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ABSTRACT

Enzymes are known to adopt various conformations at different points along their catalytic cycles. Here, we present a comprehensive
analysis of 15 isomorphous, high resolution crystal structures of the enzyme phosphoglucomutase from the bacterium Xanthomonas citri.
The protein was captured in distinct states critical to function, including enzyme-substrate, enzyme-product, and enzyme-intermediate com-
plexes. Key residues in ligand recognition and regions undergoing conformational change are identified and correlated with the various steps
of the catalytic reaction. In addition, we use principal component analysis to examine various subsets of these structures with two goals: (1)
identifying sites of conformational heterogeneity through a comparison of room temperature and cryogenic structures of the apo-enzyme
and (2) a priori clustering of the enzyme-ligand complexes into functionally related groups, showing sensitivity of this method to structural
features difficult to detect by traditional methods. This study captures, in a single system, the structural basis of diverse substrate recognition,
the subtle impact of covalent modification, and the role of ligand-induced conformational change in this representative enzyme of the
a-D-phosphohexomutase superfamily.

VC 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5092803

INTRODUCTION

The a-D-phosphohexomutases are ubiquitous enzymes found in
all kingdoms of life.1 Among other reactions, these enzymes catalyze
the reversible conversion of 1-phospho to 6-phosphohexoses, with
various sugars including glucose, mannose, glucosamine, and N-
acetylglucosamine. These reactions are fundamental in carbohydrate
metabolism, required for processes such as glycogen synthesis and
breakdown, and protein glycosylation. In bacteria, the enzymes phos-
phoglucomutase (PGM) and phosphomannomutase/phosphogluco-
mutase (PMM/PGM) are involved in the biosynthesis of
exopolysaccharides that contribute to the pathogenicity of infections
in higher organisms, including humans, animals, and plants.1–3 The
reaction mechanism of the a-D-phosphohexomutases is conserved,
and entails two phosphoryl transfers [Fig. 1(a)], with the initial trans-
fer occurring from a phosphoserine residue of the enzyme to a mono-
phosphorylated sugar to form a bisphosphorylated intermediate (e.g.,
glucose 1,6-bisphosphate or G16P). This is followed by the second
phosphoryl transfer from the alternate phospho-group of the

intermediate back to the enzyme, creating product and regenerating
the active, phosphorylated state of the enzyme.

The multistep reaction of the a-D-phosphohexomutases has sev-
eral unique features that pose considerable challenges for macromolec-
ular recognition. One of these is that the enzyme utilizes the same
catalytic residues for phosphoryl transfer to both the 1- and 6-
hydyroxyls of the sugar. This requires that 1- and 6-phosphosugars
bind in distinct orientations within the active site, as first revealed by
crystal structures of PMM/PGM from Pseudomonas aeruginosa.4

Another challenge is the required 180� reorientation of the reaction
intermediate that occurs in between the two chemical steps, which is
known to occur “on enzyme” in several members of the family.5,6

Adding to the complexity of recognition, certain subgroups of the
superfamily have dual substrate specificity, such as the PMM/PGMs
that can effectively utilize both glucose and mannose-based sub-
strates.7 Moreover, detailed biophysical studies of several enzymes in
the superfamily have established that loss of covalent modification of
the catalytic serine by phosphorylation increases the flexibility of the
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polypeptide backbone,8–11 a phenomenon that may facilitate the
release and rebinding of the bisphosphorylated sugar intermediate
during the course of the reaction.9 Overall, the catalytic mechanism of
these enzymes demands a robustly designed active site that can accom-
modate different ligand binding orientations, recognize varying types
of sugars and number of phosphorylation sites, and enable the reorien-
tation of the intermediate in the midst of the catalytic cycle.

To further characterize the various enzyme states involved in this
unique catalytic mechanism, we obtained multiple high resolution
crystal structures of PGM from the plant pathogen Xanthomonas citri
(XcPGM).3 Favorable experimental characteristics of XcPGM crystals
enable systematic, detailed structural comparisons of specific enzyme
states, including the apo-enzyme, complexes with 1- and 6-
phosphosugars, the bisphospho-intermediate, and glucose- and
mannose-based sugars. Each ligand complex was characterized with
both the phosphorylated and unphosphorylated states of the enzyme,
for a total of twelve structures at cryogenic temperatures [Fig. 1(b)]. In
addition, we present three high resolution structures of XcPGM from
X-ray data collected at room temperature (RT). This study was care-
fully planned to eliminate potential structural impacts that might arise
from differences in crystallization conditions, crystal packing, diffrac-
tion source, or data collection/refinement protocols. As a result, we are
able to assess subtle structural features in our comparisons and reveal
structural snap shots in unprecedented detail along the catalytic cycle
of the enzyme.

RESULTS
Preparation of different enzyme states

XcPGM was selected for the analyses herein for several reasons.
First, the high resolution diffraction of its crystals makes it ideal for
detailed structural analyses: previously determined structures of

XcPGM were reported at 1.27 Å (apo-enzyme, PDB ID 5BMN) and at
1.85 Å in complex with glucose 1-phosphate (G1P) and G16P (PDB
ID 5KLO and 5BMP, respectively).3 The high-resolution diffraction
and notable mechanical stability of these crystals are likely associated
with the observed tight packing arrangement of molecules in the unit
cell and their relatively low solvent content (43%) (Fig. S1). The
robustness of the crystals also enabled collection of X-ray diffraction
data at RT to resolutions near 2.0 Å, which has not been possible for
other enzymes in the superfamily. In addition, unlike many related
enzymes, XcPGM does not crystallize in high salt (Materials and
Methods section).3 This greatly facilitates the formation of XcPGM-
ligand complexes, as binding of phosphosugars is impeded by high
ionic strength. Finally, protocols for preparing phosphorylated and
unphosphorylated states of XcPGM were developed based on our pre-
vious experience with related enzymes.11 Together, these factors
enabled an exploration of multiple variables in this system.

The multiple enzyme states characterized (Table I and Fig. S2)
include two major comparisons: (1) apo-enzyme vs ligand complexes
and (2) phospho- vs dephospho-enzyme (P and deP) representing the
active and inactive forms of the enzyme. Within the ligand complexes,
we further explored three other variables: 1- vs 6-phospho sugars (sub-
strate/product), glucose vs mannose recognition, and binding of the
intermediate G16P. (For this study, we define 1-phosphosugars as sub-
strates and 6-phosphosugars as products, although due to the revers-
ibility of the reaction, either designation is technically correct). While
only the phosphoglucomutase activity of XcPGM has been experimen-
tally verified,3 it is likely that the enzyme also has phosphomannno-
mutase activity, based on its sequence homology with the PMM/PGM
subgroup of the superfamily.1 We therefore included studies with
mannose 1-phosphate (M1P) and mannose 6-phosphate (M6P). As a
final category, we obtained and analyzed three RT X-ray data sets of

FIG. 1. Overview of the mechanism and
structure of XcPGM. (a) A schematic of the
catalytic reaction, showing the reversible
conversion of glucose 1-phosphate to glu-
cose 6-phosphate. Glucose 1,6-bisphos-
phate undergoes a 180� reorientation in
between the two phosphoryl transfer steps
of the reaction. (b) An outline of the catalytic
cycle of XcPGM, highlighting the various
enzyme states captured in this study.
Structure numbers correspond to those on
Table I. Structures not part of the normal cat-
alytic cycle are labeled as “nonproductive”
and highlighted by gray boxes. Structures
previously determined in another study3 are
analogous to 1, 3, and 11. �Room-
temperature data set collected; ‡complex
with a nonhydrolysable G1P analog (see the
text).
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XcPGM, as apo-enzyme (both P and deP) and in a complex with glu-
copyranosyl-1-methyl phosphonic acid (G1CP), a substrate analog. To
minimize any structural impacts resulting from differences in crystalli-
zation conditions, crystal packing, or data collection/refinement proto-
cols, all structures herein were determined from crystals grown for this
study, as described in Materials and Methods (previously deposited
structures of XcPGM were not used). High resolution limits of the
datasets ranged from 1.35 to 2.05 Å resolution (Table S1).

Careful handling was needed to obtain crystals of certain enzyme
states (Materials and Methods). XcPGM purifies as a mixture of P and
deP enzyme,11 but initial data sets collected from crystals grown at
18 �C showed that the catalytic serine, Ser97, was unphosphorylated.
To obtain phospho-enzyme crystals, the purified protein was phos-
phorylated with G16P prior to crystallization and crystals grown at
4 �C to limit spontaneous hydrolysis of the phosphoserine.11 With
regard to ligand complexes, formation was routine for crystals stored
in liquid nitrogen and subsequently used for cryogenic data collection.
Clear electron density was observable for all ligands in Polder omit
maps12 calculated from the cryogenic data sets (Fig. S3). However, ini-
tial RT data sets had no density for ligands, despite using the same
soaking conditions successful for the cryo-crystallography experi-
ments. After multiple failures, we considered the possibility that cataly-
sis was occurring in the crystals at room-temperature. To test this, the
nonhydrolysable substrate analog G1CP was utilized in soaks, result-
ing in clear density for the ligand in electron density maps (Fig. S3).

Apo-enzyme in its active and inactive state

The structure of apo-XcPGM was determined with both the phos-
phorylated (EP; active) and unphosphorylated (EdeP; inactive) states of
the catalytic serine. Diffraction limits of the two data sets were similar at
1.44 and 1.50 Å for the EP and EdeP, respectively (states1,2 in Table I).

Structures were solved by molecular replacement using the coordinates
of the previously published apo-enzyme (PDB ID 5BMN).3 Like other
enzymes in the superfamily, XcPGM has four domains of approximately
equal size, arranged in an overall heart-shape [Fig. 2(a)]. The active site is
located in a large central cleft at the confluence of its four structural
domains, and involving >60 residues. Within this cleft, four loops (one
from each domain) have conserved functional roles across the enzyme
superfamily (for the detailed review see Ref. 1) In domains 1–4, these
loops are: (i) the phosphoryl transfer loop (residues 95–99) including
phosphoserine 97; (ii) the metal-binding loop with its three coordinating
aspartates (residues 237–241); (iii) a sugar-binding loop that includes
Glu320 and Ser322; and (iv) the phosphate-binding loop (residues
414–423) that interacts with the phosphate group of the ligands. Figure
2(b) shows a close-up view of these regions in the active site of XcPGM.

Overall, the structures of EP and EdeP are very similar, with a Ca

root-mean-square deviation (RMSD) between polypeptide backbones of
0.26 Å (Table S2). A small shift in the backbone between these two struc-
tures is evident in loop (i) and several other regions near the site of phos-
phorylation [Fig. 3(a)]. In EdeP, the sidechain hydroxyl of the serine acts
as a ligand for the Mg2þ ion, along with three sidechain oxygens from
the aspartates in loop (ii). In EP, one of the phosphate oxygens takes the
place of the serine hydroxyl and coordinates the metal along with the
aspartates in loop (ii). A structural shift of loop (i) between EP and EdeP
has not been observed in other enzymes in the superfamily, although
only a few have been crystallized in both states.9,10,13 It remains to be
seen whether changes in loop (i) related to phosphorylation are a com-
mon feature in the superfamily.

Phospho-enzyme complexes with substrates

Structures of phospho-XcPGM in complex with substrates (S) G1P
and M1P were obtained at 1.57 and 1.61 Å resolution (states3,4 in Table

TABLE I. Overview of X-ray data sets collected. For ligand abbreviations, see text. Cryogenic data sets were collected at �170 �C and RT data sets at 25 �C. Coordinate error
calculated by Phenix.60 ADP ¼ atomic displacement parameters.

State no. Ligand dmin (Å) Mean ADP (Å2) R Rfree Coord. error (Å) PDB ID

CRYO
Apo-P 1 … 1.44 20.5 0.1708 0.2076 0.17 6NN2
Apo-deP 2 … 1.50 27.0 0.1722 0.2054 0.21 6NN1
Phospho-complexes 3 G1P 1.57 22.9 0.1699 0.2062 0.19 6NNO

4 M1P 1.61 19.1 0.2070 0.2707 0.29 6NOQ
5 G6P 1.45 19.7 0.1782 0.2104 0.21 6NNS
6 M6P 1.41 20.8 0.1795 0.2131 0.23 6NP8
12 G16P 1.46 20.0 0.1691 0.2071 0.16 6NNU

Dephospho-complexes 8 G1P 1.35 20.9 0.1743 0.2028 0.19 6NNN
9 M1P 1.73 27.3 0.1905 0.2488 0.35 6NOL
10 G6P 1.50 24.0 0.1792 0.2112 0.19 6NNS
11 M6P 1.38 20.0 0.1913 0.2221 0.21 6NPX
7 G16P 1.45 21.7 0.1689 0.2078 0.17 6NNT

X1P 1.45 16.6 0.1773 0.2147 0.18 6NQH
RT
Apo-P 13 … 1.90 39.9 0.1695 0.2053 0.22 6NQF
Apo-deP 14 … 1.85 35.5 0.1607 0.1873 0.19 6NQE
Complex 15 G1CP 2.05 37.9 0.1823 0.2529 0.39 6NQG
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I). Relative to the apo-enzyme, the EP:S complexes show a conformeric
change in loop (iv) of domain 4. This results in an overall RMSD with
apo-enzyme of �0.6 Å (Table S2), while the two EP:S complexes are
quite similar to each other (RMSD 0.29 Å). Loop (iv) rotates inward,
toward the active site, positioning residues in this region to interact with
the bound substrate. As expected (and seen in the previous G1P complex
of XcPGM3), both G1P and M1P bind such that their phosphate group
interacts with loop (iv) [Fig. 3(b)]. Interactions to the 1-phospho group
of both G1P and M1P are made by residues Arg414, Ser416, Asn417,
Thr418, and Arg423 (Table S3) with at least seven direct hydrogen
bonds/salt bridges per complex, and an additional water-mediated

interaction between the phosphate group and Tyr9/Asn417. These
extensive interactions are consistent with their proposed role as an
“anchor” for phosphosugar recognition in the enzyme superfamily.4

Anchoring of the phosphate group of the substrate by loop (iv) serves to
position O6 in the vicinity of phosphoserine 97, as needed for phospho-
ryl transfer [Fig. 3(b)]. (Ser97 is �5 Å from O6 in the enzyme-ligand
complexes suggesting that a small conformational adjustment of the pro-
tein would be needed for catalysis to proceed).

In addition to the phosphate contacts, other interactions are
made between the protein and the hydroxyl groups of the substrates
[Fig. 3(b)]. These include contacts to O3 and O4 from the side chains

FIG. 2. (a) The crystal structure of
XcPGM (apo-P) colored by domain
[(1)–(4); see labels)]. Phosphoserine 97 is
highlighted as sticks and the bound Mg2þ

ion is a green sphere. (b) A close-up view
of the active site, highlighting key func-
tional loops. Residues with roles in cataly-
sis and ligand binding are highlighted in
sticks. Colors as in (a). The general vicin-
ity of the phosphosugar binding site is
indicated by gray oval.

FIG. 3. Close-up views of the XcPGM
active site in various enzyme states. (a)
Loop (i) in EP (dark red) and EdeP (red),
showing the impact of phosphorylation in
this region. The bound metal (sphere) and
its three coordinating aspartates are also
shown. (b) A superposition of the two
EP:S complexes with G1P (magenta) and
M1P (blue). Residues involved in ligand
contacts or with roles in catalysis are
shown as sticks and labeled; arrows high-
light the two different positions of O2 in
glucose and mannose. (c) A superposition
of the two EP:S complexes with G6P
(pink) and M6P (light blue). (d) A view of
G16P in the EdeP:intermediate complex
(yellow). In certain structures, side chains
with multiple conformers have been omit-
ted, for clarity.
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of Glu320 and Ser322, and the backbone amide of His303. These inter-
actions, particularly the bidentate interaction by a glutamate, are con-
served in the enzyme superfamily.4,14 Contacts made with O2 of the
hexose reflect its differing stereochemistry in glucose and mannose
(equatorial vs axial). In the G1P complex, Arg280 makes a bidentate
interaction with O2 and O3. In the M1P complex, the contact between
Arg280 and O3 is maintained, but Ser322 now contacts both O2 and
O3 of the mannose. Thus, differential side chain contacts accommo-
date the differing stereochemistry of O2 in the substrates of XcPGM.
Another nearby residue in the active side is His324 (<4 Å from O6),
which is a candidate for the general base in the reaction, based on
studies in related enzymes.15 Enzyme contacts with the substrate ana-
log G1CP in a 2.05 Å resolution RT data set, state,15 are very similar to
those with G1P (Table S3).

Phospho-enzyme complexes with products

Structures of phospho-XcPGM in complex with the products (P)
glucose 6-phosphate (G6P) and M6P were obtained at 1.45 and 1.41 Å
resolution (states5,6 on Table I). Similar to the EP:S complexes, the
EP:P complexes also show a closure of loop (iv) relative to apo-enzyme
(RMSD � 0.6 Å with apo-enzyme and 0.22 Å between the G6P and
M6P complexes; Table S2). Contacts to the 6-phosphate group are
made by the same residues in loop (iv) as in the EP:S complexes:
Arg414, Ser416, Asn417, Thr418, and Arg423 [Fig. 3(c)]. These
invariant contacts to the phosphate group, seen in complexes with
both 1- and 6-phosphosugars, are consistent the enzyme mecha-
nism, whereby a �180� reorientation of the bisphosphorylated
intermediate occurs in the midst of the catalytic cycle (Fig. 1). The
rotation axis is approximately defined by O5 and the midpoint
between O3 and O4 [compare Figs. 3(b) and 3(c)]. In the EP:P
complexes, anchoring of the 6-phosphate group of the product by
loop (iv) positions O1 (rather than O6 as in the EP:S complexes)
near phosphoserine 97, as would be found after the second phos-
phoryl transfer in the catalytic cycle [Fig. 1(a)].

Due to the alternate binding orientation of the sugar ring in the
EP:P complexes, O3 and O4 exchange places compared to their posi-
tions in the EP:S structures. This exchange allows the same enzyme
residues to contact these two hydroxyls: the side chains of Glu320 and
Ser322, and the backbone amide of His303 [Fig. 3(c)]. This is possible
because both O3 and O4 have equatorial stereochemistry in glucose
and mannose,4 allowing them to essentially switch places when the
sugar ring is flipped by 180�. In contrast, the 180� reorientation places
O2 in in a very different position in the active site of the EP:P com-
plexes compared to the EP:S complexes. In neither case, with G6P or
M6P, direct enzyme contacts to O2 are observed. Thus the active site
of XcPGM is permissive for multiple positions of O2 in the EP:P com-
plexes, but lacks specific contacts. It is interesting to note that despite
the different binding orientations of the ligands, the protein structures
in the EP:P complexes are quite similar to the EP:S complexes (RMSD
of 0.16–0.39 Å depending on structures compared; Table S2).

The dephospho-enzyme complex with the
intermediate

A structure of XcPGM in its dephosphorylated state bound to
the G16P intermediate (I) was determined at 1.45 Å resolution. The
EdeP:I complex (state7 on Table I) represents one of two possible

orientations for binding of G16P necessary to complete the catalytic
cycle (Fig. 1). These are: (1) with its 6-phospho group near loop (iv),
as seen here [Fig. 3(d)]; and (2) with its 1-phospho group near loop
(iv), which is not observed. Both binding orientations must occur dur-
ing the catalytic cycle depending on whether the first or second phos-
phoryl transfer needs to or has already taken place, although only the
first has been observed in crystal structures in the superfamily.16 Other
catalytically relevant states involving EdeP:I, which are not characteriz-
able by crystallography, include the two phosphoryl transfer steps,
shown for a related enzyme to proceed through a concerted SN–2-like
mechanism, with a loose, metaphosphate-like transition state.17

Another is the dynamically reorienting G16P present in between phos-
phoryl transfer steps [Fig. 1(a)], which has been detected by single
turnover kinetics in the case of P. aeruginosa PMM/PGM.6

The EdeP:I complex reflects a productive step in the catalytic
cycle, where the enzyme has donated its phosphoryl group to sub-
strate, creating intermediate, but has not yet transferred a phosphoryl
group back to the enzyme to create product. The enzyme adopts a
closed conformer of loop (iv) similar to the EP:S and EP:P complexes.
Multiple interactions [Fig. 3(d)] are found between the protein and
G16P, including contacts between loop (iv) and the 6-phosphate
group, as observed in the EP:P complexes. Also conserved are contacts
with the O3 and O4 hydroxyls by Glu320 and His303 (see Table S3 for
a complete list). No contacts are made between the enzyme and the 1-
phospho group of G16P, consistent with its participation in the phos-
phoryl transfer reaction. Overall, the EdeP:I complex is most similar to
the EP:S and EP:P complexes (RMSD 0.27–0.35 Å; Table S2).

The enzyme-ligand contacts in the EdeP:I complex seen here, and
previously with P. aeruginosa PMM/PGM,16 appear to reflect a high-
affinity binding interaction with G16P, somewhat in contradiction to
the enzyme mechanism that requires a reorientation of the intermedi-
ate to complete the catalytic cycle [Fig. 1(a)]. As noted above,
hydrogen-deuterium exchange by mass spectrometry, NMR, and vari-
ous biochemical studies of other enzymes in the superfamily has sug-
gested that EdeP has increased flexibility of its polypeptide backbone
relative to EP.

8,9,11,18 These flexibility changes, which have not been
apparent in crystal structures, have been proposed to facilitate the
release and reorientation of G16P.9,11

Nonproductive enzyme complexes

Also as part of this study, we characterized a series of “off
pathway” complexes of XcPGM. These include EdeP with a bound sub-
strate or product (states8–11 on Table I) as well as an EP:I complex
(state14) also previously determined.3 None of these are part of the
productive catalytic cycle, but may occur, for example, if the enzyme
binds the ligand after losing its phosphoryl group from hydrolysis.
Similar to the EP:S and EP:P complexes, the EdeP complexes also show
a closure of loop (iv) relative to apo-enzyme. Also, some small struc-
tural shifts are present in/near loop (i) that appear to be related to the
lack of phosphorylation of Ser97, as noted in the apo EdeP structure
[Fig. 3(a)]. Overall, however, the EdeP complexes are highly similar to
their counterparts with phospho-enzyme (pairwise RMSDs of
0.16–0.25 Å; Table S2), so we omit a detailed discussion of their
enzyme-ligand contacts (see Table S3 for summary). The nonproduc-
tive complexes are included as part of the ensemble analysis in a fol-
lowing section (Functional categorization of structures by PCA).
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The EP:I structure is a somewhat distinct unproductive complex,
as it has an extra phosphate group in the active site, due to the phos-
phorylated state of Ser97 and the two phosphate groups of the inter-
mediate. This complex could occur if free (unbound) G16P happened
to encounter and bind to phospho-enzyme in solution, but this would
likely be a rare event since the intermediate typically remains associ-
ated with enzyme during the catalytic cycle.5,6 Despite the additional
phosphate, G16P in the EP:I complex binds in a generally similar ori-
entation to that observed in the EdeP:I complex, with small adjustments
in the enzyme-ligand contacts (Table S3). A similar complex of EP
with G16P was observed with P. aeruginosa PMM/PGM.16

Insights into the conformational ensemble of XcPGM
from RT crystallography

In addition to the structures described above, all from diffraction
data collected at cryogenic temperatures, we obtained three RT data
sets on XcPGM (states13–15 on Table I). These structures were initially
sought to provide information on the conformational ensemble of the
protein through polysterism analysis, as done in other systems.19–21

However, use of the software qFit 2.0 (Ref. 20) with our data yielded

multiple structures with distinct sets of side chain conformers but
nearly indistinguishable Rfree values (data not shown). This precludes
identification of a single pathway of coupled side chain conformers
(via the program CONTACT19). Hence this approach was not useful
for our system, as also reported for a different enzyme.22

As an alternative for gaining structural insights from the RT data
sets, we used principal component analysis (PCA) to analyze the
atomic coordinates of EP and EdeP XcPGM determined at both cryo-
genic and room temperatures [for superposition see Fig. 4(a)]. PCA is
a widely used statistical method useful for emphasizing variation and
identifying strong trends within a dataset. It has found utility in the
characterization of protein ensembles from NMR23,24 and molecular
dynamics studies.25–27 However, PCA is not commonly used in crys-
tallographic comparisons, which typically involve fewer structures.
The use of PCA in coordinate comparisons may have also been limited
by the complexity of early implementations,28 but the availability of
the R29 software package Bio3D30 makes PCA routine for biomole-
cules (see supplementary material File S1). The four apo-enzyme
structures (states1,2,13,14) were used to create an ensemble; pairwise
RMSDs for these structures range from 0.23 to 0.50 Å (Table S2). As
implemented in Bio3D, structures were automatically aligned and

FIG. 4. PCA of an apo-enzyme ensemble
of XcPGM comprised of two cryo and two
RT structures. (a) A superposition of the
four apo-enzyme structures, states.1,2,13,14

(b)–(d) Individual residue contributions for
the first three principal components plotted
on the structure. Magnitude of contribution
is indicated by color (low, black; high, red)
and tube width. The contribution of each
component to the overall variance is indi-
cated in parentheses. Dashed boxes high-
light groups of covarying residues (see
the text).
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PCA was performed on the covariance matrix of Ca coordinates
(Materials and Methods). The first three components (PC1–PC3)
account for 100% of the variance in the ensemble. Individual contribu-
tions (i.e., loadings) of each residue to PC1–PC3 were mapped onto
the structure [Figs. 4(b)–4(d)]. Each principal component comprises
information on atomic variance across the entire structure, such that
the highlighted residues exhibit co-varying structural changes regard-
less of their proximity in space. Moreover, the variations in each prin-
cipal component are independent from the others, even though
sometimes the same residues are involved in more than one
component.

PCA of the cryo-RT ensemble reveals regions of XcPGM with
correlated structural changes (Fig. 4). For instance, in PC1 [Fig. 4(b)],
it can be seen that variations in domain 4 (green box) are coupled to a
swath of structural changes across the protein, including loop (i) and
other residues in domains 1 and 3 (blue box). In PC2 [Fig. 4(c)], the
co-varying regions are more localized (blue box), with the greatest var-
iations in loop (i), another nearby loop in domain 1, as well as loop
(iv). Finally, in PC3 [Fig. 4(d)], covariation is seen between loop (i)
and a different region of domain 1 (blue box).

Several advantages of PCA are apparent from this inquiry. While
some regions of XcPGM highlighted by PCA have noticeable variation
in the structural superposition [e.g., loops (i) and (iv) in Fig. 4(a)],
other areas evident from PCA are more difficult to discern in the
superposition due to high similarity of the structures. More

importantly, PCA provides information on correlated structural varia-
tions, which cannot be gleaned from the superposition. Some of these,
such as PC1, involve a large number of residues, spanning multiple
domains of the enzyme and connecting key active site loops with resi-
dues on the periphery of the structure and in domain interfaces. Such
groupings could potentially indicate residue networks with catalytic
relevance. Other components, like PC2, show a different type of co-
variation between key active site loops (independent of those seen in
PC1), suggesting more than one type of coupled motion in these loops.
Finally, we find that the structural variations highlighted in the cryo-
RT ensemble are reflected in the variations observed between the dif-
ferent enzyme states at cryogenic temperatures. For instance, the con-
formational variability of loop (iv) is clear (and highlighted by PCA),
even though the cryo-RT ensemble includes only apo-structures. This
suggests that PCA of structures determined at cryogenic and room
temperatures can provide insight into biologically relevant protein
conformers, without the need for more complicated computational
analyses.

Functional categorization of structures by PCA

We also investigated the utility of PCA to probe relationships
among the various enzyme-ligand complexes. As noted in previous
sections, the various XcPGM structures are highly similar based on
traditional measures such RMSD (Table S2) or as seen in structural
superpositions [Figs. 5(a) and 5(b)]. While variability is evident in

FIG. 5. Functional groupings of XcPGM
enzyme states determined a priori from
PCA. (a) A superposition of the 12 cryogenic
XcPGM structures and their bound ligands.
The metal ion is shown as a red sphere. (b)
A close-up view of the active site from the
superposition in (a). Colors of structures are
as in Fig. 3, with addition of the EP: interme-
diate complex with G16P (orange), and the
dephospho-enzyme ligand complexes with
G1P, G6P, M1P, and M6P in purple, white,
dark blue, and cyan, respectively. (c) A scat-
ter plot displaying scores of the various
XcPGM structures for the first three principal
components of the data set. Apo structures
are shown as black triangles; ligand com-
plexes as circles. Phospho- and dephospho-
enzyme structures are solid and open
symbols, respectively. Complexes with
glucose-based sugars are in shades of pink,
mannose-based sugars in blue, and G16P
complexes in yellow. Bright colors are EP:S
complexes (1-phosphosugars) and pastels
are EP:P complexes (6-phosphosugars).
Random noise (jitter) was added to the
x-dimension to separate points for ease of
visualization; different components have
been normalized to the same scale on the
vertical axis.
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loop (iv), for instance, when comparing the apo-enzyme to ligand
complexes, structural differences between the ligand complexes (e.g.,
EP:S vs EP:P) are not obvious. In general, assessment of subtle differ-
ences between crystal structures is complicated by the coordinate
uncertainty inherent to crystallographic models,31,32 and may also be
affected by other errors/biases in the structural models or related to
the model building process.33,34 PCA helps overcome these potential
complications, since it highlights the large trends or patterns in the
data. It is also simple to determine the significance of the individual
components through their percent contribution to the total variance of
the data set.

To assess the possibility of subtle structural changes relevant
to the different steps of the catalytic cycle, we employed PCA
reduction using the Ca coordinates of the 12 cryogenic XcPGM
structures. All structures were included in order to probe the
different variables represented within the ensemble (e.g., apo-
enzyme vs ligand complex, substrate vs product, glucose vs man-
nose, and P vs deP structures). A scatter plot illustrates separation
of the structures in the first three components (PC1, PC2, PC3) of
the data set [Fig. 5(c)]. Together, these comprise 92.7% of the vari-
ance in the ensemble, with contributions of 56.3%, 20.5%, and
15.9%, respectively. The scores (y-axis) indicate separation of the
structures along these components. In PC1, a distinct separation
is seen between the two apo structures (triangles) and the ligand
complexes (circles). This variation is the most significant in the
data set, consistent with the obvious conformational change of
loop (iv) upon ligand binding. In PC2, the scoring of the struc-
tures is dramatically different (compare positions of analogous
symbols), showing the independence of this component from
PC1. In PC2, the structures are distributed more evenly by score,
with the 1-phospho vs 6-phospho structures, and especially the
mannose-based sugars (blue), tending to fall at different ends of
the distribution (bold vs pastel colors). In PC3, two clusters are
again seen, which separate clearly according to the phospho- and
dephospho-enzyme states (open vs solid symbols). For an ani-
mated view of the PCA plots in 3D, see Fig. S4.

Here we find that despite the subtle structural differences within
this ensemble, and in the absence of any functional input, PCA suc-
cessfully clusters the XcPGM ensemble into meaningful groups. In this
case, as the roles of the structures along the catalytic cycle of XcPGM
are known, we can confirm that the separation by PCA is correlated
with the enzyme state. However, PCA is equally applicable to systems
where functional information is not available or pertinent, such as pro-
tein complexes with inhibitors or other artificial ligands. We also show
that PCA is useful despite the overall structural similarity of the
ensemble. Even at the relatively high resolution of diffraction in the
data sets in this study, the coordinate errors of the structures range
from �0.2 to 0.4 (Table I), and are often similar to the pairwise
RMSDs of the structures (Table S2). PCA thus helps overcome a tradi-
tional problem in crystallography of assigning significance to struc-
tural differences by identifying them as part of a co-varying group.
Finally, even though only the Ca coordinates of the proteins were used
in the alignment, PCA was still able to cluster the structures according
to enzyme state, showing that this information is encoded in the struc-
tures without considering side chain positions. However, similar anal-
yses could be done on a per atom basis (assuming matching sets of
atoms), if desired, and would likely reveal additional information.

DISCUSSION

The high resolution structures of XcPGM determined in this
study populate most of the observable structural states along the cata-
lytic cycle of the enzyme, and illustrate key themes in enzyme mecha-
nism and substrate recognition in the a-D-phosphohexomutase
superfamily. In the EP:S and EP:P complexes, the substrates and prod-
ucts are found to occupy the same ligand binding site and utilize the
same residue interactions with protein, despite the differing orienta-
tions of their sugar ring. These structures are consistent with the pro-
posed enzyme mechanism,1 whereby a 180� flip of the intermediate
occurs, following the initial phosphoryl transfer to substrate and prior
to the subsequent phosphoryl transfer from the intermediate to the
enzyme. Including the structures herein, crystallographic studies have
helped confirm this mechanism in three members of the superfam-
ily,4,14 further suggesting it as a common feature of these ubiquitous
enzymes.

Enzyme-ligand interactions of the various XcPGM enzyme states
are also revealed in great detail, including the conserved residues in
the phosphate-binding site, loop (iv), as well as the residues responsi-
ble for contacts with the O3/O4 hydroxyls. Both of these regions are
highly conserved in sequences of the a-D-phosphohexomutases,
although some variations within enzyme subgroups have been
noted.35,36 The exchangeability of the O3/O4 interactions is dependent
on the equatorial stereochemistry of these hydroxyl groups, as found
in glucose or mannose, but not in related sugars such as galactose. The
conserved O3/O4 contacts are consistent with the substrate preferen-
ces known for entire superfamily, which also uses glucose-derived sub-
strates such as glucosamine and N-acetylglucosamine, where the
varying substituents are confined to the 2-position of the sugar.1

Comparisons of the polypeptide backbone in the various XcPGM
structures reveal conformational changes in two active site loops,
related in one case to ligand-binding, loop (iv), and, in the other, to a
change in the phosphorylation state of the catalytic serine in loop (i).
While the former has been seen in other enzymes in the superfam-
ily,14,37 direct structural changes related to phosphorylation have not
been characterized previously, although other effects of this covalent
modification have been noted.8,10,11,18 Thus the XcPGM structures
add to the types of conformational variations associated with the cata-
lytic cycle of the a-D-phosphohexomutases. Unlike some other
enzymes in the superfamily,4,38,39 conformational variability of domain
4 is not notable in the XcPGM structures described here, perhaps due
to the tight packing in the crystal lattice.

Also as part of this study, we utilized the statistical method of
PCA to analyze two different ensembles of XcPGM structures. PCA is
a quick and convenient way to highlight structural differences, even
when these may difficult to assess by traditional measures like RMSD.
Although trivial in some cases, manual inspection of structural super-
positions can quickly become overwhelming when large proteins or
many subunits are involved. Here, we illustrate two uses of PCA
reduction in coordinate analysis: to highlight regions of co-varying
structural changes in XcPGM (using the cryo-RT ensemble) and to
cluster the structures into related groups (within the enzyme state
ensemble). It is easy to think of other types of protein ensembles where
different types of relationships could be explored, such as domain rota-
tions,40,41 packing of oligomers,42 impacts of mutations,43 or binding
of fragments for drug discovery.44
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As noted above, PCA is commonly used to analyze structural
ensembles resulting from NMR studies23,24 and molecular dynamics
simulations.25–27 PCA and similar statistical methods have found addi-
tional uses in crystallography, most frequently in the analysis of time-
resolved X-ray data.45–48 Other recent applications include the exami-
nation of electron density maps for radiation-induced damage49 and
to compare microfocus diffraction from different regions of a crystal.50

In contrast to these more specialized applications, we emphasize here
the straightforward use of PCA for comparing related protein struc-
tures, a growing need in the field of structural biology.

PCA of crystallographic coordinate sets has particular utility for
the analysis of large structural data sets. For example, X-ray crystallog-
raphy is increasingly being used to characterize protein-ligand com-
plexes, the numbers of which exceed capacity for detailed study
(currently >50 000 protein-ligand complexes in the Protein Data
Bank51 with nearly 20 000 unique ligands). Because of this, compara-
tive studies tend to focus on obvious structural features (e.g., ligand
binding sites) and forego inspection of other regions/areas of the pro-
tein, potentially discarding information from uncharacterized func-
tional sites. Finally, even in cases where comprehensive analyses have
been conducted, apparent differences between structures may be subtle
or exceed the patience of the examiner. Such factors can be an impedi-
ment to taking full advantage of available structural data. PCA is well
suited to address these challenges, as it provides rapid simplification of
coordinate sets into more manageable groupings. Results from PCA
can be easily correlated with biochemical properties/phenotypes that
allow the functional significance of the results to be further evaluated.

MATERIALS AND METHODS
Materials

All chemicals were of reagent grade and purchased from Thermo
Fisher Scientific (Waltham, MA) unless otherwise noted. Ligands were
purchased from Sigma-Aldrich (St. Louis, MO), with the exception of
G1CP, which was synthesized as previously described.52

Protein expression and purification

The gene for XcPGM was commercially synthesized (GenScript)
and inserted into the pET-14B vector with N-terminal His6 affinity
tag and tobacco etch virus protease cleavage site. The vector was trans-
formed into Escherichia coli BL31(DE3) for recombinant expression.
E. coli cultures were grown at 37 �C in 0.5–1.0 l of LB media, supple-
mented with 0.1mg/ml of ampicillin, to an OD600 of 0.8–1.0. Prior to
induction with isopropyl 1-thio-b-D-galactopyranoside (final concen-
tration 0.4mM), cultures were cooled at 4 �C for at least 30min. Cells
were induced for �18 h at 18 �C. Cell pellets were collected by centri-
fugation and flash frozen in liquid N2 and stored at �80 �C. Protein
was purified to homogeneity via an N-terminal histidine tag as
described.53 The purified protein was dialyzed into a solution of
12.5mM Tris-HCl, pH 8.0, with 50mM NaCl, and concentrated to
�11mg/ml. The purified protein was flash-frozen in liquid nitrogen
and stored at �80 �C. Approximately 100mg of purified protein was
obtained from 1 l of cultured cells.

Crystallization and formation of specific enzyme states

Purified XcPGM was initially screened for crystallization via hang-
ing drop vapor diffusion using the previously published conditions,3 but

did not yield data collection quality crystals. Several commercial screens
were then utilized, including Morpheus 1 and Hampton Screen 1.
Optimizations were setup around several hits, and a final condition of
22% PEG 8000, 0.2 MMgCl2, 0.1 M HEPES, pH 7.5, was identified and
used for all crystals described herein. Crystals typically grew overnight at
18 �C in an unusual morphology, as clusters of hollow rods. Despite the
different crystallization conditions, the XcPGM crystals reported here
were (Table S1) isomorphous with those published previously.3

Crystals of XcPGM grown as above were not phosphorylated at
Ser97. To obtain structures of the phospho-enzyme, the protein was
pretreated with a molar excess of the activator G16P, as previously
described.11 Excess G16P was subsequently dialyzed away, and the
protein crystallized as above except at 4 �C. (Both the phosphorylated
protein and crystals were kept at 4 �C at all times to limit hydrolysis of
the phosphoryl group, which occurs more rapidly at higher tempera-
tures in related enzymes8,11).

Ligand complexes were obtained by soaking crystals with high
concentrations of ligands. Ligand solutions at �20mM were prepared
in the crystallization buffer supplemented with or without cryoprotec-
tant (see below). Typically, crystals destined for cryo-crystallography
were removed from the drop, dipped quickly into the ligand solution,
immediately flash-cooled, and stored in liquid nitrogen. Crystals for
room-temperature data collection were soaked in a solution of ligand
in crystallization buffer and mounted as below.

Crystals for cryogenic data collection were cryoprotected by add-
ing 25%–30% PEG 3350 (either with or without the ligand) to the
crystallization buffer, and were then mounted on Hampton loops/
pins. Crystals for room-temperature data collection were mounted in
glass capillaries with plugs of crystallization buffer on either side and
sealed with wax. Crystals for cryogenic data collection were shipped in
a cryo dry shipper to the Advanced Light Source for data collection.
Capillaries with crystals for room-temperature data collection were
cushioned with glass wool inside conical tubes and shipped with gel
packs precooled to 4 �C to the beamline.

X-ray diffraction data collection and refinement

Diffraction data were collected at a wavelength of 1.00003 Å from
single crystals on beamline 4.2.2 of the Advanced Light Source using a
Taurus-1 CMOS detector in shutterless mode. To obtain the highest
possible resolution data, multiple data sets (2 on average for cryogenic,
2–5 for room-temperature collection) were collected from the same
crystal after translating in the beam. Data sets were confirmed to have
correlation coefficients greater than 0.95 prior to merging with the x
scale of the XDS suite. RT crystals were mounted by hand by attaching
the capillary tube to a magnetic base with modeling clay and cryogenic
samples were mounted with the beamline ACTOR robot. To mitigate
radiation damage, RT crystals were collected for 20� before translating
to a fresh area of the crystal and continuing. Analysis of radiation
damage was monitored by following the Rd statistic54 from
XDSSTAT. The data were processed using XDS55 and AIMLESS56 via
CCP4i.57 Data processing statistics are in Table S1. Values of CC1/2

> 0.30 (Ref. 58) and Rpim (Ref. 59) were used to determine the high res-
olution cutoff due to the large number of images (1800–3600 per data
set) and high redundancy obtained with the shutterless data collection.

Crystallographic refinement calculations were initiated using
coordinates of apo-XcPGM (PDB code: 5BMN). Refinement was per-
formed with PHENIX;60 progress was monitored by following Rfree
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with 5% of each data set was set aside for cross validation. The B-factor
model consisted of an isotropic B-factor for each atom; Translation/
Libration/Screw (TLS) refinement was used as automated in PHENIX.
COOT61 was used for model building. Structures were validated using
MolProbity62 and refinement statistics are listed in Table S1. Structural
figures were prepared with PYMOL.63 Coordinates and structure factor
amplitudes have been deposited in the Protein Data Bank (PDB) under
the accession numbers listed in Tables I and S1.

Principal component analysis

PCA was conducted using an in-house script, supplementary
material File S1, which is referenced by the commented steps.
Structures were loaded into R as PDB files (#Step 2), aligned (#Step 2
and 9), and pairwise RMSD values were calculated (#Step 9) using the
read.pdb, pdbaln, and rmsd functions of the Bio3D R package, respec-
tively. Principal components were calculated using the pca.xyz (#Step
11) function of the Bio3D R package. The Scree (cumulative variance)
plot was inspected to determine how many components to continue
with in the analysis. The scores of structures’ xyz coordinates in PC
space were plotted in PC pairs (i.e., PC1 vs PC3) to demonstrate clus-
tering of similar structures (#Step 12). Due to the nature of PCA on
coordinate-space data, the contribution of each Ca atom to a specific
principal component is calculated automatically by the pca.xyz func-
tion. These values were accessed through the atom-wise loadings
(#Step 13 and 14, also see pca.xyz function documentation of Bio3D),
mapped to the structure (#Step 15), and visualized in PYMOL.63

For additional types of analyses, it is useful to know the organiza-
tion of the dataframe resulting from PCA. Bio3D’s PCA function
pca.xyz produces a dataframe consisting of six components named: L,
U, z, au, sdev, and mean corresponding to the eigenvalues, eigenvec-
tors (x, y, and z variable loadings), scores of the coordinates on the
PCs, atom-wise loadings (normalized eigenvectors), the standard devi-
ations of the PCs, and the means that were subtracted. Of these, pri-
marily the scores (z) and the atom-wise loadings (au) are used.
Assuming that the dataframe was named pca.xyz these two variables
can be manually accessed with pca.xyz$z and pca.xyz$au in R.

SUPPLEMENTARY MATERIAL

See supplementary material for additional tables, figures (includ-
ing an animation of the PCA plot), and script for running PCA on
multiple coordinate files.
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