quasar sightlines).

More recently, the Lyα forest component of the BOSS sur-
vey (Eisenstein et al. 2011; Dawson et al. 2013) has sys-
tematically pursued sufficiently high number densities of
z > 2 quasars such that it becomes possible to cross-correlate
the absorption seen in different quasar sightlines (Slosar
et al. 2011), although the mean transverse separation between
sightlines is relatively large (〈d⊥〉 ∼ 20h−1 Mpc). This was,
however, more than sufficient for achieving BOSS’s primary
survey goal of measuring the the baryon acoustic oscillation
signal in the 3-dimensional (3D) Lyα forest clustering (Busca
et al. 2013; Slosar et al. 2013; Kirkby et al. 2013; Font-Ribera
et al. 2014; Delubac et al. 2015; Bautista et al. 2017; du Mas
des Bourboux et al. 2017).

By targeting fainter background sources than the g < 22

quasars observed by BOSS, the mean sightline separation can
be decreased to probe smaller scales, although the quasar
luminosity function is too shallow to be worth the steep
increase in observational resources needed: based on the
Palanque-Delabrouille et al. (2013a) luminosity function, for
example, g < 24 quasars at 2.4 < z < 2.8 that can probe
the z ∼ 2.3 Lyα forest only achieves target densities of ∼
80 deg2 or mean separations of 〈d⊥〉 ∼ 7.5h−1 Mpc. In ad-
dition to quasars, it is possible to dramatically increase sight-
line densities by targeting UV-emitting star-forming galax-
ies at z > 2, often referred to as ‘Lyman-Break Galaxies’
(LBGs) due to their original selection method (Steidel et al.
1996). Lee et al. (2014a) calculated, for example, that a
g = 24.5 survey limit leads to ∼ 1500 deg−2 of sightlines
with a mean spacing of 〈d⊥〉 ∼ 2.5h−1 Mpc.

With background sources separated by only several trans-
verse Mpc, it becomes interesting to carry out a tomographic

reconstruction to recover the 3D Lyα forest absorption field
on spatial resolutions that resolve the cosmic web. This con-
cept was first proposed in Pichon et al. (2001) and Caucci
et al. (2008), while Lee et al. (2014a) studied the observa-
tional feasibility and argued that present-day instrumentation
should be capable of implementing IGM tomography down
to scales of 2-3h−1 Mpc. Subsequently, pilot observations
on the Keck telescope were reported in Lee et al. (2014b)
and expanded, with additional data, into an analysis of a
z = 2.45 galaxy protocluster that was previously discovered
within the tomography field (Lee et al. 2016). Meanwhile,
Stark et al. (2015a) and Stark et al. (2015b) used numeri-
cal simulations to quantify the utility of such IGM maps for
identifying galaxy protoclusters and cosmic voids, respec-
tively, at z ∼ 2.5 (although see Cai et al. 2016, 2017, for
complementary studies). Schmittfull & White (2016) then
showed that IGM tomographic maps could be used to refine
photometric redshifts of foreground galaxies with large halo
masses. Later, Lee & White (2016) demonstrated that up-
coming IGM tomography surveys and facilities will be ca-
pable of recovering the geometric cosmic environments of
large-scale structure (i.e. voids, sheets, filaments, and nodes)
from the z ∼ 2.5 IGM at comparable fidelity to z ∼ 0.4

galaxy redshift survey maps. Krolewski et al. (2017a) ex-
panded this to demonstrate that large-scale structure fila-
ments can be sufficiently resolved by upcoming IGM tomog-
raphy surveys to allow constraints on galaxy-filament align-
ments with samples of > 1000 coeval galaxies.

In this paper, we present the first public data release of
the COSMOS Lyman-Alpha Mapping And Tomographic Ob-
servations (CLAMATO) survey1. This is an observational
program, conducted with the LRIS spectrograph (Oke et al.
1995; Steidel et al. 2004) on the Keck-I telescope designed
as the first systematic attempt to observe relatively faint
star-forming galaxies at z ∼ 2 − 3 at high area densities
(∼ 1000 deg−2) in order to carry out Lyα forest tomograpy
of the foreground IGM. The current release incorporates ob-
servations over 0.157 square degrees of the COSMOS field
obtained with the Keck-I telescope from 2014 through 2017.
The primary product in this release is the tomographically
reconstructed 3D map of the 2.05 < z < 2.55 Lyα forest
absorption derived from 240 background galaxies and QSOs
within the field, but we also include the spectra and estimated
redshifts of 437 objects that were successfully reduced. The
various products have been made available in a public web-
page2, and is described in the Appendix.

This paper will act as a reference for multiple science anal-
yses with the CLAMATO data that are currently in prepara-

1 Website: http://clamato.lbl.gov
2 http://tinyurl.com/clamato2017-data

http://clamato.lbl.gov
http://tinyurl.com/clamato2017-data


CLAMATO IGM TOMOGRAPHY DR1 3

tion, including the first detection of cosmic voids at z > 2

(Krolewski et al. 2017b), the cross-correlation of Lyα for-
est absorption with foreground galaxies from various spec-
troscopic redshift catalogs in the same field, and the analysis
of the multiple clusters and protoclusters that fall within our
current volume. This data set is also intended as a value-
added resource for other researchers studying this heavily-
observed cosmic volume, as well as a reference data set for
future Lyα forest tomography surveys.

In this paper, we assume a concordance flat ΛCDM
cosmology, with ΩM = 0.31, ΩΛ = 0.69 and H0 =

70 km s−1 Mpc−1. The exact choice of cosmology does not
significantly affect our resulting tomographic reconstruction,
since it only affects the conversion of redshift and angular
separation into comoving distances.

2. SURVEY DESIGN AND TARGET SELECTION

As CLAMATO is the first attempt at mapping large-scale
structure using IGM tomography at z ∼ 2, we had to choose
a well-studied extra-galactic field that offers sufficiently deep
imaging, and ideally, spectroscopy to select UV-bright star-
forming galaxies with sufficient depth (g > 24) as to have
mean separations of ∼ 2 − 3′. At the same time, we de-
sired a large enough footprint to cover large-scale structure
on & 10 cMpc scales in the transverse dimension, i.e. an
extragalactic field spanning > 10′. This left the 2deg2 COS-
MOS field (Scoville et al. 2007) as the obvious candidate ac-
cessible from the Northern Hemisphere, which also had the
additional advantage of multiple deep spectroscopic surveys
that cover our target redshifts, e.g. zCOSMOS (Lilly et al.
2007), VUDS (Le Fèvre et al. 2015), MOSDEF (Kriek et al.
2015), and ZFIRE (Nanayakkara et al. 2016). The location
of these fields relative to CLAMATO is indicated in Figure 1.

Currently, CLAMATO has fully covered the ZFIRE foot-
print and approximately 80% of the MOSDEF footprint
within COSMOS. Our original intention was to aim for full
coverage of 3DHST/MOSDEF as soon as possible, but the
discovery of the z ∼ 2.5 galaxy cluster/protocluster system
in the vicinity (Diener et al. 2015; Chiang et al. 2015; Casey
et al. 2015; Wang et al. 2016) motivated us to instead attempt
to cover these extended structures. This drove us towards
higher longitudes at the expense of completing the coverage
of the 3DHST/MOSDEF field, as seen in Figure 1.

The target selection for CLAMATO is aimed at exploiting
the rich availabilty of spectroscopic and multi-wavelength
imaging data within the COSMOS field (Scoville et al. 2007)
in order to maximize the area density and spatial homogene-
ity of g-band (restframe UV at z ∼ 2 − 3) sources that can
probe the foreground Lyα forest absorption within a narrow
redshift range of z ∼ 2 − 3. The COSMOS field has high-
quality multi-wavelength photometric redshifts (Ilbert et al.
2009; Laigle et al. 2016), as well as large numbers of spec-

troscopic redshifts that have already been obtained within
our desired footprint and redshift range. We will also retar-
get objects that have been observed by the zCOSMOS-Deep
(Lilly et al. 2007) and VUDS (Le Fèvre et al. 2015) even
though their spectra, in principle, cover our desired wave-
length range (3700 Å < λ < 4300 Å). This is because the
spectra from both these surveys have a spectral resolution of
R ∼ 200 at these wavelengths, which means that the reso-
lution element is equivalent to 16h−1 Mpc line-of-sight co-
moving distance at z = 2.3; this is far too coarse for our
desired spatial resolution of several Mpc.

This data described in this paper represent three distinct
target selection iterations: Pilot observations (2014-2015),
2016, and 2017. The overall target selection algorithm was
the same over the different observing seasons, but the input
catalog was updated at the beginning of each of the afore-
mentioned epochs to exploit the best-available data at that
point.

Initially, we created a master raw catalog that includes a
superset of objects in the COSMOS field with g < 25.2

at 2.0 < z < 3.5, which would act as a basis for tar-
get selection. As a starting point, we use the compilation
of available spectroscopic redshifts within the 2 deg2 COS-
MOS field by Salvato et al. (in prep), which includes 68116
unique redshifts from all sources3. At our redshift of interest
(z ∼ 2 − 3), most spectroscopic sources within this com-
pilation are from the zCOSMOS-Deep survey (Lilly et al.
2007). We then supplemented this with preliminary versions
of the VUDS (Le Fèvre et al. 2015), MOSDEF (Kriek et al.
2015), and ZFIRE (Nanayakkara et al. 2016) spectroscopic
catalogs, as well as the 3D-HST grism redshifts (Momcheva
et al. 2016).

In addition to spectroscopic redshift catalogs, we also use
the Ilbert et al. (2009) i-band selected photometric redshift
catalog, which in turn is based on the Capak et al. (2007)
imaging multi-wavelength catalog in the 2 deg2 COSMOS
field. The photometric redshifts from Ilbert et al. (2009) ex-
ploit a wide array of multi-wavelength data with up to 30
bands ranging from the ultraviolet to radio wavelengths. This
yields a relatively accurate redshift estimate and low catas-
trophic failure rate. In 2017, we supplemented this with the
Davidzon et al. (2017) photometric redshift catalog, which
is a high-redshift optimization of the NIR-selected catalog of
Laigle et al. (2016) and provides more accurate photometric
redshifts than Ilbert et al. (2009). However, since this is a
NIR-selected catalog, it does not provide good completeness
for restframe UV-bright objects that require an optical detec-
tion. We therefore continue to use the Ilbert et al. (2009)
catalog to provide a baseline of objects and simply replace

3 We used the Apr 2015 iteration of this catalog.
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Figure 1. CLAMATO in context: this shows a Hubble Space Telescope ACS F814W mosaic (Koekemoer et al. 2007) of the central regions
in the COSMOS field, with the footprint of the CLAMATO tomographic map indicated in blue (both the current paper and 2015 version, Lee
et al. 2016). Also shown are the approximate footprints for other spectroscopic redshift surveys that probe similar redshifts, such as 3D-HST
(Momcheva et al. 2016) and MOSDEF (Kriek et al. 2015) in red, zCOSMOS-Deep (Lilly et al. 2007) in brown, VUDS (Le Fèvre et al. 2015)
in orange, and ZFIRE (Nanayakkara et al. 2016) in green.

the photometric redshift values by the Davidzon et al. (2017)
version for objects that have a match. For part of the field,
we were also able to use the ZFOURGE medium-band red-
shifts (Straatman et al. 2016) that should provide superior
photometric redshifts at our target redshift; these were also
incorporated, where available, by overriding the Ilbert et al.
(2009) and Davidzon et al. (2017) redshifts.

The target selection was then carried out as a two-step pro-
cedure: initial selection and prioritization of possible targets,
followed by slitmask design with slit assignments guided by
the target priorities. Note the difference between these steps:
target selection involves identifying all objects that might
possibly be used for our purposes and prioritizing them based
on redshift, magnitude, and probability of success (e.g. spec-
troscopic versus photometric redshift from surveys of vary-
ing quality); but not all of these will be assigned slits due to
packing constraints on each slitmask.

In the selection/prioritization step, we fed the combined
spectroscopic and photometric catalog to an algorithm de-

signed to initially select and prioritize background g-band
sources to homogeneously probe a fixed Lyα absorption red-
shift zα. In our case, since we aimed to probe a finite red-
shift range at z ∼ 2.3, we ran the target selection algo-
rithm at zα = 2.25 and zα = 2.45 and collated the tar-
gets. This algorithm first divides the field into square cells
of 2.75 arc-minutes on a side, approximately our desired
sightline separation. For each cell, it selects candidate back-
ground sources at redshifts (1 + zα)1216/1195− 1 < zbg <

(1+zα)1216/1040−1, that could probe the forest absorption
at zα in the restframe 1040 Å < λ < 1216 Å spectral region
between the Lyα and Lyβ transitions. It then gives the high-
est priority to “bright” sources (defined as g < [24.2, 24.4]

at zα = [2.25, 2.45], respectively) that have spectroscopic
redshifts, while faint or photometric redshift-selected objects
are down-prioritized. Due to slit-packing constraints, the
algorithm deprioritizes relatively bright sources if another,
brighter, high-confidence target is within the same cell, while
fainter or photometric redshift targets might receive relatively
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Figure 2. Slits and footprints of the 23 Keck-I/LRIS slitmasks observed during the 2014-2017 CLAMATO campaign in the COSMOS field,
overlaid on top of the deep Hubble Space Telescope ACS F814W mosaic of the same field (Koekemoer et al. 2007). The blue box indicates
the footprint of the reconstructed tomographic map from the 2.15 < z < 2.55 Lyα forest absorption. Most of the slitmasks were designed
to achieve a uniform survey layer (dark green), while several were ‘special’ slitmasks (red) designed to obtain additional sightlines in specific
regions; see Table 1. The numbers in grey approximately label the field positions.

high priority in the absence of other suitable background
sources within its 2.75 arc-minute cell. To take into account
the possibility that slit collisions from targets in other cells
might clobber the highest-priority source within a given cell,
the algorithm selected multiple sources per cell (with de-
creasing priority) where available. This procedure selected
targets as faint as g = 25.3 in regions with a paucity of better
sources, but such faint targets were assigned a commensu-
rately low priority.

The initial selection of sources, and their priority rankings
from this algorithm, were then fed into the AUTOSLIT3 soft-
ware4 in order to manually design LRIS slitmasks. For the
slitmask design, we chose slits with 1” width and minimum
length of 6.5” separated by 1”. The initial slit assignment
was automatically carred out by AUTOSLIT3 based on the
priorities assigned by the initial target selection algorithm,
which we then refined in order to maximize homogeneity of
bright sources and uniformity of redshift coverage within our
desired 2 . zα . 2.5 absorption redshift range. This man-
ual refinement included modifying the position angle of the

4 https://www2.keck.hawaii.edu/inst/lris/
autoslit_WMKO.html

slitmask (up to ±6− 7 degrees5) in order to mitigate slit col-
lisions between high-priority targets. We also overlapped the
slitmasks slightly in the R.A. direction, in order to ensure at
least λ > 3700 Å spectra coverage for all sources. For each
7′× 5′ LRIS slitmask, we were able to assign ∼ 20− 25 sci-
ence slits. Due to slit-packing constraints and the necessity of
having at least 4 alignment stars within each slitmask, this in
fact included only ∼ 80% of high-priority targets we would
have liked to observe within our desired redshift range — we
frequently had slit collisions between high-priority sources
(or with box stars), while available slits elsewhere had no
high-priority targets and were assigned to low-priority tar-
gets. A higher slit-packing density would have allowed a
slight improvement in sightline density at the same depth,
or an increase in the absorption redshift range beyond the
2.05 < z < 2.55 charted in this survey.

We designed a uniform set of slitmasks to cover our entire
survey footprint (Figure 2), but also supplemented these with
additional slitmasks (Table 1) — designed and observed in
subsequent observing seasons after the initial pass— to in-

5 The noteable exception is slitmask sp18L, which was designed with a
43◦ position angle in an attempt cover a specific gap in the sightline cover-
age.

https://www2.keck.hawaii.edu/inst/lris/autoslit_WMKO.html
https://www2.keck.hawaii.edu/inst/lris/autoslit_WMKO.html
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crease sightline sampling in particular regions of interest, or
to make up for shortfalls in sightline density after the initial
round of observations.

3. OBSERVATIONS & DATA REDUCTION

The CLAMATO observations were carried out using the
LRIS spectrograph (Oke et al. 1995; Steidel et al. 2004) on
the Keck-I telescope at Maunakea, Hawai’i. The observa-
tions described in this papers were carried out in the spring
semesters of 2014-2017 via a total time allocation of 15.5
nights, of which 13.5 nights were allocated by the Univer-
sity of California Time Allocation Committee (TAC) and 2
nights were from the Keck/Subaru exchange time given by
the National Astronomical Observatory of Japan TAC. Out
of this overall allocation, we achieved approximately 60hrs
of on-sky integration6.

For CLAMATO, we focused on the LRIS blue channel
which covers the 3700 Å < λ < 4400 Å wavelength range
corresponding to restframe Lyα at 2.1 . zα . 2.6, our
redshifts of interest. All our observations used the 600-line
grism blazed at 4000 Å in the blue channel, which offers
spectral resolution of R ≡ λ/∆λ ≈ 1100 with 1′′ slits. This
translates to a spectral FWHM ≈ 4 Å or a line-of-sight spa-
tial resolution of 3h−1 Mpc at z ∼ 2.3, which is a good
match for our desired sightline separation. The red chan-
nel was used primarily to assist in object identification and
redshift estimation. In the first two nights of the 2014 obser-
vations, we used the d500 dichroic to split the red photons
into the red camera with 600-line grating blazed at 7500 Å,
but this was deemed to have too short a wavelength cover-
age, and so in all subsequent observations we used the d560
dichroic with the 400-line grating blazed at 8500 Å. This al-
lowed better spectral coverage in the red (up to ≈ 9000 Å) at
the expense of lower spectral resolution, which is still suffi-
cient for spectral identification.

The observations were carried out at a mean seeing of
≈ 0.7′′. In seeing conditions of < 0.8′′ seeing, we typi-
cally exposed for a total of 7200s per ‘normal’ survey slit-
mask, but this was increased up to 14400s in sub-optimal
seeing in order to achieve roughly homogeneous minimum
signal-to-noise over all our data. For ‘special’ slitmasks de-
signed to plug gaps in sightline coverage from the ‘normal’
slitmasks, we integrated longer to build up signal-to-noise on
fainter background sources, up to 19800s (however, many of
these longer integrations were to make up for inferior seeing
conditions). Seeing conditions that were consistently above
1.0′′ was deemed unuseable for CLAMATO, at which point
we moved on to backup targets unrelated to IGM tomogra-
phy. The individual exposures were typically 1800s on the

6 On any given night, from Hawai’i, there was at most 5.5hrs in which the
COSMOS field could be observable below our threshold of airmass 1.5.

blue channel but only 860s on the red channel in order to re-
duce the number of cosmic ray hits in the latter’s thick fully-
depleted CCDs (Rockosi et al. 2010). In practice, we carried
out quick reductions during the observing run to gauge data
quality, and occasionally obtained further integrations on a
slitmask if the signal-to-noise was considered inadequate af-
ter the standard 7200s. A number of the objects were as-
signed slits in the overlap region between two (or more) slit-
masks, and therefore received considerably more exposure
time. Over this observing campaign, we observed 18 ‘regu-
lar’ slitmasks over the survey footprint, and also 5 ‘special’
slitmasks (Table 1 and Figure 2).

The data were reduced with the LowRedux routines from
the XIDL software package7. After the initial flat-fielding,
slit definition and sky subtraction, we co-added the 2D im-
ages of the individual exposures before tracing the 1D spec-
tra. We found that this helps the extraction of faint source
spectra, rather than co-adding the 1D spectra extracted from
the individual exposure frames. Due to instrument flexure,
this was generally feasible only with exposures observed
within the same night or adjacent nights. In cases where
data from different observing epochs could not directly be
co-added in 2D, the spectra from each epoch were co-added
in 1D after extraction and flux calibration. There were 56 ob-
jects that were targeted in more than one slitmask, and their
1D spectra were similarly co-added in the same way after
initial reduction and extraction. One particular object (ID#
00954) received as much as 11.5hrs of integration from be-
ing in the overlap region of 4 slitmasks.

From the 23 unique slitmasks observed in the 2014-2017
CLAMATO campaign (Table 1), we successfully reduced
and extracted 437 spectra from the blue channel (not includ-
ing 19 spectra from unrelated ‘filler’ programs). We also re-
duced the red channel but the extraction proved to be more
challenging than in the blue, yielding only 185 correspond-
ing red spectra. The spectra were visually inspected and
compared with common line transitions and spectral tem-
plates, particularly the Shapley et al. (2003) composite LBG
template, in order to determine their identity and redshift.
For each spectrum, we assigned a confidence ranking of 0-
4, where 0 implies no attempt at an identification (usually
due to corrupted spectra or little/non-existent source flux), 1
is a guess, 2 is a low-confidence redshift, 3 denotes a rea-
sonable confidence, while 4 is a high-confidence redshift de-
rived from multiple spectral features. Out of the 437 reduced
spectra, 289 spectra had confident identifications (≥3 confi-
dence rating) of which 277 were at redshifts z > 2 (Figure 4).
These high-redshift sources can be further classified into 262
galaxies (95%) and 15 broad-line quasars (5%). Our main

7 http://www.ucolick.org/˜xavier/LowRedux

http://www.ucolick.org/~xavier/LowRedux
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Table 1. CLAMATO Data Release 1 Slitmasks

Masknamea α (J2000)b δ (J2000)b Exposure Time (s) Year Observed Remarks

cpilot09 10 00 33.067 +02 20 50.58 7200 2014 Uniform Survey Mask

cpilot08 10 00 32.404 +02 13 48.01 7200 2014 Uniform Survey Mask

cpilot05 10 00 15.365 +02 13 47.01 7200 2015 Uniform Survey Mask

cpilot06 10 00 14.834 +02 20 48.73 7200 2015 Uniform Survey Mask

cpilot02 09 59 58.765 +02 13 45.55 7200 2015 Uniform Survey Mask

cpilot03 09 59 59.014 +02 20 53.21 10800 2015 Uniform Survey Mask

cpilot12 10 00 49.818 +02 20 40.01 16200 2014/2016 Uniform Survey Mask

pc06 10 00 13.503 +02 20 53.43 7200 2015 Targeted at z = 2.10 Protocluster

npc05 10 00 15.358 +02 13 43.08 19800 2016 Targeted at z = 2.30 Galaxy Overdensity

c16 11 10 00 49.944 +02 13 43.01 7200 2016 Uniform Survey Mask

c16 24 10 00 49.014 +02 27 42.63 7200 2016 Uniform Survey Mask

c16 20 10 00 15.809 +02 28 04.78 7200 2016 Uniform Survey Mask

c16 22 10 00 32.398 +02 27 42.96 7200 2016 Uniform Survey Mask

c16 18 09 59 57.717 +02 27 32.81 9000 2016 Uniform Survey Mask

c17 27s 10 01 04.866 +02 13 39.53 10200 2017 Uniform Survey Mask

c17 29 10 01 06.761 +02 27 52.92 7200 2017 Uniform Survey Mask

c17 28s 10 01 07.846 +02 20 47.44 7200 2017 Uniform Survey Mask

c17 62 10 01 23.139 +02 27 33.91 12600 2017 Uniform Survey Mask

c17 61L 10 01 25.656 +02 21 00.15 12600 2017 Uniform Survey Mask

c17 60L 10 01 24.926 +02 13 42.49 9000 2017 Uniform Survey Mask

pc22L 10 00 30.622 +02 27 53.81 10800 2017 Targeted at z ∼ 2.5 Cluster/Protocluster

sp18 10 00 16.563 +02 26 51.88 11100 2017 Designed to plug sightline gap

sp15l 09 59 52.268 +02 20 35.06 8700 2017 Designed to plug sightline gap
aMask name suffixes correspond roughly to field numbers shown in Figure 2.
b Slitmask pointing center.

rationale for classifying a source as either a galaxy or quasar
is to determine their continuum-fitting method; therefore we
classified any source that showed intrinsic absorption lines at
restframe λ > 1216 Å as a galaxy even if it shows a broad
Lyα emission line indicative of AGN activity. Table 2 tabu-
lates our full catalog of extracted sources, while examples of
the high-redshift spectra are shown in Figure 5. The g- and r-
magnitude (AB) distributions of high-confidence spectra are
shown in Figure 3. The median magnitudes of all the high-
confidence spectra, regardless of redshift, are 〈g〉 = 24.38

and 〈r〉 = 24.03, respectively. As we shall discuss later (§ 4),
we will be quite aggressive in selecting background sources
for Lyα forest reconstruction, and therefore the median mag-
nitudes of the final background sightline sample are only
slightly brighter than this: 〈g〉 = 24.34 and 〈r〉 = 24.02.

The relatively low rate (65%) of confidently-identified ob-
jects relative to the extracted spectra is because we filled
any spare slits in our slitmasks with faint low-priority tar-
gets, which often resulted in spectra too noisy to be identi-
fied with confidence. However, of the spectra that did indeed
get identified at high confidence, the yield of high-redshift
(z > 2) objects is excellent (96%), reflecting our strategy of
retargeting spectroscopic catalogs and the high quality of the
photometric redshifts of those that had no prior spectroscopic
redshifts.

For z > 2 LBGs, redshifts estimated from restframe-UV
spectral features are known to have offsets from the ‘true’
systemic redshifts as determined from restframe optical neb-
ular emission lines (Steidel et al. 2010; Rakic et al. 2011).
For CLAMATO, the redshift estimation of the spectra is in-
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Table 2. CLAMATO Data Release 1 Source Catalog

ID# α (J2000)a δ (J2000)a g-maga zphoto
b zspec Confc Type texp (s) Tomod S/NLyα1

e S/NLyα2
f S/NLyα3

g

00762 10 01 00.905 +02 17 27.96 24.21 1.11 2.465 2 GAL 7200 N · · · · · · · · ·

00765 10 01 00.297 +02 17 02.58 24.64 2.93 2.958 4 GAL 7200 Y · · · · · · 2.5

00767 10 01 14.934 +02 16 45.23 24.73 0.21 2.578 3 GAL 12600 Y 3.1 3.2 3.0

00771 10 01 06.870 +02 16 23.38 24.70 2.58 2.530 3 GAL 7200 Y 1.6 1.9 2.0

00780 10 01 14.359 +02 15 15.84 24.28 0.08 0.082 2 GAL 7200 N · · · · · · · · ·

00783 10 01 07.412 +02 14 58.31 24.27 2.59 2.579 4 GAL 10200 Y 4.1 4.5 4.7

00784 10 01 15.952 +02 14 48.41 22.02 2.47 2.494 4 QSO 9000 Y 11.5 13.1 22.1

00785 10 01 05.138 +02 14 41.21 24.51 2.44 2.506 4 GAL 10200 Y 2.1 2.5 2.8

00787 10 01 21.083 +02 14 16.48 24.41 2.62 2.491 3 GAL 9000 N 0.8 1.0 1.1

00788 10 01 33.860 +02 14 25.19 24.24 2.62 2.738 3 GAL 9000 Y · · · 1.6 1.8
aSource positions and magnitudes from Capak et al. (2007).
b Photometric redshift estimate; see text for details.
cRedshift confidence grade, similar to that described in Lilly et al. (2007) but without fractional grades.
dUsage in Lyα forest tomographic reconstruction
eMedian per-pixel spectral continuum-to-noise ratio within the 2.05 < zα < 2.15 Lyα forest.
fMedian per-pixel spectral continuum-to-noise ratio within the 2.15 < zα < 2.35 Lyα forest.
gMedian per-pixel spectral continuum-to-noise ratio within the 2.35 < zα < 2.55 Lyα forest.

NOTE—Table 1 is published in its entirety in the machine-readable format. A portion is shown here for guidance regarding its form and content.

tended to achieve two purposes: selection of the foreground
Lyα forest absorption from the spectral region between the
intrinsic Lyα and Lyβ wavelengths of the background source,
and masking of the small number of intrinsic absorption lines
within the Lyα forest. The selection of the Lyα forest pixels
is relatively insensitive to the precise systemic redshift, but
the masking of the intrinsic absorption lines is carried out
with narrow spectral ranges. We therefore choose to estimate
the source redshift, wherever possible, based on the restframe
λ > 1216 Å absorption lines since this allows the best mask-
ing of the absorption lines within the LBG forest.

The estimated redshifts for all 437 sources are provided
in the online version of Table 2, including low-confidence
objects. We have also made all the reduced spectra available
for download; see the Appendix for details.

4. TOMOGRAPHIC RECONSTRUCTION

Prior to Lyα forest analysis, we first estimated the spec-
tral signal-to-noise within the Lyα forest of the background
sources at z > 2. To be more specific, we evaluated the
‘continuum-to-noise ratio’ (CNR), i.e. the signal-to-noise ra-
tio relative to a rough initial estimate of the background
source intrinsic continuum, C. For the LBGs, this was
done as a simple power-law extrapolation from the restframe

λ > 1216 Å portion of the spectrum, while for the quasars
we fitted principal components to the λ > 1216 Å spectrum,
using templates from Pâris et al. (2011). Note that this ini-
tial continuum for the signal-to-noise estimation is different
from that used to actually extract the Lyα forest (Equation 1,
below) since this is much faster than the more careful mean-
flux regulation used in Equation 1.

We evaluated the CNR of the Lyα forest pixels in each
spectrum over three absorption redshift ranges: 2.05 < zα <

2.15, 2.15 < zα < 2.35 and 2.35 < zα < 2.55. Any high-
redshift spectrum with confidence≥ 3 that has 〈CNR〉 ≥ 1.2

over either Lyα forest absorption redshift range was deemed
useful for tomographic reconstruction. This is an aggressive
choice which incorporates nearly every background object
with a confident redshift estimate (Figure 4), leaving out only
objects that were identified primarily through a Lyα emission
line and therefore have negligible continua. We believe this is
a reasonable approach since our Wiener-filtering reconstruc-
tion algorithm has noise-weighting, and Lee et al. (2014a)
also argued for such an approach in the 〈d⊥〉 & 1.5h−1 Mpc

shot-noise dominated regime which CLAMATO is in.
These position of the sightlines on the sky are shown in

Figure 6. Note that this is a selection of Lyα forest sight-
lines specifically probing the 2.05 < zα < 2.55 Lyα forest
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Figure 3. Magnitude distribution of CLAMATO objects with high-
confidence (> 3) redshift identifications, showing g-magnitude at
top and r-magnitude at bottom. In both cases, the red histogram in-
dicates objects that were subsequently used as background sources
for the Lyα forest tomographic reconstruction. Small numbers of
bright (< 23rd magnitude) sources have been omitted in these axes.

where we will carry out the tomographic reconstruction, and
does not encompass all possible Lyα forest pixels in our data
set; some of our other pixel-based analyses may make use of
different selection criteria in position, redshift, and signal-to-
noise than here.

There are 240 spectra within the redshift range 2.165 <

zspec < 3.034 (see Figure 4) that fulfilled both signal-to-
noise and redshift criteria to contribute to the tomographic
reconstruction of the foreground Lyα forest within at least
part of the redshift range 2.05 < zα < 2.55. The distri-
bution of estimated Lyα forest signal-to-noise is shown in
Figure 7 at several redshifts within our volume. A power-
law with index of −2.7, which was adopted by Krolewski
et al. (2017a) and Krolewski et al. (2017b) is a reason-
able match for this distribution. Based on the positions of
these sightlines, we defined a transverse footprint for the to-
mographic reconstruction. This spans a comoving region
of 26.6′ × 21.3′ in the R.A. and declination dimensions,
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Figure 4. Redshift distribution of well-identified (≥ 3 confidence
rating) spectra in the current CLAMATO data release, shown as
the black histogram with redshift bins of ∆(z) = 0.05. The red
histogram indicades background sources that were actually used to
tomographicaly reconstruct the foreground Lyα forest at 2.05 <
zα < 2.55. These plot axes leave out 8 objects at z < 1.6 and 1
object at z > 3.2.

Figure 5. Examples of the reduced high-redshift spectra from our
data set. The object at the top is a quasar, while the others are LBGs
with Lyα emission. For clarity, the spectra have been smoothed
with a 3-pixel tophat filter. The galaxy at the bottom is among our
faintest objects, and has marginally sufficient signal-to-noise in the
Lyα forest to contribute to our tomographic reconstruction thanks
to an above-average 6hrs of exposure over multiple slitmasks.
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symbols denote coverage over different redshift ranges. Some background sources have the correct redshift to cover large ranges of our targeted
foreground redshift range and are therefore indicated by multiple symbols. We have also marked with red diamonds the angular position of
several known overdensities, at z = 2.10 (Spitler et al. 2012; Nanayakkara et al. 2016), z = 2.44 (Diener et al. 2015; Chiang et al. 2015),
z = 2.47 (Casey et al. 2015), and z = 2.51 (Wang et al. 2016). The top and right-hand axes denote the transverse comoving distances in the
coordinates of our tomographic map grid.

respectively (Figure 6); the center of this footprint is at
10h00m41.s23,+02◦19′38.78′′ (J2000). This is equivalent to
a transverse comoving scale of 30h−1 Mpc × 24h−1 Mpc

at 〈z〉 = 2.30. The overall projected area density of all
the sightlines that fall within the map footprint8 is Nlos =
1455 deg−2. However, due to the finite path length of Lyα
forest probed by each background spectrum, the differential
sightline density, nlos(z) = dNlos/dz, at any given redshift
within the volume is somewhat lower than this. Averaged
over the redshift range of the map, the mean sightline den-
sity is 〈nlos〉 = 866 deg−2, equivalent to a mean sightline
separation of 〈d⊥〉 = 2.35h−1 Mpc. At the low- and high-
redshift ends of the map volume (z = [2.05, 2.55]), the ef-
fective sightline density is nlos = [673, 451] deg−2, equiva-
lent to average transverse comoving separations of 〈d⊥〉 =

[2.61, 3.18]h−1 Mpc between sightlines (see Figure 8). The
effective sightline density increases towards the middle of

8 For this calculation, we ignore sightlines that fall outside the map
boundary (Figure 6), although they will nonetheless contribute to the to-
mographic reconstruction.

the map redshift range, to a peak density of 1099 deg−2 at
zα = 2.32, near the mean redshift,. This is equivalent to
〈d⊥〉 = 2.04h−1 Mpc comoving transverse separation. Note
that these sightline densities are not uniformly distributed
throughout the map footprint due to shot noise as well as
some background source clustering from the known galaxy
overdensities at z ∼ 2.5.

In comparison, the BOSS sightline density — which had
hitherto the best 3D sampling of the Lyα forest — is of-
ten quoted as 16 deg−2 (Lee et al. 2013), but this is in fact
the projected sightline density over all redshifts; the effec-
tive sightline density (which gives the transverse sightline
separation at a given redshift) for BOSS peaks at 9 deg−2 at
zα = 2.3. CLAMATO therefore represents a two order-of-
magnitude increase in the sightline density probing the Lyα
forest, albeit over a much more limited area.

For the spectra that we want to analyze, we divide the
observed spectral flux density, f , by the estimated contin-
uum, C, and the assumed mean Lyα forest transmitted flux,
〈F 〉(z), at that redshift, to obtain the Lyα forest fluctuation
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at each pixel:

δF =
f

C 〈F 〉(z)
− 1. (1)

We adopt the Faucher-Giguère et al. (2008) values for
〈F 〉(z).

The intrinsic continua, C, of the sources is estimated dif-
ferently depending on whether they are galaxies or quasars.

For the quasars, we apply PCA-based mean-flux regula-
tion (MF-PCA; e.g., Lee et al. 2012, 2013). Each spec-
trum is fitted with a continuum template to obtain the cor-
rect shape for the intrinsic emission lines, which is further
fitted with a linear function within the Lyα forest region
such that it yields a mean absorption consistent with Faucher-
Giguère et al. (2008). Since the integrated forest variance
over each ∼ 400h−1 Mpc sightline is equivalent to only
∼ 2% rms (e.g., Tytler et al. 2004) this technique allows au-
tomated continuum-fitting with < 10 % rms errors even with
noisy spectra. This technique was applied to the restframe
1041 Å < λ < 1185 Å Lyα forest region of the quasar spec-
tra using templates from Pâris et al. (2011), masking intrinsic
broad absorption where necessary.

A similar process is applied on the galaxies, albeit assum-
ing a fixed continuum template from Berry et al. (2012) and
adopting a more generous Lyα forest range (1040 Å < λ <

1195 Å). We also mask±7.5 Å (observed frame) around pos-
sible intrinsic absorption at restframe N II λ1084, N I λ1134,
C III λ1176, and Si II λλ1190, 1193 . We estimate that the
continuum errors are approximately∼ 10% rms for the nois-
iest spectra (S/N ∼ 2 per pixel) and improving to ∼ 4% rms
for S/N ∼ 10 spectra (Lee et al. 2012).

The δF pixel values, as well as the associated noise un-
certainty, σN , from the pipeline, constitute the input for the
tomographic reconstruction. We have made these extracted
δF and σN pixel data publicly available; see the Appendix
for details.

The next step for the reconstruction is to define the three-
dimensional comoving output grid for the map. We choose
an area spanning 26.6′ × 21.3′ in the longitudinal and lat-
itudinal dimensions, respectively (Figure 6), and spanning
a redshift range of 2.05 < z < 2.55. The angular foot-
print of this grid is 3.5× larger than that in Lee et al. (2016),
while we have also extended the redshift range by 67% from
2.20 < zα < 2.50 to 2.05 < zα < 2.55. The extension to
lower redshifts was because we realized that that the sightline
density was higher at lower redshifts than originally antici-
pated (Figure 8), while we also extended to slightly higher
redshifts in order to investigate the Wang et al. (2016) galaxy
cluster at z = 2.51 despite the falling sightline density.

We adopt the simplification of a fixed Hubble parameter,
H(z), throughout our map volume evaluated at the mean
redshift, 〈z〉 = 2.30. This means that the differential co-
moving distance, dχ/dz, is constant throughout our map,
such that a redshift segment of length δz is equivalent to
the same comoving distance δχ everywhere in our grid.
The 26.6′ × 21.3′ transverse footprint of the output grid
therefore translates to a fixed transverse comoving scale of
30h−1 Mpc×24h−1 Mpc at all redshifts in our map. These
approximations mean that we will have a smoothing kernel
(see below) that actually varies in size by several percent
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between the nearest and farthest ends of the map, but dra-
matically simplifies our map-making. With this approxima-
tion, we thus define an output grid of 60 × 48 × 876 cells
each 0.5h−1 Mpc on a side. This cell size allows an ad-
equate sampling of our tomographic reconstruction, which
has an effective smoothing scale of ∼ 2 − 3h−1 Mpc. The
overall comoving volume covered by the output grid is thus
3.15 × 105 h−3 Mpc3. This is 5.4× larger in comoving vol-
ume than the map described in Lee et al. (2016).

For the mapmaking, we use a Wiener filtering implementa-
tion developed by Stark et al. (2015a) (although see Cisewski
et al. 2014 for an alternative algorithm). This solves for the
reconstructed Lyα forest flux field:

δrec
F = CMD · (CDD + N)−1 · δF , (2)

where CDD + N and CMD are the data-data and map-
data covariances, respectively. This algorithm uses precon-
ditioned conjugate gradient technique to solve the matrix
inversion and matrix multiplication steps of reconstruction.
We assumed a diagonal form for the noise covariance matrix
N ≡ Nii = σ2

N,i, such that there only diagonal elements
populated by the pixel variances σ2

N,i. However, there are a
small number of spectra, primarily from bright quasars, with
signal-to-noise ratios > 10× larger than the average, that
could dominate the reconstruction due to the noise-weighting
of the Wiener filter. We therefore introduced a noise floor of
σN,i ≥ 0.2 to the noise vector to allow a more uniform con-
tribution from all sightlines.

We also assumeed a Gaussian covariance between any two
points r1 and r2, such that CDD = CMD = C(r1, r2) and

C(r1, r2) = σ2
F exp

[
−

(∆r‖)
2

2L2
‖

]
exp

[
− (∆r⊥)2

2L2
⊥

]
, (3)

where ∆r‖ and ∆r⊥ are the distance between r1 and r2
along, and transverse to the line-of-sight, respectively. We
adopt a transverse and line-of-sight correlation lengths of
L⊥ = 2.5h−1 Mpc and L‖ = 2.0h−1 Mpc, respectively, as
well as a normalization of σ2

F = 0.05. This form of covari-
ance and parameters were determined by Stark et al. (2015b)
to be approximately optimal for our data. Intuitively, L⊥ can
be thought of as set by our average sightline separation, i.e.
L⊥ ≈ 〈d⊥〉, while L2

‖ ≈ L
2
⊥ − σ2

lsf , i.e. it takes into account
the spectral smoothing by the spectrograph, σlsf , to matchL⊥
in the line-of-sight dimension and thus provide an isotropic
smoothing kernel.

We carried out the Wiener reconstruction of the map data
from the 64332 input pixels with the aforementioned param-
eters using the Stark et al. (2015a) algorithm, with a stopping
tolerance of 10−3 for the pre-conditioned conjugation gradi-
ent solver. This required a run-time of approximately 1000s

using a single core of a Apple MacBook Pro laptop with 2.9
GHz Intel Core i5 processors and 16GB of RAM.

The resulting map is publicly available for download as a
binary file; see the Appendix for details.

5. RESULTS

While there are multiple science analyses in preparation
based on the CLAMATO data presented in this paper, here
we qualitatively discuss the more noteable features apparent
in the tomographic Lyα forest absorption map described in
the previous section.

5.1. Visualizations

In Figure 9 we show a slice visualization of the map, where
we have divided the three-dimensional volume into projected
slices over the longitudinal (i.e. R.A.) direction with thick-
nesses of 2h−1 Mpc. The x-axis of each slice therefore de-
notes the redshift or line-of-sight dimension, while the y-
axes are along the declination or latitudinal dimension in
the plane of the sky. For clarity, we have found it useful
to further smooth the map with a Gaussian kernel, in this
case with standard deviation R = 2h−1 Mpc. For compar-
ison, we have also overplotted the positions of 552 known
coeval spectroscopic redshifts that overlap our map volume,
which are primarily from zCOSMOS-Deep (Lilly et al. 2007)
and VUDS (Le Fèvre et al. 2015), but also from publicly-
released redshifts such as MOSDEF (Kriek et al. 2015) and
ZFIRE (Nanayakkara et al. 2016). We also included the po-
sitions of our own CLAMATO galaxies that fell within the
foreground map volume. For the galaxies with spectroscopic
redshifts from more than one survey, we used the redshift es-
timates in the following order of descending priority: MOS-
DEF, ZFIRE, CLAMATO, VUDS, then zCOSMOS-Deep.

We have also created a video visualization of our map us-
ing the Blender software9. While it is not a commonly-used
tool for scientific visualization, it has offers superior scene
design and camera handling to most scientific visualization
packages. Because our tomographic map consists only of
scalar values, we can apply direct volume rendering such
that each density value is mapped to a particular color and
opacity value via a transfer function. To accomplish this, we
make use of Blender’s internal render engine where scalar
values on a Cartesian grid can be represented as voxel data
and the transfer function can be defined using a color ramp.
The galaxies are represented by small spheres which all have
the same size — in the future, we will aim to incorporate the
morphologies and colors of the individual galaxies into the
visualization. We have also created a 360-degree video that is
compatible with the YouTube 360 Video API or planetarium
projectors. As the internal render engine in Blender has no

9 https://www.blender.org/

https://www.blender.org/
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Figure 9. Wiener-filtered tomographic reconstructions of the Lyα forest absorption field, δrecF , at 2.05 < zα < 2.55 from the current
CLAMATO data (color map), shown after smoothing with an isotropicR = 2h−1 Mpc Gaussian kernel. Each color panel shows the absorption
projected over a 2h−1 Mpc R.A. slice, the position of which is denoted by the shaded region in the subpanels to the left that also show the
sightline positions on the sky as red dots. The color convention for the absorption is such that red denotes overdensities while blue denotes
underdensities. White horizontal lines denote the sightline coverage, while symbols mark the location of known foreground galaxy redshifts:
downwards triangles from MOSDEF, upwards triangles from ZFIRE, squares from VUDS, diamonds from zCOSMOS-Deep, and circles from
CLAMATO. The large black stars indicate the reported central positions of the galaxy overdensities at z = [2.10, 2.44, 2.47, 2.51]. This
sequence is continued in Figure 10.

full-sky camera, we have to render six orthogonal camera im-
ages per frame for each camera position, with each camera’s
field-of-view set to 90deg × 90deg. All six images are then
assembled into a so-called cube-map image which is subse-
quently mapped to a equirectangular projection as needed for
360deg videos by means of a small OpenGL program.

This video can viewed in the online version, while a
spherically-projected version has been uploaded to YouTube10

that can be displayed with their 360 Video API, which al-
lows the viewer to pan the viewing angle on most common
web browsers by clicking and dragging with a mouse or

10 https://youtu.be/QGtXi7P4u4g

https://youtu.be/QGtXi7P4u4g
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Figure 10. Continued from Figure 9.

trackpad. For users viewing the video with the Android
or iOS YouTube smartphone application, this also exploits
smartphone gyroscopes and accelerometers to offer a limited
virtual-reality (VR) experience in conjunction with afford-
able Google Cardboard-compatible stereoscopic headsets.
The viewer can turn his or her head to vary the camera view-
point over the three rotational degrees of freedom (yaw, roll,
and pitch) but not the three translational degrees.

Another alternative method of viewing the 3D map is with
an interactive online X3D figure (Vogt et al. 2016), which al-
lows readers of the online version to pan and zoom the map
viewpoint11 within their web browser. The rendering capa-
bilities of the X3D pathway is somewhat more limited than
the Blender software used to create the video, in that it can-
not render a complicated transfer function of the map opacity,

11 Preprint placeholder: http://www.mpia-hd.mpg.de/homes/
tmueller/projects/clamato/map2017.html

so we have only chosen to show two iso-density contours at
δrec
F = −0.08 and δrec

F = −0.18 with the former as a trans-
parent blue layer while the latter is opaque, along with the
positions of the coeval galaxies.

5.2. Large-Scale Structure Features

In all these visualizations, the IGM absorption and the co-
eval galaxies generally appear to trace the same structures.
However, the foreground galaxy redshifts are incomplete
across our volume, and several of the spectroscopic surveys
(i.e. MOSFIRE and ZFIRE) target only a limited sub-field
within the central portion of the CLAMATO footprint (see
Figure 1). It would therefore be challenging to construct a
uniform density map from the galaxy redshifts, whereas the
tomographic map delivers a more detailed view of large-scale
structure in that volume. In upcoming papers, we will inves-
tigate the relationship between galaxy properties and their
density environment, assuming that the Lyα forest absorption
traces large-scale structure. There will be alternative analy-

http://www.mpia-hd.mpg.de/homes/tmueller/projects/clamato/map2017.html
http://www.mpia-hd.mpg.de/homes/tmueller/projects/clamato/map2017.html
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Figure 11. Still image from our 3D video visualization of the CLAMATO reconstructed absorption map (smoothed with a R = 2h−1 Mpc
Gaussian kernel), where the absorption is indicated by the blue transparency. Foreground galaxy redshift positions are denoted by the yellow
dots, while the triad (not present in the video) indicates the directions of increasing R.A., declination, and redshift. The full video, which offers
a virtual reality option when viewed with a smartphone and Google Cardboard-compatible headset, can be viewed on https://youtu.be/
QGtXi7P4u4g.

Figure 12. Three-dimensional rendering of the CLAMATO tomographic map, showing two isodensity contours at δrecF = −0.08 and δrecF =
−0.18, along with coeval galaxy positions shown as dots. This figure is available online as an interactive figure (http://www2.mpia-hd.
mpg.de/homes/tmueller/projects/clamato/map2017.html) — it requires a load-time of several minutes. By left-clicking and
moving the mouse, the viewpoint can be rotated, while the right-mouse button or scroll wheel can be used to zoom in or out; double left-clicking
at any point in the map focuses the viewpoint there. The buttons labeled ‘Isosurface: -0.08’ and ‘-0.18’ toggles the respective isodensity surfaces
on and off. The ’Reset View’ button restores the figure to its default state and perspective.

ses using different formalisms: a direct comparison of galaxy
positions with the local IGM absorption, and a pixel-level
cross-correlation analysis analogous to those carried out in
BOSS for quasars and damped Lyα absorbers (Font-Ribera
et al. 2012, 2013). In both cases, we will aim to carry out the
investigations as a function of galaxy properties fitted from
their spectral energy distributions. A recent study (Sorini
et al. 2017) has also argued that the precise shape of the
galaxy-forest cross-correlation on∼ 1h−1 Mpc scales could
be used to place constraints on galaxy feedback, which will
make feedback models another parameter space we could in-
vestigate.

With reference to the galaxy redshifts alone, an apparent
lack of galaxies at any point in space in these visualizations
do not necessary imply a true absence of galaxies due to

the incompleteness of the galaxy surveys. But in the IGM
map, we clearly see large coherent underdensities, with a no-
tably striking underdensity at z ≈ 2.35 appearing to extend
> 10h−1 Mpc along both the transverse and line-of-sight di-
mensions. These underdensities also appear to be devoid of
galaxies and therefore are likely to be true cosmic voids. A
detailed analysis of the cosmic voids in the CLAMATO map,
which are by far the most distant such objects ever found, is
presented in a companion paper (Krolewski et al. 2017b).

Conversely, we see excess absorption corresponding to
multiple galaxy overdensities that have been identified
through other methods. In particular, we clearly see the
extended Lyα absorption signature from the z ≈ 2.5 over-
density comprised of the z = 2.44 protocluster (Diener et al.
2015; Chiang et al. 2015), z = 2.47 protocluster (Casey

https://youtu.be/QGtXi7P4u4g
https://youtu.be/QGtXi7P4u4g
http://www2.mpia-hd.mpg.de/homes/tmueller/projects/clamato/map2017.html
http://www2.mpia-hd.mpg.de/homes/tmueller/projects/clamato/map2017.html
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et al. 2015), and X-ray detected z = 2.51 cluster (Wang et al.
2016). In the 3D visualizations (Figure 11 and 12), we see
that these structures appear to form a giant interconnected
structure extending roughly from 2.44 < z < 2.52 with a
complex topology. Another known overdensity seen in our
map is the z = 2.095 galaxy protocluster initially identified
through the ZFOURGE medium-band photometric redshift
survey (Spitler et al. 2012) and subsequently confirmed with
NIR spectroscopy (Nanayakkara et al. 2016). In an upcoming
paper we will analyze the properties of these overdensities in
conjunction with large-volume hydrodynamical simulations,
although further CLAMATO data will be required in order
to fully map out the extent of these overdensities since they
overfill our current map boundaries. In particular, we are
interested in the fate of the z = 2.44 − 2.51 system of over-
densities: Wang et al. (2016) have argued that the z = 2.51

overdensity, in itself, might collapse into a 2 × 1015 M�
galaxy cluster at late times, i.e. it might be fated to become
one of the most massive clusters in the known universe. With
the detailed large-scale structure information from IGM to-
mography, we will aim to carry out a detailed investigation
into the evolution of these structures, especially using con-
strained realization techniques (e.g., Jasche et al. 2015; Wang
et al. 2014).

6. DISCUSSION

The idea of implementing Lyα forest tomography on
8-10m class telescopes was first suggested by Lee et al.
(2014a), using analytic calculations and numerical simula-
tions to make the case. The initial planning and survey design
for CLAMATO was driven by many of the assumptions from
this paper. Now that there is substantial data in hand, we
can now discuss the performance of our survey and compare
with what was assumed in Lee et al. (2014a).

Firstly, it is possible to estimate the fidelity of our tomo-
graphic reconstruction by carrying out mock reconstructions
on numerical simulations with the same sightline density and
signal-to-noise, and then comparing to the underlying ‘true’
Lyα forest. We quantify this with the map signal-to-noise, as
suggested in Lee et al. (2014a):

S/Nε =

√
Var(δtrue

F )

Var(δrec
F − δtrue

F )
, (4)

where δtrue
F is the true Lyα forest flux field from the sim-

ulation and δrec
F is the tomographic reconstruction of mock

data from the same volume. For this purpose, we use the
same L = 256h−1 Mpc N-body simulations as Stark et al.
(2015a,b). We first divide up the simulation volume into
32h−1 Mpc×32h−1 Mpc×256h−1 Mpc chunks to approx-
imate the elongated CLAMATO survey geometry, randomly
drawing Lyα forest absorption skewers with a mean sight-
line separation of 〈d⊥〉 = 2.5h−1 Mpc, and then adding

Gaussian random noise to each sightline’s pixels, consis-
tent with the signal-to-noise distribution of the CLAMATO
sightlines. We also introduced a random continuum error
to each sightline based on the sightline signal-to-noise: we
assumed a inverse relationship between the signal-to-noise
and continuum error, such that, e.g. a S/N = 2 sightline
gets 12% continuum error while a S/N = 10 sightline gets
only 3.5% continuum error (for more details, see Krolewski
et al. 2017b). The sightlines from each mock survey are then
Wiener-reconstructed the same way as the CLAMATO data.

Following the prescription from Lee et al. (2014a), we then
Gaussian-smooth both the true and reconstructed flux fields
with a R = 4h−1 Mpc kernel (i.e. a smoothing kernel 1.4×
the mean sightline separation) before calculating the map
signal-to-noise. For CLAMATO, we find S/Nε = 2.26 after
averaging over 64 mock survey volumes. This is a slightly
conservative estimate since the 〈d⊥〉 = 2.5h−1 Mpc sight-
line separation assumed in the mocks is sparser than the av-
erage 〈d⊥〉 = 2.37h−1 Mpc over our entire map, but it is
within the S/Nε ∼ 2 − 2.5 range of what Lee et al. (2014a)
considered a good reconstruction quality. We also cross-
checked this with the analytic method for calculating S/Nε

(Equation 18 in Lee et al. 2014a), which takes as input the
sightline signal-to-noise distribution. This calculation yields
S/Nε = 2.30, which is in good agreement with the estimate
from the mock reconstructions12.

However, in retrospect we now find the forecasts from Lee
et al. (2014a) to be optimistic compared to what we have been
obtaining with CLAMATO. In particular, the forecasted area
density of LBGs at fixed magnitude is considerably lower
than what we observe. Lee et al. (2014a), for example, pro-
jected a sightline density of 660 deg−2 at a magnitude limit
of g ≤ 24.2 whereas we have the equivalent of 344 deg−2

at the same limit. Since CLAMATO should be reasonably
complete at the bright end, we believe this is a genuine dis-
crepancy and attribute it to the likely combination of sev-
eral factors: (i) a mismatch between the g filter assumed
in Lee et al. (2014a) and the different filter set of Reddy
et al. (2008), whose luminosity function was used to esti-
mate sightline availabilty, (ii) uncertainties in the luminosity
function, whose error bars are a factor of 2 or 3 at the bright
end. Due to the steep slope at the bright end of the luminos-
ity function, even small discrepancies could translate to large
differences in number count.

The scaling of spectral signal-to-noise with exposure time
in Lee et al. (2014a) was also found to be too optimistic.
The older paper assumed, for example, that a 4hr exposure
with the VLT (equivalent to 2.6hrs on with the larger Keck

12 To assist in planning of future IGM tomography surveys, we have
made the analytic code publicy available: https://github.com/
kheegan/tomo_mapsn.

https://github.com/kheegan/tomo_mapsn
https://github.com/kheegan/tomo_mapsn
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telescope) would yield S/N=4 per angstrom on a g = 24.0.
We find, on the other hand, that a comparable exposure time
yields only S/N≈3 per angstrom (with a considerable scatter)
on a similar source magnitude. This is most likely due to the
fact that Lee et al. (2014a) assumed that the star-forming (and
hence UV-emitting) regions of the background galaxies are
point sources, whereas real LBGs are sufficiently extended
as to increase the amount of sky background noise beyond
that assumed by Lee et al. (2014a).

In the CLAMATO observations, we made up for these
shortfalls by filling our slitmasks with targets even if they
fall below our nominal survey limit, and then being aggres-
sive in incorporating low signal-to-noise spectra into our to-
mographic reconstruction. Lee et al. (2014a) calculated that
adding more, low signal-to-noise, spectra is a viable sur-
vey strategy to boost the tomographic map signal-to-noise
in the 〈d⊥〉 & 1h−1 Mpc shot-noise dominated scales which
CLAMATO is probing. We have also reobserved many fields
within our footprint, both to obtain additional integration
times or with redesigned slitmasks as new targeting infor-
mation became available. Our sightline coverage is there-
fore more homogeneous than if we had pursued a single-pass
strategy with fixed exposure time, and even then there are
gaps in the footprint that we were not able to fill even after
10hrs of integration (see Table 1).

We were also likely helped by the presence of the overden-
sities at z ∼ 2.44−2.51, which provided additional sightlines
for the zα < 2.4 map region in their foreground. We there-
fore expect our mean sightline separation to increase from
the current 〈d⊥〉 = 2.37h−1 Mpc as the survey footprint ex-
tends into the rest of the COSMOS field.

7. CONCLUSION

In this paper, we have described the first data release of
the CLAMATO Survey, the first systematic attempt at imple-
menting 3D Lyα forest reconstruction on several-Mpc scales
using high area densities (∼ 1000 deg−2) of background
LBG and quasar spectra.

With Keck-I LRIS observations of 23 multi-object slit-
masks over 0.157deg2 in the COSMOS field, we obtained
293 spectra with confident redshifts, of which 240 were at
the right redshift and had sufficient signal-to-noise to used as
background sources probing the 2.05 < zα < 2.55 Lyα for-
est. The average transverse separation between these sight-
lines is only 〈d⊥〉 = 2.35h−1 Mpc. We used these spec-
tra to create a three-dimensional tomographic map of the
IGM absorption at these redshifts, which has comoving di-
mensions of 30h−1 Mpc × 24h−1 Mpc × 438h−1 Mpc '
3.15× 105 h−3 Mpc3. We have made all the catalogs, spec-
tra, pixel data, and reconstructed maps publicly available (see
Appendix).

By eye, the CLAMATO absorption map appears to trace
similar structures as the coeval galaxies with known spec-
troscopic redshifts within the COSMOS field, and also re-
veals large extended structures associated with several known
galaxy overdensities in the field. There are also clear un-
derdensities that are also devoid of galaxies and hence cor-
respond to cosmic voids (Krolewski et al. 2017b). Multi-
ple science analyses are now ongoing on this data, including
measuring the cross-correlation between the Lyα forest and
coeval galaxies, studying galaxy properties as a function of
IGM environment, and analysis of the protoclusters in the
volume.

Over the next few years, we hope to expand the CLAM-
ATO map to at least 0.5 deg2, which will achieve a cosmo-
logical volume of 106 h−3 Mpc3. This will give full cover-
age of the large overdensities we currently see in the map,
and cover ∼ 1200 coeval galaxies, which would offer suffi-
cient statistical power for comparative studies of their prop-
erties as a function of IGM environment. For cosmology,
preliminary estimates suggest that the full CLAMATO sur-
vey will have comparable numbers of unique 3D Lyα forest
pixel-pairs at several-Mpc separations as the 1D pixel-pairs at
similar scales used in the BOSS DR9 one-dimensional forest
flux power spectrum measurement (Palanque-Delabrouille
et al. 2013b). This could allow interesting complementary
constraints on cosmological parameters such as the sum of
neutrino masses and the curvature of the primordial density
fluctuation power spectrum. Another interesting measure-
ment that could be attempted with the CLAMATO data is
the weak-lensing of the Lyα forest (Croft et al. 2017), which
uses the gravitational deflection of the z ∼ 2 − 3 Lyα forest
to probe the z ∼ 1 matter field, which is at a higher redshift
than currently probed by galaxy cosmic shear weak lensing
measurements. Based on the estimates from Metcalf et al.
(2017), the 0.5 deg2 CLAMATO survey should be able to
detect Lyα forest weak lensing at ∼ 6σ confidence over a
foreground redshift range of ∆z = 0.5 — this signal should
be even stronger in cross-correlation with the rich photomet-
ric and spectroscopic redshift information available for fore-
ground galaxies in the COSMOS field.

Prior to the CLAMATO survey, Lyα forest tomography
was considered only feasible with future 30+m class tele-
scopes. We have now, however, shown that the technique
is in fact accessible to 8-10m class telescopes, enabling the
mapping of the z ∼ 2 − 3 IGM absorption on comoving
scales of ∼ 2 − 3h−1 Mpc. This demonstration is particu-
larly exciting in the context of the various wide-field spec-
troscopic facilities on 8-10m telescopes that are either being
built, e.g. the Prime Focus Spectrograph (PFS) on the 8.2m
Subaru Telescope (Sugai et al. 2015), or in various stages of
planning and discussion, e.g. the 11.25m Maunakea Spec-
troscopic Explorer (MSE, McConnachie et al. 2016). These
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facilities, which offer multiplex factors of several thousand
over ∼ 1 deg2 fields-of-view, should be able to carry out
IGM tomography over much larger areas of tens or hundreds
of square degrees, enabling new science cases at z ∼ 2 − 3

with unprecedented statistical power.
Looking further into the 2020s, 30+m class facilities

(Evans et al. 2012; Skidmore et al. 2015) would be required
to push the spatial resolution of IGM tomography to comov-
ing scales of 1h−1 Mpc and below. As Lee et al. (2014a)
calculated, not only do the density of background sightlines
need to increase, but the minimum pixel signal-to-noise also
needs to be improved as these scales are no longer in the
shot-noise dominated regime. The amount of photons that
needed to be collected in this regime increases exponentially
as smaller mapping scales are desired, necessitating 30+m
apertures.

Finally, the 2030s could see a dedicated “hyper-multiplexed”
(> 104 multiplex) wide-field spectroscopic facility such as
the Billion Object Apparatus (BOA, Dodelson et al. 2016)
on a 10m-class survey telescope. While BOA will not repre-
sent a large leap in collecting area compared to Subaru-PFS
or MSE, its hyper-multiplexing will enable it to simulta-
neously carry out an all-sky galaxy redshift survey out to
z ∼ 1.5−2, and at the same time carry out an IGM tomogra-
phy survey with similar parameters as CLAMATO, but over

∼ 10000 deg2. The goal of such a survey would be to map
all cosmological linear modes out at 0 . z . 3 in order to
push cosmological parameter constraints beyond the LSST
and DESI ‘Stage IV’ limits.

CLAMATO, and its pioneering analyses, will be needed to
pave the path for these ambitious projects of the future.
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APPENDIX

We have made the first data release of the Keck-CLAMATO data publicly available in the following website: http://
tinyurl.com/clamato2017-data. These include the reduced spectra, continuum-normalized Lyα forest pixels used as
the input for the tomographic reconstruction, and the tomographic map of the 2.05 < z < 2.55 IGM.

The 437 blue and 185 red reduced LRIS spectra are in FITS format, each with the following extensions:
• HDU0: Object spectral flux density, in units of 10−17ergs s−1 cm−2 Å

−1

• HDU1: Noise standard deviation

• HDU2 Pixel Wavelengths in angstroms

On the data webpage, we have provided an ASCII catalog that contains the information in Table 2 as well as the corresponding
filenames of the blue and red spectra for each object. We note that the spectrophotometry, especially in the red, might be
unreliable.

We also provided a binary file with the intermediate product of 64332 concatenated Lyα forest pixels (Equation 1) at
2.05 < zα < 2.55 from 240 background sources that satisfy our redshift and signal-to-noise criteria. This file includes the
δf values and associated pixel noise, as a function of the [x, y, z] positions relative to our tomographic map grid. The x
and y coordinates correspond to transverse comoving distance along R.A. and Declination, respectively, with the origins at
[α0, δ0] = [9h59m47.s999,+02◦9′0.00”] (J2000) or [α0, δ0] = [149.9500◦, 2.1500◦], while z corresponds to line-of-sight co-
moving distance relative to the origin redshift of zα = 2.05. As described in Section 4, we adopt a fixed conversion between
comoving distance and redshift, evaluated at our median map redshift of 〈z〉 = 2.30. With our choice of cosmology, this yields
χ = 3874.867h−1 Mpc and dχ/dz = 871.627h−1 Mpc. This intermediate binary file is the primary input of the Wiener
reconstruction algorithm.

The primary products are the binary files containing the IGM tomographic map, which spans comoving dimensions of
30h−1 Mpc × 24h−1 Mpc × 438h−1 Mpc in the [x, y, z] dimensions, respectively, with binning in units of 0.5h−1 Mpc. The
conversion of the map coordinates back to R.A., Declination and redshift can be carried out with with the aforementioned χ

http://tinyurl.com/clamato2017-data
http://tinyurl.com/clamato2017-data
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and dχ/dz values. We provide both the direct tomographic reconstruction of the data, as well as a version which has been
Gaussian-smoothed with a σ = 2h−1 Mpc kernel; the latter is the version shown in the visualizations in Section 5.1.
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