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Abstract

Passive Focusing of Intense Ion Beams

by

Albert Yuen

Doctor of Philosophy in Engineering - Nuclear Engineering

University of California, Berkeley

Professor Karl A. van Bibber, Chair

The radial control of high current ion beams from induction accelerators or generated by
short pulsed intense laser-plasma interactions is generally limited by Coulomb repulsion of
the ion beam. In this dissertation, we investigate a novel focusing technique for the radial
control of intense ion beams. The concept envisions using a stack of thin, closely spaced
conducting foils to mitigate defocusing self-electric forces to enable self-magnetic forces to
focus. The ion beam must be energetic enough to penetrate the stack of foils with limited
beam degradation from scattering and energy loss. We study beam focusing and scattering
and find constraints on the design and performance of such a passive lens. We further
investigate the effects of secondary electrons generated by the impact of ions on foils and
show the importance of secondary electrons whose velocity is higher than the ion beam
velocity. In this case, current neutralization could exceed charge neutralization, i.e., the
self-magnetic focusing would be reduced more than the self-electric defocusing, producing
a net defocusing force on the ion beam. A statistical envelope model is developed and its
predictions are compared to those of the PIC simulation code WARP. An ion beam focused
by the stack of thin foils may have potential applications to research fields requiring intense
beams, e.g., nuclear fusion, tumor therapy or high energy density laboratory physics. We
provide in the appendix an analysis of the expansion of a thin foil heated to the warm dense
matter (WDM) regime which can be reached by such beams.
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other ambitions for my higher education. Later on, Jean-Christophe introduced me to his
father, Prof. Pierre Lecoy, a professor in optoelectronics, namely the first professor I have
ever met. Prof. Lecoy decidedly stimulated my sprouting interest in scientific research. Had
I not met each of these crucial people, I may not have chosen a scientific career.
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Chapter 1

Introduction

1.1 Overview of accelerator physics

Historical development

During the 18th and 19th centuries, the properties of electromagnetism were discovered
through a series of experiments and led to gradual theoretical understanding culminating
in Maxwell’s equations. Coulomb, in 1785, proved that charged particles interact with each
other and quantified the electrostatic interaction. Gauss confirmed that charged particles
generate electric fields, Ampère demonstrated that electric currents cause magnetic field,
Faraday showed that a time-varying magnetic fields induce electric fields. Maxwell con-
structed a unifying framework of electromagnetism [1]. Lorentz quantified the force on the
particles due to electric and magnetic fields. Maxwell’s unifying framework, Newton’s equa-
tion of motion and Lorentz’ force still remain the basis of the dynamics of charged particle
interactions with electromagnetic fields. Instead of mechanically accelerating particles (e.g.,
with a bow or a rifle), physicists of the 19th century understood that we could resort to
powerful electric and magnetic fields to manipulate and accelerate charged particles to high
energy, if the technology were ready.

In the early days of particle acceleration, atomic, nuclear and particles physics have been
the main users of charged particles beams. In 1911, in Manchester, Rutherford collided alpha
particles from the natural radioactive decay of Ra and Th with a gold foil, and observed rare
but consistant deflections of the alpha particles due to the gold foil. This experiment trig-
gered the Rutherford atomic model where an atom consists of a charged nucleus containing
most of the atomic mass and a cloud of electrons orbiting around the nucleus. Rutherford
was subsequently awarded the Nobel prize in chemistry in 1908 [2] “for his investigations into
the disintegration of the elements, and the chemistry of radioactive substances”. The years
following Rutherford’s experiment lead to the development of dedicated devices, particle
accelerators, to accelerate particle to higher and higher velocities, and therefore energies.

A particle accelerator is generally composed of:
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∙ A particle source that could be a gas, ionized to a plasma state. The particle source
could also be a solid plate from which particles are stripped by field emission effects
using strong electric fields, and/or by the thermonionic emission effect by heating the
solid to high temperature to dissociate electrons from the ions. Another alternative is
to shine laser beams on a solid plate or gas to trigger the photoelectric effect.

∙ An injector, using a mixtures of electrodes and magnets to shape the particle beam
and to transport it from the source to the main accelerating section.

∙ A main accelerating section that provides acceleration to the particle beam as well as
transverse and longitudinal focusing.

∙ A target, typically a foil of material, or another beam in the case of collider. The
interaction between the accelerated beam and the target is the main application of
particles accelerators.

∙ A series of diagnostics and detectors.

This thesis mostly concentrates on the transverse focusing of intense ion beam in the main
accelerating device. Detailed descriptions of each of the components of a particle accelerators
can be found in Ref. [3, 4, 5, 6, 7, 8]. A historical account of the field can be read in Ref. [9].

In theory, electromagnetic fields of all frequencies can be used to accelerate and steer
particles. We provide below a non-exhaustive sketch of the historical progress of particle
accelerator design.

Electrostatic acceleration:

The first type of particle accelerators were based on electrostatic fields [4].

X-Ray Tube:
In the late 1890s, Lenard [10] designed an assembly made of a anode and a cathode,

connected by a high voltage generator, thus creating an electric field between the cathode
and the anode. Electrons are stripped from the cathode and accelerated to the anode where
a central hole has been made, as shown in Fig. 1.1. The generation of this electron beam
led to his being awarded the Nobel Prize in physics in 1905 [11] “for his work on cathode
rays”. (At that time, the smallest known elements were atoms, and the electrons from the
cathodes were thought to be waves, hence the denomination cathode rays.) The voltages
from such a simple design is limited by electrical break down effects (around 3× 106 V/m in
air). More sophisticated methods such as using X-ray tubes in series yield higher electron
beam energy, e.g. William David Coolidge’s design in 1926 that achieved electron energies
up to 350 KeV [12].

Cockcroft-Walton accelerator:
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Figure 1.1: The Lenard tube is an early example of an X-ray tube and simply consists
of an anode and a cathode. This sketch is from Lenard’s seminal paper in the Annals of
Physics [10].

Figure 1.2: The Cockcroft-Walton generator acts as a voltage multiplier made of diodes 𝑅
and capacitors 𝐶 to multiply the voltage set by the secondary of the transformer to a high
voltage (𝐻𝑉 ). Figure from Ref. [4].
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Figure 1.3: An example of a van de Graaff accelerator. The 𝑃 terminal and the 𝑁 terminals
are respectively positively and negatively charged by the charged belts, usually made of silk.
Figure from Ref. [16].

In the early 1930s, Cockcroft and Walton developed the eponymously named accelerator
that acts as a voltage multiplier using a set of capacitors charged through appropriately
placed diodes from a AC source. By properly arranging 2𝑁 capacitors, the voltage from the
generator is multiplied by 𝑁 . A schematic of the design is shown in Fig. 1.2. Cockcroft and
Walton successfully reach a working steady potential of 800 kV and accelerated protons from
a discharge in hydrogen to a lithium target. The resulting nuclear reaction p + Li → 2He
was the first entirely man-made transmutation [13] and the duo were awarded the Nobel
Prize in physics in 1951 for “for their pioneer work on the transmutation of atomic nuclei by
artificially accelerated atomic particles” [14].

Van de Graff accelerator:
Figure 1.3 depicts the basic design of a van de Graff accelerator [15, 16]. A belt is moved

by two rotors. On one end of the belt, electric charges are deposited while, from the other
end, the electric charges are extracted to a hollow conducting sphere. The whole system is
isolated in a tank filled with high pressure gas that is electronically inert (such as Freon or
SF6) to avoid electric breakdown. The difference of electric potential between the ground
and the charged hollow sphere can support voltages up to 20 MV.
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Figure 1.4: The Wideroe Linac consists of conducting tubes whose physical lengths increase
with distance traveled by the beam so that the transit time within a single cavity stays the
same while the beam accelerates. The beam is subject to an accelerating electric field as it
transits between the tubes and is sheltered inside the tubes from decelerating electric field.
The tubes are powered by an rf-source. Figure from Ref. [7].

RF-powered acceleration:

However, because high continuous electric fields are limited by electric breakdown, it is ex-
tremely challenging to design a particle accelerator that relies on a single accelerating gap.
The quest for higher energy therefore later relied of multiple acceleration gaps at alternating-
frequency electric field, commonly referred as rf, preventing arc or corona discharges. Pio-
neered by Ising in 1925 [17], many radio-frequency accelerators have been designed. A few
examples of linear and cyclic rf accelerator are given below.

Linac:
In a linac, the charged particle beam travels linearly through multiple acceleration gaps.

Fig. 1.4 shows an example of an early linac that Wiederoe designed in 1928 [18]. The
length of acceleration gaps and the drift gaps are tuned to the velocity of the beam and
the frequency of oscillating accelerating field such that the beam particles would enter the
accelerating gap when the electric field is maximal. It used a 1 Mhz, 25 kV oscillator to
produce 50 kV potassium ions. Today, some of the highest energy linac, such as the linac at
SLAC, can reach 50 GeV electron energy operating at the S band (about 2.856 Ghz) with
an acceleration gradient of about 20 MV/m [19].

Cyclotron:
In 1931, E.O. Lawrence built the first cyclotron [20]. The cyclotron combined the idea of

a magnetic cyclic structure and an rf electric acceleration gap in order to provide multiple
accelerations. The cyclotron consists in two Dees where the particles undergo a uniform
magnetic field and rotate around the central axis of the cyclotron. Between the two Dees, the
particles are accelerated by an rf electric field. In the non-relativistic energies, the particles
would preserve its rotation frequency, also referred as cyclotron frequency, 𝜔𝑐 = 𝑞𝐵/𝛾𝑚
where 𝑞 is the charge of the particle, 𝐵 is the magnetic field, 𝑚 the mass of the particle
and 𝛾 = (1− 𝑣2/𝑐2)−1/2 is the Lorentz factor (equal to 1 for a non-relativistic particle). The
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particles are synchronously accelerated to higher and higher energies if

𝜔𝑟𝑓 = 𝜔𝑐ℎ,

i.e., 𝜔𝑟𝑓 =
𝑞𝐵

2𝜋𝛾(𝑡)𝑚
ℎ

≈ 𝑞𝐵

2𝜋𝑚
ℎ,

(1.1)

where ℎ is a (non-zero) integer called the harmonic number. Cyclotrons have been used to
accelerate many types of particles, including ions, up to 500 MeV.

The energy limit up to which the particles can be accelerated is set by the size of the
cyclotron, and/or by relativistic effects where 𝛾 is no longer approximatively 1. In the rela-
tivistic case, 𝜔𝑐 depends on the particle energy and the rf oscillations of the accelerating gap
become asynchronous with the accelerated particles. A simple idea would be to ramp up
the magnetic field 𝐵 but high value of 𝐵 may have to be reached and, more fundamentally,
undesirable defocusing effects would be introduced. Two designs were developed to solve
this intrinsic limitation: the synchro-cyclotron and the isochron-cyclotron.

Synchro-cyclotron:
In a synchro-cyclotron, the rf field frequency is synchronized to the cyclotron frequency.

The beam focusing requirements are therefore more stringent than the requirements set by
the regular cyclotron: The transverse beam dynamics stability is solved by weak focusing
(which was initially developed for the betatron, c.f. below). The longitudinal beam dynamics
stability is taken care by phase focusing [21, 22, 23] which is a concept initially developed
for the design of the synchro-cyclotron. The synchronicity condition yields

𝜔𝑟𝑓 = 𝜔𝑐ℎ,

i.e., 𝜔𝑟𝑓 =
𝑞𝐵

2𝜋𝛾(𝑡)𝑚
ℎ

∼ 1

𝛾(𝑡)
,

(1.2)

where ℎ is an (non-zero) integer called the harmonic number and if we consider that 𝐵 is
constant. In reality, in order to preserve transverse focusing by weak focusing, the magnetic
field 𝐵 cannot be constant and is a decreasing function of the gyroradius radius 𝜌(𝑡). As a
consequence, the condition for synchronization between the rf field and the cyclotron motion
is

𝜔𝑟𝑓 ∼ 𝐵(𝜌(𝑡))

𝛾(𝑡)
. (1.3)

In 1946, the Radiation Laboratory of the University of California commissioned the largest
synchro-cyclotron ever constructed. A gigantic machine of its era: 184 inches of diameter,
a total magnet weight of 4300 tons, a maximum magnetic field of 1.5 T and a maximum
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Figure 1.5: Schematic of the particle orbit (red line) in a cyclotron, a synchro-cyclotron or a
isochron-cyclotron. The radial coordinate 𝜌 and the azimuthal coordinate 𝜃 of the charged
particle are shown.

gyroradius of 2.3 m [24, 25]. It accelerated pulsed proton bunches to kinetic energy up to
350 MeV.

Isochron-cyclotron:
Designed in 1938 by L. H. Thomas [26], the rf field frequency of the isochron-cyclotron

remains constant, in spite of the increase of 𝛾(𝑡) when high energies are reached, i.e.

𝜔𝑟𝑓 ∼ 𝐵(𝜌(𝑡))

𝛾(𝑡)
= const. (1.4)

Until now, we assumed that the magnetic field 𝐵 only varies with 𝜌, which is the distance
from the center of the rotation of the charged particle. In this case, the magnitude of 𝐵
would increase with 𝛾 and therefore with 𝜌. This result violates weak focusing and produces
an unstable beam. In order to preserve focusing, the isochron-cyclotron introduces azimuthal
variations of the magnetic field, i.e.

𝜕𝐵(𝜌, 𝜃)

𝜕𝜃
̸= 0. (1.5)

We can prove that the synchronicity condition can be relaxed to its average in each turn
such that

1

2𝜋

∮︁
𝑑𝜃 𝐵(𝜌(𝑡), 𝜃) ∼ 𝛾(𝑡). (1.6)

The azimuthal angle 𝜃 is the angular position of the particles in the accelerator and is shown
in Fig. 1.5 for illustration. Here weak focusing is substituted by strong focusing. Later
in this chapter, we will illustrate the concept of strong focusing with alternating-gradient
quadrupole. Today, isochron-cyclotrons are widely used in medical physics and can reach
energies up to 250 MeV using superconducting magnets.
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Synchrotron:
The synchrotron introduced the greatest technological leap. The cyclotron limited the ac-

celerated energy to a few hundred of MeV due to its size, and therefore, the cost of its magnet.
The design of the synchrotron sets a constant orbit radius 𝑅, and employ smaller magnets
and accelerating cavities along the constant orbit for beam bending, focusing and accelera-
tion. The design condition is such that the ratio of the axial magnetic field and the beam
momentum, 𝐵⊥/𝑝, is constant. The synchronicity condition also sets 𝜔rf ∼ 𝐵(𝜌(𝑡))/𝛾(𝑡).
The maximum energy 𝑐𝑝𝑚𝑎𝑥 in a synchrotron can be estimated 𝑐𝑝𝑚𝑎𝑥 = 𝐶𝑝𝐵[T]𝑅[m] where
𝐶𝑝 = 0.299 GeV/T/m. Initially, synchrotron relied on weak focusing [27] but since the ad-
vent of strong focusing independently discovered by Christofilos and Courant [28, 29], the
synchrotron became the standard design for any serious particle accelerator physicists who
desire to build the highest energy particle accelerators from the mid-20th century up to
now. Currently, the largest particle accelerator, the Large Hadron Collider, is a collider: it
is composed of two synchrotrons accelerating charged beams orbiting in opposite directions
to collide at high energy. In the case of the LHC, whose circumference is 27 km long, the
proton beams are collided at a center-of-mass frame energy of 13 TeV [30, 31].

Non-resonant acceleration:

In a non-resonant accelerator, the acceleration of charged particles is due to the electric field
induced by a time-varying magnetic field. Two main accelerator designs have exploited this
technique: the betatron from the early 1920s and the induction accelerator from the 1950s.

Betatron:
The betatron was the first circular accelerator constructed, preceding the cyclotron. Here,

the charged particle beam is accelerated by an azimuthal electric field induced by a time-
varying uniform axial magnetic field. As an analogy with the electrical transformer, the
secondary coil is now replaced by the charged particle beam circulating in a torus vacuum
chamber. The design of the betatron assumes a fixed orbit 𝑅 and a rotational symme-
try. Wideroe obtained a necessary (but not sufficient) condition for orbit stability in the
betatron such that the magnitude of the axial magnetic field at 𝑅, 𝐵⊥(𝑅), must be equal
to the average of the magnetic field over the surfaced enclosed by the orbit, 𝐵⊥(𝑅)/2, i.e.
𝐵⊥(𝑅) = 𝐵⊥(𝑅)/2. The particle momentum increase ∆𝑝 is proportional to the axial mag-
netic field increase ∆𝐵⊥ such that ∆𝑝 = 𝑒𝑅∆𝐵⊥. The maximum particle momentum is
therefore given by 𝑐𝑝max = 𝑒𝑐𝑅𝐵max(𝑅). However, the betatron requires large magnetic
field to further accelerate charged particle to higher energies, which is prohibitive because of
the sheer size of the magnet and its associated cost. The largest betatron ever constructed
boasts a radius 𝑅 = 1.23 m, a maximum magnetic field 𝐵max = 0.81 T and a magnet size
of 350 tons, and accelerated electrons to 𝑐𝑝max = 300 MeV. However, because of the energy
limitations, the betatron only performed well with electron beams, hence the name as elec-
trons were named beta rays in the early days of particle accelerators. The other necessary
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condition for orbit stability was satisfied by the concept of weak focusing to focus the beam
transversely, which gives rise to the betatron oscillations.

Induction accelerator:
In the past decades, while synchrotrons received the lion’s share of the attention in the

race for particle accelerator designs due to the push for higher and higher energy from nuclear
and particle physicists, induction accelerators achieved record performance in the intensity
frontier, and are now the main source of intense electron and ion beams. Intense ion beam
are particularly useful for high energy density physics and heavy ion driven nuclear fusion
research [32]. They could also be used as spallation sources. However, one of the main
challenge in the manipulation of intense ion beams is the transverse control of the beam,
which is the subject of this thesis.

In the early 1960s, N. C. Christofilos needed a plasma heating device for nuclear fusion
research at LLNL that required very high pulsed current (> 100 A) of relativistic electron,
characteristics that are inaccessible by rf accelerator. The design of the first induction
accelerator, the Astron, therefore came naturally [33]. An induction accelerator is composed
of a series of induction cells containing magnetic cores, driven directly by pulsed power
sources. The inductions cells are non-resonant and low impedance. One can think of the
magnetic core of an induction cell as a transformer between the power supply and the charged
particle beam. Amongst the advantages of the induction accelerator over rf accelerators are
the flexibility of the accelerating waveform and the high electric efficiency (> 50%), which
makes it a prime candidate of beam-driven inertial confinement fusion for energy production,
as opposed to the low efficiency of lasers for inertial confinement fusion [34].

A number of induction accelerators have been constructed, mostly in the USA and in the
USSR. In 2003, Los Alamos National Laboratory commissioned DARHT-II, a 17 MeV 2.1
kA electron induction accelerator with sub-Hz repetition rates and a 1, 600 ns pulse length.
DARHT-II is currently the largest electron induction accelerator [35]. More recently, the
Heavy Ion Fusion Virtual National Laboratory (a merger of research groups at LBNL, LLNL
and Princeton) commissioned the high current ion induction accelerator NDCX-II[36, 37]
where lithium and helium sources were used, accelerated to a few MeV to a peak current of
a few tens of A.

Current applications

Particles acceleration are traditionally tools for nuclear and particle physicists to probe into
subatomic scales and to discover particles (e.g., mesons, W bosons, Higgs bosons) by using
more and more energetic particle collisions. However, the development of particles accel-
erator benefited fields far removed from nuclear and particle physics. For instance, proton
accelerators are now manufactured for radiation oncology. The semi-conductor industry
characterizes thin film devices using focused ion beam. The ITER project for magnetic con-
finement fusion uses neutral beam injection to heat the nuclear fuel. A non-exhaustive list
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Table 1.1: A non-exhaustive list of applications of particle accelerator. Table expanded from
Ref. [38].

Nuclear Physics High Energy Physics Power Generation
Electron/proton accelerator Fixed target accelerator Inertial fusion
Ion accelerator/colliders Colliding beam storage rings Reactor fuel breeding
Continuous beam facility Linear colliders

Medecine Coherent Radiation Intense Ion Beams
Radiotherapy Free electron lasers, X-FEL High energy density physics
Health physics Microprobe Phase transitions
Microsurgery Holography Fast Ignition
Sterilization

Synchrotron radiation Industry
Basic atomic and molecular physics Radiography by x-rays
Condensed matter physics Ion implantation
Earth sciences Isotope production/separation
Materials science Materials testing/modification
Chemistry Food sterilization
Molecular and cell biology X-ray lithography
Surface/interface physics Non-proliferation

of current applications of particle accelerators can be found in Ref. [38] and is expended in
Table 1.1.

1.2 Future progress

Future progress in particle accelerator physics will be centered around three main charac-
teristics: higher beam energy, higher beam intensity and smaller accelerating devices. The
energy frontier is currently led by the circular 27-km long Large Hadron Collider (LHC) at
the Centre Européen pour la Recherche Nucléaire (CERN) in Geneva [30, 31, 39]. With the
latest upgrade from 2015, the LHC can now operates proton-proton collisions at up to 13
TeV in the center-of-mass frame. The LHC operations led to the Nobel prize in Physics
in 2013 [40] by François Englert and Peter Higgs “for the theoretical discovery of a mecha-
nism that contributes to our understanding of the origin of mass of subatomic particles, and
which recently was confirmed through the discovery of the predicted fundamental particle
(the Higgs boson), by the ATLAS and CMS experiments at CERN’s Large Hadron Collider”.
The particle accelerator community has been investigating the possibility to build a large
linear lepton accelerator in a distant (or not so distant) future such as the International Lin-
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ear Collider (ILC) [41] and the Compact Linear Collider (CLIC) [42]. For instance, CLIC’s
design is a 42 km long linear electron-positron collider reaching 3 TeV in the center-of-mass
frame, with an accelerating gradient of 100 MV/m, which will be 20 times higher than LHC’s.
However, the power consumption would be close to half a GW (which is the equivalent of
half of the power of a pressurized-water-reactor-based nuclear power plant). Even more gar-
gantuan circular designs are considered such as the Very Large Hadron Collider (VLHC)
that would boast 100 km of circumference for 100 TeV. Particle beams with high current
were traditionally generated by induction accelerators [32]. The ETA, ATA and DARHT-II
accelerators produce low energy (up to the low tens of MeV) kA-scale electron beams. The
NDCX-I and NDCX-II linacs produce low energy Ampère-scale ion beams. Acceleration
techniques based on laser illuminated foils have achieved currents in the 1 A to 1 kA range
with a 100 MeV protons at low emittance [43]. Current research on laser pulse shaping and
foil preparation enables beams of higher quality, i.e., monoenergetic, initially collimated,
with limited co-moving electrons, to be produced. Currently, high energy particle accelera-
tors are bulky and, therefore, voracious in power. The LHC has a circumference of 27 km for
a power consumption of 120 MW. Accelerators bigger in size will only exacerbate the issue.
Alternative particle accelerators designs that drastically reduce the size of particle accelera-
tors would also reduce its power consumption. “Table-top” laser plasma accelerators already
achieve electron accelerating gradient of several GV/m [43]. The dielectric laser accelerator
community, while being a less mature, hopes to achieve electron accelerating gradient in
the GV/m scale [44]. Preliminary studies shows results in the hundreds of MV/m electron
accelerating gradient.

1.3 Transverse focusing of intense ion beam

Intense ion beam can be focused by using external fields or their own space-charge. His-
torically, transverse focusing relied mostly in axisymmetrical external fields (e.g., solenoidal
magnets) whose magnitude proved to be only of second-order. In order to produce a much
stronger focusing, first-order alternatives required to rely on non-axisymmetric external fields
(e.g., focusing based on quadrupole magnets), or on the beam self-fields [6]. In the follow-
ing chapters of this thesis, we explored a transverse focusing technique based on the beam
self-fields for ion beams.

Axisymmetrical focusing

Electrostatic focusing: an example with the Einzel lens.
Because the magnetic part of Lorentz force is a linear function of the velocity while the

electric part does not depend on the velocity, external electric focusing is preferably used for
low-energy beams while external magnetic focusing is much more efficient for higher energy
beam.
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Figure 1.6: Transverse cross-section of an Einzel lens. Each conducting tube is periodically
biased to a potential +𝑉 and −𝑉 . The electric field E due to the rings is axisymmetric.
The effect on the charged particle beam is a net transverse focusing.

Amongst the electrostatic axisymmetric focusing system, the Einzel lens is the most
commonly used. An Einzel lens consists in a series of three or more aligned tubes that are
uniformly spaced and periodically biased with a potential +𝑉 and −𝑉 , through which the
charged particle beam propagates as shown in Fig. 1.6. The Einzel lens transversely focuses
the beam while not accelerating it in the longitudinal direction. A detailed description of
the Einzel lens, and other example of electrostatic focusing lens, can be found in Refs. [6, 45].

Solenoidal magnet.
More commonly used than the Einzel lenses as an axisymmetric focusing system are

solenoidal magnets. A solenoidal magnet consists in multiple coil windings through which a
pulsed or constant current is imposed. The current induces a axial magnetic field. Assuming
a given beam particle possesses a radial velocity component, the resulting Lorentz force due
to the axial magnetic field provides transverse focusing. Currently, state-of-the art solenoidal
magnets, such as the one used at the CERN by the Compact Muon Solenoid (CMS), can
generate 4 T in steady-state [46].

Alternative-gradient focusing

First-order focusing using external fields can be achieved using pairs of quadrupole lenses [29].
The quadrupole lenses can be either electric either magnetic. The electric and magnetic field
lines of ideal electric and magnetic quadrupoles are represented in Fig. 1.7. Focusing is
set in one direction while the other direction undergoes defocusing after the traversal of
one quadrupole. However, if a second quadrupole rotated by 90 degree is installed, the
directions of defocusing and focusing are flipped, which, in practice, induces net focusing in
both directions. The net focusing due to quadrupole lenses is generally stronger than the
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Figure 1.7: Transverse cross-section of a) an electric quadrupole and b) a magnetic
quadrupole. The beam is assumed to propagate in the 𝑧-direction. +𝑉 and −𝑉 are the
applied electric potential on the conductors in the electric quadrupole. North and South
represent the polarity of the magnets constituting the magnetic quadruple. E⊥ and B⊥ refer
to the electric and magnetic field produced by the quadrupole magnets. The red arrows
represent the forces due to the quadrupole fields in each case. In both cases, we observe
focusing in the 𝑥-direction and defocusing in the 𝑦-direction.

focusing provided by axisymmetrical focusing.

Transverse focusing using self-fields

When space-charge effects are important, the exclusive use of external focusing systems may
not be able to provide enough transverse focusing, even with the help of quadrupole focusing
systems. In order to retain beam control, an option is to make use of the same space-charge
effects that make the beam more difficult to focus. Space-charge effects are usually domi-
nant in low-energy beam transverse beam dynamics. For example, in vacuum, the simple
monoenergetic axisymmetric, uniform density unbunched beam model shows that, at the
beam radius, the defocusing forces due to the electric self-fields are stronger than the fo-
cusing forces due to the magnetic self-fields by a factor 𝛽−2 in vacuum. Various focusing
techniques based on clever manipulations of space charge effects are based on the mitigation
of the defocusing electric self-field while preserving as much as possible the focusing mag-
netic self-field [6]. A few examples are given below. In this thesis, we demonstrate that the
use of a stack of thin conducting foils enables such reduction of defocusing self-fields and
consequently provides net focusing.

Gas focusing
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Extracting a beam with high current density from an ion source is particularly difficult.
Assuming a space-charge limited emission, one can derive the Child-Langmuir relation that
yields a current density proportional to 𝑉 3/2/𝑑2 where 𝑑 and 𝑉 are respectively the distance
and the potential difference between the extracting electrode and the source. 𝑉 cannot be
increased to arbitrarily high values due to electric breakdown effects, and 𝑑 can not physically
be reduced to very small distances. Those low-energy ion beams of high current are usually
transported for a distance of a few dozen of centimeters before being matched into a RFQ,
which is typically the first stage of a RF Linac [6]. Because external lenses, even by using
quadrupoles, are not sufficient to focus high current beams, gas focusing could supplement
the transverse focusing [6]. In the case of a proton beam, a neutral hydrogen gas could be
injected in the proton beam transport channel. Upon the propagation of the proton beam,
the hydrogen atoms are ionized by collisions. The hydrogen ions, being of the same charges
as the beam protons, are expelled from the beam channel while the electrons remain, pro-
viding charge neutralization of the proton beam. However, because most of the collisions
between the fast proton beam and the electrons generated by ionization does not transfer
much energy to the electrons, the electrons do not gain much velocity compared the the fast
proton beam. Therefore, these electrons do not contribute much to current neutralization of
the proton beam. Gas focusing significantly reduces the radius of the proton beam. For a
100 keV 𝐼 = 200 mA proton beam with normalized emittance 6× 10−1 mm.rad and average
focusing due to magnetic lenses 2𝜋 m−1 with initial matched beam radius 𝑎1 = 10 mm, a
hydrogen gas at density 3.5 × 1017 m−3 focuses the beam to a radius 𝑎2 = 2.5 mm. One of
the mean drawbacks of gas focusing is the degradation of beam quality as well as the loss of
protons at the head of the beam, when the hydrogen gas has not yet been ionized enough.

Plasma lens
Contrary to gas focusing where the head of the beam ionizes a neutral gas in the beam

channel, in a plasma lens, the gas is preionized to the plasma state before the beam arrival.
In this setting, the beam head is focused, as the rest of the beam. Similar to gas focusing,
plasma lenses enable small beam spot sizes, which are desired, e.g., for the collisions of elec-
tron and position beams in a linear collider, the final focusing of heavy ion beams for inertial
confinement fusion [47] or the matching of low energy ions into the small aperture of a RFQ
linac. In the case of the fully neutralized 500 GeV ion beam with a total number of particle
1010, effective length 4 × 10−3 m and normalized emittance 10 mm.mrad, such a plasma
lens produces a spot size of 84 nm. Compared to superconducting magnetic quadrupoles,
such plasma lens offers focusing stronger by several orders of magnitude. However, limited
experimental investigations have been conducted so far.

Past research on foil focusing
The idea to use a stack of thin conducting foils to transversely focusing charged particle

beams dates back from the early 1980s. Upon beam propagation, image charges on the thin
foils build up to partially screen the radial defocusing electric field while not significantly
affecting the azimuthal focusing magnetic fields. In Ref. [48], using a single particle model,
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Adler demonstrated that for high current (at least a few tens of kA) but below the Alfven
current 𝐼𝐴 = 17𝛽𝛾 kA, net focusing can occur. In his calculations, a beam with initial
radius 1.5 cm, current 100 kA and energy 𝛾 = 50, in a drift tube of radius 9 cm and axial
magnetic field of 2 T, the optimal foil spacing would have to be 35 cm between each foil in
order to obtain a 3 cm beam radius measured at the foils. Later on, in the late 1980s, in
Ref. [49], Humphries demonstrated the experimental feasibility of this alternative focusing
scheme using a 400-keV, 4-kA electron beam traveling in 30 cm in high vacuum through 10
focusing foils. The subsequent capture of the beam was almost 100 % efficient and the beam
emittance was not severely degraded upon beam transport. The radius of the self-contained
beam was 1.4 cm and the beam position was centered by the image current in the transport
tube to within 1 mm. In Ref. [50], Humphries also experimentally showed that foil focusing
system can not only focus intense relativistic electron beams but can also steer their trajec-
tories as a dipole perturbation field was used to deflect a 3.8 kA, 280 keV beam in a foil
array. Fernsler, in Ref. [51], used a single particle model to analyze the limitations of foil
focusing for electron beams due to sensitivity to the beam parameters, emittance growth as
well as beam stability in multifoil transport. His simple analysis provided estimates for the
validity of foil focusing for electron beams, and quantified the pitfall of foil focusing. It is
demonstrated that foil focusing for electron beams must be used for high current, i.e. several
kA, but well below the Alfven current. In this regime, the simplicity of the layout as well
as the favorable cost of the foils are strong incentives to use thin conducting foils for beam
control.

Current research on foil focusing for ion beams
Recently, it has been shown that foil focusing could also work for ion beams propagating

through a stack of thin metallic foils [52]. This novel passive focusing scheme opens the
possibility of collimating or focusing ion beams to a small spot size since the focusing becomes
stronger as the beam radius reduces. Applications may include focusing intense beams on the
X-target for fast ignition-driven fusion energy [53], injectors for compact proton accelerators
for tumor therapy [54], and ion beam-driven warm dense matter studies [47]. The stack of
thin foils can be made from aluminum and manufactured at low cost. Foil stacks can be used
for transverse focusing of laser-produced proton beams [43] where intense space-charge has
been limiting applications [55]. This can also remove electrons co-moving with the protons,
without large degradations in beam brightness thereby addressing another issue limiting
applications. The most studied laser-based ion beam production process, the target-normal-
sheath-acceleration (TNSA) model [55], can achieve proton beams with a broad energy
spectrum up to a few dozen MeV and whose total current is in the kA range.

Ongoing research based on alternative laser-based ion beam production processes - e.g.
radiation pressure acceleration, collisionless shock acceleration, breakout afterburner, accel-
eration in near-critical and underdense plasmas (see Ref. [43]) - offers beams with promising
characteristics (e.g. mono-energetic, higher energy and/or higher current) whose space-
charge could be successfully controlled by our stack of thin foils.

Lund, et al., developed an idealized analytical envelope theory [52], which is summa-
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rized in Chapter 2 of this thesis. This analytical envelope theory agrees with particle-in-cell
simulations. This guided an ongoing campaign of experiments, described in Ref. [56] de-
signed to study the mitigation of the defocusing self-electric field of proton beams. These
proton beams were produced by intense short-pulse lasers and accelerated by the target-
normal-shealth-acceleration (TNSA) process [55] at the TITAN laser facility at GSI and the
JUPITER laser facility at Lawrence Livermore National Laboratory [57].

Contributions of this thesis
In Chapter 3, this thesis extends the idealized analytical envelope theory presented in

Chapter 2, first derived in Ref. [52]. Reference [52] assumed infinitely thin foils, and in this
thesis we include the important phenomena of foil-induced scattering and kinetic energy loss
effects associated with finite thickness foils. This scattering causes random deflections in
the distribution of particle angles and results in emittance growth that can degrade beam
quality [6, 45, 58, 59]. The beam ions also deposit a fraction of their kinetic energy into the
foils, evaporating the foils after penetration of the beam. The stack of foils is therefore a
single-use lens. However, estimates show that the foils remain at near solid density during
the transit of the beam within the stack because the hydrodynamical expansion timescale is
much longer than the beam transit timescale [52, 56]. In addition the ion beam experiences
straggling due to statistical kinetic energy losses into the foils, causing momentum spread
and therefore chromatic aberrations as the passive focusing depends on the momentum of
the beam ions. Straggling is neglected in our present mono-energetic study: the emphasis is
on the angular deflections of the beam ions and the mean kinetic energy loss. Nevertheless,
straggling must be taken into account when kinetic energy loss is important. Numerical
simulations (in which the profile is allowed to evolve self-consistently) show reasonably good
agreement with these assumptions. This study appeared in Physical Review Special Topics
- Accelerator and Beams [60]

This thesis treats the production of knock-on electrons in Chapter 4. Knock-on electrons
are electrons that are striped out of the foils by ion beam impact and whose longitudinal
velocity is greater than the ion beam velocity. This leads to current neutralization as well
as charge neutralization, with the former greater than the latter. As a consequence, the
focusing forces are more reduced than the defocusing forces. If we reach a regime were too
many knock-on electrons are produced and, therefore, the focusing forces would be weaker
than the defocusing forces, this passive focusing scheme would not work. We develop a
computational model to include knock-on electrons in our simulations and determine for
which regime knock-on electrons would be an issue.

We added in the appendices of this thesis an example of an application of intense ion
beams focused to very small spot size. Those intense ion beams could be used to rapidly
heat foils to the warm dense matter regime - typically in the range of 0.1 to 10 times the solid
density and at approximately 0.01 eV to 10 eV). This consequently induces a hydrodynamical
expansion of the foil due to a rarefaction wave. In the appendices, emphasis is made on the
conditions around the critical point, above which there is no distinction between the liquid
and vapor phases. For many materials such as refractory metals [61], the full vapor/liquid
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phase boundary as a function of density and temperature is poorly known. This work is
useful in interpreting and categorizing the types of expansion behavior and appeared in two
publications in Physical Review E [62, 63]
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Chapter 2

Foil focusing with infinitely thin foils

The basic theory of passive focusing using a stack of thin conducting foils is developed in
this chapter. We describe the foil geometry in Sec. 2.1 and the beam model in Sec. 2.2. The
self-electric and -magnetic fields are solved based on a Gaussian and uniform beam profile
by employing the Green’s function in Sec. 2.3, and used to derive the statistical envelope
equation in Sec. 2.4. The Particle-in-Cell numerical model described in Sec. 2.5. The WARP
code, based on the PIC numerical model, is used in Sec. 2.6 for various intense beams to
validate the envelope model. The formalism developed in this chapter will be applied in
Chapter 3 to include foil-induced scattering and energy loss, and in Chapter 4 to take into
account knock-on electron effects. These results appear in Ref. [52].

2.1 Geometry

In this chapter, we employ a cylindrical (𝑟, 𝜑, 𝑧) coordinate system where 𝑟, 𝜑 and 𝑧 respec-
tively denote the radial, angular and axial coordinates. This coordinate system is preferred
to a cartesian coordinate system as we will later assume that our beam and all physical effects
are axisymmetric. The foils are infinitely thin and perfect conductors, effectively neglecting
secondary electrons and scattering effects. The foils are uniformly spaced in the 𝑧 direction
with gap spacing 𝐿 and extend infinitely in the 𝑟 direction. This assumes the beam radius
to be much smaller than the actual physical radial size of the foils. We restrict the domain
under investigation to the vacuum between the foils as shown in Fig. 2.1. Calculating the
beam dynamics in the full foil system would simply require multiple axial translations using
relevant boundary conditions. The foils are grounded to potential 𝑉𝑙 at the left foil and 𝑉𝑟

at the right foil. The foils also remain in a near-solid state during the penetration of the ion
beam by assuming that the transit time is such smaller than the hydrodynamic expansion
time (in the order of the nanosecond, it can be estimated using Appendix A applied to solid
aluminum). This hypothesis will have to be checked against the actual kinetic energy of
the beam and could be a possible limitation of our passive focusing scheme for lower energy
beam.
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Figure 2.1: Geometry of our problem. The two foils are assumed to be infinitely thin and
infinite in the 𝑥- and 𝑦-directions. The left foil is biased to the electric potential 𝑉𝑙 and the
right foil is biased to the electric potential 𝑉𝑟.

In a more realistic setting, the foil thickness will have to be finite and scattering and
secondary electrons will have to be taken care of. These are topics of Chapters 3 and 4.
However, finite foil thickness also brings a major advantage: it is now possible to stop
co-moving electrons if the ion beam is laser-produced. Thicker foils could better resist
mechanical strains related manufacturing of the stack. Because of the deposited energy of
the ion beam into the foils due to their stopping power, the foils melt after the passage of
an intense ion beam. The stack of foils is therefore a single-use focusing lens in laboratory
experiments, in contrast to a solenoidal magnet for example.

2.2 Beam model

The ion beam is assumed to be single-species and mono-energetic, with atomic number 𝑍𝑏,
mass 𝑚𝑏, charge 𝑞𝑏 = 𝑍𝑏𝑒, and kinetic energy ℰ𝑏 = (𝛾𝑏 − 1)𝑚𝑐2. 𝛾𝑏 = 1/

√︀
1 − 𝛽2

𝑏 is the
Lorentz factor, 𝛽𝑏 = 𝑉𝑏/𝑐 is the ratio of the beam velocity 𝑉𝑏 over the speed of light 𝑐. 𝑒
is the elementary electric charge. Physically, the beam is a single pulse and, therefore, not
continuous. However, because the beam pulse length is assumed to be long relative to the
the foil spacing 𝐿, our beam model is chosen to be infinitely long. This is valid as the beam
transit time is shorter than the hydrodynamical expansion time scale of the heated foils. We
adopt a Vlasov description to describe the beam using the distribution function 𝑓𝑏(x⊥,p, 𝑧).
x⊥ = x̂𝑥 + ŷ𝑦 is the transverse coordinate, 𝑧 is the axial coordinate, 𝑝 is the momentum.
Because the beam is assumed mono-energetic the axial coordinate 𝑧 can be chosen as an
independent variable, in place of the time 𝑡.



CHAPTER 2. FOIL FOCUSING WITH INFINITELY THIN FOILS 20

The beam charge density 𝜌𝑏 is therefore defined as 𝜌𝑏(x⊥, 𝑧) = 𝑞𝑏
∫︀
𝑑3p 𝑓𝑏. The axisym-

metric hypothesis yields no azimuthal dependency (𝜕𝜌𝑏/𝜕𝜃 = 0), and the axial dependance
of 𝜌𝑏 between two foils is neglected (𝜕𝜌𝑏/𝜕𝑧 = 0). The beam density can be rewritten as
𝜌𝑏(x⊥, 𝑧) = 𝜌𝑏(𝑟) where 𝑟 =

√︀
𝑥2 + 𝑦2. Note that on scale much larger than the interfoil

spacing 𝐿, the beam density 𝜌𝑏 does depend on 𝑧.
The beam line charge density

𝜆𝑏 = 2𝜋

∫︁ +∞

0

𝑑𝑟 𝑟𝜌𝑏(𝑟) (2.1)

is proportional to the beam current 𝐼𝑏 such that 𝐼𝑏 = 𝛽𝑏𝑐𝜆𝑏. By definition, the beam current
density is J𝑏 = 𝑞

∫︀
𝑑3𝑝 v𝑓𝑏 with v the particle velocity. Because the beam dynamics is mostly

axial,
J𝑏 ≃ ẑ 𝛽𝑏𝑐𝜌𝑏(𝑟). (2.2)

The beam charge 𝜌𝑏 and the beam current J𝑏 could be neutralized by the presence of
another beam species (e.g., electrons). We use a low-order model using the charge neutral-
ization factor ℱ𝜌 ∈ [0, 1] and the current neutralization factor ℱ𝐽 ∈ [0, 1] to obtain the total
charge density

𝜌 = (1 −ℱ𝜌)𝜌𝑏 (2.3)

and the total current density
J = (1 −ℱ𝐽)J𝑏. (2.4)

The transverse (⊥) statistical average of a quantity A over the beam distribution 𝑓𝑏(x,p, 𝑧)
is defined by

⟨𝐴⟩⊥ ≡
∫︀
𝑑2𝑥⊥

∫︀
𝑑3𝑝 𝐴(x⊥,p, 𝑧)𝑓𝑏∫︀

𝑑2𝑥⊥
∫︀
𝑑3𝑝 𝑓𝑏

. (2.5)

The 𝑧-varying radial extent of the beam charge density is measured by the rms width ⟨𝑥2⟩1/2⊥ .
The radial shape of the charge density 𝜌𝑏 is assumed not to change form throughout the stack
of foils (in 𝑧) while the radial extent of the beam charge density is allowed to vary in 𝑧. This
idealization of self-similar evolution is consistent with the conservation of the linear charge
density (𝜆 = constant) under radial self-field forces [52]. In order to use the approximation
above - that we exclusively treat the beam dynamics between two foils - the beam must
be axially long enough to fill several gap spacings to neglect bunched beam effects and be
transversely small enough to consider the transverse extent of the foils infinite in order to
avoid edge effects.

In this thesis, the radial profile of the beam is chosen to be either uniform or gaussian
such that the charge density is expressed as

𝜌𝑏(𝑟) =
𝜆

𝜋

⎧
⎨
⎩

1
2𝜎2

𝑥
𝑒
− 𝑟2

2𝜎2
𝑥 , Gaussian,

1
𝑟2𝑏

(𝐻(𝑟) −𝐻(𝑟𝑏 − 𝑟)), Uniform.
(2.6)
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Figure 2.2: Charge density profile for an axisymmetric uniform and gaussian distributed
beam. Figure from Ref. [52]

Here, 𝜎𝑥 = ⟨𝑥2⟩1/2⊥ is the rms width in 𝑥 of the Gaussian beam and 𝑟𝑏 = 2⟨𝑥2⟩1/2⊥ is the edge
radius of the uniform beam. H is the Heaviside step function.

The two density profiles are displayed in Fig. 2.2 where 𝜌𝑏 is plotted versus 𝑟 for “rms-
equivalent” profiles with equal line-charge 𝜆 and rms width ⟨𝑥2⟩1/2⊥ . This rms equivalency
requires that 𝑟𝑏 = 2𝜎𝑥.

The radial beam size varies with 𝑧 at scales larger than the interfoil spacing 𝐿. The
choice between a Gaussian or a uniform beam density profile depends on the source of
the beam. A laser-produced beam by a short-pulse laser may be Gaussian as the laser
beam follows Gaussian-distributed radial profile [64, 65]. Unneutralized high current beams
from a linear transport channel mostly display a uniform radial density due to the Debye
screening [45, 66, 67].

2.3 Self-field solution

Our model is based on the electrostatic approximation. The Maxwell’s equations are there-
fore described by:

∇ · E = 𝜌/𝜖0 (2.7a)

∇ ·B = 0 (2.7b)

∇× E = 0 (2.7c)

∇×B = 𝜇0J (2.7d)
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Here, E and B are the electric and magnetic fields. 𝜖0 = 8.854×10−12 F.m−1 is the vacuum
permittivity, 𝜇0 = 4𝜋×10−7 N.A−2 is the vacuum permeability, and 𝑐 = 1/

√
𝜖0𝜇0 = 2.99×108

m.s−1 is the speed of light in vacuum. The electrostatic approximation is justified as we
estimate that the image charge response time associated with conductions electrons in the
metallic foils to be much shorter than the transit time. For example, in aluminum foils,
the response time is estimated to be approximately 0.3 fs which is 4 orders of magnitude
faster than a 10 MeV beam of 4 ps pulse duration and 1 ps transit time. Besides, across a
𝐿 = 50 𝜇m interfoil spacing, the propagation time for light (approximately 0.2 ps) is one
order of magnitude smaller than timescales characteristic to the propagation of the beam.
Electromagnetic effects are therefore minimal in foil focusing. The magnetic fields penetrate
the thin foils without attenuation while the radial electric field is canceled at the thin foils.
This is the main intuition behind this passive focusing scheme using thin foils.

Magnetic field

Because the magnetic field is divergence-free (see Eq. (2.7b)), there exists a potential vector
A such that B = ∇×A. A can be uniquely defined using the Coulomb gauge ∇ ·A = 0,
and therefore, using Eq. (2.7d),

∇2A = −𝜇0J. (2.8)

Due to Eq. (2.2), we take A ≃ ẑ𝐴𝑧, which yields

∇2𝐴𝑧 ≃ −(1 −ℱ𝐽)𝜇0𝛽𝑏𝑐𝜌𝑏. (2.9)

Equation (2.9) and the equation for the electrostatic potential

∇2𝜑𝑣 = −𝜌𝑏
𝜖0
. (2.10)

in vacuum due to a unneutralized beam in the absence of foils (no boundary conditions at
finite 𝑧) follow the same form, and, as a consequence, choosing A to be finite for 𝑟 = 0 and
𝑟 → +∞ yield

𝐴𝑧 ≃ (1 −ℱ𝐽)
𝛽𝑏

𝑐
𝜑𝑣. (2.11)

The magnetic self-field B can be expressed as

B ≃ 𝜃𝐵𝜃 ≃ −𝜃(1 −ℱ𝐽)
𝛽𝑏

𝑐

𝜕𝜑𝑣

𝜕𝑟
. (2.12)

The integration of Eq. (2.10) with respect to 𝑟 simplifies Eq. (2.12) to

𝐵𝜃 ≃ (1 −ℱ𝐽)
𝛽𝑏

𝜖0𝑐𝑟

∫︁ 𝑟

0

𝑑𝑟 𝑟𝜌𝑏(𝑟). (2.13)
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By using specific radial profiles of beam densities from Eq. (2.6), Eq. (2.13) can be rewritten
as

𝐵𝜃 ≃ (1 −ℱ𝐽)
𝜆𝛽𝑏

2𝜋𝜖0𝑐

⎧
⎪⎪⎨
⎪⎪⎩

(1/𝑟)
[︁
1 − 𝑒−𝑟2/(2𝜎2

𝑥)
]︁
, Gaussian,{︃

𝑟/𝑟2𝑏 , 0 ≤ 𝑟 ≤ 𝑟𝑏,

1/𝑟, 𝑟𝑏 ≤ 𝑟,
Uniform.

(2.14)

These fields are plotted in Fig. 2.3 for rms-equivalent beams (equal 𝜆 and rms-beam radii)
with 𝑟𝑏 = 2𝜎𝑥. For the uniform-density beam, the field is linear within (𝑟 ≤ 𝑟𝑏) the beam and
falls-off as 1/𝑟 outside (𝑟𝑏 ≤ 𝑟) the beam. For the Gaussian beam, there is no sharp beam
edge, but the field is approximately linear for small 𝑟 and increases more rapidly for small 𝑟
than the uniform case due to the equivalent beam density being higher for the Gaussian case
and approximately uniform in the core. For radii well outside the core of the Gaussian beam
(𝑟 ≫ 𝜎𝑥), the field asymptotes with the same ∼ 1/𝑟 variation as for the uniform beam.

0.0 0.5 1.0 1.5 2.0
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Figure 2.3: Scaled self-magnetic field 𝐵𝜃 [Eq. (2.14)] versus scaled radial coordinate 𝑟 for
beams with Gaussian (black) and uniform (red) charge density. Shown for rms-equivalent

distributions with ⟨𝑥2⟩1/2⊥ = 𝜎𝑥 = 𝑟𝑏/2. Figure from Ref. [52].

Self-electric field

Because the self-electric field is curl-free (see Eq. (2.7c)), we can write the self-electric field
produced by the beam and possible neutralizing electrons as the gradient of an electrostatic
potential 𝜑 such that E = −∇𝜑. We therefore obtain the Poisson equation for 𝜑

∇2𝜑 = − 𝜌

𝜖0
(2.15)

between the two foils with the Dirichlet boundary conditions 𝜑 = 𝑉𝑙 = const at 𝑧 = −𝐿/2
and 𝜑 = 𝑉𝑟 = const at 𝑧 = 𝐿/2 (see Fig. 2.1). The electrostatic potential 𝜑 is the linear
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superposition of the electrostatic potential 𝜑𝑓 due to the biased foils and the electrostatic
potential due to the beam (and neutralizing electrons) charge 𝜑𝑔 assuming that the foils are
not biased. The electrostatic potential can be further reduced to

𝜑 = 𝜑𝑓 + (1 −ℱ𝜌)𝜑𝑔, (2.16)

where

𝜑𝑓 =
1

2
(𝑉𝑟 + 𝑉𝑙) + (𝑉𝑟 − 𝑉𝑙)

𝑧

𝐿
(2.17)

and where 𝜑𝑔 is the solution to the Poisson equation

∇2𝜑𝑔 = −𝜌𝑏
𝜖0
. (2.18)

In contrast to 𝜑𝑣, 𝜑𝑔 takes into account the boundary values 𝜑𝑔 = 0 on the foils at 𝑧 = ±𝐿/2.
The Poisson Eq. (2.18) is formally solved using a Green’s function method:

𝜑𝑔 =
1

4𝜋𝜖0

∫︁ 𝐿/2

−𝐿/2

𝑑𝑧

∫︁
𝑑2𝑥̃⊥ 𝜌𝑏(x̃)𝐺(x, x̃), (2.19)

where 𝐺(x, x̃) is the Green’s function for the Poisson Eq. (2.18), i.e.

∇2𝐺(x, x̃) = −4𝜋𝛿(x− x̃). (2.20)

Here, 𝐺(x, x̃) = 𝐺(x̃,x) and 𝐺(x, x̃)|𝑧=±𝐿/2 = 0. In Eq. (2.20), 𝛿(x) = 𝛿(𝑥)𝛿(𝑦)𝛿(𝑧) in
cartesian coordinates where 𝛿(𝑥) represents the usual Dirac-delta function. An explicit
representation for 𝐺 can be calculated in a convenient expanded form using the the cylindrical
coordinate form of 𝛿(x) = 𝛿(𝑟)𝛿(𝜃)𝛿(𝑧)/𝑟 as in [68]:

𝐺(x, x̃) = 2
∞∑︁

𝑛=−∞

∫︁ ∞

0

𝑑𝑘 𝑒𝑖𝑛(𝜃−𝜃)𝐽𝑛(𝑘𝑟)𝐽𝑛(𝑘𝑟)
sinh[𝑘(𝐿/2 + 𝑧<)] sinh[𝑘(𝐿/2 − 𝑧>)]

sinh(𝑘𝐿)
. (2.21)

Here, 𝑖 ≡
√
−1, 𝜃 = tan−1(𝑦, 𝑥) is the azimuthal angle, 𝑧>/𝑧< denotes the greater/lesser of

𝑧 and 𝑧, 𝐽𝑛(𝑥) is an 𝑛th order ordinary Bessel function.
We substitute Eq. (2.21) in Eq. (2.19), and only the 𝑛 = 0 mode is preserved which

simplifies Eq. (2.19) to

𝜑𝑔 =
1

𝜖0

∫︁ ∞

0

𝑑𝑘

∫︁ 𝐿/2

−𝐿/2

𝑑𝑧
sinh[𝑘(𝐿/2 + 𝑧<)] sinh[𝑘(𝐿/2 − 𝑧>)]

sinh(𝑘𝐿)
𝐽0(𝑘𝑟)

∫︁
𝑑𝑟 𝑟𝜌𝑏(𝑟)𝐽0(𝑘𝑟).

(2.22)
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The domain of the integral in 𝑧 can be separated in two subdomains to explicitly reduce
Eq. (2.19):
∫︁ 𝐿/2

−𝐿/2

𝑑𝑧 sinh[𝑘(𝐿/2 + 𝑧<)] sinh[𝑘(𝐿/2 − 𝑧>)]

= sinh[𝑘(𝐿/2 − 𝑧)]

∫︁ 𝑧

−𝐿/2

𝑑𝑧 sinh[𝑘(𝐿/2 + 𝑧)] + sinh[𝑘(𝐿/2 + 𝑧)]

∫︁ 𝐿/2

𝑧

𝑑𝑧 sinh[𝑘(𝐿/2 − 𝑧)]

=
1

𝑘
sinh[𝑘(𝐿/2 − 𝑧)][cosh[𝑘(𝐿/2 + 𝑧)] − 1] +

1

𝑘
sinh[𝑘(𝐿/2 + 𝑧)][cosh[𝑘(𝐿/2 − 𝑧)] − 1]

(2.23)
By identifying the trivial trigonometry identities and using Eq. (2.23), Eq. (2.19) further
reduces to

𝜑𝑔 =
1

𝜖0

∫︁ ∞

0

𝑑𝑘

𝑘

cosh(𝑘𝐿/2) − cosh(𝑘𝑧)

cosh(𝑘𝐿/2)
𝐽0(𝑘𝑟)

∫︁ ∞

0

𝑑𝑟 𝑟𝜌𝑏(𝑟)𝐽0(𝑘𝑟). (2.24)

The electric field contribution E = r̂𝐸𝑟 + ẑ𝐸𝑧 due to 𝜑𝑔 is computed from the divergence of
𝜑, and therefore

𝐸𝑟 = −𝜕𝜑𝑔

𝜕𝑟
=

1

𝜖0

∫︁ ∞

0

𝑑𝑘
cosh(𝑘𝐿/2) − cosh(𝑘𝑧)

cosh(𝑘𝐿/2)
𝐽1(𝑘𝑟)

∫︁ ∞

0

𝑑𝑟 𝑟𝜌𝑏(𝑟)𝐽0(𝑘𝑟)

𝐸𝑧 = −𝜕𝜑𝑔

𝜕𝑧
=

1

𝜖0

∫︁ ∞

0

𝑑𝑘
sinh(𝑘𝑧)

cosh(𝑘𝐿/2)
𝐽0(𝑘𝑟)

∫︁ ∞

0

𝑑𝑟 𝑟𝜌𝑏(𝑟)𝐽0(𝑘𝑟).

(2.25)

Note that 𝜕/𝜕𝑟 (𝐽0(𝑘𝑟)) = −𝑘𝐽1(𝑘𝑟).
Later in the thesis, we employ the 𝑧-average of −𝜕𝜑𝑔/𝜕𝑟 between the foils to simplify

the derivation of the envelope model. It was found in Ref. [52], and shown later in this
thesis, that the radial 𝐸𝑟 and axial 𝐸𝑧 field components could, to a good approximation, be
replaced by the 𝑧-average values between the foils

𝐸𝑟,𝑔(𝑟) =

∫︁ 𝐿/2

−𝐿/2

𝑑𝑧

𝐿
𝐸𝑟(𝑟, 𝑧) =

1

𝜖0

∫︁ ∞

0

𝑑𝑘

[︂
1 − 2

𝑘𝐿
tanh(𝑘𝐿/2)

]︂
𝐽1(𝑘𝑟) ×

∫︁ ∞

0

𝑑𝑟 𝑟𝜌𝑏(𝑟)𝐽0(𝑘𝑟),

𝐸𝑧,𝑔(𝑟) =

∫︁ 𝐿/2

−𝐿/2

𝑑𝑧

𝐿
𝐸𝑧(𝑟, 𝑧) = 0.

(2.26)
The integral in 𝑟 is further simplified to

∫︁ ∞

0

𝑑𝑟 𝑟𝜌𝑏(𝑟)𝐽0(𝑘𝑟) =
𝜆

𝜋

{︃
1
2
𝑒−𝑘2𝜎2

𝑥/2, Gaussian,
1

𝑘𝑟𝑏
𝐽1(𝑘𝑟𝑏), Uniform,

(2.27)

using the explicit form of the radial density for a Gaussian and a uniform distribution (see.
Eq.(2.6)). The average radial electric field in Eq. (2.26) becomes

𝐸𝑟,𝑔(𝑟) =
𝜆

𝜋𝜖0

{︃
1
2

∫︀∞
0
𝑑𝑘
[︀
1 − 2

𝑘𝐿
tanh(𝑘𝐿/2)

]︀
𝑒−𝑘2𝜎2

𝑥/2𝐽1(𝑘𝑟), Gaussian,
1
𝑟𝑏

∫︀∞
0

𝑑𝑘
𝑘

[︀
1 − 2

𝑘𝐿
tanh(𝑘𝐿/2)

]︀
𝐽1(𝑘𝑟𝑏)𝐽1(𝑘𝑟), Uniform.

(2.28)
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In Fig. 2.4, the 𝑧-averaged radial field in Eq. (2.28) is plotted as a function of 𝑟 for Gaussian-
and uniform-density beams for families of beam radius to foil spacing aspect ratio (charac-
teristic transverse beam extent to foil spacing). The aspect ratio is measured by 𝜎𝑥/𝐿 and
𝑟𝑏/𝐿 for Gaussian- and uniform-density beams, respectively. For the uniform charge-density
beam, the field is nearly linear within the beam for small aspect ratios 𝑟𝑏/𝐿 and becomes
progressively more nonlinear and peaked near the radial edge of the beam as 𝑟𝑏/𝐿 becomes
larger. Gaussian charge density results are qualitatively similar in scaling with aspect ratio
to the uniform-density beam results, but the field is intrinsically nonlinear even for small
aspect ratio 𝜎𝑥/𝐿 due to the Gaussian form of the beam charge density. Note that, in both
the Gaussian and uniform density cases, an aspect-ratio factor (𝜎𝑥/𝐿 and 𝑟𝑏/𝐿) is included
in the ordinate scale of the plot. This choice allows inclusion of small aspect-ratio limit
results on a finite scale and illustrates changes in radial field structure due to the foils. Due
to this scale factor, care should be taken not to directly interpret differences between curves
in Fig. 2.4 as an attenuation factor. The curves also have different nonlinear structure for
different aspect ratios which cannot be simply interpreted in terms of a simple attenuation
factor. Later in this thesis, a form factor 𝐹 ∈ [0, 1] (see Fig. 2.5) is derived consistent with
nonlinear effects which can be interpreted as an effective attenuation factor applied to the
vacuum radial electric field to obtain the effect of the foils on decreasing the defocusing
strength on the statistical beam radius evolution.

2.4 Transverse envelope model

As we assume that there is no kinetic energy loss, the axial kinetic energy of the beam is
preserved. The axial dynamics of the beam is assumed to remain identical throughout the
stack of thin foils. Our present analysis is consequently focused on the transverse dynamics
of the beam. We first derive the transverse single particle equation from first principles
by taking into account both applied linear external magnetic fields and self-magnetic and
-electric fields. Then, we average the single particle equation over the beam distribution 𝑓
in order derive the statistical transverse envelope equation of the beam radial size.

Single particle equation

The dynamics of a beam particle is governed by applied external forces F𝑎
⊥ and the self-forces

F𝑠
⊥ through the Lorentz equation

𝑑(𝛾𝑚v⊥)

𝑑𝑡
= F𝑎

⊥ + F𝑠
⊥. (2.29)

As the motion of particles within axial slices of the “bunch” are highly directed, we can use
the paraxial approximation, i.e. the magnitude of the transverse particle velocity 𝛿v is much
smaller of the magnitude of the axial particle velocity ẑ𝛽𝑐:

𝑑x(𝑡)

𝑑𝑡
= v(𝑡) = ẑ𝛽𝑐 + 𝛿v ≃ ẑ𝛽𝑐. (2.30)
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Figure 2.4: Plots of scaled 𝑧-averaged radial electric field −
∫︀ 𝐿/2

−𝐿/2
𝑑𝑧
𝐿

𝜕𝜑𝑔

𝜕𝑟
[Eq. (2.28)] versus

scaled radial coordinate 𝑟 for indicated values of beam aspect ratio. Results shown for
Gaussian (black, left column) and uniform (red, right column) density beam profiles with
the aspect ratio measured by 𝜎𝑥/𝐿 and 𝑟𝑏/𝐿, respectively. Solid curves correspond to uniform
increments of aspect ratio and dotted and dashed curves correspond to special values to show
limiting and near limiting aspect-ratio curves. Lower row plots show results for large aspect
ratio on an expanded scale. Figure from Ref. [52].

The applied external force here is therefore

F𝑎
⊥ = [𝑞v ×B𝑎]⊥

= 𝑞𝛽𝑐ẑ×B𝑎
⊥ + 𝑞𝐵𝑎

𝑧v⊥ × ẑ.
(2.31)

Here, B𝑎 is the applied external magnetic field. We could consider a solenoidal magnetic
field as it preserves the axisymmetry of our setup while enabling stronger focusing. In this
case, B𝑎 is expressed as

B𝑎 = −1

2

𝜕𝐵𝑧0(𝑧)

𝜕𝑧
(x̂𝑥 + ŷ𝑦) + ẑ𝐵𝑧0(𝑧). (2.32)

to preserve fringe fields and is consistant with linear beam optics [45, 69]. Here, 𝐵𝑧0(𝑧) =
𝐵𝑎

𝑧 (x⊥ = 0, 𝑧) is the specified on-axis magnetic field of the solenoid. External electric
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fields retaining the axisymmetric structure of our setup are harder to generate and are not
considered here.

The self-forces can be written explicitly using Eqs. (2.12) and (2.25),

F𝑠
⊥ = 𝑞E𝑠

⊥ + 𝑞 [𝑣 ×B𝑠]⊥

= −𝑞(1 −ℱ𝜌)
𝜕𝜑𝑔

𝜕𝑟
r̂− 𝑞𝛽2(1 −ℱ𝐽)

𝜕𝜑𝑣

𝜕𝑟
ẑ× 𝜃

= −𝑞(1 −ℱ𝜌)
𝜕𝜑𝑔

𝜕x⊥
+ 𝑞𝛽2(1 −ℱ𝐽)

𝜕𝜑𝑣

𝜕x⊥

(2.33)

Because the axial velocity 𝑣𝑧 = 𝑑𝑧/𝑑𝑡 is constant in our setup, we substitute the time variable
𝑡 for the axial coordinate 𝑧 as the independent variable. This is convenient as the dimension
of our problem is therefore reduced by one degree of freedom. Therefore, we can rewrite the
time derivative of any variable 𝐴 in terms of derivative of 𝑧, denoted with ′ as

𝑑𝐴

𝑑𝑡
=

𝑑𝐴

𝑑𝑧

𝑑𝑧

𝑑𝑡
= 𝑣𝑧𝐴

′ = (𝛽𝑐 + 𝛿𝑣𝑧)𝐴
′ ≃ 𝛽𝑐𝐴′ (2.34)

The term in the left-hand side of the Lorentz Eq. (2.29) is therefore reduced to

𝑑(𝛾𝑚v⊥)

𝑑𝑡
= 𝛽𝑐

𝑑

𝑑𝑧

(︂
𝛾𝑚𝛽𝑐

𝑑

𝑑𝑧
x⊥

)︂

= 𝑚𝛾𝛽2𝑐2
(︂
x′′
⊥ +

(𝛾𝛽)′

𝛾𝛽
x′
⊥

)︂ (2.35)

The particle is assumed to be energetic enough to neglect friction with the foils, and acceler-
ation or deceleration due to possible potential bias at the foils (i.e. |𝑞(𝑉𝑙−𝑉𝑟)/ℰ𝑏| ≪ 1). The
axial kinetic energy changes in our setup is therefore neglected and the acceleration term in
(𝛾𝛽)′x′

⊥ cancels in Eq. (2.35) Using the simplifications of Eqs. (2.31), (2.33) and (2.35), the
Lorentz Eq. (2.29) reduces to

x′′
⊥ =

𝑞

𝑚𝛾𝛽𝑐
ẑ×B𝑎

⊥ +
𝑞𝐵𝑎

𝑧

𝑚𝛾𝛽𝑐
x′
⊥ × ẑ

− (1 −ℱ𝜌)
𝑞

𝑚𝛾𝑐2
𝜕𝜑𝑔

𝜕x⊥
+ (1 −ℱ𝐽)

𝑞

𝑚𝛾𝛽2𝑐2
𝜕𝜑𝑣

𝜕x⊥
.

(2.36)

In the right-hand side, the first term is a defocusing force due to the transverse component of
the applied magnetic field. The second term is focusing term and due the axial component
of the applied magnetic field. The space-charge forces are modeled by the third and fourth
terms: the third term is the defocusing electrostatic force and the fourth term is the focusing
magnetic force.

In the following analysis, we further neglect the presence of the external axisymmetric
magnetic field. In the case of a solenoid, one can treat transform the laboratory frame
of Eq. (2.36) into the rotating Larmor frame to further reduce the equation [45]. In the
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absence of solenoidal magnetic field, the rotating Larmor frame and the laboratory frame
are identical. Equation (2.36) reduces to

x′′
⊥ = −(1 −ℱ𝜌)

𝑞

𝑚𝛾𝑐2
𝜕𝜑𝑔

𝜕x⊥
+ (1 −ℱ𝐽)

𝑞

𝑚𝛾𝛽2𝑐2
𝜕𝜑𝑣

𝜕x⊥
. (2.37)

In the absence of charge and current neutralization (ℱ𝜌 = ℱ𝐽 = 0), and in the absence
of conducting foils (𝜑𝑔 = 𝜑𝑣), the ratio of the focusing magnetic force over the defocusing
electrostatic force is 𝛽2 < 1. In this setup, the defocusing forces are always stronger than the
focusing forces. The presence of the foils modify the electrostatic potential in free space 𝜑𝑣

into the electrostatic potential bounded by the conducting foils 𝜑𝑔, which generate a weaker
electric field, implying possible self-focusing of the beam, which will be illustrated in the
envelope equation in the next section.

Envelope equations

Because our setup is axisymmetric, we only treat the equations in the 𝑥-direction, as the dy-
namics of the other transverse direction 𝑦 follows exactly the same equations. The transverse
size of the particle beam is given by the rms width ⟨𝑥2⟩1/2⊥ of the beam and its derivatives
with respect to 𝑧,

𝑑

𝑑𝑧
⟨𝑥2⟩1/2⊥ =

⟨𝑥𝑥′⟩⊥
⟨𝑥2⟩1/2⊥

,

𝑑𝑧

𝑑𝑧2
⟨𝑥2⟩1/2⊥ =

⟨𝑥𝑥′′⟩⊥
⟨𝑥2⟩1/2⊥

+
𝜀𝑥,rms

⟨𝑥2⟩3/2⊥

.

(2.38)

Here,

𝜀𝑥,rms ≡
[︀
⟨𝑥2⟩⊥⟨𝑥′2⟩⊥ − ⟨𝑥𝑥′⟩2⊥

]︀1/2 ≥ 0 (2.39)

is the transverse rms emittance, which reflects the magnitude of the defocusing thermal
forces. We assume no angular momentum in the 𝑥-𝑦 plane. The beam could possess angular
momentum if, for example, we employed a solenoidal magnetic field to provide additional
transverse focusing. In this case, an additional term in the envelope equation to quantify the
effects of angular momentum would be included as shown in Ref. [52]. The axisymmetry of
our setup allows ⟨𝑥𝜕𝜑𝑖

𝜕𝑥
⟩⊥ = 1

2
⟨𝑟 𝜕𝜑𝑖

𝜕𝑟
⟩⊥ with 𝑖 = 𝑔, 𝑣 . Substituting Eq. (2.37) into Eq. (2.38)

yields the beam envelope equations for the transverse size of the beam

𝑑2

𝑑𝑧2
⟨𝑥2⟩1/2⊥ − (1 −ℱ𝐽)

𝑞

2𝑚𝛾𝑏𝑐2
⟨𝑟 𝜕𝜑𝑣

𝜕𝑟
⟩⊥

⟨𝑥2⟩1/2⊥

+ (1 −ℱ𝜌)
𝑞

2𝑚𝛾𝑏𝛽2
𝑏 𝑐

2

⟨𝑟 𝜕𝜑𝑔

𝜕𝑟
⟩⊥

⟨𝑥2⟩1/2⊥

− 𝜀2𝑥,rms

⟨𝑥2⟩3/2⊥

= 0. (2.40)

The focusing magnetic term (the term that is a function of 𝜑𝑣) can be simplified for any
axisymmetric term using the Poisson Eq. (2.18) to

⟨𝑟𝜕𝜑𝑣

𝜕𝑟
⟩⊥ = 2𝜋

∫︁ +∞

0

𝑑𝑟 𝑟𝜌𝑏(𝑟) 𝑟
𝜕𝜑𝑣

𝜕𝑟

= −2𝜋

𝜖0

∫︁ +∞

0

𝑑𝑟 𝑟𝜌𝑏(𝑟)

∫︁ 𝑟

0

𝑑𝑟 𝑟𝜌𝑏(𝑟).

(2.41)
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Using the function 𝑔(𝑟) =
∫︀ 𝑟

0
𝑑𝑟 𝑟𝜌𝑏(𝑟), and its differential 𝑑𝑔(𝑟) = 𝑑𝑟 𝑟𝜌𝑏(𝑟), Equation. (2.42)

is further simplied to

⟨𝑟𝜕𝜑𝑣

𝜕𝑟
⟩⊥ = −2𝜋

𝜖0

∫︁ +∞

0

𝑑𝑔(𝑟)𝑔(𝑟)

= − 𝜋

𝜖0

[︂∫︁ +∞

0

𝑑𝑟 𝑟 𝜌𝑏(𝑟)

]︂2

= − 𝜆2

4𝜋𝜖0

= − 𝐼

4𝜋𝜖0𝛽𝑐
.

(2.42)

The defocusing electric term (the term that is a function of 𝜑𝑔) is rewritten to include the
dimensionless “form factor”

𝐹 (𝑧) ≡ −4𝜋𝜖0
𝜆

⟨𝑟𝜕𝜑𝑔

𝜕𝑟
⟩⊥ (2.43)

to reduce Eq. (2.40) to

𝑑2

𝑑𝑧2
⟨𝑥2⟩1/2⊥ +

𝛾2
𝑏

4

[︀
(1 −ℱ𝐽)𝛽2

𝑏 − (1 −ℱ𝜌)𝐹 (𝑧)
]︀ 𝑄

⟨𝑥2⟩1/2⊥

− 𝜀2𝑥,rms

⟨𝑥2⟩3/2⊥

= 0. (2.44)

We define

𝑄 ≡ 𝑞𝜆

2𝜋𝜖0𝑚𝛾3
𝑏𝛽

2
𝑏 𝑐

2
=

𝑞𝐼

2𝜋𝜖0𝑚𝛾3
𝑏𝛽

3
𝑏 𝑐

3
= const (2.45)

as the dimensionless perveance [45, 6, 70].
If the beam density does not vary much in the 𝑧-direction, the dimensionless “form factor”

𝐹 (𝑧) can be averaged over the foil spacing 𝐿. Intuitively, the radial electric field varies from
0 on the left foil at 𝑧 = −𝐿/2, reaches a maximum at 𝑧 = 0 and drops to 0 on the right foil
at 𝑧 = 𝐿/2. The beam particles are consequently subject of a rapid variation of the radial
electric field but, effectively, only move a little. We can therefore average 𝐹 (𝑧) over the foil
spacing 𝐿, which effectively averages the action of the electric field on the particle over the
foil spacing. The averaged form factor,

𝐹 =
1

𝐿

∫︁ 𝐿/2

−𝐿/2

𝑑𝑧 𝐹 (𝑧)

=
4𝜋

𝜆

∫︁ ∞

0

𝑑𝑘

[︂
1 − 2

𝑘𝐿
tanh(𝑘𝐿/2)

]︂
⟨𝑟𝐽1(𝑘𝑟)⟩⊥

∫︁ ∞

0

𝑑𝑟 𝑟𝜌𝑏(𝑟)𝐽0(𝑘𝑟),

(2.46)

is therefore substituted to the unaveraged form factor 𝐹 (𝑧) in Eq. (3.11) such that

𝑑2

𝑑𝑧2
⟨𝑥2⟩1/2⊥ +

𝛾2
𝑏

4

[︀
(1 −ℱ𝐽)𝛽2

𝑏 − (1 −ℱ𝜌)𝐹
]︀ 𝑄

⟨𝑥2⟩1/2⊥

− 𝜀2𝑥,rms

⟨𝑥2⟩3/2⊥

= 0. (2.47)
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The averaged form factor 𝐹 ∈ [0, 1] and can be seeing as an attenuation of the defocusing
electric field. The case 𝐹 = 0 represents a full cancellation of the defocusing electric field
while the case 𝐹 = 1 represents the absence of foils, when the beam propagates in free space.
This can be observed in Eq. (2.46): When 𝐿 → 0, i.e. the foils are very closed to each other,
and therefore the screening of the electric field is stronger, 𝐹 → 0. On the other hand, when
𝐿 → +∞, i.e. the foils are so far away from each other that the beam can be assumed to be
propagating in free space, and therefore no screening of the electric field occurs, 𝐹 → 1.

If we further assume a Gaussian or uniform beam, because

⟨𝑟𝐽1(𝑘𝑟)⟩⊥ =

{︃
𝑘𝜎2

𝑥𝑒
− 𝑘2𝜎2

𝑥
2 , Gaussian,

2
𝑘
𝐽2(𝑘𝑟𝑏), Uniform,

(2.48)

the averaged form factor 𝐹 can be simplified to

𝐹 =

{︃
2(𝜎𝑥/𝐿)2

∫︀∞
0
𝑑𝐾 𝐾

[︀
1 − 2

𝐾
tanh(𝐾/2)

]︀
𝑒−𝐾2(𝜎𝑥/𝐿)2 , Gaussian,

8
(𝑟𝑏/𝐿)

∫︀∞
0

𝑑𝐾
𝐾2

[︀
1 − 2

𝐾
tanh(𝐾/2)

]︀
𝐽1
(︀
𝐾 𝑟𝑏

𝐿

)︀
𝐽2
(︀
𝐾 𝑟𝑏

𝐿

)︀
, Uniform.

(2.49)

where 𝐾 = 𝑘𝐿 is the integration variable. Now, 𝐹 is only function of the aspect ratio, and
does not depend on the intensity or energy of the beam.

A careful analysis of the terms in the envelope equation Eq. (2.47) yield interesting
observations. The first term is obviously the inertial term. The second term (depending on
𝛽2) is the focusing magnetic term while the third term (depending on 𝐹 ) is the defocusing
electric term. The fourth term is the defocusing emittance term due to thermal fluctuation.
One can observe that, in the absence of neutralization (ℱ𝜌 = ℱ𝐽 = 0) without the help
of the electric field mitigation due to the form factor, Eq. (2.47) becomes the well-known
envelope equation for unbunched beam in free space. Passive focusing caused by the thin
foils is exclusively modeled by the average form factor 𝐹 . Expect for the averaged form
factor 𝐹 , Eq. (2.47) is completely independent from the radial distribution 𝜌𝑏(𝑟) of the

beam, provided we choose the right rms equivalent radial beam size (e.g ⟨𝑥2⟩1/2⊥ = 𝜎𝑥 = 𝑟𝑏/2
where 𝜎𝑥 is the rms beam size for a Gaussian beam, and 𝑟𝑏 is the rms beam size for a uniform
beam). Fig. 2.5 shows the dependency of the averaged form factor 𝐹 as a function of the

aspect ratio ⟨𝑥2⟩1/2⊥ /𝐿 and the curves of 𝐹 almost perfectly overlap for Gaussian and uniform
beams. We therefore do not expect much difference in beam radius during the foil focusing of
Gaussian beam, uniform beam, or, more generally, any beam with the same characteristics
and the equivalent rms radial beam size. We validate our envelope model with the help of
the numerical particle simulation code WARP [71].
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Figure 2.5: Form factor 𝐹 [Eq. (2.49)] versus aspect ratio ⟨𝑥2⟩1/2⊥ /𝐿 = 𝜎𝑥/𝐿 = 𝑟𝑏/(2𝐿)
for Gaussian (black) and uniform (red) charge-density beams. Rms-equivalent beams with
𝜎𝑥 = 𝑟𝑏/2 are plotted to allow direct comparison of the two cases.

2.5 Simulation model

The Particle-in-Cell method

Numerous numerical methods for particles simulation coexist and they can be roughly sep-
arated into three distinct groups, approximately in order of computational speed: particle
methods, distribution methods and fluid methods. Particle methods (e.g., direct n-body,
hierarchical n-body using trees, fast multipole methods) simulate direct particle-particle (or
particle-cluster) interactions. The computational cost of most basic numerical schemes scale
as 𝒪(𝑁2) where 𝑁 is the number of simulated particles. In distribution methods, the indi-
vidual particles are statistically averaged to the distribution function 𝑓 , and 𝑓 is computed
in phase-space self-consistently with the Maxwell’s equations, either directly on a grid (di-
rect Vlasov simulation), either using macro-particles deposited on a grid (the Particle-in-cell
PIC method). Further approximations lead to the fluid model by averaging the distribu-
tion function 𝑓 over velocity. In our work, we use the PIC method in a axisymmetric 2D
𝑟-𝑧 geometry to simulate the dynamics of particles self-consistently with the electrostatic
Maxwell’s equations. Distribution methods, especially the particle-in-cell method, are usu-
ally preferred over particle methods for high space-charge beams. This is because a physical
beam typically contains 1010 to 1015 particles while current processors and memory capac-
ities limit us to roughly 108 particles. Intra-beam collisions are also generally small which
is an additional argument for the PIC numerical method as it smoothes close interactions.
The beam particles are represented by Lagrangian macro-particles that are pushed forward
in time at each time step. Each macro-particle is an aggregate of many particles and must
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have the same charge 𝑞 to mass 𝑚 ratio as real beam particles. A spatial grid is used to
discretize the space domain. One time cycle in the PIC method can be broken down into
four steps: the integration of the equation of motion, the deposition of charge and current of
the macro-particles into the grid points, the computation of the electric and magnetic field
in the grid using Maxwell’s equation, and the interpolation of the field quantities in the grid
points into the macro-particles position. Figure 2.6 summarizes the computational cycle.
The simulation of the dynamics of the (macro-)particles starts at an initial time 𝑡 = 0. The

Time integration
of the equations of motion

- Initial Value Problem

Charge and current deposition
from particle positions to grid nodes

Integration of electrostatic
and magnetostatic equations on grid nodes

- Boundary Value Problem

Interpolation of electric and magnetic �elds
 from grid nodes to particle positions

Ei,Bi → vi → xi

xi,vi → ρj,k,Jj,k

ρj,k,Jj,k → φj,k,Aj,k → Ej,k,Bj,k

Ej,k,Bj,k → Ei,Bi

∆t

Figure 2.6: The Particle-in-Cell numerical cycle during one time step ∆𝑡.

time is discretized in constant time step ∆𝑡 that is chosen to encompass all relevant physics.
The phenomena with the fastest timescale (usually the cyclotron motion) usually sets ∆𝑡.
The spacial grid is discretized in 𝑟 with constant increment ∆𝑟 from 0 to 𝑟max, and in 𝑧
with constant increment ∆𝑧 from 𝑧min to 𝑧max chosen large enough to observe the relevant
physics (focusing of ion beam due to foils here). Each particle possesses position components
(𝑥,𝑦,𝑧) and velocity components (𝑣𝑥,𝑣𝑦,𝑣𝑧) in 3D cartesian coordinates. The charge 𝜌(𝑥, 𝑦, 𝑧)
and the current J(𝑥, 𝑦, 𝑧) of the particles are deposited on the grid node with index 𝑗 in
the 𝑟-direction and index 𝑘 in the 𝑧-direction and therefore discretized to the charge 𝜌𝑗,𝑘
and the current J𝑗,𝑘 = (𝐽𝑟,𝑗,𝑘, 𝐽𝜃,𝑗,𝑘, 𝐽𝑧,𝑗,𝑘). They are subsequently used to obtain the electric
potential 𝜑𝑗,𝑘 and the potential vector A𝑗,𝑘 = (𝐴𝑟,𝑗,𝑘, 𝐴𝜃,𝑗,𝑘, 𝐴𝑧,𝑗,𝑘) from ∇2𝜑 = −𝜌/𝜖0 and
∇2A = −𝜇0J (due to the Coulomb gauge, see. Eqs. (2.15) and (2.8)). From the grid nodes,
the discretized electric potential 𝜑𝑗,𝑘 and potential vector A𝑗,𝑘 yield the discretized electric
E𝑗,𝑘 and magnetic field B𝑗,𝑘 on the nodes from E = −∇𝜑 and B = ∇×A. We interpolate
the electric field E𝑗,𝑘 and magnetic field B𝑗,𝑘 from the nodes to the particle position (𝑥, 𝑦, 𝑧)
to obtain the electric field E(𝑥, 𝑦, 𝑧) and magnetic field B(𝑥, 𝑦, 𝑧) acting on the particles.
From here, we can integrate in time the equations of motion.
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Figure 2.7: The positions x and the velocities v in the Boris time integrator are staggered in
time. The positions, as well as the fields, are computed at each integer of time step 𝑡+𝑛∆𝑡.
The velocity are computed at each half-integer of time step 𝑡+ (𝑛+ 1/2)∆𝑡. 𝑛 is the number
of time steps elapsed during the simulation.

Time integration of the equations of motion in 3D cartesian coordinates

The equations of motion in the non-relativistic case are:

𝑚
𝑑v

𝑑𝑡
= 𝑞(E + v×B),

𝑑x

𝑑𝑡
= v.

(2.50)

We assume E and B known and constant during the time-integration of the particles over
one time step. This is therefore a system of ordinary differential equations. Our boundary
conditions here are the initial values of the simulation, namely x(𝑡 = 0) and v(𝑡 = 0). This is
therefore an initial value problem (IVP). A plethora of numerical methods exists for IVPs of
ODEs, e.g. Runge-Kutta methods, Richardson extrapolation and its particular implemen-
tations, predictor-corrector methods. In this thesis, we employ the Boris pusher [72]. In the
Boris method, we only need to store prior position and velocity, in contrast to higher order
methods. We also only need one field solve per time step. Discretizing Eq. (2.50) for the
Boris method yields

𝑚
v𝑖+1/2 − v𝑖−1/2

∆𝑡
= 𝑞E +

v𝑖+1/2 + v𝑖−1/2

2
×B,

x𝑖+1 − x𝑖

∆𝑡
= v𝑖+1/2.

(2.51)

The Boris time integrator staggers in time the computation of the particle positions x and
the velocities v as shown in Fig. 2.7. The magnetic term is centered by averaging v𝑖+1/2 and
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v𝑖−1/2. While the scheme appear to be implicit, in reality, the scheme is explicit. We can
show that the scheme is explicit by using

v− = v𝑖−1/2 +
𝑞E

𝑚

∆𝑡

2
,

v+ = v𝑖+1/2 −
𝑞E

𝑚

∆𝑡

2
.

(2.52)

Equation (2.52) separates the electric and magnetic forces and yields

v+ − v−

∆𝑡
=

𝑞

2𝑚
(v+ + v−) ×B. (2.53)

Equation (2.53) is a rotation. The full time-integration is made of three steps:

1. v𝑖−1/2 is advanced to v− by the electric field by a quantity due to half the time-step
∆𝑡/2 using Eq. (2.52).

2. v− is then rotated to v+ using Eq. (2.53).

3. v+ is advanced to v𝑖+1/2 by the electric field by the remaining half of the time-step
∆𝑡/2 using Eq. (2.52).

We can prove that the second step of the time-integration is a rotation by applying the scalar
product (v+ − v−) on Eq. (2.53). It is implemented with the help of the vector

v′ = v− + v− × t. (2.54)

Here,

t =
𝑞B

𝑚

∆𝑡

2
. (2.55)

v′ is perpendicular to (v+−v−) and B. As (v+−v−) is parallel to v′×B, we can complete
our relation by

v+ = v− + v′ × s (2.56)

Here,

s =
2t

1 + 𝑡2
, (2.57)

and |s| is set by the requirement |v−|2 = |v+|2. Details can be readily found in the litera-
ture [72, 73].

One of the main advantages of the Boris method is the long-term accuracy, contrary to
other popular scheme such that the Runge-Kutta method whose errors are unbounded in
time and accumulate coherently at each time step. This is due to the fact that the Boris
method preserves the phase-space volume, even though it is not a symplectic integrator [74].

Because the positions and the velocities are known half a time-step apart and follow a
leapfrog scheme depicted in Fig. 2.7, care is needed at the initial particle push and as well
as during data collection from diagnostics as the positions and the velocity will have to be
known at the same time 𝑡 [73].



CHAPTER 2. FOIL FOCUSING WITH INFINITELY THIN FOILS 36

Weighting of particle on 𝑟-𝑧 grid

Once the positions and the velocities of the particles are known at time 𝑡, we deposit the
associated charge and density on a 𝑟-𝑧 grid. Because our problem is axisymmetric (𝜕/𝜕𝜃 =
0), we do not need to consider any azimuthal dependency, which effectively reduces the
computational cost. We reduced a 3D problem into a 2D problem. We employ a first-
order weighting for charge and current deposition which accesses the two nearest grid points
for each particle and for each dimension. In this paradigm, the particles are finite-size
overlapping clouds with rectangular shape in the 𝑟-𝑧 grid (but with the shape of a ring in
3D). This method commonly referred as the cloud-in-cell (CIC) method [73] and has the
advantages to be relatively smooth while remaining computationally fast. We deposit the
charges and current bilinearly in (𝑟2,𝑧) on the 𝑟-𝑧 grid. We used 𝑟2 instead of 𝑟 in the
weighting because it is the area that is the relevant parameter. The grid spacing ∆𝑧 is a
constant increment of the axial direction.

From the previous step, the particles have positions in cartesian coordinates (𝑥,𝑦,𝑧).
Therefore, in cylindrical coordinates, the particles have positions (𝑟,𝜃,𝑧) such that:

𝑟 =
√︀

𝑥2 + 𝑦2,

𝜃 = arctan(𝑦, 𝑥).
(2.58)

During the field solve, the angular position 𝜃 will not be used as we employ a 2D 𝑟-𝑧 grid.
However, it will be used when we convert the electric field and the magnetic field from the
axisymmetric cylindrical coordinates (𝑟,𝑧) to the cartesian coordinates (𝑥,𝑦,𝑧).

Assuming that a particle of charge 𝑞 is located at (𝑟, 𝑧), where 𝑟 ∈ [𝑟𝑗, 𝑟𝑗+1] and 𝑧 ∈
[𝑧𝑘, 𝑧𝑘+1] and 𝑗, 𝑘 are indices of the grid nodes in the radial and axial directions as shown
in Fig. 2.8, the associated charge deposition on the four nodes surrounding the particle at
(𝑟, 𝑧) is the following:

𝑞𝑗,𝑘 = 𝑞
𝑟2𝑗+1 − 𝑟2

𝑟2𝑗+1 − 𝑟2𝑗

𝑧𝑘+1 − 𝑧

𝑧𝑘+1 − 𝑧𝑘
,

𝑞𝑗+1,𝑘 = 𝑞
𝑟2 − 𝑟2𝑗
𝑟2𝑗+1 − 𝑟2𝑗

𝑧𝑘+1 − 𝑧

𝑧𝑘+1 − 𝑧𝑘
,

𝑞𝑗,𝑘+1 = 𝑞
𝑟2𝑗+1 − 𝑟2

𝑟2𝑗+1 − 𝑟2𝑗

𝑧 − 𝑧𝑘
𝑧𝑘+1 − 𝑧𝑘

,

𝑞𝑗+1,𝑘+1 = 𝑞
𝑟2 − 𝑟2𝑗
𝑟2𝑗+1 − 𝑟2𝑗

𝑧 − 𝑧𝑘
𝑧𝑘+1 − 𝑧𝑘

.

(2.59)

In order to compute the charge density 𝜌𝑗,𝑘 on the node (𝑗, 𝑘), we need to derive the
volume 𝑉𝑗,𝑘 associated with the node (𝑗, 𝑘). The volume on the node (𝑗, 𝑘) is taken as
bounded by 𝑟𝑗−1/2 = (𝑟𝑗 + 𝑟𝑗−1)/2 and 𝑟𝑗+1/2 = (𝑟𝑗+1 + 𝑟𝑗)/2 in the radial direction and by
𝑧𝑘−1/2 = (𝑧𝑘 + 𝑧𝑘−1)/2 and 𝑧𝑘+1/2 = (𝑧𝑘+1 + 𝑧𝑘)/2 in the axial direction such that

𝑉𝑗,𝑘 = 𝜋(𝑟2𝑗+1/2 − 𝑟2𝑗−1/2)(𝑧𝑘+1/2 − 𝑧𝑘−1/2)

= 𝜋(𝑟2𝑗+1/2 − 𝑟2𝑗−1/2)∆𝑧
(2.60)
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Figure 2.8: Charge and current deposition from particle positions (𝑟,𝑧) to grid nodes (𝑗,𝑘).
The method employed here is the cloud-in-cell method where only the two nearest nodes in
each direction is used.

The special case 𝑗 = 0 is trivially treated.
The charge density 𝜌𝑗,𝑘 on the node (𝑗, 𝑘) is therefore

𝜌𝑗,𝑘 =
𝑞𝑗,𝑘
𝑉𝑗,𝑘

(2.61)

The current deposition follows the same rational. We express the velocity in cylindrical
coordinates

v =

⎛
⎝
𝑣𝑟
𝑣𝜃
𝑣𝑧

⎞
⎠ =

⎛
⎝

cos 𝜃 sin 𝜃 0
− sin 𝜃 cos 𝜃 0

0 0 1

⎞
⎠
⎛
⎝
𝑣𝑥
𝑣𝑦
𝑣𝑧

⎞
⎠ (2.62)

using 𝜃 defined in Eq. (2.58).
The current j𝑗,𝑘 = (𝑗𝑟,𝑗,𝑘, 𝑗𝜃,𝑗,𝑘, 𝑗𝑧,𝑗,𝑘) on the grid node (𝑗, 𝑘) due to a particle of charge q



CHAPTER 2. FOIL FOCUSING WITH INFINITELY THIN FOILS 38

and current 𝑞v is readily derived and yield

j𝑗,𝑘 = 𝑞v
𝑟2𝑗+1 − 𝑟2

𝑟2𝑗+1 − 𝑟2𝑗

𝑧𝑘+1 − 𝑧

𝑧𝑘+1 − 𝑧𝑘
,

j𝑗+1,𝑘 = 𝑞v
𝑟2 − 𝑟2𝑗
𝑟2𝑗+1 − 𝑟2𝑗

𝑧𝑘+1 − 𝑧

𝑧𝑘+1 − 𝑧𝑘
,

j𝑗,𝑘+1 = 𝑞v
𝑟2𝑗+1 − 𝑟2

𝑟2𝑗+1 − 𝑟2𝑗

𝑧 − 𝑧𝑘
𝑧𝑘+1 − 𝑧𝑘

,

j𝑗+1,𝑘+1 = 𝑞v
𝑟2 − 𝑟2𝑗
𝑟2𝑗+1 − 𝑟2𝑗

𝑧 − 𝑧𝑘
𝑧𝑘+1 − 𝑧𝑘

.

(2.63)

Normalizing it with the node volume, the current density J𝑗,𝑘 = (𝐽𝑟,𝑗,𝑘, 𝐽𝜃,𝑗,𝑘, 𝐽𝑧,𝑗,𝑘) can be
written as

J𝑗,𝑘 =
j𝑗,𝑘
𝑉𝑗,𝑘

. (2.64)

We have now obtained the charge density 𝜌𝑗,𝑘 and the current density J𝑗,𝑘 on each node (𝑗, 𝑘)
of the grid. Solving the electrostatic Maxwell’s equations on the grid in order to obtain the
electric field E𝑗,𝑘 and the magnetic field B𝑗,𝑘 on the grid nodes is our next step.

Electric and magnetic field solver on 𝑟-𝑧 grid

Jj,k

ρj,k
Aj,k

Ej,k

Bj,k

φj,k∇2φ = −ρ/ 0

∇2A = −µ0J

E = −∇φ

B = ∇×A

Figure 2.9: Computations carried by the electrostatic field solver (top row) and by the
magnetostatic field solver (bottom row)

The electrostatic Maxwell equations are given by Eq. (2.7). Because of the electrostatic
assumptions, the computation of the electric field and the magnetic field are decoupled as
shown in Fig. 2.9.

Electrostatic field solver:
For the same arguments as the previous section, because E is curl-free, we can express

E as the gradient of an electric potential 𝜑 such that E = −∇𝜑 so that we obtain the
Poisson equation ∇2𝜑 = −𝜌/𝜖0, as shown in Eq. (2.15). The Poisson equation is one of the
simplest non-trivial elliptic partial differential equation. Our problem is a boundary value
problem (BVP): the radial and axial physical boundaries are conductors. Assuming perfect
conductors, there must be no electric field at the boundary. As a result, the boundary value
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r̂
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Er,j+1/2,k

Er,j−1/2,k

Ez,j,k+1/2Ez,j,k−1/2

∆r

∆z

qj,k

Ωj,k

Figure 2.10: Gauss’ law is employed around the grid node (𝑗,𝑘). The chosen Gaussian surface
𝜕Ω𝑗,𝑘 is a hollow tube. Its axial dimensions are delimited by 𝑧𝑗 − ∆𝑧/2 and 𝑧𝑗 + ∆𝑧/2. Its
inner and outer radius are respectively 𝑟𝑘 − ∆𝑟/2 and 𝑟𝑘 + ∆𝑟/2. The electric fields on the
surface are therefore computed at half distance between grid nodes.

problem we desire to solve for 𝜑 is

∇2𝜑 = −𝜌/𝜖0,

𝜑 = 0, at 𝑟 = {0, 𝑟max} or 𝑧 = {𝑧min, 𝑧max}.
(2.65)

In order to obtain the discretized equations for Eq. (2.65), we employ Gauss’ law with the
Gaussian surface 𝜕Ω𝑗,𝑘 around the node (𝑗, 𝑘), which contains the charge 𝑄𝑗,𝑘, as shown in
Fig. 2.10 and obtain

𝑞𝑗,𝑘
𝜖0

=

∫︁∫︁

𝜕Ω𝑗,𝑘

E · 𝑑S

= 2𝜋𝑟𝑗+1/2∆𝑧𝐸𝑟,𝑗+1/2,𝑘 − 2𝜋𝑟𝑗−1/2∆𝑧𝐸𝑟,𝑗−1/2,𝑘

+ 𝜋(𝑟2𝑗+1/2 − 𝑟2𝑗−1/2)(𝐸𝑧,𝑗,𝑘+1/2 − 𝐸𝑧,𝑗,𝑘−1/2).

(2.66)

Using Eqs. (2.60) and (2.61), we can recast Eq. (2.66) into

𝜌𝑗,𝑘
𝜖0

=
2

𝑟2𝑗+1/2 − 𝑟2𝑗−1/2

(𝑟𝑗+1/2𝐸𝑟,𝑗+1/2,𝑘 − 𝑟𝑗−1/2𝐸𝑟,𝑗−1/2,𝑘) +
𝐸𝑧,𝑗,𝑘+1/2 − 𝐸𝑧,𝑗,𝑘−1/2

∆𝑧
. (2.67)
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The radial and axial components of E = ∇𝜑 for Eq. (2.67) can be discretized as

𝐸𝑟,𝑗+1/2,𝑘 = −𝜑𝑗+1,𝑘 − 𝜑𝑗,𝑘

𝑟𝑗+1 − 𝑟𝑗
,

𝐸𝑧,𝑗,𝑘+1/2 = −𝜑𝑗,𝑘+1 − 𝜑𝑗,𝑘

∆𝑧
,

(2.68)

and injected into Eq. (2.67) to obtain a five-point finite difference form of the Poisson equa-
tion

−𝜌𝑗,𝑘
𝜖0

=
2

𝑟2𝑗+1/2 − 𝑟2𝑗−1/2

(𝑟𝑗+1/2
𝜑𝑗+1,𝑘 − 𝜑𝑗,𝑘

𝑟𝑗+1 − 𝑟𝑗
− 𝑟𝑗−1/2

𝜑𝑗,𝑘 − 𝜑𝑗−1,𝑘

𝑟𝑗 − 𝑟𝑗−1

) +
𝜑𝑗,𝑘+1 − 2𝜑𝑗,𝑘 + 𝜑𝑗,𝑘−1

∆𝑧2
,

(2.69)
with the special case of 𝑟 = 0

−𝜌0,𝑘
𝜖0

=
2

𝑟21/2
(𝑟1/2

𝜑1,𝑘 − 𝜑0,𝑘

𝑟1
) +

𝜑0,𝑘+1 − 2𝜑0,𝑘 + 𝜑0,𝑘−1

∆𝑧2
, (2.70)

in addition to the boundary conditions

∀𝑗, 𝜑𝑗,0 = 𝜑𝑗,𝑘max = 0 (axial Dirichlet boundary condition),

∀𝑘, 𝜑𝑗max,𝑘 = 0 (radial Dirichlet boundary condition).
(2.71)

The discretized version of the BVP to solve (2.65) is therefore defined by Eq. (2.69), (2.70)
and (2.71). This derivation of the discretized is inspired from Ref. [73] where more details
can be found. This numerical BVP is a standard problem in the numerical analysis of partial
differential equation (PDE). Countless numerical methods have been designed to solve this
kind of BVP [75]. We employed for this work the multigrid method which uses a hierarchy
of discretizations. More details on the multigrid method can be found here [76]. Once the
value of the 𝜑𝑗,𝑘 is known on the grid nodes, we can use Eq. (2.69) to obtain the values of
the E halfway between the nodes. As we need the values of E on the nodes, we employ a
flux weighted average in the radial direction to account for the area weighting in 𝑟2

𝑟𝑗,𝑘𝐸𝑟,𝑗,𝑘 =
𝑟𝑗−1/2,𝑘𝐸𝑟,𝑗−1/2,𝑘 + 𝑟𝑗+1/2,𝑘𝐸𝑟,𝑗+1/2,𝑘

2
, (2.72)

and an unweighted average in the axial direction

𝐸𝑧,𝑗,𝑘 =
𝐸𝑧,𝑗,𝑘+1/2 + 𝐸𝑧,𝑗,𝑘−1/2

2
. (2.73)

Magnetostatic field solver:
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The equation for ∇2A = 𝜇0J in cylindrical coordinates

⎧
⎪⎨
⎪⎩

1
𝑟

𝜕
𝜕𝑟

(︀
𝑟 𝜕𝐴𝑟

𝜕𝑟

)︀
+ 1

𝑟2
𝜕2𝐴𝑟

𝜕𝜃2
+ 𝜕2𝐴𝑟

𝜕𝑧2
− 𝐴𝑟

𝑟2
− 2

𝑟2
𝜕𝐴𝜃

𝜕𝜃
= −𝜇𝐽𝑟(𝑟, 𝑧),

1
𝑟

𝜕
𝜕𝑟

(︀
𝑟 𝜕𝐴𝜃

𝜕𝑟

)︀
+ 1

𝑟2
𝜕2𝐴𝜃

𝜕𝜃2
+ 𝜕2𝐴𝜃

𝜕𝑧2
− 𝐴𝜃

𝑟2
− 2

𝑟2
𝜕𝐴𝑟

𝜕𝜃
= −𝜇𝐽𝜃(𝑟, 𝑧),

1
𝑟

𝜕
𝜕𝑟

(︀
𝑟 𝜕𝐴𝑧

𝜕𝑟

)︀
+ 1

𝑟2
𝜕2𝐴𝑧

𝜕𝜃2
+ 𝜕2𝐴𝑧

𝜕𝑧2
= −𝜇𝐽𝑧(𝑟, 𝑧)

(2.74)

can be reduced to ⎧
⎪⎨
⎪⎩

1
𝑟

𝜕
𝜕𝑟

(︀
𝑟 𝜕𝐴𝑟

𝜕𝑟

)︀
+ 𝜕2𝐴𝑟

𝜕𝑧2
− 𝐴𝑟

𝑟2
= −𝜇𝐽𝑟(𝑟, 𝑧),

1
𝑟

𝜕
𝜕𝑟

(︀
𝑟 𝜕𝐴𝜃

𝜕𝑟

)︀
+ 𝜕2𝐴𝜃

𝜕𝑧2
− 𝐴𝜃

𝑟2
= −𝜇𝐽𝜃(𝑟, 𝑧),

1
𝑟

𝜕
𝜕𝑟

(︀
𝑟 𝜕𝐴𝑧

𝜕𝑟

)︀
+ 𝜕2𝐴𝑧

𝜕𝑧2
= −𝜇𝐽𝑧(𝑟, 𝑧)

(2.75)

by invoking the axisymmetric assumption (𝜕/𝜕𝜃 = 0).
In our setup, we also choose for B and A periodic boundary conditions in 𝑧 and Dirichlet

boundary conditions in 𝑟. In other words, for the potential vector A,

∀𝑟, A(𝑟, 𝑧min) = A(𝑟, 𝑧max),

∀𝑧, A(𝑟max, 𝑧) = 0.
(2.76)

We can recast the BVP defined by Eqs. (2.75) and (2.76) in a discretized form as for the BVP
for the electric field. Because the axial boundary conditions is periodic, we can employ fast
Fourier transform (FFT) methods in the 𝑧-direction. We will eventually obtain a triangular
matrix equation in 𝑟. More details can found in Ref. [77] for the FFT method and in Ref. [73]
for the magnetostatic solver. We eventually obtain A𝑗,𝑘 = (𝐴𝑟,𝑗,𝑘, 𝐴𝜃,𝑗,𝑘, 𝐴𝑧,𝑗,𝑘) on the grid
nodes. The expression of B = ∇×A with the axisymmetric assumption,

⎧
⎪⎨
⎪⎩

𝐵𝑟 = −𝜕𝐴𝜃

𝜕𝑧
,

𝐵𝜃 = 𝜕𝐴𝑟

𝜕𝑧
− 𝜕𝐴𝑧

𝜕𝑟
,

𝐵𝑧 = 𝐴𝜃

𝑟
+ 𝜕𝐴𝜃

𝜕𝑟
,

(2.77)

can be, again, using Taylor expansions, discretized to

⎧
⎪⎨
⎪⎩

𝐵𝑟,𝑗,𝑘 = −𝐴𝜃,𝑘,𝑗+1−𝐴𝜃,𝑘,𝑗−1

2Δ𝑧
,

𝐵𝜃,𝑗,𝑘 =
𝐴𝑟,𝑘,𝑗+1−𝐴𝑟,𝑘,𝑗−1

2Δ𝑧
− 𝐴𝑧,𝑘+1,𝑗−𝐴𝑧,𝑘−1,𝑗

𝑟𝑗+1−𝑟𝑗−1
,

𝐵𝑧,𝑗,𝑘 =
𝐴𝜃,𝑗,𝑘

𝑟𝑗
+

𝐴𝜃,𝑗+1,𝑘−𝐴𝜃,𝑗−1,𝑘

𝑟𝑗+1−𝑟𝑗−1
.

(2.78)

As A𝑗,𝑘 is known at each grid point (𝑗, 𝑘), Equation (2.78) provides the values of the magnetic
field B𝑗,𝑘 at each grid point.

Interpolation of the electric and magnetic fields on the particle positions

During the charge and current deposition of the particles on the 𝑟-𝑧 grid, we employed the
CIC method. We compute the electric and magnetic fields with a lower order or a higher
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Figure 2.11: Electric and magnetic field interpolation from grid nodes (𝑗,𝑘) to particle
positions (𝑟,𝑧). The method employed here is the cloud-in-cell method where only the two
nearest nodes in each direction is used.

order interpolation. However, there are reasons why the same weighting order is preferred.
Identical weighting orders conserve momentum: the forces between a pair of particles are
equal and opposite, and the force of a particle upon itself is zero. If the particle deposition
and the field interpolation are different, the force of a particle upon itself is not necessarily
equal to zero and this represents an additional restriction on the time step which can be
catastrophic [78]. We therefore employ the CIC method to interpolate the electric and
magnetic fields on particle positions. From the field solver, we derived E𝑗,𝑘 and B𝑗,𝑘 on each
grid node (𝑗, 𝑘). The weighting is bilinear in (𝑟2, 𝑧). Similar to Eqs. (2.59) and (2.63), as
shown in Fig. 2.11, the electric field E = (𝐸𝑟, 𝐸𝜃, 𝐸𝑧) at position (𝑟, 𝑧), where 𝑟 ∈ [𝑟𝑗, 𝑟𝑗+1]
and 𝑧 ∈ [𝑧𝑘, 𝑧𝑘+1] and 𝑗, 𝑘 are indices of the grid nodes in the radial and axial direction, is
interpolated following

E(𝑟, 𝑧) = E𝑗,𝑘

𝑟2𝑗+1 − 𝑟2

𝑟2𝑗+1 − 𝑟2𝑗

𝑧𝑘+1 − 𝑧

𝑧𝑘+1 − 𝑧𝑘
+ E𝑗+1,𝑘

𝑟2 − 𝑟2𝑗
𝑟2𝑗+1 − 𝑟2𝑗

𝑧𝑘+1 − 𝑧

𝑧𝑘+1 − 𝑧𝑘

+ E𝑗,𝑘+1

𝑟2𝑗+1 − 𝑟2

𝑟2𝑗+1 − 𝑟2𝑗

𝑧 − 𝑧𝑘
𝑧𝑘+1 − 𝑧𝑘

+ E𝑗+1,𝑘+1

𝑟2 − 𝑟2𝑗
𝑟2𝑗+1 − 𝑟2𝑗

𝑧 − 𝑧𝑘
𝑧𝑘+1 − 𝑧𝑘

.

(2.79)

The electric field E in Eq. (2.79) is expressed in cylindrical coordinates (𝐸𝑟, 𝐸𝜃, 𝐸𝑧), and
need to be converted back in cartesian coordinates (𝐸𝑥, 𝐸𝑦, 𝐸𝑧) for the time integration of
the equations of motion that are expressed in 3D cartesian coordinates. We consequently
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use the angle 𝜃 from Eq. (2.58), and, as a result, the electric field is rewritten as

E =

⎛
⎝
𝐸𝑥

𝐸𝑦

𝐸𝑧

⎞
⎠ =

⎛
⎝

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1

⎞
⎠
⎛
⎝
𝐸𝑟

𝐸𝜃

𝐸𝑧

⎞
⎠ . (2.80)

The interpolation of the magnetic field from grid nodes to particle positions follows the same
method.

The PIC code WARP

There is a profusion of academic and professional codes that implements the above-mentioned
numerical methods for plasma and beam physics simulations. We employ the particle code
WARP [71] that has been developed by a team of computational physicist at Lawrence
Livermore National Laboratory and Lawrence Berkeley National Laboratory (that I have
been part of at the beginning of my graduate research). WARP was originally developed
to simulate intense particle beams in bends with the help of a warped Cartesian mesh for
heavy-ion-fusion research. It has since evolved into an exhaustive code to compute the
dynamics of intense charged particle beams with self-consistant space-charge forces. WARP
includes an extensive set of time integrators, electrostatic and electromagnetic field solvers
in several geometries. Accelerating elements such as solenoidal magnets, electric or magnetic
quadrupoles, conductors can be included in simulations in WARP. WARP allows for real-
time visualization of particles dynamics and includes various diagnostics (e.g., phase-space
diagrams, energy evolution plots, heat maps of particle energy). Those features make WARP
a versatile tool for charged particle simulations: e.g., WARP can model the injector of a
particle accelerator, complex boundary conditions, multiple species of beams, neutralizing
plasmas. WARP has also been a crucial tool outside the heavy-ion-fusion community. For
example, it was instrumental to the modeling of Penning-Malmberg traps for anti-hydrogen
research, Paul traps, high intensity electron rings, laser accelerated proton beams.

WARP is written in Fortran with a Python wrapper as an interactive interpreter for
more flexibility. The user simply needs to choose the desired time integrator (e.g., Boris,
Runge-Kutta, implicit drift-kinetics), the desired charge and current deposition and field
interpolation (0th order, 1st order or 2nd order), the desired field solver (e.g., electrostatic,
magnetostatic, electromagnetic, using direct matrix inversion methods, spectral methods,
multigrid methods) in the desired geometry (e.g., 1D, 2D 𝑥-𝑦, 2D 𝑟-𝑧, 3D). WARP also
includes various boundary conditions for electric and magnetic fields (e.g., Dirichlet, von
Neumann, periodic) and particles (e.g., absorbing, periodic). WARP is being continuously
improved as applications arises. More recently, AMR has been implemented with the multi-
grid Poisson solver. Mesh refinement has been implemented with the electromagnetic solver.
Novel time integrator includes the hybrid drift-Lorentz implicit time integrator which allows
large time-steps for magnetized plasma, the Lorentz-invariant time integrator for relativistic
motions and the linear map time integrator that is beneficial for high-current low-space-
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charge beams. This list of features is non-exhaustive and is more exhaustively summarized
in Ref [79].

In this thesis, simulations using WARP were employed to validate the statistical envelope
model in addition to introducing non-idealizations in the theoretical model.

2.6 Application to an intense ion beam

We analyze a stack of thin foils with constant foil spacing 𝐿. Modulation of foil spacing 𝐿 as
a function of the beam radial size could optimize the focusing mechanism. The continuous
approximation of the form factor 𝐹 from Eq. (2.46) is used in the envelope model. No external
focusing system is employed. The ion beam is assumed to have zero angular momentum.
Scattering, secondary electrons and neutralizing plasma are neglected. In practice, it means
that the foils are considered infinitely thin.

For efficient passive focusing, the beam must ideally be high current and high energy.
For example, consider a proton beam with a high perveance value of 𝑄 = 1.8 × 10−2 -
e.g. a mono-energetic 4.8 kA 30 MeV proton beam. Such characteristics may be achievable
in the near future by laser-produced proton beams as the individual characteristics can
already be separately reached [43]. We study beams with initial beam density that is radially
Gaussian and uniform with rms beam width 𝜎𝑥 = 200 𝜇m without initial divergence. The
foil spacing is set to 𝐿 = 200, 175, 150, 100, and 50 𝜇m. The initial beam emittance is set
to 𝜀𝑥,rms = 1.1𝜋 mm mrad. As the foils are infinitely thin, we expect no scattering, and,
therefore, conservation of emittance.

The equations of the statistical beam envelope model are solved using Mathematica [80].
As previously mentioned, the envelope model is compared to particle-in-cell simulations using
the WARP code[71] in axisymmetric cylindrical (𝑟-𝑧) geometry with a regular grid. The
setup of the simulations is similar to what was referred as the “infinite beam” simulation
setup of Ref [52]. In Ref [52], a “finite beam” simulation setup has been developed and
investigated the effects of finite beam size, in contrast to the infinitely long beam that we
are considering here. It has been shown that the finite beam size effects only mitigates
passive focusing. The domain is bounded radially by the beam pipe at 𝑟 = 1.2 mm and
axially by the ends of two adjacent foils, and contains by 64 radial grid cells and 8 axial
grid cells. The boundary conditions for macro-particles are absorbing in the 𝑟 direction
and periodic in the 𝑧 direction. This choice of boundary conditions for particles speeds up
the simulation as particles exiting from the right end are reinjected back into the domain
from the left end with the same velocity and the same transverse position. This bypasses
the need for much larger simulations of the whole stack of thin foils and focuses on the
beam dynamics between two foils and within one foil. The electric field is calculated in the
electrostatic approximation with Dirichlet boundary conditions in 𝑟 and in 𝑧. The magnetic
field is calculated in the magnetostatic approximation with Dirichlet boundary conditions
in 𝑟 and periodic boundary conditions in 𝑧. Beam macro-particles are initially loaded with
regular spacing in the 𝑧 direction. In the 𝑟 direction, the particles are loaded following an
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initially axisymmetric Gaussian charge profile, chopped at 𝑟 = 𝑟max = 3.5𝜎𝑏. The particles
are spaced uniform in 𝑅2 out to 𝑅 = 𝑟𝑏 = 2𝜎𝑏, with 𝑅 related to the actual radius 𝑟 by the
relation

𝑟 = 𝜎𝑥

⎯⎸⎸⎷−2 ln

[︃
1 −

(︂
𝑅

2𝑟𝑏

)︂2

𝒩
]︃
. (2.81)

with 𝒩 = 1−exp(−𝑟2max/(2𝜎2
𝑏 )), a normalisation factor due to the chopping (see Appendix 2.8

for details).
The rms transverse beam size 𝜎𝑥 is computed by averaging over the full axial domain.

Typically, 296 macro-particles are loaded per particle-containing cell. We conducted para-
metric numerical studies and observed that the grid resolution and statistics were sufficient
for well converged simulations (also see Ref. [52]).
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Figure 2.12: The transverse size and emittance growth of a 4.8 kA 30 MeV proton beam
is computed using both the envelope model and the PIC numerical simulations. The gap
spacing between each foil 𝐿 is varied from 50 𝜇m to 200 𝜇m. The numerical simulations
show emittance growth as non-linear effects as well as initial phase-space filamentation are
included, in contrast to the results of envelope model.

We show the simulated radial beam size ⟨𝑥2⟩1/2 as a function of the axial position 𝑧 in
Fig. 2.12 and it agrees reasonably well with the envelope results. We observe that for low
enough gap spacing 𝐿, we obtain initial focusing up to the focal spot where the beam size 𝜎𝑥

reaches its smallest value, then grows again. The reason why it can reach such a low value
is due to the inertia of the beam dynamics. Initially, the focusing forces are stronger than
the defocusing forces and the beam strongly converges. Past the point where the defocusing
forces become stronger than the focusing forces, the beam still converges due to “inertia”,
but with weaker and weaker convergence, up to a focal point where this “inertia” is no
longer strong enough. From the focal spot onwards, the beam size increases due to the
stronger defocusing forces, and another similar cycle starts. In practice, scattering effects
would quickly increase the emittance of the beam and the beam would simply not being able
to get back to the focal spot avec having reached it. The minor discrepancies between the
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simulations and the envelope model are due to various effects not included in the envelope
model as mentioned in Ref. [52]: (i) the radial density is evolving and does not stay Gaussian,
(ii) the electric field is not averaged between the foil by using 𝐹 , and (iii) emittance growth
due to the non-linear nature of the self-fields. The simulated beam emittance 𝜀𝑥,rms, shown
in Fig. 2.12 indeed grows due to the non-linear nature of the self-fields, but also due to
phase-space filamentation.

We observe that increasing the gap spacing 𝐿 increases the beam size at the focal point
as well as the axial position of the focal point, which is undesired. This result is summarized
in Tab. 2.1.

Table 2.1: Minimum 𝜎𝑥 and corresponding 𝑧-location for select envelope solutions in Fig. 2.12

Foil Focal Spot
Spacing Envelope model Simulation
𝐿 (𝜇m) 𝜎𝑥 (𝜇m) 𝑧 (mm) 𝜎𝑥 (𝜇m) 𝑧 (mm)
175 —— —— 182. 24.9
150 156.4 24.7 139. 24.2
100 89.4 19.5 86.3 18.9
50 48.8 16.6 74.5 15.9

Reference [52] further demonstrated that the higher the dimensionless perveance 𝑄, the
quicker the focal spot is reached (i.e. lower 𝑧). However, this does not change the size of the
focal spot (i.e. roughly the same 𝜎𝑥). Besides, Ref. [52] also showed the focusing remains the
same between uniform and Gaussian beam profile, which can be safely generalized to any
self-consistant radial beam profile and that finite beam pulse size only mitigate the beam
focusing.

2.7 Discussion

The passive focusing of intense ion beams using a stack of thin foils is a promising technique.
The manufacturing of the foils should be cheap as aluminum is most likely to be used as it is a
good conductor and its atomic number 𝑍𝑓 is low (the subscript 𝑓 is for “foil”). A low atomic
number is desired to reduce the amount of beam particles scattering with the foil atoms.
Passive focusing could be used for the final focus of ion beams in the end of an accelerating
channel where a target would be installed right in the end of the stack of foils. The main
drawback is that the stack of foil can be used only once as it melts upon the propagation of an
ion beam. This adds an additional argument for its use as final focus as one would not desire
to remove the debris of foils in the middle of the accelerating channel each time one fires
an ion beam. Among the physical limitations of the passive focusing, two are particularly
detrimental. First, foil-induced scattering can significantly degrade the quality of the beam
by gradually adding random thermal transverse velocity which effectively induces transverse
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emittance growth. Emittance growth reduces the focusability of the beam by adding an
additional defocusing term in the envelope equation. Another particularly detrimental effect
is the generation of secondary electrons due to beam ion impact on the foils. Some of these
secondary electrons possess a longitudinal velocity greater than the longitudinal velocity of
the ion beam. They are called knock-on electrons. This implies that the associated beam
current neutralization is greater than the associated beam charge neutralization. In other
words, the focusing self-magnetic field is reduced to a greater extent than the defocusing
self-electric field, and we could therefore reach a regime were the passive focusing does not
work. These two issues are treated in the following two sections by employing a Rutherford
model. Intuitively, we expect higher beam energy, lower foil and beam atomic numbers, and
thinner foil thickness to be factors to reduce scattering and knock-on electron effects because
of the scaling in the Rutherford scattering model.

2.8 Appendix: Loading in the radial direction of a

beam with a radial Gaussian profile on a the (𝑟-𝑧

grid)

Transversely, the beam macro-particles are initially loaded as if the beam radial distribution
is axisymmetrically uniform, following the uniform beam radial density

𝜌b,uni(𝑅) =

{︃
𝜆
𝜋

1
𝑟2𝑏
, 0 ≤ 𝑅 ≤ 𝑟𝑏,

0, 𝑟𝑏 < 𝑅.
(2.82)

The number of particles therefore scales as 𝑅2 in the (𝑅-𝑧) grid. Then, the radial coordinate
𝑅 of each of the macro-particles is mapped to the new coordinate 𝑟 to obtain a Gaussian
distribution in the physical (𝑟-𝑧) grid chopped at 𝑟 = 𝑟max using the formula

∫︁ 𝑟

0

𝜌b,gau(𝑟)2𝜋𝑟𝑑𝑟 =

∫︁ 𝑅

0

𝜌b,uni(𝑅̃)2𝜋𝑅̃𝑑𝑅̃ (2.83)

where

𝜌b,gau(𝑟) =

{︃
𝜆
𝜋

1
2𝜎2

𝑏

[︁
exp

(︁
− 𝑟2

2𝜎2
𝑏

)︁
/𝒩
]︁
, 0 ≤ 𝑟 ≤ 𝑟max,

0, 𝑟max < 𝑟
(2.84)

is the Gaussian radial density chopped at 𝑟max. 𝒩 = 1−exp(−𝑟2max/(2𝜎2
𝑏 )) is a normalisation

factor to account for the chopping. Eq. (2.83) yields an explicit expression for

𝑟 = 𝜎𝑥

⎯⎸⎸⎷−2 ln

[︃
1 −

(︂
𝑅

2𝑟𝑏

)︂2

𝒩
]︃
. (2.85)

Note that 𝑟𝑏 = 2𝜎𝑏 as both values are rms-equivalent beam radii[52].
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Chapter 3

Scattering in foil focusing

This chapter is organized as follows. In Sec. 3.1, foil-induced scattering is treated analyti-
cally using the Rutherford scattering model and numerically using the Monte-Carlo particle
simulation code SRIM [81]. The envelope equations are subsequently derived in Sec. 3.2 and
solved for several foil and beam configurations to highlight cases for which foil-induced scat-
tering becomes a dominant limitation of the transverse focusing. We implement a module to
model foil-induced scattering and kinetic energy loss in the particle-in-cell code WARP [71]
in Sec. 3.3 to numerically test the envelope theory of Sec. 3.2. Good agreement between the
envelope theory and numerical model is found. These results constitute a main component
of this thesis and appear in Ref. [60].

3.1 Scattering

Single particle model

A single beam ion of velocity 𝑣𝑏, charge number 𝑍𝑏, mass 𝑚𝑏, and kinetic energy ℰ𝑏 =
(𝛾𝑏 − 1)𝑚𝑏𝑐

2, with 𝛾𝑏 = (1 − 𝛽2
𝑏 )−1/2, 𝛽𝑏 = 𝑣𝑏/𝑐, and 𝑐 the speed of light in vacuum, is

assumed to penetrate through a homogenous thin foil of thickness ∆𝑓 . The foil is made of
a single atomic species of charge number 𝑍𝑓 , mass 𝑚𝑓 and mass density 𝜌𝑓 . The nuclei and
electrons of the foil alter the dynamics of the beam ions differently: the electrons can absorb
an appreciable amount of energy from the beam ions without causing significant angular
deflections, whereas the nuclei absorb little energy but cause significant angular deflections
of the beam ions due to their greater electric charge [82]. In this section, the energy loss of
the beam ions due to the collisions with atomic electrons is neglected. This is consistent for
thin foils with large incident beam kinetic energy [83]. Small kinetic energy losses within one
foil are analyzed in Sec. 3.1. Results found there justify the constant energy assumption.

Because the interaction between the beam ions and the foil nuclei is primarily electro-
static, the differential scattering cross section 𝑑𝜎/𝑑Ω between the incoming beam ion and a
stationary foil nucleus, where the solid angle 𝑑Ω = sin 𝜃𝑑𝜃𝑑𝜑 (𝜃 is the normal angle, taken
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as the deflection angle, 𝜑 is the azimuthal angle in spherical-polar coordinates), is governed
by the small-angle Rutherford cross-section[82]

𝑑𝜎

𝑑Ω
=

(︂
2𝑍𝑏𝑍𝑓𝑒

2

4𝜋𝜖0𝑚𝑒𝑐2

)︂2
1 − 𝛽2

𝑏

𝛽4
𝑏

1

𝜃4
. (3.1)

Here, 𝑒 is the elementary electric charge, and 𝜖0 the vacuum permittivity. Here and hence-
forth, large-angle scattering is ignored: those events are rare[82]. Eq. (3.1) is valid between
a small cutoff angle

𝜃min =
~
𝑝𝑏𝑎

≃
𝑍

1/3
𝑓

192

𝑚𝑒𝑐

𝑚𝑏𝑣𝑏
(3.2)

due to electrostatic screening from bound electrons, and a large cut-off angle

𝜃max =
~

𝑝𝑏𝑅
≃ 274

𝐴
1/3
𝑓

𝑚𝑒𝑐

𝑚𝑏𝑣𝑏
(3.3)

that is due to the finite radius 𝑅 of the nucleus. In Eqs. (3.2) and (3.3), 𝑎 ≃ 1.4𝑎0𝑍
−1/3
𝑓 is the

length scale of the screening obtained by a rough fit to the Thomas-Fermi atomic potential,
𝑎0 the Bohr radius, ~ = ℎ/(2𝜋) where ℎ is Planck’s constant, 𝐴𝑓 is the mass number of
the nucleus, 𝑚𝑒 is the mass of the electron, and 𝑝𝑏 = 𝑚𝑏𝑣𝑏 is the momentum of a assumed
non-relativistic beam ion. We approximate 𝐴𝑓 ≃ 2𝑍𝑓 .

The total scattering cross-section is

𝜎tot =

∫︁ 2𝜋

0

𝑑𝜑

∫︁ 𝜃max

𝜃min

𝑑𝜃 sin 𝜃
𝑑𝜎

𝑑𝜃
. (3.4)

A beam ion traversing a thin foil undergoes many small angle deflections and emerges with a
small angular deflection due to the cumulative statistical superposition of many small angle
collisions. Assuming the number of collisions is sufficient for Gaussian statistics (verified a
posteriori), the central limit theorem applies to the net deflection angle distribution. This
implies that the net deflection angle is Gaussian distributed, centered around 0, with variance
⟨𝜃2⟩ given by

⟨𝜃2⟩ ≡
∫︀ 2𝜋

0
𝑑𝜑
∫︀ 𝜃max

𝜃min
𝑑𝜃 sin 𝜃 𝜃2 𝑑𝜎

𝑑𝜃∫︀ 2𝜋

0
𝑑𝜑
∫︀ 𝜃max

𝜃min
𝑑𝜃 sin 𝜃 𝑑𝜎

𝑑𝜃

. (3.5)

The beam ion undergoes 𝑁 = 𝑛𝑓𝜎tot∆𝑓 collisions after penetration of a foil of thickness
∆𝑓 and atomic density 𝑛𝑓 . Each of these collisions causes a random deflection 𝜃 that follows
the above-mentioned distribution.We take 𝑧 as the axial coordinate normal to the foil and
𝑥, 𝑦 as the transverse coordinates. Equation (3.5) corresponds to a deflection 𝜃𝑥 in the
(𝑥 − 𝑧) plane and a deflection 𝜃𝑦 in the (𝑦 − 𝑧) plane such that 𝜃2 = 𝜃2𝑥 + 𝜃2𝑦 in the small
angle approximation (see Fig. 3.1). By symmetry, the mean and the variance of the total
deflection angle at foil exit in the (𝑥-𝑧) and the (𝑦-𝑧) plane are therefore 0 and ⟨𝜃2tot⟩ ≃
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Figure 3.1: Schematic of a beam ion at velocity v that has been deflected by a normal angle
𝜃 from the axial direction 𝑧. The angular deflections 𝜃𝑥 in the (𝑥-𝑧) plane and 𝜃𝑦 in the (𝑦-𝑧)
plane are represented.

⟨𝜃2x,tot⟩ + ⟨𝜃2y,tot⟩ = 2⟨𝜃2x,tot⟩ because of symmetry, and with ⟨𝜃2x,tot⟩ and ⟨𝜃2y,tot⟩ the variance
of total deflection angle at foil exit in the (𝑥 − 𝑧) and (𝑦 − 𝑧) planes. If 𝛽2

𝑏 ≪ 1, the rms
deflection angle in the (𝑥− 𝑧) and (𝑦 − 𝑧) planes reduce to

⟨𝜃2x,tot⟩1/2 = ⟨𝜃2y,tot⟩1/2 = 𝐺0

∆
1/2
𝑓

ℰ𝑏
, (3.6a)

𝐺0 =

[︃
2𝜋𝑛𝑓

(︂
𝑍𝑏𝑍𝑓𝑒

2

4𝜋𝜖0

)︂2

ln(204𝑍
−1/3
𝑓 )

]︃1/2
. (3.6b)

The argument in the logarithm in Eq. (3.6b) depends on the choice of cut-off angle 𝜃min and
𝜃max employed which is somewhat arbitrary. However, for our present analysis in which the
physics of scattering has been idealized (e.g electron screening is partially omitted), these
specific cut-offs are sufficient. What is of interest here is the scaling of the rms deflection
angle distribution ⟨𝜃2tot⟩1/2 in Eq. (3.6a). The scaling is compared and verified by the Monte-
Carlo code SRIM in Sec. 3.1. The code includes a wider range of physical phenomena (more
details can be found in Sec. 3.1). Eq. (3.6a) shows that: (i) higher energy beam ions are less
likely to be deflected because of their stiffer trajectories, (ii) higher charge states of the beam
ions and higher charged foil nuclei yield broader deflections because the Coulomb interaction
is stronger, and (iii) ions undergo larger deflections in denser and thicker foils.

Monte-Carlo simulations

The multiple small-angle scattering of beam ions induced by their penetration through a foil
is simulated using the Monte-Carlo code SRIM (Stopping and Range of Ions in Matter) [81].
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SRIM contains much richer physics than the analytical model used in Sec. 3.1 because it
computes the 3D trajectory of a single beam ion through rectangular layers of materials using
a quantum mechanical treatment of ion-atom collisions and with adjustments for consistency
with experimental data; it also includes screened Coulomb collisions between the beam ion
and the foil atoms due to the overlapping electron shells, electron excitations, plasmons,
and effective charge 𝑍*

𝑓 effects where 𝑍*
𝑓 < 𝑍𝑓 due to the collective electron cloud, and large

angle scattering. Statistical energy losses, angular scattering, kinetic effects related to energy
losses from target damage, sputtering, ionization, and phonon production are also accounted
for.

SRIM simulation results for protons with three different initial beam kinetic energies,
ℰ𝑏 = 2 MeV, 5 MeV and 10 MeV, penetrating a single solid aluminum (𝑍𝑓 = 13, 𝜌 = 2.7
g.cm−3) foil of thickness ∆𝑓 ranging from 0.125 𝜇m to 5 𝜇m are shown in Figs. 3.2 and 3.3.
For each initial ℰ𝑏 and ∆𝑓 , 𝑁𝑝 = 3000 protons (𝑍𝑏 = 1) are tracked and for each proton 𝑖,
the loss of kinetic energy ∆ℰ𝑖 and the deflection angle in the transverse direction 𝜃tot,𝑖 after
penetrating the single foil are evaluated. Because of axial symmetry, the deflection angles in
both 𝑥- and 𝑦-directions 𝜃x,tot,𝑖 and 𝜃y,tot,𝑖 are statistically equal. The average of a quantity

𝐴 is denoted ⟨𝐴⟩ = 1/𝑁𝑝

∑︀𝑁𝑝

𝑖=1 𝐴𝑖 with 𝐴𝑖 the individual value for the 𝑖-th proton. SRIM
also takes into account rare large angle scatterings, which are not relevant for the bulk of
the proton distribution. In our averages, we reject protons whose deflection angle at the exit
of the foil is more than 5 standard deviations from the mean. We refer to these averages as
“smoothed.” We compute, for each initial ℰ𝑏 and ∆𝑓 , the average kinetic energy loss ⟨∆ℰ⟩,
the average transverse angular deflection and average squared transverse angular deflection
in the 𝑥-direction, ⟨𝜃x,tot⟩ and ⟨𝜃2x,tot⟩, and in the 𝑦-direction, ⟨𝜃y,tot⟩ and ⟨𝜃2y,tot⟩.

The smoothed average kinetic energy loss ⟨∆ℰ⟩, as a function of foil thickness ∆𝑓 , is
plotted in Fig. 3.2. As expected, ⟨∆ℰ⟩ is small for small ∆𝑓 and high ℰ𝑏. In the case where
ℰ𝑏 = 5 or 10 MeV, protons lose a negligible amount of their initial kinetic energy (2% or
less), even for foils up to 5 𝜇m. However, the 2 MeV protons lose close to 8% of their kinetic
energy after penetrating 5 𝜇m of solid aluminum. The assumption of constant kinetic energy
for beam protons becomes relatively poor for 𝜇m thick foils with a proton energy lower than
2 MeV. Although the proton kinetic energy can be taken to be constant within one foil, it
cannot be assumed to be constant in the full stack of foils because the small decrements in
kinetic energy in each foil can result in a substantial net total energy loss when penetrating
many foils.

As expected, there is zero mean angular deflection: ⟨𝜃x,tot⟩ = ⟨𝜃y,tot⟩ = 0 (plot not shown).
The rms deflection angle ⟨𝜃2x,tot⟩1/2(= ⟨𝜃2y,tot⟩1/2 because of symmetry) as a function of foil
thickness ∆𝑓 from the smoothed distribution is plotted in Fig. 3.3. A least-square fit based
on the ∆𝑓 and ℰ𝑏 dependance of Eq. (3.6) and the results of the Monte-Carlo simulations
shows that

⟨𝜃2x,tot⟩1/2 = 𝐺SRIM

∆
1/2
𝑓

ℰ𝑏
, (3.7)

with 𝐺SRIM = 9.8 × 10−3 MeV𝜇m−1/2. In contrast, using 𝑍𝑏 = 1, 𝑍𝑓 = 13 and 𝑛𝑓 =
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Figure 3.2: Dots plot smoothed (large angle events rejected) proton kinetic energy loss
computed with SRIM, averaged over 𝑁𝑝 = 3000 protons with initial kinetic energy ℰ𝑏 as
indicated after penetration of a solid aluminum foil of thickness ∆𝑓 . Smoothing eliminates
less than 0.2% of the simulated protons in the worst case with ℰ𝑏 = 2 MeV and ∆𝑓 = 5𝜇m.
Solid lines correspond to a linear fit of the data for initial kinetic energies ℰ𝑏. Brown, blue
and red colors represent initial kinetic energies ℰ𝑏 = 2, 5 and 10 MeV.

6.02 × 1028 m−3, the coefficient 𝐺0 from Eq. (3.6) gives 𝐺0 = 2.4 × 10−2 MeV𝜇m−1/2 for
aluminum which is 2.4 times higher than 𝐺SRIM. Such a discrepancy may be justified by the
richer models that SRIM employed compared to the model in the first part of the section.
Equation (3.7), is employed in the analysis in the following sections since it should be more
accurate. Note also that for ℰ𝑏 = 5 MeV and 10 MeV, Eq. (3.7) produces an excellent fit
to the SRIM simulation results. In contrast, data slightly departs from the fit for 2 MeV,
because the significant loss of kinetic energy for lower energy protons results in enhanced
angular scattering.

Methods presented in this section using SRIM can be readily applied to other foil mate-
rials and a variety of incident ions.

3.2 Transverse envelope model

This section closely follows the treatment in Ref. [52]. First, the beam model, the geometry
of the foil system, and the beam fields are described, and then, particle equations of motion
both between two foils and within a foil are derived. The particle equations of motion
are averaged to obtain an envelope equation for the transverse beam radius. Illustrative
examples of scattering effects on beam propagation are presented in the end of the section.
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Figure 3.3: Dots plots smoothed (large angle events rejected) rms deflection angle computed
with SRIM, averaged over 𝑁𝑃 = 3000 protons with initial ion kinetic energy ℰ𝑏 after pen-
etration of a solid aluminum foil of thickness ∆𝑓 . Solid lines correspond to fits of the data
based on Eq. (3.6) using a least-squared method for each initial kinetic energy ℰ𝑏. Brown,
blue and red colors respectively represent the initial kinetic energies of ℰ𝑏 = 2, 5 and 10
MeV.
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Figure 3.4: Axisymmetric beam between two conducting foils located at 𝑧 = ±𝐿/2. The
foils are grounded.

Geometry and beam model

We employ the same geometry and beam model as Chapter 2, except that each foil has
finite thickness ∆𝑓 as shown in Fig. 3.4: the beam dynamics is therefore treated differently
between the foils and within a foil. The foils are assumed to be grounded conductors.
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Self-field solutions

We still employ the quasi-static approximation: 𝜕E/𝜕𝑡 ≃ 0 and 𝜕B/𝜕𝑡 ≃ 0 in Maxwell’s
equations. The boundary conditions are set by the conducting foils. 𝐸𝑟 is screened by the
conducting foils: 𝐸𝑟 = 0 within the foils, and 𝐵𝜃 remains unmodified by the foils.

Self-magnetic field between two foils The self-magnetic field between two foils was
derived in Chapter 1.

Self-magnetic field within a foil As the thickness of the foils ∆𝑓 is small compared to
the inter-foil spacing 𝐿 (∆𝑓/𝐿 ≪ 1), B is assumed constant and equal to the self-magnetic
field at the surface of the foils.

Self-electric field between two foils The self-electric field between two foils was derived
in Chapter 1.

Self-electric field within a foil The foils are assumed to be perfect conductors so that
E = 0.

Particle dynamics

The particle dynamics between the thin foils has been previously treated in Chapter 2. This
section extends the analysis to include the deleterious effects of scattering within a foil.

The particle dynamics is analyzed in two separate regions: between two foils, which is
assumed to be vacuum, and within a perfectly conducting foil. Intra-beam scattering is
neglected. Within a foil, deflections of beam ions due to the scattering with foil atoms are
included in the equations of motion using the results of Sec. 3.1. A static magnetic field can
also be superimposed to improve focusing as treated in Ref. [52].

Between two foils The beam charge density is assumed to be axisymmetric, and the foils
are assumed to be transversely homogenous, leading to axisymmetric self-fields. The axial
self-electric field, 𝐸𝑧(𝑟, 𝑧), is neglected. We assume no linear focusing system. In the paraxial
approximation (v = ẑ𝛽𝑏𝑐 + 𝛿v ≃ ẑ𝛽𝑏𝑐), the single particle equation of motion between the
foils is

x′′
⊥ ≃ 𝑞

𝑚𝛾𝑏𝑐2
𝜕𝜑𝑣

𝜕x⊥
− 𝑞

𝑚𝛾𝑏𝛽2
𝑏 𝑐

2

𝜕𝜑𝑔

𝜕x⊥
. (3.8)

Here, derivatives with respect to 𝑧 are represented by primes (′ = 𝑑/𝑑𝑧). The first term on
the right-hand side of Eq. (3.8) represents the self-magnetic focusing contribution, and the
second term corresponds to the self-electric defocusing contribution.
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Within a foil Because the foils are assumed to be perfect conductors, no electric field
penetrates the foils. The finite thickness of the foils induces Coulomb scattering between
beam ions and foil atoms. Therefore, beam ions are both transversely deflected and lose
kinetic energy on the foils.

Knock-on electrons emitted from the foils[84] and their effects on the dynamics of the
beam ions are a topic for Chapter 4. Knock-on electrons fill the gaps between the foils, and
the subsequent current neutralization is greater than the subsequent charge neutralization
as, by definition, the velocity of the knock-on electrons is higher than the ion beam velocity.
Knock-on electrons could therefore mitigate the passive focusing scheme. Nevertheless, the
presence of knock-on electrons does not confound the passive focusing in regimes where the
foil atoms and the beam ions are of low atomic number, where the beam kinetic energy is
high, and where the foils are thin. In this case, the number of generated knock-on electrons
would remain negligibly low according to the Rutherford scattering model.

The ion beam kinetic energy ℰ𝑏 is no longer constant and depends on the distance trav-
elled within the foil and the stopping power 𝒮 of the foil material. Values of 𝒮 are found
in tabulated data such as the PSTAR database [85]. Straggling is ignored here, where we
consider transverse dynamics. An analysis of straggling would be important for substantial
changes in mean beam energy or when energy spread is important. The electric field vanishes
in the foil, and terms representing energy loss and the scattering-induced deflection of the
particle are added. The cumulative scattering-induced deflection of a single particle trajec-
tory is a stochastic process that depends on the distance 𝑧 travelled in the material and the
material properties. It is modeled by a Brownian noise 𝑤 such that for 0 ≤ 𝑧0 ≤ 𝑧 ≤ ∆𝑓 ,
𝑤(𝑧)−𝑤(𝑧0) is a Gaussian distributed variable with mean 0 and variance (𝑧−𝑧0)×𝐺2/ℰ2

𝑏 (𝑧)
to have a form consistant with Eqs. (3.6) and (3.7). The instantaneous scattering-induced
deflection in the particle equation of motion is therefore represented by the white noise 𝑤′

which is the formal derivative of the Brownian noise 𝑤. The equation of motion is then the
stochastic differential equation

x′′
⊥ +

(𝛾𝑏𝛽𝑏)
′

(𝛾𝑏𝛽𝑏)
x′
⊥ − 𝑞

𝑚𝛾𝑏𝑐2
𝜕𝜑𝑣

𝜕x⊥
≃ 𝑤′, (3.9)

and includes the particle kinetic energy loss due to the stopping power of the foil material
ℰ ′
𝑏 = 𝑆(ℰ𝑏) (see Fig. 3.5), or equivalently

(𝛾𝑏𝛽𝑏)
′ =

𝑆(ℰ𝑏)
𝑚𝑐2𝛽𝑏

. (3.10)

The deceleration-induced term (𝛾𝑏𝛽𝑏)
′

(𝛾𝑏𝛽𝑏)
x′
⊥ is derived in Ref. [45].

Envelope equations

This section extends the envelope formalism of Chapter 2 to include additional effects due
to scattering within a foil.
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Figure 3.5: Stopping power 𝒮(ℰ𝑏) of a proton in solid aluminum (mass density 𝜌 = 2.7g/cm3).

Between two foils. The beam envelope equation between two foils, derived in Chapter 2,
is

𝑑2

𝑑𝑧2
𝜎𝑥 +

𝛾2
𝑏

4

[︀
𝛽2
𝑏 − 𝐹

]︀ 𝑄
𝜎𝑥

− 𝜀2𝑥,rms

𝜎3
𝑥

= 0. (3.11)

Similar to Chapter 2, the dimensionless perveance 𝑄 = 𝑞𝜆𝑏/(2𝜋𝜖0𝑚𝛾3
𝑏𝛽

2
𝑏 𝑐

2) is constant[6, 70,
45]. It is assumed that, between the foils, the nonlinear field effects are small and therefore
𝜀𝑥,rms is constant.

𝐹 = −4𝜋𝜖0
𝜆

⟨𝑟
∫︁ 𝐿/2

−𝐿/2

𝑑𝑧

𝐿

𝜕𝜑𝑔

𝜕𝑟
⟩⊥ (3.12)

is a dimensionless “form factor” that models the average screening of the defocusing field
due to the foils for closely spaced foils (𝐿 ≪ 𝜌(𝜕𝜌/𝜕𝑧)−1) as the beam ions cannot rapidly
respond to fast variations of the defocusing electric field between closely space foils (see
Ref. [52] for details). Scattering does not change this result as it does not happen between
the foils. In vacuum, 𝐹 = 1 and the envelope equation reduces to the familiar vacuum
form[52]. The form factor 𝐹 ∈ [0, 1] can be effectively seen as an attenuation factor of the
defocusing electric field due to the foils.

Within a single foil. In this paragraph, 𝑧 = 0 is taken at the middle of the foil and the
foil domain in 𝑧 is [−∆𝑓/2,∆𝑓/2]. Equation (3.9) and the derivatives of ⟨𝑥2⟩1/2⊥ in 𝑧 yield
the beam envelope equation within a single foil,
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𝑑2

𝑑𝑧2
𝜎𝑥 +

(𝛾𝑏𝛽𝑏)
′

(𝛾𝑏𝛽𝑏)

𝑑

𝑑𝑧
⟨𝑥𝑥′⟩1/2⊥ +

𝛾2
𝑏

4
𝛽2
𝑏

𝑄

𝜎𝑥

− 𝜀2𝑥,rms

𝜎3
𝑥

=
⟨𝑥𝑤′⟩⊥
𝜎𝑥

. (3.13)

Equation (3.13) differs from the beam envelope equation between two foils, Eq. (3.11), by
the absence of a defocusing electric field, and the presence of scattering and deceleration.
Furthermore, the emittance is not conserved because of both kinetic energy losses and cross-
terms between 𝑥, 𝑥′ and 𝑤′ due to scattering-induced deflections. Differentiating 𝜀2𝑥,rms with
respect to 𝑧 and applying Eq. (3.9) yields

𝑑

𝑑𝑧
𝜀2𝑥,rms = −2

(𝛾𝑏𝛽𝑏)
′

𝛾𝑏𝛽𝑏

𝜀2𝑥,rms + 2𝜎2
𝑥⟨𝑥′𝑤′⟩⊥ − 2⟨𝑥𝑥′⟩⊥⟨𝑥𝑤′⟩⊥. (3.14)

In Appendix 3.5, a detailed analysis of the cross-terms for beam kinetic energy ℰ𝑏 leads to
Eqs. (3.29) and (3.32), and shows that ⟨𝑥𝑤′⟩⊥ = 0 and ⟨𝑥′𝑤′⟩⊥ = 𝐺2/(2ℰ2

𝑏 ). Using these
results, Eq. (3.13) reduces to

𝑑2

𝑑𝑧2
𝜎𝑥 +

(𝛾𝑏𝛽𝑏)
′

𝛾𝑏𝛽𝑏

𝑑

𝑑𝑧
⟨𝑥𝑥′⟩1/2⊥ +

𝛾2
𝑏

4
𝛽2
𝑏

𝑄

𝜎𝑥

− 𝜀2𝑥,rms

𝜎3
𝑥

= 0, (3.15)

and Eq. (3.14) reduces to

𝑑

𝑑𝑧
𝜀2𝑥,rms = −2

(𝛾𝑏𝛽𝑏)
′

𝛾𝑏𝛽𝑏

𝜀2𝑥,rms +
𝐺2

ℰ2
𝑏

𝜎2
𝑥. (3.16)

For a paraxial beam, angles of particle trajectories in the foil are small and the total
distance travelled by the ions within the foil is, therefore, to first approximation, ∆𝑓 . The
beam size can be approximated as constant within an individual foil (𝜎𝑥 = const) when the
foils are thin compared to transverse focal length. Then, the kinetic energy loss ∆ℰ𝑏 of the
ion beam reduces to

∆ℰ𝑏 ≃ 𝒮(ℰ𝑏(−∆𝑓/2))∆𝑓 ≃ 𝒮(ℰ𝑏)∆𝑓 . (3.17)

Generally, |∆ℰ𝑏| ≪ ℰ𝑏, and the energy ℰ𝑏 can be assumed constant within a single foil when
computing quantities that are functions of ℰ𝑏 because the higher-order induced errors are
small. The emittance evolution equation (3.14) can then be integrated across a foil,

𝜀2𝑥,rms(∆𝑓/2) = 𝜀2𝑥,rms(−∆𝑓/2) +

∫︁ Δ𝑓/2

−Δ𝑓/2

𝑑𝑧
𝑑

𝑑𝑧
𝜀2𝑥,rms(𝑧)

≃ 𝜀2𝑥,rms(−∆𝑓/2)

+ ∆𝑓

[︂
−2

(𝛾𝑏𝛽𝑏)
′

𝛾𝑏𝛽𝑏

𝜀2𝑥,rms +
𝐺2

ℰ2
𝑏

𝜎2
𝑥

]︂

𝑧=−Δ𝑓/2

.

(3.18)

In Eq. (3.18), terms of order ∆2
𝑓 and higher are neglected. Because the foils induce decelera-

tion of the ions, (𝛾𝑏𝛽𝑏)
′ is negative, causing emittance growth. Because 𝐺 is always positive,
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Figure 3.6: Proton focusing efficiency 𝜂 as a function of foil thickness ∆𝑓 is computed for
specified initial kinetic energies ℰ𝑏. Green, cyan, blue, purple, pink, red colors represent
initial kinetic energies ℰ𝑏 = 15, 20, 25, 30, 40 and 50 MeV.

the scattering term also causes emittance growth. Note that while the kinetic energy loss
within one foil is small compared to the kinetic energy of the beam, the accumulated losses
of kinetic energy due to its propagation through a large number of foils can be significant
and should be accounted in the beam dynamics. We employ the thin foil approximation and
apply Eqs. (3.17) and (3.18) in the following sections.

Note that, instead of our previously defined transverse emittance, it is possible to use the
normalize transverse emittance as a measure of beam quality as it is a conserved quantity
under acceleration or deceleration. In this case, an auxiliary equation for 𝛾′

𝑏[45] must be
taken into account.

Example: Application of the envelope model to intense proton
beams

We analyze a lens where thin foils of constant thickness ∆𝑓 are stacked with constant foil
spacing 𝐿. Modulation of foil spacing 𝐿 as a function of the beam radial size can optimize
the focusing mechanism, but is not treated here. The foil material is solid aluminum (𝜌 =
2.7 g.cm−3, 𝑍𝑓 = 13), with angular deflection coefficient 𝐺SRIM = 9.8 × 10−3 MeV𝜇m−1/2

from Sec. 3.1 and the stopping power 𝒮(ℰ𝑏) extracted from Ref. [85]. Use of conducting
materials different from solid aluminum results in a different deflection coefficient 𝐺 that
can be recomputed using the methods of Sec. 3.1, and a different stopping power 𝒮(ℰ𝑏). The
continuous approximation of the form factor 𝐹 from Eq. (3.12) is used. No external focusing
system is employed. The ion beam is assumed to have zero angular momentum. Secondary
electrons and neutralizing plasma are neglected.
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Table 3.1: Minimum 𝜎𝑥,min and corresponding 𝑧-location 𝑧min (effective focal length) for foil
spacing 𝐿 = 100 𝜇m and initial kinetic energy ℰ𝑏 = 30 MeV for different foil thicknesses ∆𝑓 .
Corresponding focusing efficiency 𝜂, kinetic energy ℰ𝑏 at 𝜎x,min, and beam rms emittance
growth ∆𝜀𝑥,rms at 𝜎x,min are displayed for the 30 MeV initial beam shown in Fig. 3.6 and 3.7.

Foil Foil Spacing
Thickness 𝐿 = 100𝜇m
∆𝑓 𝜎x,min 𝜂 𝑧min ℰ𝑏 ∆𝜀𝑥,rms

(𝜇m) (𝜇m) (mm) (MeV) (mm mrad)
0 81.0 1 19.0 30 0
1.6 94.1 0.89 19.1 28.8 0.4
3.2 106.1 0.79 19.0 27.7 0.7
6.4 127.5 0.61 18.4 25.4 1.2
12.8 157.6 0.36 16.1 22.1 2.1

For efficient passive focusing, the beam must ideally be high current and high energy
consistently as analyzed in Chapter 2. For example, consider a proton beam with a high
perveance value of 𝑄 = 1.8 × 10−2 - e.g. a mono-energetic 4.8 kA 30 MeV proton beam.
Such characteristics may be achievable in the near future by laser-produced proton beams
as the individual characteristics can already be separately reached [43]. The initial beam
density is radially Gaussian with rms beam width 𝜎𝑥 = 200 𝜇m and zero divergence 𝜎′

𝑥 = 0.
The foil spacing is set to 𝐿 = 100 𝜇m and the foil thicknesses ∆𝑓 range from 0 to 12.8 𝜇m.
The initial beam emittance is 𝜀𝑥,rms = 0.87 mm mrad. The emittance in this case grows
due to foil-induced scattering in the thin, but finite thickness foils. The finite foil thickness
induces a reduction of focusing that we quantify by the focusing efficiency defined by

𝜂(∆𝑓 ) =
𝜎x,init − 𝜎x,min(∆𝑓 )

𝜎x,init − 𝜎x,min(∆𝑓 = 0)
. (3.19)

Here, 𝜎x,init is the initial rms beam width. 𝜎x,min(∆𝑓 ) is the best focus for foils with thickness
∆𝑓 , occurring at a distance 𝑧min after the first foil. 𝑧min is called the effective focal length.
The minimum beam rms width for infinitely thin foils is 𝜎x,min(∆𝑓 = 0). This definition
of the focusing efficiency factor 𝜂 is valid only when the foil spacing is small enough to
induce initial focusing. The focusing efficiency 𝜂 is desired to be as close as possible to
unity, corresponding to small defocusing degradation due to scattering and energy losses.
Mitigation of foil-induced scattering can be achieved by reducing the foil thickness ∆𝑓 , the
addition of an external focusing system, or using higher initial beam energy ℰ𝑏.

The dependence of the focusing efficiency 𝜂 as a function of foil thickness ∆𝑓 for various
initial proton kinetic energies is shown in Fig. 3.6. The beam rms width 𝜎𝑥, emittance
and energy for various foil thicknesses and an initial beam kinetic energy ℰ𝑏 = 30 MeV
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are plotted in Fig. 3.7. The plot of the beam rms width shows that, as expected, thicker
foils decrease the maximum beam focus, but are still preferable to the vacuum case where
the beam quickly expends. The plot of the axial beam kinetic energy ℰ𝑏 is consistant with
the stopping power of the employed tabulated PSTAR data in Ref [85]. Emittance growth
is observed in the plot of the beam emittance. Table 3.1 summarizes the beam size and
emittance at maximum focusing for a variety of foil thicknesses. Plots of particle-in-cell
simulation results obtained from WARP [71] (see Sec. 3.3) are also included in Figure 3.7.
The focusing efficiency is quickly reduced with thicker foils, which moves the focal spot closer
to the entrance of the stack of the thin foils, reduces the beam kinetic energy, and increases
the beam emittance. The effects are more deleterious for a beam with lower perveance (i.e.,
less magnetic focusing) and lower energy (i.e. more scattering and faster kinetic energy loss).
For example, a cold 10 MeV proton beam of perveance 8.14 × 10−3 would have a focusing
efficiency of 9 % for even an extremely thin foil of thickness ∆𝑓 = 160 nm, which means that
passive focusing cannot effectively operate for such low energy and low perveance beams. In
order to achieve a focusing efficiency of 70 % for such a beam, the foil thickness would have
to be about 24 nm. Nonetheless, even though focusing cannot be achieved, the stack of foils
strongly mitigates defocusing compared to vacuum values (see Fig. 3.7). Results presented
here help clarify where idealized results from Ref. [52], in which scattering and energy losses
were neglected, can be reliably applied.

Since passive focusing is nonlinear (the focusing term in the envelope equation is pro-
portional to 𝑄/𝜎𝑥 in contrast to solenoidal focusing that is linear, i.e. proportional to 𝜅𝜎𝑥

where 𝜅 is the applied focusing function), equivalence in terms of thin lens optics is not
possible. Therefore, as an approximate comparison between passive focusing and solenoidal
focusing, we compute the necessary solenoidal magnetic field to reach the same minimum
spot size 𝜎x,min provided by passive focusing. For the above-mentioned beam parameters,
in the absence of foils, a solenoidal magnetic field of 600 T would be required to reach the
minimum spot size 𝜎x,min = 157.6 𝜇m that is provided by a stack of thin foils of thickness
∆𝑓 = 12.8𝜇m. This shows the advantage of foil focusing relative to vacuum focusing with
applied fields for the beam parameters examined here. In optimized systems, it may be
advantageous to use combined solenoid and foil focusing, using fewer foils and the solenoid
strength where the beam is large, and more foils as the beam focuses. This could partly
mitigate scattering issues and give more system tunability. Note that, while quadrupoles
are also linear optics, their uses are more even problematic. One could indeed superimpose
high gradient pulsed magnet quadrupole periodic lattices to replace the solenoid focusing.
Estimates show that for an occupancy of 0.5 and the quadrupole length 𝐿 = 2 mm (this
short length is required for the effective focal length 𝑧min to be in the same range as the study
above, i.e. in the tens of mm range), the required magnetic gradient is 6 × 105 T/m, or,
equivalently, a field of 30 T for a radius of 50 𝜇m. These are extreme fields. Alternatively, to
avoid those extreme fields, one could use upstream (non-immersed) quadrupole optics in a
combined type final focus using permanent magnets, but that also introduces another issue
regarding the behavior of electrons respective to the dynamics of ions when entering the
quadrupoles.
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Figure 3.7: a) The evolution of rms beam width 𝜎𝑥, b) rms transverse emittance growth
∆𝜀𝑥,rms and c) axial kinetic energy ℰ𝑏 as a function of 𝑧 for foil spacing 𝐿 = 100 𝜇m and foil
thickness ∆𝑓 = 0, 1.6, 3.2, 6.4, 12.8 𝜇m as labeled. Quantities at the focal spot (𝑧 position
of the smallest 𝜎𝑥) are summarized in Table. 3.1. Dashed lines represent the envelope model
solutions. Solid lines represent WARP simulations.

3.3 Simulation model

The numerical setting is similar to Chapter 2, with the addition of scattering and energy
loss to the modeling of foils in WARP. Foils are located at each axial end of the domain and
assumed to extend to the radial boundaries. When a particle penetrate a foil, the particle
is given a random transverse kick that follows the normal distribution with mean 0 and
variance ⟨𝜃2x⟩ = 𝐺2

SRIM∆𝑓/ℰ2
𝑏 [see Eq (3.7)]. After scattering, the kinetic energy of the beam

ℰ𝑏 is reduced by ∆ℰ𝑏 ≃ 𝒮(ℰ𝑏(−∆𝑓/2))∆𝑓 [see Eq. (3.17)].
Results of these simulations are shown in Fig. 3.7 and agree reasonably well with the

envelope results for the axial kinetic energy ℰ𝑏. The minor discrepancies between the simu-
lations and the envelope model are due to various effects not included in the envelope model
as mentioned in Chapter 2: (i) the radial density is evolving and does not stay Gaussian,
(ii) the electric field is not averaged between the foil by using 𝐹 , and (iii) emittance growth
due to the non-linear nature of the self-fields. Thicker foils enhance these differences.
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3.4 Discussions

This chapter generalized recent theory and simulation models in Chapter 2 to include the
degradation of beam quality due to foil-induced scattering and energy loss in passive focusing.
This study shows that a higher beam kinetic energy, a lower beam atomic number and/or
foil thickness are needed for optimal passive focusing using a stack of thin foils. Extending
the study to a larger range of foil properties (e.g., with irregular spacing and thickness,
different shape, holes) would open possibilities to optimized passive focusing systems for
more complex beams (e.g. with large energy spectrum, not initially collimated, with co-
moving and secondary elections).

3.5 Appendix: Calculation of the moments ⟨𝑥𝑤′⟩ and

⟨𝑥′𝑤′⟩ within metallic foils.

Consider Eq. (3.9) with constant kinetic energy (𝛾𝑏𝛽𝑏 = const) and in the 𝑥 direction. By
introducing 𝐾 = − 𝑞

𝑚𝛾𝑏𝑐2𝑥
𝜕𝜑𝑣

𝜕𝑥
, a Hill’s equation with a stochastic term is obtained,

𝑥′′(𝑧) + 𝐾(𝑧)𝑥(𝑧) = 𝑤′(𝑧), (3.20)

where 𝑤′ is white noise that we model as a sum of discrete kicks with

𝑤′(𝑧) =
𝑛∑︁

𝑖=1

∆𝑖𝛿(𝑧 − 𝑧𝑖). (3.21)

Here, 𝛿(z) is the Dirac delta function, 𝑧𝑖 is the axial position where the 𝑖’th transverse kick
occurs, 𝑛 is the total number of transverse kicks from the axial coordinate −∆𝑓/2 to 𝑧,
and ∆𝑖 the amplitude of the 𝑖’th kick. From Sec. 3.1, the kicks ∆𝑖 are normal distributed
centered on 0 with variance 𝐺2/ℰ2

𝑏 (𝑧)𝛿𝑧. Here 𝛿𝑧 is the mean free path between two collisions.
Between two kicks (i.e., for any 𝑧 ̸= 𝑧𝑖 with 𝑖 ∈ J1, 𝑛K), Eq. (3.20) reduces to the regular
Hill’s equation,

𝑥′′(𝑧) + 𝐾(𝑧)𝑥(𝑧) = 0. (3.22)

The solution of the regular Hill’s equation, Eq. (3.22), between the 𝑖’th kick and the (𝑖+1)’th
kick has the form

𝑥𝑖(𝑧) = [𝐴𝑖𝑓𝑖(𝑧 − 𝑧𝑖) + 𝐵𝑖𝑔𝑖(𝑧 − 𝑧𝑖)][𝐻(𝑧 − 𝑧𝑖) −𝐻(𝑧 − 𝑧𝑖+1)]. (3.23)

Here, 𝐴𝑖 and 𝐵𝑖 are constants that depend on the initial conditions, 𝐶𝑖 and 𝑆𝑖 are cosine-like
and sine-like functions satisfying Eq. (3.22) with initial conditions 𝐶𝑖(0) = 1, 𝐶 ′

𝑖(0) = 0,
𝑆𝑖(0) = 0, 𝑆 ′

𝑖(0) = 1, and 𝐻 is a “step” function defined such that

𝐻(𝑧) =

⎧
⎪⎨
⎪⎩

1, 𝑧 > 0
1
2
, 𝑧 = 0

0, 𝑧 < 0.

(3.24)
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The general solution of Eq. (3.20) can be expressed as

𝑥(𝑧) =
𝑛∑︁

𝑖=0

𝑥𝑖(𝑧). (3.25)

Consider a particle with initial conditions 𝑥(𝑧0) = 𝑥0 and 𝑥′(𝑧0) = 𝑥′
0 where 𝑧0 = −∆𝑓/2.

This sets 𝐴0 = 𝑥0, 𝐵0 = 𝑥′
0. Note that 𝑧𝑖 > 𝑧𝑖−1 for 𝑖 > 0. Then, the following equations

recursively hold for any 𝑖 > 0:

𝐴𝑖 = 𝐴𝑖−1𝐶𝑖−1(𝑧𝑖 − 𝑧𝑖−1) + 𝐵𝑖−1𝑆𝑖−1(𝑧𝑖 − 𝑧𝑖−1),

𝐵𝑖 = 𝐴𝑖−1𝐶
′
𝑖−1(𝑧𝑖 − 𝑧𝑖−1) + 𝐵𝑖−1𝑆

′
𝑖−1(𝑧𝑖 − 𝑧𝑖−1) + ∆𝑖.

(3.26)

It can be shown that, for any 𝑖 > 1,

𝐴𝑖 = 𝒜𝑖 +
𝑖−1∑︁

𝑗=1

𝒞𝑖,𝑗∆𝑗,

𝐵𝑖 = ℬ𝑖 +
𝑖−1∑︁

𝑗=1

𝒟𝑖,𝑗∆𝑗 + ∆𝑖,

(3.27)

where 𝒜𝑖, ℬ𝑖, 𝒞𝑖,𝑗, 𝒟𝑖,𝑗 are constants that depend solely on 𝐴0, 𝐵0, and 𝐶𝑖, 𝐶
′
𝑖, 𝑆𝑖, 𝑆

′
𝑖 evaluated

at 𝑧𝑖 and 𝑧𝑖−1. Their explicit evaluation is not necessary in our analysis.
We can now compute ⟨𝑥𝑤′⟩ and ⟨𝑥′𝑤′⟩ within the metallic foil. Applying Eq. (3.21),

Eq. (3.23), and Eq. (3.27), we first calculate

⟨𝑥𝑤′⟩(𝑧) =⟨
𝑛∑︁

𝑖=1

𝑛∑︁

𝑘=1

∆𝑘(𝐴𝑖𝑓𝑖(𝑧𝑘 − 𝑧𝑖) + 𝐵𝑖𝑔𝑖(𝑧𝑘 − 𝑧𝑖))

× (𝐻(𝑧𝑘 − 𝑧𝑖) −𝐻(𝑧𝑘 − 𝑧𝑖+1))𝛿(𝑧 − 𝑧𝑘)⟩

=⟨1

2

𝑛∑︁

𝑖=1

∆𝑖𝛿(𝑧 − 𝑧𝑖)(𝒜𝑖 +
𝑖−1∑︁

𝑗=1

𝒞𝑖,𝑗∆𝑗)⟩.

(3.28)

Because the ∆𝑖 are isotropically distributed, we have ⟨
𝑛∑︀

𝑖=1

∆𝑖𝛿(𝑧 − 𝑧𝑖)𝒜𝑖⟩ = 0, ⟨
𝑛∑︀

𝑖=1

∆𝑖𝛿(𝑧 −

𝑧𝑖)
𝑖−1∑︀
𝑗=1

𝒞𝑖,𝑗∆𝑗⟩ = 0. In this result, note that for 𝑗 < 𝑖, ∆𝑖 ̸= ∆𝑗 and all terms in the average

vanish because there is no quadratic terms in ∆2
𝑖 in the sums. Together, these results show

that
⟨𝑥𝑤′⟩(𝑧) = 0. (3.29)
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Similarly, we compute ⟨𝑥′𝑤′⟩ within a metallic foil,

⟨𝑥′𝑤′⟩(𝑧) =⟨
𝑛∑︁

𝑖=1

𝑛∑︁

𝑘=1

∆𝑘(𝐴𝑖𝑓
′
𝑖(𝑧𝑘 − 𝑧𝑖) + 𝐵𝑖𝑔

′
𝑖(𝑧𝑘 − 𝑧𝑖))

× (𝐻(𝑧𝑘 − 𝑧𝑖) −𝐻(𝑧𝑘 − 𝑧𝑖+1))𝛿(𝑧 − 𝑧𝑘)⟩

=⟨1

2

𝑛∑︁

𝑖=1

∆2
𝑖 𝛿(𝑧 − 𝑧𝑖)⟩.

(3.30)

⟨
𝑛∑︀

𝑖=1

∆2
𝑖 𝛿(𝑧 − 𝑧𝑖)⟩ in Eq. (3.30) is approximated by averaging it over a mean free path 𝛿𝑧.

Because the ∆𝑖 are normal distributed centered on 0 with variance 𝐺2/ℰ2
𝑏 (𝑧)𝛿𝑧, carrying out

this average gives

⟨
𝑛∑︁

𝑖=1

∆2
𝑖 𝛿(𝑧 − 𝑧𝑖)⟩ ≃

1

𝛿𝑧

∫︁ 𝑧+ 𝛿𝑧
2

𝑧− 𝛿𝑧
2

𝑑𝑧 ⟨
𝑛∑︁

𝑖=1

∆2
𝑖 𝛿(𝑧 − 𝑧𝑖)⟩

≃ 1

𝛿𝑧
⟨∆2

𝑛⟩

≃ 𝐺2

ℰ2
𝑏

,

(3.31)

resulting in

⟨𝑥′𝑤′⟩(𝑧) =
1

2

𝐺2

ℰ2
𝑏

. (3.32)
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Chapter 4

Knock-on electrons in foil focusing

Another detrimental consequence of finite foil thickness in foil focusing is the generation of
secondary electrons. Here, secondary electrons are electrons emitted from the foil by beam
ion impact. Reviews of particle-induced electron emission can be found in Refs. [86, 87].
The production of secondary electrons can occur when the potential energy of the impacting
ion is at least twice the the work function of the target material [86]. This mechanism is
referred to as potential emission. Another mechanism to produce secondary electrons is via
direct transfer of kinetic energy from the impacting beam ions to the electrons in the foils,
referred as kinetic emission. In foil focusing, as the kinetic energy of the impact beam ions
is much higher than their potential energy, most of the secondary electrons are generated by
kinetic emission. In this chapter, we will therefore ignore potential emission and concentrate
on the kinetic emission process. The energy spectrum of the secondary electrons generated

Beam

Foil

Emitted
electrons

Figure 4.1: Geometry of our problem. The three foils have finite thickness in the 𝑧-direction
and are infinite in the 𝑥- and 𝑦-directions. Upon ion beam penetration, electrons are stripped
out of the foils and contribute to charge and current neutralization.
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by kinetic emission spans from thermal energy up to a maximal energy 𝐸max representing
the energy at which the secondary electron velocity is twice the velocity of the beam ions in
the non-relativistic case. In kinetic emission, as described in Sec. 4.1:

1. First, the fast beam ions generate excited electrons in the foils. As the foils will
generally be made of aluminum and as aluminum can be considered as a nearly-free-
electron (NFE) metals, we assume that electrons in the foils constitute a cloud of free
electrons. In practice, it means that we neglect most of the low energy atomic physics,
that is in the order of a few eV. This is a reasonable assumption as the impact ion
energy is usually at least a few MeV.

2. Then, the excited electrons diffuse out of the outer surface of the foil. This diffusion
also creates a cascade of lower energy electrons by various processes that are out of
the scope of this thesis, e.g., by ionization of inner shells of the foil atoms. As those
electrons generated by excited electrons are of lower energy, we ignore them in this
thesis. However, we take into account the energy loss of the excited electrons due
to the interaction with the foil atoms using semi-empirical formulas of the aluminum
stopping power from Refs. [83, 88].

3. If the kinetic energy of the diffused electrons is greater than the potential barrier
𝑊 = 𝐸𝐹 + 𝑒𝜑0 of the foil surface, the escape from foil to vacuum is possible. Those
electrons will therefore contribute to the charge and current neutralization of the ion
beam.

The secondary electrons whose axial velocity is greater than the axial velocity of the ion
beam induce a greater current neutralization than charge neutralization. Heuristically, this
result can be observed in the electrostatic Maxwell’s equations,

∇ · E =
𝜌

𝜖0
= (1 −ℱ𝜌)

𝜌𝑏
𝜖0
,

∇×B = 𝜇0J = 𝜇0(1 −ℱ𝐽)J𝑏,
(4.1)

where ℱ𝜌 = 𝑛𝑒/𝑛𝑖 and ℱ𝐽 = 𝑛𝑒𝑣𝑒/(𝑛𝑖𝑣𝑖). 𝑛𝑒, 𝑛𝑖 are the electron and ion charge densities,
and 𝑣𝑒, 𝑣𝑖 the electron and ion velocities. We assumed the electron and ion velocities to be
purely axial only for estimation purposes, which refers to the worse case of neutralization.
If 𝑣𝑒 > 𝑣𝑖, therefore ℱ𝐽/ℱ𝜌 > 1. In order words, that means that charge neutralization is
greater than current neutralization; and, therefore, the defocusing electric field E would be
more reduced than the focusing magnetic field B. This is undesired and has been a discussed
issue [84, 89, 90, 91]. In the beam physics community, those secondary electrons are referred
as knock-on electrons and are the subject of investigation in this chapter. We describe our
implementation of the physics of the knock-on electrons in the WARP code in Sec. 4.2 and
apply our model to examples of intense ion beams in Sec. 4.3, similar to Chapters 2 and 3.
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4.1 Model of kinetic emission

Excitation of foil electrons

The first step of kinetic emission is modeled assuming a Rutherford elastic scattering between
the ion and an electron. The adoption of this model is valid as the ion beam kinetic energy
is much greater than the potential energy, which enables us to ignore any atomic effect.
One possible refinement of the Rutherford scattering model is to use the screened Coulomb
potential instead of the Coulomb potential to derive the Rutherford scattering cross-section.
We further ignore excited electrons whose axial velocity is lower than the beam velocity.
Effectively, we over-estimate the effect of knock-on electrons as, on the contrary, the lower
energy excited electrons would neutralize more charge than current. However, as they are
of lower energy, their trajectory is not as stiff and they would be more easily expelled out of
the beam. This physics needs to be included in future work.

The Rutherford scattering cross-section given in Eq. (3.1) made use of the small angle
approximation sin 𝜃 ≈ 𝜃 and is therefore only valid for small angles [82]. We are interested
in electrons whose axial velocity is higher than the axial velocity of the impacting ions,
which occurs for deflection angles 𝜃 ∈ [𝜋/2, 𝜋] (as demonstrated below). The small angle
approximation used in Eq. (3.1) is therefore no longer valid. In the laboratory frame, the
impacting ions and the foil electrons respectively possess velocities vi,L and ve,L ≈ 0 as
the electron velocity is thermal and therefore negligible compared to the ion velocity. The
center-of-mass velocity is defined by

vCM =
𝑚𝑖vi,L + 𝑚𝑒ve,L

𝑚𝑖 + 𝑚𝑒

≈ v𝑖,𝐿. (4.2)

Here, 𝑚𝑖 is the ion mass, 𝑚𝑒 is the electron mass, and we used the approximation 𝑚𝑖 +𝑚𝑒 ≈
𝑚𝑖 as 𝑚𝑒 ≪ 𝑚𝑖. This means that, in the center-of-mass frame, the ion and electron velocities
are

vi,CM = vi,L − vCM ≈ 0,

ve,CM = ve,L − vCM ≈ −vi,L.
(4.3)

After scattering, because the mass of the ion is much greater, the ion experiences negligible
deflection while the electron is deflected by angle 𝜃. The updated ion and electron velocities
are therefore

v′
i,CM ≈ 0,

v′
e,CM = R𝜃 · ve,CM.

(4.4)

Here, R𝜃 is the rotation matrix around the axis perpendicular to the ion motion, with
the rotation angle 𝜃. The ′ symbol represents the post-scattering quantities. Back in the
laboratory frame, we obtain the post-scattering ion and electron velocities

v′
i,L = v′

i,CM + vCM ≈ vi,CM ≈ vi,L,

v′
e,L = v′

e,CM + vCM ≈ (I−R𝜃) · vi,L.
(4.5)
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BEFORE

AFTER

Lab Frame Center-of-Mass Frame

Center-of-Mass FrameLab Frame

vi,L

vi,L ≈ vi,L vi,CM ≈ 0

vi,CM ≈ 0ve,L = 0 ve,CM ≈ −vCM

vCM ≈ vi,L

vCM ≈ vi,L

θ

ve,CM = Rθ · ve,CM

ve,L = ve,CM + vCM

Figure 4.2: Before the scattering process: In the laboratory frame, the electron velocity
ve,L is thermal, and therefore negligible to the beam ion velocity vi,L. In the center-of-mass
frame, the center-of-mass velocity is essentially the ion velocity in the laboratory frame, and
the electron velocity ve,CM is therefore the opposite of the center-of-mass velocity. After
the scattering process: the electron velocity v′

e,CM is rotated by the angle 𝜃 in the elastic
scattering model. Back in the laboratory frame, the electron velocity is therefore v′

e,L =
v′
e,CM + vCM. In order for the axial component of v′

e,L to be greater than vi,L, the deflection
angle 𝜃 must be between 𝜋/2 and 𝜋.

Here, I is the identity matrix. Figure 4.2 illustrates the scattering of the electron in the
laboratory frame and in the center-of-mass frame. Knock-on electrons possess axial velocity
greater than the velocity of the ion (the axial direction refers to the direction of the ion
velocity). This corresponds to deflection angles 𝜃 ∈ [𝜋/2, 𝜋] in the center-of-mass frame.
Figure 4.3 shows the limiting cases 𝜃 = 𝜋/2 and 𝜃 = 𝜋.

Therefore, the knock-on electron production cross-section 𝑑𝜎𝑘/𝑑Ω due to a beam ion of
charge 𝑍𝑏 and velocity 𝑣𝑏 = 𝛽𝑏𝑐 at the solid angle 𝑑Ω = sin 𝜃𝑑𝜃𝑑𝜑, is given by

𝑑𝜎𝑘

𝑑Ω
=

𝑍2
𝑏

4

(︂
𝑒2

4𝜋𝜖0𝑚𝑒𝑐2

)︂2
1 − 𝛽2

𝑏

𝛽4
𝑏

1

sin4(𝜃/2)
(4.6)

where 𝜃 ∈ [𝜋/2, 𝜋] and 𝜑 ∈ [0, 2𝜋].
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Center-of-Mass FrameLab Frame

θ = π/2

θ = π/2

De�ection                 in the center-of-mass frame

vCM

ve,CM

ve,L

vCM

ve,CM

Center-of-Mass FrameLab Frame

θ = π

De�ection               in the center-of-mass frame

ve,CM

vCM

ve,CM

θ = π

vCM

ve,L = 2vi,L

Figure 4.3: In the 𝜃 = 𝜋/2 case, the post-scattering electron velocity in the laboratory frame
v′
i,L has magnitude ||

√
2vi,L|| and its axial component is equal to vi,L. In the 𝜃 = 𝜋 case, the

electron velocity v′
i,L is 2vi,L.

Integrating 𝜃 and 𝜑 within their domains of definition yield the total knock-on electron
production cross-section

𝜎𝑘 =

∫︁ 2𝜋

0

𝑑𝜑

∫︁ 𝜋

𝜋/2

𝑑𝜃
𝑑𝜎𝑘

𝑑𝜃
= 𝜋𝑍2

𝑏 𝑟
2
𝑒

1 − 𝛽2
𝑏

𝛽4
𝑏

(4.7)

Here, 𝑟𝑒 = 𝑒2/(4𝜋𝜖0𝑚𝑒𝑐
2) = 2.818 × 10−15 m2 is the classical electron radius. By Eqs. (4.6)

and (4.7), the knock-on electrons follow the angular distribution

𝑓(𝜃) =
𝑑𝜎/𝑑𝜃

𝜎𝑘

=
cos(𝜃/2)

sin3(𝜃/2)
, (4.8)

plotted in Fig. 4.4. The fastest moving knock-on electrons are produced when the deflection
angle in the center-of-mass frame is 𝜋 a shown in Fig. 4.3. In the laboratory frame, this
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Figure 4.4: Angular distribution 𝑓(𝜃) of knock-on electrons in the center-of-mass frame as a
function of the deflection angle 𝜃.

represents twice the velocity of the impacting ion and corresponds to the tail of the angular
distribution 𝑓(𝜃). We now know the yield of knock-on electron production due to the beam
ions. However, after production of the knock-on electrons, the knock-on electrons need to
diffuse out of the foil. Along their diffusion through the foil, they lose energy due to the
stopping power of the foil material. We should also point out that we can easily generalize
our approach for relativistic electrons.

Diffusion out of the foil: Stopping Power of Aluminum

Similar to the beam ions in foils of finite thickness studied in Chapter 3, the electrons
excited by direct transfer of kinetic energy of beam ions lose their newly-gained kinetic
energy by friction with the foil atoms. The rate at which the electrons lose their own
kinetic energies is a function of the foil material. Amongst the most important parameters
are the atomic composition, the density and the mean excitation energy of the foil [83].
For electron energy above 7.5 keV, we employ the stopping power database ESTAR [83]
from the National Institute of Standards and Technology (NIST). The stopping power is
composed of two additive parts: the collision stopping power and the radiative stopping
power. The collision stopping power is computed from the theory of Bethe with a density-
effect correction and based on the mean excitation energy. The mean excitation energy
is extracted from experimental data. The uncertainties in the calculated collision stopping
power are estimated to be less than 3 % above 10 keV. For electron energy below 7.5 keV, shell
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Figure 4.5: Stopping power of electron in aluminum. This curve is reproduced from the
ESTAR database [83] for electron energy greater than 7.5 keV and from the database gen-
erated by Shinotsuka et al. in Ref. [88] for electron energy lower than 7.5 keV. The brown
line shows the demarcation between the two regions.

effects due to the velocity of the electrons being comparable to the velocity of the atomic
electrons must be taken into account. Bethe theory lacks shell corrections and therefore
overestimates the stopping power at low energies. The radiative stopping power is derived
by ESTAR from a combination of theoretical bremsstrahlung cross sections and then solved
numerically for energies below 2 MeV. Uncertainties are expected to be below 5 % below 2
MeV. Bethe stopping power calculations are mostly valid at energies much larger than the
largest K-shell binding energy of the foil material (i.e. above 7.5 keV). For electrons below
7.5 keV, it is therefore crucial to use another formalism for stopping power calculations. We
employ the stopping power database of Ref. [88] that is based on the “optical energy-loss
function” of solids determined from experimental data or measurements with the full Penn
algorithm [92]. Aluminum stopping power calculations of Ref. [88] show excellent agreement
with other approaches to compute stopping powers (e.g., see Ref. [93]). In our regime of
interest, where knock-on electrons kinetic energy is expected to range from the few hundreds
of eV to a few dozen of keV (based on MeV-scale proton beam energy), the stopping power
is a monotonically decreasing function of electron energy. Higher energy electrons would
therefore lose their energy slower than low energy electrons.

We show the stopping power of electrons in aluminum in Fig. 4.5. We separated with
a brown line the energy range where we employed the stopping power from Ref. [88] and
the stopping power from Ref. [83]. The stopping power defined here (1/𝜌)𝑑𝐸/𝑑𝑥 must be
multiplied by the density of the aluminum foil in order to yield the rate at which the energy



CHAPTER 4. KNOCK-ON ELECTRONS IN FOIL FOCUSING 72

Range fro
m Shinotsu

ka

Ran
ge f

rom E
STAR

10 2 103 104 105

10 -3

10-2

10-1

1

101

102

Electron Energy, E HeVL

R
an

g
e,

R
HΜ

m
L

Figure 4.6: Range of electrons in solid aluminum, computed from Eq. (4.9) and Fig. 4.5.
We separated with a brown line the energy range where we employed the stopping power
computed by Shinotsuka et al. from Ref. [88] and the stopping power from the ESTAR in
Ref. [83].

is lost over the travelled distance (and has therefore dimension [eV.cm2.g−1]). The reason we
employ this definition of the stopping power is that we may later on desire to use aluminum
that is not solid, such as in the form of a foam. From Fig. 4.5, we derive the range ℛ of an
electron of energy 𝐸 in solid aluminum by integrating the inverse of the stopping power over
energy from 0 to 𝐸 and dividing it by the foil density 𝜌,

ℛ(𝐸) =
1

𝜌

∫︁ 𝐸

0

𝑑𝐸 ′
(︂

1

𝜌

𝑑𝐸 ′

𝑑𝑥

)︂−1

, (4.9)

and show its dependency with initial electron kinetic energy in Fig. 4.6. From Fig. 4.6, we
can compute for which electron energy 𝐸 we can get transmission through the foil (albeit
with frictional energy loss due to the foil). We show in Table 4.1, for a given foil thickness
∆𝑓 , the minimum kinetic energy 𝐸 that the electron needs in order to escape the foil. We
did not take into account the potential barrier due to the interface foil/vacuum.

Escape from the foil: Potential Barrier

As we only consider electrons with high enough kinetic energy (i.e. the axial velocity of the
escaping electrons must be in the order of the beam velocity or higher), we can employ a
simple model of the escape process. Our approach follows Ref. [86]. We employ the model of
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Table 4.1: Minimum kinetic energy 𝐸 necessary for electron escape after propagation of a
distance ∆𝑓 in solid aluminum. The potential barrier due to the interface aluminum/vacuum
is not considered in this table. Those values are directly extracted from Fig. 4.6.

Minimum electron energy for transmission through foil
Foil thickness, ∆𝑓 (𝜇m) 0.4 0.8 1.6 3.2 6.4 12.8
Minimum kinetic energy, 𝐸 (keV) 5.2 7.9 11.6 17.2 25.3 38.1

Foil Vacuum
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α

α
vv

v(E)

v(E )
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Figure 4.7: Schematic of electron escape from the foil to the vacuum.

a 2D planar surface barrier and free electrons inside the foil which is valid as the diameter of
the emitting area (in the order of tens to hundreds of 𝜇m) is large compared with the lattice
constant (in the order of the Angstrom). We therefore used a mean value for the potential
barrier of height 𝑊 . This potential barrier of height 𝑊 is composed by two parts: the Fermi
energy 𝐸𝐹 = 11.6 eV for aluminum, and the work function Φ = 4.3 eV for aluminum. The
conservation of energy and of parallel momentum connects the inner (𝐸 ′,Ω′) and the outer
(𝐸,Ω) variables shown in Fig. 4.7 and yields

𝐸 ′ = 𝐸 + 𝑊,

𝑣′‖ = 𝑣‖ i.e. 𝑣(𝐸 ′) sin𝛼′ = 𝑣(𝐸) sin𝛼,

𝜑′ = 𝜑,

(4.10)

where Ω is the direction of the momentum of the electron

Ω = (− cos𝛼, sin𝛼 cos𝛼, sin𝛼 sin𝜑). (4.11)
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Therefore, the conditions for the escape of the electrons are

𝐸 ′ > 𝑊,

cos𝛼′ > cos cos𝛼𝑐 =
√︀

𝑊/𝐸 ≈ 0.
(4.12)

In practice, in our model, we will simply subtract 𝑊 from the kinetic energy of electrons
escaping the metallic aluminum foil, and scale back the electron velocity appropriately.

4.2 Implementation in the WARP code

In the WARP code, we implemented in Sec. 3.3 a class that detects when an ion cross a foil
during a time step ∆𝑡. Those detected ions are tagged and, while preserving the total kinetic
energy, are giving an additional random transverse velocity that is distributed isotropically.
In order to model the knock-on electrons, we employ the same class to tag the ions that
crossed a foil. Consider one of those tagged ions. This ion possesses a kinetic energy 𝐸𝑖, and
a given velocity with respect to the normal to the foil. Knock-on electrons due to this ion
are generated according to the following rules:

1. Compute the maximum kinetic energy 𝐸max of the knock-on electron possibly generated
by this ion. This is such that the velocity of the knock-on electron is twice the ion
velocity, or, more explicitly in the non-relativistic case,

𝐸max = 4
𝑚𝑒

𝑚𝑖

𝐸𝑖. (4.13)

and then, consider the range ℛ(𝐸max) of this knock-on electron with maximum kinetic
energy. We will consider the distance

∆𝑘 = min(ℛ(𝐸max),∆𝑓 ) (4.14)

for the distance in the foil where the knock-on electrons can be created. Here ∆𝑓 is the
foil thickness. For example, the range of a 10 MeV proton is 1.2 𝜇m in solid aluminum.
This means that, e.g., if we employ foils of thickness 5𝜇m, only the excited electrons
in the last 1.2 𝜇m of the foils would be able to escape the foil. On the contrary, if we
employ foils of thickness 1 𝜇m, the whole thickness of the foil contributes to knock-on
electrons that could escape out of the foil.

2. Compute the number of excited electrons in the foil from Eqs. (4.7), (4.14) and the
electron density in the foil 𝑛𝑒. In case of solid aluminum, the electron density is

𝑛𝑒 = 𝑍Al𝒩𝐴
𝜌Al

𝑀Al

= 13 × (6.02 × 1023 mol−1) × 2.7 g.cm−3

26.98 g.mol−1

= 7.8 × 1023 electrons.cm−3

(4.15)
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where 𝑍Al is the atomic number of aluminum, 𝒩𝐴 is the Avogadro number, 𝑀Al is the
molar mass of aluminum. The number of excited electrons that could escape due to a
single ion is

𝑁𝐾 = 𝑛𝑒𝜎𝑘∆𝑘 (4.16)

over the length ∆𝑘 in the foil. We uniformly generate those excited electrons over the
length ∆𝑘 using a random number generator (many computer languages have their own
built-in random number generators; we use the numpy.random package in Python).

3. We attribute a given deflection angle 𝜃 (in the center-of-mass frame) for each of those
electrons. 𝜃 is sampled from the angular distribution function 𝑓(𝜃). Effectively, this
also sets the kinetic energy of the excited electrons 𝐸excited.

4. While diffusing out of the foil, the kinetic energy of the electrons is reduced due to
the stopping power of the aluminum foil, shown in Fig. 4.5. The distance 𝑙 that the
excited electron of energy 𝐸excited needs to travel and the density of the foil 𝜌 yield the
energy loss due to the stopping power of the aluminum foil

∆𝐸excited = 𝜌

∫︁ 𝑙

0

𝑑𝑥
1

𝜌

𝑑𝐸

𝑑𝑥
. (4.17)

Furthermore, the kinetic energy of the electrons at the exit of the foil must be reduced
due to the potential barrier 𝑊 of the foil. In summary, we obtain the new kinetic
energy at the exit of the foil:

𝐸exit = 𝐸excited − ∆𝐸excited −𝑊. (4.18)

We assumed that upon energy loss, the electrons do not change their trajectory, which
is valid if their kinetic energy is high enough. In this case, we would simply scale back
the magnitude of the velocity to the new kinetic energy 𝐸exit while preserving the same
direction.

With this new capability in WARP, we simulate the knock-on electrons in a few foil
focusing case to observe at which extent knock-on electron effects can be detrimental to
passive focusing.

4.3 Application to an intense beam

As in Chapter 3, we employ a beam with a high perveance value of 𝑄 = 1.8 × 10−2 - e.g.
a mono-energetic 4.8 kA 30 MeV proton beam. The initial beam density is also radially
Gaussian with rms beam width 𝜎𝑥 = 200 𝜇m and zero divergence 𝜎′

𝑥 = 0. The foil spacing
is set to 𝐿 = 100 𝜇m and the foil thicknesses ∆𝑓 range from 0 to 12.8 𝜇m. We compare in
Fig. 4.8 the simulations that exclusively include the foil-induced scattering of the ion beam
and the simulations that include both the foil-induced scattering of the ion beam and the
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Figure 4.8: a) The evolution of rms beam width 𝜎𝑥 and b) rms transverse emittance growth
∆𝜀𝑥,rms as a function of 𝑧 for foil spacing 𝐿 = 100 𝜇m and foil thickness ∆𝑓 = 0, 1.6, 3.2,
6.4, 12.8 𝜇m as labeled in the left plot. The right plot follows the same color notations.
Thin solid lines represent WARP simulations that include scattering but exclude knock-
on electrons effects. Thick dashed lines represent WARP simulations that include both
scattering and knock-on electrons effects.

generation of knock-on electrons. We observe that passive focusing is marginally mitigated
by the production of knock-on electrons. The effects of knock-on electrons is minimal for
this particular beam, but grows with foil thickness. This is expected for three reasons: 1)
The knock-on electrons are usually stopped after propagating through only a few foils, if
they escape the first foil. 2) A thicker foil would generate more knock-on electrons up to
the range of the electron as depicted in Table 4.1. 3) Higher energy proton beams generate
fewer knock-on electrons, as shown in Eqs. (4.7) and (4.16). A steady current of knock-on
electrons builds up, but it is generally small compared to the intensity of the ion beam. A
regime where knock-on electrons could be detrimental is for lower energy beams, such that
for a 10 MeV proton beam. The reason why we did not investigate this beam is because for
foil thickness in the order of 1 𝜇m or thicker, which are around the thickness of foils that
can be manufactured, the beam would deposit all its energy before reaching the focal point,
which cancels the very purpose of employing foils for passive focusing.

4.4 Discussions

In our model, we assumed a mono-energetic ion beam, and we ignored secondary electrons
whose axial velocity is lower than the axial velocity of the the proton beam. As a consequence,
we considered only the detrimental effects on passive focusing due to the secondary electrons.
Our current approach attempted to estimate on the upper bound for the detrimental effects of
knock-on electrons. The secondary electrons that we ignored should be of much lower energy
that those that we kept, and therefore be easily repelled out of the beam. Furthermore,
they would provide charge neutralization that exceeds current neutralization, adding to
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the passive focusing. Note that knock-on electrons could also be incorporated into the
envelope equation in order to have a purely analytical description by deriving adequate
charge neutralization factor ℱ𝜌 and current neutralization factor ℱ𝐽 . The current model
could be improved to include proton beams with a wide energy spectrum. In this case, we
cannot ignore the low energy electrons. What could previously be neglected for the higher
energy ions must be taken into account for the lower energy ions. However, we expect the
effects of knock-on electrons to be marginal for the higher energy part of an ion beam.
Estimate can be quickly made using Eqs. (4.7) and (4.16) as well as the stopping power of
aluminum for protons and electrons are given in Figs. 3.5 and 4.5.
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Chapter 5

Future directions

This current research on passive focusing can be extended in many directions. First, the use
of different shapes of foil would create different passive focusing conditions. While the use
of aluminum is probably one of the most optimal, as aluminum bears a low atomic number,
boasts good conductivity and strong enough mechanical strength (in order to manufacture
very thin foils), the use of solid aluminum may not be the best choice. Transitioning to
foils made of aluminum foams may be a clever idea, as the scattering and knock-on electron
generation would be greatly reduced. However, the profile of the electric field between the
foam foils would be much more complicated. Unequal foil spacing and holed foils may also
allow optimized focusing without significantly degrading the beam quality.

Developing an experimental test bed to explore these ideas for foil focusing is essential.
In parallel, a robust theoretical and simulation program should allow for verification and
validation of computer models.

Applying foil focusing to a range of existing intense ion beams would further prove the
advantages that foil focusing possesses over the more traditional focusing methods. Intense
ion beams are still tremendously difficult to control and focus. In the case of foil focusing,
the more intense a beam is, the easier it is to focus. A immediate candidate for foil focusing
are laser-produced ion beams. Now, those beams are not mono-energetic. In this thesis, we
exclusively considered mono-energetic beam for clearer theoretically interpretation. However,
it is not clear how foil focusing would behave in the presence of beams with wide energy
spectrum, especially because the treatment for knock-on electrons is much more complex.
Computer simulations could illuminate the efficiency of foil focusing but will have to be
improved to include a richer model for knock-on electron generation in order to include
lower energy ones. Furthermore, this would enable further experimental investigation to
validate the foil focusing scheme.

In the more distant future, we need to design the experiments that make the best use
of foil focusing. An ideal candidate is the final focus on an intense ion beam for heavy
ion fusion. A inclusive design of the stack of thin foils and the nuclear fusion target - the
X-target of heavy ion fusion fast ignition - could be investigated and optimized.
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Appendix A

Rarefaction waves in van der Waals
fluids

By shining an intense ion beam to a solid thin foil, we can reach the warm dense matter
regime and infer new physics. Warm Dense Matter (WDM) conditions are reached when the
density is approximately in the range of 0.1 to 10 times the solid density and the temperature
approximately reaches 0.01 eV to 10 eV, although some authors extend the WDM regime
to temperature up to 50 eV [94, 95]. WDM conditions occur naturally and artificially, e.g.
in the core of gaseous planets [96], during the heating of a metal by a laser [96, 97, 98]
or an ion beam [98, 99, 100, 101], or during the early stages of an inertial confined fusion
implosion [102].

This appendix focuses on the hydrodynamical expansion and transition of a material
from a high temperature liquid or solid state into a vapor state which, for some materials, is
in the WDM regime. Emphasis is made on the conditions around the critical point, above
which there is no distinction between the liquid and vapor phases. For many materials such
as refractory metals [61], the full vapor/liquid phase boundary as a function of density and
temperature is poorly known.

Riemann [103] proved that, for any equation of state (EOS) and if the motion is 1D, the
flow of an instantaneously heated semi-infinite foil is self-similar, and analytically derived
the dynamics of the flow for the case of an ideal gas (see also Refs. [104] and [105]). We
use Riemann’s solution for the specific case where the matter behaves as a Van Der Waals
(VDW) fluid.

Under certain conditions, the solution displays plateaus of constant density during the
phase transition from a single-phase to the two-phase regime. The plateaus may have obser-
vational consequences. For example, optical fringes in reflected laser light have been observed
in short pulse laser experiments on Si surfaces [106]. The optical fringes were later inter-
preted as density plateaus of the flow [107, 108, 109, 110]. Density plateaus of the flow have
also been observed semi-analytically and numerically for particular choices of parameters of
VDW fluids in expansion [111]. By describing the expanding matter as a polytropic fluid
(i.e following the relation 𝑝 ∝ 𝜌(𝑛+1)/𝑛 where 𝑝, 𝜌, 𝑛 are respectively the fluid pressure, mass
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density and the polytropic index), it was also observed analytically and numerically that
the flow of the expanding matter consists of two domains: a thin liquid shell moving with
constant velocity and a thick low-density layer of material in a two-phase state [112]. The
solutions for two different polytropes were subsequently patched together and reproduced
qualitatively the features observed using a more detailed yet complex equation of state for
aluminum.

Other work has shown that a single measurement of the density profile (as a function
of distance) for an expanding 1D material can be used to infer the pressure as a function
of density [113]. Previous work on hydrodynamic waves in generalized VDW fluids in the
vicinity of the two-phase regime, but still above the critical point, showed the possible
presence of rarefaction shockwaves, particularly for foils of finite thickness [104, 114, 115, 116].

We treat simple-wave based solutions, i.e. before the rarefaction waves from both sides
of a given thin foil meet. The more complex problem where these two rarefaction waves
meet at the center has been treated analytically for an ideal gas [105]. Here, a 1D fluid
model with a generalized VDW EOS is described in Appendix A.1 and employed to find the
types of rarefaction waves and their inherent features in the dynamics of the foil expansion
in Appendix A.2, both semi-analytically (by numerically integrating a system of ODEs) and
numerically using the 1D planar Lagrangian hydrodynamic code DISH [117]. We categorize
the possible types of rarefaction waves in generalized VDW fluids and provide a few comments
in Appendix A.3. These results appear in Ref. [62].

A.1 Geometry and method

The initial foil is modeled by a 1D semi-infinite slab of material that initially extends from
𝑧 = −∞ to 𝑧 = 0, and from −∞ to +∞ in the 𝑥 and 𝑦 directions. In spite of being 1D
planar, the model is nevertheless a good approximation for higher dimensional geometries
at early times, since the out-flowing material would extend to distances much smaller than
the radius of the heating beam. For later times, 2D and 3D solutions of the hydrodynamics
equations introduce new characteristic length scales, e.g. curvature radius, making a self-
similar solution impossible.

The foil at initial density 𝜌0 is assumed to have undergone uniform and instantaneous
heating to temperature 𝑇0. This is a valid assumption when the heating time is much shorter
than the hydrodynamic time - the time for the rarefaction wave to reach the center of the
foil - and when the deposition is volumetric, as with X-ray or ion beam heating.

A fluid description employing the VDW EOS is used to describe the dynamics of the
heated target. The VDW EOS is a “cubic” EOS (i.e. one in which the density expressed as
a function of 𝑃 and 𝑇 is the solution of a cubic equation in 𝜌), chosen in this appendix for its
mathematical simplicity and its two-phase behavior. The VDW picture for monoatomic flu-
ids assumes (i) a hard-sphere representation of atoms in a fluid, (ii) a meaningful separation
of potential into a strong short-ranged repulsive part and a weaker long-ranged attractive
part, (iii) that the weaker long-ranged attractive forces can be modeled as a mean field,
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(iv) and that intermolecular hydrogen bonds, directional intermolecular covalent bonds and
ionic forces are negligible. We employ a generalized version (see e.g. Ref. [114]) that includes
internal degrees of freedom and enables richer physics of internal modes, e.g. molecular ro-
tations and vibrations can be included. The simplifications adopted in items (i) through (iv)
above restrict the applicability of the VDW EOS and may hinder quantitative investigations
of rarefaction waves using the VDW EOS. However, the VDW picture has been successfully
applied to interpret a wide range of condensed matter properties [118] and can be improved
in order to quantitatively investigate a broader set of fluids for design purposes [119]. Our
intent is to give a concrete example of the variety of behaviors that can occur for an equa-
tion of state that exhibits a liquid/vapor phase change. The simplicity of the EOS allows
us to identify the boundaries in a dimensionless two-parameter space for the eight classes of
rarefaction waves identified in this study. It is often useful to compare experimental data
with known (but idealized) solutions to the fluid equations. We also believe these similarity
solutions could be useful in benchmarking more complicated hydrodynamic codes.

The Maxwell construction is also employed in order to avoid the micro-instabilities that
occur during a phase transition. However, because it is an equilibrium theory, the Maxwell
construction cannot model droplets and bubbles created in the two-phase regime. The
numerically challenging problem of resolving droplets and bubbles in a simulation [120]
could yield a more accurate description of the rarefaction waves.

A.2 Hydrodynamics of the van der Waals fluid

Hydrodynamics

The continuity and momentum equations for a neutral and non-viscous fluid in the absence
of a mass source or sink for the 1D Cartesian Eulerian fluid system [103, 104, 105] are

𝜕𝜌

𝜕𝑡
+

𝜕𝜌𝑣

𝜕𝑧
= 0,

𝜕𝑣

𝜕𝑡
+ 𝑣

𝜕𝑣

𝜕𝑧
= −1

𝜌

𝜕𝑝

𝜕𝑧
.

(A.1)

Here, 𝜌, 𝑝 and 𝑣 are respectively the fluid mass density, pressure and velocity at time 𝑡 and
axial coordinate 𝑧.

Eq. (A.1) decouples by employing 𝑃 = 𝑣 + 𝐼 and 𝑀 = 𝑣− 𝐼 with 𝐼(𝜌) =
∫︀ 𝜌

𝜌0

𝑐𝑠(𝜌′)
𝜌′

d𝜌′ and

𝑐𝑠 the sound speed defined as 𝑐𝑠
2(𝜌) = 𝜕𝑝/𝜕𝜌|𝑠. 𝜌0 is the density of the uniformly heated

fluid at the initial time 𝑡 = 0. The subscript 𝑠 means that the derivative is taken at constant
entropy. The use of the self-similar variable 𝜉 = 𝑧/𝑡 eliminates an independent variable, and
writing ′ as the total derivative with respect to 𝜉, Eq. (A.1) simplifies to

(𝑣 + 𝑐𝑠 − 𝜉)𝑃 ′(𝜉) = 0,

(𝑣 − 𝑐𝑠 − 𝜉)𝑀 ′(𝜉) = 0
(A.2)
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which yields,

(𝑣 − 𝑐𝑠 − 𝜉) = 0 and 𝑃 ′(𝜉) = 0 (A.3a)

or (𝑣 + 𝑐𝑠 − 𝜉) = 0 and 𝑀 ′(𝜉) = 0. (A.3b)

For a typical EOS (𝜕𝑝/𝜕𝑉 2|𝑠 > 0), the asymptotic solutions of the system set conditions on
the sound speed and the fluid velocity. In the dense fluid, i.e. for 𝜉 ≪ 0, the sound speed
must be non zero and the fluid velocity equal to zero. In the vacuum side, i.e. for 𝜉 ≫ 0,
the sound speed must tend to zero and the fluid velocity must be positive. Equivalently,

for 𝜉 ≪ 0, 𝑐𝑠 > 0 and 𝑣 → 0,

and for 𝜉 ≫ 0, 𝑐𝑠 → 0 and 𝑣 > 0.
(A.4)

Because Eq. (A.3b) does not fulfill the asymptotic conditions of Eq. (A.4), Eq. (A.3a) is
the valid solution and sets the hydrodynamics equation

𝜉(𝜌) = −𝐼(𝜌) − 𝑐𝑠(𝜌). (A.5)

𝑐𝑠(𝜌) depends on the thermodynamical properties of the fluid expansion, henceforth mod-
eled by the VDW EOS.

Equation of state: the generalized Van der Waals model

The VDW EOS is described by the following equations,

𝑝 =
𝜌𝑘𝑇

𝐴𝑚amu(1 − 𝑏𝜌)
− 𝑎𝜌2, (A.6a)

𝑠 =
𝑘

𝐴𝑚amu

ln

(︃
𝐴𝑚amu

1 − 𝑏𝜌

𝜌

𝜆𝑓−3
0

𝜆𝑓

)︃
, (A.6b)

𝑐2𝑠 =
𝜕𝑝

𝜕𝜌

⃒⃒
⃒⃒
𝑠

=
𝑓 + 2

𝑓

𝑘𝑇

𝐴𝑚𝑎𝑚𝑢

1

(1 − 𝑏𝜌)2
− 2𝑎𝜌, (A.6c)

𝜖 =
𝑓

2

𝑘𝑇

𝐴𝑚𝑎𝑚𝑢

− 𝑎𝜌. (A.6d)

Here, 𝑝, 𝜌, 𝑇 , 𝑠, 𝑐𝑠 and 𝜖 are respectively the pressure, mass density, temperature, entropy,
sound speed and the energy density of the fluid. 𝐴 is the mass number of the atomic species
of the fluid, 𝑘 the Boltzmann constant, 𝑚𝑎𝑚𝑢 the atomic mass unit. 𝜆 = ℎ/(2𝜋𝐴𝑚amu𝑘𝑇 )1/2

is the de Broglie wavelength. ℎ is the Planck constant. 𝜆0 is an arbitrary normalisation
constant that has no effect on the dynamics and will not appear in the subsequent treatment
of the rarefaction waves. 𝑎 and 𝑏 are the VDW constants of the fluid whose derivations can
be found in the literature [121] and whose experimental values can be found in reference
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tables [122] for a number of gases and compounds, but, for many materials that have high
critical temperatures, the constants have not been measured or yield large measurement
uncertainties [61]. In Eq. (B.1) and throughout this appendix, the VDW EOS has been
generalized to arbitrary numbers of degrees of freedom 𝑓 ≥ 3 in order to account for more
complex material compounds. The standard VDW EOS for monatomic molecules has a
number of degrees of freedom 𝑓 = 3. In Eq. (B.1a), the first term in the right-hand side
models the strong short-ranged repulsive atomic forces while the second term models the
long-ranged attractive forces.

The critical pressure 𝑝𝑐, density 𝜌𝑐 and temperature 𝑇𝑐 are defined at the inflection point
𝜕𝑝/𝜕𝜌|𝑇 = 𝜕2𝑝/𝜕𝜌2|𝑇 = 0 and yield

𝜌𝑐 =
1

3𝑏
, 𝑝𝑐 =

1

27

𝑎

𝑏2
and

𝑘𝑇𝑐

𝐴𝑚𝑎𝑚𝑢

=
8

27

𝑎

𝑏
. (A.7)

Furthermore, a characteristic sound speed 𝑐2𝑠,0 = 𝑝𝑐/𝜌𝑐 and a characteristic energy density
𝜖𝑐 = 𝜖(𝜌𝑐, 𝑇𝑐) = (4𝑓 − 9)/27 × 𝑎/𝑏 are defined based on the critical parameters. Note 𝑐2𝑠,0
is not the sound speed at the critical point, rather a characteristic speed that we chose to
simplify the equations. The sound speed at the critical point is 2

√︀
3/𝑓 𝑐𝑠,0.

For generality, dimensionless quantities are henceforth employed by scaling all dimen-
sional quantities with the critical or characteristic parameters above-mentioned. In what
follows, tilded quantities are the dimensionless counterparts of dimensional quantities such
that 𝜌 = 𝜌/𝜌𝑐, 𝑝 = 𝑝/𝑝𝑐, 𝑇 = 𝑇/𝑇𝑐, 𝑐𝑠(𝜌) = 𝑐𝑠(𝜌)/𝑐𝑠,0 and 𝜖 = 𝜖/𝜖𝑐.

From Eqs. (B.1) and (A.7), the dimensionless VDW equations yield

𝑝 = 8
𝜌𝑇

3 − 𝜌
− 3𝜌2, (A.8a)

𝑠 =
𝑠− 𝑠𝑐

𝑘/(𝐴𝑚𝑎𝑚𝑢)
= ln

(︂
3 − 𝜌

2𝜌
𝑇 𝑓/2

)︂
, (A.8b)

𝑐2𝑠 =
𝜕𝑝

𝜕𝜌

⃒⃒
⃒⃒
𝑠

=
𝑓 + 2

𝑓

24𝑇

(3 − 𝜌)2
− 6𝜌, (A.8c)

𝜖 =
4𝑓

4𝑓 − 9
𝑇 − 9

4𝑓 − 9
𝜌. (A.8d)

Here, 𝑠𝑐 = 𝑠(𝜌𝑐, 𝑇𝑐). There exists a regime of instability where 𝜕𝑝/𝜕𝜌|𝑠 < 0 for the isotherms
𝑇 < 1 since the density increases for a decreasing pressure which is unphysical for a fluid
in equilibrium. Consequently, the Maxwell Construction[123] is employed to represent an
equilibrium state in this unstable zone: the fluid is modeled as a mixture of a liquid phase
of density 𝜌𝑙 and pressure 𝑝𝑙 at mass fraction 𝑥𝑙 and a gaseous phase of density 𝜌𝑔 and
pressure 𝑝𝑔 at mass fraction 𝑥𝑔. The Maxwell Construction sets 𝜌𝑙, 𝜌𝑔, 𝑝𝑙 and 𝑝𝑔 by assuming
equal pressure 𝑝 and chemical potential 𝜇̃ between the two phases, i.e. 𝑝𝑙(𝑇 ) = 𝑝𝑔(𝑇 ) and

𝜇̃𝑙(𝑇 ) = 𝜇̃𝑔(𝑇 ). The latter condition is equivalent to
∫︀ 𝑉𝑔

𝑉𝑙
(𝑝 − 𝑝𝑔) d𝑉 = 0. Here 𝑉 = 1/𝜌 is

the dimensionless specific volume.
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The liquid and gas mass fraction 𝑥𝑙 and 𝑥𝑔 is defined by

𝑥𝑙(𝜌, 𝑇 ) =
𝜌𝑙(𝑇 )

𝜌

𝜌− 𝜌𝑔(𝑇 )

𝜌𝑙(𝑇 ) − 𝜌𝑔(𝑇 )
,

𝑥𝑔(𝜌, 𝑇 ) =
𝜌𝑔(𝑇 )

𝜌

𝜌− 𝜌𝑙(𝑇 )

𝜌𝑔(𝑇 ) − 𝜌𝑙(𝑇 )
.

(A.9)

The emphasis in this appendix is on the isentropic evolution of the VDW fluid, i.e
𝑠(𝜌, 𝑇 ) = 𝑠0 is constant where 𝑠0 is the initial dimensionless entropy of the fluid. This
hypothesis eliminates one of the two independent parameters in Eq. (A.9) and yields

𝑥𝑙(𝑇 ) = ln

(︂
3 − 𝜌0
3 − 𝜌𝑔

𝜌𝑔
𝜌0

(︁𝑇0

𝑇𝑔

)︁𝑓/2)︂⧸︁
ln

(︂
3 − 𝜌𝑙
3 − 𝜌𝑔

𝜌𝑔
𝜌𝑙

)︂
,

𝑥𝑔(𝑇 ) = ln

(︂
3 − 𝜌0
3 − 𝜌𝑙

𝜌𝑙
𝜌0

(︁𝑇0

𝑇𝑙

)︁𝑓/2)︂⧸︁
ln

(︂
3 − 𝜌𝑔
3 − 𝜌𝑙

𝜌𝑙
𝜌𝑔

)︂
.

(A.10)

The density in the two-phase regime may be expressed as a function of temperature only:

𝜌(𝑇 ) =
𝜌𝑙(𝑇 )𝜌𝑔(𝑇 )

𝑥𝑔(𝑇 )𝜌𝑙(𝑇 ) + 𝑥𝑙(𝑇 )𝜌𝑔(𝑇 )
. (A.11)

To complete the calculation of the self-similar evolution, we need to calculate the sound speed
in the two-phase regime. Since the pressure may be written as a function of the temperature
only 𝑝(𝑇 ) = 𝑝(𝜌𝑙(𝑇 ), 𝑇 ) = 𝑝(𝜌𝑔(𝑇 ), 𝑇 ), the sound speed may be calculated, 𝑐2𝑠 = 𝜕𝑝(𝑠,𝜌)

𝜕𝜌

⃒⃒
𝑠

=
𝑑𝑝(𝑇 )/𝑑𝑇

𝑑𝜌(𝑇 )/𝑑𝑇
so that 𝐼(𝜌) is the sum of the contribution before entering the two-phase regime plus

the contribution in the two-phase regime: 𝐼(𝜌) =
∫︀ 𝜌𝑏
𝜌0

𝑐𝑠(𝜌)
𝜌

d𝜌 +
∫︀ 𝜌(𝑇 )

𝜌𝑏(𝑇𝑏)

𝑐𝑠(𝜌)
𝜌

𝑑𝜌

𝑑𝑇
d𝑇 .

It can be shown [104] that a shockwave is possible when 𝑑2𝜌/𝑑𝑉 2|𝑠 < 0 and their existence
has been numerically predicted for a foil of finite thickness modeled as a single phase VDW
fluid (subsequently referred to as Case 1 and Case 2 in Fig. A.2) in the complex wave
regime [114], i.e. when the rarefaction waves from the ends of the foil meet.

Eight types of rarefaction waves that depend exclusively on the initial entropy and the
number of degrees of freedom, as shown in Fig. A.1, are found from the isentropic trajectory
of the VDW fluid in the (𝜌,𝑇 ) diagram and are plotted as a blue full line in the eight
upper subplots of the (𝜌,𝑇 ) diagrams in Figs. A.2, A.3 and A.4. Also depicted in the upper
subplots of Figs. A.2, A.3 and A.4 are the Maxwell-constructed binodal between the single
phase regime and two-phase regime in red dashed line and the shockwave boundary in red
dotted line. Note that even though the shockwave boundary in red dotted line is valid only
in the single-phase regime, it has been included in all the diagrams even when it is not valid
in order to see the proximity of the shock regime to the single-phase regime. For 𝑓 > 34,
shockwaves can be observed for some isentropes[116] since part of the shockwave boundary
is above the Maxwell-constructed binodal.
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Figure A.1: Diagram determining which type of rarefaction waves to encounter depending
on initial entropy 𝑠0 and number of degrees of freedom 𝑓 .

As expected, these isentropic trajectories in the (𝜌,𝑇 ) diagram yield different shapes of
density and pressure profiles in the next section.

Dimensionless solutions

The hydrodynamic equation (A.5) is scaled by 𝑐𝑠,0 and yields

𝜉(𝜌) = −𝐼(𝜌) − 𝑐𝑠(𝜌), (A.12)

which completes the set of dimensionless equations. Here, 𝜉(𝜌) = 𝜉(𝜌)/𝑐𝑠,0, 𝐼(𝜌) = 𝐼(𝜌)/𝑐𝑠,0
and 𝑐𝑠(𝜌) = 𝑐𝑠(𝜌)/𝑐𝑠,0.

This analysis is applicable to any VDW fluid as the solutions can be scaled back to
dimensional quantities using the appropriate 𝐴, 𝑎 and 𝑏 that characterize a given chemical
element.

In the following, we denote the variables with subscript “𝑏” their values at binodal.
While 𝜕𝑝/𝜕𝜌|𝑇 no longer reaches negative values due to the Maxwell construction, it is no
longer a smooth function of 𝜌 at 𝜌 = 𝜌𝑏 as 𝜕𝑝/𝜕𝜌|𝑇 (𝜌+𝑏 ) ̸= 𝜕𝑝/𝜕𝜌|𝑇 (𝜌−𝑏 ), which leads to the
discontinuity of the sound speed at 𝜌 = 𝜌𝑏. From Eq.(A.12), a discontinuity in 𝜉 is therefore
expected each time an isentropic trajectory crosses the Maxwell-constructed binodal in the
(𝑝,𝜌) diagram.

This set of dimensionless equations is semi-analytically solved using Mathematica [80]
and compared against the 1D planar Lagrangian hydrodynamic code DISH [117].
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Figure A.2: The rarefaction waves of a) case 1 and b) case 2. Each of the subfigures
contains three plots. In the (i) subfigures of each cases are represented in full blue line the
isentropic trajectory of the rarefaction wave, in dashed red line the Maxwell-constructed
binodal between single- and two-phase regime and in dotted line the unstable boundary in
the single-phase regime. In the (ii) and (iii) subfigures of each cases are represented in blue
line the semi-analytical solution, and in purple line the numerical solution of the density and
pressure profiles. Zones of interest of the rarefaction waves are zoomed.
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Figure A.3: The rarefaction waves of a) case 3, b) case 4 and c) case 5 are displayed. See
annotations of Fig. A.2 for details.



APPENDIX A. RAREFACTION WAVES IN VAN DER WAALS FLUIDS 88

�1 �0.5 0 0.5
�0.4

�0.1

0.2

log10 Ρ
�

lo
g 1

0
T�

f � 3, T
�

0 � 10, Ρ�0 � 2.7

�1 �0.5 0 0.5
�0.4

�0.1

0.2

log10 Ρ
�

lo
g 1

0
T�

f � 20, T
�

0 � 1.35 , Ρ�0 � 2.7

�1 �0.5 0 0.5
�0.4

�0.1

0.2

log10 Ρ
�

lo
g 1

0
T�

f � 50, T
�

0 � 1.125 , Ρ�0 � 2.7

11.5
0.5

0.65

�60 �40 �20 0 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ξ
�

Ρ�

3.3 3.6

0.5

0.8

�20 �15 �10 �5 0 5 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ξ
�

Ρ�

3.052.9
0.4

0.9

�15 �10 �5 0 5 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ξ
�

Ρ�

11 11.5

0.75

0.95

�60 �40 �20 0 20
0

100

200

300

400

500

600

Ξ
�

p�

3.3 3.7
0.6

1

�15 �10 �5 0 5 10
0

10

20

30

40

50

60

Ξ
�

p�

3.052.9

0.7

0.9

�15 �10 �5 0 5 10
0

10

20

30

40

50

60

Ξ
�

p�

c-iii)

c-ii)

c-i)b-i)

b-ii)

b-iii)
a-iii)

a-ii)

a-i)

Figure A.4: The rarefaction waves of a) case 6, b) case 7 and c) case 8 are displayed. See
annotations of Fig. A.2 for details.



APPENDIX A. RAREFACTION WAVES IN VAN DER WAALS FLUIDS 89

The density 𝜌 and pressure 𝑝 profiles as a function of the self-similar variable 𝜉 of each
of the eight types of rarefaction waves under investigation are represented in the central and
lower part of the Figs. A.2, A.3 and A.4. As the density and pressure profiles computed
numerically by the DISH code also displayed a self-similar expansion, they are also plotted
in dimensionless variables as a function of the self-similar variable. In each of those cases,
the numerical simulations showed that the entropy is conserved.

In cases 1, 3 and 6 the semi-analytic similarity solution and the hydrodynamic code DISH
agree well. The plateau region in density, temperature, pressure and velocity that occurs in
the transition to the two-phase regime (in cases 3 and 6) is faithfully reproduced in DISH
as well as in the semi-analytic similarity solution.

In cases 2, 4, 5, 7 and 8, the fluid follows a trajectory such that 𝜕2𝑝/𝜕𝑉 2|𝑠 is less than zero
for a part of the fluid’s trajectory in the (𝜌,𝑇 ) diagram (where 𝑉 ≡ 1/𝜌). As indicated in
Refs. [104, 114], this implies an unstable region where shocks may form. A simple integration
of the semi-analytic solution yields a double valued (unphysical) density distribution (see
Figs. A.2, A.3 and A.4). The DISH code yields a sharp density gradient in this unstable
region (shown in purple), although it is well resolved (see Fig. A.5) and does not have a
discontinuity in the pressure and so is technically not a shock. The asymptotic density,
temperature, and pressure before and after the unstable region (where 𝜕2𝑝/𝜕𝑉 2|𝑠 < 0) are
nearly identical in the semi-analytic solution and in DISH. The solution in the unstable
region indicates a strong density and pressure gradient, followed by a more conventional
rarefaction wave.

∙ Case 1 : 𝑓 = 20, 𝑇0 = 2, 𝜌0 = 2.7.
The fluid stays in one phase continuously varying from high density fluid to a gas. The
rarefaction wave does not display any plateau or unstable features. There is a good
agreement between the semi-analytical solution and the numerical solution (DISH).

∙ Case 2 𝑓 = 100, 𝑇0 = 1.07, 𝜌0 = 2.7.
The fluid stays in one phase continuously varying from high density fluid to a gas. Be-
cause 𝑓 > 34, as previously mentioned, the shockwave boundary is above the Maxwell-
constructed binodal in the (𝑝,𝜌) diagram. The studied case crosses the shock boundary.
A self-similar pressure gradient forms in the numerical simulation and non-physical
”z”-shaped density and pressure profiles occur in the semi-analytical solution. The
semi-analytical and numerical models not do agree, as the same analytical model evi-
dently does not model well the unstable region, well-resolved numerically as shown in
Fig. A.5.

∙ Case 3 : 𝑓 = 3, 𝑇0 = 1, 𝜌0 = 2.7.
The fluid starts as a single-phase fluid, enters the two-phase regime as a liquid and
stays as a two-phase fluid. A single density plateau whose length is a function of 𝑠 and
𝑓 is observed. There is a good agreement between the semi-analytical solution and the
numerical solution.
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Figure A.5: The numerically computed temporal evolution of the density profiles (in purple
lines) of shows that the kinks of the semi-analytical solutions (in blue lines) are well resolved,
and the evolution remains self-similar. The purple line is the interpolation of the numerical
solution over time ranging from 𝑡1 to 𝑡3. The purple dots represent the numerical solution
at a given time 𝑡1, 𝑡2 and 𝑡3. a) Case 2 (𝜌0 = 2.7, 𝑇0 = 1.07, 𝑓 = 100). b) Case 4 (𝜌0 = 2.7,
𝑇0 = 1, 𝑓 = 30). The subfigures (i), (ii) and (iii) represent different snapshots at different
time, as denoted on the figures.
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∙ Case 4 : 𝑓 = 30, 𝑇0 = 1, 𝜌0 = 2.7.
The fluid starts as a single-phase fluid, enters the two-phase regime as a liquid and
leaves the two-phase regime to revert to a single phase that is gaseous. The rar-
efaction wave yields one plateau and a kink. The kink that can be observed in the
semi-analytical solution is simulated as a steep self-similar profile in the well-resolved
numerical simulations (see Fig. A.5), not modeled in our analytical model.

∙ Case 5 : 𝑓 = 100, 𝑇0 = 1.03, 𝜌0 = 2.7.
The fluid starts as a single-phase fluid, becomes a liquid, enters the two-phase regime
and then quickly leaves the two-phase regime to revert as a single gaseous phase in the
shockwave regime. This case is similar to case 4 with features from case 2.

∙ Case 6 : 𝑓 = 3, 𝑇0 = 10, 𝜌0 = 2.7.
The fluid starts as a single-phase fluid, enters the two-phase regime as a gas and stays
as a two-phase fluid. Similar to case 3, a single density plateau whose length is a
function of 𝑠 and 𝑓 is observed. The length of the plateau is smaller than case 3 and
the shape of the rarefaction wave is more similar to case 1. There is a good agreement
between the semi-analytical solution and the numerical solution. Here, the bump in the
purple numerical profiles is due to numerical artifacts as the steep gradient is difficult
to resolve in the our hydrodynamic code. This case has similar features to case 3.

∙ Case 7 : 𝑓 = 20, 𝑇0 = 1.35, 𝜌0 = 2.7.
The fluid starts as a single-phase fluid, enters the two-phase regime as a gas and quickly
leaves the two-phase regime to revert to a single gaseous phase. This case has similar
features to case 4.

∙ Case 8 : 𝑓 = 50, 𝑇0 = 1.125, 𝜌0 = 2.7.
The fluid starts as a single-phase fluid, becomes a gas, enters the two-phase regime
and then quickly leaves the two-phase regime to revert as a single gaseous phase in the
shockwave regime. This case has similar features to case 5.

A.3 Discussions

The 1D planar isentropic hydrodynamic model of a generalized Van Der Waals fluid homo-
geneously and instantaneously heated to temperatures of order the critical point predicts the
presence of eight types of rarefaction waves depending on the number of degrees of freedom
𝑓 , the initial density 𝜌0 and temperature 𝑇0 in the simple wave regime.

Our work shows that for certain values of 𝑓 and 𝑠0 in the simple wave regime, the fluid
can go through a region of instability (𝜕2𝑝/𝜕𝑉 2|𝑠 < 0), in which a strong pressure gradient
(possibly a shock) forms. This is not in disagreement with Ref. [114] which found that shocks
formed in the non-simple wave regime, after the rarefaction waves collided in the middle of
the foil. Interestingly, the numerical solutions in the unstable regime appear to be self-similar
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as seen from overlaying density and pressure profiles from different times. Nevertheless, the
numerical solutions do not show the formation of a shock wave. We have not resolved this
discrepancy and can only conclude that a steep density gradient (if not a shock) forms in
the unstable regime.

This work should be useful in interpreting and categorizing the types of behavior observed
when experiments are carried out that produce warm dense matter conditions by volumet-
rically heating thin foils, and using the subsequent dynamic behavior to infer properties of
the matter.
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Appendix B

Characterization of rarefaction waves
in van der Waals fluids

The analysis of Appendix A is extended for the particular case of three degrees of freedom.
The self-similar profiles of the rarefaction waves describe the evolution of the foil display
plateaus in density and temperature due to a phase transition from the single phase to
the two-phase regime. The hydrodynamic equations are expressed in a dimensionless form
and the solutions form a set of universal curves, depending on a single parameter: the
dimensionless initial entropy. We characterize the rarefaction waves by calculating how the
plateau length, density, pressure, temperature, velocity, internal energy and sound speed
vary with dimensionless initial entropy.

These studies are useful for developing a qualitative understanding of heated foils ex-
panding through a phase change, as well as for benchmarking codes that encompass more
realistic EOS. In order to make a concrete connection to the physical values of density and
temperature, we describe an algorithm that links the dimensionless quantities characterizing
the rarefaction waves (e.g., the length of plateaus and ratios of initial density to plateau
density) to physical variables. These results appear in Ref. [63].

B.1 Hydrodynamics of the van der Waals fluid with

three degrees of freedom

The fluid is modeled by the VDW EOS with three degrees of freedom [124], in contrast to the
arbitrary number of degrees of freedom in Appendix A, meaning that only the rarefaction
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waves of case 3 and 6 of Appendix A out of the eight possible cases will be encountered:

𝑝 =
𝜌𝑘𝑇

𝐴𝑚amu(1 − 𝑏𝜌)
− 𝑎𝜌2, (B.1a)

𝑠 =
𝑘

𝐴𝑚amu

ln

(︂
𝐴𝑚amu

1 − 𝑏𝜌

𝜌𝜆3

)︂
, (B.1b)

𝑐2𝑠 =
𝜕𝑝

𝜕𝜌

⃒⃒
⃒⃒
𝑠

=
5

3

𝑘𝑇

𝐴𝑚𝑎𝑚𝑢

1

(1 − 𝑏𝜌)2
− 2𝑎𝜌, (B.1c)

𝜖 =
3

2

𝑘𝑇

𝐴𝑚𝑎𝑚𝑢

− 𝑎𝜌, (B.1d)

By rescaling the dimensionless VDW equations using the critical parameters, we obtain

𝑝 =
𝑝

𝑝𝑐
= 8

𝜌𝑇

3 − 𝜌
− 3𝜌2, (B.2a)

𝑠 =
𝑠− 𝑠𝑐

𝑘/(𝐴𝑚amu)
= ln

(︂
3 − 𝜌

2𝜌
𝑇 3/2

)︂
, (B.2b)

𝑐2𝑠 =
𝑐2𝑠
𝑐2𝑠,0

= 40
𝑇

(3 − 𝜌)2
− 6𝜌, (B.2c)

𝜖 =
𝜖

𝜖𝑐
= 4𝑇 − 3𝜌. (B.2d)

For isotherms 𝑇 < 1, the regime of hydrodynamical instability where 𝜕𝑝/𝜕𝜌|𝑇 < 0 is
assumed to be in equilibrium state using the Maxwell construction [123].

Dimensionless solutions

Eq. (A.12) is solved for the isentropes 𝑠0 = −2, −1, 0, 1 and 2 at initial density 𝜌 = 2.7. Fol-
lowing Eq. (B.2b), this equivalent to initial temperatures 𝑇0 = 1.8, 3.5, 6.8, 13 and 26. These
isentropes in the (𝜌, 𝑇 ) diagram are displayed in Fig. B.1. We can distinguish two types of
expansion, and therefore of rarefaction waves: If 𝑠0 ≤ 0, the fluid enters the two-phase regime
from a liquid state (referred as case 3 in Appendix A and Fig. A.1). If 𝑠0 ≥ 0, the fluid enters
the two-phase regime from a gaseous state (referred as case 6 in Appendix A and Fig. ??).
The isentrope 𝑠0 = 0 goes through the critical point and constitute a special case of case 3
and 6. The density, pressure, temperature, fluid velocity, fluid mass energy and sound speed
profiles as a function of 𝜉 are solved semi-analytically using Mathematica [80] and compared
numerically against the 1D planar Lagrangian hydrodynamic code DISH [117]. The semi-
analytical and numerical results almost perfectly overlap, and are plotted in Fig. B.2 (with
a expanded version in Fig. B.3). Except for the sound speed profile, the profiles display
plateaus whose length are exclusively function of the entropy 𝑠0. This is not surprising as
the plateaus arise precisely because of the discontinuity of the sound speed between its value
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Figure B.1: (𝜌, 𝑇 ) diagram of isentropic expansions. The grey dashed curve represents the
Maxwell-constructed binodal. The full lines are isentropes, all starting from 𝜌 = 2.7 and
initial temperature 𝑇0 = 1.8, 3.5, 6.8, 13 and 26, representing entropies 𝑠0 = −2 (dark blue),
−1 (light blue), 0 (black), 1 (light brown) and 2 (dark brown).

𝑐+𝑠,𝑏 = 𝑐𝑠(𝜌
+
𝑏 ) at the vicinity of the binodal in the single-phase regime and 𝑐−𝑠,𝑏 = 𝑐𝑠(𝜌

−
𝑏 ) at the

vicinity of the binodal in the two-phase regime. Here, the variables with subscript “𝑏” are
their values at the binodal. This discontinuity is due to the Maxwell-Construction (𝜕𝑝/𝜕𝜌|𝑇
is no longer a smooth function of 𝜌 at 𝜌 = 𝜌𝑏) and, from Eq. (A.12), yields ∆𝜉𝑏 = 𝑐+𝑠,𝑏 − 𝑐−𝑠,𝑏.
A graphical depiction of the discontinuity of the sound speed as a function of 𝑠0 is shown
in Fig. B.4. An interesting feature of the isentropic curves in Figs. B.2 and B.3 is the sole
dependency of the shape of these curves on 𝑠0, and that, in addition to this property, the
values of the parameters at the binodal are a continuous function of 𝑠0 (except for 𝑐𝑠, as
previously mentioned), as shown in Fig. B.5. This property can also be graphically observed
in the (𝜌,𝑇 ) diagram in Fig. B.1 when isentropic curves cross the Maxwell-constructed bin-
odal: increasing the initial dimensionless entropy 𝑠0 from a negative value means that, at the
interception point, the density 𝜌𝑏 decreases and the temperature 𝑇𝑏, at first, increase. These
trends continue until 𝑠0 = 0 is reached, where the interception point reaches the critical
point. Further increasing 𝑠0 further decreases 𝜌𝑏 but now decreases 𝑇𝑏 along the binodal.
The evolution of the pressure at the binodal 𝑝𝑏 parameterized by 𝑠0 is similar to the evolu-
tion of 𝑇𝑏, also with a maximum occurring at the critical point. The internal energy density
𝜖𝑏, which includes a potential energy term in addition to the kinetic energy (temperature)
term, maximizes at higher entropy than 𝑠0 = 0, i.e. lower density than the critical density
𝜌 = 1. The velocity at the binodal 𝑣𝑏 (and hence the velocity of the plateau region when it
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Figure B.2: The isentropes from Fig. B.1 are represented and follow the same color notation.
As a function of 𝜉, (a) fluid density profile 𝜌, (b) fluid pressure profile 𝑝, (c) fluid temperature
profile 𝑇 , (d) fluid energy density profile 𝜖, (e) fluid velocity profile 𝑣 and (f) fluid sound speed
profile 𝑐𝑠 (note the discontinuity of the sound speed at the binodal). In each plot, an initial
density 𝜌0 = 2.7 is assumed for practical reasons, but each curve can in principle be extended
to the left, reaching an asymptotic value of 3. The dots represent the numerical calculations
using the 1D planar Lagrangian hydrodynamic code DISH. A expanded representation of
this figure can be found in Fig. B.3
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Figure B.3: Expanded representation of Fig. B.2. The dots are removed for clarity.
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Figure B.4: Fluid sound speed 𝑐𝑠,𝑏 at the vicinity of the binodal as a function of entropy
𝑠0: 𝑐+𝑠,𝑏 in the single-phase regime, 𝑐−𝑠,𝑏 in the two-phase regime. The discontinuity of 𝑐𝑠,𝑏 is

actually the length in 𝜉 of the plateau, denoted ∆𝜉𝑏 which is therefore a function of only 𝑠0
(see Fig. B.5.f).

exists) monotonically increases as 𝑠0 increases. The length of the plateau ∆𝜉𝑏 monotonically
decreases to 0 with increasing 𝑠0. Heuristically, the sound speed in the single phase at the
vicinity of the binodal, denoted 𝑐+𝑠,𝑏, gets larger as 𝑠0 decreases (getting closer to the 𝜌 = 3
limit which represents the upper limit of the density for a VDW fluid) whereas the sound
speed in the two phase regime at the vicinity of the binodal, denoted 𝑐−𝑠,𝑏, gets smaller, since
the isobars are flatter, and the isentropic curves are relatively shallow. The difference in
sound speed should be greatest at low entropy (as can be seen from fig. 5), and therefore
∆𝜉𝑏 should decrease with increasing 𝑠0, meaning the widest plateaus ∆𝜉𝑏 will be observed
at the lowest initial entropy.

B.2 Algorithm determining the critical and initial

parameters

We developed an algorithm to determine the critical and initial parameters (three unknowns:
𝜌𝑐, 𝑇𝑐 and 𝑇0) from the measurement of four quantities (𝜌0, 𝜌𝑏, the length in 𝜉 of the plateau at
the binodal ∆𝜉𝑏, the length of the fluid in the dense single phase ∆𝜉𝑑) obtained from a single
density profile 𝜌(𝑧) at a certain time 𝑡 of an isentropically expanding fluid of known mass
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Figure B.5: For each value of 𝑠0 can be associated at the binodal a unique value of (a) fluid
density 𝜌𝑏, (b) fluid pressure 𝑝𝑏, (c) fluid temperature 𝑇𝑏, (d) fluid energy density 𝜖𝑏, (e) fluid
velocity 𝑣𝑏 and (f) plateau in 𝜉, denoted as ∆𝜉𝑏.
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number A. Measurement of multiple profiles provides a redundant check on the applicability
of the VDW model to the fluid under investigation and/or better accuracy in the unknowns to
be determined. Similar algorithm can be easily developed for a single pressure, temperature,
energy density or velocity profile.

A density profile 𝜌(𝑧) for a time 𝑡 can be readily transformed into a density profile 𝜌(𝜉) of
the self-similar variable 𝜉 = 𝑧/𝑡. From the 𝜌(𝜉) profile, we extract the four input parameters
for our algorithm: 𝜌0, 𝜌𝑏, ∆𝜉𝑏 = 𝜉2 − 𝜉1 and ∆𝜉𝑑 = 𝜉1 − 𝜉0 where 𝜉0 = 𝜉(𝜌0), 𝜉1 = 𝜉(𝜌+𝑏 ),
𝜉2 = 𝜉(𝜌−𝑏 ).

The density profiles in the (𝜌, 𝜉) plane and in the (𝜌, 𝜉) plane differ only by a multiplying
factor in 𝜉 and a multiplying factor in 𝜌 such that 𝜌 = 𝜌𝜌𝑐 and 𝜉 = 𝜉𝑐𝑠,0. Those are important
features that yield the following properties:

∙ A given density profile in the (𝜌, 𝜉) plane is associated to a unique dimensionless density
profile in the (𝜌, 𝜉) plane, and vice versa.

∙ A point 𝐴(𝜌𝐴, 𝜉𝐴) in the (𝜌, 𝜉) plane possesses a unique image 𝐴(𝜌𝐴, 𝜉𝐴) in the (𝜌, 𝜉)
plane, and vice versa.

∙ If 𝐴, 𝐵, 𝐶, 𝐷 are points in the (𝜌, 𝜉) plane, and 𝐴, 𝐵̃, 𝐶, 𝐷̃ their images in the (𝜌, 𝜉)

plane, the following ratios are conserved: 𝜌𝐴
𝜌𝐵

=
𝜌𝐴
𝜌𝐵̃

and 𝜉𝐴−𝜉𝐵
𝜉𝐶−𝜉𝐷

=
𝜉𝐴−𝜉𝐵̃
𝜉𝐶̃−𝜉𝐷̃

.

A dimensionless density profile is therefore an image of a dimensional density profile if
and only if they have the same ratios

𝑅𝜌 =
𝜌𝑏
𝜌0

=
𝜌𝑏
𝜌0

and 𝑅𝜉 =
∆𝜉𝑏
∆𝜉𝑑

=
∆𝜉𝑏

∆𝜉𝑑
.

(B.3)

Using Fig. B.5, 𝜌𝑏 and ∆𝜉𝑏 are functions of only 𝑠0, and ∆𝜉𝑑 is a function of only 𝑠0 and
𝜌0. This implies that 𝑅𝜌 and 𝑅𝜉 are both functions only of 𝑠0 and 𝜌0. We can therefore trace
curves of constant 𝑅𝜉 and 𝑅𝜌 in the (𝜌0,𝑠0) space as shown in Fig. B.6.

The algorithm decomposes into seven steps:

1. Fetch one (𝜌, 𝑧) profile of hydrodynamical expansion at a given 𝑡.

2. Transform the (𝜌, 𝑧) profile into a (𝜌, 𝜉) profile using the self-similar parameters 𝜉 = 𝑧/𝑡
and store 𝜌0, 𝜌𝑏, ∆𝜉𝑑 and ∆𝜉𝑏.

3. Compute the ratios 𝑅𝜌 and 𝑅𝜉.

4. Find 𝜌0 and 𝑠0 at the intersection of the 𝑅𝜌 and 𝑅𝜉 curves in the (𝜌0,𝑠0) diagram (see
Fig. B.6).

5. Extract ∆𝜉𝑏 from Fig. B.5.
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Figure B.6: In the (𝑠0,𝜌0) diagrams, we traced the curves of constant ratios 𝑅𝜌 = 0.89, 0.6,
0.2, 0.02, 0.002 and 𝑅𝜉 = 0.45, 0.1, 0.01, 0.001. A given 𝑅𝜌 curve intersects with a given
𝑅𝜉 curve only once. The blue area is the space where the fluid is already in the two-phase
regime at the initial point. The curves 𝑅𝜌 = 0.89 and 𝑅𝜉 = 0.45, found in Appendix B.3,
intersect at 𝑠0 = −3.01 and 𝜌0 = 2.70, represented by the black dot point.

6. Compute the critical density
𝜌𝑐 = 𝜌0/𝜌0, (B.4)

the critical temperature

𝑘𝑇𝑐 =
8

3

(︂
∆𝜉𝑏

∆𝜉𝑏

)︂2

𝐴𝑚amu, (B.5)

and, optionally, the critical pressure

𝑝𝑐 =
3

8
𝜌𝑐

𝑘𝑇𝑐

𝐴𝑚amu

, (B.6)

or equivalently the VDW parameters

𝑎 = 3

(︂
∆𝜉𝑏

∆𝜉𝑏

)︂2
𝜌0
𝜌0

,

𝑏 =
1

3

𝜌0
𝜌0

.

(B.7)
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Figure B.7: A single density profile generated by the DISH code to test the algorithm.
The input parameters are revealed in the end of the section to determine how accurate the
algorithm is.

7. Compute the initial temperature

𝑘𝑇0 = 𝑘𝑇𝑐

(︂
2𝜌0

3 − 𝜌0
𝑒𝑠0
)︂ 2

3

(B.8)

and, optionally, the initial pressure

𝑝0 = 3𝜌0

(︂
∆𝜉𝑏

∆𝜉𝑏

)︂2[︂
8

3

(︂
2𝜌0

3 − 𝜌0
𝑒𝑠0
)︂ 2

3 1

3 − 𝜌0
− 𝜌0

]︂
. (B.9)

B.3 Test of the algorithm

We assume that we are provided a single density profile as in Fig. B.7, recorded at 𝑡 = 631
ps after the beginning of the expansion caused by a rarefaction wave. We have generated
this profile using the DISH code. We suppose that what is known is that EOS is a standard
VDW EOS with the atomic mass number 𝐴 = 26.98.

We can easily transform the 𝜌(𝑧) profile of Fig. B.7 into a 𝜉(𝑧) profile and we can extract

𝜌0 = 2.18 g.cm−3 and 𝜌𝑏 = 1.93 g.cm−3 (B.10)
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as well as
∆𝜉𝑏 = 7.2 × 103 m.s−1 and ∆𝜉𝑑 = 1.6 × 104 m.s−1. (B.11)

Their ratios from Eq. (B.3) can therefore be readily computed:

𝑅𝜌 = 0.89 and 𝑅𝜉 = 0.45. (B.12)

Using Fig. B.6, the corresponding dimensionless density and entropy of the isentropic ex-
pansion associated to the rarefaction waves are

𝜌0 = 2.70 and 𝑠0 = −3.01. (B.13)

For 𝑠0 = −3.01, we extract ∆𝜉 = 6.75 from Fig. B.5, and therefore, Eqs. (B.4), (B.5) and
(B.8) yield:

𝜌𝑐 = 0.80 g.cm−3, 𝑇𝑐 = 0.87 eV, and 𝑇0 = 0.81 eV. (B.14)

In order to produce Fig. B.7 with the DISH code, we entered as input the critical density
𝜌𝑐,input = 0.80 g.cm−3, the critical temperature 𝑇𝑐,input = 0.90 eV and the initial temperature
𝑇0,input = 0.84 eV. This represents a negligible error for the density calculations, and an
error of 4% or less for the temperature calculations. Here, errors are mostly attributed to
finite difference errors in the DISH code when generating Fig. B.7.

B.4 Discussions

This analysis is applicable to any VDW fluid (here, with 𝑓 = 3 degrees of freedom) as the
solutions can be scaled back to dimensional quantities using the appropriate 𝐴, 𝑎 and 𝑏 that
characterize a given chemical element.

This work should be useful in interpreting and categorizing the types of behavior observed
when experiments are carried out to produce WDM conditions by volumetrically heating thin
foils, and using the subsequent dynamic behavior to infer properties of the matter. As shown
in Appendix. A, when 𝑓 > 3, plateaus may or may not be present, and for sufficiently large
𝑓 , shockwaves may appear. A similar characterization of trends could be carried out for any
specific value of 𝑓 .

While all equations of state yield a self-similar profile, only ”cubic” EOS, i.e. when the
density expressed as a function of pressure and temperature is the solution of a cubic equation
in 𝜌 , yield a single set of dimensionless curves that depends on only one free parameter, here
the initial dimensionless entropy. Certain physical quantities can be obtained directly from
these measurements, independent of the assumed EOS. For example, ∆𝜉𝑏 = ∆𝑐𝑠,𝑏 where
∆𝑐𝑠,𝑏 = 𝑐𝑠(𝜌

+
𝑏 ) − 𝑐𝑠(𝜌

−
𝑏 ) is the difference between the sound speed in the single phase and

in the two-phase regime at the vicinity of the binodal. Similarly measuring the extent of 𝜉
in the single phase, 𝜉(𝜌+𝑏 ) − 𝜉(𝜌0) = 𝑐𝑠(𝜌0) − 𝑐𝑠(𝜌

+
𝑏 ) +

∫︀ 𝜌𝑏
𝜌0
𝑐𝑠(𝜌

′)/𝜌′ d𝜌′ , gives some indirect
information about the sound speed in the single phase. Measurements of 𝜌𝑏 directly for
various initial temperatures allows one to map out the binodal and find the critical density
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𝜌𝑐 (e.g., at the maximum of 𝜌𝑏 versus initial temperature). Also, as shown in Ref. [113],
the sound speed as a function of position and density can be inferred from a line integral
of the density from a position 𝑧0 with a known sound speed 𝑐𝑠(𝜌0) to a particular point
𝑧 in question as 𝑐𝑠 = −(

∫︀ 𝑧

𝑧0
𝜌 d𝑧)/(𝜌𝑡) + 𝜌0𝑐𝑠(𝜌0)/𝜌. Note that the presence of plateaus in

density indicates that there are discontinuities in the sound speed so care must be taken
so that integrations are not done across discontinuities. The pressure is then inferred from
𝑝(𝑧) = 𝑝0 +

∫︀ 𝑧

𝑧0
𝑐2𝑠(𝜕𝑝/𝜕𝑧) d𝑧 where 𝑧0 is a position with a known sound speed and pressure.

The pressure is thus directly inferred on an isentrope (assuming the data is precise enough
to do the integral for the sound speed and the integral for the pressure, and that the sound
speed and pressure are known at a particular point). It is hoped that having specific solutions
to the hydrodynamic equations for a specific EOS will lend to a greater understanding of
the behaviors of expanding foils with a more complex EOS.
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