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Travel Demand Modeling and the Assessment of 
Environmental Impacts: A Literature Review 

INTRODUCTION 
Metropolitan Planning Organizations (MPOs) and other agencies rely on travel demand 
models (TDMs) to forecast the outcomes that will result from changes in the transportation 
system. The outcomes of proposed projects, such as highway expansions, must be 
evaluated in the environmental review process under the National Environmental 
Protection Act (NEPA) and, in California, the California Environmental Quality Act (CEQA). 
Under federal policy, the outcomes of long-range transportation plans required of 
Metropolitan Planning Organizations (MPOs) as well as state Department of Transportation 
(DOTs) must also be evaluated. These analyses historically focused on level of service, a 
measure of congestion on a roadway, but agencies are increasingly concerned with other 
important outcomes. In California, under Senate Bill 375 (Steinberg, Chapter 728, Statutes 
of 2008) and Senate Bill 743 (Steinberg, Chapter 386, Statutes of 2013), agencies must 
analyze the impacts of plans and projects on vehicle miles traveled (VMT) and greenhouse 
gas (GHG) emissions. Other outcomes of interest in California and elsewhere include 
safety, noise, and health and the equity implications of all these outcomes. Forecasts of 
these outcomes are essential inputs to planning and project selection processes to ensure 
that benefits outweigh environmental and societal costs. 

The TDMs used today by state DOTs and MPOs to forecast the outcomes of plans and 
projects are an improvement over the first TDMs developed in the 1950s and 1960s, but 
they are not perfectly suited to their mission. One issue is that they are not capable of 
analyzing certain kinds of projects, for example, bicycle and pedestrian facilities, and they 
do not provide forecasts of many of the outcomes of interest to agencies, safety most 
notably. In other words, TDMs provide only a portion of the information agencies need. 
Another issue is the potential inaccuracy of the forecasts, whether attributable to inherent 
biases stemming from the construction and calibration of the model or to the influence of 
staff decisions about input data and parameter values. A growing body of evidence 
suggests that TDMs produce inaccurate forecasts. For example, a study by Volker et al. 
(2020) shows that TDMs typically underestimate the increase in vehicle miles of travel 
induced by increases in highway capacity, often quite substantially (Volker et al., 2020). 
Other studies have identified structural shortcomings in TDMs, with important and 
problematic implications (Marshall, 2018).  

The purpose of this literature review is to assess what is currently known about the ability 
of TDMs to provide accurate forecasts for different types of plans and projects with respect 
to different outcome measures of interest. The role of TDMs in assessing the implications 
of highway expansions for VMT and GHG emissions is of particular interest given the 
current regulatory context (Deakin et al., 2020; Volker et al., 2020). The methodology used 
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to identify relevant papers is first described, followed by important background on TDMs in 
use today. Subsequent sections review limitations of the models, explain validity testing 
and sensitivity testing, and discuss the specific topic of VMT forecasting.   
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METHODOLOGY 
Relevant studies for this review were found using the Transport Research International 
Documentation (TRID) database and Google Scholar. The search terms, “travel demand 
model (or modeling),” “travel forecasting,” and “regional transportation planning” were 
used as fixed key search terms. Terms such as “induced travel (or induced travel effect),” 
“vehicle miles traveled (or VMT),” “air quality,” “emissions,” “land use,” “transportation 
policy (or policymaking),” “transit,” and “public transportation” were combined with the 
fixed key search terms to specify the policies of interest to transportation agencies. The 
research team focused on peer-review journal articles but several items from “gray 
literature”—such as technical guidelines by Caltrans, professional reports (e.g., NCHRP or 
TCRP reports from the TRID database), book chapters, conference papers, and 
webpages—were also identified as relevant to the review of empirical research on the 
question of the ability of TDMs to forecast induced travel. Various combinations of these 
search terms led to the identification of 86 relevant items—68 peer-reviewed journal 
articles and 18 items from the gray literature—after removing redundant items and 
screening each item for relevance. 

The relevant items were reviewed with respect to the following questions: 

• What are the roles of TDMs in transportation planning and environmental review 
processes?   

• What characteristics of TDMs limit their usefulness in these processes?  
• What are current practices with respect to validity testing and sensitivity testing of 

the forecasts that TDMs produce? 
• How are TDMs being used to assess the impact of highway capacity on VMT?  
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TRAVEL DEMAND MODELS 
Travel demand models (TDMs) are calibrated using data about current travel patterns and 
are used to forecast future travel patterns (Miller, 2020). They can be used to create and 
compare different transportation policy scenarios by adjusting model inputs as well as 
model parameters (Franklin et al., 2002; Malayath & Verma, 2013). These models generate 
forecasts of travel demand choices and transportation system performance (Davidson et 
al., 2007). Such forecasts are indispensable for policymakers in evaluating proposed road 
network improvements and other targeted infrastructure investments (Michael, 2016; 
Transportation Research Board, 2007). They are an important tool for assessing the degree 
to which such investments will help an agency achieve its goals, including congestion 
reduction and air quality improvements (Handy, 2008).  

The original TDMs were developed for the purpose of determining the need for additional 
highway capacity given expected population and economic growth, with the goal of 
maintaining acceptable levels of congestion. This remains a primary purpose for today’s 
models, though they are also used for broader array of purposes (Handy, 2008). Regardless 
of the type of model (as described below), key inputs to the model include representations 
of the future transportation network and future land use patterns. Traditionally, future land 
use patterns were taken as a given, and the model was used to forecast congestion levels 
for two scenarios: the “no-build” scenario, with no improvements to the current 
transportation network, and the “build” scenario, reflecting improvements to the network. 
When used in the long-range planning process, the model is used to forecast the 
performance of the proposed future network. When used in the environmental review 
process, it is used to forecast the impacts of specific projects. The model outputs include 
vehicle counts on individual road segments as well as estimated speeds, which together 
can be used to estimate not just congestion levels but also emissions of various air 
pollutants as required by federal and state policy. Models are now being used in California 
and some other states to estimate GHG emissions under different scenarios as well as 
increases in VMT stemming from increases in highway capacity. 

Many of the TDMs in use today are largely similar to those first used in the 1960s. These 
four-step travel demand models consist of submodels for trip generation, trip distribution, 
mode split, and route assignment (Ferdous et al., 2012; McNally, 2007). Although these 
models have become more sophisticated over time, their basic structure and inherent 
assumptions remain the same. The primary inputs to the model are land use data in the 
form of population and employment data for each “traffic analysis zone” and the roadway 
network (excluding local streets) represented as links (with characteristics such as 
capacity and speed limits) and nodes. Some models also incorporate a transit network 
depicting rail and bus routes with schedules and fares. Trip generation models estimate 
“trip ends” – the number of trips originating in or ending in each zone by trip purpose. Trip 
distribution models link the trip ends to estimate the flows of trips between zones based 
on travel times between zones. Mode split (or more sophisticated “mode choice”) models 
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estimate the split of those trip flows across modes. Finally, the route assignment model 
assigns trips to the network based on estimated travel times to determine the number of 
vehicle trips on each roadway segment. Over the decades, mode split and route 
assignment models have advanced to a greater degree than trip generation and trip 
distribution models. Another notable innovation is the move to tour-based models, which 
account for the fact that individual trips are often linked together in “tours,” for example, 
when an individual stops at a coffee shop on the way to work and at a grocery store or the 
gym on the way home (Hasnine & Nurul Habib, 2021).  

Activity-based models discard the zone-based approach and instead simulate the 
behavior of individual households and their individual members at a fine level of spatial 
detail. They explicitly model travel demand as deriving from an individuals' involvement in 
different activities. They start by predicting which activities are conducted when, where, for 
how long, and with whom, and then predict the travel choices that individuals will make to 
complete the predicted activities. Activity-based models include an explicit representation 
of the timing and sequencing of travel, using tours and trips as fundamental units of travel 
demand, and incorporating interrelationships among many long-term and short-term 
dimensions of travel (Castiglione et al., 2014; Vovsha & Bradley, 2006). They enable the 
incorporation of psychological as well as socio-demographic factors as predictors of travel 
choices (Shiftan & Ben-Akiva, 2011). Activity-based models enable agencies to evaluate 
the effect of alternative policies on individuals' travel behavior at a high level of temporal 
and spatial resolution and select the best policy alternative considering a potential wide 
range of performance indicators (Givoni et al., 2016a; Shiftan & Ben-Akiva, 2011; Vovsha & 
Bradley, 2006; Malayath & Verma, 2013). 

Activity-based models and some four-step models employ discrete choice models to 
predict the probability that an individual makes a given choice from a set of available 
choices. These models assume that this probability depends on the ratio of the utility of 
the given choice relative to the sum of the utility across all available choices. Because 
these models take a logit form, the sum of the utilities across all choices is referred to as 
the “logsum.” For mode choice models, the utility of choosing a particular mode is 
assumed to depend on travel times (in-vehicle and out-of-vehicle), monetary costs, and 
other factors such as land use characteristics or the number of transfers for transit trips. 
Income and/or auto ownership are sometimes incorporated into the model.   

Other variations of TDMs have been developed, sometimes for specific purposes, but are 
not widely used in transportation planning practice. Moekel et al. (2020) propose a hybrid 
model that overcomes some of the limitations of four-step models but is easier to 
implement than activity-based models. A systematic literature review by Alipour and Dia 
(2023) provides insights into the recent development of land use, transport, and energy-
environment (LUTEI) modeling frameworks focusing on policy integration by forecasting 
changes in travel behavioral patterns toward ride-hailing services, walking, biking, and 
shared mobility services to achieve goals of more sustainable transportation modes 
(Alipour & Dia, 2023). Another study by Croce et al. (2019) suggests a framework for 



 
6

 

“transport system models” that integrates transport supply and transport demand models 
with the optimization of the operation of electric vehicles for a better sustainable 
transportation decision-making process (Croce et al., 2019).   
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LIMITATIONS OF TRAVEL DEMAND MODELS 
Although TDMs play an important role in transportation planning and environmental review 
processes, notable limitations moderate their effectiveness as decision support tools. 
Forecasting is an inherently uncertain exercise, and the longer the time period of the 
forecast, the more uncertain it is. Although TDMs are frequently used for long-term 
forecasts (i.e. more than 20 years into the future), short-term forecasts come with less 
uncertainty (Karner, 2022).  

Sources of Uncertainty 

Once source of uncertainty is the nature of current travel behavior. TDMs have traditionally 
been calibrated based on data collected through travel diary surveys with supplemental 
data from other sources. Travel diary surveys collect data from a sample of individuals and 
households about each of the trips they make on the day of the survey, including the origin, 
destination, mode, and timing of the trip. Modelers apply statistical methods to these data 
to estimate the equations that make up the model, meaning that the model is only as good 
as the data on which it is based. Especially in recent years, serious questions have been 
raised about the quality of data collected through travel diaries. Concerns include biases 
in the sample of households participating in the survey as well the possibility that survey 
participants misreport their travel or even omit trips altogether. Outdated, insufficient, or 
aggregated data on travel patterns, population demographics, and infrastructure 
conditions can undermine the precision of travel demand models (Pulugurtha et al., 2019; 
Zhang et al., 2012). 

A second source of uncertainty in the use of TDMs for forecasting is that agencies must 
also forecast the inputs to the model with some level of uncertainty. This is not so much an 
issue for the transportation network, as the network is with the control of the MPO and 
state DOT: the agency assumes or proposes rather than forecasts the network in most 
situations. Future land use patterns, on the other hand, must be forecast. These forecasts 
include not only total population and employment in the region over time but also its 
spatial distribution across the region. Land development is notoriously difficult to forecast, 
however, and depends to some extent on changes in the transportation network (Handy, 
2005). Most models do not directly account for the reciprocal relationship between land 
development and transportation investments, a failure that limits their ability to accurately 
forecast future travel patterns (Acheampong & Silva, 2015; Waddell, 2014; Waldeck et al., 
2020). The inherent uncertainty associated with predicting future conditions poses a 
substantial challenge to long-term travel demand forecasting.  

A third question is whether current behavior is a good predictor of future behavior. In the 
future, people may not respond to transportation options in the same way that they do 
today. Travel time might become more or less important, for example, or demand for 
certain activities might wane. But the static equations at the heart of the model assume 
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that the calculus of individual travel choices remains the same, even as the inputs to the 
model change. Not only are factors such as technological innovations or shifts in travel 
preferences difficult to anticipate accurately (El Zarwi et al., 2017; Shaheen & Cohen, 
2020), such changes are not easily incorporated into TDMs short of a wholesale 
recalibration of the model. The models are not built to adapt to fundamental economic and 
societal changes. 

Simplifications 

In addition to these substantial uncertainties, TDMs have inherent limitations owing to 
their simplified representation of travel behavior and the transportation system. Four-step 
models are more simplified and thus have more limitations than activity-based models, 
though the limitations of the latter are also notable.  

Four-Step Models 
Traditional four-step TDMs are characterized by their aggregated representation of travel 
behavior, based on traffic analysis zones rather than households or individuals. This 
approach oversimplifies heterogeneity within zones, instead relying on average 
characteristics within the zone, and tends to create aggregation biases that could affect 
analyses of proposed projects (Miller, 2020; Davidson et al., 2007). This problem is 
especially acute for zones with diverse land uses and population characteristics. In 
addition, these models do not provide spatial detail on travel flows within zones, a 
significant limitation for the analysis of public transit and non-motorized trips (Davidson et 
al., 2007). Temporal detail is also limited, in that the models tend to aggregate trips to peak 
periods rather than predicting the specific time at which trips are made. Simplified 
behavioral assumptions embedded within these models introduce another limitation (Ben-
Akiva et al., 1998; Vovsha & Bradley, 2006). 

Although four-step models continue to be widely used in practice, especially in smaller 
regions with limited resources, the field has increasingly recognized that these models are 
limited in their ability to account for the dynamic interplay between travel behavior and 
network conditions. This limits their ability to reasonably represent the effects of 
transportation policies such as variable road pricing and travel demand management 
strategies (Rasouli & Timmermans, 2012; Shiftan & Ben-Akiva, 2011). This recognition has 
led to interest in developing integrated dynamic models that link advanced activity-based 
demand model components with dynamic network traffic assignment model components 
(Castiglione et al., 2014). 

Activity-Based Models 
Activity-based models offer a more complete representation of the complexity of travel 
behavior by focusing on individual households and the individuals within those 
households. In doing so they account for heterogeneity within the population with respect 
to travel needs and preferences, thereby enhancing the fidelity of predictions in 
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demographically varied regions (Davidson et al., 2007). The models account for 
interactions among household members in the scheduling of activities and their attendant 
travel choices, including decisions about shared vehicles (Gliebe & Koppelman, 2005; Hu 
et al., 2023; Vovsha et al., 2003; J. Zhang et al., 2009; Davidson et al., 2007; Vovsha et al., 
2011)). They also operate at a finer temporal resolution and thus provide a more accurate 
representation of dynamics of travel behavior. Their finer spatial resolution enables the 
analysis of short distance trips, particularly those by public transit and active modes. In 
these ways, they offer the potential for more accurate forecasts, though they too face 
issues around uncertainty as discussed above.  

In sum, these models not only do a better job of representing real-world travel behaviors 
than four-step models but also simulate travel demand outcomes at the micro level with 
respect to spatiotemporal changes in land use, demographic characteristics, 
employment, income, and diverse transportation modes (Arentze & Timmermans, 2012; 
Davidson et a. 2007; Ferdous et al., 2012; Walker et al., 2019). They allow for a more 
detailed and dynamic representation of travel behavior, which, as many argue, make them 
more suitable for analyzing the effects of various transportation policies (Davidson et al., 
2007; Malayath & Verma, 2013; Griesenbeck & Garry, 2007; Shan et al., 2013). Studies 
demonstrating the higher accuracy of activity-based models compared to four-step 
models underscores the potential usefulness in policymaking (Padhye et al., 2020; 
Tajaddini et al., 2020).  

Other Considerations 

Travel demand models were initially developed to forecast traffic counts and congestion 
levels, and they continue to support this objective. However, today’s MPOs and state DOTs 
have adopted a broader array of goals, including environmental justice and mobility equity. 
TDMs are not necessarily well suited to providing information useful to assessing the 
implications of policies for these goals (Bills, 2024; Bills et al., 2012; Miller, 2020). 
Regarding equity, certain demographic groups or geographic areas often experience 
disproportionate negative effects from transportation investments, and these impacts may 
not be adequately reflected in modeling outputs (Ramadan et al., 2019). 

Resource constraints in terms of available funding and human capital pose practical 
challenges to developing and maintaining sophisticated travel demand models. Regions or 
agencies lacking the necessary resources may struggle with regular model updates or 
improvements (D’Cruz et al., 2020; Kisgyörgy & Vasvári, 2017; Y. Zhang & Zhang, 2019). 
Activity-based models especially demand detailed data and computational resources, 
potentially limiting their applicability in situations where such resources are scarce 
(Moekel et al., 2020).  

Agencies must also consider community engagement. If the public lacks trust or 
understanding of the modeling process, it can lead to resistance and hinder the successful 
implementation of transportation policies (Givoni et al., 2016b; Marsden et al., 2009; 
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Volker et al., 2020). Effective communication and collaboration among stakeholders is 
paramount to building trust in modeling results so that they are actually used to inform 
transportation policies (Angelelli et al., 2022; Ben-Akivai et al., 1996). The two types of 
models present different challenges on this front. On one hand, the complexity of activity-
based models may be off-putting to stakeholders (Givoni et al., 2016), on the other, their 
behavioral realism may be easier for stakeholders to grasp.   

These challenges underscore the ongoing need for research and innovation in the field to 
advance the capabilities of travel demand modeling and its application in shaping 
sustainable and equitable transportation systems. Addressing these constraints 
necessitates a concerted effort to enhance data collection, refine modeling techniques, 
and bolster the integration of travel demand modeling with other planning processes.  
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VALIDITY AND SENSITIVITY TESTING 
The validity – or accuracy – of the forecasts generated by TDMs cannot be directly 
assessed at the time of the forecasts. Instead, TDMs are generally validated based on their 
ability to replicate current patterns of travel, though sometimes they are validated using a 
“back-casting” approach in which the accuracy of forecasts for earlier years are compared 
to actual traffic counts for those years. It is generally accepted that forecasts have a high 
degree of uncertainty, particularly on specific segments of the network, though this 
uncertainty is not always highlighted or acknowledged.  

Several studies have explored the accuracy of different components of models or different 
types of models, as in the following examples:  

Gibb (2023) analyzed a more modern trip distribution model, developed for the 
Sacramento Council of Governments’ SACSIM activity-based model. SACSIM uses 
a multinomial logit (MNL) model rather than the traditional gravity model. The 
author tested this model both with and without attraction constraints, which have 
historically been employed to simulate the real-world constraints that people 
experience in their daily travels (Gibb, 2023).  

Pulugurtha et al. (2019) evaluated the accuracy of the Charlotte regional TDM’s 
travel time estimations by comparing them to real-world data. The model in 
question was a traditional four-step model. The study found that correlations 
between forecasted and actual travel times was strongest in suburban and rural 
areas, and weakest in urban and inner-ring neighborhoods (Pulugurtha et al., 2019). 
These results suggest that travel demand forecasts are most accurate when 
vehicular congestion is minimal and route choice is more constrained.  

Shan et al. (2013) and Zhong et al. (2015) conducted a comparative analysis of the 
Tampa Bay Regional Planning Model (TBRPM), an existing traditional four-step 
model for the same area, and an activity-based model developed using travel diary 
data from the Tampa Bay Region in Florida. The analysis showed that the activity-
based model provided a more accurate representation of travel behavior, though 
the four-step model out-performed the activity-based model in some respects 
(Shan et al., 2013; Zhong et al., 2015).  

Sensitivity analysis, in contrast, involves the systematic variation of input parameters, 
including variables such as travel costs, time considerations, socioeconomic factors, and 
infrastructure attributes, to test their impact (Al-Salih & Esztergár-Kiss, 2022b; Xu et al., 
2023). The TDM is run for distinct sets of parameter values to determine resultant changes 
in model outputs, including mode choice, trip distribution, and overall travel demand 
patterns (Castiglione et al., 2014; Du & Chen, 2022)). Identifying the parameters having the 
greatest influence on outputs can provide direction for efforts to improve data accuracy, 
refine assumptions, and bolster the reliability of the model (Al-Salih & Esztergár-Kiss, 
2022a; Gu et al., 2022).  
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The literature underscores the pivotal role of sensitivity analysis in assessing the 
responsiveness of TDMs to transportation policy questions. These analyses provide 
decision-makers with a systematic methodology for understanding the complex interplay 
of input parameters. They can be used to produce a ranking of parameters based on the 
sensitivity of the TDM to each parameter, providing decision-makers with a clear hierarchy 
of influential factors shaping travel demand model results (Al-Salih & Esztergár-Kiss, 
2022b; Yang et al., 2013). These insights can provide the basis for the development of 
policy scenarios. However, hyper-sensitivity of the models to policy inputs, when small 
alterations in policy assumptions lead to consequential variations in model outputs, 
complicate the use of TDMs for policy evaluation (Shiftan & Ben-Akiva, 2011; Yang et al., 
2013).  
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FORECASTING VMT 
Much of the recent literature on the regulatory capabilities of TDMs has been centered on 
their potential role in accurately forecasting reductions in vehicle miles traveled (VMT), and 
in turn, greenhouse gas emissions, stemming from various policies. VMT reduction policies 
may involve some combination of transit improvements, land use changes, and/or auto 
pricing intended to decrease the attractiveness of driving relative to less impactful 
alternatives.   

TDMs are not always well suited, however, to assessing the effects of such strategies. 
Rodier (2009) reviewed literature analyzing the capabilities of various regional travel 
demand models in forecasting changes in VMT and GHG emissions over various time 
horizons and in response to various policy scenarios. The regions highlighted in the review 
varied both in population and the level of transit service provided, allowing for the marginal 
impact of transportation policies to be measured across various scales. Regional agencies 
simulated policy scenarios in isolation as well as in pairs and triplets, such as a pairing of 
transit expansion with congestion pricing as in a study for the San Francisco Bay Area. 
However, the review found that the regional models were limited in their ability to predict 
the effects of land use change and transit expansion at a granular level. The reliance of 
measures of the quantity rather than quality of transit service was another notable 
limitation. At of the time of this review, the ability of TDMs to combine these metrics and 
evaluate the overall quality of transit service in a region was still limited (Rodier, 2009). 
Many agencies forecast active travel “off model” since these modes are not directly 
represented in the models (Handy, 2008).  

The accuracy of the VMT estimates is another important question. Metz (2021), for 
example, analyzed the accuracy of a travel demand model in predicting travel time savings 
from widening a 16-mile section of London’s M25 motorway from three lanes to four lanes 
per direction. The SATURN software model had projected an increase in both traffic 
volumes and average speeds from the road widening. These projections contributed to 
favorable economic cost-benefit projections during the planning of the project. According 
to the analysis, the project did reduce travel times immediately following its 2014 opening, 
but much of the time savings disappeared in subsequent years. Over time, as traffic 
volumes increased, average roadway speeds returned to the status quo before expansion, 
thereby wiping out the benefits on which the project was justified. On both local and 
national scales, the study found that improvements to roadway infrastructure did not lead 
to reductions in travel time but rather to increases in road travel. This finding points to a 
notable disconnect between the economic forecasts presented to the public and the 
actual economic impacts post-completion (Metz, 2021). 

Critical to the accurate forecasting of VMT is the accurate forecasting of induced VMT, that 
is, the increase in VMT that can be attributed to highway capacity expansion itself. Caltrans 
requires the estimation and mitigation of induced VMT as a part of the environmental 
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review process under the California Environmental Quality Act, a requirement 
implemented in response to SB 743 (Caltrans, 2020). Capacity expansion reduces the cost 
of travel, leading to short-term changes in behavior, including longer trips, shifts in travel 
mode, route changes, and entirely new trips. Longer-term changes in residential and 
commercial locations as well as changes in land development patterns can also occur 
(Downs, 1962; Caltrans, 2020; Handy, 2005).  

TDMs typically do not capture all of these possible changes because they do not reflect all 
of the ways that changes in travel speeds can reshape travel behavior (Naess et al., 2012; 
Milam et al., 2017; Deakin et al., 2020). In four-step models, the issue is whether the model 
includes feeds the forecast of congested travel times that the model produces as an 
output back into earlier components of the model. Although the forecasted times are 
usually fed back into the route assignment and mode choice submodels, they are less 
often fed back into the trip distribution submodel and rarely into the trip generation 
submodel. Also rare are feedback loops between the forecast of travel times and the land 
use scenario that is input into the model. This means that while models generally capture 
induced VMT associated with changes in route and mode choice, they generally do not 
capture induced travel associated with changes in trip destinations, trip generation, 
residential and commercial location, and land development patterns. As a result, they 
tend to underestimate VMT induced by the expansion and thus total VMT following the 
expansion. The result is overly optimistic forecasts of benefits in terms of increased travel 
speeds and reduced congestion but also overly optimistic forecasts of costs in terms of 
GHG emissions and other impacts (Naess et al, 2012; Volker et al., 2020).   

Activity-based models offer the potential to both represent policies other than highway 
capacity expansion (e.g. transit improvements, investments in active modes, pricing 
strategies) and to capture more of the connections between decisions that result in 
induced VMT. The higher temporal detail in activity-based models is also helpful in 
accurately capturing induced VMT by accounting for shifts in trip departure times in 
response to changing levels of congestion. But even these models often lack feedbacks to 
trip generation and to land development patterns (Milam et al., 2017).   
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CONCLUSION 
Travel demand forecasting models are essential to the transportation planning process 
and to the assessment of the environmental impacts of proposed projects. Although 
activity-based models represent an improvement over traditional four-step travel demand 
models in terms of their more realistic representation of travel behavior and their greater 
level of spatial and temporal detail, both types of models necessarily offer simplified 
representations of the actual transportation system and produce forecasts with a high 
level of uncertainty. Validity and sensitivity testing help analysts understand uncertainties 
and inaccuracies in the model forecasts. Of particular concern from a policy standpoint is 
the ability of these models to accurately account for the induced VMT effect of highway 
capacity expansions.   
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