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Abstract

Biodiversity is crucial for human health, but previous methods of measuring biodiversity require 

intensive resources and have other limitations. Crowdsourced datasets from citizen scientists offer 

a cost-effective solution for characterizing biodiversity on a large spatial scale. This study has 

two aims: 1) to generate fine-resolution plant species diversity maps in California urban areas 

using crowdsourced data and extrapolation methods; and 2) to examine their associations with 

sociodemographic factors and identify subpopulations with low biodiversity exposure. We used 

iNaturalist observations from 2019 to 2022 to calculate species diversity metrics by exploring 

the sampling completeness in a 5 × 5-km2 grid and then computing species diversity metrics for 

grid cells with at least 80 % sample completeness (841 out of 4755 grid cells). A generalized 

additive model with ordinary kriging (GAM OK) provided moderately reliable estimates, with 

correlations of 0.64–0.66 between observed and extrapolated metrics, relative mean absolute errors 

of 21 %–23 %, and relative root mean squared errors of 27 %–30 % for grid cells with ≥80 % 

sample completeness from 10-fold cross-validation. GAM OK was further applied to extrapolate 
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species diversity metrics from saturated grid cells (N = 841) to the remaining grid cells with 

<80 % sample completeness (N = 3914) and generate diversity maps that cover the grid. Further, 

generalized linear mixed models were used to examine the associations between species diversity 

and sociodemographic indicators at census tract level. The wild vascular plant species diversity 

metrics were inversely associated with neighborhood socioeconomic status (i.e., unemployment, 

linguistic isolation, educational attainment, and poverty rate). Minority populations (i.e., African 

American, Asian American, and Hispanic) and children had significantly lower diversity exposure 

in their neighborhoods. Crowdsourcing data offers a cost- effective solution for characterizing 

large-scale biodiversity in urban areas.

GRAPHICAL ABSTRACT

Keywords

Urban plant biodiversity; Vascular plant species diversity map; Socio-economic status; Citizen 
science

1. Introduction

Decades of studies have shown the impact of biodiversity loss on the dynamics, functioning, 

and services of ecosystems, which in turn undermines the capacity of ecosystems to provide 

goods and services for humanity (Aerts et al., 2018; Andersen et al., 2021; Cardinale et al., 

2012). Diverse plant communities provide more resilience to both human and ecosystem 

health (Shroff and Cortés, 2020 ). In recent years, there is a growing body of research that 

has shown the beneficial impacts of exposure to nature, green space, and biodiversity on 

human health, including physical and mental aspects (Aerts et al., 2018; Andersen et al., 

2021; Marselle et al., 2021).

The attention restoration theory (Kaplan and Kaplan, 1989) and stress recovery theory 

(Berto, 2014) suggest that natural environmental experience can enable recovery of mental 

fatigue and concentration. Individuals who spend time in biodiverse environments have 
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reported feeling a sense of “being away,” which helps improve mood and restore the 

capacity to concentrate (Hedin et al., 2022; Roswell et al., 2021). In addition, the 

biodiversity hypothesis (Haahtela, 2019) postulates that early-life exposure to diverse 

microbial environments modulates and diversifies human commensal microbiota, which 

trains the immune system to promote immune tolerance and thus protect against allergies 

and inflammatory disorders. By exploring biodiversity, we can gain a deeper understanding 

as to how nature and the environment affect public health.

Biodiversity encompasses a wide range of factors, including species, genetics and ecosystem 

diversity, and can be measured by biotic communities/processes, the number of unique 

species, the amount (e.g., abundance, cover, biomass) and structure of each species, and 

the habitat in which such species live (DeLong, 1996). The terms “species richness” and 

“diversity” are often used to indicate the variety of organisms within a region, and are the 

most intuitive and fundamental indicators of biodiversity (Colwell and Coddington, 1994).

Direct observation and identification, transect sampling, and plot-based surveys are 

the most prevalent approaches (Aerts et al., 2018) that measure species diversity in 

environmental health studies. While these methods provide thorough and high-quality 

diversity measurements in the sampled region, they require intensive sampling and skilled 

researchers, making such methods only practical over small areas (e.g., neighborhoods, 

urban parks) and with experienced research teams. Moreover, these methods are usually 

tailored to address a specific research question such as examining the distribution of a 

particular set of species. The results of such efforts are also disconnected and contain 

varying data elements that are not readily harmonized to enable continuous mapping of 

biodiversity across large areas.

The introduction of satellite imagery has greatly enhanced efficiency in data collection and 

allowed the mapping of species diversity over large areas, but it is expensive to apply and 

requires extensive labor to conduct botanical field surveys that can predict species diversity 

distributions (Yang et al., 2022). Additionally, since satellites take aerial images, they cannot 

assess species diversity below tree canopies (Bae et al., 2019). Further, complex urban 

features can interfere with such data collection (e.g., plant detection obscured by bridges, 

buildings, or shadows), making it challenging to characterize plant diversity in urban areas.

Recently, citizen scientist-gathered databases (e.g., iNaturalist), also known as crowdsourced 

data, have been increasingly used in plant taxonomic diversity-related health research 

(Donovan et al., 2021a, 2021b) and have been shown to be of comparable quality as 

professionally gathered data (e.g., national Conservation Data Center databases) (Roman 

et al., 2017). While crowdsourced data is a cost-effective way to provide biodiversity 

information across wide spatial scales, current research does not fully account for the 

important issues of geographic bias and user selection bias caused by the non-random nature 

of data collected by citizen scientists (Donovan et al., 2021a, 2021b).

Geographic selection bias may be introduced by landscaped areas in which certain areas are 

accessible and others impenetrable, while user selection bias may be caused by the spatially 

nonrandom distribution of the data collectors themselves. In addition, those collecting data 
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may disproportionally submit observations of socially popular species, thus causing unequal 

sampling spatially (Uyeda et al., 2020). If not addressed, biased sampling can lead to biased 

estimation of biodiversity, and result in biased or false conclusions in health studies. To 

reduce the geographic and user selection bias, we focus on urban areas. These regions are 

readily accessible by large populations and host many bioblitzes led by the local natural 

history museums or conservation organizations such as City Nature Challenge. Bioblitzes 

are a widely used type of citizen science event in which scientists, naturalists, and the public 

work together to record and identify many species within a certain period and region (Roger 

and Klistorner, 2016). Therefore, urban areas may have more records of species that extend 

beyond socially popular species. To correct the problem of unequal sampling efforts across 

areas, we applied a sample completeness-based approach (Chao and Jost, 2012) that enabled 

us to identify areas with saturated observations (mostly in metropolitan cities) and derive 

species diversity metrics accordingly. However, such methods cannot be used for areas with 

unsaturated observations (mostly in less populous urban areas) where the number of records 

is low. Following our spatial characterization of species diversity using crowdsourced data, 

we employed spatial methods such as ordinary kriging and regression kriging to help fill in 

the areas with unsaturated sampling data.

Biodiversity may be unevenly distributed across subpopulations. Income level and race/

ethnicity are reported as important indicators of access to areas with a high level of 

biodiversity and green space in the United States (Lin et al., 2021; Sun et al., 2021). 

Specifically, previous studies have shown positive associations between plant species 

diversity and income (Blanchette et al., 2021; Kuras et al., 2020). In addition, better 

understanding of the relationship between diversity and age is important, especially 

considering the potentially beneficial role of biodiversity in early human development, as 

suggested by the Biodiversity Hypothesis (Haahtela, 2019) and other studies (Cavaleiro 

Rufo et al., 2021, 2020; Marselle et al., 2021; Winnicki et al., 2022). However, few studies 

have examined species diversity inequalities across socioeconomic dimensions, such as 

educational attainment, unemployment, race/ethnicity, and age.

In this study, we developed an analytic framework to address three major challenges 

(i.e., geographic selection bias, user selection bias and unequal sampling bias) in using 

crowdsourced data to characterize species diversity levels. After completing mapping, we 

further investigated census tract (a geographic unit)-level diversity metrics in relation to 

socioeconomic factors, as well as vulnerable population indicators.

Specifically, we aimed to understand: 1) whether crowdsourcing data can estimate species 

diversity at a fine spatial resolution (5 × 5-km2 resolution); 2) which method is the most 

appropriate for estimating diversity metrics in areas with low sampling completeness; 3) 

whether species diversity is correlated with population SES and vulnerable population 

indicators and, if so, which groups are disproportionately affected.
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2. Methods

2.1. Wild plant data source and study area

We obtained research-grade records of observed wild vascular plant species from the 

iNaturalist platform available through the Global Biodiversity Information Facility. This 

platform is a global data repository for museum specimen records and citizen science 

observations. The research-grade data in iNaturalist is free and publicly accessible, and 

is accompanied by accurate geographic coordinates (Uyeda et al., 2020) and taxonomic 

identifiers (Hart et al., 2023) that have been increasingly shown to support reliable mapping 

of taxonomic diversity (Callaghan et al., 2022; E. Li et al., 2019). The iNaturalist platform 

was founded in 2008, with its data repository having dramatically increased since 2013. 

In 2019–2022, there were over 300,000 research-grade observations recorded in California 

annually.

To minimize temporal biases caused by higher rates of recording during warmer seasons, 

weekends, and holidays, we utilized the most recent four years of data between January 1st, 

2019 and December 31st, 2022 (GBIF.org, 2023). Although iNaturalist allows extensive 

observation recording, research-grade observations are defined by iNaturalist as those 

containing photos and dates, georeferences, and relate to naturally growing (as opposed 

to cultivated) species.

In this study, we focused on examining species diversity (henceforth “diversity”) of wild 

vascular plants, which is a strong indicator of total biodiversity across environmental 

gradients and broad taxonomic realms (Brunbjerg et al., 2018) in urban areas of California, 

United States. To accomplish this, we first separated urban census tracts from rural census 

tracts based on 2010 rural-urban commuting area codes (Morrill et al., 2010), which use 

population density, urbanization, and daily commuting measures to delineate rural and urban 

areas in the US. Areas with a primary code of 1.0, which indicates a metropolitan area core, 

were defined as urban in our study.

Second, we created a grid comprised of equal-sized 5 × 5-km2 squares (N = 4755) that 

covered the entire study region. Compared to the use of administrative units (e.g., census 

tract), the use of a uniform grid enables the removal of bias caused by high numbers of 

records over a larger sampling area (Gotelli and Colwell, 2001). Importantly, only grid cells 

with observations reported by a minimum of 40 unique citizen science participants (each 

participant may upload one or more entries of plant species, with an average of 20 records 

per person) were included in the initial analysis. This inclusion criterion was based on 

an assessment of citizen scientist-collected data (Callaghan et al., 2022), which found an 

average of 44 completed bird reports made by citizen science participants while walking in 

a certain area were needed to meet 95 % sample completeness in a 5 × 5-km2 grid cell. We 

further cleaned the data by removing incomplete observation records (i.e., records that were 

missing taxonomic information or geographic coordinates). Since individual species usually 

present a spatial aggregation pattern, we converted the abundance data to incidences, which 

better fit our model assumptions of random sampling (Chiu, 2022).
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2.2. Plant species diversity indices

To reliably infer true species diversity from crowdsourcing data, we used the unified 

framework of Hill numbers, which incorporates three widely used measures of biodiversity: 

species richness (order q = 0), Shannon diversity (the exponential of Shannon entropy, q = 

1), and Simpson diversity (the inverse of Simpson concentration, q = 2). This methodology 

enables the differential weighing of rare species (the higher the order, the more sensitive 

the method is to rare species). Output diversity estimates were expressed in units of 

numbers of species, which has advantages in probing the complexity of biodiversity within 

species communities (Hill, 1973). Although these three indices tend to be highly correlated, 

they provide a comprehensive picture of biodiversity and are therefore recommended for 

combined use (Roswell et al., 2021).

The sample coverage/completeness describes individuals in the community that belong 

to the species captured by sampling (Chao and Jost, 2012). With this method, we can 

effectively identify areas with saturated observations and calculate species diversity metrics 

by a fixed sampling coverage. First, we doubled the sample size of the observations in 

each grid cell to calculate sample coverage. By doubling the sample size and examining 

the resulting species accumulation curve, we were able to assess the adequacy of sampling 

completeness in each grid cell (Chao et al., 2020). In this study, the correlation between 

80 % sample completeness and 90 % sample completeness for species richness, Shannon 

diversity, and Simpson diversity were 0.96, 0.98, and 1.0, respectively, indicating that the 

use of 80 % completeness criterion would adequately capture the grid cells with saturated 

sampling. Thus, we defined saturated grid cells as those with at least 80 % of sampling 

completeness, which maximized the number of saturated grid cells while allowing for valid 

comparisons across these grid cells. We further calculated the diversity estimates at 80 % 

sample completeness for each saturated grid cells and then applied kriging and regression 

kriging to extrapolate diversity metrics for unsaturated grid cells. All computations of 

sampling coverage and diversity estimates for saturated grid cells were conducted using the 

R package iNEXT (Hsieh et al., 2016). Fig. 1 shows the flowchart of the procedures for data 

cleaning and diversity metrics development.

2.3. Spatial modeling, extrapolation and validation

In order to extrapolate species diversity over geographic areas with unsaturated sampling 

data, we first tested 27 variables as potential explanatory variables (see Table S1 for full 

list of all examined variables and their references) for use in vascular plant species diversity 

modeling. Such variables were those related to water-energy dynamics, vegetation indices, 

tree and land cover, road density, and soil properties. These variables were chosen due to 

their proposed relationships with diversity. That is, the water-energy dynamics hypothesis 

proposes that the availability of water and energy resources shapes habitat suitability and can 

explain patterns of species diversity (Kreft and Jetz, 2007). Water-energy dynamics variables 

tested in our model were precipitation, temperature, elevation, actual evapotranspiration, 

and potential evapotranspiration, which have been reported as strong predictors for vascular 

plant species diversity (Chaudhary et al., 2021; Kreft and Jetz, 2007). Similarly, urban 

greenspaces and landscapes have been shown to harbor a greater richness of vascular 

plant species (Labadessa and Ancillotto, 2023; MacGregor-Fors et al., 2016). In addition, 
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anthropogenic features such as land cover and road density have been identified as major 

predictors of plant species richness in urban settings (Aronson et al., 2014; Beninde et al., 

2015; Godefroid and Koedam, 2007). Lastly, soil properties can also explain the taxonomic 

diversity of vascular plants (Cheng et al., 2018).

Precipitation and temperature were derived from a historical annual average dataset. 

Elevation was obtained from 30 m resolution 2010 Global Multi-resolution Terrain Elevation 

Data. Actual evapotranspiration data was obtained from the Basin Characterization Model 

with a resolution of 270 m (Flint and Flint, 2012) whereas potential evapotranspiration data 

was obtained from Zomer et al.’s (2022) work. To assess greenspace and other land features, 

we examined the mean normalized difference vegetation index (NDVI) and percentages of 

tree canopy, each land cover type, and four road types within each spatial grid cell. The 

4-year average annual NDVI, which measures the vegetation density on the ground, was 

generated from Terra (MOD13Q1) satellite products from NASA, with a spatial resolution 

of 250 × 250-m2. Raster data on tree canopy, land cover and road density at a resolution 

of 30 × 30-m2 were downloaded from the 2019 National Land Cover Database (NLCD). 

Land cover measurements within each spatial grid cell were quantified by computing 

the proportion of the area covered by water, developed open space, forest, herbaceous 

vegetation, planted/cultivated cover, and wetlands areas. Road density, including primary, 

secondary, tertiary and thinned roads, were extracted from the NLCD 2019 Developed 

Imperviousness Descriptor Database (Dewitz, 2021).

Soil data was obtained at an 800 m resolution from the Soil Survey Geographic Database 

(SSURGO) (Soil Survey Staff) which provides standardized soil properties information of 

soil calcium carbonate content, cation exchange capacity, electrical conductivity, soil pH, 

sodium adsorption ratio, soil organic matter, available water holding capacity and bulk 

density. The soil survey data is a continually updated source from which we extracted 

average values for each grid cell. In this study, most soil data was collected in 2022, while 

a minority came from earlier years. In instances where the SSURGO database contained 

missing values for soil properties, we employed a spatial interpolation approach to estimate 

these values. Initially, we tested radii of 6 km, 7 km, and 8 km from the centroid of each 

grid cell to determine the optimal distance for interpolating the missing data. It was found 

that an 8 km radius was sufficient to assign new values to all grid cells with missing data. 

Consequently, we utilized an 8 km radius to extract mean values from the SSURGO dataset 

for these areas. Grid cells with existing data were retained and used as-is, ensuring the 

most accurate representation of soil properties across the study area. Since the latitudinal 

gradients in vascular plant diversity have been extensively examined in previous research 

(Chaudhary et al., 2021; Sabatini et al., 2022), the coordinates of centroids of each grid cell 

were also included as predictors.

Next, we extrapolated the diversity metrics in saturated sampling grid cells to unsaturated 

sampling locations of the study area using common geostatistical methods: ordinary kriging 

(OK; spatial interpolation only with autocorrelation considered but no new information 

from covariates) and four regression models with covariates, a generalized linear model 

(GLM) with and without OK, and a generalized additive model (GAM) with and without 

OK. These five models were compared and the method with the best performance was 
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selected to generate species diversity maps. For the four regression models with and without 

OK, all co-variables were standardized to have a mean of 0 and standard deviation of 

1. Pairwise Pearson’s correlation tests were subsequently conducted. In cases where two 

predictors were collinear (r > 0.8), we removed the one with the lower outcome (diversity 

metrics) correlation. Latitude was not included in the GLM analysis due to collinearity 

with longitude yet was added to the GAM analysis and was modeled with longitude as a 

two-dimensional smoothing term with Dunon splines to account for spatial autocorrelation.

The mass and mgcv packages were applied, respectively, to investigate the linear (GLM) 

and non-linear (GAM) relationships between the diversity metrics and co-variables. We fit 

the models with a quasi-Poisson distribution, which is considered an appropriate tool for the 

analysis of overdispersed species count data (Ver Hoef and Boveng, 2007). The predictors 

with >0.1 correlation with diversity metrics were retained and subjected to stepwise variable 

selection procedures. The model construction was assessed using the proportion of deviance 

explained, which measures the total variability captured by the model. In order to avoid 

overfitting, Restricted Maximum Likelihood and double penalty approaches were employed 

using the gam function of mgcv in R (Marra and Wood, 2011). We then kriged the residuals 

from the regression models, which represented the stochastic factors, by fitting the optimum 

variogram. The residual variations from kriging were then superimposed to the regression 

results as diversity metrics.

To assess the performance of the five models (OK, GLM, GAM, GLM OK, and GAM 

OK), we conducted 10-fold cross-validation. That is, 90 % of the training data for each 

model was randomly selected for model development and optimum variogram fitting, and 

the remaining data was used for validation. The procedure was then repeated ten times, 

using a new 10 % held-out subset of data each time. The correlation between the observed 

and extrapolated diversity metrics, deviance explained, mean absolute error (MAE), relative 

mean absolute error (RMAE), root mean squared error (RMSE), and relative root mean 

squared error (RRMSE) were obtained from the validation procedure and examined to 

confirm the robustness of the model. These values were also used to compare geostatistical 

techniques to determine the most reliable and reasonable method for extrapolation. In using 

the four error measures (MAE, RMAE, RMSE, and RRMSE), lower values indicate better 

extrapolation performance.

Finally, to optimize the final maps of diversity metrics, we made modifications to the 

results from the “best” model selected from the previous step. We retained the extrapolated 

values in the unsaturated grid cells and replaced the metrics in saturated grid cells with the 

observed estimates, which was referred to as the optimized version.

2.4. Uncertainty

We calculated standard errors of predictions from GAM OK to reflect the uncertainty. The 

uncertainty maps show areas with more or less confidence in prediction and highlight the 

areas that need more data collection from citizen science (Jansen et al., 2022).
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2.5. Association of diversity with socioeconomic factors

After the optimal species diversity maps were generated from the work described above, 

we extracted the mean diversity metrics from the 5 × 5-km2 grid to each census tract. 

Sociodemographic factors were retrieved from the CalEnviroScreen4.0 tool (CES4.0) 

(OEHHA, 2021) that was developed by the California Environmental Protection Agency 

(CalEPA) and its Office of Environmental Health Hazard Assessment to provide census 

tract-level data on environmental health, public health, and SES conditions throughout 

the state. In the U.S., census tracts generally have a population size between 1200 and 

8000 people, with an optimum size of 4000 people with similar population characteristics, 

economic status, and living conditions (U. S. Census Bureau, 2022). In our study region, the 

spatial size of census tracts (10.03 ± 65.42 km2) varies widely depending on the population 

density. In this study, we examined five neighborhood SES factors (educational attainment, 

housing burden, linguistic isolation, poverty, and unemployment), a composite population 

characteristics score [average percentile for three sensitive population indicators (asthma, 

cardiovascular disease, and low birth weight) and five SES factors], race/ethnicity (Hispanic, 

non-Hispanic White, African American, Native American, Asian American, and Multiple 

races), two age groups (children <10 years and elderly >64 years), and the overall CES4.0 

score (multiplication of the pollution burden and population characteristics scores). In order 

to ensure comparability across variables, we rescaled the population characteristics score 

from their original range of 0–10 to a 0–100 scale. Detailed information is shown in 

Table S2. Notably, CalEPA identified census tracts with the highest 25 % of the CES4.0 

scores or the highest 5 % of CES4.0 cumulative pollution burden scores as disadvantaged 

communities (DACs) based on Senate Bill 535 (CalEPA, 2022). In total, there were 2155 

DACs and 4984 non-DACs in the study region.

We examined the correlation of our mean plant diversity metrics with SES, population 

characteristics scores, race/ethnicity, and vulnerable population indicators at the census 

tract level using Pearson’s correlation coefficients. Additionally, a t-test was employed 

to determine whether statistically significant (p-value <0.05) differences existed between 

diversity metrics averaged across DACs and non-DACs.

To reduce the potential influence from population density and spatial clustering, we 

employed generalized linear mixed models (GLMMs) with normal distributions to 

further examine associations between our model-estimated species diversity metrics and 

sociodemographic variables at a continuous scale. All models included one of the 

sociodemographic variables as the main fixed effect and adjusted for population density. 

We chose the exponential spatial covariance structure to account for spatial autocorrelation 

in the diversity metrics outcome and used “county” as the random effect. We also did 

two sensitivity analyses: 1) included all SES factors as a full model, and 2) added NDVI 

as a confounder in the models. In the full models, the poverty and the housing burden 

variables were excluded to avoid collinearity. We then employed backward selection and 

evaluated both AIC and BIC as criteria in the full models with three SES variables 

(education attainment, linguistic isolation, and unemployment). All geostatistical analyses 

and mapping procedures were conducted using R 4.1.3 and ArcMap 10.8.2, while GLMMs 

were performed using SAS 9.4 (SAS Institute, Inc., Cary, NC).
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3. Results

3.1. Urban plant diversity characterization and results from sampling completeness 
analyses

Based on the 2019–2022 records from our study region, the most prevalent observations 

were those of the flowering plant (Angiospermae) subphylum, which contained dicot (3484 

species among 583,007 records) and monocot (675 species among 76,142 records) classes, 

followed by 61 species from the fern class (14,654 records), 51 species of conifers, and <12 

species of lycophytes, gnetophytes, and ginkgos (See Appendix A for full species list).

Roughly 17.7 % of grid cells (841 out of 4755) had an estimated sampling coverage >80 %, 

which included 3757 vascular plant species (See Appendix B for full species list). Summary 

statistics of plant diversity metrics for 841 saturated sampling grid cells are presented in 

Table 1. Saturated sampling grid cells (Fig. 2) were mostly located in northern and southern 

coastal areas with high population densities, including Marin, San Francisco, Santa Mateo, 

Los Angeles, Orange, and San Diego. Areas located in the Central Coast and the inland 

areas such as San Joaquin, Stanislaus, Merced, Madera, Tulare, and Kern had few or no 

saturated grid cells for extrapolation.

3.2. Diversity metrics extrapolation and final maps

GAM OK slightly outperformed GAM and OK in extrapolating diversity metrics. Validation 

results in Table 2 show that GAM OK had the lowest RMAE (21 %–23 %) and RRMSE (27 

%–30 %), and the highest correlations (0.64–0.66) between the observed metrics with the 

extrapolated ones for three diversity indices. Thus, GAM OK was used to predict diversity 

in unsaturated grid cells. The included co-variables and details for GLM and GAM are 

shown in Table S3. The statistics of the observed diversity metrics, GAM OK extrapolated 

values and the final optimal maps, including both saturated grid cells (observations) and 

unsaturated grid cells (modeled), are presented in Table 1.

Three diversity metrics are highly correlated (correlation coefficients range from 0.95 

to 0.98) and show similar distribution patterns. We took species richness metrics as an 

illustration and depicted their spatial distribution across California urban areas in Fig. 3. 

Low plant species diversity patterns appeared in inland counties where few to no saturated 

sample sites existed. Yet, the northern region of the inland counties, for example, Shasta, 

Butte, and Sutter, had higher species richness. The counties located alongside coastal areas 

tended to harbor more species diversity hotspots, compared to inland counties. Notably, 

in the southern coast, the diversity in Los Angeles County was at middle to low levels, 

while Orange County and San Diego County had higher diversity values. The prediction 

uncertainties were higher in the inland counties than those in the coastal areas (Fig. S3).

3.3. Census tract-level diversity metrics and its association with sociodemographic 
indicators

The diversity metrics were significantly lower in DACs than in non-DACs (p < 0.001) (Table 

3). The characterization of population characteristics score, SES factors, race/ethnicity, 

and vulnerable population indicators are depicted in Table S4. After controlling for 
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population density and spatial clustering (Table 4), we found that four SES factors were 

significantly inversely related to diversity metrics, with associations being most pronounced 

for unemployment rate (e.g., species richness: −0.61, 95 % CI: −0.81, −0.4), followed by 

linguistic isolation, educational attainment, and poverty rate. The proportion of children 

had a negative association with diversity metrics (e.g., species richness: −0.79, 95 % CI: 

−0.96, −0.62). Hispanic, African American, and Asian American races were significantly 

negatively correlated with diversity metrics; while non-Hispanic Whites, and residents of 

mixed race were found to be significantly positively correlated with diversity metrics. 

Overall, for a one unit increase in the standardized population characteristics score (0–100, 

higher score indicates greater vulnerability), the species richness metrics decreased by 0.22 

(95 % CI: −0.26, −0.18).

Compared to the models with a single SES variable, the full models (Table S6) showed 

similar or moderately attenuated associations between species diversity and SES factors, 

including educational attainment, linguistic isolation, and unemployment. The significance 

levels between linguistic isolation and species diversity shifted from significant in the 

single factor models to insignificant in two full models (i.e., species richness and Simpson 

diversity). Sensitivity analysis that was further adjusted for NDVI (Table S7) showed slightly 

attenuated or similar associations between the species diversity and the sociodemographic 

factors.

4. Discussion

To our knowledge, this is the first study that depicts wild vascular plant species diversity 

across a state-wide area using crowdsourced data. We developed an analytic workflow, 

which addressed geographic and user selection bias along with issues related to unequal 

sampling by citizen scientists. Our approach derived diversity metrics in adequately sampled 

areas and achieved a moderate performance in extrapolation. Results showed wild vascular 

plants exhibit greater species diversity in coastal areas than inland areas. We also found 

lower SES and minority populations and communities with a higher percentage of children 

had lower species diversity levels.

This study demonstrates data gathered by citizen scientists to be a valuable source to 

generate proxy estimates of biodiversity and can inform studies on complex associations 

between biodiversity and public health. Observations from such databases include the 

organisms that citizens are exposed to or find noteworthy in their daily lives, thus reflecting 

the daily interactions between humans and nature. Furthermore, the growing body of lay 

people who contribute to the collection and reporting of data has enabled extensive growth 

in data collection without data acquisition costs (Heberling et al., 2021). In California, the 

number of vascular plant observations and species (reported through iNaturalist) increased 

238-fold and 5-fold since 2008, respectively. In total, 6492 vascular plant species were 

identified in our raw dataset (2019–2022), with approximately 5000 species reported each 

year. This is comparable to the 6609 recognized vascular plant species reported by the 

Jepson Flora Project (2023), which encompasses the most comprehensive and scientifically 

accurate sources of California flora. Despite the advantages of crowdsourcing data, existing 

bias may impede its straightforward application in environmental health research.
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In our analytical workflow, we explicitly incorporated sample completeness, which allowed 

us to identify areas with saturated observations, and to quantify the standardized species 

diversity levels based on community characteristics, rather than the sampling efforts (Chao 

and Jost, 2012). This approach offers an improvement over the point-to-grid method used in 

the most recent epidemiology studies (Donovan et al., 2021a, 2021b), which aggregated 

individual point observations into larger units (land cover classes) and then generated 

diversity metrics to the grid level (meshblock) to address the non-random sampling issue 

in citizen science data. This point-to-grid approach requires an underlying assumption 

that the distribution of species is closely related to land cover attributes. For instance, 

if more observations/species are reported in densely urban areas due to clustered citizen 

scientists, the results will show an urban tendency, which neglects the species distribution 

pattern in relation to complex ecosystem functioning and environmental variation. Our 

analytical framework can also be applied in other volunteer-collected species monitoring 

databases that contain unbalanced sampling, such as eBird and eButterfly. Furthermore, our 

sampling coverage profiles highlight under-sampled regions, such as California urban areas 

where few or no saturated grid cells were found in the Central Coast and middle inland 

zones, suggesting that more project initiatives led by natural history museums or similar 

conservation organizations are needed to fill these data gaps.

In terms of the diversity pattern across California urban regions, our results are in 

accordance with two assessments (Love et al., 2022; Ma et al., 2020) which found that 

urban plants exhibit greater species diversity in coastal areas than inland areas. This may 

be the result of a convergence of cultivated plants and wild-growing flora species within 

urban areas. That is, communities with a highly diverse urban landscape may attract a 

higher level of wildlife. We presume that the typical urban garden provides suitable habitat 

for cultivated plants and therefore may further increase wild plant diversity. The synergy 

between cultivated plants and wild plants was found in both plant species abundance and 

richness in urban environments (X.-P. Li et al., 2019; Seitz et al., 2022), implying that urban 

planning may facilitate the coexistence of cultivated plant diversity and wild plant diversity. 

However, wild species may be immediately managed as weeds, especially for lawns in urban 

settings (Stewart et al., 2009), leading to the reduced species richness and abundance of wild 

plants. The association between wild plant species richness and cultivation or maintenance 

intensity is inconclusive from previous studies, and needs more investigation. Overall, our 

results provide a visualization of urban wild biodiversity as well as uncertainty estimates, 

which can help urban planners in resource allocation, promoting the planting of more 

diverse species, as well as wildlife and biodiversity conservation.

Residents of low SES and minority groups may experience multiple different disadvantages 

as it relates to health and plant diversity. First, such residents are already known to suffer 

from health disparities with respect to social determinants (Williams et al., 2010). Secondly, 

given that they are more likely to live in communities with poor irrigation systems and 

low environmental quality, they are more likely to experience low biodiversity within their 

neighborhoods. The fact that low-income areas exhibit low plant species diversity is well 

established in previous studies (Hope et al., 2003; Leong et al., 2018). Our findings aligned 

with the luxury and legacy effect in biodiversity (Hope et al., 2003; Kinzig et al., 2005), 

which presumes a global pattern of a positive relationship between plant species diversity 
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and affluent neighborhoods. Moreover, mixed conclusions have been drawn from previous 

research in more affluent communities. In the high-density and high-SES areas, negative 

or neutral relationships with biodiversity levels have been reported, due to limited space 

to increase plant diversity (Kuras et al., 2020). These results may help to explain the 

moderate-to-low levels of plant species diversity observed in this study in non-disadvantaged 

parts of the densely populated urban areas of Los Angeles County. However, previous 

studies focused on cultivated plants, whereas our study utilized wild plants. Thus, a direct 

comparison of our findings with those of previous studies is not feasible. Specifically, we 

found an inverse relationship between wild plant species diversity and the proportion of 

minority residents, such as Hispanics/Latinos, Asian Americans, and African Americans. 

This result is congruent with a study conducted in 268 urban locations throughout the 

United States, which also shows reduced genetic diversity and urban wildlife populations 

and attributes to be related to racial segregation in non-White neighborhoods (Schmidt and 

Garroway, 2022). Such results suggest a correlation between the unequal distribution of 

plant species diversity and social inequality.

Accumulating studies have demonstrated the positive effects of plant diversity on microbial 

biomass (Chen et al., 2019), soil microbial diversity (Baruch et al., 2021; Liu et al., 2020), 

and other animal diversity such as birds and insects (Peng et al., 2022). The biodiversity of 

vegetation surrounding residencies significantly influences the composition of commensal 

skin bacteria and airborne microbial content (Prescott et al., 2017). Early-life exposure 

to microbial biodiversity has been proposed to have a positive effect on the human 

microbiome and its immunomodulatory capacity, which can potentially protect against 

allergies, autoimmune diseases, and various non-communicable diseases during later life 

(Cavaleiro Rufo et al., 2021; Marselle et al., 2021). In a study conducted in Finland, 

it was found that atopic adolescents had a lower vascular plant species richness in the 

surroundings of their homes and a significantly reduced diversity of beneficial bacteria 

on their skin compared to healthy individuals (Hanski et al., 2012). In addition, due to 

the lack of species diversity maps and onerous field data collection, most current research 

only focuses on biodiversity levels over small areas, such as residential gardens or school 

areas. In contrast, the methods and species diversity map illustrated in this study provide 

heterogenous exposure levels across a large region, thus advancing our understanding of 

community exposure to species diversity in various settings and how it may influence human 

health and well-being, especially for children.

Several limitations should be noted. First, this study focused solely on species diversity 

and therefore cannot comprehensively capture the complexity of biodiversity. Second, the 

diversity metrics were based on citizen science observations and therefore may not reflect 

the actual biodiversity for two main reasons: 1) there could be bias in the preference of 

citizen science participants recording plant species with certain plant traits (e.g., aesthetics, 

size, rarity, conspicuousness); and 2) we calculated diversity metrics based on an 80 % 

sample completeness rather than a 100 % sample completeness. Thus, a field- and expert-

based approach in biodiversity sampling is still necessary and pivotal to provide valuable 

botanical data and validate observations from citizen science datasets. Nevertheless, our 

proposed approach is useful to efficiently map observed biodiversity on large scales, as well 

as identify areas that need more sampling in the future. Third, co-variables used in our 
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models were of different resolution (though they were all finer than the species diversity 

resolution). For example, soil pH had a significant effect on plant species diversity. However, 

when this variable was used as an averaged value, its utility may have been reduced 

since some species are potentially very sensitive to subtle changes in the environment. 

Fourth, there are uncertainties in areas with few or no saturated grid cells. We attributed 

this uncertainty to limited sample saturation in the inland areas to draw inferences on 

the effects of correlated covariables on species diversity. Thus, caution is needed for the 

interpretation of results in under-sampled areas (Fig. S3, mostly located in the inland areas 

where population densities were low). In addition, we acknowledge that there are possible 

other factors that may affect the relationship between wild plant species diversity and SES 

factors. However, our main purpose in this analysis is to examine whether biodiversity 

exposure differs by subpopulation groups with different SES factors. It is beyond the scope 

of the work to examine any causal relationships between the SES and biodiversity. Thus, 

we did not include other variables in this association analysis. Finally, estimates of the 

SES indicators, race/ethnicity information, and vulnerable population indices were before 

2019, and therefore slightly mismatched with the species diversity indices. Future research is 

needed to better understand how plant species diversity interacts with environmental factors 

to further improve modeling efforts and build more precise metrics, as well as incorporate 

more measurements of biodiversity, such as genetic and ecosystem diversity.

5. Conclusion

We developed an analytic framework for mapping continuous taxonomic diversity surfaces 

in large areas using crowdsourcing data while accounting for critical biases. Such biases 

included geographic and user selection biases along with the unequal sampling issue that 

often undermines volunteer-gathered datasets. Our grid-based maps provide the first large-

scale perspective on the spatial variation of the wild vascular plant species diversity in 2019–

2022. Our results highlight that plant species diversity was disproportionately distributed 

across socioeconomic lines and race/ethnicity groups in California urban areas. What is 

more, communities with a higher percentage of children had substantively lower species 

diversity levels. Our analytic workflow represents a cost-effective way of characterizing 

biodiversity across large spatial scales and can provide visual diversity patterns and in turn 

promote greater biodiversity and research investigations on the intersection of biodiversity 

and health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This study was supported by the National Institute of Environmental Health Sciences (NIEHS; R01ES030353). Any 
opinions, findings, and conclusions or recommendations expressed in this ublication are those of the author(s) and 
do not necessarily reflect the views of the NIEHS.

Li et al. Page 14

Sci Total Environ. Author manuscript; available in PMC 2024 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Data availability

We have shared the link to download data in the paper

References

Aerts R, Honnay O, Van Nieuwenhuyse A, 2018. Biodiversity and human health: mechanisms and 
evidence of the positive health effects of diversity in nature and green spaces. Br. Med. Bull 127 (1) 
10.1093/bmb/ldy021.

Andersen L, Corazon SSS, Stigsdotter UKK, 2021. Nature exposure and its effects on immune 
system functioning: a systematic review. Int. J. Environ. Res. Public Health 18 (4). 10.3390/
ijerph18041416.

Aronson MF, La Sorte FA, Nilon CH, Katti M, Goddard MA, Lepczyk CA, Warren PS, Williams 
NS, Cilliers S, Clarkson B, Dobbs C, Dolan R, Hedblom M, Klotz S, Kooijmans JL, Kühn I, 
Macgregor-Fors I, McDonnell M, Mörtberg U, Winter M, 2014. A global analysis of the impacts 
of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. Biol. Sci 281 
(1780), 20133330 10.1098/rspb.2013.3330.

Bae S, Levick SR, Heidrich L, Magdon P, Leutner BF, Wöllauer S, Serebryanyk A, Nauss T, Krzystek 
P, Gossner MM, Schall P, Heibl C, Bassler C, Doerfler I, Schulze E-D, Krah F-S, Culmsee H, Jung 
K, Heurich M, Müller J, 2019. Radar vision in the mapping of forest biodiversity from space. Nat. 
Commun 10 (1), 4757. 10.1038/s41467-019-12737-x. [PubMed: 31628336] 

Baruch Z, Liddicoat C, Cando-Dumancela C, Laws M, Morelli H, Weinstein P, Young JM, Breed MF, 
2021. Increased plant species richness associates with greater soil bacterial diversity in urban green 
spaces. Environ. Res 196, 110425. 10.1016/j.envres.2020.110425.

Beninde J, Veith M, Hochkirch A, 2015. Biodiversity in cities needs space: a meta-analysis of factors 
determining intra-urban biodiversity variation. Ecol. Lett 18 (6), 581–592. 10.1111/ele.12427. 
[PubMed: 25865805] 

Berto R, 2014. The role of nature in coping with psycho-physiological stress: a literature review on 
restorativeness. Behav. Sci 4 (4), 394–409. 10.3390/bs4040394. [PubMed: 25431444] 

Blanchette A, Trammell TLE, Pataki DE, Endter-Wada J, Avolio ML, 2021. Plant biodiversity in 
residential yards is influenced by people’s preferences for variety but limited by their income. 
Landsc. Urban Plan 214, 104149. 10.1016/j.landurbplan.2021.104149.

Brunbjerg AK, Bruun HH, Dalby L, Fløjgaard C, Frøslev TG, Høye TT, Goldberg I, Læssøe T, 
Hansen MDD, Brøndum L, Skipper L, Fog K, Ejrnæs R, 2018. Vascular plant species richness 
and bioindication predict multi-taxon species richness. Methods Ecol. Evol 9 (12), 2372–2382. 
10.1111/2041-210X.13087.

CalEPA, 2022. Designation of disadvantaged communities pursuant to Senate Bill 
535 (De León). https://calepa.ca.gov/wp-content/uploads/sites/6/2022/05/Updated-Disadvantaged-
Communities-Designation-DAC-May-2022-Eng.a.hp_−1.pdf.

Callaghan CT, Bowler DE, Blowes SA, Chase JM, Lyons MB, Pereira HM, 2022. Quantifying effort 
needed to estimate species diversity from citizen science data. Ecosphere 13 (4), e3966. 10.1002/
ecs2.3966.

Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, 
Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava 
DS, Naeem S, 2012. Biodiversity loss and its impact on humanity. Nature 486 (7401), 59–67. 
10.1038/nature11148. [PubMed: 22678280] 

Cavaleiro Rufo J, Ribeiro AI, Paciência I, Delgado L, Moreira A, 2020. The influence of 
species richness in primary school surroundings on children lung function and allergic disease 
development. Pediatric Allergy Immunol.: Off. Publ. Eur. Soc. Pediatr. Allergy Immunol. 31 (4), 
358–363. 10.1111/pai.13213.

Cavaleiro Rufo J, Paciencia I, Hoffimann E, Moreira A, Barros H, Ribeiro AI, ˆ 2021. The 
neighbourhood natural environment is associated with asthma in children: a birth cohort study. 
Allergy 76 (1), 348–358. 10.1111/all.14493. [PubMed: 32654186] 

Li et al. Page 15

Sci Total Environ. Author manuscript; available in PMC 2024 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://calepa.ca.gov/wp-content/uploads/sites/6/2022/05/Updated-Disadvantaged-Communities-Designation-DAC-May-2022-Eng.a.hp_−1.pdf
https://calepa.ca.gov/wp-content/uploads/sites/6/2022/05/Updated-Disadvantaged-Communities-Designation-DAC-May-2022-Eng.a.hp_−1.pdf


Chao A, Jost L, 2012. Coverage-based rarefaction and extrapolation: standardizing samples by 
completeness rather than size. Ecology 93 (12), 2533–2547. 10.1890/11-1952.1. [PubMed: 
23431585] 

Chao A, Kubota Y, Zelený D, Chiu C-H, Li C-F, Kusumoto B, Yasuhara M, Thorn S, Wei C-L, 
Costello MJ, Colwell RK, 2020. Quantifying sample completeness and comparing diversities 
among assemblages. Ecol. Res 35 (2), 292–314. 10.1111/1440-1703.12102.

Chaudhary C, Richardson AJ, Schoeman DS, Costello MJ, 2021. Global warming is causing a more 
pronounced dip in marine species richness around the equator. Proc. Natl. Acad. Sci. U. S. A 118 
(15) 10.1073/pnas.2015094118.

Chen C, Chen HYH, Chen X, Huang Z, 2019. Meta-analysis shows positive effects of plant diversity 
on microbial biomass and respiration. Nat. Commun 10 (1), 1332. 10.1038/s41467-019-09258-y. 
[PubMed: 30902971] 

Cheng X-L, Yuan L-X, Nizamani MM, Zhu Z-X, Friedman CR, Wang H-F, 2018. Taxonomic and 
phylogenetic diversity of vascular plants at Ma’anling volcano urban park in tropical Haikou, 
China: reponses to soil properties. PLoS One 13 (6), e0198517. 10.1371/journal.pone.0198517.

Chiu C-H, 2022. Incidence-data-based species richness estimation via a beta-binomial model. Methods 
Ecol. Evol 13 (11), 2546–2558. 10.1111/2041-210X.13979.

Colwell RK, Coddington JA, 1994. Estimating terrestrial biodiversity through extrapolation. Philos. 
Trans. R. Soc. Lond. B Biol. Sci 345 (1311), 101–118. 10.1098/rstb.1994.0081. [PubMed: 
7972351] 

DeLong DC, 1996. Defining biodiversity. Wildl. Soc. Bull. (1973–2006) 24 (4), 738–749. http://
www.jstor.org/stable/3783168.

Dewitz J, U.S. Geological Survey, 2021. National Land Cover Database (NLCD) 2019 Products. 
10.5066/P9KZCM54.

Donovan GH, Gatziolis D, Mannetje A.t., Weinkove R, Fyfe C, Douwes J, 2021a. An empirical 
test of the biodiversity hypothesis: exposure to plant diversity is associated with a reduced 
risk of childhood acute lymphoblastic leukemia. Sci. Total Environ. 768, 144627. 10.1016/
j.scitotenv.2020.144627.

Donovan GH, Landry SM, Gatziolis D, 2021b. The natural environment, plant diversity, and adult 
asthma: a retrospective observational study using the CDC’s 500 Cities Project Data. Health Place 
67, 102494. 10.1016/j.healthplace.2020.102494.

Flint LE, Flint AL, 2012. Downscaling future climate scenarios to fine scales for hydrologic and 
ecological modeling and analysis. Ecol. Process 1 (1), 2. 10.1186/2192-1709-1-2.

GBIF.org, 2023. GBIF Occurrence Global Biodiversity Information Facility (GBIF.org). 10.15468/
dl.5hvdxz (11 January).

Godefroid S, Koedam N, 2007. Urban plant species patterns are highly driven by density and function 
of built-up areas. Landsc. Ecol 22 (8), 1227–1239. 10.1007/s10980-007-9102-x.

Gotelli NJ, Colwell RK, 2001. Quantifying biodiversity: procedures and pitfalls in the measurement 
and comparison of species richness. Ecol. Lett 4 (4), 379–391. 10.1046/j.1461-0248.2001.00230.x.

Haahtela T, 2019. A biodiversity hypothesis. Allergy 74 (8), 1445–1456. 10.1111/all.13763. [PubMed: 
30835837] 

Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, Karisola P, Auvinen P, 
Paulin L, Mäkelä MJ, Vartiainen E, Kosunen TU, Alenius H, Haahtela T, 2012. Environmental 
biodiversity, human microbiota, and allergy are interrelated. Proc. Natl. Acad. Sci 109 (21), 8334–
8339. 10.1073/pnas.1205624109. [PubMed: 22566627] 

Hart AG, Bosley H, Hooper C, Perry J, Sellors-Moore J, Moore O, Goodenough AE, 2023. Assessing 
the accuracy of free automated plant identification applications. People Nat. 00 (1–9) 10.1002/
pan3.10460.

Heberling JM, Miller JT, Noesgaard D, Weingart SB, Schigel D, 2021. Data integration enables global 
biodiversity synthesis. Proc. Natl. Acad. Sci 118 (6), e2018093118 10.1073/pnas.2018093118.

Hedin M, Hahs AK, Mata L, Lee K, 2022. Connecting biodiversity with mental health and 
wellbeing—a review of methods and disciplinary perspectives. Front. Ecol. Evol 10 10.3389/
fevo.2022.865727.

Li et al. Page 16

Sci Total Environ. Author manuscript; available in PMC 2024 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.jstor.org/stable/3783168
http://www.jstor.org/stable/3783168


Hill MO, 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54 (2), 
427–432. 10.2307/1934352.

Hope D, Gries C, Zhu W, Fagan WF, Redman CL, Grimm NB, Nelson AL, Martin C, Kinzig A, 2003. 
Socioeconomics drive urban plant diversity. Proc. Natl. Acad. Sci. U. S. A 100 (15), 8788–8792. 
10.1073/pnas.1537557100. [PubMed: 12847293] 

Hsieh TC, Ma KH, Chao A, 2016. iNEXT: an R package for rarefaction and extrapolation of species 
diversity (Hill numbers). Methods Ecol. Evol 7 (12), 1451–1456. 10.1111/2041-210X.12613.

Jansen J, Woolley SNC, Dunstan PK, Foster SD, Hill NA, Haward M, Johnson CR, 2022. Stop 
ignoring map uncertainty in biodiversity science and conservation policy. Nat. Ecol. Evol 6 (7), 
828–829. 10.1038/s41559-022-01778-z. [PubMed: 35551251] 

Jepson Flora Project (eds.), 2023. https://ucjeps.berkeley.edu/eflora/IJM_stats.html.

Kaplan R, Kaplan S, 1989. The Experience of Nature: A Psychological Perspective (CUP Archive).

Kinzig AP, Warren P, Martin C, Hope D, Katti M, 2005. The effects of human socioeconomic 
status and cultural characteristics on urban patterns of biodiversity. Ecol. Soc 10 (1). http://
www.jstor.org/stable/26267712.

Kreft H, Jetz W, 2007. Global patterns and determinants of vascular plant diversity. Proc. Natl. Acad. 
Sci 104 (14), 5925–5930. 10.1073/pnas.0608361104. [PubMed: 17379667] 

Kuras ER, Warren PS, Zinda JA, Aronson MFJ, Cilliers S, Goddard MA, Nilon CH, Winkler R, 
2020. Urban socioeconomic inequality and biodiversity often converge, but not always: a global 
meta-analysis. Landsc. Urban Plan. 198, 103799. 10.1016/j.landurbplan.2020.103799.

Labadessa R, Ancillotto L, 2023. Small but irreplaceable: the conservation value of 
landscape remnants for urban plant diversity. J. Environ. Manag 339, 117907. 10.1016/
j.jenvman.2023.117907.

Leong M, Dunn RR, Trautwein MD, 2018. Biodiversity and socioeconomics in the city: a review of 
the luxury effect. Biol. Lett 14 (5), 20180082. 10.1098/rsbl.2018.0082.

Li X-P, Fan S-X, Guan J-H, Zhao F, Dong L, 2019a. Diversity and influencing factors on spontaneous 
plant distribution in Beijing Olympic Forest Park. Landsc. Urban Plan. 181, 157–168. 10.1016/
j.landurbplan.2018.09.018.

Li E, Parker SS, Pauly GB, Randall JM, Brown BV, Cohen BS, 2019b. An urban biodiversity 
assessment framework that combines an urban habitat classification scheme and citizen science 
data [methods]. Front. Ecol. Evol 7 10.3389/fevo.2019.00277.

Lin J, Wang Q, Li X, 2021. Socioeconomic and spatial inequalities of street tree abundance, species 
diversity, and size structure in New York City. Landsc. Urban Plan. 206, 103992. 10.1016/
j.landurbplan.2020.103992.

Liu L, Zhu K, Wurzburger N, Zhang J, 2020. Relationships between plant diversity and soil microbial 
diversity vary across taxonomic groups and spatial scales. Ecosphere 11 (1), e02999. 10.1002/
ecs2.2999.

Love NLR, Nguyen V, Pawlak C, Pineda A, Reimer JL, Yost JM, Fricker GA, Ventura JD, Doremus 
JM, Crow T, Ritter MK, 2022. Diversity and structure in California’s urban forest: what over six 
million data points tell us about one of the world’s largest urban forests. Urban For. Urban Green. 
74, 127679. 10.1016/j.ufug.2022.127679.

Ma B, Hauer RJ, Wei H, Koeser AK, Peterson W, Simons K, Timilsina N, Werner LP, Xu C, 2020. 
An assessment of street tree diversity: findings and implications in the United States. Urban For. 
Urban Green. 56, 126826. 10.1016/j.ufug.2020.126826.

MacGregor-Fors I, Escobar F, Rueda-Hernández R, Avendaño-Reyes S, Baena ML, Bandala VM, 
Chacón-Zapata S, Guillen-Servent A, Gonzalez-García F, Lorea-Hernández F, Montes de Oca 
E, Montoya L, Pineda E, Ramírez-Restrepo L, Rivera-García E, Utrera-Barrillas E, 2016. City 
“green” contributions: the role of urban greenspaces as reservoirs for biodiversity. Forests 7 (7), 
146. https://www.mdpi.com/1999-4907/7/7/146.

Marra G, Wood SN, 2011. Practical variable selection for generalized additive models. Comput. Stat. 
Data Anal. 55 (7), 2372–2387. 10.1016/j.csda.2011.02.004.

Marselle MR, Lindley SJ, Cook PA, Bonn A, 2021. Biodiversity and health in the urban environment. 
Curr. Environ. Health Rep. 8 (2), 146–156. 10.1007/s40572-021-00313-9. [PubMed: 33982150] 

Li et al. Page 17

Sci Total Environ. Author manuscript; available in PMC 2024 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://ucjeps.berkeley.edu/eflora/IJM_stats.html
http://www.jstor.org/stable/26267712
http://www.jstor.org/stable/26267712
https://www.mdpi.com/1999-4907/7/7/146


Morrill R, Cromartie J, Hart G, 2010. Rural-Urban Commuting Area Codes (RUCAs). https://
www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/.

OEHHA, 2021. CalEnviroScreen 4.0 https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-40.

Peng Y, Gao J, Zhang X, 2022. Plant diversity is more important than climate factors in driving 
insect richness pattern along a latitudinal gradient. Ecologies 3 (1), 30–37. https://www.mdpi.com/
2673-4133/3/1/4.

Prescott SL, Larcombe D-L, Logan AC, West C, Burks W, Caraballo L, Levin M, Etten EV, Horwitz P, 
Kozyrskyj A, Campbell DE, 2017. The skin microbiome: impact of modern environments on skin 
ecology, barrier integrity, and systemic immune programming. World Allergy Organ. J 10 (1), 29. 
10.1186/s40413-017-0160-5. [PubMed: 28855974] 

Roger E, Klistorner S, 2016. BioBlitzes help science communicators engage local communities in 
environmental research. J. Sci. Commun 15 (3), A06. 10.22323/2.15030206.

Roman LA, Scharenbroch BC, Östberg JP, Mueller LS, Henning JG, Koeser AK, Sanders JR, Betz 
DR, Jordan RC, 2017. Data quality in citizen science urban tree inventories. Urban For. Urban 
Green. 22, 124–135. 10.1016/j.ufug.2017.02.001.

Roswell M, Dushoff J, Winfree R, 2021. A conceptual guide to measuring species diversity. Oikos 130 
(3), 321–338. 10.1111/oik.07202.

Sabatini FM, Jiménez-Alfaro B, Jandt U, Chytrý M, Field R, Kessler M, Lenoir J, Schrodt F, Wiser 
SK, Arfin Khan MAS, Attorre F, Cayuela L, De Sanctis M, Dengler J, Haider S, Hatim MZ, 
Indreica A, Jansen F, Pauchard A, Bruelheide H, 2022. Global patterns of vascular plant alpha 
diversity. Nat. Commun 13 (1), 4683. 10.1038/s41467-022-32063-z. [PubMed: 36050293] 

Schmidt C, Garroway CJ, 2022. Systemic racism alters wildlife genetic diversity. Proc. Natl. Acad. Sci 
119 (43), e2102860119 10.1073/pnas.2102860119.

Seitz B, Buchholz S, Kowarik I, Herrmann J, Neuerburg L, Wendler J, Winker L, Egerer M, 2022. 
Land sharing between cultivated and wild plants: urban gardens as hotspots for plant diversity in 
cities. Urban Ecosyst. 25 (3), 927–939. 10.1007/s11252-021-01198-0.

Shroff R, Cortés CR, 2020. The biodiversity paradigm: building resilience for human and 
environmental health. Development 63 (2), 172–180. 10.1057/s41301-020-00260-2. [PubMed: 
33199948] 

Soil Survey Staff, N.R.C.S., United States department of agriculture. Web Soil Surv. https://
websoilsurvey.nrcs.usda.gov/.

Stewart GH, Ignatieva ME, Meurk CD, Buckley H, Horne B, Braddick T, 2009. URban Biotopes of 
Aotearoa New Zealand (URBANZ) (I): composition and diversity of temperate urban lawns in 
Christchurch. Urban Ecosyst. 12 (3), 233–248. 10.1007/s11252-009-0098-7.

Sun Y, Wang X, Zhu J, Chen L, Jia Y, Lawrence JM, Jiang L.-h, Xie X, Wu J, 2021. Using machine 
learning to examine street green space types at a high spatial resolution: application in Los 
Angeles County on socioeconomic disparities in exposure. Sci. Total Environ. 787, 147653. 
10.1016/j.scitotenv.2021.147653.

U. S. Census Bureau, 2022. U.S. Census Bureau’s Glossary: Census Tract. https://www.census.gov/
programs-surveys/geography/about/glossary.html.

Uyeda KA, Stow DA, Richart CH, 2020. Assessment of volunteered geographic information for 
vegetation mapping [article]. Environ. Monit. Assess 192 (8), 14. 10.1007/s10661-020-08522-9.

Ver Hoef JM, Boveng PL, 2007. Quasi-Poisson vs. negative binomial regression: how should 
we model OVERDISPERSED count data? Ecology 88 (11), 2766–2772. 10.1890/07-0043.1. 
[PubMed: 18051645] 

Williams DR, Mohammed SA, Leavell J, Collins C, 2010. Race, socioeconomic status, and health: 
complexities, ongoing challenges, and research opportunities. Ann. N. Y. Acad. Sci 1186, 69–101. 
10.1111/j.1749-6632.2009.05339.x. [PubMed: 20201869] 

Winnicki MH, Dunn RR, Winther-Jensen M, Jess T, Allin KH, Bruun HH, 2022. Does childhood 
exposure to biodiverse greenspace reduce the risk of developing asthma? Sci. Total Environ. 850, 
157853. 10.1016/j.scitotenv.2022.157853.

Yang Q, Wang L, Huang J, Lu L, Li Y, Du Y, Ling F, 2022. Mapping plant diversity based on 
combined SENTINEL-1/2 data&mdash;opportunities for subtropical mountainous forests. Remote 
Sens. 14 (3), 492. https://www.mdpi.com/2072-4292/14/3/492.

Li et al. Page 18

Sci Total Environ. Author manuscript; available in PMC 2024 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/
https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/
https://oehha.ca.gov/calenviroscreen/report/calenviroscreen-40
https://www.mdpi.com/2673-4133/3/1/4
https://www.mdpi.com/2673-4133/3/1/4
https://websoilsurvey.nrcs.usda.gov/
https://websoilsurvey.nrcs.usda.gov/
https://www.census.gov/programs-surveys/geography/about/glossary.html
https://www.census.gov/programs-surveys/geography/about/glossary.html
https://www.mdpi.com/2072-4292/14/3/492


Zomer RJ, Xu J, Trabucco A, 2022. Version 3 of the global aridity index and potential 
evapotranspiration database. Sci. Data 9 (1), 409. 10.1038/s41597-022-01493-1. [PubMed: 
35840601] 

Li et al. Page 19

Sci Total Environ. Author manuscript; available in PMC 2024 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HIGH LIGHTS

• Developed an analytic framework for mapping plant species diversity using 

crowdsourced data.

• Estimated wild vascular plant species diversity in large areas at 5 km 

resolution.

• Revealed an inequitable distribution of plant species diversity by 

sociodemographic status factors in California.
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Fig. 1. 
Procedures for data cleaning and diversity metrics development.
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Fig. 2. 
The 80 % sample coverage-based wild vascular plant species richness metrics within the 

study region.
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Fig. 3. 
Spatial distribution of wild vascular plant species richness metrics in California urban 

areas (2019–2022) (resolution: 5 km). Notes: For visual purposes, we cut off the grid cells 

outside the California land boundary. This resulted in a discrepancy in the minimums when 

comparing Fig. 2 with the optimized version of metrics in Table 1.
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Table 3

Description of the census tract-level plant diversity metrics.

Disadvantaged communities n = 2155 Other communities n = 4984 Total n = 7139 p-Value

Species richness, mean (SD) 127.5 (34) 146.9 (41.1) 141 (40.1) <0.001

Shannon diversity, mean (SD) 86.2 (24.9) 101.2 (30.4) 96.7 (29.6) <0.001

Simpson diversity, mean (SD) 57.1 (17.9) 69.9 (22.7) 66 (22.1) <0.001

Notes: p-value were from t-test to determine the difference in plant species diversity between disadvantaged and non-disadvantaged communities.
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